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Abstract

We give efficient algorithms for ranking Lyndon words of length n over an alphabet of size σ. The
rank of a Lyndon word is its position in the sequence of lexicographically ordered Lyndon words of the
same length. The outputs are integers of exponential size, and complexity of arithmetic operations on
such large integers cannot be ignored. Our model of computations is the word RAM, in which basic
arithmetic operations on (large) numbers of size at most σn take O(n) time. Our algorithm for ranking
Lyndon words makes O(n2) arithmetic operations (this would imply directly cubic time on word RAM).
However, using an algebraic approach we are able to reduce the total time complexity on word RAM
to O(n2 log σ). We also present an O(n3 log2 σ)-time algorithm that generates the Lyndon word of a
given length and rank in lexicographic order. Finally we use the connections between Lyndon words and
lexicographically minimal de Bruijn sequences (a theorem of Fredricksen and Maiorana) to develop the
first polynomial-time algorithm for decoding minimal de Bruijn sequence of any rank n (it determines
the position of a given word of length n within the de Bruijn sequence).

1 Introduction

We consider finite words over an ordered alphabet Σ of size σ = |Σ|. A Lyndon word [25, 5] over Σ is a
word that is strictly smaller in the lexicographic order than all its nontrivial cyclic rotations. For example,
for Σ = {a, b} where a < b, the word aababb is a Lyndon word, as it is smaller than its cyclic rotations:
ababba, babbaa, abbaab, bbaaba, baabab. On the other hand, the word abaab is not a Lyndon word, since
its cyclic rotation aabab is smaller than it. Also the word aabaab is not a Lyndon word, as its cyclic rotation
by 3 letters is equal to it. Lyndon words have a number of combinatorial properties (see, e.g., [24]) including
the famous Lyndon factorization theorem [5], which states that every word can be uniquely written as a
concatenation of a lexicographically non-increasing sequence of Lyndon words

(due to this theorem, Lyndon words are also called prime words; see [20]). They are also related to
necklaces of n beads in k colors, that is, equivalence classes of k-ary n-tuples under rotation [15, 16]. In
particular, a necklace can be identified with the lexicographically minimal tuple in its class, and thus it is
often defined as a word of length n over alphabet of size k that is smaller than or equal to all its cyclic
rotations (or equivalently, as a power of a Lyndon word of a length that divides n). Lyndon words and
necklaces have numerous applications in the field of text algorithms; see e.g. [3, 8, 9, 28].

A de Bruijn sequence of rank n [10] is a cyclic sequence of length σn in which every possible word of
length n occurs as a factor exactly once. For example, for Σ = {0, 1} the following two sequences of length
16 are de Bruijn sequences of rank 4:

0000100110101111 and 0011110110010100.

∗This is an extended version of our previous conference paper [22] with complexities reduced by a (log σ)/n factor in case of
the word RAM model.
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De Bruijn sequences are present in a variety of contexts, such as digital fault testing, pseudo-random number
generation, and modern public-key cryptographic schemes. There are numerous algorithms for generating
such sequences and their generalizations to other combinatorial structures have been investigated; see [6, 20].
Fredricksen and Maiorana [13, 16] have shown a surprising deep connection between de Bruijn sequences
and Lyndon words: the lexicographically minimal de Bruijn sequence over Σ is a concatenation, in the
lexicographic order, of all Lyndon words over Σ whose length is a divisor of n. For example, for n = 6 and
the binary alphabet we have the following decomposition of the minimal de Bruijn sequence into Lyndon
words:

0 000001 000011 000101 000111 001 001011 001101 001111 01 010111 011 011111 1.

Problem definitions and previous results. We denote by L and Ln the set of all Lyndon words and
all Lyndon words of length n, respectively, and define

LynRank(w) = |{x ∈ L|w| : x ≤ w}|.

The problem of ranking Lyndon words can be defined as follows.

Problem 1. Ranking Lyndon words

Given a Lyndon word λ, compute LynRank(λ).

Example 1. For Σ = {a, b} we have LynRank(ababbb) = 8 since there are 8 Lyndon words of length 6 that
are not greater than ababbb:

aaaaab, aaaabb, aaabab, aaabbb, aababb, aabbab, aabbbb, ababbb.

What was previously known is that all Lyndon words of length at most n can be generated in lexicographic
order. The first solution is due to Fredricksen, Kessler, and Maiorana (FKM) [15, 16]; later Duval developed
an alternative algorithm [12]. The analysis by Ruskey et al. [32] shows that the FKM algorithm generates
the subsequent Lyndon words in constant amortized time; Berstel and Pocchiola [2] achieved an analogous
result for Duval’s algorithm. A different constant-amortized-time solution, based on recursion, was given
by Cattell et al. [4]. However, there was no polynomial-time algorithm to generate a Lyndon word of an
arbitrary rank or for ranking Lyndon words. Ruskey stated finding such an algorithm as a research problem
in his book [31].

An intimately related task, of ranking and unranking necklaces, was explicitly stated as open by Mart́ınez
andMolinero [26]. As far as obtaining polynomial-time solutions is concerned, one can easily show equivalence
of this problem with its counterpart for Lyndon words. Listing necklaces also resembles listing Lyndon words:
two of the previously mentioned algorithms (FKM and Cattell et al.’s) can be used for both tasks. Variants
of the listing problem have also been considered, e.g., generating binary necklaces with a given number of
zeroes and ones [33].

Let L(n) =
⋃

d|nLd. By dBn we denote the lexicographically first de Bruijn sequence of rank n over the

given alphabet Σ. It is the concatenation of all Lyndon words in L(n) in lexicographic order [13, 16]. For a
word w of length n over Σ, by occ-pos(w, dBn) we denote the (1-based) position of its occurrence in dBn.
The problem of decoding the minimal de Bruijn sequence can be stated as follows.

Problem 2. Decoding minimal de Bruijn sequence

Given a word w over Σn, compute occ-pos(w, dBn).

Example 2. For Σ = {0, 1} we have dB4 = 0000100110101111. For this sequence:

occ-pos(1001, dB4) = 5, occ-pos(0101, dB4) = 10, occ-pos(1100, dB4) = 15.

2



For several types of de Bruijn sequences, there exist polynomial-time decoding algorithms [27, 36]. They
find the position of an arbitrary word of length n in a specific de Bruijn sequence, which proves useful in cer-
tain types of position sensing applications of de Bruijn sequences (see [36]). Nevertheless, no polynomial-time
decoding algorithm for lexicographically minimal de Bruijn sequence was known prior to our contribution.
Note that the FKM algorithm can be used to compute the subsequent symbols of the lexicographically
minimal de Bruijn sequence with worst-case O(n2) delay [15] and amortized O(1) delay [32]. Alternative
solutions achieve O(n) [14, 30] or even O(1) [29] worst-case delay. All these solutions only allow to generate
characters of dBn in order, though.

