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Abstract

We give an O(n log3 n) algorithm that, given an n-node directed planar graph with arc capacities,
a set of source nodes, and a set of sink nodes, finds a maximum flow from the sources to the sinks.
Previously, the fastest algorithms known for this problem were those for general graphs.
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1 Introduction

The maximum flow problem with multiple sources and sinks in a directed graph with arc-capacities is,
informally, to find a way to route a single commodity from a given set of sources to a given set of sinks
such that the total amount of the commodity that is delivered to the sinks is maximum subject to each arc
carrying no more than its capacity. In this paper we study this problem in planar graphs.

The study of maximum flow in planar graphs has a long history. In 1956, Ford and Fulkerson introduced
the max st-flow problem, gave a generic augmenting-path algorithm, and also gave a particular augmenting-
path algorithm for the case of a planar graph where s and t are on the same face Researchers have since
published many algorithmic results proving running-time bounds on max st-flow for (a) planar graphs where
s and t are on the same face, (b) undirected planar graphs where s and t are arbitrary, and (c) directed
planar graphs where s and t are arbitrary. The best bounds known are (a) O(n) [14], (b) O(n log log n) [17],
and (c) O(n log n) [2], where n is the number of nodes in the graph.

Maximum flow in planar graphs with multiple sources and sinks was studied by Miller and Naor [29].
When it is known how much of the commodity is produced/consumed at each source and each sink, finding
a consistent routing of flow that respects arc capacities can be reduced to negative-length shortest paths,
which we now know can be solved in planar graphs in O(n log2 n/ log log n) time [30]. Otherwise, Miller and

Naor gave an O(n log3/2 n) algorithm for the case where all the sinks and the sources are on the boundary
of a single face, and generalized it to an O(k2n3/2 log2 n)-time algorithm for the case where the sources and
the sinks reside on the boundaries of k different faces.1

However, the problem of maximum flow with multiple sources and sinks in planar graphs without any
additional restrictions remained open. In general (i.e., non-planar) graphs, multiple sources and sinks can
be reduced to the single-source single-sink case by introducing an artificial source and sink and connecting
them to all the sources and sinks, respectively—but this reduction does not preserve planarity. For more
than twenty years since the problem was explicitly stated and considered [29], the fastest known algorithm
for computing multiple-source multiple-sink max-flow in a planar graph has been to use this reduction in
conjunction with a general maximum-flow algorithm such as that of Sleator and Tarjan [32] which leads
to a running time of O(n2 log n). For integer capacities less than U , one could instead use the algorithm
of Goldberg and Rao [10], which leads to a running time of O(n1.5 log n logU). No planarity-exploiting
algorithm was known for the problem.

Our Result The main result of this paper is an algorithm for the problem that is optimal up to a small
poly-logarithmic factor.

Theorem 1.1. There exists an algorithm that solves the maximum flow problem with multiple sources and
sinks in an n-node directed planar graph in O(n log3 n) time.

Application to computer vision problems Multiple-source multiple-sink min-cut arises in addressing
a family of problems associated with the terms metric labeling (Kleinberg and Tardos, [26]), Markov Ran-
dom Fields [9], and Potts Model (see also [4, 15]). In low-level vision problems such as image restoration,
segmentation, stereo, and motion, the goal is to assign labels from a set to pixels so as to minimize a penalty
function. The penalty function is a sum of two parts. One part, the data component, has a term for each
pixel; the cost depends on the discrepancy between the observed data for the pixel and the label chosen for
it. The other part, the smoothing component, penalizes neighboring pixels that are assigned different labels.

For the binary case (when the set of available labels has size two), finding the optimal solution is reducible
to multiple-source multiple-sink min-cut. [12]. For the case of more than two labels, there is a powerful and
effective heuristic [4] using very-large-neighborhood [1] local search; the inner loop consists of solving the
two-label case. The running time for solving the two-label case is therefore quite important. For this reason,
researchers in computer vision have proposed new algorithms for max flow and done experimental studies
comparing the run-times of different max-flow algorithms on the instances arising in this context [3, 27]. All
of this is evidence for the importance of the problem.

1The time bound of the first algorithm can be improved to O(n logn) using the linear-time shortest-path algorithm of
Henzinger et al. [14], and the time bound of the second algorithm can be improved to O(k2n log2 n) using the O(n logn)-time
single-source single-sink maximum flow algorithm of Borradaile and Klein [2].
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For the (common) case where the underlying graph of pixels is the two-dimensional grid graph, our result
yields a theoretical speed-up for this important computer-vision subroutine.2

Hochbaum [15] describes a special case of the penalty function in which the data component is convex
and the smoothing component is linear; in this case, she shows that an optimal solution can be found in
time O(T (m,n) + n logU) where U is the maximum label, and T (m,n) is the time for finding a minimum
cut. She mentions specifically image segmentation, for which the graph is planar. For this case, by using
our algorithm, the optimal solution can be found in nearly linear time

Application to maximum bipartite matching Consider the problem of maximum matching in a bipar-
tite planar graph. It is well-known how to reduce this problem to multiple-source, multiple-sink maximum
flow. Our result is the first planarity-exploiting algorithm for this problem (and the first near-linear one).

Techniques To obtain our result, we employ a wide range of sophisticated algorithmic techniques for
planar graphs, some of which we adapted to our needs while others are used unchanged. Our algorithm
uses pseudoflows [11, 16] and a divide-and-conquer scheme influenced by that of [19] and that of [29]. We
adapt a method for using shortest paths to solve max st-flow when s and t are adjacent [13], and a data
structure for implementing Dijkstra in a dense distance graph derived from a planar graph [8]. Among the
other techniques we employ are: using cycle separators [28] recursively while keeping the boundary nodes on
a constant number of faces [25, 33, 8], an algorithm for single-source single-sink max flow [2, 7], an algorithm
for computing multiple-source shortest paths [23, 5], a method for cancelling cycles of flow in a planar
graph [20], an algorithm for finding shortest paths in planar directed graphs with negative lengths [24, 30],
and a data structure for range queries in a Monge matrix [21].

1.1 Preliminaries

We assume the reader is familiar with the basic definitions of planar embedded graphs and their duals (cf.
[2]). Let G = (V,E) be a planar embedded graph with node-set V and arc-set E. We use the term arc to
emphasize that edges are directed. The term edge is used when the direction of an arc is not important. For
each arc a in the arc-set E, we define two oppositely directed darts, one in the same orientation as a (which
we sometimes identify with a) and one in the opposite orientation [2]. We define rev(·) to be the function
that takes each dart to the corresponding dart in the opposite direction. It is notationally convenient to
equate the edges, arcs and darts of G with the edges, arcs and darts of the dual G∗.

Let S ⊂ V be a set of nodes called sources, and let T ⊆ V − S be a set of nodes called sinks.
A flow assignment f(·) is a real-valued function on darts satisfying antisymmetry:

f(rev(d)) = −f(d)

A capacity assignment c(·) is a real-valued function on darts.
A flow assignment f(·) respects the capacity of dart d if f(d) ≤ c(d). f(·) is called a pseudoflow if it

respects the capacities of all darts.
For a given flow assignment f(·), the net inflow (or just inflow) node v is inflowf (v) =

∑
dart d:head(d)=v f(d)3.

