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Abstract

This paper aims at the study of controllability properties and induced controllabil-
ity metrics on complex networks governed by a class of (discrete time) linear decision
processes with multiplicative noise. The dynamics are given by a couple consisting of a
Markov trend and a linear decision process for which both the ”deterministic” and the noise
components rely on trend-dependent matrices. We discuss approximate, approximate null
and exact null-controllability. Several examples are given to illustrate the links between
these concepts and to compare our results with their continuous-time counterpart (given
in [I]). We introduce a class of backward stochastic Riccati difference schemes (BSRDS)
and study their solvability for particular frameworks. These BSRDS allow one to introduce
Gramian-like controllability metrics. As application of these metrics, we propose a minimal
intervention-targeted reduction in the study of gene networks.
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1 Introduction

We focus on a particular class of discrete-time decision processes described by a couple denoted
(L, X) and consisting of a Markovian trend and a linearly trend-based updated component.
This kind of processes naturally appear in the study of complex systems (such as regulatory
gene networks). In this setting, the trend component corresponds to a finite family of DNA con-
figurations which induce regime changes on functional components (usual proteins) X. Decisions
are assumed to be made at expression level in order to obtain suitable behavior of X. We try to
give a mathematical answer to the following questions. Given a family of possible actions, what
are the minimal interventions to be selected in order to guarantee a targeted response. Second,
how can this be quantified through a metric at the level of biochemical reactions network ? To
answer these questions, we envisage invariance and Gramian-type descriptions of controllabil-
ity concepts. This paper can be seen as a discrete-time counterpart of [I] in which piecewise
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deterministic Markov processes of switch type are considered. Together, the papers cover the
two usual points of view over controlled switch processes with linear updating : the averaged,
piecewise deterministic (macroscopic) perspective (in [I]) and the marked point process (closer
to microscopic perspective in this paper).

The process L is assumed to be a finite-state Markov process on a filtered probability space
(Q,F,P), with transition measure ) and taking its values in B = {ey, e, ..., €, }, for some integer
p > 2. Without loss of generality, € is set to be the discrete sample space Q = BY and we assume
the filtration IF = (F,,), -, to be the natural one associated to L. Following [2], [3] and without
loss of generality, we assume that B is the standard basis of vectors of R?. We introduce the
martingale M by setting

n—1
M, = Z (L1 — E [Lia /Fil],
k=0
for 1 < n < N, with the obvious convention M, = 0. As usual, we let AM,, = M, — M,,_1,
for all n > 1. We will be focusing on a class of decision processes X on some state space R™,
for m > 1 and controlled by d-dimensional processes, for some d > 1. The evolution is given by
linear updating and multiplicative noise

(1) { Xot (W) = Ap (W) X7 (W) + By () + 350, (AMn g1 (W), €5) Cin (w) X5 (w),
Xt =z e R™

The process A is R™*™-valued and F—adapted, the matrix B € R™*¢ and C; are R™*™-valued
and F—adapted processes for all 1 < i < p. The R?valued control process u is taken to be square-
integrable F-predictable. The set of all F-predictable processes is denoted by Pred. Whenever
no confusion is at risk, we will drop the dependency on w. The reader may want to note that this
provides a slightly more general framework than Markov decision processes since the coefficients
are adapted (i.e. functions of the time parameter n and the vector (L, L1, ...L;,)). On the other
hand, the transition measure has a particular form.

The first aim of the paper is to characterize controllability properties for systems driven by ({I)
i.e. the possibility to direct the process towards a coherent target. For controlled linear determin-

istic systems X; = AX; + Buy, the controllability properties are summarized by the celebrated
Kalman criterion stating that Rank [B AB A?B ...A™ ! B] = m. Similar assertions are valid for
discrete systems X,, ;1 = AX,, + Bu, 1. This can equally be extended for Markov decision pro-
cesses driven by non-random coefficients and additive noise of type X1 = AX,, + Buni1+ &1
However, for continuous-time controlled linear systems with multiplicative stochastic perturba-
tions, this condition is no longer sufficient. For examples pointing to this direction, the reader
is referred to [4] or [5] (for Brownian perturbations), [6] or [I] (for continuous-time switch pro-
cesses).

One can, alternatively, study the dual notion of observability via Hautus’ test as in [7]. The
criteria involve algebraic invariance notions which are independent of the space on which they
are studied. For infinite-dimensional settings, the reader is referred to [8], [9], [10], [11], [12], etc.

In the continuous-time stochastic setting, duality techniques lead to backward stochastic dif-
ferential equations (BSDE introduced in [13]). With these tools, exact (terminal-) controllability
of Brownian-driven control systems is linked to a full rank condition in [14]. When the control
is absent from the noise term, one studies approximate controllability, resp. approximate null-
controllability. Invariance criteria are given in [4] for the control-free noise and [5] for the general
Brownian setting. In the case when the stochastic perturbation is of jump-type, exact control-
lability of continuous-time processes cannot be achieved. This follows from incompleteness (cf.
[T5]) and one has to concentrate on approximate controllability.
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For continuous-time control systems with Brownian noise, approximate and approximate
null-controllability notions coincide (cf. [5]). This is no longer the case (see [16]) when an
infinite-dimensional component of mean-field type governs the Brownian-driven systems. Various
methods can be employed in infinite-dimensional state space Brownian setting leading to partial
results (see [17], [18], [19], [20]).

The main goal of the first part of our paper is to study the controllability properties of
the Markov decision process with linear updating and multiplicative noise perturbations. It
can be seen as a discrete-time counter-part of [I] and, to some extent, [I§]. We begin with a
duality result between controllability and observability in Section 2.1l To address observability,
we consider some adjoint process satisfying a backward difference scheme. Its construction is
close to backward stochastic difference equations (see, for example, [2], [3], [21]). The first main
result of the paper (Theorem [2)) gives two characterizations for approximate null-controllability
and a duality criterion for approximate controllability. It equally states the equivalence between
approximate and exact null-controllability. However, unlike the continuous-time frameworks
(compare with [4] for Brownian systems and [I, Section 4.1, Criterion 3] for jump-systems), in
discrete-time, null-controllability does not imply approximate controllability. This surprising
behavior is illustrated in Example [l

To construct a controllability metric, we concentrate on Gramian-inspired techniques in Sec-

N

tions 2.3l and 2.4, We show in Example [7] that the deterministic Gramian ZA"*IBBT (AT)F1
does not provide a null-controllability metric. We propose a backward stloéhastic Riccati dif-
ference scheme (BSRDS) providing the adequate controllability metric. The link between this
BSRDS and null-controllability makes the object of our second main result (Theorem []). To
our best knowledge, these particular schemes are new to the very rich literature on Riccati
techniques. Let us just mention that Riccati methods in connection to linear stochastic control
problems have been extensively employed in both continuous (cf. [22], etc.) and discrete setting
(e.g. [23], [24], etc.). The solvability of the BSRDS and explicit iterative constructions of the
solution in particular frameworks make the object of Section We study the case of non-
random coefficients in Proposition In Proposition [[2], we state the solvability of BSRDS with
random coefficients in the absence of multiplicative noise. Finally, in Section 2.6l we show that
the invariance techniques developed in [4] for Brownian perturbations and adapted to trend-
dependent jump-systems in [I] are not suitable in discrete-time. For non-random coefficients,
an invariance condition (similar to [1, Criterion 3]) is necessary to achieve null-controllability
(cf. Proposition [[7). However, it is not sufficient, as shown in Example [9 Concerning the
second framework, in absence of multiplicative noise, the continuous-time condition provided in
[T, Section 4.2, Criterion 4] is neither necessary (see Example 20) nor sufficient (Example 2T]).

