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Abstract   

We study a model for lipid-bilayer membrane vesicles exhibiting phase separation, incorporating a phase field 

together with membrane fluidity and bending elasticity.  We prove the existence of a plethora of equilibria in the 

large, corresponding to symmetry-breaking solutions of the Euler-Lagrange equations, via global bifurcation from 

the spherical state.  To the best of our knowledge, this constitutes the first rigorous existence results for this class of 

problems.  We overcome several difficulties in carrying this out.  Due to inherent surface fluidity combined with 

finite curvature elasticity, neither the Eulerian (spatial) nor the Lagrangian (material) description of the model lends 

itself well to analysis.  This is resolved via a singularity-free radial-map description, which effectively eliminates the 

grossly underdetermined in-plane deformation.  The resulting governing equations comprise a quasi-linear elliptic 

system with nonlinear constraints.  We show the equivalence of the problem to that of finding the zeros of compact 

vector field.  The latter is not routine.  Using spectral and a-priori estimates together with Fredholm properties, we 

demonstrate that the principal part of the quasi-linear mapping defines an operator with compact resolvent.  We then 

combine well known group-theoretic ideas for symmetry breaking with global bifurcation theory to obtain our 

results.     
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1. Introduction 

     The present work is inspired to a large extent by the striking images presented in [4] of patterned 

configurations of two-phase fluid domains in man-made lipid-bilayer vesicles. The importance of 

understanding their mechanical behavior, due to their close relationship with bio-molecular systems and 

cell function, is well known and highlighted in [4]. Here we analyze a continuum phase-field model for 

such structures, incorporating curvature elasticity, membrane fluidity and a Cahn-Hilliard type phase-field 

energy, the latter approximating a sharp-interface theory, e.g., cf. [2], [3], [12], [24], [38].  As in [12], our 

model features phase-field-dependent bending moduli, which we show enable the identification of new 

phenomena in the local, asymptotic bifurcation behavior.  Specialized to constant bending moduli, the 

model is the same as that considered in [38], and in the absence of the phase field, the energy reduces to 

the well-known model of Helfrich [18].  Each of the above-mentioned works provides an informative 

scientific introduction to the subject (which we do not attempt replicate here) along with numerical results 

and/or formal analyses of axisymmetric configurations. Here we prove the existence of a plethora of  
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equilibria, corresponding to symmetry-breaking solutions of the Euler-Lagrange equations, via global 

bifurcation from the spherical state.  To the best of our knowledge, this constitutes the first rigorous 

existence results for this class of problems.  Several difficulties arise in this endeavor, as enumerated in 

the outline that follows. 

     In Section 2 we formally derive the Euler-Lagrange equilibrium equations via the first-variation 

condition for the total potential energy in the presence of constraints. This is a rather elaborate 

calculation, due in part to the fact that the energy density is naturally prescribed per unit current surface 

area.  Nonetheless, it constitutes a systematic and reliable procedure for obtaining the correct governing 

equations.  Much previous work along these lines for similar models has been carried out elsewhere, e.g., 

[7],[8], [9], [37[, of which we take full advantage here.  In this way we obtain the intrinsic Eulerian 

description of the equilibrium equations with respect to the deformed surface, in consonance with the 

membrane fluidity.  We impose two constraints: one enforcing area preservation and the other prescribing 

the average value of the phase field.  The latter serves as our bifurcation parameter.  Throughout we 

presume a fixed, nonnegative internal pressure; our philosophy here is to study inflationary phase 

transitions, as opposed to the more traditional shell buckling induced by compressive external pressure. 

     Of course the deformed surface is not known a-priori, ostensibly requiring a Lagrangian description 

for the purpose of analysis.  However, due to the aforementioned fluidity, a total Lagrangian formulation 

is necessarily invariant under the set of all automorphisms of the undeformed reference surface into itself.  

Such gross non-isolation of solutions lends itself well to neither analysis nor numerics.  In Section 3 we 

employ a singularity-free radial-graph description, previously used in the study of surfaces with 

prescribed mean curvature [39].  This effectively eliminates the underdetermined in-plane deformation.  

The resulting equations, written with respect the fixed unit sphere,
2 ,S now appear appreciably more 

complicated, but nonetheless comprise a quasi-linear, uniformly elliptic system for the unknown phase 

field and the surface placement field, in the presence of nonlinear constraints.     

     In Section 4 we demonstrate the equivalence of our problem to an abstract-operator equation for the 

zeros of a compact vector field.  This construction is not routine.  The principal part of the quasi-linear 

system is second order in the phase field and fourth order in the placement field.  We use spectral and a-

priori estimates together with the stability of the Fredholm index to demonstrate that this defines an 

operator with compact resolvent [26].  With this in hand, we obtain the equivalent formulation via the 

inversion of a spectral shift of the principal operator.  This sets the stage for global bifurcation methods 

via the Leray-Schauder degree [35]. 

      We consider the rigorous linearization of the system about the trivial family of spherically symmetric 

solutions in Section 5.  In particular, we determine the basic necessary condition for bifurcation, while 

characterizing the high-dimensional null space of the linear operator at potential bifurcation points.  The 

latter is a direct consequence of spherical symmetry.  Here already we see the role of the bending moduli 

functions within the so-called spinodal region: Only their non-constancy allows for the generic 

participation of the displacement variable in the null vectors.  Said differently, if the bedning moduli are 

constant, only the phase field is present in the null vectors asymptotically associated with eventual 

solutions.  All calculations in Section 5 are first conveniently carried out for the pde-based formulation of 

Section 2. We then demonstrate the equivalence of those results for the abstract formulation of Section 4, 

the latter of which is needed for the purposes of global bifurcation methods.  

     In Section 6 we first establish the (3)O equivariance of the field equations.  Next we use well-known 

symmetry ideas to obtain reduced problems amenable to global bifurcation analysis.  We exploit the 
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group-theoretic classification in [14], identifying those subgroups that lead to generic bifurcation problem 

having a one-dimensional null space.  Here we work in fixed-point spaces of the Banach space, enabling 

global conclusions. With this in hand, we demonstrate, for physically reasonable parameter regimes, that 

all of the subgroups catalogued in [14, Thm.9.9] lead to global solution branches, each characterized by 

precise symmetry.  We illustrate the latter in several examples for specific subgroups and mode numbers. 

In each case we give the explicit linear combination of null vectors (bifurcation direction) asymptotically 

associated with the local behavior of the solution branch near the bifurcation point, together with a 

graphical illustration of the associated eigenfunction. These examples are chosen for their apparent 

relevance to the experimental images shown in [4].  

     In Section 7 we make a few final remarks.  Among other things, we discuss both the applicability of 

our analysis to other related models, and the attractiveness of our formulation to numerical 

implementation.  We also give a simple argument showing that even in the case of constant bending 

moduli, there can be no solutions to our problem characterized by a nontrivial (non-constant) phase field 

on the undeformed sphere. 

Notation   

  We employ coordinate-free notation as much as possible throughout this work, similar to that introduced 

in [16], which we now summarize for the convenience of the reader.  Let
3Σ ⊂ ℝ  denote a smooth, closed 

surface, and let
3⊂x ET  denote the two-dimensional tangent space at ,∈Σx where

3
E is the translation 

(vector) space associated with point space
3.ℝ  SinceΣ is presumed smooth, for any ,∈Σx there is a 

smooth (locally bijective) map : ,x x →ΣX N with x x⊂N T open, such that ( ) .x =0 xX   For a smooth 

scalar field ( )ψ ⋅ defined on ,Σ the surface gradient at ∈Σx , denoted ( ) ,ψΣ∇ ∈
x

x T is given by 

 ( ) : ( )( ).xψ ψΣ∇ =∇x 0�X   (1.1) 

For a smooth vector field
3: ,Σ→v E  the surface gradient at ,∈Σx denoted

3( ) ( , ),LΣ∇ ∈ xv x ET is given 

analogously to (1.1).  Let
x

P denote the orthogonal projection onto ,xT viz., 

 ( ) ( ),= − ⊗
x

P I n x n x  (1.2) 

where I denotes the identity on
3
E and ( )⋅n is a smooth unit normal field on ,Σ i.e., ( ) x∈n x T ⊥ for each

∈Σx  and 1.≡n  The tangential surface gradient of ( ) at ⋅ ∈Σv x  is then defined by 

 ( ) : ( ),DΣ Σ= ∇
x

v x P v x   (1.3) 

where ( ) ( , ).D LΣ ∈
x x

v x T T   The curvature tensor at ,∈Σx denoted ( ) ( , ),L∈
x x

L x T T  is given by 

 ( ) : ( ) ( ) ( ),DΣ Σ Σ= − = − ∇ = −∇
x

L x n x P n x n x   

with mean and Gaussian curvature given by ( ) : ( ) / 2H tr=x L x and ( ) : det ( ),K =x L x  respectively. 

     A smooth vector field ( )⋅t onΣ satisfying ( )∈
x

t x T  for each ,∈Σx  is called a tangential vector field, 

in which case we define the surface divergence of ( ) at ⋅ ∈Σt x via 

 ( ) : [ ( )],div tr DΣ Σ=t x t x  (1.4) 
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where “tr” denotes the trace.  SinceΣ is closed, the divergence theorem reduces to 

 ( ) 0.div dsΣΣ
=∫ t x   (1.5)  

The surface gradient of a smooth scalar field ( )ψ ⋅ is naturally tangential, i.e., ( ) .ψΣ∇ ∈
x

x T  By virtue of 

(2.6), the second tangential derivative of ( ),ψ x denoted
2 ( ) ( , ),D BLψΣ ∈ ×x x xx T T T is the bilinear 

operator  

 
2 ( ) : ( ( )) ( ( )),xD D Dψ ψ ψΣ Σ Σ Σ Σ= = ∇ ∇x x P x   (1.6) 

where in accordance with (2.6), we have introduced 

 ( ) : ( ) ( ),xD ψ ψ ψΣ Σ Σ= ∇ = ∇x P x x  (1.7) 

i.e., the surface gradient and the tangential surface gradient of a scalar field are one and the same. The 

Laplace-Beltrami operator acting on ( )ψ ⋅ at ,∈Σx is given by 

 
2( ) : [ ( )] ( ).tr D divψ ψ ψΣ Σ Σ Σ∆ = = ∇x x x   (1.8) 

Higher tangential derivatives, evaluated at ,∈Σx  are multilinear functions of Cartesian products of
x
T  

into ,
x
T defined in the obvious way by consecutive composition. In particular, 

 

3 2 2

4 3 3

( ) : ( ( )) ( ( )),

( ) : ( ( )) ( ( )).

D D D D

D D D D

ψ ψ ψ

ψ ψ ψ
Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

= = ∇

= = ∇

x x x

x x x
  (1.9) 

 

2. Intrinsic Eulerian Equilibrium Equations 

     We begin with the following phase-field elastic-shell potential energy functional for a vesicle, written 

with respect to the current configuration, denoted ,Σ and presumed isomorphic to the unit sphere

2 3 :S ⊂ ℝ  

 
22[ ( ) ( ) ( )] ( ),

2
B H E K W ds pV

ε
φ φ φ φΣΣ

+ + ∇ + − Σ∫  (2.1) 

subject to the constraints 

 
4 ,

4 .

ds

ds

π

φ πλ
Σ

Σ

=

=

∫
∫

 (2.2) 

Here  and H K denote the scalar-valued mean-curvature and Gaussian curvature fields of ,Σ respectively, 

φ denotes the scalar phase field, ( ), ( )B E⋅ ⋅ are real-valued bending moduli functions, 0ε > is a small 

“interfacial” parameter, 0p ≥ is the prescribed internal pressure, ( )V Σ denotes the volume enclosed by 

the surface ,Σ 0λ > is a “control” parameter, and ( )W ⋅ is a non-convex potential function. We assume 

throughout that ( )W ⋅ is of class 3C and ( )B ⋅ and ( )E ⋅ are bounded 4C functions, on .ℝ  We further require

( )B ⋅ to be positive, say, according to 
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 : [ , ),B ε→ ∞ℝ  (2.3) 

and we assume thatW is a non-negative, non-convex potential function. Typical graphs of 

,   andW W W′ ′′ that we consider here are sketched below in Figure 2.1. In particular, we assume that W ′′  

has precisely two zeros,
1 2
, ,m m as shown.  The numerical values of

1 2
m mα β< < < play no role in the 

subsequent analysis. The interval 
1 2
,( )m m is called the spinodal region.   

                                                    

Figure 2.1 Graphs of ,  and .W W W′ ′′        

Clearly the first constraint equation (2.2)1 specifies total-area preservation, while (2.2)2 prescribes the 

average value of the phase field. 

