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Abstract. Using bifurcation theory, we study the secular resonances induced by the
Sun and Moon on space debris orbits around the Earth. In particular, we concentrate on
a special class of secular resonances, which depend only on the debris’ orbital inclination.
This class is typically subdivided into three distinct types of secular resonances: those
occurring at the critical inclination, those corresponding to polar orbits, and a third
type resulting from a linear combination of the rates of variation of the argument of
perigee and the longitude of the ascending node.

The model describing the dynamics of space debris includes the effects of the geopo-
tential, as well as the Sun’s and Moon’s attractions, and it is defined in terms of suitable
action-angle variables. We consider the system averaged over both the mean anomaly
of the debris and those of the Sun and Moon. Such multiply-averaged Hamiltonian is
used to study the lunisolar resonances which depend just on the inclination.

Borrowing the technique from the theory of bifurcations of Hamiltonian normal forms,
we study the birth of periodic orbits and we determine the energy thresholds at which
the bifurcations of lunisolar secular resonances take place. This approach gives us
physically relevant information on the existence and location of the equilibria, which
help us to identify stable and unstable regions in the phase space. Besides their physical
interest, the study of inclination dependent resonances offers interesting insights from
the dynamical point of view, since it sheds light on different phenomena related to
bifurcation theory.

1. Introduction

The gravitational effects of the Sun and Moon in the study of the dynamics of satellites

and space debris have recently gained a renewed interest. Indeed, the awareness that a

careful investigation of the dynamics of space debris is nowadays mandatory leads to

a thorough study of the influence of the Sun and Moon, which are known to provoke

important effects in specific regions around the Earth ([43, 16]).
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At the present state, one estimates that about 3 × 108 objects with size larger than

1 mm and about 3.5 × 105 objects larger than 1 cm orbit around the Earth. Leaving

all these objects without control could provoke extremely dangerous events. In partic-

ular, dramatic scenarios can directly involve operative satellites, or even manned space

missions, like the International Space Station. This threat certainly suffices to motivate

the efforts which are currently done toward understanding the dynamics of such objects.

A mathematical approach to study the dynamics of space debris will strongly depend

upon the location of the object one wants to study, since all possible forces (geopotential,

atmospheric drag, lunar attraction, solar influences, etc.) contribute to the model in a

different way, according to the altitude of the object under investigation.

Adopting the nowadays widespread classification, the circumterrestrial space is divided

into following regions:

• LEO (low–Earth orbit), running from 90 to 2 000 km in altitude;

• MEO (medium–Earth orbit), spanning the region between 2 000 and 30 000 km in

altitude;

• GEO (geostationary–Earth orbit), used for trajectories around the geosynchronous

orbit at altitude of 35 786 km;

• HEO (high–Earth orbit), corresponding to the region above GEO.

In each of the above regions some forces prevail with respect to others. For example,

in LEO, beside the gravitational attraction of the Earth, one definitely must consider

the effects of the atmospheric drag (thereby dealing with a dissipative dynamical sys-

tem). In MEO, the gravitational effects of the point–mass Earth and that of the terms

corresponding to the second degree and order gravity–field coefficients J2 and J22 of the

spherical harmonics are very important, but also the influence of the Moon and the Sun,

including the effect of the solar radiation pressure, become increasingly relevant. Finally,

at GEO, as well as in HEO, the lunisolar perturbations become of the same order as

the Earth’s oblateness J2, and both are more important than the J22 (tesseral terms) for

long-term orbital dynamics (see [13, 17, 36, 44, 46, 47]). We claim that the model we

will introduce in Section 2 is conceived to describe objects in MEO, GEO, HEO, but not

in LEO, and therefore it does not include the atmospheric drag.

In this work we concentrate on the effect of lunisolar perturbations ([3, 6, 20]) and

precisely on some secular resonances, which depend only on the inclination (see [29],

compare also with [30]). With the terms of lunar and solar gravitational resonance we
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mean that there exists a commensurability relation of the type

k1ω̇ + k2Ω̇ + k3ω̇b + k4Ω̇b = 0 (1.1)

for some integers (k1, k2, k3, k4), not all identically zero; in (1.1) the quantity ω denotes

the argument of perigee of the debris and Ω is the longitude of the ascending node, while

ωb and Ωb are, respectively, the argument of perigee and the longitude of the ascending

node of the perturber. When the third–body perturber is the Sun, the suffix will be b = S,

while it will be b = M for the Moon. As pointed out in [29], taking into account only the

secular effects due to J2, one can give simple expressions for the rates of variation of ω and

Ω. Inserting such expressions in (1.1) one obtains resonant relations involving the orbital

elements (a, e, i) of the debris, where a is the semimajor axis, e the eccentricity and i

the inclination. As we will see in Section 3, some of these resonances depend only on the

inclination and not on a and e ([29]). The dynamics of such inclination–dependent–only

resonances is the object of study of the present work.

To enter the details, one can introduce three main classes of secular resonances depend-

ing only on inclination (see Section 3): (i) those corresponding to the so-called critical

inclination, (ii) polar orbits, and (iii) the resonances arising from linear combinations of

the type k1ω̇ + k2Ω̇ = 0 with k1, k2 ∈ Z\{0}. The critical inclination is the well-known

value i = 63.4o; polar orbits correspond to i = 90o; the resonances of type (iii) occur

at two specific values of the inclination as given later in (3.7). These inclinations are

referred to the equatorial plane.

A simple, but exhaustive, mathematical model describing the cases (i)-(ii)-(iii) can

be obtained as follows. We introduce the Hamiltonian function including the Keplerian

part, the secular part of the geopotential, limited to the most significant term (the so-

called J2 approximation), and the contributions due to the Moon and the Sun. Following

[29, 34, 24], we will conveniently express the elements of the debris with respect to the

equatorial plane and those of the Moon with respect to the ecliptic plane; the advantage

is that the inclination of the Moon becomes nearly constant and the argument of the

perigee of the Moon as well as the longitude of the lunar ascending node vary linearly

with time. We refer the reader to [10] for a thorough mathematical derivation of the

expansion of the lunisolar Hamiltonian.

We analyze each case (critical inclination, polar case, and linear combination) by prop-

erly introducing an adapted system of resonant coordinates; we are thus led to a resonant
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2 degrees-of-freedom Hamiltonian that we proceed to average with respect to the fast an-

gle. The action conjugated to the fast angle, say T , becomes an integral of motion.

Using a technique common in bifurcation theory (see [41, 42, 40]), and which has been

successfully applied to the study of the bifurcations of halo orbits around the collinear

Lagrangian points ([11]), we investigate the occurrence of bifurcations associated to the

lunisolar secular resonances. This leads to an exhaustive study of the generation of fami-

lies of periodic orbits as the level of the integral T , obtained after the averaging process, is

varied. We stress that the study of lunisolar resonances is markedly different with respect

to the analysis of halo orbits used in [11]. In fact, besides the intrinsic constraints on

some dynamical quantities (e.g., positivity of the action variables), the conditions for the

existence of bifurcating families of lunisolar resonances include also physical limitations

on the orbital elements (most notably the eccentricity) in such a way that their values are

compatible with the fact that the perigee of the debris cannot be lower than the Earth’s

radius ([5]).

Beside obtaining a physically relevant description of the occurrence of periodic orbits,

the results presented in the current work also provide interesting insights into the phe-

nomenon of bifurcations (see also [4, 6]). In particular, we will see that the various types

(i)-(ii)-(iii) of secular resonances must be studied using different variants of the method

and that each case leads to a different dynamical behavior. For example, in some cases

we need to refine the method and perform very accurate computations to reconstruct

the true dynamics, since several bifurcating families coexist (this will be achieved by

implementing some expansions to suitable higher orders). Moreover, a connection with

the geometric approach to integrable Hamiltonian systems based on their invariants is

performed in analogy with the methods used to describe the phenomenon of critical in-

clination in the most effective way ([14, 15]). This leads to remark that the methods

and results presented in this work have a twofold interest: we obtain information on the

behavior of lunisolar secular resonances which might be used to study the dynamics of

space debris, and we implement bifurcation theory on some case studies, which show

different behaviors from the dynamical perspective.

As described before, our study of the bifurcations is based on a multiply averaged

system. To understand what happens in the non-averaged model, we provide qualitative

arguments: the basic (averaged) model admits whiskered tori and normally hyperbolic

invariant manifolds (hereafter, NHIM); the non-averaged system in which the rates of
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variation of the longitudes of the ascending node of Sun and Moon are assumed to be

constant is described by a 2–dimensional Hamiltonian system, for which KAM invariant

tori exist, provided that suitable assumptions and non-degeneracy conditions are satisfied;

if we consider also the rates of variation of the longitudes of the ascending node of Sun

and Moon, then we obtain a non–autonomous, 2–dimensional Hamiltonian model, which

might show the phenomenon of Arnold’s diffusion through transition chains between

invariant tori. The investigation of such non–averaged models might be the object of

study of a future work.

This paper is organized as follows. In Section 2 we introduce a model describing lu-

nisolar secular resonances; in particular, we determine suitable series expansions obtained

after a multiple averaging process. Following [29], we compute in Section 3 the secular

resonances that depend just on the inclination of the satellite and which lead to the cases

(i)-(iii) mentioned before. In Section 4 we perform a detailed investigation of the gener-

ation of equilibria for the case study ω̇ + Ω̇ = 0, a sample of class (iii). The analytical

study of the resonance ω̇ + Ω̇ = 0 will be complemented by a numerical investigation

through the so-called Fast Lyapunov Indicators (FLIs). The other secular resonances of

type (iii) are investigated in Section 5. Secular resonances corresponding to the critical

inclination are studied in Section 6 and those corresponding to polar orbits in Section 7.

