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Efficient Bayesian experimentation using an expected information gain lower

bound

Panagiotis Tsilifis∗, Roger G. Ghanem†, and Paris Hajali‡

Abstract. Experimental design is crucial for inference where limitations in the data collection procedure are
present due to cost or other restrictions. Optimal experimental designs determine parameters that
in some appropriate sense make the data the most informative possible. In a Bayesian setting this
is translated to updating to the best possible posterior. Information theoretic arguments have led
to the formation of the expected information gain as a design criterion. This can be evaluated
mainly by Monte Carlo sampling and maximized by using stochastic approximation methods, both
known for being computationally expensive tasks. We propose a framework where a lower bound of
the expected information gain is used as an alternative design criterion. In addition to alleviating
the computational burden, this also addresses issues concerning estimation bias. The problem of
permeability inference in a large contaminated area is used to demonstrate the validity of our ap-
proach where we employ the massively parallel version of the multiphase multicomponent simulator
TOUGH2 to simulate contaminant transport and a Polynomial Chaos approximation of the forward
model that further accelerates the objective function evaluations. The proposed methodology is
demonstrated to a setting where field measurements are available.

Key words. Bayesian experimental design, Expected information gain, Stochastic optimization, Polynomial
Chaos, Two-phase transport
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1. Introduction. Remediation of a polluted subsurface presents an increasingly common
need in most urban areas undergoing accelerated expansions. Risks associated with these
pollutants range from health consequences to financial costs of both monitoring, remediation
and insurance. The fact that the subsurface can never be completely characterized is a key
contributor to these risks, and credible procedures for improving this characterization have
far reaching consequences across the spectrum of constituency. What is ultimately needed
is a sufficient assessment of the subsurface which depends on the physics of subsurface flow
and a knowledge of the initial conditions, and an assessment of the flow functionals that are
relevant to risk assessment. As a first step, in the present paper, we address the issue of
optimal subsurface characterization under conditions of limited resources.

A vast amount of research works have been dedicated to this challenge and have offered
application-specific answers throughout the years with a Bayesian decision analysis framework
often being present. Among the earliest ones, the works by [7, 17], discussed the worth of
correlated hydraulic conductivity measurements that was evaluated depending on the revenue
due to the resulting uncertainty reduction and the cost of obtaining them. In the excellent work
by [18], a sequential sampling methodology was developed and the issues of where to obtain
the next sample and when to cease sampling were addressed using an analogous worth-of-
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information framework. More recently [11], a Kullback-Liebler formalism that maximizes the
worth of information of an experiment was developed, and the worth of additional observations
characterized. While that work ignored the physics of flow in porous media by developing a
kriging model for the measured concentrations in the subsurface, it does lay the foundations
for the present work. A common characteristic in all the above works and many that followed,
is that the data-worth analyses, Bayesian in nature, are divided in three main phases: the
prior, the preposterior and the posterior analyses with the first and the last being the well
known steps of any Bayesian method and the second being the phase where the decisions
about the design parameters are to be made. This typically involves the suggestion of a
utility function, expressed often in monetary terms that quantifies the worth of collecting
some specific data and then evaluating the average worth by taking the expectation of this
function. The above mentioned works and numerous others [24, 26, 3] verified a general
conclusion: that the location or any other design parameters characterizing the best samples
may depend on the model uncertainty but also on the decision to be made with the latter
factor usually adding an economic flavor in the data worth approach. Although in most
real-world problems concerning the geosciences community, this might be an efficient way to
address such issues, it is of critical importance, from a mathematical perspective, to be able
to distinguish the role of model uncertainty in optimal designs and not much attention has
been received on this direction.

It is the purpose of this paper to present an approach to the optimal design problems
arising in contaminant transport applications that meets each problem’s objectives from an
information theoretic perspective, that is to explore the use of other design criteria as can-
didates in the preposterior phase of any data-worth framework, that provide maximum in-
formation about model uncertainty without being concerned about economic costs, but still
providing low risk results for decision making. An extensive statistical literature is available
on experimental design methodologies for linear regression models summarized in [2, 6] with
criteria stated as functionals of the Fisher information matrix. Bayesian counterparts of these
criteria as well as additional design criteria for nonlinear models have also been suggested (see
[4] for a review). Typically these are taken as the expectation of some appropriately chosen
utility functions or approximations of them.

This is the direction followed in this work. We choose a design criterion for data collection
procedure according to an objective function that maximizes information gain about the
uncertain parameters. As a natural consequence of dealing with realistic, complex and often
high-dimensional non-linear models, computationally intensive techniques such as the use of
model surrogates and Monte Carlo methods are involved in order to evaluate and optimize
the design criterion. The Bayesian parameter inference results that are obtained from such
optimal designs can then provide a rational basis for decision making. All the above mentioned
steps can be summarized as shown in the flowchart in Fig. 2 . The methodology developed in
this paper is demonstrated on an actual site shown in Fig. 1. Soil-type data was collected at
this site at various depth at boreholes located along the solid lines that criss-cross the site, as
shown in the soil boring map in Fig. 1. Concentration values were collected at the black dots
throughout the site. With reference to this specific case study, the sequence of action that we
investigate consists of the following steps:

1. Initial spills are assumed to have occurred at the location of the storage tanks shown
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Figure 1: Aerial photo showing the location of storage tanks (left) and soil boring map (right).

in Figure 1.
2. Mean and variances of permeability values are associated to soil types throughout the

site, resulting in lognormal initial probabilistic models of permeabilities.
3. Physics of flow through porous media yield a corresponding distribution for the con-

centration of pollutants throughout the site.
4. For a given monitoring design consisting of a set of specific five spatial locations where

concentrations are to be observed, a distribution of these observables can be obtained
from the previous step.

5. From this distribution of observables, the likelihood for each possible value of ob-
servable is calculated, and the Bayesian posterior distribution for that observable is
evaluated. Note that at this step, no concentration data is assumed to have been
collected yet.

6. The Kullback-Leibler (KL) distance between the prior and the posterior distributions
is evaluated as a measure of information gain.

7. The KL distance is integrated over all possible values attained by the observables at
the fixed design locations.

8. The optimal monitoring locations are determined by maximizing this averaged KL
distance.

9. Measurements of pollutants are taken from the actual field data at the optimal loca-
tions.

10. The Bayesian posterior distributions for permeabilities are calculated based on these
observations. These posteriors provide an updated description of the permeabilities
throughout the site and can be used to improve the prediction of concentration maps
over time.

While a stopping criterion for this Bayesian update has been introduced elsewhere [11], it
is outside the scope of the present investigation. The paper addresses computational and
algorithmic issues required for the implementation of the above steps and provides insight
into the computed optimal monitoring strategies. and is organized as follows. In Section 2
we introduce the design criterion used for experimental design that provides optimal Bayesian
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Figure 2: A flowchart outlining the steps in prior, preposterior and posterior stages of the
optimal design methodology.

inference results and a lower bound that is used as an alternative in the optimization procedure.
The stochastic approximation framework required for maximizing the objective function, is
described in Section 3. Section 4 provides a toy example in order to justify the use of the lower
bound estimate instead of the actual expected information gain as the design criterion. Then
our methodology is applied on a real site in Section 5. Precisely, the model is described in
subsections 5.1 and 5.2, then a surrogate is constructed in subsection 5.3 in order to accelerate
simulations of computationally intensive procedures. The experimental design analysis is
performed in subsection 5.4 and the results are validated in subsection 5.5 by estimating
the Bayesian update of the uncertain parameters based on data that is generated both for
a hypothetical scenario and from field measurements. Our conclusions are summarized in
Section 6.