     Our goal in this section is a formal derivation of the Euler-Lagrange equilibrium equations.  This is a 

rather involved, nontrivial procedure, due in large part to the fact that (2.1) is naturally posed over the 

current configuration .Σ  Fortunately, much previous work has been carried out along these lines, e.g., [7], 

[8], [9], [37], of which we take full advantage here.  We first introduce a smooth deformation 

 
2 3 2: , : ( ),S S→ Σ =f fℝ  (2.4) 

denoting points ∈Σy via ( )=y f x for all
2 .S∈x   Henceforth we refer to

2S as the reference 

configuration.   Next we consider the smooth variations 

 
( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ...,

w

φ φ ψ φ φ ψΣ

→ + ⇒ → + +

→ + + = +∇ ⋅ + +

f x f x η x y y v y y n y

y f x η x y y y v y y
 (2.5) 

where 
2 3: S →η ℝ is the (material) variation of ,f n denotes the outward unit normal field on ,Σ

0⋅ ≡v n on ,Σ and :ψ Σ→ ℝ is the variation of the scalar field  on .φ Σ   Hence, vandwn represent the 

tangential and normal components, respectively, of the variation of  the deformed surface in spatial form, 

and ( ) ( ) ( )ψ φΣ+∇ ⋅y y v y  is the total variation of ( )φ y in spatial form, the second (convected) term 

accounting for the variation of the deformed surface itself.   
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     We now change variables, expressing (2.1) with respect to the reference sphere, while introducing 

Lagrange multipliers enforcing the two constraints (2.2): 

 

( ) ( )
2

2 2

22: [ ( ) ( ) ( )] ( )
2

           4 4 ,

S

S S

U B H E K W Jds pV

Jds Jds

ε
φ φ φ φ

γ π µ φ πλ

Σ= + + ∇ + − Σ

− − − −

∫

∫ ∫
 (2.6) 

where J denotes the local area ratio.  By a convenient abuse of notation, we employ the same name for 

the function whether a function of  or ,x y e.g., ( )H x  instead of ( ( )),H f x  etc.  Then the first variation is 

given formally by 

 

2

2

2 2

2

{2 ( ) ( ) ( )

                          [ ( ) ( ) ( )] }

22           + [ ( ) ( ) ( )]
2

          ( ) ( ) .

S

S

S S

U B H H E K

B H E K W Jds

B H E K W Jds

p V Jds J J ds

δ φ δ φ δ ε φ δ φ

φ φ φ δφ
ε

φ φ φ φ δ

δ γ δ µ δφ φδ

Σ Σ

Σ

= + + ∇ ⋅ ∇

′ ′ ′+ + +

+ + ∇ +

− Σ − − +

∫

∫

∫ ∫

 (2.7) 

Next we push (2.7) forward to the current configuration and employ the following well known 

expressions for the variations in spatial form: 

 

2

( ) ( ) [ ] ,

/ 2 (2 ),

( [ ]) 2 ,

( 2 ),

( ) ,

Tw D

H H w w H K

K K div Cof w HKw

J J div wH

V wds

δφ ψ φ

δ φ δφ φ

δ

δ

δ

δ

Σ

Σ Σ Σ Σ

Σ Σ

Σ Σ Σ

Σ

Σ

= +∇ ⋅

∇ = ∇ + − ∇

= ∇ ⋅ + ∆ + −

= ∇ ⋅ − ∇ +

= −

Σ = ∫

v

L v

v

v L

v

 (2.8) 

where ( , )y yCof L∈L T T denotes the cofactor tensor corresponding to the curvature tensor .L  By virtue of 

the Cayley-Hamilton theorem, we have 

 2 ,yCof H= −L I L  (2.9) 

where
yI denotes the identity on .yT   

     Substituting (2.8) into the push forward of (2.7) leads to the first variation condition: 
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( )

2

2

2

2

[ ( ) ( ) ( ) ]

                         + [ ( ) ( ) ( )]

                        [ ( ) ( ) ( )]

    ( / 2) ( [ ]) ( )

              

{U B H E K W

B H E K W

B H E K W div

div D

δ φ φ φ µψ ε φ ψ

φ φ φ

φ φ φ

ε φ φ φ φ φ

Σ ΣΣ

Σ

Σ

Σ Σ Σ Σ Σ Σ Σ Σ

′ ′ ′= + + − + ∇ ⋅∇

∇ + + ⋅

+ + +

+ ∇ +∇ ⋅ ∇ ∇ ⋅ −∇ ⋅ ∇

∫
v

v

v v v

2

2

          ( )      

                       2 ( ) [ / 2 (2 ) ]

                   ( )[ ([ ] ] 2 ]

                     [ ( [ ] ) ]

                   2 [

div div

B H w H K w

E div Cof w HKw

H p w

H B

µ φ φ λ

φ

φ

ε φ φ φ

Σ Σ Σ

Σ

Σ Σ

Σ Σ Σ

− ∇ ⋅ + −

+ ∆ + −

− ∇ −

+ ∇ ⋅ ∇ − ∇ −

−

v v v

L

L

2( ) ( ) ( ) ] 0,}H E K W w dsφ φ φ µφ γ+ + − − =

  (2.10) 

for all smooth admissible variations ,  and .wψ v  Next we formally integrate by parts and use the 

divergence theorem (1.5), bringing the entire integrand into the usual form needed to obtain the Euler 

Lagrange equations.  Remarkably this results in the vanishing of the entire tangential term.  This is self-

evident for all but the term on the fourth line of (2.10), which also vanishes by direct calculation. In any 

case, the usual localization arguments applied to (2.10) after integrating by parts yields the Euler 

Lagrange equilibrium equations: 

 
2( ) ( ) ( )  on ,B H E K Wε φ φ φ φ µΣ ′ ′ ′− ∆ + + + = Σ   (2.11) 

 

2

2 2

( ( ) ) 2 ( ( )) ( ( ( ))

     ( [ ] ) 2 ( ) ( )

                                     2 [ ( ) ]  on ,

B H H E D E

H B H H K

H W p

φ φ φ

ε φ φ φ φ

φ γ µφ

Σ Σ Σ

Σ Σ Σ

∆ − ∆ + ⋅

+ ∇ ⋅ ∇ − ∇ + −

− − − = Σ

L

L   (2.12) 

subject to the two constraints (2.2).  In (2.12) we use the notation : ( )Ttr⋅ =A B AB for all

, ( , ).y yL∈A B T T  Also, in obtaining (2.12) from (2.10) we make use of (2.9) and the fact that

([ ] )div CofΣ =L t Cof DΣ⋅L t  for all tangential fields ( ) on ,⋅ Σt cf. [37].      

     Equations (2.11), (2.12) elegantly represent the intrinsic Eulerian form of the equilibrium conditions, 

in consonance with the membrane fluidity inherent in the model and given with respect to the unknown 

surface .Σ  The latter characteristic clearly shows that equations (2.11), (2.12) alone are insufficient.  If  

we introduce a general vector-valued mapping in order to describe ,Σ we arrive at the same difficulty 

associated with a Lagrangian description (2.4), where ( )=y f x is interpreted as the position vector of the 

material point inΣ  that occupies position 2 .S∈x  Let 
2 2: S S→m  be any smooth automorphism. Then 

the equilibrium equations (2.11), (2.12) are invariant under ( ) ( ).⋅ → ⋅f f m�  As a consequence, the 

tangential component of the deformation ,f relative to
2 ,S is parametrized bym and is thus grossly 

underdetermined. Of course this kind of indeterminacy also occurs in the Lagrangian description of 

classical bulk fluids.  We conclude that the membrane fluidity is conducive to the Eulerian description, 

which is at odds with the usual description of the bending elasticity also characterizing our model. 
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Remark 2.1 In our recent work [10], we also consider the model (2.1) with (2.2)1 replaced by the local-

area constraint 1,J ≡ i.e., the sixth term in (2.6) is replaced by 

 
2
( 1) ,l

S
J dsγ −∫   

 where lγ  is now a Lagrange-multiplier field.  This is similar to the situation in classical fluid mechanics, 

where the local volume ratio is preserved.  The Euler Lagrange equations are essentially the same in this 

case, the only difference being that the tangential equation does not vanish identically but rather yields the 

condition 0l lγ γΣ∇ ≡ ⇒ = const.  This strongly hints that the two formulations are “equivalent”.  

However, the distinct constraint equations for the two formulations need to be addressed as well.  

Existence presumed, we show in [10] that within the equivalence class of (genus-zero) solutions for the 

global-area formulation, as indicated above in the context of the Lagrangian formulation, there is at least 

one member that satisfies the local area problem as well.  In addition, we show that the formal 

characterization of the second-variation conditions for the two formulations are equivalent in that sense as 

well. 

 

3. A Singularity-Free Radial-Graph Description 

     To overcome the above-mentioned shortcomings of the two classical descriptions, we borrow an idea 

from [39], restricting ourselves to mappings of the form 

 
2exp( ( )) ,  for all ,u S= ∈y x x x  (3.1) 

where
2: .u S → ℝ   The non-negative scalar field exp( ( ))u x represents the magnitude of the radial 

position vector of the deformed surface. While specifying ,Σ we note that y given by (3.1) does not 

generally represent the position vector of the material particle occupied byx in the reference configuration
2 .S   In particular, (3.1) does not specify the tangential component of the displacement.  We now proceed 

to obtain all quantities needed to reformulate our problem, (2.11), (2.12) and (2.2), solely in terms of φ

and u as fields on
2S as follows. 

     All calculations hereafter are carried out with respect to the reference surface
2 .S  Accordingly, we 

drop the subscript notation for derivatives, as introduced in Section 1, with subscript
2S now being 

understood, e.g., 2( ) : ( ).
S

∇ ⋅ = ∇ ⋅  We first observe that the outward unit normal field on
2 ,S denoted ( ),o ⋅n

is simply the unit-radial translation of the position vector itself, viz., ( ) ,o ≅n x x which we now 

consistently employ.  Let
3( ) ( , )xL T∈F x E denote the surface gradient of the right side of (3.1), given by 

 exp( )( ),xu u= + ⊗∇F x1   (3.2) 

where x1 denotes the identity on ,xT the tangent space of
2  at .S x   Let 1 2{ , , }e e x denote a right-handed 

orthonormal frame at
2 .S∈x  Then 

 exp( )( , ),  1,2,u uα α α α α= = + =a Fe e x  (3.3) 
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define a convected basis, under (3.1), for the tangent plane
yT  onΣ at ,y where , : .u uα α= ∇ ⋅e  From (3.3) 

we may then compute the outward unit normal, denoted ,n  to  at Σ y as a function of 2 :S∈x  

 
2 1/2(1 ) ( ).u u−= + ∇ −∇n x  (3.4) 

The reciprocal basis vectors are given by 

 

21 1 2

2 1 1 2 2 1

22 1 2

1 2 1 1 2 2

exp( )(1 ) {[1 ( , ) ] , , , },

exp( )(1 ) { , , [1 ( , ) ] , }.

u u u u u u

u u u u u u

−

−

= − + ∇ + − +

= − + ∇ − + + +

a e e x

a e e x
  (3.5) 

From (3.3)-(3.5) we can directly compute all necessary quantities associated with the deformed surface .Σ   

In what follows, Greek indices range from 1 to 2, with repeated indices implying summation: 

 

21/2 1/2

1  fundamental form: ; 

         : exp(2 )( ),

            (det[ ]) exp(2 )(1 ) ;

st

T

x

a

a u u u

J a a u u

αβ α β

αβ α β

αβ

= ⋅

= = ⊗ = +∇ ⊗∇

= = = + ∇

a a

C F F e e 1  (3.6) 

 
21 1

2

;

exp( 2 )(1 ) ( ),  

( ) : (1 ) ;x

a

a u u u

u u u u

αβ α β

αβ
α β

− −

= ⋅

= ⊗ = − + ∇ ∇

∇ = + ∇ −∇ ⊗∇

a a

C e e A

A 1

 (3.7) 

 
2 1/2

     2  fundamental form: 

       exp( )(1 ) ( , , ),    

nd

L u u u u uαβ α β αβ α β αβδ−= ⋅ = + ∇ − −a La
 (3.8) 

where
2, : [ ]u D uαβ α β= ⋅e e  and αβδ is the Kronecker delta.  From (3.7), (3.8) we then find 

 
2 23/2 2exp( )(1 ) [ ( ) 2(1 )] / 2;      H u u u D u u−= − + ∇ ∇ ⋅ − + ∇A  (3.9) 

                             ( )2 22 2 2exp( 2 )(1 ) det ( ) 1 . K u u D u u D u u−= − + ∇ − ∇ ⋅ + ∇ +A  (3.10) 

As in Section 2, we conveniently use the same name for the dependent variable as a function of eitherx or

;y e.g., ( )H x given in (3.9), strictly speaking, stands for (exp( ( )) ),H u x x etc.  It’s not hard to see that the 

symmetric transformation ( ) ( , )x xu L T T∇ ∈A defined in (3.7)3, is positive definite, having eigenvalues 

2
1,  1 .u+ ∇  Hence, (3.9) constitutes a second-order, quasi-linear elliptic equation in u, as observed in 

[39]. 