The aim of Section [Blis to provide a possible application of controllability metrics to biological
networks. The mathematical considerations are motivated by the notion of (sub)modularity
(see [25, Section 4], [26], etc.) as well as the recent applications to power electronic actuator
placement in the preprint [27]. We describe the optimization problems appearing when one works
with several (possible) control matrices and wishes to keep controllability features by selecting
a minimal dimension of the control space. To end the section, we give a toy model inspired by
bacteriophage A in [28] and analyze different scenarios leading to null-controllability.

Finally, Section Ml gathers the proofs of our mathematical assertions.



2 The Main Concepts and Results

2.1 Controllability and Duality
We begin with recalling the following controllability concepts.

Definition 1 i. The system () is said to be controllable at time N > 1 if for every initial data
x € R™ and every R™—wvalued, Fy—measurable square integrable random variable &, there exists
a predictable control process u € Pred such that X3* = &, P—a.s. (i.e. X3"(w) =& (w), for
P-almost all w € Q).)

ii. The system () is said to be null-controllable at time N > 1 if the previous property holds
true for & = 0.

iii. The system (1)) is said to be approximately controllable at time N > 1 if for every initial
data x € R™ and every R™—wvalued, Fy—measurable square integrable random wvariable & and

. 2
every € > 0, there exists a predictable control process u® € Pred such that E [)Xﬁ,u — f‘ } <e.

iv. The system (1)) is said to be approximately null-controllable at time N > 1 if the previous
property holds true for & = 0.

To the decision process ([I), one can associate an adjoint process (or an adjoint couple) as
follows. For every Fy-measurable square integrable random variable £, we introduce the adjoint
couple (YN £ N ’5) consisting in an R™-valued (resp. R™*P-valued) adapted process by setting

YN@ = ¢,
) Y= ATE [V F| + S0, O ZY B [(AMy i1, €) AMysn /]
where V¢ = [Ynﬁ /F, ] 4 ZNEAM,,,, forall0<n < N — 1.

The existence (and uniqueness up to an equivalence in the sense of [3, Definition 2]) of processes
7 satisfying the last property is standard. We refer the interested reader to [3, Corollary 1] or
[2, Corollary 3.1.1] and references therein.

The first result of our paper provides the following characterization of controllability.

Theorem 2 i) The system () is approzimately null-controllable in time N > 0 if and only if
every solution (YnN’g, Zflv’g) of the scheme (3) satisfying E [YnN’g/fn_l] € ker (BT) , P-a.s., for
all 1 <n < N, equally satisfies YON’5 =0, P-a.s.

ii) The system (l) is approximately controllable in time N > 0 if and only if every solution
(Y6, Z)8) of the scheme (3) satisfying E [Y,N¢/F,_1] € ker (BT), P-a.s., for all1 <n < N,
equally satisfies E [/ F, 1] = 0, P-a.s.

ii1) The system (dl) is approzimately null-controllable in time N > 0 if and only if it is
(exactly) null-controllable (in time N > 0). The necessary and sufficient condition for null-
controllability is the existence of some constant k > 0 such that

N

> (BBE[V,N/Foa] (E [V Fari])]

n=1

for all (YN¢, ZY4) satisfying (3).

2
(3) ¥'¢| < kB

The proof is postponed to Section . The first two assertions are proven by taking convenient
controllability operators and identifying their duals. The third assertion makes use of these duals
and the finite-dimensional setting.



2.2 An Alternative Characterization and an Example

When the linear coefficient A is invertible, we are able to restate the null-controllability criterion
given in Theorem [2]iii) by interpreting the adjoint couple as a decision process (where the second
component of the couple is an arbitrary predictable control). We also give an example showing
that, in the context of discrete processes, null-controllability is, in all generality, strictly weaker
that approximate-controllability.

From now on, unless stated otherwise, the matrix A, (w) is assumed to be invertible for
P—almost all w € 2 and all n > 0. The reader will note that (YN’g, ZNvf) given by (2] can be
interpreted in connection to a (forward) decision process by picking v, 41 := ZN¢ and setting

(4) yo =Yg %, Yo" = Yo,
yiﬁil = [Az;} (y%o’v — C nUnt1E [(AMn-i-la 6,> AMn—l—l/f ]) + Un 1AMy 41,

foral0<n <N —1.

Remark 3 1. When A is not invertible, the admissible controls should be such that
ydov Z W1 B [(AM, 1, €;) AM, 1/ Fy] € Im (AT

where Im stands for the image of the linear operator. Nevertheless, the connection is still pre-
served.

2. The adjoint process is motivated by the duality techniques in the Brownian case (e.g. in
[l]). These arguments concern backward stochastic differential equations. The specialization of
this concept to discrete-time processes is the notion of backward stochastic difference equation
(e.g. [3], [21)]). In view of the essential bijection requirement (cf. [3, Theorem 2/, [21, Theorem
1.2]), asking for A to be invertible does not appear to be a drawback.

In this framework, the third assertion of Theorem [2] can be interpreted as follows.

Criterion 4 The system () is approzimately (and exactly) null-controllable if and only if there
exists some k > 0 such that for every yo € R™ and every F—predictable, R™*P-valued sequence
(Un)1<pen s ONE has

o N-1

lvol> < KE | Y~ | BTE [y /]|
n=0
where y¥ov is the decision process defined by (4)).

In the continuous-time framework, when the controlled linear systems are driven by non-
random and homogeneous coefficients (i.e. systems for which A and C are constant matrices
independent of n), it has been proven that approximate null-controllability and approximate
controllability are equivalent. The reader is referred to [4, Theorem 1.3] (for Brownian setting)
and to [6l, Theorem 2.2] and [I], Criterion 3] for jump systems. The following example shows that,
in the case of discrete-time processes, one can have (exact) null-controllability without having
approximate controllability.
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Example 5 To this purpose, let us take p = 2 and the transition matrix () = [
2 2

We consider the time horizon N = 2, the state space dimension m = 2 and the control space
dimension d = 1. Moreover, we consider

An_<1 0)7B—<1)7Cz,n_(0 O ,fO?”ZE{l,Q} ananO

Then, the decision process () becomes

Xo g ( ) ) e ( (14 (L1, e1 — e2)) 2o ) oo~ ( (21 + 1) (14 (Lo, €1 — €2)) )

T 1+ Uy (14 (L1, e1 — e3)) x2 + uo
We consider u; = —xp and ug = — (14 (L1, €1 — e2)) x5 to conclude that the system is exactly
null-controllable in 2 steps. Nevertheless, by considering & := ( (L2, 66_ ¢2) ) , one has

E [IX5" — &) > E [[(oa ) + (1~ 1) (Lo, 1 — ea) ] >,

for all x € R? and all u; € R. The system turns out not to be approximately controllable at time
N = 2. (This holds true for N > 2 by simply replacing, in the definition of &, Lo with Ly. In
fact, we have proven something stronger: the system is not even exactly terminal controllable;
see [T])] for a comparison with the Brownian setting).

Remark 6 To prove null-controllability, one can, alternatively, rely on Criterion [% For yy =
2

1 L1 ;
( 3;2 ) € R? and a family of F-predictable, R**?-valued controls v, = ( z%l 552 ) , Uy =
0 1 1

11 1,2
( Y2 U%,Q ), simple (yet fastidious) computations show that

vl g
2 2
1 U1,1_U1,2 2 1
(?Jg + <<L1,€1 —eg) — 5) %) > 5 lyol” .

One concludes to the exact null-controllability by applying Criterion [4)

1

S°|57E [/ 7 \2] )+

n=0

E

2.3 The Deterministic Controllability Metric Is Insufficient

A simple glance at the inequality in Criterion ] allows one to infer that the right-hand term (i.e.
E [Zg;ol }BTE [yffj:{ / .7:”} ﬂ) should provide a quadratic function of the initial data y, which
is positive-definite when the initial system is null-controllable. In the deterministic framework

(C = 0 and non-random, constant A), the controllability criterion is given by the celebrated
Kalman condition

Rank [B AB A°B ..AY"'B] =m.