2. Bayesian experimental design.

2.1. Design criterion. Our main interest in the present work is to define and evaluate
a particular experiment which, constrained by fixed resources, will reduce the prediction
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uncertainty in some well-defined optimal sense. Let d denote what we refer to as the set of
design parameters. For each choice of these parameters, the experiment design is fixed. Thus d
could, for instance, consist of smoothing kernels that parameterize measurement instruments.
Alternatively, as we do in the present work, we construe d ∈ R

2m as a vector that defines
the spatial coordinates in the horizontal plane of m points at which observations will be
obtained. Clearly, d could also consist of nonlinear functionals. The numerical values of
the observations will be denoted by y ∈ R

m. Prior to conducting the experiments, y is
a random vector. Following the experiment, the numerical values attained by this vector
will be used to condition the inference. We make the restrictive assumption that optimal
reduction of uncertainty in model-based prediction is attained through an optimal reduction
of uncertainty in model parameters which we denote by θ. Relaxing this assumption, while
numerically tedious, does not present conceptual difficulties.

2.1.1. Expected information gain. We are thus interested in inferring the unknown pa-
rameters θ that govern the behavior of a physical process. We model these parameters as a
vector of random variables. In a Bayesian setting, this inference is carried out by updating
the prior distribution p(θ) with a posterior one, namely p(θ|y,d), given that some specific
data y was observed for particular design parameters d. The posterior distribution is updated
according to the rule

(2.1) p(θ|y,d) = p(y|θ,d)p(θ)
p(y|d)

where the multi-dimensional integral, p(y) =
∫

p(y|θ,d)p(θ)dθ, is referred to as the evidence.
Using a Shannon information approach we can define the information gain after updating the
distribution of θ to be the Kullback-Leibler (KL) divergence [20] of the prior and the posterior
distributions, that is

(2.2) DKL [p(·|y,d)||p(·)] =
∫

Θ
p(θ|y,d) log

[

p(θ|y,d)
p(θ)

]

dθ.

We are interested in quantifying the information gain before the data is actually collected. In
the same spirit we define the expected information gain, first proposed by [22] as
(2.3)

U(d) =

∫

Y
DKL [p(·|y,d)||p(·)] p(y|d)dy =

∫

Y

∫

Θ
p(θ|y,d) log

[

p(θ|y,d)
p(θ)

]

dθ p(y|d)dy

This can be interpreted as follows: The contribution of any possible output that is used
as a set of data y to update to the posterior distribution is given as the KL divergence of
the two distributions. Before the data is collected, U(d) provides us with a measure of the
average information to be gained. This is a function only of the design parameters d. It is
therefore natural to assume that the choice of d∗ that offers on average the most informative
observations and thus, is the optimal experimental design, is the one that maximizes U(d)
and so it satisfies

(2.4) d∗ = argmax
d∈D

U(d).
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Evaluation of the above objective function and therefore its optimization is not a triv-
ial task. At first, one can see that the posterior, being unknown beforehand, needs to be
evaluated or approximated. In [23], the posterior was replaced by its Laplace approximation
and U(d) was estimated with a sparse quadrature rule. In [31] an alternative form of the
objective function was derived by using Bayes’ rule to express the posterior in terms of the
evidence, the likelihood and the prior distributions and estimates were proposed via Monte
Carlo methods. In both approaches, the maxima were identified by using an exhaustive grid
search over the whole design space and limitations due to computational expense were re-
ported. Evaluation of the design criterion on all points of the design space can easily become
infeasible in applications where either higher dimensional design parameters are involved or
an expensive forward solver is incorporated, hence the need for iterative search strategies is
necessary to detect the optimal value. In [15, 16] it was demonstrated that stochastic ap-
proximation methods [35] are well adapted to the present situation, when the Monte Carlo
estimate of the objective is used and this is the approach we follow in this paper. However,
instead of simply adapting the methodology developed in these works, we further derive a
lower bound of the expected information gain and its corresponding Monte Carlo estimate
to be maximized. The reason for doing so is to overcome computational obstacles that arise
from our application: The direct Monte Carlo estimator entails a discretization of the double
integral appearing in equation (2.3) and has been shown to have a bias that is inversely pro-
portional to the number of samples in the inner sum of the estimate, requiring a very large
number of inner loop samples for the bias to be negligible [31] (see also Appendix B in [15]
for a numerical study). Furthermore, the variance of that estimator is controlled only by the
number of the outer loop samples. Expressions for both the bias and variance are given in A.
For applications such as the one included in this paper, using tens or hundreds of thousands
samples can easily become prohibitive. On the contrary, the lower bound derived below can
be easily seen to be unbiased and its variance is controlled by the product of the number of
samples used in both loops, something that allows us to achieve the same level of accuracy in
our estimate with a much lower number of samples.

2.1.2. Derivation of a lower bound. By substituting p(θ|y,d) from eq. ??, we write

U(d) =

∫

Y

∫

Θ
log

[

p(θ|y,d)
p(θ)

]

p(θ,y|d)dθdy

=

∫

Y

∫

Θ
log [p(y|θ,d)] p(y|θ|d)p(θ)dθdy −

∫

Y
log [p(y)] p(y|d)dy

and by denoting with H[q(ω)] = −
∫

log [q(ω)] q(ω)dω the entropy of a distribution q(ω) we
take

U(d) = −
∫

Θ
H[p(y|θ,d)]p(θ)dθ +H[p(y|d)].

In what follows we take the likelihood as a Gaussian distribution with density

p(y|θ,d) = (2π)−m/2|Σ|−1/2 exp

{

−1

2
[y − G(θ,d)]T Σ−1 [y − G(θ,d)]

}

.
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where the mean is the model output G(θ,d) and the covariance matrix is Σ. This is a
common choice for models where the observables y are defined as the model prediction plus
some measurement errors

y = G(θ,d) + ǫ

with the latter being normally distributed with density N (0,Σ). In general, the measurement
error can be related to the model output through a proportionality factor or even a more
complex relation which is typically incorporated in the covariance matrix Σ. This implies
that Σ can depend implicitly on both the uncertain and the design parameters. For our
purposes we make the rather simple assumption that no such dependence is involved and
Σ has fixed entries. Further details on the exact values of the covariance matrix including
independence among the measurement errors is provided later in our applications.

For the above choice of the likelihood function the entropy can be calculated and is simply

H[p(y|θ,d)] = 1

2
{m+ log [(2π)m|Σ|]}

and we finally get

(2.5) U(d) = −1

2
{m+ log [(2π)m|Σ|]}+H[p(y|d)].

At last, using Jensen’s inequality, we derive a lower bound for U(d). Namely we have

H[p(y|d)] =
∫

Y
− log [p(y|d)] p(y|d)dy ≥ − log

[
∫

Y
p2(y|d)dy

]

and we define the lower bound of U(d) as

(2.6) UL(d) = −1

2
{m+ log [(2π)m|Σ|]} − log

[
∫

Y
p2(y|d)dy

]

.

Note that since the common first term of U(d) and UL(d), as they appear in equations (2.5)
and (2.6), are independent of d, one eventually needs only to maximize the second term,
namely the entropy of the marginal distribution of the data or its lower bound. This idea
is not new and has been previously used in linear regression models [32] and in geophysical
applications [37].

2.1.3. Estimation of the lower bound. As mentioned above, the optimization problem
is equivalent to minimizing

U∗
L(d) =

∫

Y
p2(y|d)dy.

After expanding the evidence function and writing

U∗
L(d) =

∫

Y

∫

Θ

∫

Θ
p(y|θ1,d)p(y|θ2,d)p(θ1)p(θ2)dθ1dθ2dy

we can see that a Monte Carlo estimate of the above is

(2.7) Û∗
L(d) =

1

NM

N,M
∑

i,j=1

p(yi|θj ,d)
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where {θi}, {θj}, i = 1, ..., N , j = 1, ...,M are i.i.d. samples from p(θ) and {yi} are i.i.d.
samples from p(y|θi,d).