Our model of computations. Our algorithms work in the word RAM model; see [19]. In this model,
we assume that σ and n fit in a single machine word; in other words, a single machine word has at least
max(log σ, log n) bits and simple arithmetic operations on small numbers (i.e., numbers which fit in a con-
stant number of machine words) are performed in constant time. Basic arithmetic operations (addition,

subtraction, multiplication by a small number) on numbers of size at most σn take O( log σn

max(logn,log σ) ) = O(n)
time.

Another model of computation is the unit-cost RAM, where each arithmetic operation takes constant
time. This model is rather unrealistic if we deal with large numbers. However, it is a useful intermediate
abstraction.

Our results. We present an O(n2 log σ)-time solution for finding the rank of a Lyndon word (Problem 1).
The algorithm actually computes LynRank(w) for arbitrary w that are not necessarily Lyndon words. Using
binary search, it yields an O(n3 log2 σ)-time algorithm for computing the k-th Lyndon word of length n (in
the lexicographic order) for a given k. Next, we show an O(n2 log σ)-time solution for decoding minimal
de Bruijn sequence dBn (Problem 2). We also develop an O(n3 log2 σ)-time algorithm computing the k-th
symbol of dBn for a given k. Additionally, we obtain analogous results for a variant dB′

n of the minimal
de Bruijn sequence, introduced by Au [1], in which all factors of length n are primitive and every primitive
word of length n occurs exactly once. All these algorithms work in the word RAM model. In the unit-cost
RAM, the time complexities reduce by a factor of log σ.

Related work. A preliminary version of this paper appeared as [22]. At about the same time, simi-
lar results were published by Kopparty, Kumar, and Saks [23]. The work in these two papers was done
independently. The papers provide polynomial-time algorithms for ranking Lyndon words and necklaces,
respectively, and these two problems can be easily reduced to each other. The authors in [23] put the results
in a broader context and have some additional applications (indexing irreducible polynomials and explicit
constructions of certain algebraic objects). On the other hand, we exercised more care in designing the
algorithm to obtain a better polynomial running time. In particular, [22] contained an O(n3)-time algorithm
for ranking Lyndon words in the word RAM model, which works in O(n2) time in the unit-cost RAM. We
also obtained a cleaner approach to alphabets of size more than 2. An alternative O(n2)-time algorithm in
the unit-cost RAM model was later designed by Sawada and Williams [34].

Structure of the paper. Sections 2 to 5 (and 7) contain a full version of the paper [22]. Section 2 defines
the notions of self-minimal words (necklaces) and Lyndon words and lists a number of their properties. In
Section 3 we use combinatorial tools to obtain a formula for LynRank(w) in the case that w is self-minimal.
The next three sections are devoted to efficient computation of the main ingredient of this formula. In
Section 4 we show that it is sufficient to count specific walks in an auxiliary automaton. Then in Sections 5
and 6 we show efficient implementations of this technique under unit-cost RAM and word RAM models,
respectively. In Section 7, we apply ranking of Lyndon words to obtain efficient decoding of minimal de
Bruijn sequence.
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2 Preliminaries

Let Σ be an ordered alphabet of size σ = |Σ|. By Σ∗ and Σn, we denote the set of all finite words over Σ
and the set of all such words of length n. The empty word is denoted as ε. If w is a word, then |w| denotes
its length, w[i] its i-th letter (for 1 ≤ i ≤ |w|), w[i, j] its factor w[i]w[i+ 1] · · ·w[j] and w(i) its prefix w[1, i].

A suffix of w is a word of the form w[i, n]. A prefix or a suffix is called proper if it is shorter than w. By wk

we denote a concatenation of k copies of w. Any two words can be compared in the lexicographic order: u
is smaller than v if u is a proper prefix of v or if the letter following the longest common prefix of u and v
in u is smaller than in v.

By rot(w, c) let us denote a cyclic rotation of w obtained by moving c mod |w| first letters of w to its
end (preserving the order of the letters). We say that the words w and rot(w, c) are cyclically equivalent
(sometimes called conjugates). By 〈w〉 we denote the lexicographically minimal cyclic rotation of w. A word
w is called self-minimal (alternatively, a necklace) if 〈w〉 = w. The following fact gives a simple property of
self-minimal words.

Fact 3. If w ∈ Σn is self-minimal and d | n, then (w(d))
n/d ≤ w.

Proof. Assume to the contrary that (w(d))
n/d > w. Let k be the index of the first letter where these two

words differ. Then of course (w(d))
n/d[k] > w[k]. Let j be an integer defined as jd+1 ≤ k ≤ (j +1)d. Then

w(d) > w[jd+ 1, (j + 1)d]. Hence, w > rot(w, jd), a contradiction.

In the ranking algorithms that we design below, we make an assumption that the input word is self-
minimal. Consequently, we often need to replace a given arbitrary word w with the lexicographically largest
self-minimal word w′ (of the same length) not exceeding w. In the construction of this routine, we use the
following auxiliary facts.

Fact 4 (see [11]). For a given word x ∈ Σn, the lexicographically minimal cyclic rotation of x (〈x〉) and the
lexicographically minimal suffix of x can be computed in O(n) time.

Fact 5. Let x and x′, x < x′, be words of length n with the longest common prefix of length p. If x is
self-minimal and x′[i] = maxΣ for each i > p+ 1, then x′ is self-minimal.

Proof. First, note that x[1] < z where z = maxΣ. Indeed, if x[1] = z, then we would have x = zn by
self-minimality of x. However, this contradicts x′ > x. Now, observe that x′[1] = z implies p = 0 and
consequently x′[i] = z for i > 1. Thus, x′ = zn is trivially self-minimal. Hence, from now on we may assume
that x′[1] < z.

Since x′[i] = z for i > p+1, this means that x′ < z < rot(x′, i) for i ∈ {p+1, . . . , n− 1}. Thus, it suffices
to show that x′ ≤ rot(x′, i) for i ∈ {1, . . . , p}. For a proof by contradiction, suppose that x′ > rot(x′, i).
Consequently,

x′ > rot(x′, i) > rot(x, i) ≥ x

since for i ∈ {1, . . . , p} we have rot(x, i) < rot(x′, i) with the longest common prefix of length exactly p− i.
However, the obtained sequence of inequalities proves that rot(x′, i) and rot(x, i) have a common prefix of
length at least p due to such a common prefix of x and x′. The contradiction concludes the proof.

We are now ready to implement the announced procedure.

Lemma 6. For a given word w ∈ Σn we can compute in O(n2) time the lexicographically largest self-minimal
word w′ ∈ Σn such that w′ ≤ w.

Proof. Fact 4 lets us check whether w is self-minimal. If so, we simply return w′ = w. Consequently, we
may assume that the sought word w′ is strictly smaller than w. Assume the longest common prefix of w
and w′ is w(k−1) for some k ≤ n. Then b = w[k] > w′[k], so in particular w[k] 6= minΣ and one can choose
b′ ∈ Σ as the letter preceding b. Additionally, let z = maxΣ. Consider a word

w′′ = w(k−1)b
′zn−k.
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Note that w′ ≤ w′′ < w. If w′ < w′′, then Fact 5 applied for x = w′ and x′ = w′′ would show that 〈w′′〉 = w′′,
and this would contradict the definition of w′. Hence, w′ = w′′.