By taking the expectation in (I), one gets that this condition is necessary for the system governed
by non-random A, B, C' to be approximately null-controllable. This condition is equivalent (cf.
[23, Theorem 2.16] (assertions 2 and 3) to the matrix

(5) o= ATIBBT (A7)

i=1



being of full rank. In this case, the controllability (pseudo)norm given by R™ 3 yo — ({poyo, yo))%
is a norm. So the obvious question one asks oneself is whether the same norm is actually sufficient
to get stochastic null-controllability. The answer is negative (see example hereafter).. Unlike
the additive case, the presence of multiplicative noise induces a change in the controllability
condition. This is not surprising for our reader familiar with the stochastic framework. Indeed,
the invariance conditions characterizing approximate null-controllability in [4, Theorem 1.3] or
[T, Criterion 3] involve the stochastic component (i.e. C'). The following example shows that, in
the discrete framework, one may have Kalman’s condition and not achieve the null-controllability
of the stochastic system.
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Example 7 To this purpose, let us take p = 2 and the transition matriz () = [
2 2

We consider the time horizon N = 2, the state space dimension m = 2 and the control space
dimension d = 1. Moreover, we consider

An:<? é)’ Cm:(_l)z‘HAmB:((l)), forie{1,2} andn > 1.

We also drop the dependency on n in A and C. Then, Rank [B AB] = Rank [ (1) 1 } = 2.

. o » 1
However, by taking the initial condition x = < 0 ) , one gets

Xot — ( (L4 (Layer —ea)) (1+ (L, €1 — ea) + ) ) |

U2

As consequence, for any (predictable) choice of the control u,
E(IX5"7] = (8 + @ +w)?) +E[w] 22,

Therefore, independently of the predictable control we use, we are not able to drive the process
X from x to 0 even though Kalman’s condition is satisfied.

2.4 A Stochastic Controllability Metric

In view of Criterion [4l we associate, to every point y in R™ the controllability (pseudo)norm

N—1
(6) Iyl == inf E | [BTE [y /F |
n=0

v)1<p<n F-predictable

The previous example shows that the associated metric is a stochastic one and, in general,
it does not reduce to the deterministic Gramian. Nevertheless, one would very much like to
have something which is close to the py matrix in (B). In this section, we thrive to provide a
(pseudo)metric which is more explicit than (@).

To this purpose, let us analyze the following matrix scheme. We set, for ¢ > 0, Py = 0 €
R™ ™ and proceed by writing, for all 0 <n < N — 1,

PriJrl =E [Pngl/JTn] + Q;, diag (AMp1),
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where, by convention,

AM,.v 0 .. 0
(7) diag (AM, ;) = 0 AMua . 0 € RmPxm,
0 0 .. AM,,

The existence and uniqueness of such @ € R™*™ is obtained by applying the martingale
representation theorem (see, for example [3| Corollary 1] or [2, Corollary 3.1.1] and references
therein) to the columns of P ;. We proceed by setting

e _ A-1 e T 711 T -1
(8) P =A (B[P, /F.] +BBY) [Al] ~ —al ., ton,
1,1 1.2 1,p
al nn,e nn,e nn,a
n,e n2,1 n2 2 772,p
where o, . = € R™>X™ e = e IME e | € R™PX™MP are given by
»
6%
ne p,1  p,2 D>
nn,e nn,e nn,a

of = —QiE[(AM, 41, ¢;) diag (AM, 1) /F,] [AT] ™
+ Z E[(AM,i1,e) (AMyy1, ) [ Fo) Cin ALY (B [Peyy ) Fu] + BBT) [Aﬂ‘1 and

1<i<p

e =
1 .
géj,k[mxm + éQEnE [<AMn+1, €k> <AMn+1, €j> dzag (AMn+1) /.Fn]

4 5B [(AMy,c6) (MM, 65) (diag (MM )T /] (@3

-1 CT

\n

3 QEENAM, ) (AMas,e5) [F B (MM, ) diag (AMye) /] [AT]

1<i<p
1 ,
=3 2 CinAVE[(AMy,e) (AM ex) JFE [{AM, 1. ¢) (diag (AMy)T [ F] (@2
1<i<p
+E [<AMn+1v 6k> <AMn+1’ 6j> /Fn] E [P1i+1/~’rn]

Py E [(AM, 1, e5) (AMyia,e) [ Fn] X B[(AMq, ex) (AMyy1, ei) [Fo] X
X Cyn At (B [P, /F,] + BBT) [AT] 7 CT, ’

1<,i'<p

for all 1 < j,k < p. Here, §;; stands for the classical Kronecker delta (1, if j = k and 0,
otherwise). While it is clear that 7, . is symmetric , it is (a lot) less obvious to ask for n, . to
be positive. We will show in some particular cases that this stochastic Riccati-type difference
equation is solvable and provide explicit construction for P and (). For the time being, let us
assume that, for every ¢ > 0, such a solution exists. The second main result of our paper is the
following characterization of the null-controllability.

Theorem 8 i. The system (1) is (approzimately) null-controllable if and only if

lim 3an0€ 1S a positive-definite, symmetric matrix.
e—0+

ii. The controllability (pseudo)norm given by (@) satisfies

2 . .
= lim inf (P} .
1yoll e = lim inf {Fgo, yo)



The proof is postponed to Section 4. The construction of P¢ is tailor-made to infer a recur-
rence on the terms (PSy¥? y¥%:*). To conclude, one applies Criterion [l

Remark 9 i. This result is the discrete-time version of [18, Theorem 3.4].
ii. A simple look at the proof (see (23)) shows that

N-—1 N-—1
(PSyo, yo) = inf <5 > E[Jonsal’] +E | Y |B'E [y ) F }2] )
n=0 n=0

Vn)i<p<n F-predictable

and the optimal control realizing this minimum is given in feedback form by

Opt o —1 yOﬂ)OPt
Un+1 - nn,eanﬁyn .

Nevertheless, due to the structure of «, y%o’vom maght not be a Markov process.

2.5 Solvability of the Backward Stochastic Riccati Difference Scheme
(BSRDS)

The aim of this subsection is to provide two simple cases in which the backward stochastic Riccati
scheme admits explicit solutions. One of the simplest frameworks for our trend component is the
one in which the martingale is generated by independent and identically distributed variables.
In other words, we assume L, ; to be independent of F,, for all n > 0 and L, has the same
law as Lg. Then ((Ly,€;)),~, are independent Bernoulli distributed with some parameter ¢; > 0
(independent of n) and such that >>7_, ¢; = 1.

The first setting is when A and C' consist of sequences of non-random matrices. In other
words, the randomness may only come from the martingale induced by the trend component L.
In this case, we get the following result of solvability of the BSRDS.

Proposition 10 (non-random coefficients case) We assume that L,, are independent, iden-
tically distributed random variables on {ey, e, ..., e,} and denote by

¢ =P(Ly =¢) >0, for every 1 <i <p.