3. Stochastic optimization.

3.1. Simultaneous perturbation stochastic approximation. Maximization of the objec-
tive function derived in the above section can in general be a difficult task. In cases where
the design parameters are of high dimension or an expensive forward solver is involved in the
evaluation of U∗

L(d), a direct grid search can easily become prohibitive. Since only a noisy
estimate of the actual objective function to be maximized is available, we turn our attention
to stochastic approximation methods. These are algorithms that approximate roots of noisy
functions and can be used for optimization problems to find the roots of the gradient of the
objective function to be optimized. This is done with an iterative procedure of the general
form

(3.1) dk+1 = dk − akg(dk), k ≥ 0

where {ak}k≥0 is a sequence of positive pre-specified deterministic constants, known also as the
learning rate of the algorithm and g(d) = ∇dU(d) is the gradient of the objective function
with respect to d. Algorithms that use an explicit expression for the gradient are called
Robbins-Monro algorithms [30] and those where a finite-difference scheme is employed, are
called Kiefer-Wolfowitz algorithms [19]. For our purposes we use an algorithm from theKiefer-
Wolfowitz family, namely the Simultaneous Perturbation Stochastic Approximation method
(SPSA), proposed by Spall [35, 36]. What makes this methods attractive versus others is the
fact that only two forward evaluations are required for the gradient estimation. The updating
step of the method is given by

(3.2) dk+1 = dk − akĝk(dk),

where

(3.3) ĝk(dk) =
Û∗
L(dk + ck∆k)− Û∗

L(dk − ck∆k)

2ck







∆−1
k,1
...

∆−1
k,nd






,

(3.4) ak =
a

(A+ k + 1)α
, ck =

c

(k + 1)γ

and ak, ck, α, γ are positive parameters whose values affect the convergence rate and the
gradient estimate. General instructions on how to choose the appropriate values for each
problem are given in [36]. The vectors ∆k are random vectors with coefficients ∆k,i drawn
independently from any zero-mean probability distribution such that the expectation of |∆−1

k,i |
exists [35]. A common choice, which we used in our analysis, corresponds to ∆k,i = 2(Z−1/2)
where Z ∼ Bernoulli(p) with success probability p = 1

2 .

4. Example: Nonlinear model.
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4.1. The model and experimental scenarios. The main goal in this example is to explore
the accuracy of the lower bound estimate as a substitute for the direct maximization of the
expected information gain [15] and provide a numerical comparison of the two approaches.
This is achieved by evaluating the two objective functions for a simple algebraic model which
is inexpensive to evaluate and is nonlinear with respect to both the uncertain and design
parameters. Consider thus the model where the observable quantity y is dependent on κ and
d as

y(κ, d) = G(κ, d) + ǫ(4.1)

= κ3d2 + κe−|0.2−d| + ǫ(4.2)

where G(κ, d) is the model output and the noise is taken to be ǫ ∼ N (0, 10−4). For prior we
choose initially κ ∼ U(0, 1) and later on we discuss a few more cases. Suppose we have control
over d ∈ D where D = [0, 1] is the design space and we are interested in inferring κ. We
explore two cases, first the case where inference is carried out using a single observation of y
and second the case where two observations of y can be obtained, corresponding to different
values of d. One can think of the design parameter d as the location where y is observed.
Before observing y, we would like to know the value of d that would make our observations
the most informative ones. Both cases of this example have been studied in [15] using the
direct Monte Carlo estimate of U(d). The first case was also studied in [23] using the Laplace
approximation of the posterior distribution of κ and then performing the integration with
sparse quadratures.

4.2. Results. We are using the expected information gain lower bound estimate as given
in (2.7) as our criterion to determine the optimal design d for inferring κ. For comparison,
we also reproduce the results of [15] using the expected information gain estimate which from
now on we call double loop Monte Carlo (dlMC) estimate. The exact expression of the dlMC
estimate is given in A. Our computations are performed using an ensemble of samples with
N =M = 104 for all different priors that we consider below, while keeping the error variance
fixed. We demonstrate that the two estimate share the same maxima and their graphs have
good quantitative agreement with the lower bound providing slightly less noisy values.

4.2.1. Single observation. Fig. 3 shows the values of estimates of U∗
L(d) for the design

of one experiment after using a 101-point uniform partition on the design space D = [0, 1]
for N = M = 103 and for N = M = 104 as well as the estimates of dlMC. All cases show
the existence of two local maxima at d = 0.2 and d = 1. As expected, our estimate always
takes values slightly smaller than dlMC, as the former is a lower bound of the latter. Due to
the fact that the first term in our estimate (the Gaussian entropy) is a constant, while the
first term of the dlMC estimate is a Monte-Carlo approximation of the very same constant,
we observe that the lower bound is a smoother curve for the same values of N , M . Following
the slope analysis of [15] we also present the results for two different choices of prior, namely

when κ ∼ U(0, κe) and when κ ∼ U(κe, 1) where κe =
[

(1− e−0.8)/2.88
]1/2

which is the point
where the slope of G(κ, 1) becomes greater than the slope of G(κ, 0.2). For the former case
we obtain a global maximum at d = 0.2 whereas for the latter, the maximum is at d = 1. At
some particular points we can observe that although our estimate is only a lower bound of the
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Figure 3: Expected information gain lower bounds and dlMC with N = 104, M = 104

estimated over D = [0, 1] for three different priors.

dlMC estimate, the value of the dlMC might fall below the value of U∗
L(d). This, in addition

to the fact that we compare noisy estimates of a deterministic quantity, can also emerge as
the result of the bias of dlMC which is not negligible for our choice of M (number of inner
loop samples). For a more detailed discussion on the bias of dlMC for this example see [15]
and for the analytic form of the bias see [31].

4.2.2. Two observations. We calculate the values of U∗
L(d1, d2) for N = M = 104 over

D×D = [0, 1]2 and we compare them with those of dlMC in Fig. 4. Similar qualitative results
as in case 1 can be observed. For κ ∼ U(0, 1), the points where maximum is attained are
(d1, d2) = (0.2, 1) and (d1, d2) = (1, 0.2) which are combinations of the local maxima in the
1-dimensional case. That means that, if two observations can be afforded, they should be
taken at the points where local maxima exist for the one observation scenario. The order is
insignificant since, as we see, the U∗

L(d1, d2) surface is symmetric with respect to the d1 = d2
line. Similar conclusions are drawn for κ ∼ U(0, κe) and κ ∼ U(κe, 1) where the maxima are
at (d1, d2) = (0.2, 0.2) and (d1, d2) = (1, 1) respectively, as already expected from the results
of case 1.

5. Example: Case study. This second example demonstrates the application of the for-
malism to a subsurface pollution characterization problem for an actual site where field data
for permeability and concentrations are available.
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(a) Lower bound estimate ÛL(d)
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Figure 4: Expected information gain lower bound estimate and dlMC estimate with N = 104,
M = 104 for the 2-dimensional design, estimated over D = [0, 1]2 for different priors.