Consequently, it suffices to consider w and, for each k ∈ {1, . . . , n} such that w[k] 6= minΣ, a word
w(k−1)b

′zn−k where b′ is the letter preceding w[k] in Σ. Since w′ is guaranteed to be one of the considered
words, it suffices to output the largest of these candidates for which 〈w′〉 = w′. This procedure can be
implemented in O(n2) time using Fact 4.

The shortest word u such that w = uk for some positive integer k is called the primitive root of w. We
say that w is primitive if its primitive root is w itself. Otherwise, w is called non-primitive. The primitive
root of a word of length n can be computed in O(n) time using the failure function from the algorithm of
Knuth, Morris, and Pratt [21]; see [7].

We say that λ ∈ Σ∗ is a Lyndon word if it is primitive and self-minimal. Equivalent definitions are that
a Lyndon word is (strictly) smaller than all its suffixes or all its cyclic rotations. All cyclic rotations of a
Lyndon word are different primitive words. Moreover, every self-minimal word can be expressed in a unique
way as λk for some Lyndon word λ; see [24]. Below we show an additional property of Lyndon words that
will be useful in Section 7.

Fact 7. Let λ1, λ2 ∈ L(n).

(a) It is not possible that λ1 < λ2 ≤ λ
n/|λ1|
1 .

(b) If λ1 < λ2, then λ
n/|λ1|
1 < λ

n/|λ2|
2 .

Proof. (a) The inequalities imply that λ1 is a proper prefix of λ2. Let λ2 = λk
1x, where k ≥ 1 is an integer

and λ1 is not a prefix of x. We have

λ2 ≤ λ
n/|λ1|
1 =⇒ x ≤ λ

n/|λ1|−k
1 .

If |x| < |λ1|, then we conclude that x < λ1. Otherwise, x = x′x′′, where |x′| = |λ1| and x′ 6= λ1. Hence,
x′ < λ1, so again x < λ1. In both cases we have x < λ1 < λ2, which contradicts the fact that a Lyndon
word is smaller than all its suffixes.

(b) Suppose to the contrary that λ1 < λ2 but λ
n/|λ1|
1 ≥ λ

n/|λ2|
2 . Then

λ1 < λ2 ≤ λ
n/|λ2|
2 ≤ λ

n/|λ1|
1 .

This contradicts part (a).

3 Combinatorics of Ranking Lyndon Words

Recall that, for a word w ∈ Σn, we defined LynRank(w) as the number of Lyndon words in Σn not exceeding
w. Our basic goal (stated as Problem 1) is to efficiently compute LynRank(w) for a given word w. It suffices to
compute LynRank(w) for a self-minimal word w. If w is not self-minimal, then LynRank(w) = LynRank(w′)
where w′ is the greatest self-minimal word such that w′ ≤ w; such w′ can be computed efficiently using
Lemma 6.

We will show how to reduce computation of LynRank(w) to the computation of the cardinality of the
following set:

S(v) = {x ∈ Σ|v| : 〈x〉 ≤ v}
for some prefixes v of w.

Example 8. For Σ = {a, b}, there are seven words of length four lexicographically smaller than or equal to
w = abba:

aaaa, aaab, aaba, aabb, abaa, abab, abba.

This set contains words from the following four equivalence classes. Each class includes a self-minimal word
that is underlined.

{aaaa} ∪ {aaab, aaba, abaa} ∪ {aabb, abba} ∪ {abab}.

5



Thus, S(w) consists of four full classes of cyclic equivalence:

S(w) = {aaaa} ∪ {aaab, aaba, abaa, baaa} ∪ {aabb, abba, bbaa, baab} ∪ {abab, baba}.

Let us introduce the following auxiliary sets defined for w ∈ Σn and divisors d | n:

Sd(w) = {x ∈ Σd : 〈x〉n/d ≤ w}
S
′
d(w) = {x ∈ Σd : x is primitive, 〈x〉n/d ≤ w}.

Example 9. For w = abbaaa and Σ = {a, b}, we have

S2(w) = {aa, ab, ba} S
′
2(w) = {ab, ba}

S3(w) = {aaa, aab, aba, baa} S
′
3(w) = {aab, aba, baa}

As shown in the following two facts, LynRank(w) is closely related to |S′
n(w)|, which can be expressed

in terms of |Sd(w)| for d | n.

Fact 10. For every word w ∈ Σn, we have LynRank(w) = 1
n |S

′
n(w)|.

Proof. Observe that S
′
n(w) is the set of all primitive words of length n that have a cyclic rotation not

exceeding w. Each Lyndon word of length n not exceeding w corresponds to n such words: all its cyclic
rotations.

Fact 11. For every word w ∈ Σn, if d | n, then |S′
d(w)| =

∑

ℓ|d µ(
d
ℓ )|Sℓ(w)|.

Proof. We first show that

|Sℓ(w)| =
∑

d|ℓ

|S′
d(w)|. (1)

For a word x of length ℓ there exists exactly one primitive word y such that yk = x where k ∈ Z+. Thus:

Sℓ(w) =
⋃

d|ℓ

{

y ∈ Σd : y is primitive,
〈

yℓ/d
〉n/ℓ

≤ w

}

,

and the sum is disjoint. Now
〈

yℓ/d
〉n/ℓ

= 〈y〉n/d implies (1). From this formula, we obtain the claimed
equality by the Möbius inversion formula.

The Sd(w) sets are closely related to the regular S(v) sets for prefixes v of w. It is most evident for a
self-minimal word.

Fact 12. If w ∈ Σn is self-minimal and d | n, then Sd(w) = S(w(d)).

Proof. If d = n, the equality of the two sets is trivial. Assume d < n. Let us prove the equality by showing
both inclusions.

Assume that x ∈ Sd(w). This means that 〈x〉n/d ≤ w, therefore 〈x〉 ≤ w(d) (as |x| = d). Hence,
x ∈ S(w(d)).

Now assume that x ∈ S(w(d)). This means that 〈x〉 ≤ w(d). We have 〈x〉n/d ≤ (w(d))
n/d ≤ w where the

second inequality is due to Fact 3. Hence, x ∈ Sd(w).

The facts that we have just proved let us derive a formula for LynRank(w).

Lemma 13. If a word w ∈ Σn is self-minimal, then

LynRank(w) = 1
n

∑

d|n

µ(nd )
∣

∣S(w(d))
∣

∣ .
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Proof. We use Facts 10, 11, and 12 in a series of transformations to express LynRank(w) using |S′
n(w)|,

|Sd(w)| for d | n, and finally |S(w(d))| for d | n:

LynRank(w) = 1
n

∣

∣

∣
S
′
n(w)

∣

∣

∣
= 1

n

∑

d|n

µ(nd )
∣

∣Sd(w)
∣

∣ = 1
n

∑

d|n

µ(nd )
∣

∣S(w(d))
∣

∣ .