Moreover, we assume that
Ay, C, e R™™ for alln >0

are sequences of (non-random) matrices. Then, for every ¢ > 0, the BSRDS (8) admits a
(unique) solution given by a positive-semidefinite sequence (Py)y<,<y and Q° = 0. This solution
15 given by

Ps =0,
o ) o= (B BB 4T
e = glmpxmp + (qj (5j,k - Qk) Pri—l—l)lgj,kgp + CNA;I (P£+1+BBT) [CNA;I]T )

P =AY (Pe,, 4+ BBT) [AT] 7 — ol il

>t (01— q1) @Crn
Zf:l (5271 - qQ) QICl,n

Zf:l (5p,l - Qp) QICl,n

where C,, : =



The proof follows by (descending) induction and is postponed to Section [l

Remark 11 i. We emphasize that we deal here with a difference equation and not with an
algebraic Riccati equation and this is why one does not need further conditions on the Popov
matriz.

ii. The Riccati difference equation given by () is obviously deterministic. Then, a glance
at the optimal control in Remark[9 shows that vffjfl = n;,gdn,aygow"’” is not only predictable but
a deterministic function of time n and the state of the process y,. Therefore, the infimum in
(P§yo,yo) can be taken over open-loop control strategies. Of course, similar assertions hold true
for the controllability (pseudo)norm. As a by-product the process y constructed with open-loop

controls is Markovian.

The second case in which solving the backward stochastic Riccati difference equation is
reduced to deterministic arguments is when C' = 0. Under this assumption, the BSRDS becomes

(= A (R [PE,/Fa] + BBT) [AZ] 7 — o nilan.,

. P _
ol = —q,Qxdiag (2 (G0 — ) ) AT

k=1
. p
%’,’Z =0, kLmxm + (956 — @) GE [P,’;Ll/}"n} + %Qfldiag (me,lel)
=1
n T

+1 (dmg <ij,k,lel>) @)".

L =1

for all 1 < 7,k < p. Here,

Mkl = qi (Qj - 5]',1) (Qk - 5k,l) —q (5j,k - q]') qk-

Let us recall that the diag matrices are of type R™*™ and are constructed as in ().
When A, = A(n,L,), for all 0 < n < N, where A is some R™*™-valued deterministic
function of time and trend, we set

(11) p?\[ = Omxma QJEV = Om><m

and construct, for, n < N — 1,

p
p;—i—l = quAil (n + 17 61) (p;—i—Q =+ BBT - qrez—l—Z) (Ail (n =+ 17 el))Tv
=1

(12)
G1 = aiemiéﬁn,e,
where
(13)
( ) P
@ = 1>a 0 —q) A (n+1,e) (P + BBT — ¢50) (A (n+ 1, e’ |,
=1
. . -1
O‘ﬁz,a = —04%,5 [Ag} :

vk
‘771,8 - gajvklmxm

p
3 (g — 850) (ar — k) A (n 4+ 1,e)) (Pig + BBT — @) (A7 (n 4+ 1e0))
=1

\

forall 1 < 7.k <p.
The main result in this framework gives the solvability of the BSRDS (I0).

10



Proposition 12 (the case without multiplicative noise) We assume that L,, are indepen-
dent, identically distributed random variables on {e1, e, ..., e,} and denote by

¢ =P(Ly =¢) >0, for every 1 <i <p.

Moreover, we assume that A, = A (n, L,) where A is some R™*™-valued deterministic function
of time and trend. Then, for every € > 0, the following assertions hold true :
i. The matrices (D},)ocp<n 0nd (¢5)ocnen given by (L1, [12) are positive-semidefinite and

(14) v, >q,, forall0 <n <N

ii. The solution of (I0) is given by the couple (P¢,Q) € R™ ™ x R™ ™ defined by Py = 0
and QNfl =0

(15)  Po=A""(n, L) (pioy + BBT —¢5y1) (A (0, L))", forall0 <n < N —1
and

(16) Q1= [Qn 11, @120 Q1] € R™P X R™P . x R™P, where
i — & c _ T
QiLry = [A7 (o) (5 + BB = 50) (A7 ()]

i
foralll1<i,j<m,1<I[<p, 1<n<N-1.
Remark 13 i. The dependence of € in (Q has been dropped to simplify notation.

it. When one further assumes that A is non-random, the elements Q}ll—l,k are independent of
[. Hence,

p
Q;L;LkAanLl = Q;m’lfl,k Z <<Ln+17 el> - ql) = Om><1 = OmXpAMn+17
=1

i.e. Qn-1 1s equivalent (see, for example [3, Definition 2]) to Oy xmp. This is consistent with the
results in our non-random framework.

To end this subsection, let us take a look at the case when C'(-) = 0 and A,, is a non-random
matrix. Using the second point of the previous remark, one gets & = Oy, xmp and 7, = €Lpmpxmp-
Hence, one only has to solve the following (deterministic, e-independent scheme) :

pn=A" (pn+1 + BBT) (AZ)_l y PN = Omxm-

In this framework, we get the following criterion.

Criterion 14 Let us assume that C(-) = 0 and A, is a non-random matriz, for all n > 1.
Then, the system (1) is null-controllable in time N > 0 if and only if the matriz

N N-1 n 1 T n 1 T
Po = ( AE)BB (HA;)
n=0 k=0 k=0

has full rank.
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Remark 15 (a) If A does not depend on n, pg z's offull rank if and only if AN pq (AT)N is of full
rank and one gets the classical condition py = Z A"BBT (AT) 1s of full rank. This classical

condition (and its equivalence with the usual Kalmcm rank condition) can be found, for instance
in [23, Theorem 2.16] (assertions 2 and 3).

(b) In the case without multiplicative noise, one can establish (in the same way as in the
reference cited in [23, Theorem 2.16]), the equivalence between the Criterion and the rank
condition given for communicating classes in [24, Theorem 2]. Reasoning on the cannonical
space, this criterion can be extended for more general systems with no multiplicative noise (see

also Remark[18).

2.6 When Continuous-time Intuition Fails to Work

As we have seen in Example Bl the null-controllability metric is given by a strictly weaker
condition than that of controllability. The reader acquainted with the continuous-time charac-
terizations of approximate controllability ([4] or [5] for Brownian perturbations, [6] or [I] for
continuous-time jump processes) may wonder whether alternative approaches based on invari-
ance concepts can be adapted to this discrete framework. The aim of this section is to compare
our approach with the algebraic conditions given in [I] for continuous-time processes presenting a
similar construction. We will consider both the non-random coefficients setting and the behavior
of the system lacking multiplicative noise.

In the case of non-random coefficients, the method developed in [4] for Brownian pertur-
bations and adapted to trend-dependent jump-systems in [I] consists in obtaining invariance
criteria starting from (). We will prove that the analogous condition is still necessary in order
to have null-controllability. Nevertheless, this condition is strictly weaker than the one exhibited
in Theorem [§ (see Example [[9)). Concerning the second framework, in absence of multiplicative
noise, the continuous-time condition provided in [I, Section 4.2, Criterion 4] is neither necessary
(see Example 20]) nor sufficient (Example 2T]).

Throughout the subsection, we assume that L, are independent, identically distributed ran-
dom variables on {ey, e, ..., ¢,} and denote by ¢; = P (L; = ¢;) > 0, for every 1 <i < p.

2.6.1 The Non-Random Coefficients Case

To simplify the arguments, we concentrate on the time-homogeneous framework (i.e. 4, = A €
R™*m Cy = C; € R™™ for all n > 0). In this setting, the dual decision process () becomes

p
-1 v
yny = [A'] <?JZO’ ZC Un+161> + Z(AMnH,@l)Uml@l, Y = Yo,

=1

where

iS]

(17) CU):=) (0ir — ;) @Ck,

k=1

for every 1 < j <p.
In [I], the study of controllability properties is conducted using some invariance properties
with respect to the dual decision process. We recall the following invariance notions.

12



Definition 16 We consider a linear operator A ER™ ™ and a family (C;) C Rmxm,

(a) A set V. .C R™ is said to be A- invariant if AV C V.

(b) A set V C R™ is said to be (A;C)- invariant if AV C V +ImC; +ImCy + ... + ImCy,
where Im stands for the image of the linear operators.