The outflow of v is outflowf (v) = −inflowf (v). A flow assignment f(·) is said to obey conservation at node
v if inflowf (v) = 0. A feasible flow is a pseudoflow that obeys conservation at every node other than the
sources and sinks. A feasible circulation is a pseudoflow that obeys conservation at all nodes. The value of
a feasible flow f(·) is the sum of inflow at the sinks,

∑
t∈T inflowf (t) or, equivalently, the sum of outflow at

the sources. The maximum flow problem is that of finding a feasible flow with maximum value.
For two flow assignments f ,f ′, the addition f + f ′ is the flow that assigns f(d) + f ′(d) to every dart d.
A residual path in G is a path whose darts all have strictly positive capacities. For two sets of nodes

A,B, A
G→ B is used to denote the existence of some residual a-to-b path in G for some nodes a ∈ A and

b ∈ B. Conversely, A
G9 B is used to denote that no such path exists. We will omit the graph G when it is

clear from the context.

2Note that the single-source, single-sink max-flow algorithm of [2] was implemented by computer-vision researchers [31] and
found to be useful in computer vision and to be faster than the competitors.

3An equivalent definition, in terms of arcs, is inflowf (v) =
∑

a∈E:head(a)=v f(a)−
∑

a∈E:tail(a)=v f(a).
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The residual graph ofG with respect to a flow assignment f(·) is the graphGf with the same arc-set, node-
set, sources and sinks, and with capacity assignment cf (·) such that for every dart d, cf (d) = c(d)− f(d).

It is well known that a feasible flow f in G is maximum if and only if S
Gf9 T .

Let f be a pseudoflow in a planar graph G. Let V + denote the set of nodes {v ∈ V − (S ∪ T ) :
inflowf (v) > 0}. Similarly, let V − denote the set of nodes {v ∈ V − (S ∪ T ) : inflowf (v) < 0}. Suppose

S ∪ V + Gf9 T ∪ V −. For a graph with n nodes and m edges, there exists an O(m log n)-time algorithm that
converts the pseudoflow f into a maximum feasible flow f ′ [19, 32]. In planar graphs, this can be done in
linear time by first canceling flow cycles using the technique of Kaplan and Nussbaum [20], and then by
sending back flow from V + and into V − in topological sort order. See Appendix C for details.

1.2 Overview of the algorithm

Consider the following recursive approach for finding a maximum multiple-source multiple-sink flow: split
the input graph G in two using a simple cycle separator C [28] and recursively solve the max flow problem
in the two subgraphs. When the two recursive calls have been executed, in each of the two subgraphs there
is no residual path from any source to any sink. If we further make sure that in each of the two subgraphs
there is no residual path from any source to C and from C to any sink, then, since C is a separator, there
is no residual path from any source to any sink in G.

We therefore solve a slightly more general problem recursively in the two subgraphs: roughly speaking,
find a flow such that there is no residual path from a source to a sink or to C and no residual path from C
to a sink (Section 2). After the two recursive calls there is no residual path from any source to any sink in
G. However, the requirement that there is no residual path from any source to C and from C to any sink
cannot be achieved by a feasible flow but rather by a pseudoflow in which there might be excess inflow or
excess outflow on nodes of C. We deal with this by solving a new max flow problem where nodes of C are
treated as sources and sinks, limited in supply/demand by their excess inflow/outflow (Section 3).

We exploit a relation between primal circulations and dual shortest paths to maintain a succinct repre-
sentation of the flow during critical phases of the algorithm, using the fact that there are only O(

√
n) sources

and sinks, all cyclically ordered on C (Section 3.2). Even though our representation does not explicitly store
the flow on nearly any arc in the graph, we can augment it efficiently towards optimality while maintaining
feasibility. An important tool we use is Fakcharoenphol and Rao’s efficient implementation of Dijkstra’s
algorithm [8], which we adapt to our needs.

The resulting pseudoflow can then be turned into a max flow in linear time using existing techniques
(Appendix C). This leads to an O(n log3 n) time algorithm for max flow.

2 The Algorithm

Now we describe the algorithm, referred to as MultipleSourceMultipleSinkMaxFlow, in more detail.
In order to treat nodes of the cycle separator both as sources and as sinks in recursive calls, we introduce a
new node set A. At the top recursion level, A = ∅. In general, A has constant size; more precisely |A| ≤ 6.

MultipleSourceMultipleSinkMaxFlow(G, c,S,T ,A)
Input: a directed planar graph G with non-negative capacities c, a set S of source nodes, a set T of sink
nodes, a set A of at most six nodes

Output: a pseudoflow f obeying conservation everywhere but S, T,A and s.t. S
Gf9 T , S

Gf9 A, A
Gf9 T .

The algorithm finds a simple cycle separator C [28] and contracts all edges of C except one. This,
essentially, merges all the nodes of C into a single supernode v, and turns C into a self loop. For simplicity
of presentation we assume that no sources or sinks lie on C.4 The algorithm then recursively solves the
problem on the subgraphs enclosed and not enclosed by that self loop (the self loop itself need not be
included in any of the subgraphs), adding the supernode v that represents C to the set A. In order to keep

4This does not lose generality since if a node u ∈ C is a source, one can introduce a new node u′ and an arc u′u whose
capacity equals the sum of capacities of arcs outgoing from u. Now consider u′ as a source instead of u. Since the separator
has just O(

√
n) nodes, this will not affect the running time. Sinks can be handled in a similar fashion.
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the cardinality of A at most six, the algorithm alternately applies the cycle separator theorem with weights
uniformly distributed on all nodes and uniformly distributed on only the nodes of A. This technique is
similar to that used in [25, 33, 8].

After the recursive calls, the algorithm uncontracts the edges of C. At this stage there are no residual
paths between sources and sinks in the entire graph, but there might be excess inflow (positive or negative)
at the nodes of C. The algorithm then calls the procedure FixConservationOnPath that pushes flow
between the nodes of C so that there are no residual paths between nodes of C with positive inflow and
nodes of C with negative inflow (the path in the name of the procedure is the cycle C without one edge).
This procedure is discussed in Section 3; the interface is:

FixConservationOnPath(G,P, c,f0)
Input: a directed planar graph G, simple path P , capacity function c, and a pseudoflow f0

Output: a pseudoflow f s.t. (i) f − f0 satisfies conservation everywhere but P , and

(ii) {v ∈ P : inflow(v) > 0} Gf9 {v ∈ P : inflow(v) < 0}.
Running Time: O(n log2 n/ log log n+ |P |2 log2 n)

Next, the algorithm iterates over the nodes ai of A. The algorithm calls the procedure CycleToSin-
gleSinkLimitedMaxFlow that, roughly speaking, pushes as much excess flow as possible from C to ai.
If C+

i is the set of nodes of C that are reachable via residual paths from some node of C with positive inflow
at the beginning of iteration i, CycleToSingleSinkLimitedMaxFlow pushes flow among the nodes of
C+
i and from the nodes of C+

i to ai. The result is that remaining inflow at nodes of C+
i is non-negative and

there are no residual paths from nodes of C with positive inflow to ai. See Section 4; the interface is:

CycleToSingleSinkLimitedMaxFlow(G, c,f0, C, ai)
Input: a directed planar graph G with capacities c, a pseudoflow f0, a simple cycle C, a sink ai.

Assumes: ∀v ∈ C+, inflowf0(v) ≥ 0, where C+ = {v ∈ C : {x ∈ C : inflowf0(x) > 0}
Gf0→ v}.

