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Abstract. Conventional X-ray methods use incoming plane waves and result in discrete diffraction
patterns when scattered at crystals. Here we find, by a systematic method, incoming waveforms
which exhibit discrete diffraction patterns when scattered at helical structures. As examples we
present simulated diffraction patterns of carbon nanotubes and tobacco mosaic virus.

The new incoming waveforms, which we call twisted waves due to their geometric shape, are
found theoretically as closed-form solutions to Maxwell’s equations. The theory of the ensuing
diffraction patterns is developed in detail. A twisted analogue of the Von Laue condition is seen
to hold, with the peak locations encoding the symmetry and the helix parameters, and the peak
intensities indicating the electronic structure in the unit cell.

If suitable twisted X-ray sources can in the future be realized experimentally, it appears from
our mathematical results that they will provide a powerful tool for directly determining the detailed
atomic structure of numerous biomolecules and nanostructures with helical symmetries. This would
eliminate the need to crystallize those structures or their subunits.
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1 Introduction

This paper explores – at the level of modelling and simulation - the possiblity of novel X-ray
methods for the determination of the detailed atomic structure of highly regular but not periodic
molecules. The details are worked out for helical structures. These include carbon nanotubes,
the necks and tails of viruses, and many of the common proteins (actin, collagen). The quest for
novel methods is motivated by the fact that current X-ray methods, while hugely successful, have
important shortcomings. A native helical assembly of proteins either has to be broken at the outset
and the proteins crystallized, which is difficult and may lead to non-native forms; or one uses X-ray
fiber diffraction, which resolves only the axial but not the angular symmetry into sharp peaks.

Roughly, our idea is the following. Conventional X-ray methods use incoming plane waves

E(x, t) = nei(k·x−ωt), B(x, t) = 1
ω

(k× n)ei(k·x−ωt), (1)

and result (in the relevant regime of X-ray wavelength << sample diameter << distance of detector
from sample, Fresnel number << 1) in the outgoing field

Eout(x, t) = − const

|x− xc|
n′ei(k

′(x)·x−ωt)
∫

Ω

e−i(k
′(x)−k)·yρ(y) dy, (2)

with polarization vector n′ = (I− k′

|k′| ⊗
k′

|k′|)n and outgoing wavevector k′(x) = |k| x−xc|x−xc| . Here ρ is
the electron density of the illuminated sample and xc denotes a typical point in the sample.

The emergence of the Fourier transform in (2), and its amazing properties regarding construc-
tive/destructive interference, underlie the power of X-ray methods for periodic structures. One can
see from (2) and its derivation that the Fourier integral kernel e−i(k

′−k)·y is directly arising from
the assumption of a plane-wave source (1). Other sources would give other kernels. This suggests
the following line of research: design the incoming radiation (as a solution of Maxwell’s equations)
such that the kernel interacts with highly symmetric but non-crystalline structures with the same
dramatic properties of constructive/destructive interference as occurs in the periodic case.
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This design problem for the incoming waves can be formalized into the following mathematical
problem: find time-harmonic solutions to Maxwell’s equations which are simultaneous eigenfunc-
tions of a continuous extension of the generating symmetry group of the structure. Why this is a
good formalization is a long story, told in Section 7.

For discrete translation groups, which are the generating symmetries of crystals, we show that the
design problem is solved precisely by the plane waves used in classical X-ray methods. This is a
new characterization of plane waves. It explains why plane waves are right for crystals.

For helical symmetry groups, the design problem can also be completely solved. The ensuing
family of incoming waves is

E(r, ϕ, z, t) = ei(αϕ+βz−ωt)

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 n1+in2

2
n1−in2

2
0

n2−in1

2
n2+in1

2
0

0 0 n3

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 , (3)

where (α, β, γ) ∈ Z × R × (0,∞) is a parameter vector analogous to the wavevector k in (1),
n ∈ C3 is a polarization vector which must satisfy (0, γ, β) · n = 0, and the frequency ω is given
by ω = c|(0, γ, β)|. The cartesian vector (0, γ, β) has a simple physical meaning which will emerge
in Section 14. The Jα are Bessel functions, (r, ϕ, z) are cylindrical coordinates with respect to the
helical axis, and E0 is the cartesian field vector, with the third component corresponding to the
axial direction. We call the electric fields (3) twisted waves. Figure 1 shows the twisted wave with
parameter vector (α, β, γ) = (5, 3, 1) and polarization vector n = (1, 0, 0).

Figure 1: A twisted wave with angular, axial and radial wavenumber (α, β, γ) = (5, 3, 1). The plot
shows the real part of the first component of the wave. Red: positive values; Blue: negative values.
Note the helical shape of the level sets restricted to a co-axial cylinder, and the Bessel pattern
perpendicular to the axis.

Thus twisted waves consist of four factors: a scalar plane wave on the cylinder; a rotation matrix
which rotates the field direction along with the base point; a somewhat mysterious polarization ten-
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sor which depends on the polarization vector; and a vector of three Bessel functions of neighbouring
order.

We remark that, while the axial component is just a scalar cylindrical harmonic, the twisted
wave (3) is not a cylindrical vector harmonic, except for special choices of n.1

The helical shape of the level sets in Figure 1 suggests that for suitable values of the angular and
axial wavenumber, twisted waves can induce resonant electronic oscillations of every single molecule
in a structure with helical architecture. Thus one can hope for diffraction intensities which strongly
depend on the twisted wave parameters.

At least in axial direction, the radiation scattered by a helical structure indeed exhibits sharp
discrete peaks with respect to the radiation parameters α and β. More precisely: the signal of
a helical structure in axial direction vanishes unless the angular/axial wavenumbers of the twisted
wave minus the axial wavenumber of the outgoing wave belong to the reciprocal helical lattice shifted
left or right by precisely one angular wavenumber. This is an analogue of the Von Laue condition,
but waves and structure are curved. The shifts come from the fact that the polarization direction
of a twisted wave rotates along with the base point. Details are given in Section 11. Moreover, as in
X-ray crystallography, the unit cell electron density can be recovered, up to a scalar phase problem,
from the peak intensities. A further attractive feature is that the outgoing signal is invariant under
axial translations and rotations of the structure.2

These results suggest a hypothetical set-up of structure analysis with twisted X-rays. Send a
twisted wave towards a co-axial helical structure. Use a detector further along the axis to record
the diffracted intensities as a function of the incoming radiation parameters. Solve a scalar phase
problem to infer the electron density. See Figure 2.

electron density

Figure 2: Hypothetical set-up of structure analysis with twisted X-rays.

Twisted X-ray waves, (3), are a theoretical proposal. Intriguingly, similar waveforms have been
experimentally realized, such as optical higher-order Bessel beams [AD00] and photons and beams
carrying an angular wave factor eiαϕ [AB92, HD92, MTT07]. Clarifying the precise relationship
to twisted waves would require an understanding of the full electromagnetic field of the produced
modes. A related recent development is the creation of electron vortex beams [UT10, VTS10].

1The latter fields, introduced by Hansen [Ha34], are defined as curl (aψ) and curl curl (aψ), where ψ is a scalar
cylindrical harmonic and a ∈ R3 is a fixed “pilot vector”. This construction provides useful basis functions for the
time-harmonic Maxwell equations, but it does not capture the geometric behaviour of the polarization of twisted
waves.

2By comparison, the signal poduced by fiber diffraction as described by the Cochran-Crick-Vand formula [CCV52]
is not invariant under axial rotations, causing well-known difficulties in the interpretation of fiber diffraction images.
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The plan of the paper is as follows. Sections 2–4 extend the standard scalar Fourier transform
model for plane-wave diffraction to a vector-valued electromagnetic model needed to treat general
incoming waveforms. Sections 6–9 formulate the radiation design problem, and derive plane waves
and twisted waves from it. Sections 10–12 develop the theory of diffraction patterns of twisted
X-rays. Finally, in Section 13 we present simulated diffraction patterns of a carbon nanotube and
of tobacco mosaic virus.

2 The time-harmonic Maxwell equations

Incoming electromagnetic waves will be sought as solutions to Maxwell’s equations in vacuum,

1

c2

∂E

∂t
= curl B, div E = 0,

∂B

∂t
= −curl E, div B = 0, (4)

which are time-harmonic, that is to say

E(x, t) = E0(x)e−iωt, B(x, t) = B0(x)e−iωt (5)

for some ω > 0. Here E and B are the electric and magnetic fields and c is the speed of light. SI
units are used throughout. The fields are defined on R3 × [0,∞) and take values in C3.

The ansatz (5) reduces Maxwell’s equations (4) to

∆E0 = −ω
2

c2
E0, div E0 = 0, (6)

B0 = − i
ω

curl E0. (7)

We are interested in bounded solutions to (6). We note that bounded weak solutions, that is to
say vector fields in the function space L∞(R3;C3) which solve (6) in the sense of distributions, are
automatically bounded infinitely differentiable vector fields which satisfy (6) classically.

A basic example of time-harmonic radiation, and the one used in classical X-ray crystallography,
are plane waves

E0(x) = neik0·x, B0(x) =
1

ω
(k0 × n)eik0·x (8)

which solve (6)–(7) if the wavevector k0 ∈ R3 and the polarization vector n ∈ C3 satisfy

|k0| =
ω

c
, k0 · n = 0. (9)

Note that by the first of these relations, the time frequency ω in (5) fixes the spatial wavelength
λ = 2π/|k0| of plane-wave radiation as

λ = 2π
c

ω
. (10)

The more general form (5) is important when scattering from non-crystalline structures is under
consideration. In fact the notion of wavelength and the relation (10) remain meaningful in this case.
This is because the Fourier transform Ê0(k) =

∫
R3 e

−ik·xE0(x)dx is, due to eq. (6), supported on
the wavevector sphere |k| = ω/c, and hence any solution E0 can be thought of as a superposition
of plane waves with wave vectors of equal magnitude ω/c.

In X-ray crystallography, due to the goal of atomic resolution, only λ’s comparable to interatomic
distances, i.e. below a few Angstrom, are useful. Electromagnetic waves in this regime are known
as hard X-rays.
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3 Electromagnetic model for the diffracted radiation

The standard scalar Fourier transform model (or oscillator model) of X-ray diffraction patterns
which underlies the crystallography and biocrystallography literature is insufficient for our pur-
poses. This is because it neglects the polarization of the incoming wave from the outset. However,
fluctuating polarization directions turn out to be a necessary feature of any incoming field which
can induce resonant electronic oscillations in a helical (or any other symmetric but non-crystalline)
structure. As a consequence we need a full electromagnetic (vector-valued) extension of the standard
model.

Before presenting this extension, we briefly recall the standard scalar model, for comparison and
background.

Oscillator model. As described in many texts (see e.g. [AM76]), one starts from a simplified
picture which involves only scalar waves instead of electromagnetic fields and bypasses Maxwell’s
equations. A scalar incoming plane wave ei(k0·x−ωt) hitting an electron at position y is assumed to
induce a circular wave with same wavelength and same phase at the point y,

const ei(|k0| |x−y|−ωt)eik0·y. (11)

Suppose that the incoming wave travels at the speed of light, |k0| = ω/c; let xc be a typical point
in the sample; approximate the phase |k0||x− y| of the outgoing circular wave at a point x in the
far field by k′(x) · (x− y), with direction-dependent outgoing wavevector

k′(x) =
ω

c

x− xc
|x− xc|

; (12)

and take a superposition of electrons with density ρ(y). This yields the scalar outgoing field

ψout(x, t) = const ei(k
′(x)·x−ωt)

∫
R3

ρ(y)e−i(k
′(x)−k0)·ydy. (13)

Note that the integral appearing above,

f(k′ − k0) =

∫
R3

e−i(k
′−k0)·yρ(y) dy = ρ̂(k′ − k0), (14)

is just the Fourier transform of the electron density, evaluated at the difference k′ − k of outgoing
and incoming wavevector. This integral encodes the density of the structure one wants to image,
and is known as the structure factor or form factor or scattering factor. The squared amplitude
I(x) = |ψ(x, t)|2 of the scalar field (13) is then taken as a model for the measured intensity of the
outgoing electromagnetic radiation. From (13), one obtains

I(x; k0) = |ψout(x, t)|2 = |ρ̂(k′(x)− k0)|2. (15)

Thus the “intensity of diffracted radiation” at the detector position x is the absolute value squared
of the Fourier transform of ρ̂, evaluated at the difference k′(x)−k0 between outgoing and incoming
wavevector. To emphasize the dependence of I on both the observation point (which determines the
outgoing wavevector) and the parameters of the incoming wave we have used the notation I(x; k0).
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In particular, the data gathered from a sufficiently large set of observation points x and incoming
wave parameters k0 delivers the abstract data set

I(k) = |ρ̂(k)|2, k ∈ Rd, (16)

and the X-ray interpretation problem, i.e. the task of inferring atomic structure, ρ, from X-ray
diffraction data, I, reduces to the phase problem for the Fourier transform. Note that the data
set (16) is a function on the dual (wavevector) space of the physical space on which the density
is defined. The abstract “diffraction intensity” or “diffraction spectrum” or “diffraction measure”
(16) constitutes the starting point of previous mathematical work on X-ray diffraction of crystals
[St94, Fr07] and quasicrystals [Ho95, BM04, BG08, BG13].