     In view of (2.11), (2.12) there are a few other quantities that we need to compute.  We first observe 

from (3.2) and (3.3) that the surface gradient is equivalent to 

 ,α α= ⊗F a e   (3.11) 

and it is convenient to introduce the restricted inverse
1 ( , ),y xL T− ∈F T  defined by 
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21 1: exp( )(1 ) [ ( ) ],u u u uα

α
− −= ⊗ = − + ∇ ∇ +∇ ⊗F e a A x   (3.12) 

where
yT  denotes the tangent plane to  at ( ).Σ =y f x   So defined, observe that

1 ,  1, 2,α α α− = =F a e  

which is indeed the inverse of (3.3), restricted to tangent planes.  From the chain rule for a smooth scalar 

field ( ),ψ ⋅ we deduce 

 ,T Tψ ψ ψ ψ−
Σ Σ∇ = ∇ ⇒∇ = ∇F F   (3.13) 

where from (3.11) and (3.12) we have 

 
2 1exp( )(1 ) [ ( ) ].T u u uα

α
− −= ⊗ = − + ∇ ∇ + ⊗∇F a e A u x  (3.14) 

Equations (3.6), (3.7), (3.12) and (3.13) yield 

 

2 1 1( ) ( )

          ([ ] ),

T

aαβ α β

ψ ψ ψ ψ ψ

ψ ψ

− − −
Σ∇ = ∇ ⋅ ∇ = ∇ ⋅ ∇

= ∇ ⋅ ⊗ ∇

F F C

e e
   

and from (3.7) we arrive at 

 
2 2 1exp( 2 )(1 ) ([ ( )] ).u u uψ ψ ψ−

Σ∇ = − + ∇ ∇ ⋅ ∇ ∇A   (3.15) 

     For smooth vector field ( ),⋅v the chain rule gives 

 
1[ ] [ ] .−

Σ Σ∇ = ∇ ⇒∇ = ∇v v F v v F   (3.16) 

In particular, for the vector field ,Tψ ψ−
Σ∇ = ∇F we have 

 

1

2 1 1

( ) ( ) ( )

               ( ) ,

T T

T T

ψ ψ ψ

ψ ψ

− − −
Σ Σ Σ

− − − −

∇ ∇ =∇ ∇ =∇ ∇

= ∇ + ∇ ∇

F F F

F F F F
  (3.17) 

where
2 : ( ).ψ ψ∇ = ∇ ∇   By virtue of (3.12), the principal part of (3.17)2 reads 

 

2 1 2

2

2 1

( ) ( )

                  ( )

                  ,

T

TD

α β
α β

α β
α β

ψ ψ

ψ

ψ

− −

− −

∇ = ⊗ ∇ ⊗

= ⋅∇ ⊗

=

F F a e e a

e e a a

F F

  (3.18) 

which also shows that
2 1 2 1 ( , ).T T

y yD Lψ ψ− − − −∇ = ∈F F F F T T   From (1.6)-(1.8) and (3.7), we find that 

the principal part of the Laplace Beltrami operator is given by 

 

2

2 1 2 1

2 1 2

[ ] ...

       [ ] ... [ ] ...

       exp( 2 )(1 ) ( ) ...

y

T

tr

tr D tr D

u u u D

ψ ψ

ψ ψ

ψ

Σ Σ

− − −

−

∆ = ∇ +

= + = +

= − + ∇ ∇ ⋅ +

P

F F C

A

  (3.19) 
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     Equations (3.17) and (3.18) show that the lower-order term in (3.19) is given by the expression

( )1[( ) ] ,T

y
tr ψ− −∇ ∇P F F the detailed and lengthy form of which is not needed for our purposes here.  We 

claim that it can be expressed as 

 ( ) 21 1 2[( ) ] exp( 2 )(1 ) ( , , ) ,T

ytr u u g D u u u uψ ψ− − −∇ ∇ = − + ∇ ∇ ∇ ⋅∇P F F   (3.20) 

where : ( , )x x xg L T T T× × →ℝ ℝ  is smooth.  To see this, first note from (1.2) and (3.4) that 

 
2 1(1 ) [( ) ( )].

y
u u u−= − + ∇ −∇ ⊗ −∇P I x x  (3.21) 

Also, a calculation yields 

 
2 21 1 2

2

exp( )

                 (1 ) ( 2(1 ) [ ] )

                                                             ( ) ,

[

]

{

}

T u u

u u u D u u u

D u u u

ψ ψ

ψ

−

− −

∇ ∇ = − −∇ ⊗∇

+ + ∇ ∇ + + ∇ ∇ ⊗∇

+ − ⊗∇ ∇ ⋅∇

F

x

  (3.22) 

where we make use of the fact that
2 2 .u D u u∇ = − ⊗∇x  Substituting (3.12), (3.21) and (3.22) into the 

left side of (3.20) gives the form on the right side.  

     Finally, there are two additional terms in (2.12) that we need to address.  First, using (3.7), (3.8), 

(3.12) and (3.13) we obtain 

 

( )

1 1

2 5/2 2

[ ] [ ]

                    , ,

                    exp( 3 )(1 ) [ ( )( ) ( )] .x

L

L a a

u u u D u u u u

α β
αβ

αγ βδ
αβ γ δ

φ φ φ φ

φ φ

φ φ

− −
Σ Σ

−

∇ ⋅ ∇ = ∇ ⋅ ⊗ ∇

=

= − + ∇ ∇ ⋅ ∇ −∇ ⊗∇ − ∇ ∇

L F a a F

A I A

  (3.23) 

From (3.18) and (3.19) we find that 

 
2 2 1[( ) ].T T

yD Dψ ψ ψ− − −
Σ⋅ = ⋅ + ∇ ∇L L F P F F   (3.24) 

The first of these is similar to (3.23) in that 

 

( )

2 1 2 1

2 1/2 2 2

( ) ( )

                          ,

        exp( 3 )(1 ) ( )[ ] ( ) .

T T

x

D L D

L a a

u u Du D u Du Du Du D

α β
αβ

αγ βδ
αβ γδ

ψ ψ

ψ

ψ

− − − −

−

⋅ = ⊗ ⋅

=

= − + ∇ − ⊗ − ⋅

L F F a a F F

A A1

  (3.25) 

The lower-order term in (3.24) is more complicated, but as is the case for (3.20), we use (3.12), (3.21) and 

(3.22) to obtain the representation  

 
21 1 2( ) exp( 2 )(1 ) ( , , ) ,T

y
u u D u u uψ ψ− − −⋅ ∇ ∇ = − + ∇ ∇ ⋅∇L P F F r   (3.26) 

where : ( , )x x x xL T T T T× × →r ℝ  is smooth and satisfies ( , ,0) .=r 0 0 0      
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     We now substitute (3.15), (3.19), (3.20), (3.23), (3.25) and (3.26) into the equilibrium equations (2.11) 

and (2.12) to obtain 

 

2 2

2 2 2

[ ( ) ( , ) ]

        exp(2 )(1 )[ ( ) ( ) ( ) ] 0 on ,

Du D g D u Du Du D

u Du B H E K W S

ε φ φ

φ φ φ µ

− ⋅ + ⋅

′ ′ ′+ + + + − =

A
  (3.27) 

and 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

2 2

2 1/2 2 2

2 2

2 3/2 2

( ) ( ) 2 ( )

    + exp( )(1 ) ( )[ ] ( ) ( )

   ( , ) ( ) 2 ( ) ( , , ) ( )

    + exp( )(1 ) [ ( )[ ] ( )]

             

{

x

x

Du D B H HD E

u Du Du D u Du Du Du D E

g D u Du Du D B H HD E D u Du u D E

u Du D Du D u Du Du Du D

φ φ

φ

φ φ φ

ε φ φ−

 ⋅ − 

− + − ⊗ − ⋅

+ ⋅ − + ⋅  

− + ⋅ − ⊗ −

A

A A

r

A A

1

1

{ }2 2 2

                                                                        ( ( ) )

                  exp(2 )(1 ) 2 [ ( )( ) ( )] 0 on ,

}HD Du D

u Du H B H K W p S

φ φ

φ γ µφ φ

− ⋅

+ + − + + − − =

A

  (3.28) 

respectively, where we use observation (1.7).  In components, the second-order operator appearing in both 

(3.27) and (3.28) reads 

 
( )

( )

2 2( ) [ ( )] ( ) , ,

 where ( ) : ( ) ,

Du D tr Du D A Du

A Du Du

αβ αβ

αβ α α

ψ ψ ψ⋅ = =

= ⋅

A A

e A e
  (3.29) 

for all smooth scalar fields
2 on ,Sψ and where ,αβψ is as defined immediately after (3.8).  It is 

advantageous at this point to expand the second-order terms in (3.28) in order to identify the principal 

parts: 

 

( ) ( )

( ) ( )

2 2

2 1/2 2 2

2 2 2

( ) ( ) 2 ( )

    +exp( )(1 ) ( )[ ] ( ) ( )

                       ( , , , ) ( ) ( ) ...,

x

Du D B H HD E

u Du Du D u Du Du Du D E

D u Du u D B Du D H

φ φ

φ

φ φ φ

 ⋅ − 

− + − ⊗ − ⋅

= ⋅ + ⋅ +

A

A A

M A

1   (3.30) 

where 

 
( )22 1/2 2( , , , ) : ( ) exp( )(1 ) ( )[ ] ( )

                                                                                             + [ ( ) 2 ( )] ( ).

xD u Du u E u Du Du D u Du Du Du

H B E Du

φ φ

φ φ

′= − + − ⊗ −

′ ′−

M A A

A

1
  

     We now substitute (3.9) and (3.10) into (3.27) and (3.28) to obtain the final form of the equilibrium 

equations that we use for analysis.   While the latter leads to a lengthy expression, it is sufficient for our 

purposes here to identify the principal parts, revealing a quasi-linear system.  In particular, the second 

term in (3.29) becomes 

 ( )22 3/2 41
( ) ( ) exp( )(1 ) ( ) ( ) [ ( )] ...

2
B Du D H u Du B Du D u Duφ φ−⋅ = − + ⋅ +A A A  , (3.31) 

where we interpret ( )4 ( ) ( , ), ( , )x x x xD u L L T T L T T∈x in (3.31).  In components we have 



13 

 

 
( )

( )

4

4

( ) [ ( )] ( ) ( ) , ,

      where , : u[ , , ] ,

Du D u Du A Du A Du u

u D

αβ γδ αβγδ

αβγδ α δ γ β

⋅ =

= ⋅

A A

e e e e
  (3.32) 

the latter notation in accordance with the tri-linear definition of 
4 ( ),D u x cf. (1.9).  In view of (3.31), if we 

multiply (3.28) by the factor
2 3/22exp( )(1 ) ,u Du+ then the equilibrium equations (3.27) and (3.28) take 

the quasi-linear form 

 
2 2 2

1( ) ( , , , , , ) 0 on S ,Du D f D u Du u Dε φ φ φ µ− ⋅ + =A   (3.33) 

and 

 
( )2 2 4

3 2 2

2

( , , , ) ( ) ( ) [ ( )]

                                      ( , , , , , , , ) 0 on ,

D u Du u D B Du D u Du

f D u D u Du u D S

φ φ φ

φ φ γ µ

⋅ + ⋅

+ =

N A A
  (3.34) 

respectively, where 1 2( ) and ( )f f⋅ ⋅ are 2C functions of their arguments, limited by the smoothness of

( ) and ( ),B E′′ ′′⋅ ⋅ and 

 
22 3/2 2( , , , ) : 2exp( )(1 ) ( , , , ),D u Du u u Du D u Du uφ φ= +N M  (3.35) 

cf. (3.29). 

     Our problem possesses an obvious “trivial”, spherically symmetric solution 

  and 0.uφ λ≡ ≡   (3.36) 

Using (3.9), (3.10), (3.11), (3.14) and (3.16), we find the remainder of the equilibrium conditions: 

 

 1,  1,  ( ),

 ( ) ( ) / 2,

( ) : ( ) ( ) ( ).

H K

W p

W B E

µ λ
γ λ λ λ

λ λ λ λ

′≡ − ≡ = Ψ

′= − Ψ −

Ψ = + +

 (3.37) 

Accordingly, we introduce new variables, characterizing non-spherical states, 

 

: ,

: [ ( ) ( ) / 2],

: ( ).