5.1. Description. We are interested in performing Bayesian inference on the uncertain
parameters that affect the transport of pollutants in a contaminated area. Such a procedure
will decrease the uncertainty regarding the extent and location of the plume and will further
affect the cost and other important aspects of soil remediation. When limited resources are
available for experimentation and data collection, it is of great importance to develop exper-
imental design strategies that will enhance the quality of data. Our current study concerns
a contaminated site located in Santa Fe Springs, California. Previous data consisting of soil
types is available from boreholes located along four cross sections across the site. Each bore-
hole reaches a depth of 20m. Accordingly, soil type is defined as a categorical variable with six
possible states. The field and the locations of the boreholes are shown in Figs. 1 and 5 (left).
The available soil data is used to construct a domain that can be used in our forward model to
simulate the transport of pollutants. The construction of a domain that can be regarded as a
good approximation of the real situation, is achieved by the stratigraphic modeling capabilities
of the Groundwater Modeling System (GMS) software [1]. More specifically, using a standard
inverse-distance weighting based interpolation scheme, we assign soil types for all locations in
the area of our interest. The stratigraphy of the resulting domain as well as the extent of each
soil are shown in Figs. 5 (right) and 6. Next, the domain was discretized to a 40 × 60 × 10
grid where each cell has dimensions 15.4m.×6.7m.×2m. and carries the information of the
soil type present in that location. The grid is used as our finite volume discretization in the
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subsequent TOUGH2 simulations and each of the six different soil types present in our domain
are assigned different permeability values which, in our study, are considered to be random
and are the only source of uncertainty.

Figure 5: Boreholes (left) and final domain stratigraphy (right) with the z-axis being stretched
for the sake of illustration.

5.2. Simulating flow and transport using TOUGH2.

5.2.1. EOS7r module. We employed the multiphase simulator TOUGH2 [28] and its
massively parallel version TOUGH2-MP [40] with the EOS7r module to simulate groundwater
flow and contaminant transport. TOUGH2 provides us with a finite volume solver which
discretizes the mass and energy equations over space and time and updates a set of primary
variables that consist the solution of the governing equations by estimating the increments
at each time step with a Newton-Raphson method. The common mathematical form of
the equations for multiphase fluid flow include several thermophysical parameters such as
density, viscosity, enthalpy etc. which are determined by the various ”EOS” (equation-of-
state) modules. The EOS7r module [27] used here, is mainly intended to provide radionuclide
transport capability but can be as well used for transport of volatile and water soluble organic
chemicals (VOCs). Change in concentrations is caused in general for three reasons: transport,
decay and adsorption. Volatilization of the VOCs in all phases is modeled by Henry’s law
and occurs by advection and diffusion. Decay is modeled by a first-order decay law. In
case of radionuclide transport, this is interpreted as radioactive decay but in the case of
organic contaminants it can be explained as biodegradation. Adsorption is dependent on the
distribution coefficient that characterizes each rocktype. EOS7r in total can simulate transport
of five components in a two-phase flow, namely water, air, brine, a parent contaminant and a
daughter contaminant in aqueous and gaseous phases.

5.2.2. Santa Fe site. For our problem we are interested in simulating the spreading
of organic contaminants in a field located in Santa Fe Springs, CA which is approximately
600m. × 400m. and only 20m. deep. This is discretized in TOUGH2 to a grid consisting of
40 × 60 × 10 = 24000 active cells where each cell has dimension 15.4m. × 6.7m. × 2m., as
explained in the previous paragraph and is assigned a rocktype according to its soil type. We
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(a) Clay (b) Silt (c) Clayey sand

(d) Silty sand (e) Sand with 10% silt (f) Poorly graded sand

Figure 6: Soil morphology of the domain. The z-axis has been stretched for the sake of
illustration.

focus on investigating the propagation of uncertainty emerging from the unknown permeabil-
ities κ = (κ1, ..., κ6) of the six different soil types the are present on our site, through the
transport process of the VOCs. The porosity is taken to be uniform φ = 0.35 all over the
domain. Although we are interested in the transport mainly of petroleum hydrocarbons whose
weathering processes are in general known to include adsorption and biodegradation effects,
for the purposes of this study we will consider these effects to be of negligible importance
by assigning the distribution coefficients for adsorption to be zero and the half-life parameter
∼ 1050 so that we have no decay effects. Thus our model focuses only on the volatilization
properties of the VOCs. We choose the values for the molecular weight and inverse Henry’s
constant parameters to correspond to those used for describing transport of petroleum hydro-
carbons and specifically those that are mostly detected using gas chromatography techniques,
named Gasoline Range Organics (GRO). Typically GRO are the subsets of hydrocarbons in
the C5-C12 range and include hydrocarbons such as Benzene, Toluene, Ethylbenzene, m-, o-
and p-Xylenes, Naphthalene and Acenaphthene. Their molecular weights are in the 78− 154
grams range. In our case we arbitrarily set the molecular weight to be 112.4 grams which is
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Figure 7: Locations where initial contaminant injections are placed.

a value close to the average GRO hydrocarbon.

Table 1: Material and initial parameters used in our simulations.

Parameter Symbol Value

Porosity φ 0.35
Tortuosity factor τ0 0.1
Relative permeability parameters: λ 0.457
- Slr 0.15
- Sls 1
- Sgr 0.1
Capillary pressure parameters: λ 0.457
- Slr 0
- 1/P0 = α/ρwg 5.105e − 4
- Pmax 107

- Sls 1
Diffusivities (all k): gas phase dkg 10−6

aqueous phase dkl 10−10

Molecular weight - 112.4
Inverse Herny’s constant - 2.1 · 10−8

Half-life parameter - 1050

Initial pressure P (0) 1.013 · 105
Initial gas saturation Sg 0.75
Temperature (constant) T 20◦

For our forward evaluations of the model with TOUGH2 we consider that only 3 com-
ponents are present by assigning the brine and daughter radionuclide mass fractions to be
zero. We assume isothermal conditions with the temperature being constant at 20◦C and
no-flux boundary conditions. The mathematical formulation of the flow and transport model
is described in detail in Appendix B and the values of the model parameters that are assumed
known are given in Table 1. Since we want the pressure and gas saturation to be close to
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steady-state conditions by the time the contaminants are released to the ground, we first run
the model for a time period until T = 13.3 years, where the initial mass fractions for the
contaminants is zero. The outputs of pressure and gas saturation are subsequently used as
initial conditions for the transport simulation. We rerun the model after assigning initial
aqueous phase solubilities for the VOC. We denote these initial conditions with y0. Their
locations at time t = 0 are taken to be approximately in the areas were the storage tanks
are located as can be seen in Fig. 7. For our purposes we add 164 inactive (zero volume)
cells to the surface layer of our grid and initial injections are assigned. The exact values were
chosen to be y0 = 0.1 + U ppb (parts per billion) where U are numbers randomly generated
from a Uniform distribution with support on (5 · 10−5, 10−2) and are considered known. The
transport simulation runs for the same time period as the flow simulation.

5.3. Developing a surrogate model. Due to the complexity of our model, only a single
simulation of the transport flow with TOUGH2 requires several minutes to finish. Thus,
implementing our experimental design framework, including the minimization of the expected
information gain lower bound with SPSA which requires thousands of objective function
evaluations, becomes impractical. It is therefore necessary to create a surrogate model that
would provide us with forward evaluations of the model that are significantly cheaper to obtain
than running TOUGH2.

5.3.1. The prior and input transformation. The unknown physical parameters of our
problem are the permeabilities κ = (κ1, ..., κ6) of the six materials making-up the subsurface
at the site of interest. We choose all κi to be independent with a lognormal prior distribution,
that is

(5.1) p(log κi) = N (−23.5, 4)

The choice of the mean µ = −23.5 and variance σ2 = 4 are made such that our prior covers
a range for permeability values in the order of magnitude 10−8cm2 to 10−12cm2 which corre-
sponds to semi-pervious materials. We find this a rather general prior that corresponds solely
to our knowledge that the materials present in our domain are silt, clay, silty sand, clayey
sand, sand with 10% silt and poorly graded sand.