The semi-empirical oscillator model (12), (13), (15) is sufficient for a great deal of X-ray physics.
In particular, it accounts for the fluctuating phases of incoming plane-wave radiation (8).

Electromagnetic model. A proper vector-valued expression for the outgoing electric field which
improves the model (13) and can deal with fluctuating incoming polarization directions can be
obtained as follows. Start from the well known Lienard-Wiechert fields (see e.g. [Gr99]) of a
moving point charge driven by any given incoming field; pass to a non-relativistic (weak-field) limit;
take a superposition of charges; and make a far field approximation corresponding to the regime X-
ray wavelength << sample diameter << distance of observation point from sample, Fresnel number
<< 1. The details can be found in our companion paper [FJJ15] and we only give the resulting
expression for the diffracted electromagnetic field:

Eout(x, t) = − ce`
ei(k
′(x)·x−ωt)

|x−xc|

(
I− k′(x)

|k′(x)| ⊗
k′(x)
|k′(x)|

) ∫
R3 E0(y)ρ(y) e−ik

′(x)·ydy,

Bout(x, t) = 1
ω

k′(x) × Eout(x, t),
(17)

with direction-dependent outgoing wavevector familiar from the oscillator model,

k′(x) =
ω

c

x− xc
|x− xc|

. (18)

Here E0(y)e−iωt is the incoming electric field, a solution to the time-harmonic Maxwell equation
(6), ρ : R3 → R is the electron density of the sample, xc is a typical point in the sample, and
ce` is a universal constant depending, among other things, on the charge and mass of the electron.
Moreover I is the 3×3 identity matrix and a⊗b denotes the 3×3 matrix A with entries Aij = aibj,
where a and b are any two vectors in R3.

If the incoming electromagnetic field is replaced by its real part, as it properly should to model
physical incoming X-rays, the diffracted radiation is given by the real part of (17).

According to the model (17)–(18), the outgoing wavevectors k′ have the same length as the
incoming wavevectors k (recall from the previous section that any solution E0 to eq. (6) can be
viewed as a superposition of plane waves with wavevectors k of equal length |k| = ω/c),

|k′| = |k|. (19)

This relation has the important microscopic physical interpretation that the photon energy is con-
served in the scattering. Note that the energy of a photon with wavevector k is E = |p|c, where
p = ~k is the photon momentum. Thus the model (17) corresponds to elastic or Thomson scatter-
ing.
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In the special case of incoming plane-wave radiation (8)–(9), eq. (17) for the electromagnetic
field reduces to

Eout(x, t) = − ce`
ei(k

′(x)·x−ωt)

|x− xc|
n′(x)

∫
R3

ρ(y) e−i(k
′(x)−k0)·ydy, Bout(x, t) =

1

ω
k′(x)× Eout(x, t),

(20)
with outgoing direction-dependent polarization vector

n′(x) =

(
I− k′(x)

|k′(x)|
⊗ k′(x)

|k′(x)|

)
n. (21)

In X-ray experiments the electromagnetic fields E and B cannot be measured directly; a detector
only records the scalar field intensity. The latter is defined (see e.g. [Gr99]) as the time average of
the absolute value of the Poynting vector, and has the physical dimension of power transferred per
unit area, i.e. energy transferred per unit area per unit time. In formulae,

I(x) = lim
T→∞

1

T

∫ T

0

|S(x, t)| dt, S(x, t) =
1

µ0

E(x, t)×B(x, t). (22)

Here and below, µ0 and ε0 are the magnetic and electric constants, which are related to the speed
of light by the equation ε0µ0 = 1/c2, and S denotes the Poynting vector. Note that the latter is
the flux vector for the energy density e in Maxwell’s equation, that is to say real-valued solutions
to (4) satisfy

∂

∂t
e+ div S = 0, where e(x, t) =

1

2

(
ε0|E|2 +

1

µ0

|B|2
)
. (23)

Here the restriction to physical, real-valued solutions is essential, and we do not recommend that
the above definition of the Poynting vector be applied to complex fields. In Appendix 1 we evaluate
expression (22) for the physical diffracted radiation, given by the real part of the fields Eout and
Bout in eq. (17). The result, i.e. the intensity of the real part of the elecromagnetic field (17) at
the observation point x, is

I(x) =
c ε0

2
|Eout(x, t)|2, (24)

where Eout is the complex electric field in (17) (note that its absolute value is independent of t). The
at first sight mysterious appearence of the complex field amplitude comes from the time averaging
in (22), as is clear from the derivation in Appendix 1.

In the plane-wave case, the intensity can be read off from eqs. (20) and (24). Noting that n′ is the
projection of n onto the orthogonal subspace of k′, and assuming for the moment that n is real up
to a phase factor (i.e., the wave is linearly polarized), we have

|n′| = sin (∠(n,k′)) |n|, (25)

and hence

I(x; k0) =
c ε0 c

2
e`

2

1

|x− xc|2
sin2 (∠(n,k′(x))) |n|2|ρ̂(k′(x)− k0)|2. (26)

(Here we have used the same notation as in (15) to emphasize the dependence on the incoming
wavevector k0.) If n is complex, the sin2 factor has to be replaced by |n′(x)|2, with n′ given by (21).
In particular, the electromagnetic model (17)–(18) specialized to plane waves recovers in a natural
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way the well known fact – missed by the oscillator model – that scattering along the polarization
direction of the incoming X-ray beam, corresponding to k′(x) being parallel to n, is completely
suppressed. In the special case of a single electron, ρ = δ0, expression (26) agrees with what is
typically assumed as a starting point in X-ray books (see e.g. [AM11] Section 1.2). Note also
that the last factor in (26) is precisely the intensity of the semi-empirical oscillator model, i.e. the
absolute value squared of the “structure factor” (14).

Although the arguments in [FJJ15] leading to (20)–(21) are purely classical, the result agrees (up
to the decay factor 1/|x−xc|, and granting the identification of macroscopic outgoing directions with
microscopic photon wavevectors) with the result derived in the beautiful tutorial article [Sa09] from
perturbative nonrelativistic quantum electrodynamics (NRQED). In particular, NRQED confirms
equations (18) and (21).

In the sequel, we shall work with the electromagnetic model (17)–(18).

4 Generalized structure factor

From the point of view of contemplating novel forms of incoming radiation, the most important
outcome from the electromagnetic model (17)–(18) is a prescription for how the “structure factor”
(14) needs to be modified when the incoming X-rays are not plane waves. The corresponding term
in (17) is the integral term

fE0(k′) =

∫
R3

E0(y) ρ(y) e−ik
′·ydy. (27)

We call this term the generalized structure factor with respect to the incoming electric field E0. The
latter may be any bounded solution to the time-harmonic Maxwell equation (6). Expression (27)
is a vector-valued generalization of the familiar structure factor

f(k′ − k0) =

∫
R3

ρ(y) e−i(k
′−k0)·ydy (eq. (14), Section 3) (28)

for classical (plane-wave) diffraction, and determines the amount of constructive or destructive
interference of the outgoing waves in the direction k′. Note that the interference in (27) depends
not just on the incoming and outgoing phases, but also on the incoming polarization directions.

In the plane-wave case (8), that is to say E0(y) = neik0·y, the exponential factor from the incom-
ing wave nicely combines with the exponential factor from (27), and the generalized structure factor
reduces to just the classical structure factor (14), multiplied by the constant incoming polarization
vector:

fE0(k′) = n

∫
R3

ρ(y) e−i(k
′−k0)·ydy = n f(k′ − k0). (29)

It will be useful to interpret (27) mathematically as an integral transform that depends on the
incoming field E0 and maps the electronic charge density ρ to a vector field on the dual (wavevector)
space. It generalizes the Fourier transform which arises in the oscillator model, and might be called
the radiation transform of ρ with respect to E0. This transform is defined by

(RE0ρ)(k) =

∫
R3

E0(y)ρ(y)e−ik·ydy (k ∈ R3). (30)

Here, as before, E0 may be any bounded solution to the time-harmonic Maxwell equation (6). Eq.
(30) naturally establishes RE0 as a linear map from L1(R3) to the space of bounded continuous
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vector fields on the dual (wavevector) space R3. Like the Fourier transform, it can be extended
to tempered distributions, and maps these to vector-valued tempered distributions. This extension
will be useful when discussing diffraction in the idealized but important case of infinite helices,
nanotubes and crystals.

5 Classical Von Laue condition

Given a complete mathematical model of the outgoing electromagnetic field such as (17), we can cast
the Von Laue condition of classical X-ray crystallography, first discovered by Friedrich, Knipping,
and Von Laue [FKL12], in the form of a mathematical theorem. Let L be a Bravais lattice in R3,
i.e. a set of the form

L = AZ3 for some invertible 3× 3 matrix A. (31)

Let ρ be any smooth L-periodic function on R3, that is to say

ρ(x + a) = ρ(x) for all x ∈ R3, a ∈ L.

By choosing a suitable partition of unity, any such ρ can be written in the form

ρ(x) =
∑
a∈L

ϕ(x− a) (32)

for some smooth, rapidly decaying function ϕ belonging to the Schwartz space S(R3). In the sequel,
we will use the following notation for delta functions common in the mathematical literature: if x0

is a point in R3, and S a countable set of points in R3, we write

δx0(x) = δ(x− x0), δS(x) =
∑
a∈S

δ(x− a). (33)

In the Von Laue condition, the reciprocal lattice of L will naturally emerge. The latter is defined
by

L′ = {k ∈ R3 : k · a ∈ 2πZ for all a ∈ L}, (34)

and is given in the case of (31) explicitly by

L′ = 2πA−TZ3, (35)

where A−T denotes the transpose of the inverse of the matrix A. The Von Laue condition can now
be stated as follows.

For simplicity, we only consider the square root of the intensity, i.e., up to trivial constants, the
absolute value of the electric field (20). This is convenient because the field itself, unlike its square,
is a well-defined mathematical object for infinitely extended systems such as (32) or ρ = δL, by
interpreting it as a distributional Fourier transform. The powerful machinery of Fourier analysis
then allows to mathematically understand in a quick way the phenomenon of discrete diffraction
patterns.

Theorem 5.1 (Von Laue condition). Let L be the Bravais lattice (31), and let ρ : R3 → R be
any L-periodic density, represented in the form (32). Assume that the incoming electric field is a
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plane wave, E0(y) = n eik0·y, with polarization vector n ∈ C3 and wavevector k0 ∈ R3 satisfying
(9), and the outgoing radiation is given by the electromagnetic model (17)–(18), with corresponding
intensity (26). Assume moreover without loss of generality that xc = 0. Then

(I(x; k0))1/2 = c0
(2π)3

| detA|
1

|x|

∣∣∣n− ( k′(x)
|k′(x)| · n) k′(x)

|k′(x)|

∣∣∣ |ϕ̂ (k′(x)− k0)| δL′ (k′(x)− k0) (36)

= c0
(2π)3

| detA|
1

|x|

∣∣∣n− ( k′(x)
|k′(x)| · n) k′(x)

|k′(x)|

∣∣∣ ∑
a′∈L′
|ϕ̂(a′)|δa′ (k′(x)− k0) , (37)

where k′(x) = ω
c

x
|x| and c0 = ( cε0

2
)1/2ce`. In particular, the outgoing signal is zero unless the

difference between outgoing and incoming wavevector, k′(x)− k0, is a reciprocal lattice vector.

For the simple diffraction model (16), analogous results for I1/2 were presented in [St94, Fr07], and
a rigorous treatment of the intensity I renormalized by volume was given in [Ho95]. We remark
that the right hand side of (36) makes rigorous sense (as a locally bounded measure) if considered
as a function of the incoming wavevector k0 at fixed observation point x, as implicitly assumed in
the simple model (16), but not if considered as a function of x at fixed k0.