A qualitative description of the dynamics in the non–averaged problem is provided in

Section 8. Some conclusions are drawn in Section 9.

2. A model including the lunisolar effect

We consider the motion of a small body, say D, that we identify with a space debris.

We assume that D is subject to the gravitational influence of the Earth, Sun and Moon.

The Hamiltonian describing de dynamics of D has the form (see, e.g., [32, 10, 16]):

H = HKep +Hgeo +HMoon +HSun ,

where HKep represents the Keplerian part, Hgeo describes the perturbation due to the

Earth, HMoon and HSun denote the contributions due to the Moon and Sun, respectively.

We will express the HamiltonianH in terms of Delaunay action-angle variables, usually

denoted as (L,G,H,M, ω,Ω), where the actions are defined by

L =
√
µEa , G = L

√
1− e2 , H = G cos i (2.1)

with µE = GmE the product of the gravitational constant G and the mass mE of the

Earth, a the semimajor axis, e the orbital eccentricity, i the inclination, while the angle
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variables are the mean anomaly M , the argument of perigee ω, and the longitude of the

ascending node Ω.

The quantities a, e, i, ω, Ω and M , called orbital elements, describe the dynamics of

D. Under the effect of the Keplerian part, all orbital elements, but the mean anomaly M

which varies linearly in time, are constant. When a perturbation is considered, the orbital

elements are no longer constant, but rather change in time. The long–term variation of

the orbital elements can be studied by means of perturbation theory. The first step

consists in expanding the perturbation in Fourier series in terms of the orbital elements.

The coefficients of the series expansion depend on the semi–major axes, inclinations

and eccentricities, while the trigonometric arguments involve linear combinations of the

following angles: the mean anomalies, the longitudes of the nodes, the arguments of

periapsides. Moreover, the disturbing function depends also on the rotation, hence on

the hour angle, of the disturbing body.

Within the infinite number of terms of the series expansion, only some terms are really

relevant for the long–term evolution of the orbital elements. In general, the terms of the

expansion of the disturbing force are classified as follows: short periodic terms (involving

fast angles), secular terms (independent of the fast angles), resonant terms (implying

commensurabilities between the fast angles). According to the averaging principle (see,

e.g., [38]), the effects of the short periodic terms average out over a long-time. Hence,

such terms can be dropped from the expansion and we can focus only on the most relevant

terms.

Two types of resonance affect the motion of the space debris (and artificial satellites):

(a) tesseral resonances, occurring when there is a commensurability between the Earth’s

rotation period and the orbital period of the space debris ([8, 9, 47]), and (b) lunisolar

resonances, which involve commensurabilities among the slow frequencies of orbital pre-

cession of a satellite and the perturbing body ([29, 30, 20, 10, 16]). Tesseral resonances

provoke variations of the semi–major axis on a time scale of the order of hundreds of days,

while lunisolar resonances influence the evolution of the eccentricity and inclination on

a much longer time scale, of the order of tens (or hundreds) of years. In this work, we

focus on the effects induced by the lunisolar resonances. Thus, in the following sections

we average the disturbing functions over the mean anomalies of both the space debris

and the perturbing bodies.
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As it is well known (see, e.g., [7]), the Keplerian part of the Hamiltonian is given by

HKep(L) = − µ2
E

2L2
.

For later convenience, it is important to underline that the units of length and time

are normalized so that the geostationary distance is unity (it amounts to 42 164.1696 km)

and that the period of Earth’s rotation is equal to 2π. As a consequence, from Kepler’s

third law it follows that µE = 1. Therefore, unless the units are explicitly specified, the

numbers appearing in the following sections will be expressed in the above units.

2.1. The perturbing function Hgeo. As for Hgeo, we limit ourselves to the most im-

portant contribution, corresponding to the J2 gravity coefficient of the secular part (see,

e.g., [8], compare also with [9]), precisely:

Hgeo(L,G,H) =
R2
EJ2µ

4
E

4

1

L3G3
(1− 3

H2

G2
) ,

where RE is the mean equatorial radius of the Earth and J2 = 1.08263 × 10−3. This

expression of the geopotential corresponds to taking an average of the Hamiltonian over

the mean anomaly of the space debris as well as over the sidereal time of the Earth, and

to consider only the most important term of the expansion in the spherical harmonics of

the geopotential.

2.2. The lunar potential. As far as the lunar contribution is concerned, following

[34, 24, 29], it is convenient to express the orbital elements of the satellite with reference

to the equatorial plane and the orbital elements of the Moon with respect to the ecliptic

plane. In fact, since the main perturbing effect is due to the Sun, the motion of the lunar’s

elements with respect to the celestial equator, in particular the argument of perigee and

the longitude of the ascending node, are such that their changes are nonlinear. For

instance, the longitude of the ascending node varies between −13◦ and +13◦ with a

period of 18.6 years. On the contrary, if we consider the elements of the Moon with

respect to the ecliptic plane, then the inclination iM is close to a constant (in analogy

to aM and eM), while the variations of the argument of perihelion ωM and the longitude

of the ascending node ΩM are approximately linear (see for example [45]) with rates

ω̇M ' 0.164◦/day, Ω̇M ' −0.053◦/day. The rate of variation of the lunar mean anomaly

is ṀM ' 13.06◦/day. This implies that the change of ωM + ΩM has a period of 8.85

years, while the variation of ΩM has a period of 18.6 years.
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In a first approximation, we assume that the Moon moves on an elliptic orbit with

semimajor axis aM = 384 748/42 164.1696 (expressed in units of the geostationary ra-

dius), eccentricity eM = 0.0549006 and inclination iM = 5◦15′; the mass mM of the

Moon, expressed in Earth’s masses, is about equal to 0.0123. The potential due to the

lunar attraction will be computed as a truncation of the series expansion to the second

order in the ratio of the semi-major axes, so that the lunar potential is approximated

by quadrupole fields. Moreover, we will consider the averages of the potential over the

mean anomalies of the debris and the Moon (see Section 4). In fact, the mean anomaly

of the debris is a fast angle; on the other hand, the mean anomaly of the Moon can be

neglected, since the secular resonances we shall consider will not depend upon the mean

anomaly of the Moon as well as on that of the Sun (see Remark 2 below).

We proceed now to give an explicit expansion of the lunar potential; to this end, we

follow the approach of [34] and [24], recently revisited in [10].

We recall that we denote by aM , ωM , ΩM the semimajor axis, the argument of perigee,

the longitude of the ascending node of the Moon referred to the ecliptic plane, respec-

tively. After some computations for which we address the reader to [10], we obtain that

HMoon is given by the following expression:

HMoon = −RMoon , (2.2)

where

RMoon =
1

2
GmM

2∑
m=0

2∑
s=0

2∑
p=0

a2

a3M
(−1)[

m
2
] KmKs

(2− s)!
(2 +m)!

×F2mp(i) F2s1(iM) H2 p 2p−2(e)G210(eM)

×
{
Um,−s
2 cos

(
(2− 2p)ω +mΩ + sΩM − s

π

2
− ysπ

)
+Um,s

2 cos
(

(2− 2p)ω +mΩ− sΩM + s
π

2
− ysπ

)}
. (2.3)

We consider the expansion up to degree 2 in a/aM and we retain only the terms of

the expansion which provide the average over the fast orbital phases (i.e., the mean

anomalies of both the debris and the Moon). In (2.3) the following notation has been in-

troduced: H2 p 2p−2(e) and G210(eM) are, respectively, the Hansen coefficients X2,2−2p
0 (e)

and X−3,00 (eM) = (1− eM)−3/2 (see [25]); [·] denotes the integer part; K0 = 1, otherwise

Km = 2 if m 6= 0; F2mp(i) is the Kaula inclination function ([32], see also [12]) that we
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define for the generic case Fnmp(i) as

Fnmp(i) =

min {p,[n−m
2

]}∑
t=0

(2n− 2t)!

t!(n− t)!(n−m− 2t)! 22n−2t sinn−m−2t i
m∑
s=0

(
m
s

)
coss i

×
∑
c

(
n−m− 2t+ s

c

)(
m− s
p− t− c

)
(−1)c−[

n−m
2

] ,

where c is summed over all values for which the binomial coefficients are not zero; the

function Um,s
2 is defined as (compare with [24])

Um,s
2 =

(−1)m−s

(2 + s)!
coss+m(

ε

2
) sins−m(

ε

2
)
d2+s

dz2+s
(z2−m(z − 1)2+m) ,

where z = cos2( ε
2
) and ε denotes the obliquity of the ecliptic, which is equal to ε =

23◦26′21.45′′; the quantity ys is zero for s even and it is equal to 1/2 for s odd.

2.3. The solar potential. The gravitational potential due to the Sun, RSun, is found

analogously to that of the Moon. However, contrary to the lunar case, we use equatorial

elements for both the satellite and the Sun (see [31]). Precisely, we assume that the Sun

moves on an elliptic orbit with semimajor axis aS = 149 597 871/42 164.1696 (expressed

in units of the geostationary radius), eccentricity eS = 0.01671123, inclination iS =

23◦26′21.406′′, argument of perigee ωS = 282.94◦, longitude of the ascending node ΩS =

0◦; the mass of the Sun mS, expressed in Earth’s masses, is equal to about 333 060.4016.