Now if we let F (x) = P (κi ≤ x) to be the cumulative distribution function of κi, then we
have that ξi := F (κi) ∼ U(0, 1) and for ξ = (ξ1, ..., ξ6) we define Ĝ(ξ) = G(F−1(ξ),d) where
F(ξ) =

∏6
i=1 F (ξi) to be our model output where the input is a set of 6 independent standard

uniform random variables.

5.3.2. Polynomial chaos expansion. We make use of the property that our random out-
put Ĝ(ξ) is a physical process with finite variance, therefore it is a square-integrable random
field Ĝ(ξ) ∈ L2(Rm), defined on the probability space ([0, 1]6,F , P ) and admits a polynomial
chaos representation of the form [8, 34, 38]

(5.2) Ĝ(ξ) =
∑

α,|α|<∞

pαΨα(ξ)

where α = (α1, ..., αd) and αi ∈ N
m for i = 1, ..., n is a multi-index with modulus |α| =

α1 + ... + αn, each pα is a vector in R
m, ξ is a second-order random variable defined on
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([0, 1]6,F , P ) with values in R
m and the functions Ψα form a complete set of orthonormal

functions that satisfy

(5.3) E[Ψα(ξ)Ψβ(ξ)] = δαβ = δα1β1
× · · · × δαdβd

Typically the random variable ξ has independent components that follow a Gaussian, Uniform,
Gamma or Beta distribution. The basis function then is chosen to consist of multidimensional
polynomials Ψα(ξ) = ψα1

(ξ1) × · · · × ψαd
(αn), where ψαi

is respectively Hermite, Legendre,
Laguerre or Jacobi polynomials of order αi. According to the input transformation in the
previous paragraph, we take the components of ξ to be U(0, 1) distributed and therefore the
polynomials in the expansion will be Legendre. For computational purposes we work with a
truncated version of the expression (5.2) by writing

(5.4) Ĝr(ξ) =
∑

α,|α|≤r

pαΨα(ξ).

where the number of terms in the above expansions is

(5.5) Np = |{α ∈ N
n, 0 ≤ |α| ≤ r}| =

r
∑

j=0

(j + n− 1)!

j!(n − 1)!
.

Eq. (5.4) provides an accurate approximation of the true model output y as long as the
coefficients pα are estimated in a fashion that they also incorporate a transformation of ξ to
the uncertain parameters of the problem of interest.

5.3.3. Coefficient estimation. In order for the expression (5.4) to be of use, we need
to estimate the coefficients pα. This in general can be done with various methods, mainly
categorized as intrusive [39] and nonintrusive methods. We use non-intrusive methods which
are easier to implement and more convenient when the forward simulation is seen as a black
box. Popular nonintrusive methods include approximating the coefficients by orthogonal
projection of the output on the basis functions [9], which involves calculating multidimensional
integrals. Other methods calculate the coefficients by solving a linear system of equations
constructed after evaluating the model on a set of samples and then either interpolating
these points (by choosing collocation points of the polynomial roots [21]) or minimizing the
least squares error [41]. The last method is the one adapted here, namely we estimate the
coefficients by linear regression taking advantage of the linear dependence of Ĝr(ξ) on pα.

This requires the evaluation of Ĝ(ξ) at NG points {ξj}NG

j=1 and then for each component yc,

c = 1, ..., 24000 of the output vector Ĝ = (y1, ..., y24000)
T , we solve the system

(5.6) yc = Ψpc,

where yc = [y1c , ..., y
NG
c ]T , Ψ is the NG ×Np matrix formed by evaluating the polynomial basis

functions at the NG selected points and pc are the vector with the unknown coefficients. The
least squares solution of (5.6) is the one that minimizes ||Ψpc − yc||2 and is given by

(5.7) p̂c = (ΨTΨ)−1ΨTyc
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provided that (ΨTΨ)−1 exists. This requires that NG ≥ Np so that our system will be
overdetermined. Again, due to the computationally demanding TOUGH2 forward simulator
it is impractical to obtain tens or hundreds of thousand samples so we work with an ensemble
of NG = 1000 samples which, even on the massively parallel version of TOUGH2 (TOUGH2-
MP), with a moderate number of processors used, takes around one week to be generated. This
choice of NG allows us to calculate the coefficients of an expansion of order up to r = 5. The

points {ξj}NG

j=1 were randomly selected using Latin Hypercube sampling. In fact, the 5-order
polynomial chaos expansion included 462 coefficients. This is close to NG ≈ 2Np which has
been suggested as a good choice [14]. New results concerning the stability and L2-convergence
of Polynomial Chaos approximations obtained via least-squares solutions have been recently
reported by [5, 12], however such an analysis falls beyond the scope of this work.

5.3.4. Goodness of fit and truncation error. The next step after obtaining the expansion
coefficients is to test how well Ĝr performs as a surrogate. For validation purposes, we estimate
the coefficients for r = 1, 2, 3, 4 and 5 using all 1000 samples. We want to test how well the
least squares solution fits the samples but also how close Ĝr is to Ĝ in the L2 sense.

For the first test we employ the common R2 statistic known also as coefficient of deter-
mination [33] and provides a goodness-of-fit measure for our linear model. The statistic is
defined as

(5.8) R2
c = 1− RSSc

∑NG

j=1(y
i
c − ȳc)2

where the residuals sum of squares is RSSc =
∑NG

j=1(y
j
c − yr,jc )2, c = 1, ..., 24000.

For the second test, we define the expected relative truncation error as

(5.9) ec =
E[|Gc(ξ)− yc(ξ)|2]

E[|Gc(ξ)|2]
=

∫

[0,1]n |Gc(ξ)− yc(ξ)|2p(ξ)dξ
∫

[0,1]n |Gc(ξ)|2p(ξ)dξ
, c = 1, ..., 24000

where p(ξ) = 1 is the joint distribution of independent U(0, 1)’s. The above can be estimated
as

(5.10) ec ≈
∑1000

j=1 |Gc(ξ
j)− yc(ξ

j)|2
∑1000

j=1 |Gc(ξ
j)|2

, c = 1, ..., 24000.

Fig. 8 shows the boxplots of the R2 statistic, obtained from all components G, of the
expansions of order r = 1, ...5 (left) and the boxplots of the relative errors for each order
r = 1, ..., 5 and for all the components of G (right). Regarding the R2 statistic and particularly
for r = 5 the median is 0.986 and the lower quartile is above 0.96 giving us a good fit for the
75% of the expansions along the domain. A thorough look showed that the remaining outputs
including outliers for which the fit is not stable correspond to points of the domain that are
in the bottom layer and along the east boundary. Regarding the expected truncation error
and specifically for the expansions of order 5 the median is 3.1 · 10−4 and the upper quantile
is 10−2 giving us good approximations in the L2 sense. Again the truncation error increases
for the points in the bottom layers. To ensure that our experimental design methodology
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implemented in the next paragraph is unaffected by possible instabilities of the Polynomial
Chaos expansions, the model outputs produced for the bottom layer of our domain were not
involved in our study.

1 2 3 4 5
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Figure 8: Boxplots of the R2 statistic (left) and relative errors (right) of the polynomial
chaoses for all components of the output G(ξ), of order r = 1, ..., 5.

5.4. Experimental design.

5.4.1. Design settings. As mentioned above, our main goal is to perform Bayesian infer-
ence on the permeability parameters that will provide us a tighter posterior that will decrease
the uncertainty about the true values of the soil permeability. This will further enhance our
current knowledge about the plume location and extent that can potentially result in devel-
oping cost-efficient remediation strategies. In order to achieve such a goal, we are seeking the
best locations from where data should be collected by employing the expected information
gain lower bound as our design criterion.

