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Abstract

Quantifying simulation uncertainties is a critical component of rigor-
ous predictive simulation. A key component of this is forward propagation
of uncertainties in simulation input data to output quantities of inter-
est. Typical approaches involve repeated sampling of the simulation over
the uncertain input data, and can require numerous samples when ac-
curately propagating uncertainties from large numbers of sources. Often
simulation processes from sample to sample are similar and much of the
data generated from each sample evaluation could be reused. We explore
a new method for implementing sampling methods that simultaneously
propagates groups of samples together in an embedded fashion, which
we call embedded ensemble propagation. We show how this approach
takes advantage of properties of modern computer architectures to im-
prove performance by enabling reuse between samples, reducing memory
bandwidth requirements, improving memory access patterns, improving
opportunities for fine-grained parallelization, and reducing communica-
tion costs. We describe a software technique for implementing embedded
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ensemble propagation based on the use of C++ templates and describe
its integration with various scientific computing libraries within Trilinos.
We demonstrate improved performance, portability and scalability for the
approach applied to the simulation of partial differential equations on a va-
riety of CPU, GPU, and accelerator architectures, including up to 131,072
cores on a Cray XK7 (Titan).

1 Introduction

As computing power continues to increase there is an increasing desire to lever-
age computational simulation to predict physical, biological, and other scientific
phenomena. However for predictions based on simulation to be rigorously jus-
tified, all errors arising in the simulation must be accurately accounted for. All
simulations involve input data, such as physical properties, initial conditions,
boundary conditions, and geometries, that are rarely known precisely. Char-
acterizing the error, or uncertainty, in these data, propagating this uncertainty
to the simulation results, and understanding its implications on predictions is
generally called uncertainty quantification. Often uncertainty in input data is
represented through bounds on the data or random variables/stochastic pro-
cesses with prescribed probability distribution functions. Numerous approaches
for propagating this uncertainty through computational simulations have been
investigated in the literature, including random sampling [9, 15, 23, 24, 25],
stochastic collocation [1, 26, 27, 35], and stochastic Galerkin [12, 13, 36], many
of which involve sampling the simulation over the range of uncertain data. While
the accuracy and scalability properties of numerical uncertainty propagation
schemes vary, they all suffer from the basic challenge that accurately resolving
discontinuous and localized behavior over high-dimension uncertain input spaces
can require a tremendous number of samples. Since each sample evaluation is
independent, it is trivial to parallelize sampling-based uncertainty propagation
schemes in a coarse-grained manner by executing each sample on a disjoint
set of compute nodes (and evaluation of the simulation at each sample typi-
cally involves the bulk of the computational cost). However, most uncertainty
quantification problems of scientific and engineering interest involve high-fidelity
simulations that require for each sample a significant fraction of the available
computational resources, and therefore it is often possible to execute only a
small fraction of the total number of samples needed in parallel with the re-
maining fraction executed sequentially. This leads to very high computational
cost, making many uncertainty quantification problems applied to high-fidelity
simulations intractable.

In this work, we investigate whether the aggregate computational cost for
propagating uncertainties can be reduced by propagating multiple samples,
which we call ensembles, together through simulations. We discuss an embed-
ded approach for propagating ensembles, whereby scalars within the simulation
code are replaced by ensemble arrays, and apply the technique to the solution
of partial differential equations on unstructured meshes. We demonstrate that
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the approach, embedded ensemble propagation, results in improved performance,
portability, and scalability on contemporary multicore and manycore computa-
tional architectures by sharing sample-independent data and calculations across
the ensemble (reducing floating-point operations and/or memory bandwidth re-
quirements), improving memory access patterns by replacing sparse gather/s-
catter operations with packed loads/stores, improving opportunities for fine-
grained vector (SIMD/SIMT) parallelization, and reducing aggregate commu-
nication costs arising from latency.

The paper is organized as follows. We discuss the mathematical formulation
of ensemble propagation and its impact on iterative linear solvers in Sect. 2.
In Sect. 3, we describe a software implementation of the technique leveraging
C++ templates and operator overloading, focusing on its integration with the
performance portability package Kokkos [7, 8] and with sparse linear algebra
tools available in Trilinos [16, 17]. While the performance portability of Kokkos
has been demonstrated in small mini-applications and graph algorithms [7, 8,
33], Sect. 3 details how the ensemble propagation approach is embedded into the
Trilinos solver stack, from linear algebra kernels to iterative solvers and multigrid
preconditioners. Then in Sect. 4 we demonstrate performance improvements
for the approach compared to traditional one-at-a-time sample propagation on
a variety of contemporary computational architectures, including weak-scaling
results on a Cray XK7 (Titan) with up to 131,072 processor cores. Finally in
Sect. 5 we summarize our work.