W p

ϕ φ λ
ς γ λ λ λ

ξ µ λ

= −

′= − − Ψ −

′= −Ψ

  (3.38) 

which we employ throughout the remainder after substitution into (3.33) and (3.34).  Also, using (3.6)3 

and (3.38), the constraint equations (2.2), expressed in terms of integrals over 
2 ,S now have the form 

 
2

2

2 1/2

2 1/2

exp(2 )(1 ) 4 0,

exp(2 )(1 ) 0.

S

S

u Du ds

u Du ds

π

ϕ

+ − =

+ =

∫

∫
  (3.39) 

     Equations (3.33) and (3.34) comprise a quasilinear system for the pair
2( , ) on ,u Sϕ containing the 

unknowns (multipliers) , ,ς ξ ∈ℝ cf. (3.38).  The constraint equations (3.39) complete our equilibrium 

field equations.  We chooseλ∈ℝ  as our bifurcation parameter, which now appears explicitly in (3.33), 
(3.34), courtesy of (3.38).  The non-negative internal pressure p is considered fixed but otherwise 
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arbitrary. Our field equations are parametrized by the constitutive functions ( ), ( ), ( )B E W⋅ ⋅ ⋅ and the 
material constant ,ε cf. (2.1)-(2.3) and Figure 2.1. 

     Before closing this section, we make a simple but important observation.  Let
, 2( )kC Sα

denote the 

space of k-times Hölder continuously differentiable functions with exponent (0,1).α ∈  

Proposition 3.1 The quasilinear system (3.33) and (3.34) is elliptic in the following sense:  For fixed

( )2, 2u C Sα∈ and ( )2 ,C Sαϕ∈ consider a linear system having principal parts 

 
( )

2

1

2 2 4 2

1 2

( ) ... 0,

( , , , ) ( ) ( ) [ ( )] ... 0 on ,

Du D h

D u Du u D h B Du D h Du S

ε

λ ϕ λ ϕ

− ⋅ + =

+ ⋅ + + ⋅ + =

A

N A A
  (3.40) 

where any lower-order terms are presumed smooth.  Then system (3.40) is elliptic in the sense of [11]. 

Proof.  With ( )2, 2u C Sα∈ and ( )2 ,C Sαϕ∈ the resulting coefficient functions (on
2 )S in the principal 

part of the system (3.40) are of classCα
on

2 .S  For notational convenience, we drop their explicit 

dependence upon ,uϕ and its derivatives.  Following [11], we choose weights 1 2 0,s s= = 1 2t = and

2 4.t =  Then, using (3.29) and (3.32), we consider the2 2×  determinant 

 
3 2

0
( ) 0 on ,

A
B A S

N BA A

αβ α β
αβ α β

αβ α β αβ γδ α β γ δ

ε ξ ξ
ε ξ ξ

ξ ξ ξ ξ ξ ξ
−

= − <   

for all nonzero
2

1 2( , ) .ξ ξ ∈ℝ   The strict inequality follows from the positivity of the symmetric 

transformation ( ) ( , ),x xDu L T T∈A  cf. (3.7)3 and the discussion after (3.10). In particular, the non-

vanishing of the above determinant gives the result.□  

 

4. Abstract Formulation 

     Since we intend to carry out a global bifurcation analysis, we want to show that (3.33), (3.34) and 

(3.39) are equivalent to finding the zeros of a compact vector field on an appropriate function space.  

Henceforth we write
, 0,, 0,1, 2,...( : )kX k X Xα α α= = for the Hölder function spaces when equipped with 

the usual Hölder norms on
2 ,S denoted

,
.

k α
⋅  

      The left sides of (3.33), (3.34), using (3.38), together with the left sides of the constraints (3.39) define 

mappings 

 

2 2

1 2

2, 4,

: ,  : ,  

: ,  : .

F X Y F X

X X X Y X Xα α α α

× × → →

= × = ×

ℝ ℝ ℝ
 (4.1) 

Now define 

 

2 2

1 2: ( , ) : ,  and

: ( , ), : ( , ), : ( , ) ( , , , ).

F F F X Y

w u v w uϕ τ ς ξ τ ϕ ς ξ

= × × → ×

= = = ≡

ℝ ℝ ℝ
  (4.2) 
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Then our equilibrium field equations are equivalent to the abstract operator equation 

 1 2( , ) ( , , ) ( ( , , ), ( )) 0.F v F w F w F wλ λ τ λ τ≡ ≡ =  (4.3) 

In view of (3.37)-(3.38), observe that 

 ( ,0) 0,F λ ≡   (4.4) 

i.e., we have the trivial line of solutions, 0v = for all ,λ∈ℝ  representing the spherically symmetrical 

state.  Here 1( )F ⋅ corresponds to the quasi-linear partial differential operators given by the left sides of 

(3.33), (3.34), while 2 ( )F ⋅ represents the left side of the two constraint equations (3.39).  We note that both

2X ×ℝ and
2Y ×ℝ are Banach spaces with the obvious product topology. We further observe that ( )W ⋅ of 

class
3C and ( ), ( )B E⋅ ⋅ of class 4 ,C cf. Section 2 and (3.34), insure that ( )F ⋅ is a 1C mapping.  

     Next we decompose the mapping 1( ),F ⋅ capturing the quasi-linear form inherent in (3.33), (3.34): 

 
1 , 1( , ) [ ] ( , ),wF w T w wλτ τ= +Φ  (4.5) 

where 

 

( )

, , ,

2

2 2

,

4 2

,

[ ] : ( [ ], [ ] [ ]),

[ ] : ( ) ,

[ ] : ( , , , ) ,

[ ] : ( ) ( ) [ ( )]  on ,

w u w w

u

w

w

T w R N S u

R Du D

N D u Du u D

S u B Du D u Du S

λ λ λ

λ

λ

ϕ ϕ

ϕ ε ϕ

ϕ λ ϕ ϕ

λ ϕ

= +

= − ⋅

= + ⋅

= + ⋅

A

N

A A

 (4.6) 

and 
2

1 : X YΦ × × →ℝ ℝ is defined by the lower-order derivative terms, viz., 1Φ is the composition 

operator 

 

2

1 1

3 2

2

( , , ) : ( , , , , , ( )),

                      ( , , , , , , ( ) ( ) / 2, ( )).

(w f D u Du u D

f D u D u Du u D W p

λ τ ϕ λ ϕ ξ λ

ϕ λ ϕ ς λ λ λ ξ λ

′Φ = + +Ψ

′ ′+ + − Ψ − +Ψ
 (4.7)  

Accordingly 1( )Φ ⋅ is compact by embedding. The full mapping ( )F ⋅ in (4.3) then has the quasi-linear form 

 ( ),
( , , ) ,0 [ , ] ( , , ),

w
F w T w wλλ τ τ λ τ= +Φ  (4.8) 

where the “0” in the principal part of the operator is simply the 2 2× zero matrix, and 

 ( )1 2 ( , , ) : ( , , ), ( , ) .w w F wλ τ λ τ λΦ = Φ  (4.9) 

Observing that the constraints equations (3.39) only involve lower-order terms as well, it follow that 
2 2: X YΦ × × → ×ℝ ℝ ℝ is compact.   

     For any constant 0,M > define the closed ball 

 
2, 4,

: { ( , ) : }.M X
w u X w u M

α α
ϕ ϕ= = ∈ = + ≤B  (4.10) 

For fixed ( , )w Xλ ∈ ×ℝ and constant ,a∈ℝ  we call 
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 ( ) ( ) 2 2

, ,
, 0 : ,0 : ,

w w
T a T a X Yλ λ+ = + × → ×ℝ ℝ1   (4.11) 

with" "1 denoting the identity, the shifted linear operator.  We henceforth drop the" "1 as indicated in 

(4.11). 

Theorem 4.1 For any ( , ) , ,Mw uϕ λ= ∈ ∈ℝB and for some sufficiently large positive constant ,a∈ℝ the 

shifted operator ( ) 2 2

,
, 0 : ,

w
T a X Yλ + × → ×ℝ ℝ is bijective. 

     We carry out the proof of Theorem 4.1 via two lemmas that follow.  First, we note that the linear maps
2,:uR X Xα α→ and

4,

, :wS X Xα α
λ → define uniformly elliptic operators – second and fourth order, 

respectively.  In particular, from (4.6) and (4.10), there are positive constantsc and ,K depending on ,M

such that 

 

1 2 2 2 2 2 2

1 2 1 2 1 2( ) ( ) ( ) on  for all ( , ) ,

        ( ) , ( ) ,  , 1, 2.

c A Du c S

B A Du K

γδ γ δ

γδα α

ξ ξ ξ ξ ξ ξ ξ ξ

λ ϕ γ δ

− + ≤ ≤ + ∈

+ ≤ =

ℝ

  (4.12) 

Lemma 4.2 For every ( , ) , ,Mw uϕ λ= ∈ ∈ℝB the operator 
, :wT a X Yλ + → is injective fora∈ℝ  

sufficiently large. 

Proof.  We claim that there are positive, real constants , , ,Cβ β βδ Λ depending on , , , ,c K Mα cf. (4.12), 

but independent of , , ,  and ,h wµ ψ λ such that 

 

/2

12,

/4

24,

( )[ ] ,

( )[ ] ,

u

w

C R

h C S h

α

α α

α

α α

ψ µ µ ψ

µ µ

≤ +

≤ +
 (4.13) 

for all ( , ) ,h Xψ ∈ and for allµ∈ℂ satisfying arg / 2 , , 1,2,β βµ π δ µ β≤ − ≥ Λ = where here we 

presume the usual complexification of the spaces
, .kX α
 Inequalities (4.13) are standard Hölder-space 

versions of Agmon’s estimate (in the 
pL setting) [1].  We refer to [21], [27], [31], [41], e.g., for details.  

     Here and throughout the rest of this work, unless stated otherwise, we assume 1 2max( , ).a ≥ Λ Λ   By 

virtue of (4.13), it follows that uR a+ and
,wS aλ + are each injective.  Now consider

,( )[( , )] 0,wT a hλ ψ+ = which according to (4.6), is given explicitly by 

 
, ,

( )[ ] 0,

[ ] ( )[ ] 0.

u

w w

R a

N S a hλ λ

ψ

ψ

+ =

+ + =
  (4.14) 

Then (4.14)1 0,ψ⇒ = in which case (4.14)2 0,h⇒ =  i.e.,
, :wT a X Yλ + → is injective.□   

     Next, we consider the one-parameter family of operators  

 ( ), , , ,
[( , )] : [ ], (1 ) [ ] [ ] ,0 1.

w t u w w
T h R t N S h tλ λ λψ ψ ψ= − + ≤ ≤  (4.15) 

Observe that
, ,0 , ,w wT Tλ λ≡ while

, ,1wTλ  is “diagonal”.  If necessary, we can always adjust the constant in 

(4.12)2 so that 



17 

 

 
2( , , , ) ,  , 1,2.N D u Du u Kγδ α

φ γ δ≤ =  (4.16) 

for every ( , ) , ,Mw uϕ λ= ∈ ∈ℝB where ( )2 2( , , , ) : ( , , , ) .N D u Du u D u Du uγδ α αλ ϕ λ ϕ+ = ⋅ +e N e  Note 

that Proposition 3.1 is valid for the operator
, ,w tTλ  for all [0,1].t∈  Hence, with ( , ) , ,Mw uϕ λ= ∈ ∈ℝB

[0,1],t∈ Proposition 3.1, (4.12) and (4.15) insure the uniform Schauder estimate, cf. [11], 

 ( ){ }, ,( , ) [ , ] ( , ) ,w tX YY
h C T a h hλψ ψ ψ≤ + +  (4.17) 

for all ( , ) ,h Xψ ∈ where the constant ( , , , )C C c K Mα= is independent of , , ,  and .h a w tψ  

Lemma 4.3.  For every ( , ) , , [0,1],Mw u tϕ λ= ∈ ∈ ∈ℝB each of the linear operators
, , :w tT X Yλ → and 

, , :w tT a X Yλ + → is Fredholm of index zero, i.e., the dimension of the null space and the co-dimension of 

the range are finite-dimensional and equal. 

Proof.  From (4.17) and Peetre’s lemma, cf. [33], [42], we know that
, ,w tT aλ + and

, ,w tTλ  are each semi-

Fredholm, i.e., the null space is finite-dimensional and the range is closed.  Since ( , , )w tλ  is connected to 

(0,0,1)  in [0, ],M t× ×ℝ B it follows that the operators 
, ,w tT aλ + and 

0,0,1T a+ have the same Fredholm 

index, by the continuity of the index [26].  Using (3.7)3, (3.9) and (4.6), we find 

 
2

0,0,1 ( , (0) ),T a a B aε+ = − ∆ + ∆ +  (4.18) 

where
2 : .∆ = ∆ ∆�  The linear operator (4.18) is easily seen to be bijective for any 0 :a >  For a given 

1 2( , ) ,b b Y X Xα α∈ = × consider
0,0,1 1 2( )[( , )] ( , ),T a h b bψ+ =  given explicitly 

 
1

2 2

2

,

(0)  on .

a b

B h ah b S

ε ψ ψ− ∆ + =

∆ + =
 (4.19) 

each of which are uniquely solvable on
2, 4,and ,X Xα α

respectively, by well-known arguments, cf. [29].  