Proof The central term in the outgoing field (20) is the structure factor fE0(k′) = nρ̂(k′ − k0),
which is well-defined as a distributional Fourier transform. It is convenient to re-write formula (32)
as the convolution

ρ = ϕ ∗ δL,
where (f ∗ g)(x) =

∫
R3 f(x − y)g(y) dy. By the generalized Poisson summation formula (see e.g.

[Fr07]), the Fourier transform of δL is

δ̂L =
(2π)3

| detA|
δL′ . (38)

The Fourier calculus rule f̂ ∗ g = f̂ ĝ now gives

ρ̂ =
(2π)3

| detA|
ϕ̂ δL′ , f(k′(x)− k0) =

(2π)3

| detA|
(ϕ̂δL′) (k′(x)− k0) .

Since the expression for the structure factor is, by inspection, a locally bounded measure, its absolute
value is well defined (see e.g. [Di75]), and corresponds in the above case to replacing the factor ϕ̂
by its absolute value. The result now follows immediately from (26).

6 The euclidean group of isometries

A key role in the following is played by the euclidean group of isometries

E(3) = {(R|c) : R ∈ O(3), c ∈ R3},

where O(3) = {R ∈M3×3 : RTR = I} is the orthogonal group. Elements of E(3) act on points in
three-dimensional euclidean space R3 as

(R|c)x = Rx + c.
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The natural induced action on vector fields E : R3 → C3 is

((R|c)E) (x) = RE
(
R−1(x− c)

)
. (39)

Note that R−1(·−c) is the inverse element (R|c)−1. The action (39) preserves solutions to Maxwell’s
equations.

Important continuous subgroups are

T = {(I|c) : c ∈ R3}, x 7→ x + c (translation group) (40)

and

He = {(R|τe) : R ∈ SO(3), Re = e, τ ∈ R}, x 7→ Rx + τe (helical group with axis e), (41)

where e is a given unit vector in R3. Here SO(3) denotes the special orthogonal group, i.e. the
elements of O(3) with determinant 1. As we shall see shortly, the former subgroup is associated
with classical plane-wave X-ray methods for crystals, and the latter with twisted X-rays.

7 The design equations

We now have a second look at plane waves. Why are they the right radiation to use for the analysis
of crystals?

Every researcher interested in X-ray diffraction is familiar with the Von Laue condition: the
outgoing signal of a plane wave scattered at a crystal concentrates on a discrete set of outgoing
directions, while in between it is suppressed by destructive interference. But suppose plane waves
were not given to us a priori, as the radiation emitted by conventional X-ray tubes. Would we know
how to come up with them if our goal was to achieve a nice diffraction pattern? What, exactly, is
the “connection” between a particular family of solutions to Maxwell’s equations on the one hand,
and point sets with crystalline order on the other?

The connection is that plane waves and crystals have matching symmetries. By this we do
not mean that they have the same symmetries. Plane waves have a larger, “continuous” family of
symmetries. We first explain this informally, then make it precise in group-theoretical language,
then generalize beyond crystals.

Start with a crystal, i.e. a structure with atomic positions

S = {x(ν)
0 + a : a ∈ L, ν = 1, ..,M}, L = {iv1 + jv2 + kv3 : i, j, k ∈ Z} = AZ3, (42)

where x
(1)
0 , ..,x

(m)
0 are the positions of finitely many reference atoms, v1, v2, v3 are linearly inde-

pendent vectors in R3, and A is the matrix with columns given by these vectors. Thus the atom
positions are obtained by translating finitely many reference atoms by each element of the lattice L.
Mathematically, this means that the crystal is the “orbit” of a finite set of points under a discrete
group L of translations, and in particular that each element of L is a symmetry of the crystal, i.e.
maps it to itself. The discrete translation group L is the generating symmetry group of the crystal.

We now look at plane waves,

E0(y) = neik0·y, n ∈ C3, k0 ∈ R3, k0 · n = 0. (43)

12



Plane waves also have a translation symmetry. Their values at different positions just differ by
phase factors,

E0(x0 + a) = (phase factor depending on a) E0(x0) for all a ∈ R3, (44)

with
(phase factor in (44)) = eik0·a. (45)

Mathematically, eq. (44) means that the wave, a vector field on R3, is an “eigenfunction” of the
operator which translates a vector field by a vector a ∈ R3, T−a : E0 7→ E0(·+ a). These operators
form a continuous group which describes the action of the continuous translation group T on
vector fields (as already discussed in the previous section). Hence plane waves are simultaneous
eigenfunctions of the continuous translation group T .

We now come to the interaction between wave and structure. The interaction occurs via the
generalized structure factor (27) in the diffracted radiation field. Assume for simplicity that the
density is a sum of delta functions at the atom positions, ρ(y) =

∑
a∈L δx0+a(y). Then this factor is

fE0(k′) =

∫
R3

E0(y)ρ(y)e−ik
′·ydy =

∑
a∈L

E0(x0 + a)e−ik
′·a. (46)

The eigenfunction property (44) of the waves holds in particular for the crystalline translations
a ∈ L, and so it follows that

fE0(k′) =

(∑
a∈L

(phase factor depending on a) e−ik
′·a

)
E0(x0). (47)

Thus the diffraction behaviour is reduced to a phase factor sum. The phase factors come from
the symmetry of the wave. The points where they are evaluated come from the symmetry of the
structure. And the sum “behaves nicely”: it interferes constructively when e−i(k

′−k0)·a = 1 for all
a ∈ L, i.e. when k′ − k0 belongs to the reciprocal lattice L′, and destructively otherwise.

To get constructive interference, it would be enough if the wave had just the same symmetry as
the crystal, i.e. if (44)–(45) was only true for a’s in the discrete translation group L.3 But to get
destructive interference when the incoming radiation parameter k0 or the lattice parameters A are
tuned off resonance, one needs (44)–(45) for all a.

In summary, the discrete diffraction patterns of classical X-ray crystallography can be traced to
the fact that crystals and plane waves have matching symmetries. Constructive interference comes
from the fact that plane waves share the symmetry of crystals. Destructive interference comes from
the fact that plane waves have a larger, continuous symmetry group.

Everything so far is just an abstract rationalization of a very well known phenomenon. But can it
be generalized?

The key is to realize that the foundation on which X-ray crystallography is built, the complex
exponential form (43), can actually be derived from the innocent looking eigenvalue equation (44).

3This condition has infinite-dimensionally many solutions: it just means that the electric field multiplied by a
complex exponential, E(x)e−i(k

′−k0)·x, shares the periodicity of the crystal. In the context of electron wavefunctions
instead of electric fields, such waves are known as Bloch waves.
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If we combine two translations, x 7→ (x + a) 7→ (x + a) + b, we can either apply (50) to the whole
translation, or separately to the two translations by a and b, and so

(phase factor at a + b) = (phase factor at a) · (phase factor at b). (48)

Mathematically, this means that the phase factor is a group homomorphism from the translation
group to the multiplicative group C\{0}. And the only such group homomorphisms are the scalar
complex exponentials (45)! Eq. (45) together with (44) implies (8) (with polarization vector
n = E0(x0)), up to the orthogonality constraint on n and k0. The latter follows from Maxwell’s
equations, (5). So plane waves are those solutions to (44) which satisfy Maxwell. (See Theorem 8.1
for a precise statement.)

Thus we have a path from crystals to plane waves,

crystal −→ generating symmetry group (49)

−→ continuous extension of symmetry group

−→ eigenfunctions of continuous symmetry group which solve Maxwell.

This path can be generalized. We can start from any structure which is generated by a symmetry
group, but the group does not need to consist of translations. Any discrete subgroup of the euclidean
group E(3) is fine. Many interesting structures in biology and nanotechnology have this form,
with the generating subgroup often being a discrete helical group. The continuous extension of
the group is then the helical group He described in eq. (41). Solving the resulting combined
eigenfunction/Maxwell problem will give a different family of incoming waves.

The non-crystalline but highly symmetric structures which are generated by some discrete sub-
group of E(3) form an interesting class. This class was recently introduced and studied by one
of us [Ja06], and has been named objective structures. Like crystals, objective structures can be
completely classified [DEJ].

The remarkable constructive/destructive interference properties of the structure factor (46) sur-
vive when structure and radiation are governed by non-translational symmetry groups. Here we can
rely on the fact that mathematicians such as A. Weil [We64] realized a long time ago – albeit with
a completely different motivation, number theory rather than molecular biology – that the Poisson
summation formula (38) has far-reaching generalizations to sums of delta functions over discrete
subgroups of continuous groups. For details we refer to Section 11.

To conclude this section, we formulate the design problem suggested by the path (49) precisely,
as a system of equations. As just discussed, crystals can be replaced by structures generated by a
symmetry group which may contain rotations.

Definition 7.1 (Design equations). Let G be a closed subgroup of the euclidean group E(3)
– the “desired symmetry of the radiation”. (Typically, G is obtained as a continuous extension
G ⊃ G0 of a discrete subgroup G0 of E(3) – the “generating symmetry of a structure”.) A vector
field E0 : R3 → C3 solves the design equations for G if:

(i) E0 is a joint eigenfunction of all group elements g ∈ G; that is to say,

gE0 = χ(g) E0 for some χ(g) ∈ C and all g ∈ G. (50)

Here the left hand side is given by eq. (39) which describes the action of the euclidean group E(3)
on vector fields.
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(ii) E0 is a bounded solution to the time-harmonic Maxwell equations

∆E0 = −ω
2

c2
E0 for some ω > 0, (51)

div E0 = 0. (52)

Note that the transformed field gE0 (left hand side in (i)) reduces to the left hand side of (44) when
the group element g is given by the translation (I| − a).

In the next two sections, we will solve the design equations for some interesting examples. We
will make use of the fact that as for (44), the eigenvalue χ(g) as a function of g must be a group
homomorphism:

Lemma 7.1 (Character lemma). If E0 is any solution to the design equations for the group G
which is not identically zero, then the function χ : G → C in Def. 7.1 is a bounded continuous
group homomorphism from G to the multiplicative group C\{0}.

Proof The argument is the same as that leading to eq. (48). Eq. (50) shows that for g1, g2 ∈ G,

χ(g1g2)E0 = (g1g2)E0 = g1(g2E0) = χ(g1)g2E0 = χ(g1)χ(g2)E0. (53)

Evaluation at a point x where E0 is not zero shows that χ is a group homomorphism. Boundedness
and continuity of χ are a direct consequence of the same properties for E0.

In the case when G is abelian, the bounded continuous group homomorphisms to C\{0} are called
the characters of G. The group of characters

G′ := {χ : G→ C\{0} : χ is a character of G} (54)

is called the dual group of G, because of the duality relation (G′)′
∼
= G.

As will become clear after having discussed some examples, the dual group G′ can be interpreted
physically as a “wavevector space” which parametrizes the radiation that solves the design equations,
just as the wavevectors k0 in (43) parameterize plane waves.

Finally we remark that the design equations as stated in Definition 7.1 are intrinsically abelian, and
should really only be used for abelian G. Namely, (54) shows that the action of G on simultaneous
eigenfunctions must be abelian, (g1g2)E0 = (g2g1)E0, since the right hand side in (53) is independent
of the order of the gi.

For non-abelian but compact subgroups G of E(3), a generalization of the design equations
which can yield radiation families on which G acts in a non-abelian way has been worked out by
one of us, and will be presented elsewhere [Ju15]. This may be of interest to analyze structures
such as buckyballs and icosahedral viruses [CK62], which are generated by non-abelian discrete
symmetries. In this case the right notion of characters of G is not given by (54), and has the
structure of a hypergroup [La15] instead of a group.

8 Plane waves as solution to the design equations

After having formalized our design criterion for structure-adapted radiation into a set of equations
(Definition 7.1), we can state our insight from Section 7 that plane waves are right for crystals as
a mathematical theorem.
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Theorem 8.1 (Plane waves are right for crystals). Let G be the translation group T (see
(40)). Then the solutions to the design equations (Def. 7.1) are precisely the plane waves

E0(x) = n eik0·x, k0 ∈ R3, n ∈ C3, k0 · n = 0. (55)

Proof By the character lemma, the function χ : G → C in (50) must be a character of T . The
characters are well known to be given by

χk(a) = eik·a, k ∈ R3.

Fix k0 ∈ R3 and consider the character χ−k0 . The first eq. ((i) in Def. 7.1) says that

E0(· − a) = ei(−k0)·aE0 for all a ∈ R3.

Evaluation at x = a gives E0(0) = e−ik0·xE0(x), that is to say E0 is of form neik0·x with n = E0(0).
The first of the Maxwell equations in Def. 7.1 holds automatically. The second one holds if and
only if k0 · E0(0) = 0. This completes the proof.