Output: a pseudoflow f s.t. (i) f − f0 obeys conservation everywhere but C+ ∪ {t}, (ii) ∀v ∈
C+, inflowf (v) ≥ 0, (iii) {v ∈ C : inflowf (v) > 0} Gf9 ai.
Running Time: O(n log2 n/ log log n+ |C|2 log2 n).

A similar procedure SingleSourceToCycleLimitedMaxFlow is called to push flow from ai to C to
eliminate as much negative inflow as possible (using a similarly defined set C−i ).

Finally, the algorithm pushes back flow from any nodes of C with positive inflow to S and pushes flow
back from T into any nodes of C with negative inflow.

Algorithm 1 MultipleSourceMultipleSinkMaxFlow(G, c,S,T ,A)

Input: a directed planar graph G with non-negative capacities c, a set S of source nodes, a set T of sink
nodes, a set A consisting of a constant number of nodes A = {ai}ki=1.

Output: a pseudoflow f obeying conservation everywhere except S, T,A and s.t. S
Gf9 T , S

Gf9 A, A
Gf9 T .

1: add zero capacity arcs to triangulate and 2-connect G (required for simple cycle separators)
2: find a balanced (w.r.t. |G| and |A|, alternately) cycle separator C in G disjoint from S and T
3: let P be a path comprising of all of C’s edges except one edge e
4: contract all the edges of P , turning e into a self loop incident to the only remaining node v of C
5: let G1 and G2 be the subgraph of G enclosed and not enclosed by e, respectively
6: f := MultipleSourceMultipleSinkMaxFlow(G1, c|G1

, S ∩G1, T ∩G1, (A ∩G1) ∪ {v})
7: f := f + MultipleSourceMultipleSinkMaxFlow(G2, c|G2

, S ∩G2, T ∩G2, (A ∩G2) ∪ {v})
8: uncontract the edges of P
9: f := FixConservationOnPath(G,P, c,f)

10: for i = 1, 2, . . . , k
11: f := CycleToSingleSinkLimitedMaxFlow(G, c,f , C, ai)
12: f := SingleSourceToCycleLimitedMaxFlow(G, c,f , ai, C)
13: push positive excess from C to S and negative excess to C from T
14: return f
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Correctness of Algorithm 1 The correctness of Algorithm 1 is proved in detail in Appendix A. The
proof consists of a sequence of lemmas that prove that each step of the algorithm eliminates some undesired
residual paths without reintroducing undesired residual paths. The arguments used are elementary.

Running Time Analysis The number of nodes of the separator cycle C used to partition G into G1

and G2 is O(
√
|G|). Therefore, each invocation of FixConservationOnPath, CycleToSingleSinkLim-

itedMaxFlow and SingleSourceToCycleLimitedMaxFlow in G takes O(|G| log2 |G|/ log log |G| +
|C|2 log2 |C|) = O(|G| log2 |G|) time.

The way we recursively partition into subgraphs is very similar to that of Fakcharoenphol and Rao [8].
In their algorithm, they spend O(|G′| log2 |G′|) time on each subgraph G′ in the recursive decomposition and
prove a total time bound of O(n log3 n). By the same arguments, our algorithm runs in O(n log3 n) time.

3 Eliminating Residual Paths Between Nodes with Positive Inflow
and Nodes with Negative Inflow on a Path

In this section we present an efficient implementation of the fixing procedure which, roughly speaking, given
a path with nodes having positive, negative, or zero inflow, pushes flow between the nodes of the path so
that eventually there are no residual paths from nodes with positive inflow to nodes with negative inflow.

We begin by describing an abstract algorithm for the fixing procedure. The abstract algorithm is given
as Algorithm 2. It is similar to a technique used by Venkatesan and Johnson [19]. Let M be the sum of
capacities of all of the darts of G. The algorithm first increases the capacities of darts of the path P and
their reverses by M . Let p1, p2, . . . , pk+1 be the nodes of P . The algorithm processes the nodes of P one after
the other. Processing pi consists of decreasing the capacities of di = pipi+1 and rev(di) by M (i.e., back to
their original capacities), and trying to eliminate positive inflow x at pi by pushing at most x units of flow
from pi to pi+1. The intuition for doing so is that the flow after the push either obeys conservation at pi or
there are no residual paths from pi to any of the other nodes of P (this is where we use the large capacities
on the darts between unprocessed nodes). See appendix B for a formal proof of correctness. Negative inflow
at pi is handled in a similar manner by pushing flow from pi+1 to pi.

Algorithm 2 AbstractFixConservationOnPath(G,P, c,f0)

Input: directed planar graph G, simple path P = d1d2 . . . dk, capacity function c, and pseudoflow f0

Output: a pseudoflow f ′ s.t. (i) f ′ − f0 satisfies conservation at nodes not on P , and (ii) with respect to
f ′, there are no residual paths from nodes of P with positive inflow to nodes of P with negative inflow.

1: f ′ = f0

2: c[d] = c[d] +M for all darts d of P ∪ rev(P )

3: for i = 1, 2, . . . , k
4: let pi and pi+1 be the tail and head of di, respectively

% reduce the capacities of d and rev(d) by M and adjust the flow appropriately

5: for d ∈ {di, rev(di)}
6: c[d] := c[d]−M
7: f ′[d] := min{f ′[d], c[d]}
8: f ′[rev(d)] := −f ′[d]

9: excess := inflow at pi
10: if excess > 0 then d := di else d := rev(di) find in which direction flow should be pushed

11: add to f ′ a maximum feasible flow from tail(d) to head(d) with limit excess
12: return f ′
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3.1 An Inefficient Implementation

In this section, we give an inefficient implementation of line 11 of the abstract algorithm. This will facilitate
the explanation of the efficient procedure in the next section. We first review the necessary ideas and tools.

3.1.1 Hassin’s algorithm for maximum st-planar flow

An st-planar graph is a planar graph in which nodes s and t are incident to the same face. Hassin [13] gave
an algorithm for computing a maximum flow from s to t in an st-planar graph. We briefly describe this
algorithm here since we use it in implementing line 11 of Algorithm 2.

Hassin’s algorithm starts by adding to G an artificial infinite capacity arc a from t to s. Let d be the
dart that corresponds to a and whose head is t. Let t∗ be the head in G∗ of the dual of d. Compute in the
dual G∗ a shortest path tree rooted at t∗, where the length of a dual dart is defined as the capacity of the
primal dart. Let φ[·] denote the shortest path distances from t∗ in G∗. Consider the flow

ρ[d′] = φ[headG∗(d
′)]− φ[tailG∗(d

′)]for all darts d′ (1)

After removing the artificial arc a from G, ρ is a maximum feasible flow from s to t in G. We say that φ is
a face potential vector that induces ρ.

In our algorithm we are interested in a max flow with limit x from s to t rather than a maximum flow,
i.e., a flow whose value is at most a given number x but is otherwise maximal. It is not difficult to see that
setting the capacity of the artificial arc a to x instead of infinity results in the desired limited max flow [22].

In our implementation, instead of using an artificial arc from t to s, we use an existing arc whose endpoints
are s and t as the arc a above. In order for this to work, the capacity of the dart d that corresponds to a
and whose head is t must be zero (as is indeed the case if a is an artificial arc from t to s). This can always
be achieved by first pushing flow on d to saturate it. Also note that in this case, we do not remove a from
G. Hence, ρ is a feasible circulation, rather than a maximum flow, since flow is being pushed back from t to
s along a. To convert it into a maximum flow one just has to undo the flow on a. If we define f by

f [d′] =

{
−ρ[d′] if d′ corresponds to a
0 otherwise

, (2)

then ρ+ f is a maximum feasible st-flow. We will use the fact that this flow can be represented implicitly
by the face potential vector φ, and the flow values f [d′] for the two darts corresponding to a.