(c) A set V. C R™ is said to be (A;C)- strictly invariant if

1<i<t

where Iy, denotes the orthogonal projection onto V.
(d) A set V. C R" is said to be feedback (A;C)- invariant if there exists a family of linear
operators (Fi)c;c; C R™™ such that A+ CGF)V C V (ie. Vis A+ Y CFi-

invariant).
The following condition is necessary in order to have null-controllability.

Proposition 17 If the system (1)) is null controllable at time N, then, by setting

VNN = ker (BT) and computing, for 0 < k < N,
(N1) VEN to be the largest subspace of the kernel ker (BT) which is

<[AT] ! ;(C (1) Ail)T Myetiw, ..., (C (p) Afl)T Hvk-H,N) -invariant,
the space VOV is reduced to {0}.

The reader should compare this with [I, Section 4.1, Criterion 3]. The proof of this result is
very similar to that of [I, Section 3.1.2, Proposition 2] and is postponed to Section [l

Remark 18 i. Both the assertion and the proof can be extended to non-homogeneous systems
providing the complete analogue of [1, Section 3.1.2, Proposition 2].

ii. Much as in the continuous-time framework (see [1, Section 4.1, Criterion 3]), one can
prove the equivalence between the following

(a) condition (NT|) holds true;

(b) every solution of [J) satisfying BTy¥* =0, P—a.s. for all n > 0 is such that yo = 0.

ii. It is obvious that the family (Vk’N)o<k<N is increasing in k (and N) and, thus, this
condition only needs to be checked for N = m. Indeed, for N > m, the space V*V is nothing else
than the largest subspace of ker (BT) which is <[AT] eman’, . ) A‘l)T> -strictly
invariant. In all generality, for systems in which A, = A(L,) and C;,, = C;(Ly), one defines
similarly C (i, L,,) and families of subspaces Vlk’N which are

([AT M) (€D A™ D) Myesn, o (C 0 ) AT (1) vaﬂ,N) — invariant.

k+1,N
Yt

: ) , in order
1<i<p

The monotonicity still holds but, since Vlk’N s given with respect to all (

to be sure that the spaces no longer change, one has to wait for N = mP.

Nevertheless, unlike the continuous-time framework, the condition (NII) is weaker than the
null-controllability property. Let us, once again, look at the following example.
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Example 19 We consider p =2 and the transition matriz ) = ( ) the horizon N = 2,

|| N[0 [ =

1
2
1
2
1.

)
the state space dimension m = 2 and the control space dimension d Moreover, we consider

A:(? (1)) Ci:(—l)i“A,B:((l)), fori € {1,2}.

Then, according to (17), C (i) = %A, fori e {1,2}. Moreover, ker (BT)

If x € R is such that, for some x’, 2" € R,

((5) =en)

7)™ ( 0 ) +(cyayT ( . ) +(c@ah)T ( # ) - ( ;2; ) € ker (BY),

then it follows that x = 0. This means that condition (NI) is satisfied. However, as shown
in Exzample [7, the decision system driven by A, B and C' is not null-controllable. Thus, in all
generality, for discrete-time processes, the condition (N1) does not guarantee null-controllability.

2.6.2 The Case Without Multiplicative Noise (C=0)

In the continuous-time framework, the necessary and sufficient condition for approximate null-
controllability of continuous switch systems (equally when C' = 0, see [I, Section 4.2, Criterion
4]) reads

(18) (A,, B) is controllable for all n.

Unlike the continuous-time setting, we will see that this condition is neither necessary nor suffi-
cient.

We begin with an example showing that (I8) may hold without implying the null-controllability
of the discrete system.

Example 20 We consider the state space dimension m = 3 and the control space dimension
d = 1. Moreover, we consider

0 01 010 1
A2n+1 - 1 O O y Agn - O 0 1 5 B — 0
010 100 0

It is obvious that Kalman’s condition is satisfied for both As, and Az, 1. However, by computing
pl’ (see Criterion[T])), one gets

N—-1 n n T L%J O O
=2 () eer (ar) | = | 0 152 0
n=0 k=0 k=0 0 0 0

which is obviously not invertible for any N > 1. Here, |-| denotes the largest integer that does
not exceed the argument (floor function).
But null-controllability may hold without having (8] for any A,.
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Example 21 We consider the state space dimension m = 3 and the control space dimension
d = 1. Moreover, we consider

010 1 00 1
A2n+1 = 1 00 s Agn = 0 0 1 s f07" n Z O, B = 0
001 010 0
Then Rank [B Agn1B A3, B] =2 and Rank [B Ay, B A} B] = 1. Nevertheless, for N = 4,
s T . T 10 0
po=> ( A,;l) BB" (HA,;l) =10 10
n=0 k=0 k=0 00 2

1s of full rank such that, using Criterion the system is null-controllable at time N = 4.
The reader may equally want to note that the controllability condition does not hold true at
N' =3 =m, the dimension of our state space.

Remark 22 i. These counterexamples are of particular relevance for the way one considers
the models in systems biology (see next section). It shows that targeted design depends on the
discrete or continuous modelisation.

ii. In this case (with no multiplicative noise), one can prove, by reasoning on the cannonical
space (as in [29, Theorem 3], or, again, as in [1l, Section 4.2, Criterion 4]) that null-controllability
1s characterized by Criterion[14] holding true on every feasible sample path. We emphasize that
(as it is the case in the proof of [1, Section 4.2, Criterion 4]), the explicit feedback control is
given with respect to this controllability Grammian (cf. [29, Theorem 3 ii.]).

3 A Minimal Intervention-Targeted Application in Bio-
logical Networks

The aim of this section is to provide a possible application of the previous mathematical tools to
biological networks. The mathematical considerations are motivated by the notion of (sub)modularity
(see [25 Section 4], [26], etc.) as well as the recent applications to power electronic actuator
placement in the preprint [27]. We describe the optimization problems appearing when one
works with several (possible) control matrices. To end the section, we give a toy model inspired

by bacteriophage A in [2§].

3.1 Intervention Scenarios

Up until now, the control matrix B has been fixed. We are going to envisage some scenarios
translated by several control matrices. Each fundamental matrix allows one-dimensional controls.
By putting together some of these matrices (say d), we get an m X d control matrix taking into
account d-dimensional controls. Of course, in the case in which several configurations allow null
controllability, it would be interesting if we were able to find a minimal d (lowest dimension for
control processes) giving the null controllability.

We begin with noting that the (pseudo)norm (@) will explicitly depend on the control matrix
B and will be denoted by ||| Similar, whenever P5 given by () exists, it is written as
Ps (B). We define

ctrl,B*

IB]|7 = inf W9lesris g |1B||""" .= Rank (nm inf P¢ (B))
v20 |yl e=0
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It is obvious that the system () is controllable using B iff |B||Y% > 0 or, equivalently, iff

. ctrl
ran
[Blletry = m-

A basic intervention scenario is a column vector b C R™ allowing one-dimensional controls
and specifying the weight of this control in the state component. In other words, we consider the
system controlled by B = b and with d = 1 in ({l). Given a family of » € N* intervention scenarios

{b1,b2,....,0.} C R™, for every Z = {il,ig, ...i|1|} C{1,...r} one constructs B (Z) = [bil, ey bim]

We introduce the following two concepts.

Definition 23 1) A set T is called minimal spectral-efficient intervention if the following asser-

tions hold simultaneously:
(i) one has || B (Z)||¥ >

ctrl
(i) for every J C {1, T} such that || < |Z|, one has | B (J)||F% = 0;
(i) for every J C{1,...r} such that |J| = |Z|, one has || B (J)|[ihy < 1B (D)0
2) A set T is called minimal rank-efficient intervention if the following assertions hold simul-

taneously:
(i) one has || B (Z )Hmnk

ctrl

(i1) for every J C{1,...r} such that |.7| < |Z|, one has || B (J)||""F <

ctrl

The reader is invited to note that any minimal spectral-efficient intervention is also minimal
rank-efficient. A condition of type (iii) has no meaning for the rank, being trivially satisfied as
soon as Z is minimal rank-efficient.