Averaging as in Section 2.2 over the mean anomaly of the space debris and that of the

Sun, and truncating to second order in the ratio of semi–major axes, one obtains:

HSun = −RSun , (2.4)

where

RSun = GmS

2∑
m=0

2∑
p=0

a2

a3S
Km

(2−m)!

(2 +m)!
F2mp(i) F2m1(iS)

×H2 p 2p−2(e)G210(eS) cos
(

(2− 2p)ω +m(Ω− ΩS)
)
. (2.5)

The notation appearing in (2.5) has been already introduced in Section 2.2.

We stress that, since in Hgeo, HMoon and HSun we retain only the secular terms, then

it means that we consider the Hamiltonian averaged over M and therefore its conjugated

action L turns out to be constant.
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3. Secular resonances depending only on inclination

In [29] it has been shown that there are 15 types of third-body (lunar and solar)

resonances. This classification accounts for all possible resonances involving a third–body

perturber: secular resonances, semi–secular resonances and mean motion resonances.

The semi–secular resonances and mean motion resonances will not be an object of

study of the present work: involving the mean anomalies of the Moon and Sun, whose

rates of variation are ṀM ' 13◦/day, ṀS ' 1◦/day, the semi–secular resonances mostly

take place in the LEO region. On the other hand, the mean motion resonances occur on

a different time scale than the secular resonances. We are indeed interested in gravity

secular resonances, which are defined as follows.

Definition 1. A lunar gravity secular resonance occurs whenever there exists an integer

vector (k1, k2, k3, k4) ∈ Z4\{0}, such that

k1ω̇ + k2Ω̇ + k3ω̇M + k4Ω̇M = 0 . (3.1)

We have a solar gravity secular resonance whenever there exist (k1, k2, k3, k4) ∈ Z4\{0},
such that

k1ω̇ + k2Ω̇ + k3ω̇S + k4Ω̇S = 0 . (3.2)

Remark 2. The commensurability relations (3.1) and (3.2) are independent on ṀM and

ṀS; this remark motivated the computations of Section 2, where the expansions RMoon

in (2.3) and RSun in (2.5) have been computed by averaging over MM and MS.

We stress that the above definition of secular resonance is as general as possible.

However, given the fact that the lunar and solar expansions are truncated to the second

order in the ratio of semi–major axes, in view of (2.3) and (2.5), the Hamiltonian H is

independent of ωM and ωS. Therefore, for all resonances studied here, one has k3 = 0.

Moreover, since Ω̇S ' 0, the relations (3.1) and (3.2) may be rewritten in the particular

form:

(2− 2p)ω̇ +mΩ̇ + κΩ̇M = 0 , m, p = 0, 1, 2, κ = −2,−1, 0, 1, 2 , (3.3)

and

(2− 2p)ω̇ +mΩ̇ = 0 , m, p = 0, 1, 2 , (3.4)

respectively.
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The longitude of the lunar ascending node varies with the rate Ω̇M ' −0.053◦/day,

while the quantities ω̇, Ω̇ can be approximated by the following well known formulae,

which take into account only the effect of J2 ([29]):

ω̇ ' 4.98
(RE

a

) 7
2

(1− e2)−2 (5 cos2 i− 1) ◦/day ,

Ω̇ ' −9.97
(RE

a

) 7
2

(1− e2)−2 cos i ◦/day . (3.5)

Inserting (3.5) in (3.3) or (3.4), we obtain a relation involving the satellite’s elements a,

e, i: this expression provides the location of the secular resonance.

As pointed out in [29], some resonances turn out to be independent on a, e, and they

depend only on the inclination. The general class of resonances depending only on the

inclination is characterized by the relation k1ω̇ + k2Ω̇ = 0, k1, k2 ∈ Z. From this class,

the most important ones are those for which k1, k2 ∈ {−2,−1, 0, 1, 2}. In fact, under the

quadrupolar approximation considered in this paper, the only possible resonances are:

ω̇ = 0

Ω̇ = 0

ω̇ + Ω̇ = 0

−ω̇ + Ω̇ = 0

−2ω̇ + Ω̇ = 0

2ω̇ + Ω̇ = 0 . (3.6)

The resonances involving k1 and k2 with |k1| > 2 or/and |k2| > 2 occur at higher degree

expansions of the lunar and solar disturbing functions, their influence being negligible in

the MEO region.

Inserting (3.5) in (3.6), one readily sees that one obtains expressions involving just the

inclinations. Precisely, the specific values of the inclinations corresponding to the cases

listed in (3.6) are, respectively:

63.4◦ or 116.4◦

90◦

46.4◦ or 106.9◦

73.2◦ or 133.6◦

69.0◦ or 123.9◦

56.1◦ or 111.0◦ . (3.7)
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The values in (3.7) are obtained as follows. Let us consider as an example the third

relation in (3.6) which, together with (3.5), yields

ω̇ + Ω̇ =
(RE

a

) 7
2

(1− e2)−2 [4.98(5 cos2 i− 1)− 9.97 cos i] ;

the last expression is equal to zero for i = 46.4◦ and i = 106.9◦. In a similar way one

finds the other values listed in (3.7).

According to [29, 44], we consider the following three classes of lunisolar secular reso-

nances depending only on specific values of the inclination:

(i) ω̇ = 0, which occurs at the critical inclinations i = 63.4◦, 116.4◦;

(ii) Ω̇ = 0, which corresponds to polar orbits;

(iii) k1ω̇ + k2Ω̇ = 0 for some k1, k2 ∈ {−2,−1, 1, 2}.

In the following we shall refer to the above cases as secular resonances of types, re-

spectively, (i), (ii), (iii).

The secular resonances appearing in (3.6) are the most important secular resonances, as

their amplitude is larger than the amplitude associated to both the resonances involving

the lunar ascending node ΩM and the resonances of higher order.

Recalling that we averaged over the mean anomalies of the debris and of the third

body, we conclude that the Hamiltonian we are going to study (omitting the Keplerian

part) has the following form:

H(G,H, ω,Ω, ωM ,ΩM , ωS,ΩS) =
α

G3

(
1− 3

H2

G2

)
−RMoon(G,H, ω,Ω, ωM ,ΩM)

− RSun(G,H, ω,Ω, ωS,ΩS) , (3.8)

where, for a given L = L0, the quantity α is defined as

α ≡ R2
EJ2µ

4
E

4L3
0

= 6.19325× 10−6L−30 (3.9)

and RMoon, RSun are given, respectively, in (2.3), (2.5).

4. Secular resonance: ω̇ + Ω̇ = 0

In this Section, we analyze in detail one of the cases appearing in (3.6) and precisely

we concentrate on the resonance ω̇ + Ω̇ = 0, which is located at one of the inclinations

i = 46.4◦ or i = 106.9◦. The study of the other resonances in (3.6) is deferred to Section 5.

Under some simplifying assumptions, we introduce a model (see Section 4.1), which is

described by an integrable Hamiltonian function. The investigation of periodic orbits is

presented in Sections 4.2, 4.3, using two different methods from bifurcation theory. The
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validity of the model and of the results is analyzed in Section 4.4, through a numerical

technique based on the computation of suitable chaos indicators. We remark that the

model as well as the computation of periodic orbits through bifurcation theory relies

on some series expansions to given orders. The orders used in the current Section for

the resonance ω̇ + Ω̇ = 0 suffice to provide reliable and stable results. However, this

might not be the case for other resonances and, in fact, while studying other resonances

of type (3.6) in Section 5, we add a discussion on the accuracy of the expansion of the

Hamiltonian model (see Section 5.1).

4.1. The model. We start by introducing resonant variables through the symplectic

transformation (G,H, ω,Ω)→ (S, T, σ, η) defined by

σ = ω + Ω , S = G ,

η = Ω , T = H −G . (4.1)

From (3.8) we obtain that the resonant Hamiltonian in the variables (4.1) takes the form

Hres(S, T, σ, η, t) =
α

S3

(
1− 3

(T + S)2

S2

)
− R(res)

Moon(S, T, σ, η, t)−R(res)
Sun (S, T, σ, η, t) , (4.2)

where the dependence on time in (4.2) comes from the linear variations with time of ΩM .

The functions R(res)
Moon, R(res)

Sun denote the functions RMoon, RSun in (2.3), (2.5) expressed

in terms of the resonant variables introduced in (4.1).

Our goal will be to find energy thresholds at which the bifurcations of lunisolar res-

onances take place (see Section 4.2). To this end, we need to introduce an integrable

Hamiltonian, which is obtained under the following two hypotheses.

H1. Each resonance will be viewed in isolation, not interacting with the other ones.

This means that on the timescale associated to (4.2), we have that σ is the resonant

(slow) angle, while η is a fast angle; therefore, averaging over η (i.e., over Ω), we obtain

that the contributions due to Moon and Sun are given (in the units specified in Section 2)

by the following expressions:

R(res)

Moon(S, T, σ, t) = 0.10142 · 10−6a2(2 + 3e2)[−1 + 3 cos2(i)]
[
7.54884− cos(ΩM)

+ 0.00996 cos(2 ΩM)
]

+ 0.0114 · 10−6a2e2[1 + cos(i)]2
[
52.2396 cos(2σ)

+ 2.57317 cos(2σ − 2 ΩM) + 23.2372 cos(2σ − ΩM)− cos(2σ + ΩM)

+ 0.00476 cos(2σ + 2 ΩM)
]
,

(4.3)
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and

R(res)

Sun (S, T, σ, t) = 0.35561 · 10−6a2(2 + 3e2)[−1 + 3 cos2(i)]

+ 0.27666 · 10−6a2e2[1 + cos(i)]2 cos(2σ − 2 ΩS) ,
(4.4)

where, for a given L = L0, we have that e2 = 1− S2/L2
0 and cos(i) = (T + S)/S.