3.1.2 The Inefficient Implementation

Recall that f0 is the flow at the beginning of the procedure. Observe that the change to the flow in iteration i
of the abstract algorithm (line 11) is a flow between the endpoints of the dart di. As discussed in Section 3.1.1,
this flow can be represented as the sum of (i) a circulation ρi and (ii) a flow on di and rev(di). Summing
over the first i iterations, the flow f ′ at that time can be represented as the sum

f ′ = ρ+ f (3)

where ρ =
∑i
j=1 ρj is a circulation and f is a flow assignment that differs from f0 only on the darts of

{dj}ij=1 and their reverses.
The inefficient implementation of line 11 of the abstract algorithm appears as Algorithm 3. We now

describe it. The total flow f ′ is maintained by representing f and the circulation ρ as in Eq. (3). f is
represented explicitly, but, in preparation for the efficient implementation, the circulations ρj are represented

implicitly by the face-potentials φj . By linearity of Eq. (1), the sum φ =
∑i
j=1 φj is the face potential vector

that induces the circulation ρ.
Recall that d is the dart of C such that flow needs to be sent from tail(d) to head(d) (line 10 of Algo-

rithm 2). In lines 1 – 3, the procedure pushes as much as possible on d itself. Consequently, either d is
saturated or conservation at pi is achieved.

Next, an implementation of Hassin’s algorithm pushes a maximum flow with limit |inflow(pi)| from tail(d)
to head(d). The procedure first sets the length of darts to their residual capacities (line 4) and sets the length
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of rev(d) to be the flow limit |inflow(pi)| (line 5). Since the flow maintained is feasible, all residual capacities
are non-negative. The procedure then computes all the headG∗(d)-to-f distances φi[f ] in G∗ using Dijkstra’s
algorithm (line 6). Let ρi be the circulation corresponding to the face-potential vector φi. The procedure
sets val equal to ρ[d] in line 7, then subtracts val from f [d] and adds it to f [rev(d)]. Finally, in the last line,
the current circulation is added to the accumulated circulation by adding the potential φi to φ.

Algorithm 3 Inefficient Implementation of line 11 of AbstractFixConservationOnPath (Algorithm 2)

1: residual capacity := c[d]− f [d]− φ[headG∗(d)] + φ[tailG∗(d)]
% push flow on d to make its residual capacity zero as required for Hassin’s algorithm

2: val := min{residual capacity, |inflow(pi)|} amount of flow to push on d

3: f [d] := f [d] + val ; f [rev(d)] := −f [d]

% push excess inflow from tail(d) to head(d) using Hassin’s algorithm

4: let `[d′] := c[d′]− f [d′]− φ[headG∗(d
′)] + φ[tailG∗(d

′)] for all darts d′ ∈ G lengths are residual capacities

5: `[rev(d)] := |inflow(pi)| set the limit on the residual capacity of rev(d)

6: φi(·) := Dijkstra(G∗, `,headG∗(d)) face potential are distances in G∗ from headG∗ (d) w.r.t. residual capacities

7: val := φi[headG∗(d)]− φi[tailG∗(d)] the amount of flow assigned to d by the circulation corresponding to φi

8: f [d] := f [d]− val ; f [rev(d)] := −f [(d)] do not push the circulation on d and rev(d)

9: φ = φ+ φi accumulate the current circulation

3.2 An Efficient Implementation

In this section we give an efficient implementation of Algorithm 2. We first review the necessary tools.

3.2.1 Fakcharoenphol and Rao’s Efficient Dijkstra Implementation

Let X be a set of nodes. Let H be a planar graph in which the nodes of X lie a single face. Let x1, x2, · · ·
be the clockwise order of the nodes of X on that face. Let P be a set of darts not necessarily in the graph H
whose endpoints are nodes in X. Fakcharoenphol and Rao [8] described a data structure that can be used
in a procedure that efficiently implements Dijkstra’s algorithm in H ∪ P . The procedure takes as input a
table D such that D[i, j] stores the distance between xi and xj in H, an array ` that stores the lengths of the
darts in P , and a node v ∈ X. It is assumed that the lengths in D and in ` are non-negative. The procedure
outputs the distances of the nodes of X from v in H ∪ P in O(|X| log2 |X|+ |P | log |X|)-time.

We mention a technical issue whose importance will become apparent in the sequel. The procedure
partitions the table D into several subtables {Dα}α that correspond to distances between pairs of disjoint
sets of nodes of X, where each set consists of nodes that are consecutive in X. It is assumed in [8, footnote
on p. 884] that for each such subtable Dα, a data structure that supports range minimum queries of the form
minj1≤j≤j2{Dα[i, j]} for every i, j1, j2 is given. Fakcharoenphol and Rao note that such a data structure can
be easily implemented by using a range-search tree [6] for every row i of Dα. The time required to construct
all of the range-search trees for Dα is proportional to the size of Dα.

3.2.2 Price Functions, Reduced Lengths and FR-Dijkstra

For a directed graph G with dart-lengths `(·), a price function is a function φ from the nodes of G to the
reals. For a dart d, the reduced length with respect to φ is `φ(d) = `(d) + φ(tail(d))− φ(head(d)). A feasible
price function is a price function that induces nonnegative reduced lengths on all darts of G (see [18]).

Single-source distances form a feasible price function. Suppose that, for some node r of G, for every node
v of G, φ(v) is the r-to-v distance in G with respect to `(·). Then for every arc uv, φ(v) ≤ φ(u) + `(uv), so
`φ(uv) ≥ 0. Here we assume, without loss of generality, that all distances are finite (i.e., that all nodes are
reachable from r) since we can always add arcs with sufficiently large lengths to make all nodes reachable
without affecting the shortest paths in the graph.

We will use the following variant of Fakcharoenphol and Rao’s efficient Dijkstra implementation. The
procedure FR(D, `,φX , v) takes as input the table D and the array ` as described above, as well as a feasible
price function φX on the nodes of X and a node v ∈ X. It outputs the distances of the nodes of X from v
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Figure 1: An example illustrating that the nodes of X∗ are
on the boundary of a single face of H∗. The diagram shows
part of the graph G and some edges of its dual G∗. Edges of
G are solid blue. Edges of P are bold. Dual edges are double
lined red. The dual edges of P are in double lined dashed
red.

in H ∪ P w.r.t. the reduced lengths w.r.t. φX . We stress that lengths in D and in ` may be negative, but
the reduced lengths are all non-negative. The computation takes O(|X| log2 |X|+ |P | log |X|) time.

This differs from the procedure described in Section 3.2.1 only in the existence of the price function φX .
We cannot afford to compute the entire table of reduced lengths since that would dominate the running
time of the algorithm in [8]. Instead, whenever their algorithm requires some specific reduced length, we
can compute it in constant time from D. This, however, does not suffice. Recall that the algorithm in [8]
requires that, for each of the subtables Dα, range-search trees that support range minimum queries of the
form minj1≤j≤j2{Dα[i, j]+φX [xi]−φX [xj ]} for every i, j1, j2 are given. Note that the results of such queries
may be different for different price functions. Computing the range-search trees would take O(|X|2) which
will dominate the running time of the entire procedure. To overcome this difficulty we use Monge range-query
data structures, due to Kaplan and Sharir [21], which can be constructed from the table D in O(|X| log |X|)
time, and answer queries of the desired form in O(log |X|) time.