In particular, the operator (4.18) and thus, 
, ,w tT aλ + have Fredholm index zero. Clearly

, ,w tT aλ + and
, ,w tTλ  

have the same Fredholm index, treatinga∈ℝ as the connecting parameter. □  

Proof of Theorem 4.1.  The result is immediate:  By virtue of Lemma 4.3, the linear operator

, ,0 , :w wT a T a X Yλ λ+ ≡ + →  is Fredholm of index zero, and from Lemma 4.2 it is injective.  Hence, it 

has a closed range with co-dimension zero, and we conclude that 
, :wT a X Yλ + → is bijective.  Finally, 

in view of (4.11), note that 

 
2 2

, , 2( ,0) ( , ) : ,w wT a T a aI X Yλ λ+ ≡ + × → ×ℝ ℝ  (4.20)  

where 2I  denotes the identity on
2 ,ℝ and bijectivity is clear. □      

    We now return to the full mapping (4.8).  For anyλ∈ℝ and ( , ) ( , , , )v w uτ ϕ ς ξ= ≡ ∈ 2 ,M ×ℝB  

consider the linear problem 



18 

 

 ( )( ), , 0 ( , ) .wT a z v avλ λ+ = −Φ +  (4.21) 

In view of Theorem 4.1, equation (4.21) has a unique solution,
2 ,z X∈ ×ℝ denoted 

 [ ], ( , ) : ( , ),wz v av vλ λ λ= −Φ + =C �K  (4.22) 

where wC denotes the solution operator associated with the left side of (4.21), viz., 

 ( )( ) 2

, ,, 0 b b for all b .w wT a z z Yλ λ+ = ⇔ = ∈ ×ℝC  (4.23) 

For 0t = in (4.15), recall that 
, :wT a X Yλ + → is bijective, and consequently the second term on the right 

side inequality (4.17) may be dropped.  With that in hand, (4.17), (4.20) and (4.21) yield 

 2 2 2( , ) ,
X Y Y

z C v a vλ
× × ×

 ≤ Φ + ℝ ℝ ℝ
  (4.24) 

where the constant ( , , , )C C c K Mα= is independent of  and .z v  

     Finally, we define 

 
1, 3,: .E X Xα α= ×  (4.25) 

Then (4.22)-(4.24) and the compact embedding, ,E X⊂  imply that each of the operators
, :wλC  

2( )M E∩ × →ℝB
2E ×ℝ and

2 2: ( )M E E× ∩ × → ×ℝ ℝ ℝK B is compact.  Moreover, (4.22), (4.24) 

and the continuity of ( ),Φ ⋅ cf. (4.7), (4.9), imply that ( )⋅K is continuous, while the same argument applied 

to (4.23) shows that ww֏ C  is continuous as well in the operator norm associated with

2 2( , ).L Y E× ×ℝ ℝ   We conclude that (4.4) on
2

M× ×ℝ ℝB  is equivalent to the operator equation 

 ( , ) 0,v vλ− =K  (4.26) 

where
2 2: ( )M E E× ∩ × → ×ℝ ℝ ℝK B  is continuous and compact.  By virtue of (4.4), we note that 

 ( ,0) 0.λ ≡K   (4.27) 

5. Linearized Problem 

     In order to obtain the linearization of the operator (4.2) about the trivial solution, we return to (3.36)-

(3.38) and substitute 

 
,  ,  1 ,  1 ,

( ) ,  ( ) ( ) / 2 ,

u H h K

W p

ϕ αϑ αυ α ακ
µ λ αξ γ λ λ λ ας
≡ ≡ = − + = +

′ ′= Ψ + = − Ψ − +
 (5.1) 

into (3.7)3, (3.9), (3.10), (3.27), (3.28) and (3.39).  In each of these we formally compute the directional 

derivative, 0( ) / ,d d αα =⋅  to deduce the linearized equations:  
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2

2 ,

2 2 ,

( ) ,

( ) [ ( ) ( )] 2[ ( ) ( )] 2( )  on ,

h

h

B h ph E B B E S

κ
υ υ
ε ϑ λ ϑ ξ

λ λ λ ϑ λ λ ϑ ς λξ

= −

∆ + =

′′− ∆ +Ψ =

′ ′ ′ ′∆ − + − ∆ − + = +

 (5.2) 

 
2

2

0,  

0,

S

S

ds

ds

υ

ϑ

=

=

∫
∫

 (5.3) 

We first integrate (5.2)2 over
2S and use (1.8), the surface divergence theorem (1.5) and (5.3)1 to deduce 

 
2

0.
S
hds =∫  (5.4) 

Applying the same steps to (5.2)3,4 while employing (5.3)2 and (5.4), we conclude that 

 0.ς ξ= =  (5.5) 

     In order to proceed, recall that the eigenvalues of the Laplace-Beltrami operator on
2S are given by

( 1),  0,1, 2,...,− + =ℓ ℓ ℓ with accompanying eigenfunctions (surface harmonics) 

 
,   ( ),  ,..., ,  m mρ = −x
ℓ

ℓ ℓ  

 
, ,

, ,

,0  : ,

            ( ) : ( ) ,  , ,

            ( ); ( ) ,  ,  1, 2, ... 

where ( ) (cos )

cos cos 1 ...,

cos sin ,..., 1

m m

m m
l

P

P m m

P m m

ρ θ

ρ θ ψ

ρ θ ψ−

=

=

= − =

=

= − −

x

x

x

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ

ℓ

 (5.6) 

Here we express 

 
1 2 3

2
, , )( (sin cos ,sin sin ,cos ) ,x x x Sθ ψ θ ψ θ= = ∈x  (5.7) 

where ,[0, ],  [0, 2 )θ π ψ π∈ ∈ denote the usual spherical coordinates, and
,( ) and ( )mP P⋅ ⋅

ℓ ℓ
denote the 

Legendre and associated Legendre polynomials, respectively.  

     We consider (5.2)3 and (5.3)2, using (5.5), which are decoupled from the rest of (5.2), (5.3), viz.,  

 

2

2( ) 0 on ,

      0.
S

S

ds

ε ϑ λ ϑ

ϑ

′′− ∆ +Ψ =

=∫
 (5.8) 

Clearly (5.8) admits nontrivial solutions if and only if  and λ ε satisfy the characteristic equation 

 ( ) / ( 1),  for .λ ε′′−Ψ = + ∈ℓ ℓ ℓ ℕ  (5.9) 

For a given ∈ℓ ℕ andε  sufficiently small, we assume that (5.9) has at least one root, denoted .λ
ℓ
 For 

example, in the special case that the bending modulus function  and B E are constant, we have

( ) ( ),Wλ λΨ ≡ cf. (5.2)3.  From the graph of ( )W ′′ ⋅ shown in Figure 2.1, we see that 
21,( )m mλ∈ is 

necessary in order for (5.9) to have roots in this case.  Depending on the size of ,ε there can be no roots, 
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one root, or precisely two roots, the latter two possibilities corresponding toε sufficiently small.  
Returning to (5.9), it is reasonable to assume that ( )Ψ ⋅ has properties similar to ( ).W ⋅  In particular, we 

assume that ( ) 0′′Ψ ⋅ <  on some open (spinodal) set, withε sufficiently small.  Given a root of the 
characteristic equation, we then have the nontrivial solution 

 
,: ,m m

m

cϑ ϑ ρ
=−

= = ∑
ℓ

ℓ

ℓ ℓ

ℓ

 (5.10) 

for arbitrary constants .lmc    

     Next we turn to (5.2)2 and (5.3)1.  We first note that the operator on the left side of (5.2)2 has the 

nontrivial homogeneous solution, corresponding to 1:=ℓ   

 
1

1

1 1,

1

: ,m m

m

cυ υ ρ
=−

== ∑  (5.11) 

Since the operator on the left side is formally self-adjoint, it follows that (5.2)2 has a particular solutions if 

and only if the right side is
2 -L orthogonal to all such 1υ given by (5.11).  Accordingly, we consider (5.2)4 

and (5.4) atλ λ=
ℓ
and ,ϑ ϑ=

ℓ
 for 2,≥ℓ  cf. (5.10): 

 ( )( ) ( )[2 ( 1)] ( )[2 ( 1)] .B h ph E Bλ λ λ ϕ′ ′∆ − = + + + − +
ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ   (5.12) 

Recall that 0p ≥ is imposed, cf. Section 1, in which case the left side of (5.12) admits no homogeneous 

solutions, cf. (2.3).  Hence, for 2,≥ℓ  (5.12) has the solution 

 
( )

,: ,

( )[2 ( 1)] ( )[2 ( 1)]
: .

[ ( 1) ( ) ]

m m

m

h h c

E B

B p

σ ϑ σ ρ

λ λ
σ

λ

=−

= = =

′ ′+ + + − +
= −

+ +

∑
ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ

ℓ ℓ ℓ ℓ

ℓ ℓ

  (5.13) 

Returning now to (5.2)2 with , 2,h h= ≥
ℓ
ℓ we find the particular solution 

 
( )

,: ,

( )[2 ( 1)] ( )[2 ( 1)]
: 2 .

[ ( 1) ( ) ][2 ( 1)]

m m

m

c

E B

B p

υ υ τ ϑ τ ρ

λ λ
τ

λ

=−

= = =

′ ′+ + + − +
= −

+ + − +

∑
ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

  (5.14) 

     In order to rigorously summarize our efforts here, we define the finite-dimensional subspaces 

 

2

1,

2

, , ,

: {(0, ,0,0),  1,0,1} ,

: { : ( , ,0,0),  ,..., } , ,

o j

m m m

span j X

span z m X

ρ

ρ τ ρ

= = − ×

= = = − × ∈
ℓ ℓ ℓ ℓ ℓ

ℝ

ℓ ℓ ℝ ℓ ℕ

N

N

⊂

⊂
 (5.15) 

whereτ
ℓ
is given by (5.14)2 for all 2,≥ℓ and 1 0.τ =  In view of (4.2)-(4.4), we have 
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Proposition 5.1 The Fréchet derivative of ( , )v F vλ֏  evaluated along the trivial solution, denoted

2 2( ) : ( ,0) : ,vL D F X Yλ λ= × → ×ℝ ℝ is given by 

 

2

2( )[ ] ( ) , 2[ ( ) ( )] ( )

                     [2 ( ) ] 2 4[ ( ) ( )] 4( ),

                                                                                       

(

S

L z E B B

B p p B E

λ ε ϑ λ ϑ ξ λ λ ϑ λ υ

λ υ υ λ λ ϑ ς λξ

υ

′′ ′ ′= ∆ +Ψ − − ∆ + ∆

′ ′+ − ∆ − − + − +

−

2
, ),
S

ds dsϑ∫ ∫
  (5.16) 

for all
2( , , , ) .z Xϑ υ ς ξ= ∈ ×ℝ  Letλ λ=

ℓ
denote a of the root of the characteristic equation (5.9) for

.∈ℓ ℕ  The null space of ( )L λ is characterized by 

 
( )
( )
( ) ,  for all ;

( ) ,

o

o

L

L

λ λ λ

λ

= ≠

= ⊕

ℓ

ℓ ℓ

N N

N N N
  (5.17) 

cf. (5.15). Moreover,
2 2( ) :L X Yλ × → ×ℝ ℝ is a Fredholm operator of index zero. 