The proof says that fixing a wavevector k0 corresponds precisely to fixing a character χ : G→ C in
the symmetry condition (50). For each fixed character, the solutions of the design equations form
a complex vector space parametrized by {n ∈ C3 : k0 · n = 0}. This vector space has dimension 2,
except in the special case χ = 1, where the dimension is 3.

Let us also look at what happens in the closely related case when G is a two-dimensional translation
group,

Te⊥ = {(I|a) : a ∈ R3, a · e = 0}. (56)

Here e is a given unit vector in R3. This group naturally arises as the continuous extension of
the discrete generating symmetry group G0 of a 2D crystalline sheet, an important example being
graphene. For the group (40), we claim that the solutions to the design equations (Def. 7.1) are
the plane-wave pairs

E0(x) = n+e
ik0·x + n−e

i(I−2e⊗e)k0·x, n± ∈ C3, k0 · n+ = 0, (I− 2e⊗ e)k0 · n− = 0, (57)

with the corresponding frequency in the design equations given by ω = c|k0|. Note that the two
wavevectors k0 and (I−2e⊗e)k0 are the mirror images of each other with respect to the symmetry
plane k · e = 0.

We sketch the argument leading to (57). We may assume e = (0, 0, 1). The eigenfunction prop-
erty under the symmetry gives E0(x1, x2, x3) = ei(k1x1+k2x2)E0(0, 0, x3) for some planar wavevector
(k1, k2) ∈ R2. The fact that E0 must be a bounded solution to Maxwell’s equations then gives that
the dependence on x3 is also of complex exponential form, E0(0, 0, x3) = n+e

ik3x3 + n−e
−ik3x3 . The

remaining assertions are then straightforward.

9 Twisted waves

We now look at the case when G is the helical group He, (41). This group naturally arises as the
continuous extension of any discrete generating symmetry group of a helix or nanotube structure.
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We parametrize the group by the rotation angle θ about the helical axis e,

He = {(Rθ|τe) : θ ∈ [0, 2π), τ ∈ R}, Rθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (58)

It will be convenient to work in cylindrical coordinates with respect to the helical axis, that is to
say

e = e3 =

0
0
1

 , x =

x1

x2

x3

 =

r cosϕ
r sinϕ
z

 , r ∈ [0,∞), ϕ ∈ [0, 2π), z ∈ R. (59)

In cylindrical coordinates, the action (39) of the helical group on vector fields assumes the following
simple form: (

(Rθ|τe)E
)

(r, ϕ, z) = RθE(r, ϕ− θ, z − τ). (60)

See Figure 3. Here and below, E is a function from polar coordinate space to the cartesian space

Figure 3: Action of the helical group on vector fields and design of twisted waves. Start from a given
vector field E. The transformed field E′ (right hand side of eq. (60)) under the action of a typical
element of the helical group is obtained as follows: (i) translate the base points along the helical
axis e by some amount τ while leaving the field direction unchanged; (ii) rotate the base points by
some angle θ; and (iii) rotate the field direction by the same angle. The design equations require
that the transformed field only differs from the original field by a phase factor, regardless of how τ
and θ are chosen. Time-harmonic electric fields with this property are named twisted waves, and
can be proven to have the mathematical form (61) (see Theorem 9.1).

R3, that is to say E1, E2, E3 are the cartesian field components of E and the action of the group
on the direction of the field vectors is the usual action of the 3×3 matrix Rθ on vectors.

Theorem 9.1 (Twisted waves). Let G be the helical group He with axis e. Then the solutions
to the design equations (Def. 7.1) are precisely

E0(r, ϕ, z) = ei(αϕ+βz) Rϕ N(n)

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 , (61)

with (α, β, γ) ∈ Z× R× (0,∞) (“parameter vector”), n ∈ C3 (“polarization vector”), and

(0, γ, β) · n = 0. (62)
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Here N(n) is a certain 3×3 matrix (“polarization tensor”) which depends linearly on the polarization
vector n,

N(n) =

n1+in2

2
n1−in2

2
0

n2−in1

2
n2+in1

2
0

0 0 n3

 , (63)

the Jα are Bessel functions, (r, ϕ, z) are cylindrical coordinates (59) with respect to the helical axis,
and E0 is the cartesian field vector. The associated frequency in the design equations is given by
ω = c|(0, γ, β)|.

We call the electric fields (61)–(63) twisted waves. Figure 1 in the Introduction shows the twisted
wave with parameter vector (α, β, γ) = (5, 3, 1) and polarization vector n = (1, 0, 0).

As already remarked in the Introduction, twisted waves consist of four factors: a scalar plane
wave on the cylinder; a rotation matrix which rotates the field direction along with the base point;
a somewhat mysterious polarization tensor; and a vector of three Bessel functions of neighbouring
order.

A subtle aspect is that each twisted wave possesses two analoga of the plane-wave wavevector
k0 in (55): first, the parameter vector (α, β, γ) which parametrizes the radiation and consists of
an angular, an axial and a radial wavenumber; and second, the cartesian vector (0, γ, β) which
determines the allowed plane of polarization vectors as well as the frequency ω of the wave (or,
equivalently, its wavelength, see eq. (10)). The latter vector has a simple but non-obvious physical
meaning which will emerge in Section 14.

The parameters α and β can be interpreted as eigenvalues of angular momentum respectively
momentum. Namely, it is easily checked that the twisted wave (61), (63) is an exact solution to the
eigenvalue equations

JzE0 = αE0, PzE0 = β E0, where Jz =
1

i

∂

∂ϕ
+

0 −i
i 0

0

, Pz =
1

i

∂

∂z
. (64)

Here Pz is the well known quantum mechanical momentum operator in axial direction, and Jz is
the correctly defined angular momentum operator on vector fields with respect to the helical axis
(whose cartesian form (65) can be found in [CT97]). These operators arise in our context of classical
electrodynamics as the infinitesimal generators of the action (39) of the rotational and translational
subgroup of the helical group (58) on vector fields: in cartesian coordinates,

d

dθ
RθE(R−1

θ x)
∣∣∣
θ=0

=
(
−e · (x ∧∇) + e∧

)
E(x) =

1

i
(JzE)(x), (65)

d

dτ
E(x− τe)

∣∣∣
τ=0

= −(e · ∇)E(x) =
1

i
(PzE)(x). (66)

We remark that the eigenvalue equations (64) are equivalent to the design equation (50) with
character χ(θ, τ) = e−i(αθ+βτ).

Proof We split the proof into three parts, dealing in turn with the three conditions in Def. 7.1:
the symmetry condition, the Helmholtz equation, and the divergence condition.

Step 1: Symmetry condition. By the character lemma, the function χ in (50) must be a
character of the helical group He. The parametrization (58) shows that the helical group He is
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isomorphic to S1 × R, where S1 ∼
= [0, 2π) with the usual addition of angles modulo 2π. The

characters χ : S1 × R→ C\{0} of S1 × R are well known to be

χα,β(θ, τ) = ei(αθ+βτ), (α, β) ∈ Z× R.

In particular, the dual group (54) is given by

(He)
′ ∼= Z× R.

Fix (α, β) ∈ Z×R and consider the character χ−(α,β) : S1×R→ C\{0}. The first design equation
((i) in Def. 7.1) says that

RθE0(r, ϕ− θ, z − τ) = ei(−αϕ−βτ)E0(r, ϕ, z).

Evaluation at ϕ = θ, z = τ gives

E0(r, ϕ, z) = ei(αϕ+βz)RϕE0(r, 0, 0). (67)

Step 2: Helmholtz equation. Substituting the ansatz (67) into the Helmholtz equation (first
of the Maxwell equations in Def. 7.1) gives an ordinary differential equation for E0(r, 0, 0). But
unlike in the case of the 2D translation group Te⊥ , due to the presence of the rotation matrix Rϕ

this ODE will not decouple into independent ODE’s for the components.
The idea to overcome this difficulty is to simultaneously diagonalize the matrices Rϕ, ϕ ∈ [0, 2π),

with a unitary transformation. Simultaneous diagonalization is possible because the group SO(2)
of these matrices is abelian. We have

Rϕ = U

eiϕ e−iϕ

1

U−1 for all ϕ ∈ [0, 2π), with U =

 i√
2

−i√
2

0
1√
2

1√
2

0

0 0 1

 . (68)

Let Ẽ(r, ϕ, z) := U−1E0(r, ϕ, z). By (67) and (68), we have

Ẽ(r, ϕ, z) = ei(αϕ+βz)

eiϕ e−iϕ

1

 Ẽ(r, 0, 0). (69)

Since the Helmholtz equation is invariant under the transformation E0 7→ Ẽ = U−1E0, we can
substitute Ẽ into this eq. and obtain, using that the Laplacian in cylindrical coordinates is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂ϕ2
+

∂2

∂z2
,

the following ODE for the components:(
∂2

∂r2
+

1

r

∂

∂r
− (α + σj)

2

r2
+
(
(ω
c
)2 − β2

))
Ẽj(r, 0, 0) = 0, j = 1, 2, 3, (70)

where σ1 = 1, σ2 = −1, σ3 = 0. That is to say, the radial functions Ẽj(r, 0, 0) are solutions to
Bessel’s equation. Boundedness of Ẽj implies that we must have (ω/c)2 − β2 ≥ 0. Moreover, for
integer values of α there is only a one-dimensional space of bounded solutions, given by

Ẽj(r, 0, 0) = cjJα+σj(γr), γ =
√

(ω
c
)2 − β2, cj ∈ C. (71)
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By applying U we obtain the original field E0(r, 0, 0),

E0(r, 0, 0) = U diag(c)

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 , c ∈ C3,

with γ as in (71). For reasons that are not apparent at this point but will emerge later, it is fruitful
to parametrize the solution space not by c ∈ C3 but by

n := Uc =

i c1−c2√
2

c1+c2√
2

c3

 ∈ C3. (72)

It follows that

E0(r, 0, 0) = N(n)

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 , n ∈ C3, N(n) := U diag(U−1n). (73)

Here and below, diag(c) denotes the diagonal matrix whose diagonal entries are given by the
components of the vector c. Using the explicit form of U (see eq. (68)) it is easy to check that the
3 × 3 matrix N(n) introduced above is given by the expression in the theorem. Substitution into
(67) shows that E0 has the form (61), except that n ∈ C3 is still arbitrary.

Step 3: Divergence condition. It remains to analyze the second Maxwell equation, div E0 =
0. This is not straightforward, due to the fact that the field components are cartesian but the
coordinates are cylindrical. We begin by expressing the field components in cylindrical coordinates
also.

We denote the unit vectors in the direction of r, ϕ and z by er, eϕ, ez, that is to say

er =

cosϕ
sinϕ

0

 , eϕ =

− sinϕ
cosϕ

0

 , ez =

0
0
1

 . (74)

The cylindrical field components are Er = er ·E0, Eϕ = eϕ ·E0, Ez = ez ·E0. Since the cylindrical
unit vectors are the image of the cartesian unit vectors under the rotation Rϕ, i.e. er = Rϕe1,
eϕ = Rϕe2, ez = Rϕe3, the rotation matrix cancels from the cylindrical field components:

Er = ei(αϕ+βz)E0(r, 0, 0) · e1, Eϕ = ei(αϕ+βz)E0(r, 0, 0) · e2, Ez = ei(αϕ+βz)E0(r, 0, 0) · e3.

Moreover, in terms of c = U−1n the polarization tensor is

N(n) =

 ic1√
2
−ic2√

2
0

c1√
2

c2√
2

0

0 0 c3

 . (75)

It follows thatErEϕ
Ez

 (r, ϕ, z) = ei(αϕ+βz)N(n)

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 = ei(αϕ+βz)

 i√
2
(c1Jα+1(γr)− c2Jα−1(γr))

1√
2
(c1Jα+1(γr) + c2Jα−1(γr))

c3Jα(γr)

 . (76)
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Applying the formula for the divergence of a vector field v in cylindrical coordinates,

div (vrer + vϕeϕ + vzez) =
∂vr
∂r

+
1

r
vr +

1

r

∂vϕ
∂ϕ

+
∂vz
∂z

, (77)

gives

div E0 =ei(αϕ+βz)

{
i√
2

(
c1γJ

′
α+1− c2γJ

′
α−1+

c1

r
Jα+1−

c2

r
Jα−1

)
+ 1√

2

(
iαc1

r
Jα+1+

iαc2

r
Jα−1

)
+ iβc3Jα

}
.