Example 14. Let w = ababbb. We have w(1) = a, w(2) = ab, w(3) = aba and

S(w(1)) = {a}, S(w(2)) = {aa, ab, ba},
S(w(3)) = {aaa, aab, aba, baa}, |S(w)| = 54,

LynRank(w) = 1
6 ·

(

µ(1)
∣

∣S(w)
∣

∣ + µ(2)
∣

∣S(w(3))
∣

∣+ µ(3)
∣

∣S(w(2))
∣

∣

+ µ(6)
∣

∣S(w(1))
∣

∣

)

= 1
6 · (54− 4− 3 + 1) = 8.

The set of Lyndon words of length 6 that are not greater than w = ababbb is:

{aaaaab, aaaabb, aaabab, aaabbb, aababb, aabbab, aabbbb, ababbb}.

Indeed, it contains eight elements.

The next three sections are devoted to a proof of the following lemma.

Lemma 15. For a self-minimal word w ∈ Σn, one can compute |S(w)|:
(a) in O(n2) time in the unit-cost RAM,

(b) in O(n2 log σ) time in the word RAM.

As a consequence of this lemma, we obtain efficient ranking of Lyndon words.

Fact 16. If α > 1 is a real constant, then
∑

d|n d
α = O(nα).

Proof. Recall that for α > 1 we have
∑∞

n=1
1
nα = O(1). Consequently,

∑

d|n

dα =
∑

d|n

(

n
d

)α ≤
∞
∑

d=1

(

n
d

)α
= nα

∞
∑

d=1

1
dα = O(nα).

Theorem 17. For an arbitrary word w of length n, one can compute LynRank(w) in O(n2 log σ) time in
the word RAM or in O(n2) time in the unit-cost RAM.

Proof. We use the formula given by Lemma 13 and the algorithm of Lemma 15. If any of the words w, w(d)

is not self-minimal, then instead we take the greatest word of the same length that is not greater than it and
is self-minimal (using Lemma 6). The time complexity is O(

∑

d|n d
2 log σ) in the word RAM or O(

∑

d|n d
2)

in the unit-cost RAM which, by Fact 16, reduces to O(n2 log σ) in the word RAM or O(n2) in the unit-cost
RAM, respectively.

We also obtain an efficient algorithm for “unranking” Lyndon words.

Theorem 18. The k-th Lyndon word of length n can be found in O(n3 log2 σ) time in the word RAM or
O(n3 log σ) time in the unit-cost RAM.

Proof. By definition of the LynRank function, we are looking for the smallestw ∈ Σn such that LynRank(w) ≥
k. We binary search Σn with respect to the lexicographic order, using the algorithm of Theorem 17 to check
whether LynRank(w) ≥ k. The size of the search space is σn, which gives an additional n log σ-time fac-
tor.
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4 Automata-Theoretic Interpretation

From now on we assume that w is self-minimal. Our goal is to compute |S(w)|.
Let Pref−(w) = {w(i)s : i ∈ {0, . . . , n − 1}, s ∈ Σ, s < w[i + 1]} ∪ {w}. Consider a language L(w)

containing words that have a factor y ∈ Pref−(w). Equivalently, x ∈ L(w) if there exists a factor of x which
is smaller than or equal to w, but is not a proper prefix of w. For a language L ⊆ Σ∗, let

√
L = {x : x2 ∈ L}.

Fact 19. S(w) =
√

L(w) ∩ Σn.

Proof. Consider a word x ∈ Σn. If x ∈ S(w), then 〈x〉 ≤ w. Take y = 〈x〉, which is a factor of x2. Some
prefix of y belongs to Pref−(w). This prefix is a factor of x2, so x2 ∈ L(w). Consequently, x ∈

√

L(w).

On the other hand, assume that x ∈
√

L(w), so x2 contains a factor y ∈ Pref−(w). Let us fix the first
occurrence of y in x2. Observe that y can be extended to a cyclic rotation x′ of x. Note that y ∈ Pref−(w)
implies that x′ ≤ w, hence 〈x〉 ≤ x′ ≤ w and x ∈ S(w).

We construct a deterministic finite automaton A = (Q,Σ, δ, q0, F ) recognizing L(w). It has |Q| = n + 1
states: one for each prefix of w. The initial state is q0 = w(0) and the only accepting state (the only element
of the set F ) is w(n) = AC. The transitions are defined as follows: we set δ(AC, c) = AC for any c ∈ Σ and

δ(w(i), c) =











w(0) if c > w[i + 1],

w(i+1) if c = w[i + 1] and i 6= n− 1,

AC otherwise.

Figure 1 contains an example of such an automaton.

start AC
a a b a a b a b

a

a

b

a

a

Figure 1: Automaton A that accepts L(w) for a word w = aabaabab and alphabet Σ = {a, b}. Missing
links lead to the initial state.

Note that all accepting paths in the automaton have a simple structure. Each of them can be divided into
fragments, each of which is a path that starts in w(0), visits a number of states corresponding to subsequent
prefixes of w and eventually goes either back to w(0) or to AC. In the latter case the word spelled by the path
fragment is an element of Pref−(w). After the path reaches AC, it stays there. Hence, if a word x is accepted
by the automaton, then it contains a factor from Pref−(w), so x ∈ L(w). Consequently, L(A) ⊆ L(w). By
a more thorough analysis we show below that L(A) = L(w).

Lemma 20. Let x ∈ Σ∗ and let q be the state of A after reading x. If x ∈ L(w), then q = AC. Otherwise,
q corresponds to the longest prefix of w which is a suffix of x.

Proof. The proof goes by induction on |x|. If |x| = 0, the statement is clear. Consider a word x of length
|x| ≥ 1. Let x = x′c where c ∈ Σ. If x′ ∈ L(w), then clearly x ∈ L(w). By inductive assumption after
reading x′ the automaton is in AC, and A is constructed so that it stays in AC once it gets there. Thus,
the conclusion holds in this case. From now on we assume that x′ /∈ L(w).

Let w(i) be the state of A after reading x′. If c < w[i + 1], clearly x ∈ L(w) (y = w(i)c ∈ Pref−(w)),
and the automaton proceeds to AC as desired. Similarly, it behaves correctly if i = n− 1 and c = w[i + 1].
Consequently, we may assume that c ≥ w[i + 1] and that w is not a suffix of x.
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Take any j such that w(j) is a suffix of x′ (possibly empty). Note that then w(j) is a suffix of w(i).
Consequently, w(j)w[i + 1, n]w(i−j) is a cyclic rotation of w, so

w(j)w[i + 1, n]w(i−j) ≥ 〈w〉 = w = w(j)w[j + 1, n].

Hence, c ≥ w[i+1] ≥ w[j +1]. This implies that w(j)c could be a prefix of w only if c = w[i+1] = w[j +1].
In particular, A indeed shifts to the longest prefix of w being a suffix of x. Now we only need to prove that
x /∈ L(w). For a proof by contradiction, choose a factor y of x such that y ∈ Pref−(w) and |y| is minimal.
Note that y is a suffix of x (since x′ /∈ L(w)). We have y = w(j)c for some j ≤ n − 1 and c < w[j + 1]. As
we have already noticed, such a word cannot be a suffix of x.