H2. We neglect the rates of variation of ΩM and ΩS.

In fact, we may disregard just the rate of variation of ΩM , since Ω̇S is indeed very small;

as a consequence, we use the following constant values, valid at epoch J2000 ([45]):

ΩM = 125.044555◦ , ΩS = 0◦ . (4.5)

Due to the assumption H2, we obtain that the functions R(res)

Moon, R(res)

Sun do not depend

anymore on time.

Under the hypotheses H1 and H2, the contribution due to the Moon is given (in the

units specified in Section 2) by the following expression:

RMoon(S, T, σ) = 0.82349 · 10−6a2(2 + 3e2)[−1 + 3 cos2(i)]

+ 0.4828 · 10−6a2e2[1 + cos(i)]2 cos(2σ − 0.42418) ,
(4.6)

while the contribution due to the Sun, say RSun(S, T, σ), is expressed by (4.4) with

ΩS = 0. We are thus led to consider the following reduced model:

Rres(S, T, σ) =
α

S3

(
1− 3

(T + S)2

S2

)
−RMoon(S, T, σ)−RSun(S, T, σ) .

As remarked, e.g., in [20, 43], in many regions of the phase space there can be a delicate

interaction between the resonances, leading to a complex secular dynamics. However,

the reduced model provided by Rres leads to an exhaustive description of the bifurcation

phenomena. We will discuss in detail in Section 4.4 the assumptions H1 and H2, and

we will highlight numerically the differences between the reduced model Rres and the

Hamiltonian (4.2).

After some algebra, one can write the sum of the contributions RMoon and RSun as

given by the potential RMoonSun, whose expression is

RMoonSun(S, T, σ) = 1.17909 · 10−6a2(2 + 3e2)[−1 + 3 cos2(i)]

+ 0.74373 · 10−6a2e2[1 + cos(i)]2 cos(2σ − 0.27047) .
(4.7)

In conclusion, we are led to consider three possible simplified models, which describe

only the effect of the Moon, that of the Sun, or both; they are represented by the following
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Hamiltonians:

HMoon(S, T, σ) =
α

S3

(
1− 3

(T + S)2

S2

)
−RMoon(S, T, σ)

HSun(S, T, σ) =
α

S3

(
1− 3

(T + S)2

S2

)
−RSun(S, T, σ)

HMoonSun(S, T, σ) =
α

S3

(
1− 3

(T + S)2

S2

)
−RMoonSun(S, T, σ) , (4.8)

where RMoon, RSun, RMoonSun are given, respectively, in (4.6), (4.4) with ΩS = 0, and

(4.7).

Our next task is to compute the equilibrium points associated to one of the Hamilto-

nians (4.8), that we denote generically as Hr. In particular, we need to find a solution

of the equation

Ṡ = −∂Hr

∂σ
= 0 .

With reference to (4.8), we can proceed to compute the equilibria for the following models:

(a) including just the contribution of the Moon, the equilibria are obtained by solving

the equation:

Ṡ =
∂RMoon

∂σ
= 0 ,

which leads to σ = 0.212 or σ = 1.783 (modulo π);

(b) including just the contribution of the Sun, the equilibria are obtained by solving

the equation:

Ṡ =
∂RSun

∂σ
= 0 ,

which leads to σ = 0 or σ = π/2 (modulo π);

(c) including both contributions of Moon and Sun, the equilibria are obtained by

solving the equation:

Ṡ =
∂RMoonSun

∂σ
= 0 ,

which admits the solutions σ = 0.135 or σ = 1.706 (modulo π).

4.2. Birth of periodic orbits. We now want to investigate the birth of periodic orbits

for the secular resonance corresponding to the case ω̇ + Ω̇ = 0. The other resonances

appearing in (3.6) will be analyzed in Section 5.

According to (4.8), we can in principle consider three different cases in which only the

Moon is present, only the Sun is taken into account, or rather the joint contribution of

the Moon and Sun is considered. However, in the following discussion we shall present
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the mathematical details related to the more complete case when both the Moon and

Sun are considered. The other two cases can be indeed treated in a similar way.

When dealing with the third model in (4.8) with the potential given by (4.7), it is

convenient to introduce the angle s such that

2s = 2σ − 0.27047 .

Recalling that T = H − S = S(cos i− 1) and using the value ires = 46.4◦ at which the

resonance occurs, we introduce the quantity

S0 =
T

cos ires − 1
= −3.222T

and we expand the third Hamiltonian in (4.8) around S0 up to the second order, thus

obtaining:

Hexp(S, T, s;L0) =
10−6

L3
0T

5

(
p1(S, T ;L0) + p2(S, T ;L0) cos 2s

)
, (4.9)

where, by using (3.9), p1, p2 are the following polynomials of degree two in S:

p1(S, T ;L0) = −0.34538T 2 + 16.2362L7
0T

5 + 10.6118L5
0T

7

+ S2(−0.04081 + 0.565253L7
0T

3 + 7.07456L5
0T

5)

+ S(−0.26322T + 5.99233L7
0T

4 + 21.2237L5
0T

6)

p2(S, T ;L0) = L5
0T

3
(
− 0.63474L2

0T
2 + 0.743734T 4 + S2(0.068246L2

0 + 2.97494T 2)

+ S(0.68187L2
0T + 2.97494T 3)

)
.

Of course, we could have computed an expansion to higher order, but we will see that

in the present case the second order is sufficient to capture the relevant features of the

dynamics. We refer to Section 5.1 for the discussion of the accuracy of the expansion to

finite order in S.

Remark 3. It is interesting to underline the analogy presented in [6] of the lunisolar

secular resonances with the “second fundamental model for second-order resonances” (see

[35]); this model was denoted with the acronym SFM2 in [6].

The second fundamental model for first-order resonances, say SFM1, has been intro-

duced in [26]; in this case the resonant Hamiltonian can be reduced to the form

HSFM1(S, s) = S2 + βS − 2
√

2S cos s
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for some constant β ∈ R. On the contrary, the SFM2 describes resonances of second

order ([35]) through a Hamiltonian of the form

HSFM2(S, s) = 2S2 + βS + S cos 2s

(compare with [6]).

As pointed out in [6], some resonances (precisely, those of second-order in the eccentric-

ity) admit more critical points than those described in SFM2. An “extended fundamental

model for second order resonances”, say EFM2, can be introduced to describe more gen-

eral cases through a Hamiltonian function of the form

HEFM2(S, s) = γS3 + 2S2 + βS + S cos 2s

for some constants β, γ ∈ R.

Recalling that σ and η are the angle variables conjugated to S and T , respectively, the

equations of motion associated to (4.9) are given by

Ṡ =
2 · 10−6

L3
0T

5
p2(S, T, L0) sin 2s

ṡ =
10−6

L3
0T

5

(∂p1
∂S

(S, T, L0) +
∂p2
∂S

(S, T, L0) cos 2s
)

Ṫ = 0

η̇ = −5 · 10−6

L3
0T

6

(
p1(S, T, L0) + p2(S, T, L0) cos 2s

)
+

10−6

L3
0T

5

(∂p1
∂T

(S, T, L0) +
∂p2
∂T

(S, T, L0) cos 2s
)
. (4.10)

The equations (4.10) show that for the Hamiltonian (4.9) the variable T is a constant

of motion. Therefore, we are led to investigate a system with only one degree of freedom

in the (s, S) phase-plane parametrized by T . The essential information is delivered by

the fixed points of the reduced flow that can be located by solving the two equations

Ṡ = 0, ṡ = 0. The first equation admits the solutions

s = 0, π , s = ±π
2

mod 2π ,

or equivalently σ = 0.135, σ = 3.277, σ = 1.706, σ = −1.435 (modulo 2π). These values

will produce pairs of equilibria, which arise from pitchfork bifurcations.

Let us denote by ṡA, ṡB, the values of ṡ at, respectively, s = 0 and s = π
2
, and let SA,

SB be the solutions of ṡA = 0, ṡB = 0. Using that L =
√
µEa and expanding SA, SB in
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series of T up to the 6th order, one obtains the expressions

SA = −3.225 T + 31.712 a
7
2 T 4 − 497.59 a

5
2 T 6 ,

SB = −3.225 T + 25.789 a
7
2 T 4 − 100.358 a

5
2 T 6 . (4.11)

To determine the bifurcation thresholds according to the technique described, e.g., in

[40, 41, 42], we need to constrain the variable S within an interval, which is determined

on the basis of the relation of S with the integral of motion represented by T . However,

in the present situation we have also a physical constraint, which leads to a bound on S

on the basis of the following physical considerations (compare with [5, 6]). We know that

the maximum value of S could be S = L, since the eccentricity must be greater than or

equal to zero. On the other hand, from the fact that the distance at perigee cannot be

smaller than the radius of the Earth, we obtain a minimum value that S can reach, say

S = Smin. To be explicit, we start from the condition that the distance at perigee should

be at least equal to the Earth’s radius:

a(1− e) = RE ;

from this expression we have e = (a−RE)/a. Taking into account that e =
√

1− S2/L2 =√
1− S2/(µEa), we obtain

1− S2

µEa
=

(a−RE)2

a2
,

whose solution provides (compare with [4]):

Smin =

√
(2a−RE)µERE

a
. (4.12)

We stress again that such limitation on Smin is purely given by physical reasons and that

a different choice might lead to other results. From the minimum value of S, we obtain

the corresponding value for the variable T , say T = T0, as

T0 = Smin(cos ires − 1) ,

where ires is the value of the inclination at resonance, as given by (3.7).