Here we have dropped the argument γr of the Bessel functions. By Bessel’s identities

J ′α+1(z) = Jα(z)− α+1

z
Jα+1(z), J ′α−1(z) = −Jα(z) +

α−1

z
Jα−1(z), (78)

the terms involving Jα+1 and Jα−1 cancel and we obtain the final result

div E0 = i

(
γ
c1 + c2√

2
+ βc3

)
ei(αϕ+βz)Jα(γr) = i ((0, γ, β) · n) ei(αϕ+βz)Jα(γr). (79)

In the last equation we have re-expressed the vector c in terms of n. In particular, we see that the
field is divergence-free if and only if eq. (62) holds. This completes the proof of Theorem 9.1.

Next we present an interesting algebraic property of the somewhat mysterious polarization tensor
which emerged from the above proof.

Lemma 9.1 (Intertwining lemma). The polarization tensor N(n) introduced in (73) satisfies

RϕN(n) = N(n)

eiϕ e−iϕ

1

 , for all n ∈ C3. (80)

Eq. (80) means that N(n) “intertwines” the standard representation and the diagonal representa-
tion of the rotational subgroup SO(2) of the helical group He on C3.

Proof By the diagonal representation (68) of Rϕ and the fact that diagonal matrices commute, we
have, abbreviating the diagonal matrix in the lemma by Dϕ,

RϕN(n) = U DϕU
−1N(n) = U Dϕdiag(U−1n) = U diag(U−1n)Dϕ = N(n)Dϕ.

The lemma immediately implies an equivalent and sometimes useful representation of the twisted
wave (61) which we note for future reference:

E0(r, ϕ, z) = ei(αϕ+βz)N(n)

eiϕ e−iϕ

1

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 . (81)

Finally we compute the magnetic field associated to a twisted wave. We use the cylindrical com-
ponents (76) of the wave and apply the formula for the curl of a vector field v in cylindrical
coordinates:

curl (vrer + vϕeϕ + vzez) =

∣∣∣∣∣∣
1
r
er eϕ

1
r
ez

∂
∂r

∂
∂ϕ

∂
∂z

vr r vϕ vz

∣∣∣∣∣∣ .
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After some calculation, we find using (78) that

curl E0 = ei(αϕ+βz)RϕN(ik0 × n)

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 , k0 :=

0
γ
β

 . (82)

That is to say, to obtain the curl one just has to replace the vector n inside the polarization tensor
by ik0 × n.

The magnetic field associated with the twisted wave (61) can be immediately read off from (7)
and (82):

B0(r, ϕ, z) = ei(αϕ+βz) Rϕ N( 1
ω
k0 × n)

Jα+1(γr)
Jα−1(γr)
Jα(γr)

 , with k0 as in (82). (83)

Hence for twisted waves, with the “right” definition of wavevector the map from E0 to B0 is precisely
the same map on the polarization vector n as for plane waves (8). A deeper understanding of this
fact will be achieved in Section 14.

10 The reciprocal lattice of a helical structure

Crystals are orbits of a finite set of atoms under a discrete group of translations (a lattice). Helical
structures are orbits of a finite set of atoms under a discrete subgroup of the helical group. For
the latter structures, in the context of X-ray fiber diffraction a notion of “reciprocal helical lattice”
has been introduced by Klug, Crick, and Wyckham [KCW58], by periodically extending the helical
subgroup to a Bravais lattice in R2 and applying the concept of reciprocal Bravais lattice. We show
here that this notion of reciprocal helical lattice has an intrinsic group-theoretic meaning which
parallels, rather than needs to rely on, that of the reciprocal lattice in the crystal case. This group-
theoretic meaning will be very helpful in understanding and interpreting the diffraction patterns of
helical structures subjected to twisted waves.

Recall from (42) that the atomic positions in a crystal structure,

S = {x(ν)
0 + a : a ∈ L, ν = 1, ..,M},

are the orbit of a finite set of positions x
(1)
0 , ..,x

(M)
0 under a Bravais lattice L (i.e., a discrete subgroup

of the translation group of form L = AZ3 for some invertible 3×3 matrix A). Analogously, the
atomic positions in a helical structure,

S = {g x
(ν)
0 : g ∈ H0, ν = 1, ..,M}, (84)

are the orbit of a finit set of points x
(1)
0 , ..,x

(M)
0 under a discrete helical group, by which we mean a

discrete subgroup of the helical group He with axis e (see (41)) of form

H0 = {gi0h
j
0 : i ∈ Z, j = 1, .., n}, h0 = (Rθ0|τ0e), g0 = (R2π/n|0), θ0 ∈ [0, 2π), τ0 ∈ R, τ0 6= 0, n ∈ N.

(85)
In case n = 1, g0 is the identity and S is a helix. In case n > 1, S is the union of n helices,
basic examples being “zigzag” or “armchair” carbon nanotubes. The parameters τ0 and θ0 of the

22



generating screw displacement h0 encode the pitch p and the number q of subunits per turn of the
helices. The pitch is defined as the axial displacement for one full rotation,

p = τ0
2π

θ0

, (86)

and the number of subunits (i.e. rotated and translated copies of the set {x(1)
0 , ..,x

(M)
0 }) per turn is

q =
2π

θ0

. (87)

In physical and biological examples, the latter number is typically a rational number but not an
integer.

Before giving explicit examples, we bring formula (85) into a form more similar to a Bravais
lattice, by writing the group elements in the form (Rθ|τe). We have

gj0h
j
0 = (Rθ|τe) with θ =

2π

n
i+ θ0jmod 2π, τ = τ0j.

(Here θ̃mod 2π denotes the unique angle in [0, 2π) which differs from θ̃ by an integer multiple of
2π.) The above equations for θ and τ can be written more compactly as(

θ
τ

)
= i

(
2π
n

0

)
+ j

(
θ0

τ0

)
mod

(
2π
0

)
=

(
2π
n

θ0

0 τ0

)(
i
j

)
mod

(
2π
0

)
. (88)

Denoting this parameter set by H0, i.e.

H0 = AZn × Zmod

(
2π
0

)
with A =

(
2π
n

θ0

0 τ0

)
, (89)

it follows that

H0 = {(Rθ|τe) :

(
θ
τ

)
∈ H0}, θ0 ∈ [0, 2π), τ0 ∈ R, τ0 6= 0, n ∈ N. (90)

(Here, vmod(2π, 0) denotes the unique vector in [0, 2π) × R which differs from v by an integer
multiple of (2π, 0).) See Figure 4.

Example 1: Carbon nanotubes. All nanotubes are of form (84), (90). To give a specific
example, single-walled (6,5) Carbon nanotubes with axis e = (0, 0, 1) correspond to

M = 2 (number of atoms per unit cell)

n = 1 (single helix)

θ0 =
149

182
2π

τ0 =
3

2
√

91
` with ` = 1.43Ao (C-C bond length)

x(1) = (r, 0, 0), where r =

√
3
√

91

2π
` (nanotube radius)

x(2) = (Rθ0/3| τ3e) x(1).
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Example 2: Tobacco mosaic virus (TMV). This is a basic example of a filamentous virus, built
from a single protein. The protein molecules are arranged in a low-pitch helix, with 161

3
proteins

per turn and with adjacent turns in contact. The parameter values in (84), (90) are

M = 1284 (number of atoms in the protein)

n = 1 (single helix)

θ0 =
2π

161
3

=
3

49
2π

τ0 = 1.402Ao.

The values for θ0 and τ0, taken from [GZ11], correspond to the low-calcium state.

The groups in (90) are not some ad hoc ansatz. It can be shown that they are the lattice subgroups
of the helical group (41), whereas the Bravais lattices are the lattice subgroups of the translation
group (40).4

We now introduce a purely group-theoretical notion of reciprocal lattice. We first state this
notion in abstract mathematical language, then show how it reduces to familiar concepts in the
crystalline and helical case.

Definition 10.1 (Reciprocal lattice group) Let H0 be a lattice subgroup of the helical group
(see (90)), or more generally any lattice subgroup of a locally compact abelian group H. Recall from
(54) the dual group of H, H ′ = {χ : H → C\{0} : χ is a character of H}. The reciprocal lattice
group of H0 with respect to H is the set of those characters of H which are equal to 1 on H0, i.e.

H ′0 = {χ ∈ H ′ : χ(h) = 1 for all h ∈ H0}.

Thus mathematically, the reciprocal lattice group H ′0 is a subgroup of the dual group H ′. Physically,
the dual group consists of certain scalar waves parametrized by wavevectors or wavenumbers (see
the examples below), and the reciprocal lattice group consists of resonant waves, parametrized by
a subset of wavevector or wavenumber space which we call the reciprocal lattice.

In group theory, H ′0 is a well known object, called the annihilator of H0 (see e.g. [HR63]) or the
orthogonal group of H0 (see e.g. [RS00]; this terminology views the equation χ(h) = 1 as analogous
to the vanishing of a proper inner product between elements χ and h of some vector space) with
respect to H.

Example 1: Reciprocal lattice of crystals

a) Mathematical description. Let H be the translation group T = {(I|a) : a ∈ Rd}, and let L be
a Bravais lattice, i.e. L = AZd, A an invertible d× d matrix. The characters of H as functions of
a ∈ Rd are known to be the scalar plane waves

χk(a) = eik·a, k ∈ Rd.

4In group theory, a subgroup is called a lattice subgroup if it is discrete, i.e. has no accumulation points, and
there exists a set of finite volume (Haar measure) whose orbit under the subgroup gives the whole group. To derive
the representation (85), one shows and uses that each such subgroup must be the image of a lattice subgroup of the
two-dimensional translation group R2 under the map h : R2 → He defined by h(θ, τ) = (Rθmod 2π|τe).

24



Hence dual group H ′ and reciprocal lattice group H ′0 are

H ′ = {χk : k ∈ Rd},
H ′0 = {χk : k ∈ Rd, k · a ∈ 2πZ for all a ∈ AZd}.

b) Physical description. The characters χk ∈ H ′ are parametrized by the wavevectors k ∈ Rd. The
wavevector space which parametrizes the group H ′ is

H′ = Rd

and the set of wavevectors which parametrizes the reciprocal lattice H ′0 is

H′0 = {k ∈ Rd : k · a ∈ 2πZ for all a ∈ AZd},

recovering the standard definition (34) of the reciprocal lattice.

Example 2: Reciprocal lattice of helical structures.

a) Mathematical description. Let H be the helical group {(Rθ|τe) : θ ∈ [0, 2π), τ ∈ R} (see (58)),
and let H0 be a lattice subgroup, i.e. a group of form (90). The characters of H as a function of θ
and τ are known to be the cylindrical waves

χα,β(θ, τ) = ei(αθ+βτ), (α, β) ∈ Z× R. (91)

Hence dual group H ′ and reciprocal lattice group H ′0 are

H ′ = {χα,β : (α, β) ∈ Z× R}, (92)

H ′0 = {χα,β : (α, β) ∈ Z× R,
(
α
β

)
·
(
θ
τ

)
∈ 2πZ for all

(
θ
τ

)
∈ AZn × Zmod

(
2π
0

)
}. (93)

b) Physical description. The characters (91) are parametrized by an angular wavenumber α ∈ Z
and an axial wavenumber β ∈ R, yielding the following parameter space for the dual group H ′:

H′ = {(α, β) : α ∈ Z, β ∈ R} = Z× R. (94)

The reciprocal lattice is

H′0 = {(α, β) ∈ Z× R :

(
α
β

)
·
(
θ
τ

)
∈ 2πZ for all

(
θ
τ

)
∈ AZn × Zmod

(
2π
0

)
}. (95)

Using the explicit form (88) of H0, it follows that (α, β) belongs to the reciprocal lattice if and only
if

α
2π

n
∈ 2πZ, αθ0 + βτ0 ∈ 2πZ. (96)

The solutions (α, β) to this condition are easily computed and one obtains, analogously to (35),

H′0 = 2πA−TZ× Z =

(
n 0
−nθ0

τ0
2π
τ0

)
Z× Z = {i

(
n
−nθ0

τ0

)
+ j

(
0
2π
τ0

)
: i, j ∈ Z}. (97)

Formula (97) recovers the reciprocal helical lattice associated with a helical structure generated by
the group (90) as introduced in [KCW58], and reveals its group-theoretic meaning as a wavenumber
space which parametrizes the group (93). See Figure 4.
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Figure 4: A discrete helical group (left, eq. (90)) and the associated reciprocal helical lattice (right,
eqs. (93), (97)). Here θ is the rotation angle about the helical axis and τ the displacement along
the axis, and the reciprocal parameters α and β are an angular respectively axial wavenumber. The
slope of the reciprocal basis vector pointing to the right is the inverse pitch multiplied by 2π, by
eq. (86). The discrete helical group is a subset of the full helical group He=̃S

1×R (eq. (58), shaded
vertical strip), whereas the reciprocal helical lattice is a subset of the dual group Z × R (eq. (92),
shaded vertical lines).