Proof. As previously mentioned, differentiability here is a direct consequence of the presumed 

smoothness of the functions ( ), ( ), ( ),W B E⋅ ⋅ ⋅ cf. (3.34).  The second component on the right side of (5.16) 

results from the substitution of (5.2)2 into (5.2)4, keeping in mind (3.31) and the elimination of the factor 

“1/2” leading to (3.34).  The first two claims summarize the calculations (5.1)-(5.14).  Finally, note that 

the principal part of the operator ( )L λ is simply ( ),0
, 0 ,Tλ i.e., ( ),0

( ) ,0 ...,L Tλλ = +  where 

 ( ) ( )2

,0
, 0 [ ] , 2[ ( ) ( )] ( ) ,0,0 ,T z E B Bλ ε ϑ λ λ ϑ λ υ′ ′≡ ∆ − ∆ + ∆−   (5.18) 

for all 
2( , , , ) .z Xϑ υ ξ ς= ∈ ×ℝ  Clearly the two-dimensional extension of 

,0Tλ on X  to ( ),0
, 0Tλ  on

2X ×ℝ  does not change the index.  Recalling
,0 ,0,0 ,T Tλ λ≡ cf. (4.15), the last claim follows from Lemma 

4.3 and the stability of the Fredholm index, i.e., ( )L λ and ( ),0
, 0Tλ have the same zero Fredhom index. □  

     In order to obtain global bifurcation results, we also need to consider some properties of the 

continuous, compact mapping in (4.26), cf. (4.21)-(4.25): 

Proposition 5.2.  The mapping
2 2( , ), ( , ) : ,v v E Eλ λ ⋅ × → ×֏ ℝ ℝK K is differentiable along the trivial 

line, 0,v ≡ with Fréchet derivative, denoted
2 2( ) : ( ,0) ( , ),vD L E Eλ λ= ∈ × ×ℝ ℝA K given by 

 ( ),0( )[ ] [ ( ,0) ] ,vz D a zλλ λ= − Φ −A C   (5.19) 

for all ( , , , ) ,z Eϑ υ ς ξ= ∈ where ( ,0)vD λΦ denotes the Fréchet derivative of ( , )v vλΦ֏ at 0,v ≡ with

2 2( , ) : .E YλΦ ⋅ × → ×ℝ ℝ  Moreover, ( )λ λ֏ A is continuous, and ( )λA is compact. 

Proof.  Since ( , )λΦ ⋅ involves only lower-order derivatives, cf. (4.7)-(4.9), it follows that ( )Φ ⋅ is 1C on

2E ×ℝ as well as on
2.X ×ℝ  Moreover, from (4.4) and (4.8), we see that ( , 0) 0.λΦ ≡  Denoting

: ( , ),q ϑ υ= while bearing in mind (4.27), consider 
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( )

( ) ( )

( )

,0

,0 ,

,0 , ,0

,0 ,

,0 ,0 ,

( , ) [ ( ,0) ]

       [ ( ,0) ] ( , )

       ( , ) ( , ) ( ,0)

       ( ,0)

                         ( , ) ( ,0)

v

v q

q vLL

q vL

q vL L

z D a z

D a z z az

z az z D z

D z az

z D z

λ

λ λ

λ λ λ

λ λ

λ λ λ

λ λ

λ λ

λ λ λ

λ

λ λ

+ Φ −

= Φ − − Φ −

≤ − Φ − + Φ − Φ

≤ − Φ −

+ + − Φ − Φ

K C

C C

C C C

C C

C C C ,  

  (5.20) 

where
L

⋅  denotes the operator norm on the space
2 2( , ).L Y E× ×ℝ ℝ  The differentiability of ( )Φ ⋅

implies that, in particular, for eachλ∈ℝ and a given 0,ε > there is a 0λδ > such that z λδ≤ ⇒  

 ( , ) ( ,0) ,vz D z zλ λ εΦ − Φ ≤   (5.21) 

while the continuity of
,( , ) qq λλ ֏ C  implies, say,  

 ,0 , .q Lλ λ ε− ≤C C   (5.22) 

We also deduce 

 ( ,0) ( ,0) : ( ) ,v v L
D z az D a z M zλ λ λΦ − ≤ Φ − =

ɶ
  (5.23) 

where ( ) ,M λ < ∞ and
L

⋅
ɶ
denotes the operator norm on

2 2( , ).L E Y× ×ℝ ℝ  With (5.21)-(5.23) in hand, 

for a given 0,ε > the right side of inequality (5.20), is bounded above by ( )C zε λ  for all ,z λδ≤

where ( ) .C λ < ∞   Lastly, (5.19) and the continuity of the maps
,0 , ( ,0)vDλλ λΦ֏ C show that ( )⋅A is 

continuous, while the derivative of a compact map is compact. □  

     We close this section with 

Proposition 5.3.  Let I denote the identity on
2.E ×ℝ  Then the null space of ( )λ−I A is the same as 

that of ( )L λ as described in (5.17), i.e., ( ( )) ( ( )).Lλ λ− =N I A N   

Proof.  This follows easily from (4.21), (4.23), (5.16), (5.18) and (5.19): 

 ( ) ( )
( )

,0

,0

,0

( )[ ] ( ,0)[ ] ( ,0)[ ]

            ( ,0) [ ] ( ,0) [ ] 0

    ( ,0) [ ] ( )[ ] 0. 

v

v

v

L z T z D z

T a z D a z

z D a z z z

λ

λ

λ

λ λ

λ

λ λ

= + Φ

= + + Φ − =

⇔ + Φ − = − = □C A

  (5.24) 

6. Global Symmetry-Breaking Bifurcation 

     We begin this section by identifying the equivariant symmetries of the problem embodied in (4.3).  Let

(3)O denote the orthogonal group acting on
3.ℝ  We define the natural action of (3)O∈G on any

2( , , , ) ,v u Yϕ ς ξ= ∈ ×ℝ via 

 : ( ( ), ( ), , ) for all (3).T Tv u Oϕ ς ξΓ = ∈G x G x G  (6.1) 
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Referring to the mapping ( ),F ⋅ cf. (4.1)-(4.3), we claim 

Proposition 6.1. The nonlinear operator ( , )F λ ⋅ is equivariant under the natural action (6.1): 

 ( , ) ( , ) for all (3).F v F v Oλ λΓ = Γ ∈G  (6.2) 

Proof.  The proof, which follows along the lines of [18], is straightforward but tedious.  Here we indicate 

some of the necessary steps.  First, the transformations 

 

2 2 2 2

    ( ), ( ) ( ), ( ),

    ( ), ( ) [ ( )] , [ ( )] , for all (3),

T T

T T T T

D Du D Du

and

D D u D D u O

ϕ ϕ

ϕ φ

→

→ ∈

x x G G x G G x

x x G G x G G G x G G

 (6.3) 

 easily follow fromv v→Γ  via (6.1).  From (6.2) and a bit of work, we also find 

 

2 2

2 2

( ) ( ),

( ) ( ),

( ( )) ( ( )) ,

( ( ), ( )) ( ( ), ( )),

( ( ), ( ), ( )) ( ( ), ( ), ( )), for all (3),

T

T

T T

T T

T T T

H H

K K

Du Du

g D u Du g D u Du

D u Du u D u Du u O

→

→

→

→

→ ∈

x G x

x G x

A x GA G x G

x x G x G x

r x x x Gr G x G x G x G

 (6.4) 

where the quantities involved in (6.4) are defined in (3.9), (3.10), (3.7)3, (3.20) and (3.26), respectively. 

     We give a sampling of the calculations involved leading to (6.4):  Recall from (3.2) that

,x ≅ − ⊗I x x1 is the identity on the tangent space ,xT where x denotes the unit normal, interpreted here 

as the unit-radial translation of
2 .S∈x  Then from (3.7)3 and (6.3) we then have 

 

( ) ( )2

2

2

( ( )) (1 ( ) ) ( ) ( )

                        (1 ( ) ) [ ] [ ( ) ( )]

                        (1 ( ) ) ( ) ( ) ,

                   

{ }

{ }

{ }T

T T T

x

T T T T T T T

T T T T

G x

Du Du Du Du

Du Du Du

Du Du Du

→ + − ⊗

= + − ⊗ − ⊗

= + − ⊗

A x G G x G G x G G x

G x G I G x G x G G G x G x G

G x G G x G x G

1

1

     ( ( )) ,T TDu≡ GA G x G

 (6.5) 

where we have used the identity .T⊗ = ⊗a G b a bG   From (3.9), (6.3) and (6.5) we also find 

 

( ) ( )2
3/2 2

2

( ) exp( ( ))(1 ( ) ) [ ( )] [ ( )]

                                                                                        2(1 ( ) ) / 2

              exp( ( ))(1 (

{

}

T T T T T T

T

T

H u Du D u

Du

u Du

−→ − + ⋅

− +

= − +

x G x G G x G A G x G G G x G

G G x

G x G ( ) ( )2
3/2 2

2

) ) ( ) ( )

                                                                                        2(1 ( ) ) / 2

              ( ).

{

}

T T T

T

T

D u

Du

H

− ⋅

− +

≡

x A G x G x

G x

G x

 (6.6) 



24 

 

Similar calculations for (3.12), (3.21) and (3.22) (the building blocks for ( ) and ( ))g ⋅ ⋅r show that 

 

1 1( ) [ ( )] ,

( ) [ ( )] ,

( ) [ ( )] ,

( ) ( ) [ ( ) ( )] .

T T

T T

y y

T T

T T T T Tϕ ϕ

− −

− −

→

→

→

∇ ∇ → ∇ ∇

F x G F G x G

P x G P G x G

L x G L G x G

F x x G F G x G x G

  (6.7) 

The definition (3.20) and the transformations (6.7)1,2,4 give (6.4)4, and likewise (3.26) along with all in 

(6.7) yield (6.4)5. 

     With (6.3), (6.4) and (6.7)3 in hand, it is straightforward to verify that both (3.27) (hence (3.33)) and 

(3.28) transform like the first two components of (6.1), while the constraint equations (3.39) are invariant 

- like the last two components of (6.1).  Finally, the equivariance of (3.34) in terms of the natural action 

on ,u follows by composing (3.28) with (3.9) and then using (6.6) and the equivariance of (3.28).  Note 

that the scalar factor in (3.31), involved in the final form of (3.34), is invariant and thus has no effect on 

equivariance of the latter.□     

     We suppose now that lλ satisfies the characteristic equation (5.9) for a given  with ε∈ℓ ℕ sufficiently 

small, i.e.,
2( ,0) Xλ ∈ × ×

ℓ
ℝ ℝ is a potential bifurcation point.  Aside from the 3-dimensional space ,oN  

the high dimensionality of the null space, cf. (5.15) and (5.17), is a direct consequence of the (3)O

symmetry; from (6.2) the linear operator (5.16) also commutes with the action (6.1).  As is well known, 

the equivariance properties (6.2) can be used to simplify an otherwise difficult bifurcation analysis, cf. 

[5], [14], [36], [40].  In order to obtain global results in a straightforward manner, we proceed as in [18]:  

For any subgroup (3),OG ⊂ we define the fixed-point spaces   

 
},

},

: { :  for all 

 : { :  for all 

X w X w w

Y y Y y y

= ∈ Γ = ∈

= ∈ Γ = ∈

G

G

G

G

G

G
 (6.8) 

which are each closed subspaces.  By virtue of (6.2) we then have 

 
2 2: ,F X Y× × → ×ℝ ℝ ℝG G

 (6.9) 

i.e., the nonlinear mapping ( , )F λ ⋅ has linear invariant subspaces. 

     The basic idea then is to strategically choose subgroups (3)O⊂G so that a bifurcation analysis of (4.3) 

or (4.26) can be carried out easily on the reduced space via (6.9). This is particularly the case for any 

subgroupG leading to a one-dimensional null space, viz.,  

 ( )2dim ( ) 1.
X

L λ
×

=
ℓ ℝG

N   (6.10) 

If (6.10) holds along with the crossing condition,  

 ( ) ( )2 2 ( )[ ] ( ) , ( ) ,
X X

L z L z Lλ λ λ
× ×

′ ∉ ∈
ℓ ℓ ℓℝ ℝG G

NR    (6.11) 

then (4.3) has a local branch of bifurcating solutions in
2.X× ×ℝ ℝG
 Assuming that (6.10) is true, then 

the condition 
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 ( ) 0,λ′′′Ψ ≠
ℓ

 (6.12) 

insures that (6.11) is fulfilled, as we explain below.  We now summarize: 

Proposition 6.2 Assume that lλ is a root of the characteristic equation (5.9) for a given ,∈ℓ ℕ such that 

 ( )2 ˆ( ) { },
X

L span zλ
×

=
ℓ ℓℝG

N   (6.13) 

for ˆ ,z ∈
ℓ ℓ
N with X

G
is defined in (6.8) for some subgroup (3).O⊂G  If (6.12) holds, then there is a 

unique,
1C curve of local, nontrivial solution pairs for (4.3): 

 

2ˆ ˆ   {( , ) ( ( ), ( )) : } ,

ˆ ˆ       ( ( ), ( )) 0,

ˆ ˆ ˆ   ( ) ( ),  ( ) ( ),   0,

v t v t t X

F t v t

t O t v t tz o t as t

λ λ δ

λ

λ λ

= < × ×

≡

= + = + →
ℓ ℓ

ℝ ℝ
G

⊂

 (6.14) 

In addition, if ∈ℓ ℕ is odd, then ˆ( ) ( ),t o tλ λ= +
ℓ

i.e., the solution branch is a“pitchfork”. 