To find explicit expressions of the bifurcation curves in the (a, T )-plane of the conserved

quantities, we proceed by simplifying as much as possible the necessary algebra. Using

a fake parameter λ, we introduce the following expansions to first order:

TA = T0 + λ TA1 , TB = T0 + λ TB1 (4.13)
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for some unknowns TA1, TB1. Next, we replace TA, TB in the solutions SA, SB given by

(4.11), respectively, and we expand to first order in λ as

SA = τ
(A)
0 (a) + λ τ

(A)
1 (a) TA1 , SB = τ

(B)
0 (a) + λ τ

(B)
1 (a) TB1

for some known functions τ
(A)
0 , τ

(A)
1 , τ

(B)
0 , τ

(B)
1 . The quantities TA1, TB1 are then obtained

by solving the equations

SA = Smin , SB = Smin .

Finally, we set λ = 1 and we obtain explicit expressions for (4.13). Since they have a quite

cumbersome form, we give the series expansions of TA, TB around a given semimajor axis,

for example that corresponding to the GPS location, namely aGPS = 26 560/42 164 '
0.6299:

TA = −0.159538− 0.0134657 (a− aGPS) + 0.039272 (a− aGPS)2 ,

TB = −0.159142− 0.0120736 (a− aGPS) + 0.039572 (a− aGPS)2 . (4.14)

Figure 1, right panel, shows the plots of the curves TA, TB as a function of the semi-

major axis for the model including both effects of the Moon and Sun. In a similar way

we proceed to determine the bifurcation thresholds just due to the Sun (see Figure 1,

middle panel) and those including just the effects of the Moon (see Figure 1, left panel).

TB
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0.6 0.8 1.0 1.2
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-0.160

-0.158

-0.156

-0.154
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T
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-0.160
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-0.154
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T

Figure 1. Secular resonance: ω̇ + Ω̇ = 0, i = 46.4o. Plots of the
bifurcations curves TA, TB as a function of the semi-major axis. Left: the
Hamiltonian includes just the effect of the Moon; middle: the
Hamiltonian includes only the Sun; right: the Hamiltonian includes both
Moon and Sun.

The bifurcation values for the GPS orbit are obtained setting a = aGPS in (4.14); in

this way we compute the thresholds at which the first and second bifurcations take place

(see Table 1).
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inclination (in degrees) TA TB
ω̇ + Ω̇ = 0 46.4 Moon -0.159667 -0.159407

ω̇ + Ω̇ = 0 46.4 Sun -0.159875 -0.159724

ω̇ + Ω̇ = 0 46.4 Moon+Sun -0.159538 -0.159142

ω̇ + Ω̇ = 0 106.9 Moon -0.664766 -0.664673

ω̇ + Ω̇ = 0 106.9 Sun -0.665209 -0.665155

ω̇ + Ω̇ = 0 106.9 Moon+Sun -0.664441 -0.664298

Table 1. Bifurcation values TA, TB for the GPS orbit corresponding to
the cases in which only the Moon is considered, only the Sun is taken into
account, both Sun and Moon are included in the model. The two possible
inclinations, 46.4o and 106.9o, found in (3.7) are considered.

The interpretation of the results is the following. Take a vertical line, for example

a = 1 in Figure 1: below the value TA we do not find any equilibria; for values in

the interval (TA, TB) we have one (hyperbolic) equilibrium point; above TB we find two

equilibria (elliptic and hyperbolic). This result is corroborated by Figure 2, which shows

the phase space portraits in the plane (s, S) with s ∈ [−π, π), S ∈ [Smin, Smax], where

Smax =
√
µEa, corresponding to the GPS value a = aGPS. The three panels show

the values of T below (left panel), between (middle panel) and above (right panel) the

bifurcation thresholds TA, TB. Given the slight difference between all cases - Sun, Moon,

Sun+Moon - as already shown in Table 1, we just provide the results for the sample in

which both the Moon and Sun are considered.

We see that Figure 2, left panel, does not exhibit any equilibrium point, while the

generation of the two elliptic equilibrium solutions at s = ±π
2

is observed in Figure 2,

middle panel, for which the value of T is between those of TA and TB provided in Table 1.

For values larger than TB we observe new hyperbolic equilibria at s = 0,±π as shown in

Figure 2, right panel.

4.3. An alternative method for detecting bifurcations. An alternative method to

find bifurcations with respect to the technique presented in Section 4.2 relies on the

following procedure, which is based on the geometric approach used in [41, 42] and is

related to the analysis of the critical inclination in [14].
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Figure 2. Secular resonance: ω̇ + Ω̇ = 0, i = 46.4o. The red line
corresponds to the value S = Smin. Phase space portraits corresponding
to the GPS value a = aGPS in the plane (s, S) for the Hamiltonian
including both the Moon and Sun: T = −0.12 (left), T = −0.1595
(middle), T = −0.2 (right).

Let us come back to the Hamiltonian (4.9). We introduce Poincaré variables defined

as

x1 = L0e cos s

x2 = L0e sin s , (4.15)

and we notice that

x21 − x22 = L2
0e

2 cos 2s .

Then, we can write (4.9) as

Hexp(x1, x2, T ;L0) = H1(S, T ;L0) +H2(S, T ;L0) (x21 − x22) (4.16)

for suitable functions H1 = H1(S, T ;L0), H2 = H2(S, T ;L0). Due to the properties of

the angular momentum and of the Laplace-Runge-Lenz vector (see [14]), the variables

(4.15) satisfy the identity

x21 + x22 + S2 = L2
0 , (4.17)

which defines a reduced phase space. Let us then introduce the variables

X = x21 − x22
Y = 2x1x2

Z = S ,

such that (4.17) becomes

X2 + Y 2 = (L2
0 − S2)2 . (4.18)
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We observe that (4.16), expressed in these new variables, depends on X, Z but not

on Y , so that its level surfaces are parabolic cylinders intersecting the lemon-shaped

surface (4.18) on curves symmetric with respect to the inversion Y → −Y . Therefore,

all information about the bifurcation of periodic orbits and the birth of equilibria can be

inferred by investigating the mutual positions of the boundary set of the lemon

L ≡ {(X,Z) ∈ R2 : X = ±(L2 − Z2)} ,

and the family of curves, parametrized by the level set h of the Hamiltonian, as

{(Z,X(Z)) ∈ R2 : Hexp(Z, T ;L0) = h} .

From (4.16) we can express the coordinate X as

X(Z, T ;L0, h) =
h−H1(Z, T ;L0)

H2(Z, T ;L0)
.

Figure 3. The tangency between the reduced phase space and the
energy surface provides the bifurcation of the equilibria.

The equilibrium points are found by imposing the tangency between the boundary

of the reduced phase space L and the function X = X(Z, T ;L0, h) for a given energy

level Hexp = h that is well approximated by a family of parabolae, sliding parallel to the

Z-axis by varying the energy value h and parallel to the X-axis by varying the value

of the second integral T . The left panel in Figure 3 shows the case with no contacts

when T < TA, TB. When both thresholds are passed (right panel), the first contact point

with the upper branch of the lemon provides the first bifurcation (stable, because it is

an external contact, see [42]), while the last contact point yields the second bifurcation

(unstable, being an internal contact). The intermediate case is easily guessed as the case

in which the vertex of the parabola remains to the left of the corner of the lemon.
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Making explicit computations to determine the first and second thresholds one obtains

the same results as in Table 1.
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Figure 4. FLI map for the secular resonance ω̇ + Ω̇ = 0 with T = −0.2,
and a = 20 000 km (left panels), a = 26 560 km (center panels),
a = 42 164 km (right panels). Top panels correspond to the RM2 model,
while bottom panels are computed for the RM1 model. The total time
span is 465 years (equal to 25 · 18.6 years).

4.4. A cartographic study of the resonance ω̇ + Ω̇ = 0 by using the FLIs.

The reduced model studied in Section 4 is derived under the assumptions H1 and H2,

which express that the resonance ω̇ + Ω̇ = 0 is isolated (namely, it does not interact

with the other resonances and therefore the Hamiltonian may be averaged over the fast

angle η) and that ΩM is constant. The purpose of this Section is to discuss in detail

these assumptions and to test whether the reduced model provides reliable results on the

bifurcations of periodic orbits. To this end, we consider three models to which we refer

as DAH, RM1 and RM2, where:

a) DAH is the full model based on the doubly–averaged Hamiltonian (4.2). We un-

derline that this model provides satisfactory results when compared with higher–fidelity

models, which consider higher order terms in the lunisolar perturbations as well as in the

geopotential (compare also with [16]);
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Figure 5. FLI map for the secular resonance ω̇ + Ω̇ = 0 with T = −0.2
and a = 20 000 km (left panels), a = 26 560 km (center panels),
a = 42 164 km (right panes). The initial Ω in the top panels is Ω = 0o,
while the bottom panels are obtained for Ω = 180o. The panels
correspond to the DAH model. The total time span is 465 years (equal to
25 · 18.6 years).

b) RM1 is the reduced model characterized by the Hamiltonian (4.2) averaged also

over η (namely, it takes into account the effects of J2, R
(res)

Moon and R(res)

Sun , where the

contributions due to the Moon and Sun are given by (4.3) and (4.4));

c) RM2 is described by the third Hamiltonian in (4.8).