Unlike the analysis of the nonlinear algebraic model it is clearly understood that in this
case, design of a single experiment, that is design for the collection of a single datum would not
have important effects in the inference procedure and it is never performed in practice. In our
setting we consider that for any location in the (x, y)-plane we can observe the concentrations
y from the first 5 layers of our domain, that is up to 10m. depth, so 5 data points are available
from each location. Without any loss of generality in our method we choose to find the design
of experiments consisted of the 5 best locations in the (x, y)-plane from where data will be
collected simultaneously to be used for inference. This is a moderate choice which appears
to be satisfactory in order to validate our method. Further evaluation of the optimal number
of data points is beyond the scope of the present study. The design parameters therefore are
d = (d1,x, d1,y, d2,x, d2,y, ..., d5,x, d5,y) where (di,x, di,y) ∈ D0 = [0, 600] × [0, 400], i = 1, ..., 5
and the design space for our problem is D = D5

0.

The observations y are subject to additional measurement noise as indicated from our
Gaussian likelihood function N (y|Ĝ(ξ),Σ) involved in the expected information gain lower
bound derivation. Here we have substituted our forward solver G(κ,d) with the polynomial
chaos surrogate Ĝ(ξ). The covariance matrix has been chosen to beΣ = σ2I25 with σ

2 = 10−2.
This is a rather simple choice that guarantees that measurement errors are independent. A
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Figure 9: Scatter plots of the optimal points di for all optimization solutions d∗ of the SPSA
algorithm. The red transparent areas denote the locations of the sources, plotted for compar-
ison of the patterns.

more sophisticated choice would be to take the standard deviation to be proportional to the
observable quantity σ = aĜc(ξ,d) where a is some proportionality factor. We avoid this
choice as it implies the dependence of the error on the design parameters which contradicts
our assumptions for the lower bound derivation.
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5.4.2. Results. We run the SPSA algorithm in order to find d that minimizes Û∗
L, there-

fore maximizes the lower bound estimate. To assess the performance of the algorithm, we run
several cases where the choices of N and M in the Monte Carlo loop vary. It is easy to see
that the variance of our estimator is

(5.11) var
[

Û∗
L(d)

]

=
1

NM
var [p(Y |κ,d)]

which shows thatN andM have the same contribution in controlling the variance, therefore we
take them equal. As stated previously, our estimator is unbiased, unlike the dlMC estimator,
so an extremely large value for M is not necessary as it is for dlMC to maintain a low bias.
We considered three different cases where N = M = 10, 100 and 1000. Since the results of
SPSA are noisy, in order to better evaluate the performance of the algorithm we obtain the
results of 100 independent runs for each case. For the first two cases we run the algorithm
for a total of 104 evaluations of the objective function and for the last case we run for 5 · 103
evaluations. It appears that these choices are rather high since the iterates are stabilized much
earlier maintaining a low iteration error.

The resulting 5-tuples of points in D0 are shown all together in a total of 500 points
in Fig. 9, for all three cases. This gives us a qualitative idea about where the expected
information gain is maximized and so data should be collected from. The formation of a
certain pattern as N , M are increased is obvious and the optimal points appear to be very
close to where the contaminant sources were placed. At the same time various points that
appear to be outliers are also present, a characteristic behavior of the SPSA algorithm. The
case N = M = 10 particularly shows all points widely spread all over D0 and one can only
distinguish the two areas around (x, y) = (150, 250) and around (x, y) = (450, 100) where
more points are accumulated. The cases N = M = 100 and N = M = 1000 provide very
similar conclusions with the majority of the runs having converged at very specific locations,
close to the actual contaminant sources, forming a clear pattern with the main difference that
in the third case the points are even more concentrated and less outliers are present.

For a more quantitative argument we also present the exact values of Û∗
L(d) as well as

those of

(5.12) ÛL(d) = −1

2
{m+ log [(2π)m|Σ|]} − log





1

NM

N,M
∑

i,j=1

p(yi|κij ,d)





calculated at all outcomes d∗ of our runs. These values quantify the information gain that
each design is expected to offer and at the end, if we had to choose only one design, this should
be the design that provides the largest value. This time, for diagnostic reasons and in order
to provide a measure of comparison, we want to have a fixed accuracy for the estimates and
we use the same number of samples N = M = 1000 for the evaluation of the two objective
functions on all points. Their values are all shown in the histograms presented in Fig. 10.
Again there is a significant difference between the quality of the results of the first case with
that of the last two cases for both functions. For Û∗

L(d), the first case gives us designs that
whose values vary in a range from 0.1 ·108 to 6 ·1010 (observe that the x-axis of the histogram
is an order of magnitude larger than the rest) with a large number of them being away from
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Final ÛL (d) value

0

2

4

6

8

10

12

C
o
u
n
t

(f) N=M=1000

Figure 10: Histograms of the Û∗
L(d) (left) and ÛL(d) (right) values for all optimal points d∗.

the minimum value. The impression one might get for this case is that chances are few that
the optimization will yield an optimal design solution and not just an outlier. The other
two cases provide similar results with the third being, as expected, better than the second,
in the sense that the optimal points are even more concentrated around the minimum value.
For completeness we present also ÛL(d) which is technically nothing else but the negative
logarithm of Û∗

L(d), shifted by a constant. In the first case, the values cover a range from
−3 to 2.5 with a mean around 0. The last two cases give us again similar results with both
histograms covering values from around 1 to 3.5, a much narrower interval than the first case.
Again we can see that the third case is slightly better than the second where we see that the
unimodal structure of the histogram is more concentrated on higher values close to 3 which
implies that a few more runs eventually converged to the global maximum.
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Table 2: The (x, y)-coordinates of the 5-point designs d◦ and d⋄ and their ÛL(d) values.

d1 d2 d3 d4 d5 ÛL(d)

d◦ (127.96, 259.65) (442.59, 97.05) (143.22, 304.41) (337.11, 279.02) (412.26, 135.86) 3.698
d⋄ (22.95, 171.37) (75.36, 300.00) (318.58, 169.27) (425.06, 109.96) (441.00, 253.70) 0.286

5.5. Bayesian update of log(κ). In order to validate our methodology and demonstrate
the significance of the experimental design analysis developed above, we perform Bayesian
inference based on two different designs that are selected according to the results of the
previous section. More precisely, data from two different sets of 5 points, denoted with d◦ and
d⋄, is collected and used to update the probability distribution of κ. Specifically, d◦ is selected
among the 100 optimal designs that were approximated by SPSA in the previous section, for
N = M = 1000 and is the one that achieved the maximum ÛL(d) value, so based on the
previous analysis it is the design that is expected to yield the best posterior. The second
design d⋄, chosen for comparison only, was arbitrarily selected among the optimal designs
that were returned by SPSA using the poor estimate with N =M = 10 and has a much lower
ÛL(d) value, therefore it is expected to update to a wider posterior. The exact location of the
points for each set and their ÛL(d) values are shown in Table 2.

Since the posterior distributions cannot be calculated explicitly, we use Markov Chain
Monte Carlo (MCMC) methods to draw samples from them. MCMC methods rely on gener-
ating a sequence of random variables based on a Markov Chain that converges to a stationary
distribution π(y), called the target distribution and therefore the sequence generated after a
burn-in period, can be thought of as following the stationary distribution π. To avoid strong
autocorrelation among the samples, appropriate thinning and tuning of the algorithm is re-
quired. A powerful MCMC method is the Metropolis-Hastings (MH) algorithm that was first
proposed by Metropolis [25] and later generalized by Hastings [13]. The MH algorithm at an
arbitrary step generates a new sample y from a proposal distribution q(x, y) given that x is
the last accepted sample and accepts it with probability

(5.13) α(x, y) = min

{

1,
π(y)q(x, y)

π(x)q(y, x)

}

.