3.2.3 The Procedure

Finally, we describe the efficient implementation. The procedure keeps track of the inflow at each node of P
in an array v[·]. As in the inefficient implementation, the procedure will maintain the total flow as the sum
of a circulation ρ and a flow assignment f that differs from f0 only on the darts of P ∪ rev(P ). Initially f
is set equal to f0. The circulation ρ will be represented by a face-potential vector φ. However, we will show
that it suffices to maintain just those entries of φ that correspond to faces incident to P .

Define each dart d’s length by `(d) = c[d]− f [d]. Let X∗ be the set of endpoints in the planar dual G∗

of the darts of P (i.e. the primal faces incident to P ). Let H∗ be the graph obtained from G∗ by removing
the darts of P . Note that in H∗, all the nodes of X∗ that did not disappear (i.e., that have degree greater
than zero) are on the boundary of a single face, see Figure 1.

The procedure uses a multiple-source shortest paths (MSSP) algorithm [23, 5] to compute a table D∗[·, ·]
of X∗-to-X∗ distances in H∗ with respect to the lengths `(·).

The implementation of lines 1– 10 of the abstract algorithm using the chosen representation of f ′ is
straightforward. We therefore focus on the implementation of line 11 of Algorithm 2, given as Algorithm 4.

Consider iteration i of the algorithm. The main difference between the inefficient implementation and
the efficient one is in implementing the Dijkstra step for computing shortest paths in the dual. Instead of
computing the entire shortest-path tree, the procedure computes just the distance labels of nodes in X∗.
This is done using the FR data structure, whose initialization requires the X∗-to-X∗ distances in H∗ with
respect to the residual capacities. We now explain how these distances can be obtained.

The flow on a dart d in the primal is

f [d] + φ[headG∗(d)]− φ[tailG∗(d)]. (4)

Therefore the residual capacity of d is

(c[d]− f [d])− φ[headG∗(d)] + φ[tailG∗(d)] (5)
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which is its reduced length `φ[d] with respect to the length `(·) and price function φ.
Suppose that d belongs to H∗, i.e. d is not one of the darts of P ∪ rev(P ). The procedure never changes

f [d], so f [d] = f0[d]. Therefore `(d) = c[d] − f0[d]. These lengths are known at the beginning of the
procedure’s execution. The reduced length of an X∗-to-X∗ path Q = d′1, d

′
2, · · · , d′j in H∗ is

j∑
i=1

(`(d′i)− φ[headG∗(d
′
i)] + φ[tailG∗(d

′
i)]) =

(
j∑
i=1

`(d′i)

)
− φ[end(Q)] + φ[start(Q)]. (6)

Therefore, for any nodes x, y ∈ X∗, the x-to-y distance in H∗ w.r.t. the residual capacity is given by
D∗[x, y]−φ[y] +φ[x]. Since the procedure maintains the restriction of φ to faces of X∗, this distance can be
obtained in constant time. Adapting FR’s data structure to handle reduced distances w.r.t. a price function
φ was discussed in Section 3.2.1.

Algorithm 4 Efficient Implementation of line 11 of AbstractFixConservationOnPath (Algorithm 2)

1: residual capacity := c[d]− f [d]− φX [headG∗(d)] + φX [tailG∗(d)]
% push flow on d to make its residual capacity zero as required for Hassin’s algorithm

2: val := min{residual capacity, |v[pi]|} amount of flow pushed on d

3: f [d] = f [d] + val ; f [rev(d)] := −f [d]
4: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val update the inflow at pi and pi+1

% push excess inflow from tail(d) to head(d) using Hassin’s algorithm

5: let `[d′] := c[d′]− f [d′] for all darts d′ ∈ P ∪ rev(P ) lengths of explicit darts are residual capacities
(not including circulation component)

6: `[rev(d)] := |v[pi]| − φX [tailG∗(rev(d))] + φX [headG∗(rev(d))] set the limit on the residual capacity of rev(d)
(adjusted by circulation component)

7: φXi (·) := FR(D∗, `,φX ,headG∗(d)) face potential are distances in G∗ from headG∗ (d) w.r.t. the

reduced lengths induced by φX

8: val := φXi [head(d)]− φXi [tail(d)] the amount of flow assigned to d by the circulation corresponding to φX
i

9: f [d] := f [d]− val ; f [rev(d)] := −f [(d)] do not push the circulation on d and rev(d)

10: φX = φX + φXi accumulate the current circulation

11: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val update the inflow at pi and pi+1

It follows from the above discussion that, after executing line 11 of Algorithm 2 using the efficient imple-
mentation (Algorithm 4) for the last time, the flow assignment f maintained by the efficient implementation
is the same as the one that would have been computed if the inefficient implementation (Algorithm 3) were
used. Moreover, the potential function φX computed by the efficient implementation is the restriction to
X∗ of the potential function φ that would have been computed by the inefficient implementation.

In order to output the flow f ′ in the entire graph G, we need to know the potential function φ rather
than just its restriction φX . Observe, however, that any pseudoflow that differs from f by a circulation is a
valid output of FixConservationOnPath since a circulation does not change the inflow at any node, nor
does it introduce residual paths between nodes that are not connected by a residual path in Gf . It therefore
suffices to find any feasible circulation χ in Gf . This can be done by computing shortest paths in G∗ w.r.t.
the lengths ` := c − f from an arbitrary node x ∈ G∗. Note, however, that for darts of P ∪ rev(P ) these
lengths might be negative. We therefore use the O(n log2 n/ log log n)-time algorithm for shortest paths with
negative lengths in planar graphs [30] to compute a feasible circulation χ. 5

The pseudocode for the efficient implementation of FixConservationOnPath is given in appendix D.

Running Time Analysis Let n and k be the number of nodes in G and in P , respectively. The initial-
ization time is dominated by the O(n log n + k2 log n) time for MSSP. The execution of each iteration of
the main loop is dominated by the call to FR, which takes O(k log2 k) time. The number of iterations is
k − 1, leading to a total of O(k2 log2 k) time for execution of the main loop. Computing the circulation χ
requires one shortest path computation, which takes O(n log2 n/ log logn) time. Thus total running time of
the efficient implementation of FixConservationOnPath is O(n log2 n/ log log n+ k2 log2 k).

5In appendix E, we show how to use one more call to FR followed by a call to Dijkstra’s algorithm to compute these
distances. While we think doing so is more elegant and simpler to implement, it does not change the asymptotic running time
of the algorithm.
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4 Pushing Excess Inflow from a Cycle

In this section we describe the procedure CycleToSingleSinkLimitedMaxFlow that pushes excess in-
flow from a cycle to a node not on the cycle. The procedure is given as Algorithm 5. The procedure
SingleSourceToCycleLimitedMaxFlow is very similar. We omit its description.

Algorithm 5 CycleToSingleSinkLimitedMaxFlow(G, c,f0, C, t)

Input: a directed planar graph G with capacities c, a pseudoflow f0, a simple cycle C, a sink ai.

Assumes: ∀v ∈ C+, inflowf0(v) ≥ 0, where C+ = {v ∈ C : {x ∈ C : inflowf0(x) > 0}
Gf0→ v}.