In order to compare these models, we compute the Fast Lyapunov Indicators, hereafter

FLIs ([23]), which are suitable chaos indicators allowing us to find the equilibrium points

and to distinguish between resonant, stable and chaotic motions. Figures 4 and 5 show

the FLI values in the (s, S) plane, where s ∈ [−π, π], S ∈ [Smin, Smax], for T = −0.2

and for a = 20 000 km (left panels), a = 26 560 km (middle panels) and a = 42 164 km

(right panels). Figure 4 presents the results obtained for the models RM2 and RM1,

while Figure 5 shows the FLI values for the DAH model.

Moreover, in order to offer an analytical background for the numerical results depicted

in Figures 4 and 5, we show in Figure 6 the structure of lunisolar resonances in the space

of the actions (T, S), for a = 20 000 km (left panels) and a = 26 560 km (right panels).

The analytical estimate of the location of each resonance defined by the relation (3.3) is

obtained by approximating ω̇ and Ω̇ with the expressions (3.5) which consider only the
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Figure 6. The web structure of lunisolar resonances in the space of the
actions for a = 20 000 km (left panels) and a = 26 560 km (right panels).
The thick curves represent the location of the resonances depending only
on inclination (k4=0 in (3.1) and (3.2), or κ = 0 in (3.3)): Ω̇ = 0 (pink
color, i = 90◦), ω̇ − Ω̇ = 0 (green color, i = 73.2◦, i = 133.6◦), 2ω̇ − Ω̇ = 0
(grey color, i = 69.0◦), i = 123.9◦, ω̇ = 0 (red color, i = 63.4◦, i = 116.6◦),
2ω̇ + Ω̇ = 0 (blue color, i = 56.1◦, i = 111◦) and ω̇ + Ω̇ = 0 (orange color,
i = 46.4◦, i = 106.9◦). The thin curves give the position of the resonances
(2− 2p)ω̇ +mΩ̇ + κΩ̇M = 0 with p,m ∈ {0, 1, 2}, and κ ∈ {−2, 2}
(dashed lines) or κ ∈ {−1, 1} (continuous lines). The horizontal black
lines (top panels) are obtained for S = Smin, while the vertical black
dashed lines (bottom panels) correspond to the value of T used in
computing the Figures 2 (right panel), 4 and 5. Top panels are obtained
for S ∈ [0, Smax], whereas in the bottom plots S varies from Smin to Smax,
as explained in the text.

effect of J2. We avoid presenting similar plots for a = 42 164 km, because in the GEO

region the secular effects of the Moon and Sun are comparable to those of J2.

Before describing in detail the results shown in Figures 4 and 5, let us discuss first

the meaning of Figure 6. The colored curves provide the location of each resonance;

thick lines are associated to the inclination–dependent–only lunisolar resonances (2 −
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2p)ω̇ + mΩ̇ = 0, p,m = 0, 1, 2, while the thin curves give the position of the resonances

(2−2p)ω̇+mΩ̇+κΩ̇M = 0, with p,m ∈ {0, 1, 2}, and κ ∈ {−1, 1} (continuous curves) or

κ ∈ {−1, 1} (dashed curves). Upper panels show the resonant structures for S ∈ [0, Smax].

These plots contain also the horizontal black line S = Smin, where Smin is computed from

the condition that the distance of the perigee cannot be smaller than the radius of the

Earth (see the relation (4.12)). Therefore, the interval of interest is [Smin, Smax] and the

bottom panels of Figure 6 magnify the region associated to the orbits that do not collide

with the Earth, at least within a small interval time. The vertical black dashed lines

correspond to the value T = −0.2, used in computing the FLI maps.

Let us return now to Figures 4 and 5. We stress that besides the values of S, displayed

on the vertical axis (on the left), in each plot we show the eccentricity values (on the

right), computed by using the relations (2.1) and (4.1). Since T is fixed, in a similar way

we may compute and display the inclination values.

From (4.7) it follows that the RM2 model used to investigate the bifurcations admits

just a single resonant term, and the corresponding phase space is similar to a pendulum

(see Figure 4, top panels).

Taking into account the variation of ΩM , namely if we consider the model RM1, then

from (4.3) it is evident that the resonant part contains multiple terms, whose arguments

are of the form 2σ ± κΩM with κ = 1, 2. In analogy to the case of the so-called minor

resonances for space debris ([9]), we may say that the secular resonance ω̇+ Ω̇ = 0 splits

into a multiplet of resonances, which leads to the phenomenon of splitting or overlapping

of resonances (compare also with [20, 43]). These phenomena are clearly explained in [9],

but in the framework of tesseral resonances.

From (4.3) it turns out that the two resonant terms with arguments 2σ and 2σ− ΩM

are much larger in magnitude than the others. As a consequence, it is reasonable to

expect that the islands associated to 2σ and 2σ − ΩM are much larger than the islands

associated to the other resonant terms. This aspect is evident from Figure 4, bottom

left panel, which shows two larger islands having the centers approximately at S = 0.64

(corresponding to 2σ) and at S = 0.58 (associated to 2σ − ΩM). A smaller island,

corresponding to 2σ − 2ΩM is located approximately at S = 0.55. In fact, the bottom

left panel of Figure 6 provides an analytical argument for the existence of these islands;

the vertical dashed black line T = −0.2 intersects three orange curves, corresponding to

the following resonances: σ̇ = 0 (the thick line), 2σ̇ − Ω̇M = 0 (the continuous curve)

and σ̇ − Ω̇M = 0 (the dashed curve). As a conclusion, we may say that the bottom left
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panel of Figure 4, obtained for a = 20 000 km, shows a splitting phenomenon, since the

resonant islands are clearly separated. For larger semimajor axis, that is a = 26 560 km,

the resonant islands are not so clearly separated as shown in Figure 4, bottom middle

panel, or they completely overlap for a = 42 164 km as in Figure 4, bottom right panel.

Finally, in Figure 5 we give the FLI values obtained by using the non–autonomous

two degrees of freedom Hamiltonian (4.2). The top panels show the results obtained for

Ω = 0◦, while the bottom panels present the results for Ω = 180◦. For a = 20 000 km

the bottom left panel of Figure 4 and the left plots of Figure 5 are almost identical,

thus showing that the average over η provides a reliable model: the resonance ω̇ +

Ω̇ = 0 is isolated from the other resonances and η (i.e., Ω) is a fast angle. For a =

26 560 km the bottom middle panel of Figure 4 and the middle plots of Figure 5 show

some small differences as effect of both the variation of Ω and the interaction between

various resonances (see the bottom right panel of Figure 6). Despite these differences,

the patterns shown by these plots are very similar in structure, suggesting that, with a

certain degree of approximation, the RM1 model provides reliable results. For a larger

semimajor axis, that is for a = 42 164 km, Ω is slower than in the case of the MEO

region; therefore, a marked difference is visible when comparing the bottom right panel

of Figure 4 and the right plots of Figure 5.

The analysis of Figures 4 and 5 show that the model RM2, used to study the bifurca-

tions, yields reliable results for the dynamics related to the bigger island, provided that

the main resonant island does not interact with possibly existing smaller islands. As far

as the secular resonance ω̇+Ω̇ = 0 is concerned, we have a good performance of the model

RM2, especially for not too large values of the semimajor axis. Indeed, the equivalent of

Figure 2, right panel, but computed for a = 20 000 km, overlaps almost completely with

the bigger (upper) islands shown in Figures 4 and 5, left panels. Another consequence

of the comparison of the panels of Figures 4 and 5 is that a non-zero rate of variation of

ΩM provokes substantial changes in the plots given by RM2 and RM1. This remark is

in agreement with the results found in [43].

In conclusion, Figures 4 and 5 show that the long–term dynamics of space debris is

very complicated and it is influenced by various effects. However, without a study of

the simplest models introduced in Section 4.1, the real dynamics would be difficult to

explain.
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5. Bifurcations of other secular resonances of type (3.6)

In Section 4 we have shown the details for the computation of the bifurcation thresholds

for the resonance ω̇+Ω̇ = 0. The other three resonances appearing in (3.6) can be treated

in a similar way and are analyzed in this Section.

We premise that, whereas the case corresponding to −ω̇ + Ω̇ = 0 is a straightforward

generalization of the case ω̇+Ω̇ = 0 in the SFM2 class (see Remark 3 for the definition of

the SFM2), the ±2ω̇ + Ω̇ = 0 cases belong to the so-called extended fundamental model

for second–order resonances, denoted as EFM2 in Remark 3 (see [35, 6]). The cases

corresponding to EFM2 are characterized by the appearance of an additional critical

point in the reduced problem corresponding to a new family of periodic orbits of the

system.

For the resonance −ω̇ + Ω̇ = 0, one needs to make the symplectic transformation of

coordinates

σ = ω − Ω , S = G ,

η = Ω , T = H +G .

For the resonance −2ω̇ + Ω̇ = 0, one can make the change of coordinates:

σ = 2ω − Ω , S =
G

2
,

η = Ω , T = H +
G

2
.