In our case we use the adaptive version of the MH algorithm as developed in [10] with
a Gaussian as the proposal distribution where its covariance matrix is updated at each step
taking into account all the previous samples that have been drawn. This implies that the
chain is non-Markovian, however it has been proved that it has the correct ergodic properties.
The adaptive MH (aMH) algorithm provides faster convergence to the target distribution and
achieves lower autocorrelation among the samples without very large thinning.

Below we explore two cases where in the first data is observed from a reference field that
is associated with one specific realization of the model output while in the second, data is
observed from a reference field that is constructed using Gaussian process (GP) regression on
measurements taken from the real site.

5.5.1. Case 1: Reference data generated from prior. Here we assume a hypothetical
situation where the real permeability values are those displayed on Table 3. Our model’s
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Figure 11: Concentration map for the 5 top layers of the domain used as the reference field
in example 1. The ’◦’ and ’⋄’ signs indicate the locations of d◦ and d⋄ designs respectively,
from where measurements were taken.

Table 3: True values of κ and log(κ) used for generating the data in case 1.

i log κi κi (cm
2)

1 −22.195 2.295 · 10−10

2 −20.791 9.346 · 10−10

3 −21.567 4.300 · 10−10

4 −25.193 1.145 · 10−11

5 −25.272 1.058 · 10−11

6 −24.610 2.050 · 10−10

output for those values can be directly evaluated and the 5 top layers are displayed in Fig. 11.
With this reference field assumed to be our ”reality”, we collect data from the locations
indicated at designs d◦ and d⋄ and use them for our computations.

We generate 50000 samples with a 10000-sample burn-in period and we retain a sample
every 5 steps. After 8000 samples are obtained, histograms of their values are shown in
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Fig. 12. Note that the histograms display the marginal distribution of each log κi, i = 1, ..., 6
which are no longer independent themselves, however comparison of the histograms for each
case together with their priors and the true value gives us an idea about the different results
obtained for each design. As expected, we observe that d◦ provides narrower posteriors that
d⋄. This can be observed particularly on log κ2 and log κ5 and in a smaller scale on log κ1,
log κ3 and log κ4. The posteriors of log κ6 for both designs do not display any significant
discrepancy from the prior but even in this case the one corresponding to d◦ appear to be
slightly decentralized towards the true value. In addition, for d⋄ three posteriors, namely
log κ2, log κ5 and log κ6 retain their gaussian bell-shaped form and it seems that almost no new
information has been gained about their values. This is actually a consequence of the fact that
the corresponding soils (silty sand, sand with 10% silt and clay) are not present in the locations
where the data was collected from, for this design. Note that clay is present in the lower layers
of our domain and not much information is gained about it from d◦ either. Another general
characteristic is that, even for the soils for which both designs provide similar posteriors, the
maximum a posteriori values of d◦ show excellent agreement with the true values while those
of d⋄ show a slight discrepancy which makes them inappropriate for estimation. Overall, we
conclude that the design d◦ provides significantly better inference results that those provided
by d⋄ and this conclusion can be generalized for the comparison of d◦ with any other design
that achieves a lower ÛL(d) value.
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Figure 12: Comparison of the histograms of the marginal posteriors of all log(κi), i = 1, ..., 6 for
the designs d◦ (green) and d⋄ (red). The red curve indicates their common prior distribution
and the dashed black line indicates the true value used to generate the data.

5.5.2. Case 2: Reference data from field measurements. In this case, the data used
in the likelihood function which is incorporated in the acceptance probability through Bayes’
rule, is taken from a reference concentration field, that was generated by GP regression based
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Figure 13: Concentration map for the 5 top layers of the domain obtained by GP regression on
real data, used as our reference field in example 2. The ’◦’ and ’⋄’ signs indicate the locations
of d◦ and d⋄ designs respectively, from where measurements were taken.

on measurements taken from the field data at the specified locations as shown in the soil
boring map in Fig. 1. These measurements, denoted with f , consist of 1240 points and their
locations form a 1240×3 matrix X. Then, if f∗ denotes the concentrations over the discretized
domain, that is f∗ ∈ R

24000, with corresponding locations X∗, then
(5.14)

f∗|X∗,X, f ∼ N
(

K(X∗,X)K(X,X)−1f ,K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)
)

,

where K(X∗,X) is the covariance matrix with (K(X∗,X))i,j = k(xi,xj), xi ∈ X∗, xj ∈ X
and k(·, ·) denotes some appropriately chosen kernel (for more details on the derivation of this
conditional distribution one can see [29]). In our case we chose a squared exponential kernel,
given as

(5.15) k(x,x′) = σ2 exp

[

−1

2

3
∑

n=1

(xn − x′n)
2

ℓ2n

]

which was fit to the data with variance σ2 = 5 and correlation lengths (ℓ1, ℓ2, ℓ3) = (30, 30, 10).
Our reference field, consists of the mean f̄ = K(X∗,X)K(X,X)−1f and the values of the 5
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Figure 14: Comparison of the histograms of the marginal posteriors of all log(κi), i = 1, ..., 6 for
the designs d◦ (green) and d⋄ (red). The red curve indicates their common prior distribution.

top layers are shown in Fig. 13.
Again, we set the posteriors with p(κ|y,d◦) and p(κ|y,d⋄) as our target distributions

and this time we generate 100000 samples with a 10000-sample burn-in period and we re-
tain a sample every 5 steps. After 18000 samples are obtained, histograms of the marginal
distributions of each log κi, i = 1, ..., 6, are shown in Fig. 14. Again, we observe that d◦

provides narrower posteriors than d⋄ for most of the cases. This can be observed particularly
on log κ1, log κ4 and log κ5. The posterior of log κ6 for the optimal design is almost identical
to its prior which implies that nothing new has been learned about its true value. As in the
previous example, this is due to the fact that the corresponding soil (clay) is not present in
the locations where the data was collected, for this design (recall that clay is present in the
lower layers of our domain). In this case, since our data is obtained from a procedure other
than evaluating our forward model, it cannot be seen as a direct output of it and generally
we do not expect to observe uniqueness of the input parameters that can potentially give rise
to our measurements. This is reflected by the fact that different designs give posteriors that
seem to concentrate around different values. Bayesian inference however, still provides us with
informative results as we observe the posterior distributions to be much further away from
the priors, thus learning something about how close our model and our prior assumptions are
to the actual reality.

6. Conclusions. We presented an experimental design framework that focuses on provid-
ing optimal solutions to the design problem in terms of maximizing the information on model
parameters from Bayesian inference. This was achieved by employing an information theoretic
criterion, namely the expected relative entropy between the prior and the posterior distribu-
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tions of the unknown parameters. An additional reformulation of the design criterion through
the derivation of a lower bound, was of great importance in order to address biasedness issues
as well as alleviate the computational burden associated with optimization.

The framework was applied to a real-world problem: The problem of permeability identifi-
cation in contaminated soils in the presence of experimental field data. The forward model in
this case consisted of a system of differential equations that describe contaminant transport in
porous media, namely a two-component, two-phase flow-and-transport model that provides as
its output the concentrations of the pollutants at the time when data is collected. The design
parameters consist of multiple locations where the concentrations will be measured. In the
present setting, with the analogous adopted code (TOUGH2) used as a black box simulator,
no derivative information was available to the optimization process. The SPSA algorithm,
in addition to addressing this issue also seemed to accelerate convergence to the optimal so-
lutions. To further reduce the computational cost, construction of a model surrogate was of
crucial importance since the implementation of such a procedure would be impractical oth-
erwise. Finally, our methodology was validated after the inference results showed that the
data collected at the optimal design locations were much more informative than the data ob-
tained from other arbitrarily chosen points, in the sense that they resulted in much narrower
posteriors, thus gaining more knowledge about the true situation in the subsurface. We ob-
serve from our analysis that, under limited resources, the performance of a Bayesian update
depends significantly on the location of data acquisition. This highlights the need for optimal
monitoring layouts in order to manage environmental risks under economic constraints.