Output: a pseudoflow f s.t. (i) f − f0 obeys conservation everywhere but C+ ∪ {t},
(ii) ∀v ∈ C+, inflowf (v) ≥ 0, (iii) {v ∈ C : inflowf (v) > 0} Gf9 ai.

1: let C+ := {v ∈ C : there exists a residual path to v from a node x ∈ C with inflowf0(x) > 0}
2: delete the nodes of C − C+

3: let v1, v2, . . . , v` be the nodes of C+, labeled according to their cyclic order on C
4: add artificial arcs vivi+1 for 1 ≤ i < `
5: let P be the v1-to-v` path of artificial arcs
6: contract all the edges of P , collapsing C+ into the single node v1

7: f := SingleSourceSingleSinkMaxFlow(G, c− f0, c1, t)
8: undo the contraction of the edges of P
9: f := FixConservationOnPath(G,P, c,f0 + f) −f0

10: modify f to push back flow to nodes of C+ whose inflow w.r.t f0 + f is negative
11: f := f0 + f
12: return f

To compute C+ in Line 1, consider the residual graph of G w.r.t. f0. Add a node v and non-zero capacity
arcs vw for every node w whose inflow w.r.t. f0 is positive (these arcs may not preserve planarity). In O(|G|)
time, find the set X of nodes that are reachable from v via darts with non-zero capacity. Then C+ = C ∩X.

Since C+ consists of all nodes of C reachable via residual paths from the nodes of C with positive inflow,
the flow computed by the procedure involves no darts incident to nodes in C − C+. Thus, restricting the
computation to the graph obtained from G by deleting the nodes in C − C+ (line 2) does not restrict the
computed flow. After deletion, adding artificial arcs between consecutive nodes of C+ (line 4) will not violate
planarity. Contracting the artificial arcs effectively turns C+ into a single node v1. Next, the procedure
computes a maximum flow f from C+ to t w.r.t. residual capacities c−f0. This is done by invoking a single-
source single-sink maximum flow algorithm [2] with source v1 and sink t (line 7). Uncontracting the artificial
arcs turns f into a maximum C+-to-t flow in G w.r.t. the residual capacities c− f0. However, some of the
nodes of C+ may have negative inflow w.r.t. f0+f . In line 9, the procedure calls FixConservationOnPath
to reroute the flow f among the nodes of C+ so that, w.r.t. f0 + f , there are no residual paths from nodes
of C+ with positive inflow to nodes of C+ with negative inflow. This implies that any node of C+ that still
has negative inflow has pushed too much flow. Line 10 modifies f to push back such excess flow so that no
node of C+ has negative inflow w.r.t. f0 + f . This is done using the procedure of Section 1.1 described in
the appendix. Finally, the procedure returns f0 + f . See Appendix F for a formal proof of correctness.

We next analyze the running time of this procedure on an n-node graph G and a k-node cycle C. The
st-maximum flow computation in line 7 takes O(n log n) time using the algorithm of Borradaile and Klein [2].
The running time of the procedure is therefore dominated by the call to FixConservationOnPath in line 9
which takes O(n log2 n/ log log n+ k2 log2 k) time.
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A Correctness of Algorithm 1

Lemma A.1. Let ρ be a circulation. Let u and v be nodes in a graph G. Then

u
G9 v ⇒ u

Gρ9 v.

Proof. Pushing a circulation does not change the amount of flow crossing any cut. This implies that if there
was no u-to-v residual path before ρ was pushed, then there is none after ρ is pushed.

We will use the following two lemmas in the proof of correctness:

Lemma A.2. (sources lemma) Let f be a flow with source set X. Let A,B be two disjoint sets of nodes.
Then

A ∪X G9 B ⇒ A
Gf9 B.

Proof. The flow f may be decomposed into a cyclic component (a circulation) and an acyclic component.
By Lemma A.1, it suffices to show the lemma for an acyclic flow f .

Suppose for the sake of contradiction that there exists a residual a-to-b simple path P after f is pushed
for some a ∈ A and b ∈ B. Let P ′ be the maximal suffix of P that was residual before the push. Maximality
implies that the dart d of P whose head is start(P ′) was non-residual before the push, and f(rev(d)) > 0.
The fact that f(rev(d)) > 0 implies that before f was pushed there was a residual path Q from some node
x ∈ X to head(d). Therefore, the concatenation of Q and P ′ was a residual x-to-b residual path before the
push, a contradiction.

The proof of the following lemma is symmetric.

Lemma A.3. (sinks lemma) Let f be a flow with sink set X. Let A,B be two disjoint sets of nodes. Then

A
G9 B ∪X ⇒ A

Gf9 B.

For node sets W,Y,Z, we will use the notation sources lemma(W,Y,Z) to indicate the use of the sources
lemma to establish that there are no W -to-Y residual paths after a flow with source set Z is pushed. We
will use sinks lemma(W,Y,Z) in a similar manner.

Lemma A.4. At any time in the running of the algorithm after the last execution of line 7 and before the
execution of line 13, S 9 T , S 9 A, S 9 C, A9 T , C 9 T .

Proof. The fact that the properties hold just after line 7 follows from the properties of the recursive calls and
from the fact that any residual path from a node in one piece to a node in the other consists of a residual
path to C and a residual path from C. Note that, because of the contractions in line 4, at this time the cycle
C consists of just the node v. The the nonexistence of residual paths with respect to v in the recursive calls
implies the nonexistence of residual paths w.r.t. any node of C after the contractions are undone in line 8.

Now, let us prove that the properties are maintained until just before the execution of line 13. By the
above argument, there is a cut separating S from T ∪A∪C which is saturated just after line 8. The procedure
in line 9 only pushes flow between vertices of C, and in lines 10– 12, flow is only pushed between the nodes
of A and C. These sets are all on the same side of the cut which therefore stays saturated. It follows that
S 9 T , S 9 A, and S 9 C at any point after line 7 and before line 13. A similar argument applied to a
saturated cut separating A ∪ C from T shows A9 T and C 9 T .

Recall that C+
i is the set of nodes of C that are reachable via residual paths from some node of C with

positive excess at the beginning of iteration i, and that C−i is the set of nodes of C that have residual paths
to some node of C with negative excess at the beginning of iteration i.

Lemma A.5. Just after line 9 of Algorithm 1 is executed, C+
1 9 C−1 .

Proof. Follows from the definition of FixConservationOnPath.

Lemma A.6. For all i < j, C+
j ⊆ C

+
i and C−j ⊆ C

−
i
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Proof. It suffices to show that, for all i, C+
i+1 ⊆ C

+
i and C−i+1 ⊆ C

−
i .

The flow pushed in iteration i of line 11 can be decomposed into a flow whose sources and sinks are all
in C+

i and a flow whose sources are in C+
i and whose sink is ai. Therefore, the set X of nodes of C with

positive inflow immediately after iteration i of line 11 is a subset of C+
i . By definition of SingleSource-

ToCycleLimitedMaxFlow, the set of nodes of C with positive inflow does not change after line 12 is
executed. Therefore, C+

i+1 is the set of nodes reachable from X by a residual path after iteration i of line 12.

By definition of C+
i , immediately before iteration i of line 11 there are no C+

i -to-{C − C+
i } residual

paths. By sources lemma(C+
i , C −C

+
i , C

+
i ), there are no C+

i -to-{C −C+
i } residual paths immediately after

iteration i of line 11 as well. This shows that there are no X-to-{C − C+
i } residual paths at that time.