To find minimal efficient intervention, one has to solve at most r set-function optimization
problems of type

InglaX}HB( )”ctrl’ 1§]€§7’,
IZ|=k
where |||, denotes either [[-[|< or ||-||""* . Tt is obvious that
win k1< b max [B@IE = m gy =wind k1 <b<n max 8@ >
T|=& Z= i

At this point, one may note that working with minimal spectral-efficient interventions gives
more information and may wonder why we have introduced the two concept. It turns out
that, although both set functions are non-decreasing, rank-based functions have another useful
(submodularity) property (cf. [25], [26]; see also [27]). Let us recall the definition of this concept.

Definition 24 Given a finite set S, a real-valued function f : 25 — R is said to be submodular
of

F(S1NSe) + f(S1US2) < f(S)+ f(S2),
for all subsets Sy, 5, C S.

According to [25], submodularity is ”a combinatorial analogue of concavity” in the sense
that if the cost functional is submodular, although the problem is NP-hard, a greedy approach
provides good results. The paper [25, Section 4] equally provides greedy heuristics as well as
relative error bounds concerning the greedy solution.

A glance at [20, Example 1.2] shows that rank-based set functions are submodular. It turns
out that, although it provides more information, ||-||’*%" does not, in all generality, provide a

ctrl
submodular application. For an example in this direction, the reader is referred to [27, I11.F].
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To sum up the considerations made so far, one should begin with solving the optimization
problem using ||-[|"“** which is faster (using greedy heuristic as in [25, Section 4]). This will

provide a minimal k& for which efficient interventions exist. Then, for this particular k, one may

work with [|-||’07.

3.2 Hasty et al.-Inspired Toy Model

In systems biology, one uses various methods (graphs in [30], tropical aspects [31], differential
equations [32], stochastic analysis, etc.) to analyse and reduce the same system. The construction
is more or less automatic given the system of reactions. Moreover the qualitative properties are
implicitly thought to be the same in any type of (coherent) model (ODE, pure jumps, stochastic
hybrid, etc.).

K
A reversible equation | A+ B & C + D | allows to obtain the ratio of the constants (K =

(ky,k_)) by the so-called “law of mass action” going back to the considerations of [33]. These
hints are valid “at equilibrium” when the state is invariant. In other words, in stochastic seman-
tics, this is valid as ergodic behavior/ invariant law, etc. But then, by going over the simplest
examples (and this is equally confirmed by discussions with researchers in bioinformatics), we
learn that the actual values of the reaction constants are taken from different tables available in
the literature and using various “normalizations” (see, for example, [34]). As consequence, even
for the simplest model (Cook, cf. [35]), different values of parameters (e.g. half life-time) lead
to different behaviors (slow unstable, fast unstable, stable, etc. ). From our point of view, it
seems fair to assume that changing external factors induces changes in the dynamics and this
translates in control.

Description We start with a toy example concerning the temperate A virus. The phage
model is considered to be the standard element in recombineering (through its Red operon) in
order to get a targeted response. Now, if we take the model developed in [28], the difference
between entering lytic phase or remaining in lysogenic one is linked to the possibility of keeping
CI repressor away from or onto 0. So, in order for the procedure to be interesting, one has to be
able to drive CI repressor to given targets (corresponding to lytic stage).

The authors of [28] propose a genetic applet consisting in a mutant system in which two
operator sites (OR2 and OR3) are present. The gene cl expresses repressor (CI), which dimerizes
and binds to the DNA as a transcription factor in one of the two available sites. The site OR2
leads to enhanced transcription, while OR3 represses transcription. We let R; stand for the
repressor, Ry for the dimer, D for the DNA promoter site, DRy for the binding to the OR2
site, DR for the binding to the OR3 site and DRy Rs for the binding to both sites. We also
denote by P the RNA polymerase concentration and by r the number of repressors per mRNA
transcript. The capital letters K;, 1 < i < 4 for the reversible reactions correspond to couples
of direct /reverse speed functions k;, k_;, while K; and K only to direct speed functions k; and
k4. The actual system of biochemical reactions that govern the genetic applet is given by

K1 Ko K3
2R, = Ry, D (+R,) = DR,, D (+R,) = DR,
Ky
DRy (+Ry) = DRyRy, DRy + P X DRy + P+ 1Ry, Ry 5.

From the stochastic point of view, one can either take Gillespie’s method (pure jumps, cf.
[36]) or average on some components (getting a PDMP mechanism, cf. [34], [37]). The two
types of models are said to be coherent with each-other if the steady distributions are close (see
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[34], page 15, Figure I, b). This is, again, natural, because ergodic behavior of the PDMP often
relates to that of the natural associated Markov chain (e.g. [38]).

But, since these systems (discrete/continuous) are “equivalent” in the acceptation of bioinfor-
matics, entering lytic stage for one model of phage lambda or the other should also be equivalent.
This is why we have proposed this paper going along the path of [IJ.

Our concerns are : Can one characterize the targeted behavior (by adapting variable pa-
rameters) ? If explicit conditions can be given, are these "universal” (independent of the way
of modelling) 7 What are the minimal parameters on which one must play in order to get the
desired targeted behavior 7

The Trend Component L We consider the trend component given by the DNA mechanism
of the host E-Coli

(D, DRy, DR;, DRyRy)" which belongs to the basis B CR*.

All the reactions concerning at least one of these components is considered to belong to the trend
mechanism. The remaining reactions

K
2Ry = Ry, Ry

will be employed to describe the repressor’s updating. To simplify the arguments (recall that this
is a toy model), we consider that all the speeds in the trend mechanism are unitary (ki = ki3 =
kiy = ky = 1). Whenever the system is at position e; (unoccupied host DNA), two reactions

are possible D Lt DRy, respectively D Lt DRj. We consider that transition probability is
proportional to the speed of reaction (similar to [36]) to get

ke ks

ko + ks kot ks
Similar constructions are true for the remaining transitions. Obviously, this does not correspond
to the independent framework since the transition matrix

P(Lny1 = ea/Ln = €1) respectively P (Ln1 = es/L, = €1)

ko k
k(_)z ko+ks ko -Sks l? (1) % % (1]
QO k_o+tks O O k72ik‘4 — 2 O 0 2
1 0 0 0 1 0 0 O
0 1 0 0 01 00

Nevertheless, we shall assume that the host is at equilibrium prior to infection and it is easy to
see that the unique invariant measure is the uniform law given by

1

(19) === 1=

K1
The updating matrices A, To the transitions 2R; &= R, and R, 5 one usually associates

the ordinary differential equations
drq dr

v —2k11? — kgry 4 2k_q7s, d—t2 = kyry — k_ira.
0 ,.0

By writing down the associated Jacobian matrix at some point 7° = (r?, 7)), one gets a first-order
—4](?17"? — k’d 2k_1

0 r. In other words, one constructs the matrix
2]{?17"1 —k?_l

approximation Ar = (

— 0_
A= IQXQ + Ay — ( 1 4]€1T1 /{Zd 2]€,1 ) .

2/{?17’? 1— k,1
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If rY = 0, then the updating of the dimer is done independently of the repressor which is not
very realistic. For our toy model, we consider 2k;7? = kg = k_; = 1ie.

.

In this framework, 25% of the repressor molecules are degraded (kq), 50% (i.e 4k17?) bind together

(20) A:(

N
INI[SU e

to produce a total of #rl dimers and 25% remain unaltered. For the dimer, 25% (i.e. k_1)
break to produce 2k_;ry repressors and 75% remain unaltered.