For the resonance 2ω̇ + Ω̇ = 0, one makes the transformation of variables:

σ = 2ω + Ω , S =
G

2
,

η = Ω , T = H − G

2
.

The resonance −ω̇ + Ω̇ = 0 can be treated in a way similar to that of Section 4; the

same holds for the resonances 2ω̇+Ω̇ = 0 and −2ω̇+Ω̇ = 0, when the inclination is equal

to 111.0◦ and 69.0◦, respectively. One has two exceptions: 2ω̇+Ω̇ = 0 at inclination 56.1◦

and −2ω̇+ Ω̇ = 0 at inclination i = 123.9◦. In fact, since H = S cos i, we find in the first

case that T = S(cos i− 1
2
), which is close to zero when i = 56.1◦. As a consequence, since

the expansion of the Hamiltonian (compare with (4.9)) contains T at the denominator,

the method presented in Section 4.2 fails. The same happens for the latter case.
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It could be that different techniques (e.g., other changes of coordinates regularizing

the problem) are successful, but the analysis of this problem goes beyond the aims of the

present work.

For the moment we limit ourselves to consider the other non-singular cases for which

the results are provided in Table 2.

inclination (in degrees) TA TB
−ω̇ + Ω̇ = 0 73.2 Moon 0.664659 0.664754

−ω̇ + Ω̇ = 0 73.2 Sun 0.665149 0.665204

−ω̇ + Ω̇ = 0 73.2 Moon+Sun 0.664278 0.664423

−ω̇ + Ω̇ = 0 133.6 Moon 0.159407 0.159667

−ω̇ + Ω̇ = 0 133.6 Sun 0.159724 0.159875

−ω̇ + Ω̇ = 0 133.6 Moon+Sun 0.159142 0.159538

−2ω̇ + Ω̇ = 0 69.0 Moon 0.442037 0.442172

−2ω̇ + Ω̇ = 0 69.0 Sun 0.442480 0.442546

−2ω̇ + Ω̇ = 0 69.0 Moon+Sun 0.441693 0.441897

2ω̇ + Ω̇ = 0 111.0 Moon -0.442172 -0.442037

2ω̇ + Ω̇ = 0 111.0 Sun -0.442546 -0.44248

2ω̇ + Ω̇ = 0 111.0 Moon+Sun -0.441897 -0.441693

Table 2. Bifurcation values TA, TB for the GPS orbit corresponding to
the cases in which only the Moon is considered, only the Sun is
considered, both Sun and Moon are considered. The resonances were
listed in (3.6) and the corresponding inclinations appeared in (3.7).

5.1. On the accuracy of the expansion of the Hamiltonian. In Section 4.2 we have

considered the example of the resonance ω̇+Ω̇ = 0 and we have expanded the Hamiltonian

up to the second order in S − S0 as in (4.9). That case was in fact sufficiently regular

that the second order expansion was indeed enough to get an accurate description of the

full Hamiltonian. However, this might not be the same for other resonances and it must

be checked for each specific resonance. As a case study, we consider now the resonance

−2ω̇ + Ω̇ = 0 with inclination equal to 69◦.

We proceed to test the accuracy of the expansions by computing the series up to the

orders 2, 3, 4, 5 around S0. In Figure 7, upper left panel, we draw the graph of the true

Hamiltonian (dotted curve) and those of the truncated expansions for specific values of
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the coordinates, precisely s = π (where s = σ + 0.1412), L0 = 1 and taking T = 0.5, a

value larger than TA in Table 2. As one can see, increasing the order of the expansion one

gets that the Hamiltonian graph is reproduced within a larger interval in the variable

S. This interval is marked by green lines in the subsequent panels of Figure 7, thus

showing how the true dynamics is reconstructed with increasing accuracy as the order

of the expansion gets larger. The upper middle plot shows the phase space portrait in

the plane (s, S) for the full Hamiltonian, while the subsequent plots are obtained using

expansions of the Hamiltonian at orders 2, 3, 4, 5. Notice that the upper green line gets

higher as the order of the expansion increases, thus showing that higher orders reproduce

the true Hamiltonian in a larger region.
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Figure 7. Resonance −2ω̇ + Ω̇ = 0, case i = 69◦. Upper left panel:
graph of the true lunisolar Hamiltonian (dotted curve) and those of the
truncated expansions (2nd red, 3rd green, 4th blue, 5th brown) s = π,
L0 = 1, T = 0.5. Upper middle panel: phase space portrait in the plane
(s, S) for the true Hamiltonian. Upper right panel: phase portrait for the
2nd order expansion. Lower panels from left to right: phase portraits for
the expansions to order 3, 4, 5.



BIFURCATIONS OF LUNISOLAR SECULAR RESONANCES FOR SPACE DEBRIS ORBITS 31

6. Bifurcations of type (i): critical inclination secular resonances

In this Section we investigate the secular resonances of type (i), which are obtained by

solving the equation ω̇ = 0. This resonance occurs at the so-called critical inclinations,

whose values are i = 63.4◦ and i = 116.4◦ (see [29]). To be consistent with the previous

notation, we make the trivial (identity) transformation of variables:

σ = ω , S = G ,

η = Ω , T = H .

We discuss just the case i = 63.4◦, since the other one can be treated similarly.

It is important to stress that special care must be taken when dealing with such

resonance. In fact, the equivalent of the Hamiltonian expansion in (4.9) up to second

order provides only a rough result, when one compares the phase space portraits of the

Hamiltonian expanded to second order and the full Hamiltonian.

To improve the results, we need to perform an expansion to higher order and therefore

we proceed to expand up to order 5 in S0. The equation for Ṡ = 0 provides the equilibrium

values s = 0 and s = π/2. On the other hand, the equation ṡ = 0 for s = 0 or

s = π/2 provides a third–order equation in S. One finds that in both cases, namely

s = 0 and s = π/2, two solutions are complex conjugated, while the third solution is

real. After an expansion in T up to the order 6 of the real solutions, one can proceed

as in Section 4.2 to compute the bifurcation values and the corresponding phase space

portraits. In particular, for i = 63.4◦, Figure 8 provides the bifurcation curves for TA and

TB (see (4.13)) for the second (middle panel) and fourth (right panel) order expansions.

The left panel of Figure 8 shows the contribution due just to the Sun.

The phase space portraits for the critical inclination case are presented in Figure 9. As

in Section 5.1 we test the accuracy of the computations by comparing the truncations of

the Hamiltonian with different degrees of expansion, from 2 to 5.

As already remarked in Figure 7, we notice that as the order of the expansion gets

larger, the Hamiltonian graph is reproduced with a better accuracy. The interval where

the true and expanded functions agree is reported within green lines in the phase portraits

of Figure 9.

From an inspection of the true phase portrait given by the upper middle panel of

Figure 9, we observe that the critical inclination case presents further equilibrium points
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Figure 8. Critical inclination secular resonance. Plots of the bifurcation
curves TA, TB in (4.13) as a function of the semimajor axis for the case
i = 63.4◦. Left: the Hamiltonian includes just the effect of the Sun;
middle: the Hamiltonian includes only the Moon with an expansion to
order 2; right: the Hamiltonian includes only the Moon with an
expansion to order 4.

(see the elliptic equilibria located at about S = 0.803 for s = 0, π). This phenomenon is

close to what observed in the EFM2 model discussed in Remark 3.

7. Bifurcations of type (ii): polar secular resonances

In the case of polar resonances corresponding to Ω̇ = 0, the transformation of variables

reduces to the identity:

σ = Ω , S = H ,

η = ω , T = G .

The treatment of polar resonances is made complicated by several factors. First of all,

it is difficult to combine the effects of both the Moon and Sun, due to the fact that the

corresponding expansions contain terms which are qualitatively different. On the other

hand, even if we consider the effects of only one body, at the exact resonance one has

S = 0, so that the second order expansion of the Hamiltonian should be performed around

S0 = 0. Hence, one has (physical) bounds on T , but not on S which is independent of T .

Therefore the method can only be applied by deciding to impose a limitation to the range

of variability of the S coordinate, which in turn becomes a constraint on the variation of

the inclination.
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Figure 9. Critical inclination resonance, the case i = 63.4◦. Phase space
portraits in the plane (s, S) with Sun and Moon included in the model.
Upper left panel: graph of the true Hamiltonian (dotted curve) and those
of the truncated expansions (2nd red, 3rd green, 4th blue, 5th brown)
s = π, L0 = 1, T = 0.25. Upper middle panel: phase space portrait in the
plane (s, S) for the true Hamiltonian. Upper right panel: phase portrait
for the 2nd order expansion. Lower panels from left to right: phase
portraits for the expansions to order 3, 4, 5.

Let us proceed according to this strategy and assume to consider just the effect of the

Moon. Then, the corresponding Hamiltonian takes the form

Hpolar
Moon(S, T, s) = h0(T ) + S2h1(T ) + S

√
1− S2

T 2
f0(T ) cos s+ (g0(T ) + S2g1(T )) cos 2s

for some functions h0, h1, f0, g0, g1 and for s = σ − 0.212. After expanding to second

order Hpolar
Moon around S0 = 0, one obtains

Hpolar
Moon,exp(S, T, s) = h0(T ) + S2h1(T ) + S f0(T ) cos s+ (g0(T ) + S2g1(T )) cos 2s .