The flow pushed in line 12 can be decomposed into a flow whose sources and sinks are all in C−i and
a flow whose source is ai and whose sinks are all in C−i . By sinks lemma(C+

i , C − C+
i , C

−
i ), there are

no C+
i -to-{C − C+

i } residual paths immediately after iteration i of line 12. This shows that there are no
X-to-{C − C+

i } residual paths at that time. Hence C+
i+1 ⊆ C

+
i , as desired.

The proof of the analogous claim for C−i+1 is similar.

Lemma A.7. Just after line 11 of Algorithm 1 is executed in iteration i, C+
i 9 C−i , C+

i+1 9 {aj}j≤i,
{aj}j<i 9 C−i .

Proof. The flow pushed in line 11 can be decomposed into a flow whose sources and sinks are all in C+
i and

a flow whose sources are in C+
i and whose sink is ai.

• C+
i 9 C−i by sources lemma(C+

i , C
−
i , C

+
i )

• C+
i+1 9 {aj}j<i by sources lemma(C+

i+1, aj , C
+
i )

• C+
i+1 9 {ai} by definition of CycleToSingleSinkLimitedMaxFlow

• {aj}j<i 9 C−i by sources lemma(aj , C
−
i , C

+
i )

Lemma A.8. Just after line 12 of Algorithm 1 is executed in iteration i, C+
i 9 C−i , C+

i+1 9 {aj}j≤i,
{aj}j≤i 9 C−i+1.

Proof. The flow pushed in line 12 can be decomposed into a flow whose sources and sinks are all in C−i and
a flow whose source is ai and whose sinks are all in C−i .

• C+
i 9 C−i by sinks lemma(C+

i , C
−
i , C

−
i )

• C+
i+1 9 {aj}j≤i by sinks lemma(C+

i+1, aj , C
−
i )

• {aj}j<i 9 C−i+1 by sinks lemma(aj , C
−
i+1, C

−
i )

• ai 9 C−i+1 by definition of SingleSourceToCycleLimitedMaxFlow

Let C+(C−) denote the set of nodes in C with positive (negative) inflow just before line 13 is executed.

Corollary A.9. Just before line 13 of Algorithm 1 is executed, C+ 9 C−, C+ 9 A,A9 C−.

Lemma A.10. The following are true upon termination:

1. f is a pseudoflow

2. f obeys conservation everywhere except at S, T,A

3. S
Gf9 T, S

Gf9 A,A
Gf9 T .
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Proof. Since every addition to f along the algorithm respects capacities of all darts, f is a pseudoflow at
all times. By induction, the only nodes that do not obey conservations after the recursive calls are those of
S, T and A. Subsequent changes to f only violate conservation on the nodes of C, but any such violation is
eliminated in line 13. Therefore upon termination f obeys conservation everywhere except S, T and A.

Since, by Lemma A.4 and Corollary A.9 before line 13 C+ 9 A and C 9 T , the flow pushed back from
C+ in line 13 must be pushed back to S. Similarly, the flow pushed back to C− must be pushed back from
T .

Let f+ (f−) be the flow pushed back from C+ to S (from T to C−) in line 13. Consider first pushing
back f+.

• S 9 T by sources lemma(S, T, C+)

• S 9 A by sources lemma(S,A,C+)

• A9 T by sources lemma(A, T,C+)

• S 9 C− by sources lemma(S,C−, C+)

• A9 C− by sources lemma(A,C−, C+)

Next consider pushing f−

• S 9 T by sinks lemma(S, T, C−)

• S 9 A by sinks lemma(S,A,C−)

• A9 T by sinks lemma(A, T,C−)

B Correctness of Algorithm 2

Lemma B.1. The following holds immediately after iteration i of the main loop (line 3).

1. For j ≤ i, j′ > j, if pj has positive inflow, there is no residual path from pj to pj′ . If pj has negative
inflow, there is no residual path from pj′ to pj.

2. For j, j′ ≤ i, if pj has positive inflow and pj′ has negative inflow then there is no pj-to-pj′ residual
path.

Proof. By induction on the number of iterations i of the loop. For i = 0 the invariants are trivially satisfied.
First note that the adjustments to capacities and flow in lines 6–8 do not create any new residual paths

since capacities are only reduced, and no residual capacity increases. Therefore, it suffices to argue just
about the flow pushed in line 11.

Assume the invariants hold up until the beginning of the ith iteration. We show that the invariants hold
at the end of the iteration. Suppose that pi has positive inflow at the end of the ith iteration (the case of
negative inflow is similar).

1. Since the flow pushed in line 11 is limited by |inflow(pi)|, the fact that pi has positive inflow at the
end implies that the flow pushed was a maximum flow from pi to pi+1. Since the capacities of darts
between pk+1 and pk for k > i are sufficiently large, the maximality of the flow implies that there are
no pi-to-pk residual paths for any k > i.

The invariant holds for nodes pj with positive inflow and j < i by sinks lemma({pj}, {pj′ : j′ > j},
{pi+1}).

2. Invariant 2 holds for j, j′ < i by sinks lemma( {pj : j < i, inflow(pj) > 0}, {pj : j < i, inflow(pj) < 0},
{pi+1}).
The invariant holds for pi by invoking the sources lemma({pi}, {pj : j < i, inflow(pj) < 0}, {pi}).
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Corollary B.2. Algorithm 2 is correct

Proof. The flow f ′ − f0 satisfies conservation everywhere except at nodes of P since the algorithm only
pushes flow between nodes of P . By Lemma B.1, with respect to f ′, there are no residual paths from nodes
of P with positive inflow to nodes of P with negative inflow.

C Converting a Pseudoflow into a Maximum Feasible Flow

Let f be a pseudoflow in a planar graph G with node set V , sources S and sinks T . Let V + denote the set
of nodes {v ∈ V − (S ∪ T ) : inflowf (v) > 0}. Similarly, let V − denote the set of nodes {v ∈ V − (S ∪ T ) :

inflowf (v) < 0}. Suppose S ∪ V + Gf9 T ∪ V −. In this appendix we show how to convert f into a maximum
feasible flow f ′. This procedure was first described for planar graphs by Johnson and Venkatesan [19]. The
original description of the procedure took O(n log n) time, but using the flow cycles canceling technique of
Kaplan and Nussbaum [20] the running time is O(n).

We begin by converting f to an acycic pseudoflow in linear time [20]. That is, after the conversion there
is no cycle C such that f [d] > 0 for every dart d of C. Since f is acyclic, the darts with a positive flow
induce a topological ordering on the nodes of the graph G. Let v be the last member of V + in the topological
ordering, and let d be an arbitrary dart that carries flow into v. We set f [d] = max{f [d] − inflowf (v), 0},
and set f [rev(d)] accordingly. The flow assignment f maintains the invariant S ∪ V + Gf9 T ∪ V − by sinks
lemma(S ∪ V +,T ∪ V −,{v}). As long as v is in V +, there must be a dart d which carries flow to v. By
changing the flow on d we cannot add to V + a new node that appears later than v in the topological ordering.
We repeat this process until V + is empty. Since we reduce the flow on each dart at most once, this takes

linear time. Next we handle V − while keeping the invariant S ∪ V + Gf9 T ∪ V − in a symmetric way, by
repeatedly fixing the first vertex if V − in the topological ordering.