We say that an automaton with the set of states Q is sparse if the underlying directed graph has O(|Q|)
edges counting parallel edges as one. Note that the transitions from any state q of A lead to at most 3
different states, so A is sparse.

The following corollary summarizes the construction of A.

Corollary 21. Let w ∈ Σn be a self-minimal word. One can construct a sparse automaton A with O(n)
states recognizing L(w).

Let us use the natural extension of the transition function of an automaton into words:

δ(q, x) = δ(. . . δ(δ(q, x[1]), x[2]) . . . , x[k]) for x ∈ Σk.

For states q, q′ ∈ Q let us define the set LA(q, q
′) = {x ∈ Σ∗ : δ(q, x) = q′} of the labels of walks from q to q′.

The following lemma shows a crucial property of the words x2 from the language L(A) such that x 6∈ L(A).
It makes use of the special structure of the automaton A.

Lemma 22. Let x ∈ Σn. If x2 ∈ L(A) but x /∈ L(A), then there is a unique decomposition x = x1x2x3 such
that x1, x3 6= ε, x3x1 ∈ Pref−(w) and x1x2 ∈ LA(w(0), w(0)).

Proof. Let va (for v ∈ Σ∗, a ∈ Σ) be the shortest prefix of x2 which belongs to L(A). Let w(k) = δ(w(0), v) be
the state of A after reading v. Also, let u be the prefix of v of length |v|−k. The structure of the automaton
implies that δ(w(0), u) = w(0) and that u is actually the longest prefix of x2 which belongs to LA(w(0), w(0)).
Note that v = uw(k) and w(k)a ∈ Pref−(w), so x /∈ L(A) implies |u| < n ≤ |v|. We set the decomposition so
that x1x2 = u and x3x1 = w(k)a. Uniqueness follows from deterministic behaviour of the automaton.

Example 23. Let w = aabaabab. Recall that the automaton A such that L(A) = L(w) was shown in Fig. 1.
Consider a word x = aabbabba of the same length as w. For this word x 6∈ L(A) and x2 ∈ L(A). Black
circles below represent the states of the automaton A after processing the subsequent letters of x2:

a aa ab bb ba ab bb ba a

w(0) w(1) w(2) w(3) w(0) w(1) w(0) w(0) w(1) w(2) AC AC AC AC AC AC AC

For this word the decomposition of Lemma 22 is as follows:

a aa ab bb ba ab bb ba a

x1 x2 x3 x1 x2 x3

u
v a

In this case in the proof of the lemma we have u = aabbabb, v = aabbabbaa, and k = 2.

Denote πk(i, j) = |LA(w(i), w(j)) ∩ Σk|. We say that a number is small if it fits into a constant number
of machine words or, in other words, is polynomial with respect to n + σ. Using Lemma 22, we obtain a
formula for |S(w)|.
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Lemma 24. For every self-minimal word w ∈ Σn, there exist coefficients αi,j that are small numbers such
that

|S(w)| = πn(0, n) +

n
∑

i,j=0

αi,jπj(i, 0).

Moreover, the coefficients αi,j can all be computed in O(n2) time.

Proof. We apply Fact 19 with Corollary 21 and actually compute |{x ∈ Σn : x2 ∈ L(A)}|. If x ∈ L(A),
then obviously x2 ∈ L(A). For this part, we need to compute |L(A)∩Σn|, which is exactly πn(0, n). Now it
suffices to count x ∈ Σn such that x2 ∈ L(A) but x /∈ L(A).

Let us recall the characterization of such words from Lemma 22. We consider all O(n2) choices of |x1|
and |x3|, and count the number of x’s conditioned on these values. Let x1 = x′

1a where x′
1 ∈ Σ∗, a ∈ Σ.

Note that x3x1 = x3x
′
1a ∈ Pref−(w), so x3x

′
1 is a prefix w(k) of w and δ(w(k), a) = AC. Hence, k is uniquely

determined by |x1| and |x3|. In particular, x3 = w[1, |x3|] and x′
1 = w[|x3|+ 1, k] are uniquely determined.

Let us define ℓ as w(ℓ) = δ(w(0), x
′
1); see Fig. 2. To efficiently determine ℓ for each choice of |x1| and |x3|, we

precompute δ(w(0), w[i, j]) for all factors w[i, j] of w. Since

δ(w(0), w[i, j + 1]) = δ(δ(w(0), w[i, j]), w[j + 1]),

these values can be computed in O(n) time for each i, i.e., O(n2) time in total.

x x

x1 a x2 x3 x1 a x2 x3

ACACw(k)w(0) w(1)w(ℓ)w(0) . . .. . .

Figure 2: Illustration of Lemma 24. Both lines represent different factorizations of the same word x2. Black
circles represent states of the automaton. Only shaded letters are not necessarily uniquely determined by
|x3| and |x1| for a fixed w.

Once we know ℓ, we need to count

{

ax2 ∈ Σn−k : a ∈ Σ, δ(w(k), a) = AC, and ax2 ∈ LA(w(ℓ), w(0))
}

.

Note that δ(w(ℓ), a) ∈ {w(0), w(ℓ+1)}, since δ(w(ℓ), a) = AC would imply that x ∈ L(A). Thus, the number
of words ax2 is equal to

∑

q∈{0,ℓ+1}

γ(k, ℓ, q)πn−k−1(q, 0), where γ(k, ℓ, q) = |{a ∈ Σ : δ(w(ℓ), a) = q ∧ δ(w(k), a) = AC}|. (2)

Each coefficient γ(k, ℓ, q) can be computed in constant time, since in our automaton A the transition function
δ has an especially simple form. By rearranging the summands of (2), we obtain a formula for |S(w)| in the
desired form.

5 Ranking Lyndon Words with O(n2) Arithmetic Operations

In this section by arithmetic operations we mean addition, subtraction and multiplication. The following
lemma shows how to efficiently count certain walks in the automaton A recognizing L(w). Its proof is based
on vector-matrix multiplication.

Lemma 25. Let A = (Q,Σ, δ, q0, F ) be a sparse deterministic automaton with n states. Given q ∈ Q
and m ∈ Z≥0, it takes O(mn) arithmetic operations on integers of magnitude σm to compute all values
|LA(q, q

′) ∩ Σk| and |LA(q
′, q) ∩ Σk| for 0 ≤ k ≤ m, q′ ∈ Q.
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Proof. We construct an n×n matrix M with rows and columns indexed by states from Q. Set Mq,q′ = |{a ∈
Σ : δ(q, a) = q′}|. It is easy to see that (Mk)q,q′ = |LA(q, q

′) ∩ Σk|. Consequently, the entries of Mk belong
to {0, . . . , σk}.

Note that the matrix M is sparse, i.e., it contains O(n) non-zero entries. Thus, for a (vertical) vector
v one can compute Mv and vTM using O(n) arithmetic operations. For q ∈ Q let eq be the unit vector
with one at the position corresponding to q. Observe that (Mk)q,q′ is equal to the q′-th entry of eTq M

k.
For a fixed state q ∈ Q, we can compute these (horizontal) vectors for 0 ≤ k ≤ m using m vector-matrix
multiplications. Symmetrically, |LA(q

′, q) ∩ Σk| = (Mk)q′,q is the q′-th entry of Mkeq, and we can also
compute these (vertical) vectors for 0 ≤ k ≤ m using m matrix-vector multiplications. In total, we perform
O(mn) arithmetic operations.