11 Diffraction of twisted waves: twisted Von Laue condi-

tion

We now calculate the outgoing radiation when twisted waves are scattered off helical structures
of infinite length. The reciprocal helical lattice will naturally appear, due to its intrinsic group-
theoretic meaning derived in the last section which leads to an associated Poisson summation
formula on the helical group.

Let E0(x;α, β, γ) be a twisted wave (61) with parameters (α, β, γ) ∈ Z × R × (0,∞). By eq.
(17)–(18), the outgoing field scattered from a structure with electron density ρ is, assuming xc = 0,

Eout(x, t) = −ce`
ei(k(x)·x−ωt)

|x|

(
I− k′(x)

|k′(x)|
⊗ k′(x)

|k′(x)|

)
fE0(k′(x)) (98)

with outgoing wavevector k′ and structure factor fE0 given by

k′(x) =
ω

c

x

|x|
, fE0(k′(x)) =

∫
R3

E0(y;α, β, γ)ρ(y)e−ik
′(x)·ydy. (99)

The difficulty is to evaluate the structure factor and unearth the fact that it has a sharp peak
structure, which is far from obvious from eq. (99).

We will proceed in 5 steps: (1) transform to cylindrical coordinates; (2) eliminate the ensuing
phase nonlinearity of the plane-wave factor inside the integral (99) by expanding this plane wave
into cylindrical waves, which mathematically corresponds to a Fourier series expansion in the angle
variable (this step is not necessary in case of an axial detector); (3) treat the integration over ϕ′ ∈ S1

and z′ ∈ R jointly rather than separately, because these variables are “intertwined” in the electron
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density of a helical structure, and use Fourier calculus on the group S1 × R to essentially reduce
the integral to the Fourier transform of an infinite sum of delta functions on S1 ×R; (4) apply the
Poisson summation formula on the abelian group S1 × R, thereby obtaining a twisted analogue of
the Von Laue condition in case of an axial detector; (5) eliminate the expansion of Step 2 in case
of a non-axial detector.

Step 1 (Cylindrical coordinates). Let (r, ϕ, z) and (r′, ϕ′, z′) be cylindrical coordinates for x re-
spectively y, i.e. x is given by (59) and y1 = r′ cosϕ′, y2 = r′ sinϕ′, y3 = z′. Next, let (R,Φ, Z) be
the cylindrical components of the outgoing wavevector field k′(r, ϕ, z), i.e. k′ = Rer + Φeϕ + Zez,
with the cylindrical unit vectors of eq. (74). It follows that

R(r, ϕ, z) =
ω

c

r√
r2 + z2

, Φ(r, ϕ, z) = 0, Z(r, ϕ, z) =
ω

c

z√
r2 + z2

. (100)

With the help of the rotations Rϕ and Rϕ′ (see (58)), we have

k′(r, ϕ, z) = Rϕ

R0
Z

 , y = Rϕ′

r′0
z′

 .

Consequently the phase of the plane-wave factor in the integral (99) is

k′ · y = Rr′ cos(ϕ− ϕ′) + Z z′.

Substitution into the representation (81) of twisted waves in which the rotation matrix has been
diagonalized gives

fE0(k′(r, ϕ, z)) = N(n)

∫ ∞
0

∫
S1×R

ρ(r′, ϕ′, z′) ei(αϕ
′+βz′)

eiϕ′ e−iϕ
′

1

Jα+1(γr′)
Jα−1(γr′)
Jα(γr′)


· e−i(Rr′ cos(ϕ−ϕ′)+Z z′)r′dr′dϕ′dz′, (101)

where here and below, by
∫
S1×R dϕ

′dz′ we mean
∫ 2π

0

∫
R dϕ

′dz′.

Step 2 (Eliminate the phase nonlinearity). We expand the plane wave factor in (101) into cylindrial
waves, corresponding to a Fourier series expansion in the angle. The Fourier expansion of the 2π-
periodic function e−iA cos θ is the Jacobi-Anger expansion

e−iA cos θ =
∞∑

ν=−∞

(−i)νJν(A)eiνθ =
∞∑

ν=−∞

Jν(A)eiν(θ−π/2) (102)

where the Jν are Bessel functions. It follows that

fE0(k′(r, ϕ, z)) = N(n)
∞∑

ν=−∞

eiν(ϕ−π/2)

∫ ∞
0

Jν(Rr
′) (103)

·
[∫

S1×R
ρ(r′, ϕ′, z′)

 ei[(α+1−ν)ϕ′+(β−Z)z′]blablabla
blablaei[(α−1−ν)ϕ′+(β−Z)z′]bla
blablablablaei[(α−ν)ϕ′+(β−Z)z′]

 dϕ′dz′
]Jα+1(γr′)

Jα−1(γr′)
Jα(γr′)

 r′dr′.
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In the special case of an axial detector, i.e. (r, ϕ, z) = (0, 0, z), the cylindrical components of the
outgoing wavevector k′(r, ϕ, z) are

R = 0, Φ = 0, Z =
ω

c
sign(z). (104)

Thus the phase nonlinearity is absent and we obtain directly from (101) that

fE0(k′(0, 0, z)) = N(n)

∫ ∞
0

[∫
S1×R

ρ(r′, ϕ′, z′)

ei[(α+1)ϕ′+(β−Z)z′]blablabla
blablaei[(α−1)ϕ′+(β−Z)z′]bla
blablablablaei[αϕ

′+(β−Z)z′]

 dϕ′dz′
]Jα+1(γr′)

Jα−1(γr′)
Jα(γr′)

 r′dr′.

Note that in the case (104), the sum (103) indeed reduces to (105) as it should, because of the
property of Bessel functions that

Jν(0) = 1 for ν = 0 and 0 otherwise. (105)

Step 3 (Exploit helical symmetry and Fourier calculus on S1×R). Consider now a helical structure,
i.e. a structure generated by any discrete helical group H0 (see (90)). The electron density ρ will
be H0-periodic, that is to say

ρ(h−1y) = ρ(y) for all y ∈ R3 and all h ∈ H0, (106)

and rapidly decaying in the direction perpendicular to the helical axis. Typical examples of H0-
periodic densities are depicted in Figures 6 and 7. By choosing a suitable partition of unity, such a
ρ can be written as a sum of rotated and translated copies of a localized, rapidly decaying function
ψ,

ρ(y) =
∑
h∈H0

ψ(h−1y). (107)

In cylindrical coodinates, H0-periodicity means that

ρ(r′, ϕ′, z′) = ρ(r′, ϕ′ − θmod 2π, z′ − τ) for all

(
θ
τ

)
∈ H0, H0 = AZn × Zmod

(
2π
0

)
,

and the representation (107) means that

ρ(r′, ϕ′, z′) =
∑
a∈H0

ψ(r′, ϕ′ − a1 mod 2π, z′ − a2). (108)

The function ψ can for instance taken to be the restriction of ρ to the unit cell U of the structure,

ψ = ρU =

{
ρ in U
0 outside U

, U = {(r′, ϕ′, z′) : (ϕ′, z′) ∈ A [0, 1]2, r′ ∈ (0,∞)}, (109)

but other constructions with a smooth ψ make sense too.
The decomposition (107) of ρ can be fruitfully re-written as a convolution of ψ with an infinite

sum of delta functions,

ρ = ψ ∗
S1×R

δH0 , δH0 =
∑
a∈H0

δa,
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where the convolution on S1 × R is defined as

(f ∗
S1×R

g)(r, ϕ, z) =

∫
S1×R

f(r, ϕ− ϕ′mod 2π, z − z′) g(r, ϕ′, z′) dϕ′dz′. (110)

In the sequel we drop the subscript from the convolution sign. We now use Fourier calculus on
S1 × R. The Fourier transform F

S1×R
with respect to the angle and axis variables is a function on

the dual group (S1 × R)′
∼
= Z× R, defined as

(F
S1×R

f)(r,Φ, Z) =
1

2π

∫
S1×R

f(r, ϕ, z) e−i(Φϕ+Z z)dϕ dz. (111)

The square bracket in (103) has the form of such a Fourier transform on S1 × R:

[ ]
= 2π

FS1×R
(ψ ∗ δH0)(r′, ν − (α + 1), Z − β) 0 0

0 F
S1×R

(ψ ∗ δH0)(r′, ν − (α− 1), Z − β) 0

0 0 F
S1×R

(ψ ∗ δH0)(r′, ν − α,Z − β)

 .

Step 4 (Poisson summation formula on S1 × R). We now use the (trivial) convolution rule on
S1 × R,

F
S1×R

(f ∗ g) = 2πF
S1×R

f · F
S1×R

g, (112)

and the following nontrivial result from Fourier analysis on abelian groups which makes the recip-
rocal helical lattice appear:

Lemma 11.1 (Poisson summation formula on S1 × R). Let H0 be any discrete helical group
(see eq. (90)), and let H ′0 be the reciprocal lattice. The corresponding parametrizations H0 ⊂ S1×R,
(89), and H′0 ⊂ Z× R, (97), satisfy

F
S1×R

δH0 =
2π

| detA|
δH′0 . (113)

This identity is a special case of the general Poisson formula on locally compact abelian groups
going back to A. Weil [We64], see e.g. [RS00]5. A more elementary derivation of (113) is to first
consider the case θ = 0, where the result follows by combining the usual Poisson formula on R with
the following, elementary to check, Poisson formula on S1: if L = {2πj

n
: j = 0, .., n− 1}, then

δL(ϕ) =
n−1∑
j=0

δ 2πj
n

(ϕ), ϕ ∈ [0, 2π), δ̂L(ν) =
n

2π
δnZ(ν) =

n

2π

∑
a∈nZ

δa(ν), ν ∈ Z.

Here f̂(ν) denotes the Fourier coefficient (2π)−1
∫ 2π

0
e−iνϕf(ϕ) dϕ. Note that the delta functions in

the left sum are Dirac deltas, whereas the delta functions in the right sum are Kronecker deltas.
The general result (113) now follows from a suitable change of variables.

Eqs. (112), (113) yield

F
S1×R

(ψ ∗ δH0) =
(2π)2

| detA|
(F

S1×R
ψ) · δH′0 (114)

5In this context, the formula is stated and derived up to an overall multiplicative constant.
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and therefore

fE0(k′(r, ϕ, z)) =
(2π)3

| detA|
N(n)

∞∑
ν=−∞

eiν(ϕ−π/2)Dα,β,γ,ν(R,Z)

δH′0(ν − (α+1), Z − β)
δH′0(ν − (α+1), Z − β)
δH′0(ν − α,Z − β)

 , (115)

with Dα,β,γ,ν(R,Z) =

∫ ∞
0

Jν(Rr
′)

FS1×R
ψ(ν − (α + 1), Z − β)Jα+1(γr′) 0 0

0 F
S1×R

ψ(ν − (α− 1), Z − β)Jα−1(γr′) 0

0 0 F
S1×R

ψ(ν − α,Z − β)Jα(γr′)

 r′dr′.

For an axial detector (104), the sum over ν reduces to the contribution from the single term ν = 0,
thanks to (105). Moreover for ν = 0 the first Bessel factor, Jν(Rr

′), in the matrix-valued integral
in (115) equals 1. Hence the matrix components of the integral involve just one remaining Bessel
factor, and can thus be interpreted as a Hankel transform. Recall that for any α ∈ Z, the Hankel
transform of order α maps scalar functions of a radial variable belonging to the interval (0,∞) to
scalar functions on (0,∞), and is defined as

(Hαf)(γ) =

∫ ∞
0

f(r′) Jα(γr′) r′dr′ (γ > 0). (116)

It follows that

fE0(k′(0, 0, z)) =
(2π)3

| detA|
N(n)Dα,β,γ(Z)

δH′0(−(α+1), Z − β)
δH′0(−(α+1), Z − β)
δH′0(−α,Z − β)

 , (117)

with Dα,β,γ(Z) =

Hα+1FS1×R
ψ(γ,−(α + 1), Z − β) 0 0

0 Hα−1FS1×R
ψ(γ,−(α− 1), Z − β) 0

0 0 HαFS1×R
ψ(γ,−α,Z − β)

 . (118)

For the purpose of calculating the outgoing intensity, it is useful to write the delta function δH′0 as
a sum over reciprocal lattice vectors, δH′0 =

∑
a∈H′0

δa′ , and note that

δa′(−(α± 1), Z − β) = δ
a′±

(
1
0

)(−α,Z − β).