The total running time is O(n), and since V +, V − are both empty, we get from the invariant S ∪ V + Gf9
T ∪ V − that the resulting pseudoflow is a feasible flow. This is the required flow f ′.
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D Pseudocode for FixConservationOnPath

Algorithm 6 FixConservationOnPath(G,P, c,f0)

Input: a directed planar graph G, simple path P = d1d2 . . . dk, capacity function c, and a pseudoflow f0

Output: a pseudoflow f s.t. (1) f −f0 satisfies conservation at nodes not on P and (2) w.r.t f , no residual
path exists from {v ∈ P : inflow(v) > 0} to {v ∈ P : inflow(v) < 0}.

1: let X∗ be the set of endpoints in the planar dual G∗ of the darts of P
2: initialize to zero an array φX [·] indexed by the nodes of X∗

3: let H∗ be the graph obtained from G∗ by removing the darts of P
4: compute, using the MSSP algorithm [23, 5], a table D∗[·, ·] of distances in H∗ between nodes of X∗ w.r.t

the lengths c− f0

5: f := f0

6: c[d] := c[d] +M for all darts of P ∪ rev(P )
7: initialize an array of length k by v[i] := inflow at pi with respect to f
8: for i = 1, 2, . . . , k
9: let pi and pi+1 be the tail and head of di, respectively

% reduce the capacities of d and rev(d) by M and adjust the flow appropriately

10: for d ∈ {di, rev(di)}
11: c[d] := c[d]−M
12: old flow := f [d] + φX [headG∗(d)]− φX [tailG∗(d)]
13: new flow := min{old flow, c[d]} adjusted flow must not exceed adjusted capacity

14: f [d] := new flow−φX [headG∗(d)] +φX [tailG∗(d)] the explicit flow does not include the circulation component

15: f [rev(d)] := −f [d]
16: v[head(d)] := v[head(d)] + new flow− old flow update the inflow at pi and pi+1

17: v[tail(d)] := v[tail(d)]− new flow + old flow

18: if v[pi] > 0 then d := di else d := rev(di) find in which direction flow should be pushed

% push flow on d to make its residual capacity zero as required for Hassin’s algorithm

19: residual capacity := c[d]− f [d]− φX [headG∗(d)] + φX [tailG∗(d)]
20: val := min{residual capacity, |v[pi]|} amount of flow pushed on d

21: f [d] = f [d] + val ; f [rev(d)] := −f [d]
22: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val update the inflow at pi and pi+1

% push excess inflow from tail(d) to head(d) using Hassin’s algorithm

23: let `[d′] := c[d′]− f [d′] for all darts d′ ∈ P ∪ rev(P ) lengths of explicit darts are residual capacities
(not including circulation component)

24: `[rev(d)] := |v[pi]| − φX [tailG∗(rev(d))] + φX [headG∗(rev(d))] set the limit on the residual capacity of rev(d)
(adjusted by circulation component)

25: φXi (·) := FR(D∗, `,φX ,headG∗(d)) face potential are distances in G∗ from headG∗ (d) w.r.t. the

reduced lengths induced by φX

26: val := φXi [head(rev(d))]−φXi [tail(rev(d))] the amount of flow assigned to d by the circulation corresponding to φX
i

27: f [d] := f [d] + val ; f [rev(d)] := −f [(d)] do not push the circulation on d and rev(d)

28: φX = φX + φXi accumulate the current circulation

29: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val update the inflow at pi and pi+1

% find a feasible circulation

30: let x be an arbitrary node in G∗

31: let `[d] := c[d]− f [d] for all darts d ∈ G
32: χ := SingleSourceShortestPaths(G∗, `, x) distances of the nodes of G∗ from x

33: f ′[d] := f [d] + χ[headG∗(d)]− χ[tailG∗(d)] for every dart d ∈ G add explicit flow and implicit circulation

34: return f ′
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E Alternative to Line 32 of Algorithm 6

In this section we show that it is not necessary to use a generic shortest path algorithm that works with
negative lengths to compute a feasible circulation χ in line 32 of Algorithm 6. Instead of choosing x to be
an arbitrary node in G∗, let x be an arbitrary node of X∗. Let χ(y) denote the x-to-y distance in G∗ w.r.t.
the lengths `. Instead of computing χ using a shortest path algorithm that accepts negative lengths, we will
compute it more efficiently in two steps. Pseudocode is given below as Algorithm 7. In the first step we use
FR to compute the distances to just the nodes of X∗. In the second step we extend these distances to all
other nodes using Dijkstra’s algorithm.

In the first step the algorithm computes distances in G∗ from x to all nodes of X∗ w.r.t. `φX , the reduced

lengths of ` induced by the feasible price function φX . This is done by an additional invocation of FR
(line 2). Let ψX denote these distance labels. By definition of reduced lengths and a telescoping sum similar
to the one in the derivation of Eq. (6),

ψX [y] = χ(y) + φX [x]− φX [y]. (7)

Since both φX and ψX are known, the algorithm can compute the unreduced distances χ[y] for all y ∈ X∗
(line 4). Next, the algorithm runs Dijkstra’s algorithm on G∗, initializing the label of each node y of X∗ to
its correct value χ[y]. Since in the dual the darts of P ∪ rev(P ) are only incident to nodes of X∗, Dijkstra’s
algorithm initialized in this manner correctly outputs the distance labels for all nodes of G∗ even if some of
the darts of P ∪ rev(P ) may have negative lengths.

Algorithm 7 Alternative to line 32 of Algorithm 6

1: let x be an arbitrary node in X∗

2: ψX = FR(D∗, `,φX , x) find distances of the nodes of X∗ from x w.r.t. price function φX

3: initialize to ∞ an array χ indexed by the nodes of G∗

4: χ[y] = ψX [y]− φX [x] + φX [y] for every y ∈ X∗ distances of the nodes of X∗ from x

5: extend ` to all darts of G∗ by `[d] := c[d]− f0[d] for every dart d ∈ G
6: χ := Dijkstra(G∗, `, x,χ) distances of the nodes of G∗ from x

F Correctness of Algorithm 5

Lemma F.1. Algorithm 5 is correct.

Proof. Any flow that is pushed by the algorithm originates at C+ and terminates at C+ ∪ {t}. Therefore,
f − f0 violates conservation only at C+ ∪ {t}. In line 10, flow of f is pushed back so that no node of C+

has negative inflow w.r.t. f0 + f . It is possible to do so by only pushing back flow of f (rather than flow of
f0 + f) since by assumption no node of C+ has negative inflow w.r.t. f0.

By maximality of the flow pushed in line 7, just after line 7 is executed there are no C+-to-t residual
paths. Clearly, this remains true when the capacities of the artificial darts are set to zero. In line 9 flow is
pushed among the nodes of C+, so by sources lemma(C+, t, C+), there are no C+-to-t residual paths after
line 9 either. Moreover, by definition of FixConservationOnPath, there are no C>0-to-C<0 residual paths
immediately after line 9 is executed, where C>0 (C<0) is the set of nodes of C+ with positive (negative)
inflow at that time. Line 10 pushes flow into C<0, making all the nodes of C<0 obey conservation. By sinks
lemma(C>0, t, C<0) there are no C>0-to-t residual paths upon termination of the procedure. This completes
the proof since C>0 is the set of nodes of C with positive inflow upon termination.
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