The algorithm below combines the results obtained so far to provide the implementation for Lemma 15(a).

Proof (of Lemma 15(a)). Our algorithm is based on the formula of Lemma 24, whose proof already provides
a procedure to compute the coefficients αi,j . On the other hand, Lemma 25 states that values πj(0, i)
and πj(i, 0) for 0 ≤ i, j ≤ n can be determined using O(n2) arithmetic operations given the automaton
recognizing L(w).

Algorithm Computing |S(w)| in O(n2) time in the unit-cost RAM model

Construct automaton A for w { Corollary 21 }

Compute πj(0, i) and πj(i, 0) for all 0 ≤ i, j ≤ n { Lemma 25 }

Compute αi,j coefficients { Lemma 24 }

|S(w)| := πn(0, n) +
∑n

i,j=0 αi,jπj(i, 0) { Lemma 24 }

Thus, our algorithm, given in pseudocode above, performs O(n2) arithmetic operations on integers of
magnitude σn to compute |S(w)| for a self-minimal word w.

In the unit-cost RAM model of arithmetic operations, we obtain O(n2) time. It is easy to check that
all arithmetic operations performed in the algorithm above are additions and subtractions of numbers not
exceeding σn and multiplications of such numbers by small numbers. Hence, in the word RAM model we
obtain O(n3) time. In the following section we give an algorithm working in O(n2 log σ) time in the word
RAM model.

6 Ranking Lyndon Words in O(n2 log σ) Time on Word RAM

The improvement of the time complexity requires a modification of the formula of Lemma 24, after which
we perform O(n2) arithmetic operations only on small integers and only O(n) operations on large integers.
We also use Newton’s iteration for power series inversion ([35]; see also [18, p. 140]):

Fact 26. Let T (n) be the time necessary to compute the inverse of a power series G(x) of degree n modulo
xn, that is, the time to compute a power series F (x) of degree n such that F (x)G(x) ≡ 1 (mod xn). Then
T (n) satisfies:

T (2k) ≤ T (2k−1) + cM(2k−1)

where c > 0 is a constant and M(n) is the time to multiply two polynomials of degree n with coefficients of
magnitude not exceeding the n-th coefficient of F (x).

For an efficient implementation of Fact 26, we use an integer multiplication algorithm designed for the word
RAM model; see Fürer [17].

Lemma 27. Two polynomials of degree at most n with coefficients of magnitude σn can be multiplied in
O(n2 log σ) time in the word RAM model.
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Proof. Let F (x) and G(x) be the considered polynomials. We encode them as integers u and v as follows.
Both u and v are divided into n chunks consisting of n log σ+log n bits each. The i-th least significant chunk
of u (respectively v) holds the i-th coefficient of F (x) (respectively G(x)) prepended by zeroes. Then the
corresponding chunks of uv hold the coefficients of F (x)G(x). Both numbers u and v have O(n2 log σ) bits.
Therefore, the product uv can be computed in O(n2 log σ) time [17].

With the auxiliary Fact 16, we obtain the following tool.

Lemma 28. Let F (x) and G(x) be power series such that F (x)G(x) ≡ 1. Assume that the k-th coefficient
of F (x) is of magnitude σk. If the coefficients of G(x) can be computed in O(1) time, then F (x) mod xn can
be computed in O(n2 log σ) time in the word RAM model.

Now we show how to use Lemma 28 to count specific paths in the automaton A for the word w. Denote

Ti = πi(0, 0) and ai = |{c ∈ Σ : δ(w(i−1), c) = w(0)}| = |{c ∈ Σ : c > w[i]}|.

Lemma 29. All values T0, . . . , Tn can be computed in O(n2 log σ) time in the word RAM model.

Proof. Assume that for k < 0, Tk = 0. Recall that a non-empty path from w(0) to itself in A passes through
a number of consecutive states w(1), w(2), . . . , w(i) before it first comes back to w(0). Hence, Tk satisfy the
following recurrence:

Tk =











0 for k < 0,

1 for k = 0,

a1Tk−1 + . . .+ anTk−n otherwise.

Let us set a0 = −1. Let F and G be the generating functions of Tk and ak:

F (x) =

∞
∑

k=0

Tkx
k, G(x) =

n
∑

k=0

akx
k.

Note that:

F (x)G(x) =

∞
∑

k=0

xk
k

∑

m=0

amTk−m = −1 +

∞
∑

k=1

xk
n
∑

m=0

amTk−m

= −1 +
∞
∑

k=1

xk(−Tk +
n
∑

m=1

amTk−m) = −1.

This concludes that we can use Lemma 28 to compute n first coefficients of F (x) in O(n2 log σ) time.

We extend the results of the previous lemma to compute the first term of the formula for |S(w)|.

Lemma 30. The value πn(0, n) can be computed in O(n2 log σ) time in the word RAM model.

Proof. Note that

πn(0, n) =
n−1
∑

i=0

Ticn−i (3)

where cj is the number of paths of length j that start in w(0), end in AC and do not pass through w(0) again.
Denote a′i = |{a ∈ Σ : δ(w(i−1), a) = AC}|. Note that a′i = σ − 1− ai for i < n and a′n = σ − an. Moreover,
for every j ∈ {1, . . . , n},

cj = a′1σ
j−1 + a′2σ

j−2 + . . .+ a′j

as in the considered path we traverse some number of edges k ∈ {0, . . . , j−1} passing through w(0), . . . , w(k),
then we use an edge to the accepting state and stay in that state for the remaining j − 1− k steps.

12



Due to the recurrence cj+1 = σcj + a′j+1, all values cj can be computed in O(n2) time. By Lemma 29,

all values Tj can be computed in O(n2 log σ) time. Obviously cj , Tj ≤ σj . This concludes that we can use
the algorithm of Lemma 27 to multiply the polynomials

F (x) =
n−1
∑

i=0

Tix
i and G(x) =

n−1
∑

i=0

ci+1x
i.

The coefficient of F (x)G(x) at xn−1 is exactly the desired sum (3).

Finally, we are ready to prove Lemma 15(b). To this end, we show that the remaining terms of the
formula for |S(w)| can be computed efficiently in the word RAM model.

Proof (of Lemma 15(b)). We provide an efficient implementation of the formula from Lemma 24. For the
πn(0, n) part we use Lemma 30. Now we show how to transform the coefficients αi,j to obtain an equivalent
set of small coefficients βi,j satisfying βi,j 6= 0 if and only if i = 0 or j = 0. We use the following claim.

Claim. For 0 ≤ i < n and j ≥ 1, we have

πj(i, 0) = πj−1(i+ 1, 0) + ai+1πj−1(0, 0). (4)

Moreover, πj(n, 0) = 0 for j ≥ 0.