Hence, the equations of motion are

Ṡ = S f0(T ) sin s+ 2
(
g0(T ) + S2g1(T )

)
sin 2s

ṡ = f0(T ) cos s+ 2S
(
h1(T ) + g1(T ) cos 2s

)
.
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Therefore, in addition to the two standard solutions (SA, 0) and (SB, π) we have also a

fixed (in the sense of being independent of T ) pair of solutions, given by

S = 0, s = ±π/2.

These elliptic equilibria do not play any role for generating new periodic orbits. However,

they give a well definite shape to the structure of the phase space and in particular they

determine the nature of the bifurcating families, since these are both stable. We then

proceed to compute their locations in the plane (S, s), using the technique implemented

for the other resonances. To this end, we fix a value Smin close to zero, say Smin = 0.01.

The computation of the bifurcation thresholds corresponding to s = 0 and s = π provides

the values TA = 0.313 and TB = 0.450. Plotting the graphs between the lower threshold

S = 0 and an arbitrary upper limit, say S = 0.1, we obtain the birth of equilibria for

values like those shown in Figure 10.
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Figure 10. Polar secular resonance: phase space portraits
corresponding to the GPS value a = aGPS in the plane (s, S) for the
Hamiltonian including the effect of the Moon: T = 0.2 (left), T = 0.4
(middle), T = 0.6 (right).

8. Some remarks on the non–averaged problem

In Sections 4, 5, 6, 7, we have based our discussion on the analysis of the averaged

system, described by a one–dimensional (averaged) Hamiltonian function, that we write

in compact form as

Hav = Hav(S, T, σ) (8.1)

(compare with (4.9) where s is used in place of σ). The coordinates (S, σ) admit, after

the second bifurcation, a hyperbolic point, while T is an integral of motion. For a given
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level T = T0, the product of the hyperbolic point times the level set T = T0 is a whiskered

torus1.

As T varies we get a NHIM foliated by whiskered tori. Thus, we may wonder what

happens when we add the perturbation to (8.1). We try to answer this question at least

from a qualitative point of view, being aware that a quantitative analysis requires proper

mathematical statements and several additional computations, which might be the object

of study of a future work.

We start by noticing that the non–averaged system has the form

Hnav(S, T, σ, η) = Hav(S, T, σ) + εHp(S, T, σ, η) , (8.2)

where Hp is the perturbing function, given by the part depending on the angles of R(res)

Moon,

R(res)

Sun in (4.3), (4.4), provided that ΩM , ΩS are considered constants as in assumption

H2. It turns out that the parameter ε is of the order of the square of the eccentricity and

therefore it can be considered small, at least for ranges of the coordinates that correspond

to nearly circular orbits.

Given the expression of the Hamiltonian in (8.2), we may use a perturbation approach,

which allows us to state that the NHIM persists for ε small enough (see, e.g., [21, 22, 27,

39]). Under a suitable non–degeneracy condition and a Diophantine assumption on the

frequency, the two–dimensional HamiltonianHnav = Hnav(S, T, σ, η) admits invariant tori

([33, 1, 37]), provided that ε satisfies some smallness constraint. On a three–dimensional

energy level, the two–dimensional KAM tori provide a stability property in the sense of

confinement of the motion.

When the assumption on the constancy of the rates of variation of ΩM , ΩS is removed,

we end up with a non–autonomous Hamiltonian function of the form (4.2), that we can

write as

Hnon−aut(S, T, σ, η, t) = Hav(S, T, σ) + εHp(S, T, σ, η) + εHt(S, T, σ, η, γt) , (8.3)

where Ht is the time–dependent part arising from the variation of the perturbers’ angular

elements and γ is a parameter depending on the rates of variation of the longitudes of

the ascending nodes of the Moon and Sun. Precisely, γ is nearly zero for the Sun and it

is about equal to −0.053◦/day for the Moon, thus showing that the time-dependent part

due to the motion of the ascending node of the Moon is relevant on the time scale of about

1We remark that the motion on a whiskered torus is a Diophantine rotation, while the remaining
directions are as hyperbolic as allowed by the symplectic structure of the model. We have a NHIM,
when the tangent direction is dominated by the hyperbolic directions.
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18 years. The 2–dimensional, time–dependent Hamiltonian Hnon−aut does not admit a

confinement through KAM tori, since the phase space has dimension 5 and the KAM tori

have dimension 3. A mechanism giving rise to Arnold’s diffusion ([2]) can be triggered by

the existence of transition chains generated by the intersection of the unstable manifold

of a torus and the stable manifold of another. The onset of Arnold’s diffusion is subject

to the fulfillment of some non–degeneracy assumptions as well as some conditions on

the so–called Melnikov’s integrals (see, e.g., [28]), ensuring the occurrence of transversal

intersections. As an alternative to Melnikov’s method for the study of Arnold’s diffusion,

one may compute the so–called scattering map ([18, 19]), which describes the behavior

of the excursions between the tori.

9. Conclusions

The study of lunisolar resonances has raised a renewed interest, thanks to the increas-

ing awareness of their effects on the space debris orbiting at different altitudes around our

planet. Several works have underlined the importance of the influence of the Moon and

Sun on objects located in MEO and GEO (see, e.g., [44]). Therefore, a careful investiga-

tion of lunisolar secular resonances is mandatory, also in view of practical applications.

A first step toward such investigation is represented by the analysis of those resonances

which depend just on the inclination ([29]). These resonances occur in physically relevant

regions, where several space debris are observed to orbit around the Earth.

Understanding the structure of the phase space, even for the simplest mathematical

models as those considered in this work, can offer a simple explanation for the long-term

evolution of space debris. For example, the long-term growth in eccentricity, observed

for disposal orbits of various satellites, such as GPS, GLONASS, and GALILEO (see

[13]), may be viewed as a natural effect of the lunisolar resonances. As shown by the

phase–portraits in Figures 2, 7 and 9, and the FLI maps of Figures 4 and 5, inside the

libration region, the action S varies periodically. Since the eccentricity e is related to S,

it follows naturally that the eccentricity varies in time. Moreover, if the libration region

take a large portion of the phase space, as in the top middle panel of Figure 9, then an

orbit having a very small initial eccentricity (or S ' 1) could become a collision orbit.

Motivated by the intrinsic physical interest, we have analyzed the bifurcations associ-

ated with the lunisolar secular resonances; the model describing such resonances obviously

includes also the effect of the geopotential. Our study supports that the role of the Moon
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is definitely relevant and cannot be neglected within a careful study of space debris dy-

namics (compare, e.g., with Figure 1). We have provided two methods to analyze the

occurrence of bifurcations (see Sections 4.2 and 4.3). Both methods are fast and simple to

implement; they provide the explicit values of the orbital elements at which two different

bifurcations take place. Typically, the first bifurcation is associated to the birth of an

elliptic equilibrium point for physically relevant values of the altitude (namely, above the

Earth’s radius). The second bifurcation shows the occurrence of the elliptic equilibrium

point together with a pair of hyperbolic equilibria.

Care must be taken in analyzing the different classes of lunisolar resonances. In fact, it

should be stressed that when the inclination is such that one resonant variable becomes

degenerate, then the method fails. Moreover, in some cases a higher accuracy is necessary

to get reliable results. This means that the expansions of the Hamiltonian describing the

model must be computed to higher orders as in the case, e.g., of the critical inclination

secular resonance. In all these cases we have pitchfork bifurcations of two different

families, the first being stable and the second unstable. A peculiar case is represented by

polar orbits, where both bifurcating families are stable.

As a conclusive remark, we underline that a mathematical study of the existence of

equilibria is also of practical interest. In fact, the elliptic points and their neighboring

orbits represent phase space regions where one could stably place an object, while hyper-

bolic equilibria provide unstable regions, where the objects can be placed to experience

large excursions in phase space through the stable and unstable manifolds associated

with the hyperbolic dynamics.
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[26] J. Henrard, A. Lemâıtre, A second fundamental model for resonance, Celest. Mech. 30, 197–218
(1983)

[27] M.W. Hirsch, C.C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Mathematics 583,
Springer-Verlag, Berlin (1977)

[28] P.H. Holmes, J.E. Marsden, Melnikov’s method and Arnold diffusion for perturbations of integrable
Hamiltonian systems, J. Math. Phys. 23, 669–675 (1982)



BIFURCATIONS OF LUNISOLAR SECULAR RESONANCES FOR SPACE DEBRIS ORBITS 39

[29] S. Hughes, Earth Satellite Orbits with Resonant Lunisolar Perturbations. I. Resonances Dependent
Only on Inclination, Proc. R. Soc. Lond. A 372, 243–264 (1980)

[30] S. Hughes, Earth Satellite Orbits with Resonant Lunisolar Pertubations II. Some Resonances De-
pendent on the Semi-Major Axis, Eccentricity and Inclination, Proc. R. Soc. Lond. A 375, 379–396
(1981)

[31] W.M. Kaula, Developement of the lunar and solar disturbing functions for a close satellite, The
Astronomical Journal 67, 300–303 (1962)

[32] W.M. Kaula, Theory of Satellite Geodesy, Blaisdell Publ. Co. (1966)
[33] A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamil-

ton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98, 527–530 (1954)
[34] M.T. Lane, On analytic modeling of lunar perturbations of artifical satellites of the Earth, Celest.

Mech. Dyn. Astr. 46, 287–305 (1989)
[35] A. Lemâıtre, High-order resonances in the restricted three-body problem, Celest. Mech. 32, 109–126

(1984)
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