Remark 25 Another way of defining A,, would be to keep for Ar the actual Jacobian evaluated
1 -4k E[X}Y) kg 2k,
2k E [ X}] 11—k

at the expectation of uncontrolled X,, i.e. A, =
x))

o , etc.
Xo

The Multiplicative Noise Changes in the trend component have an effect on the couple

repressor/dimer in the transcription phase DRy + P & DRy; + P + rRy. A careful look at
the biochemical reactions shows that binding to the promoter site needs a dimer per binding.
Since the DNA mechanism is assumed to be at equilibrium, the number of ”averaged” occupied
promoter sites can be set proportional to Ry. This reaction will result in a production of r copies
per existing dimer as soon as the trend is set to e;. This implies that

(21) Cz,n:<8 6)

The remaining states induce no noise i.e.

) , then compute

(22) Ci,n = Ogyo, fori e {1, 3, 4} .

Again, in to simplify the arguments, we assume r = 1. We also drop the dependency on n.

We deal with a scaled repressor/dimer component and this is why we add these as pure jump
zero-mean contributions. Alternate models are available (see, for example [39]).

One vs. Multi-dimensional controls. At this point, we envisage four scenarios concerning
the couple repressor/dimer : no external control, control only the dimer, (same one-dimensional)
control on both the dimer and repressor or control (two-dimensional) on each state. To control

the dimer, respectively mutually control the couple repressor/dimer, one uses b; = ( (1) ) ,

respectively by = ) . To control the two components independently, one uses [by, by] € R?*?

1
(which is equivalent, up to renaming the controls, to the use of B = I5y5). Note that these
scenarios correspond to selecting a subset of {1,2}.

When B = b, one computes (AT)—l — < i28 —44) and (AT)—l C’;‘F = < _44 8) and

notes that ker BT is (AT)_1 +2 (AT)_l CT-invariant and, thus, ((AT)_1 : (AT)_1 CT> —strictly

invariant (with the notations of Proposition [[7)). Therefore, the system is not null-controllable
according to Proposition [I7.
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When B = by, we compute the explicit solution of ([I]) associated to a particular choice of the
1

control as follows. For every x = ( 52 ) € R?, we set

1 3 1 1
U = _le — 13:2 and us = . ((Ll,eQ) — —) 2,

to get

T L,e — 1 372 T,
X1’ = < (< ! 22) 2) ), X27 = Ogx1.

Then, the system is null-controllable.

Remark 26 Alternatively, one can use Proposition and compute lim OiEfPoE starting from
E—

592 —192
—192 064
which is positive-definite. Its minimal eigenvalue is | B ({2}) (|20 = ||b2|I2V ~ 1.5647078.

ctrl ctrl —

P§ = 0gxo. For small values of € ~ 107 numerical values stabilize around

The system is also controllable if B = [by,bs]. In view of Definition 23] it follows that
T ={2} provides a minimal efficient intervention plan. In this case, rank and spectral control
norms provide the same (unique) answer.

Conclusion and future work

One is able to characterize the null controllability of discrete-time systems associated to
biochemical reactions through an explicit controllability metric given by a backward stochastic
Riccati scheme (8) through Theorem [l In particular, if the biological imperative asks to be

able to drive a specific protein to 0, a discrete-time model in which lim éanOE is not positive
=0+

definite is not correct. This metric is specific to the discrete-time models (equivalence between
approximate null and exact null controllability in continuous-time is less obvious).

The explicit algebraic conditions on the coefficients are not universal. Achieving controllabil-
ity for continuous-time models does not guarantee similar behavior for discrete ones (cf. Section
2.6). Furthermore, while in continuous-time controlling systems with non-random coefficients to
zero guarantees approximate controllability to any random target, this is no longer valid for the
discrete-time model (cf. Example [l). Thus, even though the ergodic behavior of the discrete
or PDMP models lead to the same reaction speeds, choosing one model or another leads to
qualitative differences (in getting lytic behavior and, hence, recombination).

Finally, if several parameters can be altered, the controllability metric provides a minimal-
intervention scenario (minimal actions on the reactions). In particular, knowing this scenario,
reduces the manipulation costs (reaction speed depends on adjuvants, temperature, catalyzers,
etc.)

Several open questions remain. From a theoretical point of view, we work on getting explicit
algebraic conditions leading to approximate controllability (not only towards 0) in the general
multiplicative models with random coefficients (both in continuous and discrete framework). In
the continuous framework, some general sufficient condition can obtained by using the explicit
reduction of BSDE to systems of ODE (from [40]) in the same spirit as the proof of Proposition [I7
At application level, similar procedures can be envisaged for objective-based systems reduction.
In this case, the decision is made at subgraph selection level : what reactions to be suppressed
and what reactions to be added to preserve a given property. The aim in this framework is
to give the smallest set of reactions allowing to achieve the goal. This makes the object of
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on-going research in both discrete and continuous framework. The method could combine the
simplification set of rules in [32] for the deterministic case and the subgraph selection in [27]
(but according to the stochastic metric introduced in the present paper).

4 Proofs of Theorems 2] and 8, Solvability Propositions
and and Necessary Condition (Proposition [17)

4.1 Proof of the Main Results

We begin with the proof of the duality-based characterization of controllability concepts.
Proof of Theorem [2l The first two assertions are direct consequences of the duality properties.
One easily notes that

_ <X;§,u,A§§E Vs F +Zcfnz,fjfE AMn+1,ei>AMn+1/}"n]> + (Bu i, E[VY§/F])

g (e v25) /)
p

Z <AMn+1, €Z> CT ZN £AA]\anLl/‘F'n

,nn
i=1

= (A5 B B V4R ] ) + <XE

e+ (B2 r/A])

Hence, by iterating, one gets

N—1
(23) E (X5 Y] = (2.5%) + SB[ (unr, BE [V.N4/7) )]
n=0
One proceeds in a classical manner by considering the two linear operators

R : Pred—sL? (Q, Fn,P;R™) | Ry (u) = X](i;”, for all u € Pred,
R% :R™—IL2(Q, Fy,P;R™), R (z) = X%°, for all z € R™.

The reader is invited to recall that Pred stands for the family of R%valued, F-predictable
controls. (It is considered here as a subspace of product of L2 (Q, Fn, P; Rd)—spaces.) In view of
(23), the adjoints of the linear operators are given by

(24) (RN)" (&) = (B"E [,/ Faa]) oy s (BY)(9) = Y5,

for all ¢ € L2 (2, Fy,P;R™). Then, approximate null-controllability is equivalent to the image
(range) inclusion Im (R%) C ¢l (Im (RY)), where ¢l is the usual Kuratowski closure operator.
Furthermore, this is equivalent to the kernel inclusion ker ((R})") C ker ((R%)") which leads
to the second assertion. Similar, approximate controllability is equivalent to ¢l (Im (R})) =
L? (2, Fn,P; R™) . Hence, it is equivalent to ker ((R})") = {0} which leads to the first assertion.
For the third assertion, since €2 is assumed to be the sample space, it follows that .2 (Q, Fy, P; R™)
can be seen as R™" . Hence, the linear subspace Im (RY) is finite-dimensional and, thus,
cl (Im(RY)) = Im(R)). In this case, approximate null-controllability is written down as
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Im (R%) C Im (R)) (i.e. one actually has exact null-controllability), or, equivalently (see, for
example, [41l Appendix B, Proposition B.1}),

()" €] < k[ (RY)" €l - Tor some > 0.