The idea of propagating multiple samples together has been proposed previ-
ously [14]. However, in this work we describe a unique approach for implement-
ing the technique in a portable fashion that results in performant code in three
different architectures (CPU, GPU and Xeon Phi). We also study its relevance
to sparse linear algebra, partial differential equations, fine-grained hardware
parallelism, and coarse-grained message-passing parallelism.

2 Ensemble Propagation

In this section we formalize ensemble propagation and illustrate its effect on a
ubiquitous computational kernel in the simulation of partial differential equa-
tions (PDEs), the sparse matrix-vector product. For simplicity and brevity, we
only consider steady-state problems here as the extension to transient problems
is straightforward. Consider a steady-state, finite-dimensional, nonlinear system

f(u, y) = 0, u ∈ Rn, y ∈ Rm, f : Rn × Rm → Rn. (1)

For the simulation of PDEs, we assume the equations have been spatially dis-
cretized by some suitable method (e.g., finite element, finite volume, finite dif-
ference), in which case u would represent the nodal vector of unknowns, and f
the discretized PDE residual equations. Here y is a set of problem inputs, and
we are interested in sampling the solution u for numerous values of y. Given
some number s, consider computing u for s values of y: y1, . . . , ys (we assume
s is small and in what follows will be a small multiple of the natural vector
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Figure 1: (a) Block diagonal structure of Kronecker product system (2). The
number of blocks is determined by the ensemble size s, and each block has
the sparsity structure for ∂f/∂u. (b) Block structure of Kronecker product
system (3). The outer structure is determined by ∂f/∂u where each nonzero is
replaced by an s× s diagonal matrix.

width of the computer architecture). Formally this can be represented by the
Kronecker product system:

F (U, Y ) =

s∑
i=1

ei ⊗ f(ui, yi) = 0,

U =

s∑
i=1

ei ⊗ ui, Y =

s∑
i=1

ei ⊗ yi,
(2)

where ei ∈ Rs is the ith column of the s× s identity matrix. In this system, the
solution vector U is a block vector where all n unknowns for each sample are
ordered consecutively. Furthermore, the Jacobian matrix ∂F/∂U =

∑s
i=1 eie

T
i ⊗

∂f/∂ui has a block diagonal structure, an example of which is shown in Fig. 1(a).
The choice of ordering for the unknowns in U is arbitrary, and in particular

the unknowns can be ordered so that all sample values are stored consecutively
for each spatial degree of freedom in u. Formally, this amounts to commuting
the terms in the Kronecker product system:

Fc(Uc, Yc) =

s∑
i=1

f(ui, yi)⊗ ei = 0,

Uc =

s∑
i=1

ui ⊗ ei, Yc =

s∑
i=1

yi ⊗ ei.
(3)

The Jacobian matrix ∂Fc/∂Uc =
∑s

i=1 ∂f/∂ui⊗eieTi also has a block structure
where each scalar nonzero in the original matrix ∂f/∂u is replaced by an s× s
diagonal matrix, an example of which is shown in Fig. 1(b).

To understand the performance aspects of the commuted ensemble sys-
tem (3), we will describe its impact on a ubiquitous kernel in the simulation
of PDEs, the sparse matrix-vector product. In Fig. 2, a data structure for stor-
ing a matrix A in the compressed row storage (CRS) format is displayed, along
with a routine for computing matrix-vector products z = Ax in this format.
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// Matrix stored in compressed row storage for an arbitrary floating -point type T
template <typename T>
struct CrsMatrix {

int num_rows; // number of rows
int num_entries; // number of nonzeros
int *row_map; // starting index of each row
int *col_entry; // column index for each nonzero
T *values; // matrix values of type T

};

// CRS matrix -vector product z = A*x for arbitrary floating -point type T
template <typename T>
void crs_mat_vec(const CrsMatrix <T>& A, const T *x, T *z) {

for (int row=0; row <A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row +1];
T sum = 0.0;
for (int entry=entry_begin; entry <entry_end; ++entry) {

const int col = A.col_entry[entry ];
sum += A.values[entry] * x[col];

}
z[row] = sum;

}
}

Figure 2: CRS matrix data structure and corresponding matrix-vector product
routine.