This yields the following alternative expression for the structure factor:

fE0(k′(0, 0, z)) =
(2π)3

| detA|
N(n)

∑
a′∈H′0

(
H−a′1FS1×R

ψ
)

(γ, a′)

δa′+
(

1
0

)
δ
a′−

(
1
0

)
δa′

 (−α,Z − β). (119)

Note that the delta functions in (119) are centered on shifted copies of the reciprocal lattice. Also,
we claim that the Fourier-Hankel transform of ψ which appears in (119) equals that of the electron
density (109) in the unit cell, i.e.

H−a′1FS1×R
ψ(γ, a′) = H−a′1FS1×R

ρU(γ, a′) for all a′ ∈ H′0. (120)
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This is because, for any ψ satisfying (107), including ψ = ρU , the Fourier transform (F
S1×R

ψ)(r′, a′)
is independent of ψ when a′ is a reciprocal lattice vector; indeed

(F
S1×R

ψ)(R′, a′) =

∫
S1×R

e
ia′·

(
ϕ′

z′

)
ψ(r′, ϕ′, z′)dϕ′dz′

=

∫
U
e
−ia′·(

(
ϕ′

z′

)
−a)
ψ(r′, ϕ′ − a1 mod 2π, z′ − a2) dϕ′dz′

=

∫
U
e
−ia′·

(
ϕ′

z′

)
ρ(r′, ϕ′, z′) dϕ′dz′ for all a′ ∈ H′0.

Here we have used that the factor eia
′·a in the middle line equals 1, and have employed (108).

The outgoing electric field can now be read off immediately from (98), (99), (119), (120). Note
in particular that the third field component vanishes, since the projection matrix in (98) annihilates
the third component of the structure factor when the outgoing wavevector k′ points in axial direction
±e3. See eq. (121) below.

When taking absolute values to obtain the intensity, it may happen that the two remaining
shifted copies H′0 + (1, 0) and H′0− (1, 0) of the reciprocal lattice appearing in (119) overlap, which
would lead to interference. These two copies overlap if and only if (2, 0) is a reciprocal helical lattice
vector. The following result, which is elementary to check, shows that this does not happen except
in a degenerate case which we propose to denote flat helical groups.

Lemma 11.2 (Flat helical groups). The following three statements about a discrete helical group
(85) are equivalent:

(1) The vector (2, 0) belongs to the reciprocal helical lattice, eq. (97).
(2) The parameters of the helical group satisfy θ0 = 0 or π, and n = 1 or 2.
(3) The structure generated by applying the helical group to any single point lies in a plane.

We summarize our findings as a theorem.

Theorem 11.1 (Twisted Von Laue condition). Consider a helical structure with electron den-
sity ρ : R3 → R, assumed to be smooth, H0-periodic with respect to some discrete helical group H0

(see eq. (85)), and rapidly decaying in the direction perpendicular to the helical axis. Assume that
the axis is e = e3, and let the incoming electric field be a twisted wave with same axis and parameter
vector (α, β, γ) ∈ Z × R × (0,∞) (see (61)–(63)). Recall that the frequency of this twisted wave is
ω = c|(0, γ, β)|. Then the diffracted electric field (98) at any point (0, 0, z) on the axis is

Eout(0, 0, z, t) = −ce`
ei(

ω
c
|z|−ωt)

|z|
(2π)3

| detA|
∑
a′∈H′0

(H−a′1FS1×R
ρU)(γ, a′) (121)

·

n1+in2

2
n1−in2

2
0

n2−in1

2
n2+in1

2
0

0 0 0


δa′+

(
1
0

)
δ
a′−

(
1
0

)
0

 (−α, ω
c
sign z − β).

Here Hα is the Hankel transform of order α with respect to the radial variable (see (116)), F
S1×R

is the Fourier series/transform with respect to the angular and axial variables (see (111)), ρU is
the restriction of the electron density ρ to the unit cell (see (109)), and H′0 is the reciprocal helical
lattice (see (93)).
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Moreover, when H0 is not a flat helical group (see Lemma 11.2), the square root of the outgoing
intensity is (

I(0, 0, z; α, β, γ)
)1/2

= c0
(2π)3

| detA|
1

|z|
∑
a′∈H′0

∣∣∣(H−a′1FS1×R
ρU)(γ, a′)

∣∣∣ (122)

·
( |n1 + in2|√

2
δ
a′+

(
1
0

) +
|n1 − in2|√

2
δ
a′−

(
1
0

))(−α, ω
c

sign z − β),

where c0 = ( cε0
2

)1/2ce`. In particular, constructive interference occurs if and only if the difference
between the angular/axial part (0, ω

c
sign z) of the outgoing wavevector and the angular/axial param-

eters (α, β) of the incoming twisted wave belongs to the reciprocal helical lattice shifted left or right
by precisely one angular wavenumber, H′0 ±

(
1
0

)
, or equivalently, if and only if

− α = i n± 1, τ0(ω
c

sign z − β) = −i n θ0 + 2πj for some integers i, j. (123)

Formulae (121), (122), (123) are the main result of this paper. They say that the signal of a
helical structure under co-axial twisted X-rays, recorded along the axis, consists of sharp peaks
with respect to the angular and axial radiation parameters. The peaks are double-peaks with a
distance of precisely two angular wavenumbers, centered at the reciprocal lattice vectors of the
helical structure. In particular, at the reciprocal lattice vectors themselves the signal vanishes. The
structural parameters τ0, θ0 in (85), or equivalently the pitch and the number of subunits per turn,
can be immediately read off from the peak locations, as can the order n of any rotational symmetry.

Moreover the above result makes it in principle possible to determine the electron density ρ, i.e.
the detailed atomic structure, from intensity measurements in the far field at a specific point on
the axis, provided the scalar phase problem associated with the Fourier-Hankel transform HαFS1×R
can be solved. Note that the values of this transform on the reciprocal helical lattice points which
appear in (122) completely determine the electron density; see Section 12 for details.

Next, we report an important invariance property of the axial signal of a helical structure.
Suppose the structure is translated by an amount ∆z along the helical axis, and rotated by an
amount ∆ϕ around the axis. (In other words, we apply an arbitrary element of the continuous
helical group (41) to the structure.) This modifies the original electron density ρU to

ρU
′(r, ϕ, z) = ρU(r, ϕ−∆ϕ, z −∆z). (124)

From the definition of the angular/axial Fourier transform, (111), it is clear that(
F
S1×R

ρU
′
)

(r,Φ, Z) = e−i(Φ ∆ϕ+Z ∆z)
(
F
S1×R

ρU

)
(r,Φ, Z). (125)

Thus this transform changes just by a phase factor. The Hankel transform Hα with respect to the
radial variable does not interfere with this phase factor, and so it follows that(

HαFS1×R
ρ′U

)
(γ,Φ, Z) = e−i(Φ ∆ϕ+Z ∆z)

(
HαFS1×R

ρU

)
(γ,Φ, Z) for all γ, Φ, Z. (126)

In particular, the outgoing intensity (122), which only depends on the absolute value of the ex-
pression (126), is invariant under axial translations and rotations of the structure. This is not
a fortuitous accident, but stems from the fact that the design equations, Def. (7.1), require the
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incoming wave to be an eigenfunction of each element of the continuous helical group (41). From
this one easily sees that the invariance remains true for helical structures of finite length.

By comparison, the signal produced by fiber diffraction, i.e. by sending plane wave X-rays
towards a helical structure from a perpendicular direction, is only invariant under axial translation
but not under axial rotation; the latter is a well known major problem in the interpretation of fiber
diffraction images.

Step 5 (Arbitrary outgoing direction). Finally, we calculate the outgoing radiation in arbitrary
direction. Before doing so, we note the simple group-theoretic reason for why one expects the
radiation to be much more complicated when dropping the restriction to axial outgoing wavevectors.
Only in this case is the factor e−ik

′(x)·y appearing in (99) a character of the helical group He, i.e.
an element of the dual group H ′ of the helical group, which – as explained in Section 9 – is the
parameter space for twisted waves. But this is necessary in order that the outgoing wavevector just
causes a shift of the incoming radiation parameters as in (121)–(122).

Indeed, the outgoing radiation in non-axial direction is more complicated. We start from the
expression (115), and focus on the first component of the (vector-valued) sum over ν. We have, for
any three functions f , g, h on Z,∑

ν

f(ν) g(ν − (α+1))h(α+1)δH′0(ν − (α+1), Z − β) =
∑
a′∈H′0

f(a′1 + α+1) g(a′1)h(α+1) δa′2(Z − β).

It follows that

fE0(k′(r, ϕ, z)) =
(2π)3

| detA|
N(n)

∑
a′∈H′0

δa′2(Z − β)Da′1,α
(ϕ)

∫ ∞
0

(F
S1×R

ψ)(r′, a′)

Ja′1+α+1(Rr′)Jα+1(γr′)
Ja′1+α−1(Rr′)Jα−1(γr′)
Ja′1+α(Rr′)Jα(γr′)

 r′dr′

with Da′1,α
(ϕ) =

ei(a′1+α+1)(ϕ−π/2) 0 0
0 ei(a

′
1+α−1)(ϕ−π/2) 0

0 0 ei(a
′
1+α)(ϕ−π/2)

 . (127)

Denoting the product f(r′, ϕ′, z′) = Jν(Rr
′)ψ(r′, ϕ′, z′) by f = Jν(R · )ψ and using eq. (109), this

formula for the structure factor can be written more compactly as

fE0(k′(r, ϕ, z)) =
(2π)3

| detA|
N(n)

∑
a′∈H′0

δa′2(Z − β)Da′1,α
(ϕ)


Hα+1FS1×R

(
Ja′1+α+1(R · )ρU

)
Hα−1FS1×R

(
Ja′1+α−1(R · )ρU

)
HαFS1×R

(
Ja′1+α(R · )ρU

)
 (γ, a′).

(128)
This is the generalization of formula (119) to an arbitrary outgoing direction. Thus the far field
observed from any direction still exhibits a sharp peak structure in the axial wavenumber β. More
precisely, by (97), resonance occurs when

τ0(Z − β) = −i n θ0 + 2πj for some integers i, j. (129)

But the signal is spread out over angular wavenumbers α that need not be related to the reciprocal
lattice. In the limit of the radial component R of the outgoing wavevector tending to zero, the
Bessel factors Ja′1+α+σ(R · ) (σ = 0, 1,−1) in front of the unit cell electron density ρU converge to
the delta functions δa′1+α+σ, reducing (128) back to the axial formula (119).
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If the structure factor is averaged over outgoing wavevecors with fixed angle to the helical axis,
sharp peaks appear also with respect to the angular wavenumber. More precisely, the average of
the diagonal matrix Da′1,α

(ϕ) over ϕ is a diagonal matrix of delta functions, eg. the upper left entry
is 1 if a′1 + α + 1 = 0 and zero otherwise. As a consequence,

1

2π

∫ 2π

0

fE0(k′(r, ϕ, z)) dϕ =
(2π)3

| detA|
N(n)

∑
a′∈H′0

(
H−a′1FS1×R

(J0(R · )ρU)
)

(γ, a′)

δa′+
(

1
0

)
δ
a′−

(
1
0

)
δa′

 (−α,Z−β).

(130)
The only difference as compared to the structure factor (119) in axial direction is the zeroth order
Bessel factor in front of the unit cell electron density. In particular, by (97), resonance of the kth

component of the averaged structure factor occurs when

− α = i n+ σk, τ0(Z − β) = −i n θ0 + 2πj for some integers i, j, (131)

where σk = 1 for k = 1, −1 for k = 2, and 0 for k = 3. If this averaged signal can be realized
experimentally, the observation direction (which influences the axial component Z of k′) can be
varied to detect resonance.

12 Synthesis of electron density

As shown in the previous section, subjecting a helical structure to twisted X-rays and recording the
intensity of the scattered radiation in axial direction yields the data set{

|G(γ, α, β)|2 : γ ∈ (0,∞), (α, β) ∈ H′0
}
, (132)

where G is the Fourier-Hankel transform of the unit cell electron density ρU ,

G(γ, α, β) =
(
HαFS1×R

ρU

)
(γ, α, β) =

1

2π

∫ ∞
0

∫∫
U
e−i(αϕ+βz)Jα(γr) ρU(r, ϕ, z) r dr dϕ dz (133)

and H′0 is the reciprocal helical lattice of the structure. Assume that the phases of the Fourier-
Hankel coefficients G in (132) can be retrieved. Then the electron density in the unit cell is recovered
by

ρU(r, ϕ, z) =
1

2π

∑
(
α
β

)
∈H′0

(
HαG( · , α, β)

)
(r) ei(αϕ+βz)

=
1

2π

∑
(
α
β

)
∈H′0

∫ ∞
0

Jα(γr)G(γ, α, β) γ dγ ei(αϕ+βz). (134)

To show this, one first notes that the Fourier-Hankel transform in (133) is a combination of a Fourier
series in the angle, a Fourier transform in the axial variable, and a Hankel transform in the radial
variable, and is thus invertible. One then exploits formula (114) with ψ = ρU , and uses that the
inverse of the Hankel transform (116) is given by(

H−1
α f̃

)
(r) =

∫ ∞
0

f̃(γ) Jα(γr) γ dγ. (135)
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The overall situation is thus the same as in standard X-ray crystallography: the electron density
can be reconstructed provided we can solve a scalar phase problem. The only difference is that we
have to deal with a

New phase problem. Reconstruct a function ρU given the absolute value of its Fourier-Hankel
transform G defined by (133).