Proof.  The proof, based on a local Liapunov-Schmidt reduction, is standard, e.g., [28].  We merely 

indicate the role of (6.12).  If the latter holds, then from (5.15), (5.16), the first component of the left side 

of (6.11) equals ˆ( ) ,λ ρ′′′Ψ
ℓ ℓ

where ˆ ˆˆ : ( , ,0,0).z ρ τ ρ=
ℓ ℓ ℓ ℓ

 Using the first and fourth components of (5.16), it 

is clear that a term with first component proportional to an eigenfunction, ˆ ,ρ
ℓ
is not in the range of the 

operator at ,λ
ℓ
as required in (6.11).  That l∈ℕ odd gives rise to “pitchforks” while l∈ℕ even leads to 

“transcritical” local bifurcations is well known.□  

     Recall that any solution of (4.26) is also a solution of (4.3) and vice-versa.  Thus, (6.13) yields a local 

nontrivial solution curve to (4.26) as well.  Of course we could also demonstrate that the compact vector 

field on the left side of (4.26) is equivariant.  But it is more expedient to realize that all of Section 4 is 

valid with X
G
andY

G
in place of X and ,Y respectively, again resulting in (4.26), with

2 2: ( ) ,M E E× ∩ × → ×ℝ ℝ ℝG GK B where : .E E X= ∩
G G

  This is the starting point for extending 

Proposition 6.1 to global conclusions. 

     In view of (6.13), Propositions 5.1 and 5.3 imply that both operators, 2( )
X

L λ
×ℓ ℝG

 and

2[ ( )] ,
E

λ
×

−
ℓ ℝG

I A   have an isolated zero eigenvalue of finite algebraic multiplicity.  In fact, the zero 

eigenvalue here is simple, as readily shown by direct calculation (as in Section 5).  A well-known 

perturbation argument, via the implicit function theorem [28], then insures the existence of a local, 

differentiable eigenvalue curve, say, ˆ ( ),σ σ λ= with ˆ ( ) 0,σ λ =
ℓ

for the eigenvalue problem 

 
2( )[ ] ,  .L z z z Xλ σ= ∈ ×ℝG
  (6.15) 

Fortunately, the first and last components of (6.15) decouple from the rest, cf. (5.16), leading to 

 
2

( ) ,

    .
S

ds

ε ϑ λ ϑ ξ σϑ

ϑ σξ

′′− ∆ +Ψ − =

=∫
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This yields the explicit eigenvalue-perturbation curve 

 ˆ( 1) ( ) : ( ),σ ε λ σ λ′′= + +Ψ =ℓ ℓ   (6.16) 

with ˆϑ ρ=
ℓ
and 0,ξ =  which verifies ˆ ( ) 0σ λ =

ℓ
becauseλ

ℓ
is a root of the characteristic equation (5.9).  

We remark that the other components comprising the eigenvector, say, z zλ= in (6.15) now follow by 

back-substitution, the precise form of which is not important for our purposes here.  In any case, we now 

see from (6.16) that 

 ˆ ( ) ( ),σ λ λ′ ′′′= Ψ
ℓ ℓ

  (6.17) 

i.e., (6.12) implies that ˆ ( )σ λ has a simple zero at .λ
ℓ
 

     We now rewrite (6.15) as in (5.24), at ˆ( , ) ( ( ), ),z zλσ σ λ=  to deduce  

 
,0

ˆ( )[ ] ( ) [ ]. z z zλ λ λ λλ σ λ− =A C   (6.18) 

In order to understand the right side of (6.18), we consider the eigenvalue problem 

 ( ) 2

,0
( ,0) [ ] ,  .T a z z z Xλ ω+ = ∈ ×ℝ

G
  (6.19) 

From (5.18), the first component of (6.19) decouples from the rest, and for ,z zλ= we find that

( 1),aω ε= + +ℓ ℓ which is independent of .λ  We then use (4.23) to deduce   

 ( ) ,0( 1) [ ]. z a zλ λ λε= + +ℓ ℓ C   (6.20) 

Incorporating this into (6.18) leads to the eigenvalue perturbation 

 
ˆ ( )

( )[ ] .
( 1)

z z z
a

λ λ λ

σ λ
λ

ε
− =

+ +ℓ ℓ
A   (6.21) 

          We may now state a global bifurcation result [35]: 

Theorem 6.3.  Assume the hypotheses of Proposition 6.2 concerning (6.13).  In addition, suppose that the 

function 

 ˆ ( ) ( 1) ( )  .changes sign atσ λ ε λ λ λ′′= + +Ψ =
ℓ

ℓ ℓ  (6.22)  

LetS denote the closure of all nontrivial solutions of (4.26).  Then ( ,0) .λ ∈
ℓ

S   Let
ℓ
X denote the maximal 

connected component of S containing ( ,0).λ
ℓ

 Then at least one of the following holds: (i) 
ℓ
X is 

unbounded in 
2 ;E× ×ℝ ℝG
(ii) 

ℓ
X contains *( ,0),λ  with * .λ λ≠

ℓ
  

Proof.  By the linearization principle of Leray and Schauder, (6.21) and (6.22) insure that the Leray 

Schauder degree of the mapping ( , )v v vλ−֏ K along the trivial solution, changes sign asλ crosses 
from one side ofλ

ℓ
to the other, in some sufficiently small neighborhood ofλ

ℓ
. The rest of the proof is due 

to Rabinowitz [35], except that here, because of our definition of ( )⋅K on
2( ) ,M E× ∩ ×ℝ ℝGB  we obtain 

a third non-exclusive alternative: (iii) )M×∂ ≠ ∅
ℓ
ℝX B∩( for each 0.M >  But if (iii) is true for all 
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0,M > then (ii) holds.  On the other hand, if (iii) does not hold, say, for some sufficiently large 0,M >
then (i) and/or (ii) remain valid.□  

Remark 6.4.  The crossing condition (6.22) is weaker than (6.12), cf. (6.17).  As such,
ℓ
X need not 

contain a smooth local curve of solutions without imposing (6.12).  Nonetheless, it’s straightforward to 

show, using Proposition 5.2, that for any sequence of solutions{( , )}v
k k

λ ⊂
ℓ
X with ( , ) ( ,0)v

k k
λ λ→

ℓ

in
2E× ×ℝ ℝG
as ,j→∞  there is a subsequence{ } 2/

n nk kv v E⊂ ×ℝ
G

converging to ˆ , 0.cz c ≠
ℓ

  We 

also point out that Theorem 6.3 is valid here for any odd-dimensional null space, i.e., the dimension in 

(6.10) is odd.    

     There is a well-known strategy for the selection of subgroups in equivariant bifurcation problems, 

“generically” leading to one-dimensional null spaces [14].  Presuming an appropriate Liapunov-Schmidt 

reduction, a finite-dimensional bifurcation problem defined on some open neighborhood of, say,

,→×ℝ N N whereN is isomorphic to the null space, is equivariant under the restriction of the group 

action to ,N�cf. [5].  In particular, for generic bifurcation problems in the presence of (3)O symmetry,

,{ ( ),  ,..., }, ,mspan mρ= = − ∈x
ℓ

ℓ ℓ ℓ ℕN cf. (5.6), and the group action on ,N inherited from (6.1), is 

 
2 1

,

1

,  ( ) ( ) ( ) for all (3).
m mj j l m

m m j

T

m Gc T c Oρ ρ
+

− ≤ ≤ − ≤ ≤ =

≡ ∈∑ ∑ ∑G x x G
ℓ

ℓ ℓ ℓ ℓ

ℓ

ℓ
 (6.23) 

The representation (3) { : (3)}GO T O= ∈Gℓ

ℓ

ɶ is irreducible, cf. [43].  For each ,∈ℓ ℕ the maximal isotropy 

subgroups (3)O⊂G having 1-dimensional fixed-point spaces, i.e., such that 

 
2 1dim{ :  for all } 1,GT

+∈ = ∈ =c c c Gℓ ℓ
ℝ G  (6.24) 

are then enumerated.  Fortunately a complete classification of such is provided in [14], cf. also [5].  

Bifurcating solutions to the finite-dimensional problem are now readily obtained courtesy of (6.24) 

(“generically” assuming a version of (6.11) on the 1-dimensional subspace of ).N  We remark that this 

strategy, sometimes called the equivariant branching lemma, is not exhaustive in the (3)-O symmetry 

setting.  That is, there are subgroups of (3)O for which the dimension in (6.24) is greater than one (for a 

given )∈ℓ ℕ such that the finite-dimensional problem admits generic local solutions characterized by sub-

maximal isotropy [6].  We briefly comment on this within the context of global bifurcation in the final 

section of the paper. 

     As a starting point here, we read off the appropriate subgroups from [14;Thm 9.9].  However, we still 

need to address the presence of the 3-dimensional null space ,oN cf. (5.15), (5.17), which is independent 

of .λ  First, we claim that the irreducible representation for 1=ℓ is the same as (3)O itself, viz.,

1(3) (3).O O≡ɶ  Indeed by virtue of (5.6), (5.7), observe that 

 
2

1 1,1 2 1, 1 3 1,0( ), ( ), ( ),  for all .x x x Sρ ρ ρ−≡ ≡ ≡ ∈x x x x  (6.25) 

Then defining
1 1 1

1 1 0: ( , , ),c c c−=c we may express (5.11) as 
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1 1 1 1 1 1

1 1 1,1 1 1, 1 0 1,0 1 1 1 2 0 3( ) ( ) ( ) : ,c c c c x c x c xυ ρ ρ ρ− − −= + + = + + = ⋅x x x c x  (6.26) 

and thus, 

 

1 1 1

1 1,1 1 1, 1 0 1,0

1,1 1, 1 1,0

( ) ( ) ( )

                 ( ( ), ( ), ( )) for all (3).

T T T Tc c c

O

ρ ρ ρ

ρ ρ ρ
− −

−

+ + = ⋅ = ⋅

= ⋅ ∈

G x G x G x c G x Gc x

Gc x x x G
 (6.27) 

From (6.23) we conclude that
1  for all O(3). GT ≡ ∈G G This leads to 

Proposition 6.5.  Given an isotropy subgroup (3),OG ⊂ suppose that the fixed-point space in
3
ℝ is 

trivial, that is 

 
1  for all .GT ≡ = ∈ ⇒ =c Gc c G c 0G  (6.28) 

Then the following additions to Proposition 5.1 hold: 

 
( )
( )

2

2

( ) {0},  ;

( ) ,

X

X

L

L

λ λ λ

λ

×

×

= ≠
ℓℝ

ℓ ℓℝ

G

G

N

N N



 ⊆
 (6.29) 

Proof.  Suppose that
2

1(0, ,0,0) ,r Xυ ∈ ×ℝGN ∩ with 1υ given by (6.26).  Then (6.1), (6.7) and (6.27) 

imply that
2 for all , ,S⋅ = ⋅ ∈ ∈Gc x c x G xG i.e., the left side of (6.29) holds. Thus,

1 1 1

1 1 0 1( , , ) 0.c c c υ−= = ⇒ ≡c 0 □  

     Condition (6.28) requires that there are no invariant lines through the origin in
3
ℝ under the group 

action of .G�  This is indeed the case for all but one class of problems associated with the isotropy 

subgroup classification of [14], namely those having axisymmetric solutions corresponding to odd .∈ℓ ℕ  

We discuss a simple resolution for obtaining the existence of those solutions as well at the end of this 

section, cf. Remark 6.7.  With this in hand, we now summarize: 

Proposition 6.6.  If lλ is a root of the characteristic equation (5.9) for a given ,∈ℓ ℕ and if (6.22) is 

satisfied, then the global bifurcation Theorem 6.3 is valid for each of the maximal isotropy subgroups 

listed in [14; Thm.9.9].  In addition, if (6.11) holds, then the global solution continuum
ℓ
X contains the 

local bifurcation curve (6.13).   

     We now illustrate with several concrete examples.  In what follows, we employ the subgroup notation 

of [14]:  The planar subgroups, denoted (2), (2), , ( 2,3,...)n nSO O D Z n = (3),SO⊂ are oriented in the 

obvious way with respect to the 3 -x axis. We specify the orientation of the non-planar or exceptional 

subgroups, , ,T O I (3),SO⊂ as in [15].  Specifically, we choose 

 1 2

0 1 0 1  0 0

0 0 1  and  0 1 0

1 0 0  0  0 1

−   
   = = −   
   
   

Γ Γ  (6.30) 
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as the generators of the tetrahedral group .T   We then choose a copy of the octahedral groupO so that it 

is a supergroup of ,T as specified above. The icosahedral group I is chosen so that it contains two 5ℤ

subgroups – one about the (0,0,1) axis and one about , .( 2 / 5 0,1 / 5)−    We also observe that 

2
,(3) (3) cO SO= ⊕ℤ  where 

2
.: { , }c I I= −ℤ  

     One last issue needs to be addressed before presenting our examples. Unlike the calculations leading to 

(6.24) (which involve traces only, cf. [5], [14]), the full representation (3) { : (3)}GO T O= ∈Gℓ

ℓ

ɶ  (its 

generators) is needed in the actual construction of the bifurcation direction, 

 ˆ ˆˆ ( , ,0,0),z ρ τ ρ=
ℓ ℓ ℓ ℓ

 (6.31)  

 for a given ∈ℓ ℕ and isotropy subgroup (3).O⊂G  Specifically, we seek
2 1ˆ +∈c ℓ

ℝ such that 

 ˆ ˆ  for all .
G
T = ∈c c Gℓ G  (6.32) 

which yields 

 
,
.ˆ ˆ

m m

l m l

cρ ρ
− ≤ ≤

= ∑ ℓℓ
 (6.33) 

While the “directions” (6.33) have not been exhaustively catalogued, some have been determined and 

presented in our earlier papers [15], [19], of which we take full advantage here.  We present details for 

some that seem to be quite relevant to the experimentally obtained patterns presented in [4]. We mention 

that perhaps a more direct approach than (6.32) comes from the classical method in [34], restricted here to 

the null spaces .
ℓ
N We refer to [9] for details, which will also appear elsewhere.  