The necessary and sufficient condition (3]) follows from (24]). m

We now give the proof of the second main result of the paper providing the link between the
controllability (pseudo)norm and the backward stochastic Riccati difference scheme.
Proof of Theorem [8l. For the first assertion, using the particular form of o, . and 7, ., one
simply writes down

Py yn®")
=B [Py, [AT) g (A ) S BT LAT) e = (ol e e )

=E K +1yi(luyi°+’1> /Fn } +e€ |Un+1‘ + }BTE [yii‘ll/f H }ﬁn 1/2an,€y%07 nrl/fanrlF-

By iterating and taking expectation, one gets

N— N-—1
(P 0y07y0 Z |Un+1|2} +E Z }BTE 19311/-7:“ ]
Nt
(25> - [}7771/2 nz—:y?rio7 7771/5 Un+1‘2:| .

=0

3

If the system (I]) is (approximately) null-controllable, then there exists some positive constant
¢ > 0 such that

N-1
inf BTE [y | F > clual?.
(vn)1<pn<n F-predictable % ‘ [y"‘f'l/ ” ] = ‘yo‘
In particular, by taking the feedback control vy, := 7, 55n Eyyo,vs’ one establishes that

(Psyo, yo) > clyol”

and the conclusion follows.

Conversely, if lim (HrlfPOE > cl, for some ¢ > 0, then, for every ¢ > 0 small enough and every
E—

predictable control v, one gets

N-1 N—-1
S [l 5 | X |R AL 2 5
n=0 n=0

and the conclusion follows by letting ¢ — 0.
For the second assertion, one notes that (25) implies that

Un)1<n<n F-predictable g

N-1
(F5 Y0, Yo) = : inf (5 Z E [[vat|’] +E
n=0

S e i)

and the conclusion follows by letting ¢ — 0. =
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4.2 Proof of the Solvability Results

We begin with the proof for the solvability of the BSRDS in the case of non-random coefficients.
Proof of Proposition [I0. The proof is given by (descending) induction. For n = N, it is clear
that Q5 _; = 0. Since Ay_; and Cy_; are deterministic, it is clear that the iterative step defining
Pf_, in scheme () reduces to (@). Let us assume that P;,, has been constructed according
to this deterministic scheme and is a positive-semidefinite (non-random)matrix. Then, Q% = 0.
Since A, and C,, are deterministic, the definition of P¢ according to scheme () reduces to ().
We only need to prove that this latter scheme is consistent and provides positive-semidefinite
matrices. One begin with noting that as soon as Py, is positive-semidefinite, the matrix

AS = (a5 (G — @) Prst) < pe, € RT

is also positive-semidefinite. Indeed, it suffices to set DDT = (q; (6,5 — qx)), <jh<p Siven by
Cholesky decomposition and D;j, := Dj p Ly xm, for all 1 < j,k < p. Then o

P;Jrl Omxm Ome 0
Ome Pri—l—l Ome Om><m .
Afwrl =D | Omxm Omxm PS_H v Opuxm | D

€
0m><m Dmxm Omxm Pn+1

is obviously positive-semidefinite. It follows that 7, . given by () is positive-definite. Second,
using a classical intuition on feedback optimal control, one writes

A;l (Pri—kl + BBT) [AZ] - 0457577;;0%,5
= (47— oL lCuAT] (B + BBY) (A7)~ (A7) Cor e ]

n n

T . —1 € —1
+ an,ann,a (Ejmpxmp + An-i—l) nn,eanﬁ'

This implies that P; is positive-semidefinite whenever Py ; is positive-semidefinite and the
induction step is complete. m
The second proof concerns the solvability of the BSRDS in the absence of multiplicative noise

(ie. C=0).
Proof of Proposition [12. One begins with setting

py =0and ¢y =0
and notes that P§,_; given by (I0) satisfies

Py = A BBT (AL ] = AN (N =1, Ly 1) (b + BBT — ¢5,) (AN (N = 1, Ly )"

Next, one recalls that Qn_2 = [@n—21 @N-22 ... @N—2.m], Where Qn_a; € R™*P. One easily
computes

. . . _ c c _ T
QJ’\i—Q,DQJ’\i—Q,Qv "'7Q]’\£—2,mj| =A™ (N - l,el) (pN + BB — qN) (A ' (N - 1>el)) )

for all 1 <[ < p. Therefore, the conclusion holds true for n = N —1. We proceed by (decreasing)
induction and assume the conclusion to hold true for n + 1 and prove it for n < N — 2. One
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easily notes that,due to the recurrence assumption, the following equalities hold true for o and
n computed as in (I0).

J = _q T
.= —al [AT]™, where

, p
o). = [qu (050 — @) A (n+1,e1) (040 + BBT — ¢5y) (A (n+ 1,¢1))" | and
=1
. p
15 = €8 4 Lmem + D@1 (@5 — 05) (@ — 0k1) A7 (n+ 1,€) (Won + BB — ¢50) (A (n+1,e)) ",
=1

for all 1 < 7,k < p. We set

p
Pry1 = E [Pﬁﬂ/]:n] = ZZQlA_l (n+1,e) (p€n+2 + BB" — warz) (A™' (n+1, 61))Ta
-1

€ _ =T —1=
qn+1 - an,enn,eanﬁ'

(26)

We will see in just one moment that 7, ! (hence, g;,,) is consistent. By (I0), it follows that

P, = A;I (piu-l + BB - qrez-f-l) [Aﬂ_l .

n

For (), the assertion is obtained as in the first step. We come back to the quantities p;, , ; and g;,,
given by (26) and show that they are well-defined and satisfy (I4]). The induction assumption
D540 = 5o implies that pf,_ ; is positive-semidifinite. Second, with the notations

A= (\/aAil (n + 1, 61) s e \/%Afl (77, + 1’ ep)) c Rmep’
P = (0 (Psa+ BB — qu+2))1§j7kﬁp € Ry,
D:= (\/q_k (6 —q;) A (n+ 1, ek))lgj,kgp € RmPxmp,

one has
Nne = ELppxmp + DPDT > 0 and @, . = DPA”.

For the inequality, we have used the induction assumption p;,_ , > ¢, ,. As consequence, g, is
well-defined and positive-semidefinite. Finally,

Pt — @y = APAT — APD” (elpmp + DPDT) " DPAT
T
= (A= APD" (elpy + DPDT) " D) P (A~ APD” (elpuomy + DPDT) "' D)
+ eAPDT (eLypimp + DPDT) " (elmpmp + DPDT) " DPAT,

which is clearly positive-semidefinite. Our induction step is now complete and the conclusion
follows. m

4.3 Proof of Proposition [17

Proof of Proposition I7. We begin with setting V¥ = ker (B”) . We proceed for 0 < k < N,
and denote by V¥ the largest subspace of ker (B") which is ([AT} - (C (1) A s, ..., (C(p) A
invariant. According to [8, Theorem 3.2] (see also [9, Lemma 4.6]), the set V*V is equally

<[AT] e ) A et ..., (C (p) A™HT Hvlc+1,N> —feedback invariant. Thus, there exists
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1<i<p C R™ ™ guch that VoV is ([AT} - +> 0, (C) A’I)T ITykean

invariant. We consider the linear stochastic system

a family of linear operators (F* (1))

_ P
o= ([A7)7 4 S € A My P () 2+ 32 (DM, 0) s B (1) 22

.T}go = Yo c VO’N.
Then 2% ; coincides with the solution of () associated to the feedback control v/ee®ek (n 41 y) =
[ynsn E™ (1) y, .o, Hpniin F™ (p) y], for all n > 0. Moreover, whenever y, € V%V one gets

22, € VN P—a.s. for all n > 0. In particular, recalling that V"'V C ker (BT), it follows
yO’Ufeedback

that BTE Yn1 /Fn| = 0, P—a.s. for all n > 0. By our controllability assumption and

Criterion H one deduces o = 0 and our proposition is complete by recalling that yo € VOV is
arbitrary. m
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