The formula (4) corresponds to traversing the first edge of the path from i to 0. We arrive at the following
algorithm which reduces computation of the required sum of a quadratic number of large numbers to the
computation of a linear combination of only linearly many big numbers Tj.

Algorithm Compute |S(w)|

foreach i, j ∈ {0, . . . , n} do

βi,j := αi,j

end

for j := n downto 1 do

for i := 1 to n− 1 do

βi+1,j−1 += βi,j

β0,j−1 += ai+1βi,j

βi,j := 0
end

end

return πn(0, n) +
∑n

j=0 β0,j · Tj

Denote A =
∑n

i,j=0 βi,jπj(i, 0). By (4) we have:

A = A− βi,jπj(i, 0) + βi,jπj−1(i+ 1, 0) + βi,jai+1πj−1(0, 0).

Consequently, resetting βi,j to zero and increasing the coefficients βi+1,j−1 and β0,j−1 in the inner iteration
does not alter the total sum A. Hence, after every iteration of the inner for-loop the coefficients satisfy the
following invariant:

A =

n
∑

i,j=0

βi,jπj(i, 0) =

n
∑

i,j=0

αi,jπj(i, 0).
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Observe that once βi,j is reset to zero, it will not be changed anymore. Hence, at the end of the
algorithm we have βi,j = 0 if j > 0 and 1 ≤ i ≤ n− 1. Note that βn,j · πj(n, 0) = βn,j · 0 = 0 for each j and
βi,0 · π0(i, 0) = βi,0 · 0 = 0 for i 6= 0. This concludes that at the end of the algorithm we have

n
∑

i,j=0

αi,jπj(i, 0) =

n
∑

i,j=0

βi,jπj(i, 0) =

n
∑

j=0

β0,j · Tj.

Note that each αi,j coefficient accounts in
∑

j β0,j as at most (ai+1 + ai+2 + . . . + an)αi,j . Hence, the
sum of the resulting non-zero coefficients βi,j does not exceed σn times the sum of the initial values αi,j .
At the end, we are to compute a linear combination of Tj with small coefficients. Consequently, Lemma 29
yields an O(n2 log σ)-time algorithm on the word RAM.

7 Decoding Minimal de Bruijn Sequence

In this section we focus on decoding lexicographically minimal de Bruijn sequence dBn over Σ: we aim at
an efficient algorithm that for every w ∈ Σn computes occ-pos(w, dBn), that is, the position of the sole
occurrence of w in dBn. Recall that by L(n) we denote the set of Lyndon words over Σ whose length is a
divisor of n. A theorem of Fredricksen and Maiorana [13, 16, 20] states that dBn is a concatenation of the
Lyndon words from L(n) in the lexicographic order. The proof of the theorem is constructive, i.e., for any
word w of length n it shows the concatenation of a constant number of consecutive Lyndon words from the
cyclic version of the sequence L(n) that contain w. This, together with the following lemma which relates
dBn to S, lets us compute the exact position where w occurs in dBn.

Lemma 31. Let w ∈ Σn and L(w) = {λ ∈ L(n) : λn/|λ| ≤ w}. Then the concatenation, in lexicographic
order, of words λ ∈ L(w) forms a prefix of dBn and its length,

∑

λ∈L(w) |λ|, is equal to |S(w)|.

Proof. First note that, by Fact 7(b), the lexicographic order of elements λ ∈ L(n) coincides with the lexi-
cographic order of λn/|λ|. This shows that the concatenation of elements of L(w) indeed forms a prefix of
dBn.

It remains to show that
∑

λ∈L(w) |λ| = |S(w)|. For this we shall build a mapping φ : Σn → L(n) such

that |φ−1(λ)| = |λ| and 〈x〉 ≤ w for x ∈ Σn if and only if φ(x) ∈ L(w).
Let x ∈ Σn. There is a unique primitive word y and a positive integer k such that x = yk. We set

φ(x) = 〈y〉. Note that φ(x) indeed belongs to L(n). Moreover, to each Lyndon word λ of length d | n we

have assigned vn/d for each cyclic rotation v of λ. Thus |φ−1(λ)| = |λ|. Also, 〈x〉 = 〈y〉n/d, so 〈x〉 ≤ w if
and only if φ(x)n/d ≤ w, i.e., φ(x) ∈ L(w).

Theorem 32. Given a word w ∈ Σn, the position occ-pos(w, dBn) can be found in O(n2 log σ) time in the
word RAM model or O(n2) time in the unit-cost RAM model.

Proof. Let λ1 < λ2 < · · · < λp be all Lyndon words in L(n) (we have λ1λ2 · · ·λp = dBn). The proof of the
theorem of Fredricksen and Maiorana [16, 20] describes the occurrence of w in dBn, which can be stated
succinctly as follows.

Claim (Fredricksen and Maiorana [16], Knuth [20]). Assume that w = (αβ)d, where d ∈ Z+ and βα = λk ∈
L(n). Denote a = minΣ and z = maxΣ.

(a) If w = zian−i for 1 ≤ i ≤ n, then w occurs in dBn at position σn − i+ 1.

(b) If α 6= z|α|, then w is a factor of λkλk+1.

(c) If α = z|α| and d > 1, then w is a factor of λk−1λkλk+1.

(d) If α = z|α| and d = 1, then w is a factor of λk′−1λk′λk′+1, where λk′ is the largest λ ∈ L(n) such that
λ < β.

In case (a), it is easy to locate w in dBn. Further on, we consider only the cases (b), (c), and (d).
Note that λk can be retrieved as the primitive root of 〈w〉. For λk′ we use the following characterization.
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Claim. The Lyndon word λk′ is the lexicographically larger among the following two strings:

(1) the longest proper prefix of β contained in L(n);

(2) the primitive root of the largest self-minimal word w′ ∈ Σn such that w′ < β.

Proof. The definition of λk′ yields λk′ < β ≤ λk′+1, whereas Fact 7(a) implies λk′ ≤ (λk′ )n/|λk′ | < λk′+1.
This gives rise to two cases: If λk′ < β < (λk′ )n/|λk′ |, then λk′ ∈ L(n) is a proper prefix of β. In this case,
λk′ must also be the lexicographically largest, i.e., longest, prefix of β that belongs to L(n). This results
in the string from case (1). Otherwise, (λk′ )n/|λk′ | ≤ β ≤ λk′+1. By Fact 7(a), (λk′ )n/|λk′ | is the largest
self-minimal length-n word that is smaller than β. That is, (λk′ )n/|λk′ | corresponds to w′ from case (2) and
λk′ is the primitive root of w′.

The string λk′ can be computed efficiently using the above claim. In case (1), for each proper prefix of β,
we can use Fact 4 to check in O(n) time if it is a Lyndon word; we then select the longest such prefix. In
case (2), w′ can be computed in O(n2) time using Lemma 6; as noted in Section 2, the primitive root of w′

can be computed in O(n) time. Finally, selecting the larger of the two candidates takes O(n) time. Overall,
λk′ is computed in O(n2) time.