Appendix A. Comparison of the expected information gain estimates.

A.1. The double-loop Monte-Carlo estimate. The expected information gain can be
rearranged in the form

I(d) =

∫

Y

∫

K
{log [p(y|κ,d)]− log [p(y|d)]} p(y|κ,d)p(κ)dκdy

and can be evaluated by using Monte Carlo methods with

Î(d) =
1

N

N
∑

i=1







log
[

p(yi|κi,d)
]

− log





1

M

M
∑

j=1

p(yi|κi,j,d)











,

where {κi}, {κij}, i = 1, ..., N , j = 1, ...,M are i.i.d. samples from p(κ) and {yi} are i.i.d.
samples from p(y|κi,d).

A.2. Properties of the estimates. The properties of Î(d) are explored in [31]. Precisely
it is shown that the variance is proportional to

var
[

Î(d)
]

∝ A(d)

N
+
B(d)

NM

and the bias is proportional to

Bias
[

Î(d)
]

∝ C(d)

M
,
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where A(d), B(d) and C(d) are terms that depend on the likelihood and evidence function.
Clearly, as mentioned above, N controls the variance and M controls the bias.

For Û∗
L(d) we have

var
[

Û∗
L(d)

]

=
1

NM
var [p(y|θ,d)]

and the bias is trivially zero, whereas for ÛL(d) we have

var
[

ÛL(d)
]

= var



log
1

NM

N,M
∑

i,j=1

p(yi|θi,j,d)





≈ var

[

logU∗
L(d) +

1
NM

∑N,M
i,j=1 p(y

i|θi,j,d)− U∗
L(d)

U∗
L(d)

]

= var

[

1
NM

∑N,M
i,j=1 p(y

i|θi,j,d)− U∗
L(d)

U∗
L(d)

]

=
1

NM

var [p(y|θ,d)]
U∗
L(d)

2
,

where the second line follows after 1st-order Taylor expansion about U∗
L(d) and

Bias
[

ÛL(d)
]

= E

[

ÛL(d)− UL(d)
]

= E



− log
1

NM

N,M
∑

i,j=1

p(yi|θi,j,d) + logU∗
L(d)





≈ 1

NM

var [p(y|θ,d)]
U∗
L(d)

2
,

where the third line follows after a 2nd-order Taylor expansion. Here the variance and the
bias of the lower bound are controlled by both N and M .

Appendix B. Governing equations for flow and transport in a porous medium.

B.1. Balance equations. The general mass- and energy balance equations in a multicom-
ponent (NK components) multiphase problem are given as

dMk

dt
= ∇ · Fk + qk, k = 1, ..., NK,

where k is labeling the mass component up to a total of NK,M represents mass or energy per
volume, F represents mass or heat flux and q denotes sinks or sources. In some formulations,
such as in TOUGH2, an integral expression is used in the form

d

dt

∫

Vn

MkdVn =

∫

Γn

Fk · ndΓn +

∫

Vn

qkdVn, k = 1, ..., NK

where Vn is an arbitrary subdomain of the flow system and Γn its closed boundary surface,
n is a vector normal on the surface element dΓn pointing inward into Vn. If TOUGH2 is
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used for the numerical solution of the governing equations, module EOS7r provides consistent
characterization of the constitutive equations, allowing a value of NK as high as 5 (water,
air, brine, parent radionuclide, daughter radionuclide). In out problem, a zero source term
is assumed resulting in q = 0 and the contaminant sources in the model are taken to be
localized on the surface, at pre-assigned spatial locations shown in Fig. 7. In a TOUGH2
formalism, these sources are modeled as injections in attached zero-volume blocks connected
to the gridblocks where the source is assumed to be.

The mass accumulation condition for the kth component is

Mk = φ
∑

β

SβρβX
k
β

where the summation is taken over the fluid phases (liquid, gas, non-aqueous phase liquids).
Only liquid and gas phase are considered in our case. The porosity is denoted by φ, Sβ is the
saturation of phase β (takes values from 0 to 1), ρβ is the density of phase β and Xk

β is the
mass fraction of component k present in phase β.

The advective mass flux is given as

Fk
adv =

∑

β

Xk
βFβ

and individual phase fluxed are given by a multiphase version of Darcy’s law:

Fβ = ρβuβ = −κκrβρβ
µβ

(∇Pβ − ρβg).

Here uβ is the Darcy velocity (volume flux) in phase β, κ is the absolute permeability, κrβ is
relative permeability to phase β, µβ is viscosity and

Pβ = P + Pcβ

is the fluid pressure in phase β, which is the sum of the pressure P of a reference phase (usually
taken to be the gas phase) and the capillary pressure Pcβ (≤ 0), g is the vector of gravitational
acceleration. Vapor pressure lowering due to capillary and phase adsorption effects is modeled
by Kelvin’s equation

Pν(T, Sl) = fV PL(T, Sl)Psat(T )

where

fV PL = exp

[

MwPcl(Sl)

ρlR(T + 273.15)

]

is the vapor pressure lowering factor. Phase adsorption is neglected. The saturated vapor
pressure of bulk aqueous phase is denoted by Psat, Pcl is the difference between aqueous and
gas phase pressures, Mw is the molecular weight of water and R is the universal gas constant.
Temperature T is assumed constant.

The absolute permeability of the gas phase increases at low pressures according to the
relation given by Klinkenberg

κ = κ∞

(

1 +
b

P

)
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where κ∞ is the permeability at ”infinite” pressure and b is the Klinkenberg parameter. In
addition to Darcy’s flow, mass flux occurs by molecular diffusion according to

fkβ = −φτ0τβρβdkβ∇Xk
β .

Here dkβ is the molecular diffusion coefficient for component k in phase β, τ0τβ is the tortuosity
which includes a porous medium dependent factor τ0 and a coefficient that depends on phase
saturation Sβ, τβ = τβ(Sβ). Finally, the total mass flux is finally given by

Fk = Fabd +
∑

β

fkβ .

B.2. Relative permeability model. The relative permeability is assumed to follow the
van Genuchten-Mualem model which for liquid is

κrl =

{ √
S∗

[

1−
(

1− S∗1/λ
)λ
]2
, Sl < Sls

1, Sl ≥ Sls

and for gas is

κrg =

{

1− κrl, if Sgr = 0
(

1− Ŝ
)2 (

1− Ŝ2
)

, if Sgr > 0

subject to restriction 0 ≤ κrl, κrg ≤ 1. Here S∗ = (Sl−Slr)/(Sls−Slr) and Ŝ = (Sl−Slr)(1−
Slr − Sgr).

B.3. Capillary pressure model. For the capillary pressure we use the van Genuchten
function given as

Pcap = −P0

(

S∗−1/λ − 1
)1−λ

subject to restrictions −Pmax ≤ Pcap ≤ 0. Again S∗ is defined as for the relative permeability.

B.4. Parameters. Table 1 displays the nominal values assigned to all parameters required
according to the above governing equations. It is important also to note the following for our
simulation:
1. The mobilities are upstream weighted.
2. The permeabilities are harmonic weighted.
3. Module EOS7r currently neglects brine and daughter radionuclide, resulting in a 3-
component flow.
4. Adsorption effects are neglected.
5. Biodegradation effects are neglected.
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