Numerical investigations which will be reported elsewhere [JJF15] indicate that standard phase
retrieval algorithms for the Fourier transform can be adapted without difficulty to the Fourier-
Hankel case.

13 Simulated diffraction pattern of carbon nanotube and

tobacco mosaic virus

Here we present simulated diffraction patterns of helical structures subjected to twisted waves. The
set-up is as in Figure 2 of the Introduction, that is to say incoming waves, structure and detector
are axially aligned. As pointed out earlier (see (126)), the signal is invariant under axial translations
and rotations of the structure.

We consider two examples, a (6,5)-Carbon nanotube and TMV virus. The parameters are as
in Example 1 respectively 2 of Section 10, with the TMV atomic positions taken from the Protein
Data Bank, PDB ID 3J06 [GZ11]. We use the electromagnetic model (98), (99), (24) to calculate
the signal from structures of finite length:

• C nanotube: 255 unit cells, corresponding to 510 atoms.

• TMV: 147 proteins, corresponding to 3 helical repeats and 188 748 atoms.
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Figure 5: Twisted X-ray pattern of a (6,5)-carbon nanotube with 510 atoms. The electron density
of each atom was modelled by a Gaussian. Right: Iso-surface of electron density. Top: Log
intensity of diffracted radiation as a function of angular wavenumber α and axial wavenumber β of
incoming wave. Bottom: Theoretical peak locations, eq. (122). Incoming twisted X-ray wavelength:
λ = 1.54 Ao (Cu Kα line).
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Figure 6: Twisted X-ray pattern of 3 helical repeats of TMV (147 proteins, 188 748 atoms). For
simplicity, atomic form factors were ignored and the electron density of each atom was modelled as a
delta function. Right: Iso-surface of electron density. Top: Log intensity of diffracted radiation as a
function of angular wavenumber α and axial wavenumber β of incoming wave. Bottom: Theoretical
peak locations, eq. (122). Incoming twisted X-ray wavelength: λ = 1.54 Ao (Cu Kα line).

The results in Figures 5 and 6 show that already relatively short pieces of a helical structure
exhibit the theoretically predicted patterns. In particular, one sees double-peaks centered at the re-
ciprocal helical lattice points which would be difficult to interpret correctly in terms of scalar models
of the incoming wave and the diffraction pattern. Moreover, very high contrast between peaks and
background is observed; note that in fiber diffraction the contrast in the direction perpendicular to
the fiber is limited for theoretical reasons [CCV52].

14 Fourier representation of twisted waves

We now derive the expansion of twisted waves into plane waves, or mathematically: the Fourier
decomposition of twisted waves. This leads to a simple physical interpretation of the polarization
vector n and the “cartesian reduced wavevector” k0 = (0, γ, β) appearing in (61)–(63), both of
which have remained somewhat mysterious up to now. It also suggests a possible route to realizing
approximate twisted waves experimentally.

Consider, e.g. the axial component of a twisted wave, const ei(αϕ+βz)Jα(γr). This expression
is a scalar cylindrical harmonic, evaluated at the point with cylindrical coordinates (r, ϕ, z). The
cartesian coordinates of this point are x1 = r cosϕ, x2 = r sinϕ, x3 = z. Using the Bessel integral

Jα(A) =
1

2π

∫ 2π

0

ei(αϕ
′−A sinϕ′)dϕ′

gives

ei(αϕ+βz)Jα(γr) =
1

2π

∫ 2π

0

ei[α(ϕ′+ϕ)−γr sinϕ′+βz]dϕ′ =
1

2π

∫ 2π

0

ei[αΦ−γr sin(Φ−ϕ)+βz]dΦ, (136)

where we have employed the substitution ϕ′ + ϕ = Φ. The phase appearing in the latter integral
can be interpreted as a cartesian inner product. We have, using the rotation matrices Rϕ and RΦ
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(see (58)) and the addition formula for the sine,

− γr sin(Φ− ϕ) + βz =

−γ sin Φ
γ cos Φ
β

 ·
r cosϕ
r sinϕ
z

 = RΦk0 · x, (137)

with k0 = (0, γ, β). Eqs. (136)–(137) allow to express the twisted wave (61) as a function of the
cartesian coordinate vector x. Starting from the equivalent expression (81) in which the rotation
matrix has been diagonalized, we obtain

E0(x) = N(n)

ei[(α+1)ϕ+βz]Jα+1(γr)
ei[(α−1)ϕ+βz]Jα−1(γr)
ei[αϕ+βz]Jα(γr)

 = N(n)
1

2π

∫ 2π

0

ei(α+1)Φ

ei(α−1)Φ

eiαΦ

 eiRΦk0·xdΦ. (138)

The geometric meaning of this expression becomes clear by using the following identity which one
obtains by applying the intertwining relation (80) to the vector (1, 1, 1):

N(n)

 eiΦ

e−iΦ

1

 = RΦn. (139)

This gives

E0(x) =
1

2π

∫ 2π

0

(
eiαΦRΦn

)
eiRΦk0·xdΦ. (140)

Expression (140) is a Fourier reconstruction integral over a one-dimensional circle in k-space,

C = {RΦk0 : Φ ∈ [0, 2π]} = {k ∈ R3 : |k| = ω

c
, k · e = β}, (141)

where e is the helical axis. Here we have used that |k0| = ω/c. See Figure 7.
Since the circle has radius γ, the line element (or one-dimensional Hausdorff measure) on C

is ds = γ dΦ. Define the following polarization vectorfield as a function of wavevector which
corresponds to rotating the polarization along with the base point:

ñ : C → C3, ñ(RΦk0) = eiαΦRΦñ(k0), ñ(k0) = n. (142)

In terms of this vectorfield on reciprocal space, eq. (140) can be written in cartesian reciprocal
coordinates as

E0(x) =
1

(2π)3

∫
k∈C

(2π)2

γ
ñ(k)eik·xds. (143)

This is a Fourier reconstruction integral, and hence the Fourier transform of a twisted wave is

Ê0(k) =
(2π)2

γ
ñ(k) ds

∣∣∣
C
. (144)

Mathematically, this is a singular measure supported on a circle in wavevector space.
In cylindrical coordinates (R,Φ, Z) in reciprocal space, the Fourier transform of a twisted wave

acquires the simple form

Ê0(R,Φ, Z) =
(2π)2

γ
eiαΦRΦn δ(R− γ) δ(Z − β). (145)
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Figure 7: Fourier transform of a twisted wave. The circle of wavevectors and associated polarization
directions in the picture indicates the plane waves whose phase-modulated superposition gives the
twisted wave with parameters (α, β, γ). The fact that just a one-dimensional family is needed means
that a good approximation can be achieved by a relatively small number of plane waves. This might
be of interest for the experimental realization of twisted waves.

Here the radial delta function is, as usual, normalized with respect to RdR not dR, that is to say∫∞
0
δ(R− γ)RdR = 1.

Formula (140) has an interesting alternative interpretation, namely as a group average instead of a
k-space integral. Start from the plane wave

Eplane(x) = n eik0·x, (146)

and note that the phase and the plane wave in (140) satisfy RΦk0 · x = k0 · R−1
Φ x, RΦneik0·x =

RΦEplane(R
−1
Φ x). Consequently

E0(x) =

∫
G

χα(g)
(
gEplane

)
(x) dµ(g), (147)

where G is the group of rotatons around the cylindrical axis, χα(g) = eiαϕ is a character of the group,
and dµ = 1

2π
dΦ is the Haar measure on the group, normalized according to the usual convention

for compact groups that
∫
G
dµ = 1. This shows that a twisted wave is an integral of the image of

a plane wave under the group of rotations about a fixed axis against a character. The polarization
vector n and the “cartesian reduced wavevector” (0, γ, β) are just the polarization vector and the
wavevector of this plane wave; the angular wavenumber α comes from the character.

Eq. (147) is an example of a Wigner projection, first introduced in the context of quantum
systems in [Wi31]. Such a projection maps solutions to any linear system of partial differential
equations again to solutions provided the system is invariant under the group (as is the case for
the time-harmonic Maxwell equations). Moreover it automatically yields solutions to the design
equations with group G, because for any h ∈ G, formula (147) implies via an elementary change of
variables that hE0 = χ−α(h)E0. Unfortunately, this simple method to obtain solutions to the design
equations cannot be extended in a straightforward manner to non-compact groups which include
translations. And projecting any special class of solutions to Maxwell’s equations is of course not
guaranteed to deliver all solutions to the design equations.
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15 Conclusions and outlook

We have shown on the level of modelling and simulation that twisted X-ray waves would be a very
promising tool for structure analysis.

Numerous theoretical challenges remain. For helical structures, a better understanding of the
outgoing radiation in non-axial direction would be desirable. A related issue is to develop a general
mathematical theory of the “radiation transform”, eq. (30), which takes the role of the Fourier trans-
form when the incoming radiation is not given by plane waves. Robust phase retrieval algorithms
need to be developed for structure reconstruction from twisted X-ray data. And for structures
generated by non-abelian symmetry groups such as buckyballs, the right incoming waveforms are
not clear; for reasons discussed at the end of Section 7, in this case the design equations may not
be the right approach.

Challenges for the experimental realization include: generation of tunable coherent twisted X-
ray waves with a broad spectrum of angular wavenumbers; axial alignment of incoming wave and
structure; and achieving a sufficiently strong outgoing signal.

16 Appendix: Intensity of outgoing radiation

Here we relate the intensity (22) of the real-valued diffracted electromagnetic radiation caused
by any incoming time-harmonic field, given by the real part of eq. (17), to the complex electric
field amplitude. We rely on the following simple lemma which is applicable due to the special,
locally plane-wave-like features that the field vector Eout is always perpendicular to k′ and Bout is
proportional to the vector product of k′ and Eout.

Lemma 16.1 (Poynting vector and intensity of locally plane-wave-like radiation). Sup-
pose that

E(x, t) = Re (Ẽ(x)e−iωt)), B(x, t) = Re (k(x)× Ẽ(x, t))

for some complex vector field Ẽ : R3 → C3 and some real vector field k : R3 → R3 with k(x) ·
Ẽ(x) = 0. Then

S =
1

µ0

k
(
|Re Ẽ|2 cos2(ωt) + |Im Ẽ|2 sin2(ωt) + 2 Re Ẽ · Im Ẽ cos(ωt) sin(ωt)

)
(148)

and

I =
1

2µ0

|k| |Ẽ|2. (149)

Thus the Poynting vector of the real part of a locally plane-wave-like electromagnetic field is a
fluctuating mixture of contributions from both the real and imaginary parts of the spatial electric
field, and the intensity is proportional to the absolute value squared of the complex electric field
amplitude. One can hence say that the mystery of complex field amplitudes appearing in intensities
of real, physical fields is explained by time-averaging.

Proof Writing Re Ẽ = E1, Im Ẽ = E2, we have E = E1 cos(ωt)−E2 sin(ωt), B = (k×E1) cos(ωt)−
(k × E2) sin(ωt). Eq. (148) now follows from the expansion rule for double vector products,
a× (b× c) = b(a · c)− c(a · b), and the orthogonality assumption k · E1 = k · E2 = 0. Moreover
since the time-dependent factor in (148) is always nonnegative, the absolute value |S| is a scalar
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multiple of this factor and it is straightforward to evaluate the asymptotic time average in (22),
which amounts to averaging over one period. Since cos2 and sin2 have average 1/2 and cos · sin has
average 0, we obtain (149).

The intensity of diffracted physical radiation at the observation point x, i.e. the intensity of the
real part of the elecromagnetic field (17), is therefore, by eq. (149),

I(x) =
c ε0

2
|Eout(x, t)|2 (eq. (24), Section 3),

where Eout is the complex electric field in (17) (note that its absolute value is independent of t).
Here we have used the relations |k′| = ω/c and ε0µ0 = 1/c2.
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