   

Examples:  We point out that the first example – in particular (6.34) – corrects an error associated with 

that presented in [19]. 

 

I. 
63, :dD==ℓ G  

 

Here 
6 (3)dD SO⊄ denotes the group generated by 

 
1 2 2

.

cos(2 / 3) sin(2 / 3) 0 1  0 0 1  0 0

sin(2 / 3) cos(2 / 3) 0 ,  0 1 0  and  0 1 0

0 0 1  0  0 1  0  0 1

π π
π π= = =

     
     − −     
     − −     

Γ Γ Γ  (6.34) 

( )23 3 3,3 3 3,3
ˆ( ) { ( , ,0,0)}.

X
L span zλ ρ τ ρ

×
= =

ℝG

N   The nodal set of 
3,3 ,ρ cf. (5.6), is depicted below in 

Figure 6.1(a).  

II. 3, :l −== OG   

Here (3)SO− ⊄O denotes the subgroup { : \ },− = − ∈Γ ΓO T O T∪ for the copy ofT  given above. 

( )23 3 3, 2 3 3, 2
ˆ( ) { ( , ,0,0)}.

X
L span zλ ρ τ ρ− −×

= =
ℝG

N   The nodal set of 
3, 2ρ − is depicted below in Figure 

6.1(b).   
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(a)
6 .
dD=G                                                      (b) .−= OG   

Figure 6.1.  Nodal sets of eigenfunctions corresponding to bifurcations for 3. =ℓ
 

 

 

III. 
2

4, (2) :cO= = ⊕ℓ ℤG   

( )24 4 4,0 4 4,0(ˆ( ) { , ,0,0)}.
X

L span zλ ρ τ ρ
×

==
ℝG

N   The nodal set of 
4,0ρ is depicted below in Figure 

6.2(a).  

IV. 
2

4, :c= = ⊕ℓ ℤOG  

( )24 4 4 4 4 4 4,0 4,4
ˆ ˆ ˆˆ( ) { ( , ,0,0)}, 168 .

X
L span zβλ ρ τ ρ ρ ρ ρ

×
+= = =

ℝG

N   The nodal set of 4ρ̂ is depicted 

below in Figure 6.2(b).   

                         

(a)
 2

(2) .cO= ⊕ℤG
                                          

(b)
 2

.c= ⊕ℤOG  

Figure 6.2.  Nodal sets of eigenfunctions corresponding to bifurcations for 4.=ℓ
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V. 
2

6, :c= = ⊕ℓ ℤIG  

( )26 6 6 6 6 6 6,0 6,5
ˆ ˆ ˆˆ( ) { ( , ,0,0)}, 3,960 .

X
L span zλ ρ τ ρ ρ ρ ρ

×
= = = −

ℝG

N   The nodal set of 6ρ̂ is depicted 

below in Figure 6.3(a). 

VI. 
2

10, :c= = ⊕ℓ ℤIG   

( )210 10 10 10 10 10 10,10 10,0 10,5
ˆ ˆ ˆˆ( ) { ( , ,0,0)}, 896,313,600 27,360 .

X
L span zλ ρ τ ρ ρ ρ ρ ρ

×
= + += =

ℝG

N   The 

nodal set of 10ρ̂ is depicted below in Figure 6.3(b).   

                           

(a)
 2

 for 6.c= ⊕ =ℤ ℓIG
                             

 (b) 2
 for 10.c= ⊕ =ℤ ℓIG

 
 

Figure 6.3.  Nodal sets of eigenfunctions corresponding to bifurcations.
 

 

VIII. 
2

12, :c= = ⊕ℓ ℤIG   

( )212 12 12 12 12 12 12,0 12,5 12,104ˆ ˆ ˆˆ( ) { ( , ,0,0)}, 57,001,190, 400 221,760 .
X

L span zλ ρ τ ρ ρ ρ ρ ρ
×

+= = = −
ℝG

N   

The nodal set of 12ρ̂ is depicted below in Figure 6.4.  
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2

c= ⊕ℤIG   

Figure 6.4. Nodal set of the eigenfunction corresponding to bifurcation for 12.=ℓ   

 

Remark 6.7 The pertinent isotropy subgroup for axisymmetric solutions corresponding to odd ∈ℓ ℕ is
(2) ,O −

which is generated by (2)SO and a reflection across the 2 3-x x plane. Obviously (6.28) does not 

hold in this case; the entire 3x axis is fixed by the group action.  This, in turn, implies that

1 1

0 1,0 0( ) ( ) cos ,c cυ ρ θ= ≡x x cf. (5.7), representing an arbitrary vertical translation, is present in the null 

space of the linear operator.  Of course in this case,
(2)O

v X −∈ ⇒ ( ( ), ( )) ( ( ), ( )),u uφ φ θ θ=x x ɶ ɶ and the null 

solution is readily factored out by appending, e.g., the boundary condition (0) 0u =ɶ to the governing 2-

point boundary value problem. 

 

7. Concluding Remarks    

     The basic necessary condition for bifurcation, viz., that the characteristic equation (5.9) has a rootλ
ℓ

for a given ,∈ℓ ℕ involves the second derivative of the constitutive function ,W B EΨ = + + cf. (2.1) and 

(3.37)3. In the special case that the bending moduli,  and ,B E are constants, this obviously involves only 

the phase-field potential ,W and there are precisely two such roots for each ,∈ℓ ℕ forε sufficiently small, 
each satisfying (6.12). This follows directly from (5.9) and the assumed graph of W ′′ depicted in Figure 
2.1.  In the more general case considered here, it is reasonable to assume that both ( ) and ( )B E⋅ ⋅ are 

essentially constant outside of the spinodal region, with a smooth transition within that interval 1 2( , ).m m  

As such, the function ( )′′Ψ ⋅ takes on negative values in the spinodal region only, and again, for 

sufficiently small ,ε (5.9) has at least one root for each .∈ℓ ℕ  Thus, asε  approaches zero from above, and 
presuming that either (6.12) or (6.22) holds, then Proposition 6.6 is valid, i.e., we have  the existence of a 

global branch of bifurcating solutions correspond to each of the maximal isotropy subgroups of (3)O as 

classified in [14; Thm 9.9]. 

     As mentioned in Section 6, certain local, generic, (3)-O symmetry-breaking solutions characterized by 

sub-maximal isotropy have been uncovered [6]. These follow from an analysis of the reduced bifurcation 
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equations associated with sub-maximal isotropy subgroups. In particular, this engenders higher-

dimensional fixed-point eigen-subspaces, i.e., the right side of (6.10) is greater than one, which 

corresponds to the number of reduced bifurcation equations.  As in [19], the results of [6] suggest the 

existence of local solutions to our problem (although we have not pursued the details here).  In cases 

when the null space is odd-dimensional, our global bifurcation theorem is valid, cf. Remark 6.4. 

However, this could give nothing new without verifying the local analyses in [6]; as pointed out in [19], 

every such fixed-point space already contains one of the global solutions branches given by Proposition 

6.6.  Moreover, even if the local results of [6] are valid here, it does not then follow that our problem 

possesses global solutions (outside of a small neighborhood of a given bifurcation point) that are precisely 

characterized by the associated sub-maximal isotropy. We refer to [19] for a detailed discussion. 

     Our local analysis, staring from (5.15)-(5.17) and culminating in (6.14) or, more generally, Remark 

6.4, illuminates the role of the bending moduli functions, ( )B ⋅ and ( ),E ⋅ in yielding a phenomenon not seen 

in the constant case.  Specifically, suppose that ẑ
ℓ
is the local bifurcation direction according to (6.31)-

(6.33).  Then by (6.14)3, (6.31) and (6.33), we see that the displacement or shape variable ˆυ τ ρ=
ℓ ℓ ℓ

 is not 

present to first order in (6.14) when the bending moduli are constant, which is due to the fact that

0, 2,τ ≡ ≥
ℓ

ℓ cf. (5.14), (5.15).  Recall that 1 0,τ = regardless of the behavior of the bending moduli.  

Indeed, as addressed in Proposition 6.5 and Remark 6.7, 1 0υ ≠  represents a rigid translation.  In any case, 

from (5.14), we see that the non-vanishing of either ( )B λ′
ℓ
and/or ( )E λ′

ℓ
within the spinodal region

1 2( , ),m m which is consistent with the discussion in the paragraph above, typically engenders

0, 2.τ ≠ ≥
ℓ

ℓ  In general for 1,=ℓ or when both  and B E are constants for all 2,3,...,=ℓ the local 

bifurcating branch (6.14) is the same - to first order - as that for the phase field on a fixed sphere, as 

treated in [19].  This raises the question as to the possible existence of nontrivial solutions characterized 

by a non-constant phase fieldφ on the undeformed sphere here in this problem, i.e., with 0,u ≡ cf. (3.1).  

We claim this is not possible.  Indeed, return to (2.12) with ,x= −L I cf. (3.8), corresponding to 1H ≡ −  

and 1;K ≡ we find that ( ) / 2,W pφ µφ γ− = + i.e.φ is a constant. But then by virtue of (2.2)2, ,φ λ≡ and 

we are back to the trivial solution (3.36), (3.37).  We conclude that the uniform (trivial) solution is the 

only possible (smooth) solution of our problem on the undeformed sphere. 

     Our approach in this work can also be used to establish existence of global, non-axisymmetric 

bifurcating solutions for the classical Helfrich model.  The latter corresponds to (2.1) in the absence of the 

phase field, engendering constant bending moduli, and subject to (2.2)1; the second term in the integrand 

in (2.1) now falls out, by virtue of the Gauss-Bonnet theorem. The pressure is the natural bifurcation 

parameter, in which case we know from the literature that axisymmetric buckled states exist – these 

bifurcations occur at negative values of the internal pressure - corresponding to external compressive 

pressure, cf. [25], [32].  At any bifurcation point (where an axisymmetric solution always exists), our 

analysis here provides global solution branches characterized by spatial symmetries as in Sections 6.  In 

the same way we can analyze global “buckling” solutions here in our problem by fixing the phase-field 

parameterλ and treating" "p− as the bifurcation parameter.  Similarly, we can fix both  and p λ and 
obtain global bifurcation results in the reciprocal of the small parameter, viz.,1/ ,ε cf. (3.33), as carried 

out in [20].  

     Similar to the results in [19], most, if not all local bifurcating solutions are unstable, and our proof of 

global existence, based upon the Leray-Schauder degree, provides no information about the stability of 
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global solutions.  Nonetheless, we expect that many of our global solution branches are totally bounded 

and connected (in the Cartesian product of the parameter line and the Banach solution space), as depicted 

schematically in Figure 6 of [19], strongly suggesting stability “far” from the trivial solution.   Of course, 

the experimental results of [4] and the numerical, gradient flow results of [12] and [37] also suggest the 

stability of solutions with symmetries like those depicted in Figures 6.3, 6.4, among others.  Stability can 

also be checked on global solutions via numerical computation of the second variation, e.g., as in [22]. 

     Precisely the same issues discussed at the start of Section 3, viz., in-plane fluidity and the degeneracy 

associated with a Lagrangian description, also plague numerical computation in models of lipid-bilayer 

vesicles, cf. [12], [13], [30], [38].  Typically some type of added in-plane stiffness for static simulations 

[13] and/or in-plane dissipation for gradient-flow dynamics [12], [30], [38] is required.  In this regard, a 

radial-map description like (3.1) is well suited to numerical computation of equilibria; the grossly 

underdetermined in-plane deformation is absent in the resulting formulation. 

          Our results presented herewith are perhaps limited by the radial-graph formulation.  That is, there 

may exist more general equilibria of (2.2), (2.11), (2.12) than those captured by (3.1).  However, it is 

worth noting that all of the observed (apparent) equilibria reported in [4] appear as radial graphs over the 

sphere.  
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