Once we know λk′ and λk, depending on the case, we need to find the successor in L(n) and possibly the
predecessor in L(n) of one of them. For any λ ∈ L(n), the successor in L(n) can be generated by iterating
a single step of the FKM algorithm at most (n − 1)/2 times [15], i.e., in O(n2) time. For the predecessor
in L(n), a version of the FKM algorithm that visits the Lyndon words in reverse lexicographic order can be
used [20]. It also takes O(n2) time to find the predecessor. In all cases, we obtain in O(n2) time the Lyndon
words whose concatenation contains w.

Then, we use exact pattern matching to locate w in the concatenation. This gives us the relative position
of w in dBn with respect to the position of the canonical occurrence of λk or λk′ in dBn. Lemma 31 proves
that such an occurrence of λ ∈ L(n) ends at position |S(λ n

|λ| )|, which can be computed in O(n2 log σ) time
in the word RAM model or O(n2) time in the unit-cost RAM model by Lemma 15. Applied to λk or λk′ ,
this concludes the proof.

Example 33. Below we present the four cases of the claim in the proof of Theorem 32 on the sequence dB6

over a binary alphabet (i.e., the lexicographically minimal binary de Bruijn sequence of rank 6), which has
the following decomposition into Lyndon words λ1, λ2, . . . , λ14:

0 000001 000011 000101 000111 001 001011 001101 001111 01 010111 011 011111 1

(a) 111000(b) 001100 (c) 110110(d) 110010

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14

Case (a): occ-pos(111000, dB6) = 62, and 111000 appears as a factor of λ13λ14λ1λ2.

Case (b): occ-pos(001100, dB6) = 10, and 001100 appears as a factor of λ3λ4.

Case (c): occ-pos(110110, dB6) = 53, and 110110 appears as a factor of λ11λ12λ13.

Case (d): occ-pos(110010, dB6) = 24, and 110010 appears as a factor of λ5λ6λ7.

To compute the k-th symbol of dBn, we have to locate the Lyndon word from L(n) containing the k-th
position of dBn. We apply binary search as in Theorem 18.

Theorem 34. Given integers n and k, the k-th symbol of dBn can be computed in O(n3 log2 σ) time in the
word RAM model or O(n3 log σ) time in the unit-cost RAM model.
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Proof. We binary search for the smallest word v ∈ Σn such that |S(v)| ≥ k, using Lemma 15 to test the
condition. In each step of the binary search, we actually consider a self-minimal word, due to Lemma 6.
Therefore the resulting word v is of the form λd for some λ ∈ L(n). By Lemma 31, a prefix of dBn of
length |S(v)| contains all Lyndon words from L(v). Moreover, by Fact 7(a), this prefix ends with λ. This
means that the k-th position of dBn lies within the canonical occurrence of λ. More precisely, it suffices
to return the (|S(v)| − k + 1)-th last symbol of λ (which is also the (|S(v)| − k + 1)-th last symbol of v).
As in Theorem 18, the binary search introduces a multiplicative O(n log σ) factor to the complexity of the
algorithm of Lemma 15.

Recently, Au [1] introduced a variant of a de Bruijn sequence in which each (cyclic) factor of length n is
primitive and each primitive word from Σn occurs as a (cyclic) factor. He also proved that the lexicograph-
ically minimal sequence satisfying this condition, denoted dB′

n, is the concatenation in lexicographic order
of Lyndon words of length n over Σ.

Example 35. For n = 6 and binary alphabet we have the following decomposition of dB′
6:

000001 000011 000101 000111 001011 001101 001111 010111 011111.

The ranking algorithm for Lyndon words lets us derive a counterpart of Theorem 32 for dB′
n with a

slightly simpler proof (admitting a similar structure, though).

Proposition 36. Given a primitive word w ∈ Σn, occ-pos(w, dB′
n) can be found in O(n2 log σ) time in the

word RAM model or O(n2) time in the unit-cost RAM model.

Proof. Let λ1 < λ2 < · · · < λp be all Lyndon words in Ln (we have λ1λ2 · · ·λp = dB′
n). The proof of

a theorem of Au [1, Theorem 9] describes the occurrence of w in dB′
n, which can be stated succinctly as

follows.

Claim (Au [1]). Assume that w = αβ where α 6= ε and βα = λk is a Lyndon word of length n. Denote
a = minΣ and z = maxΣ.

(a) If w = zian−i for i ≥ 1, then w occurs in dB′
n at position |dB′

n| − i + 1.

(b) If α 6= z|α|, then w occurs in λkλk+1 at position 1 + |β|.
(c) If α = z|α|, then w occurs in λk′λk′+1 at position 1+ |β|, where λk′ is the largest Lyndon word λ ∈ Ln

such that λ < β.

In case (a), it is easy to locate w in dB′
n with |dB′

n| =
∑

d|n µ(
n
d )σ

d. Otherwise, we observe that λk = 〈w〉
and this word can be computed using Fact 4 along with the decomposition w = αβ. In case (b), we observe
that the position of λk in dB′

n is 1+n(k−1), so w occurs in dB′
n at position 1+n(k−1)+ |β| = 1+nk−|α|.

Thus, it suffices to determine k = LynRank(λk) using Theorem 17. The situation in case (c) is similar:
w occurs in dB′

n at position 1 + nk′ − |α|. Since λk′ is the largest Lyndon word smaller than β, we have
k′ = LynRank(βa|α|), i.e., the computation is also reduced to Theorem 17.

Example 37. Below we present the three cases of the claim in the proof of Proposition 36 on a sequence dB′
6

over a binary alphabet, which has the following decomposition into Lyndon words λ1, λ2, . . . , λ9:

000001 000011 000101 000111 001011 001101 001111 010111 011111

(a) 111000(b) 001100 (c) 110010

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Case (a): occ-pos(111000, dB′
6) = 52, and 111000 appears as a factor of λ9λ1.

Case (b): occ-pos(001100, dB′
6) = 9, and 001100 appears as a factor of λ2λ3.

Case (c): occ-pos(110010, dB′
6) = 23, and 110010 appears as a factor of λ4λ5.
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The k-th symbol of dB′
n is much easier to find than the k-th symbol of dBn, as shown in the following

result.

Proposition 38. Given integers n and k, the k-th symbol of dB′
n can be computed in O(n3 log2 σ) time in

the word RAM model or O(n3 log σ) time in the unit-cost RAM model.

Proof. The k-th symbol of the sequence dB′
n is the i-th symbol of the j-th Lyndon word of length n, where

i = ((k − 1) mod n) + 1 and j =
⌊

k−1
n

⌋

+ 1.

This word can be determined using Theorem 18.

8 Conclusions

The main result of this paper is an O(n2 log σ)-time algorithm in the word RAM model and an O(n2)-
time algorithm in the unit-cost RAM model for ranking Lyndon words. We have also presented efficient
algorithms for computing a Lyndon word of a given length and rank in the lexicographic order, decoding
lexicographically minimal de Bruijn sequence of a given rank and computing a particular symbol of this
sequence. Our results can also be applied to ranking necklaces due to a known connection between Lyndon
words and necklaces; see [23].
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