Both the data structure and the matrix-vector product routine are templated
to allow computations with any floating point scalar type.

Matrices and vectors for the ensemble system (2) can be stored in exactly
the same format as in Fig. 2. Only modifications for the matrix-vector product
routine are required to add an additional outer loop over the samples within the
ensemble and adjustment of the indexing into A.values, x and z as shown in
Fig. 3. Here the ensemble size s is controlled through a compile-time constant
template parameter. This approach reduces memory requirements slightly since
the row-offsets (A.row map) and column-index (A.col entry) arrays are only
stored once for all matrices in the ensemble. However for large matrices it is
unlikely these arrays will fit in a low-level cache, and therefore these values
are re-read for each sample within the ensemble. Thus one would expect little
improvement in performance.

For the commuted Kronecker product system (3) however, the ensemble
loop is inside the row and column loops as is shown in Fig. 4. There are sev-
eral things to note. First, any sample-dependent intermediate variables in the
computation, such as sum, are replaced by length-s arrays. Second, sample
independent data, such as the row-offsets and column-index arrays discussed
above, are read once per ensemble reducing aggregate memory bandwidth re-
quirements. Third, a common approach for exploiting SIMD/SIMT vector par-
allelism within the matrix-vector product calculation is to block the inner entry
loop by some multiple of the vector width and replace the multiply-add with
the corresponding parallel instruction. This requires a sparse gather for x based
on the indices within A.col entry. The effectiveness of this depends on the
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// Ensemble matrix -vector product for commuted layout
template <typename T, int s>
void ensemble_crs_mat_vec(const CrsMatrix <T>& A, const T *x, T *z) {

for (int e=0; e < s; ++e) {
for (int row=0; row <A.num_rows; ++row) {

const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row +1];
T sum = 0.0;
for (int entry=entry_begin; entry <entry_end; ++entry) {

const int col = A.col_entry[entry ];
sum += A.values[e*A.num_entries+entry] * x[e*A.num_rows+col];

}
z[e*A.num_rows+row] = sum;

}
}

}

Figure 3: Matrix vector product routine for ensemble matrix and vectors in
original layout.

number of nonzeros per row in the matrix, how these nonzeros are distributed
across the matrix columns, and the capabilities of the computer architecture.
For the commuted ensemble system however, s contiguous entries of x are ac-
cessed consecutively from a common column offset col*s. Thus the ensemble
loop around the multiply-add can be parallelized by SIMD/SIMT where the
scalar sparse gather is replaced by a packed/coalesced load. Furthermore, the
ensemble loop is the inner-most loop, with a compile-time known trip-count and
no dependencies between loop iterations, and thus is simple for the compiler to
auto-vectorize. Thus the effectiveness of applying SIMD/SIMT parallelism to
the ensemble matrix-vector product routine effectively becomes independent of
the matrix structure and the architecture’s capabilities (assuming the ensemble
size is chosen appropriately). Finally, while not shown explicitly in Figs. 2-4, the
traditional approach for exploiting distributed-memory parallelism (e.g., MPI)
within the matrix-vector product calculation is to distribute the rows of A, x
and z across processors, where each processor computes the rows of z it owns.
Based on the sparsity structure of A, this requires communicating entries of x
between processors so that all needed entries of x are available to each processor,
commonly referred to as the halo exchange. When propagating one sample at a
time, a halo exchange must occur for each matrix-vector product call, for each
sample. However for the ensemble system, only one halo exchange is necessary
per ensemble, reducing the latency cost of this communication by a factor of s.

In short, the commuted Kronecker product system results in reduced aggre-
gate bandwidth, packed loads/stores (instead of sparse gather/scatter), better
vector parallelization and reduced latency costs. For this approach to be effec-
tive, one must choose the ensemble size s appropriately for each architecture.
For effective SIMD/SIMT parallelism, it should be made a multiple of the natu-
ral vector width. Increasing s generally improves reuse and use of SIMD/SIMT
hardware, at the expense of increased aggregate memory usage, cache pressure,
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// Ensemble matrix -vector product for commuted layout
template <typename T, int s>
void ensemble_crs_mat_vec(const CrsMatrix <T>& A, const T *x, T *z) {

for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row +1];
T sum[s];
for (int e=0; e < s; ++e)

sum[e] = 0.0;
for (int entry=entry_begin; entry <entry_end; ++entry) {

const int col = A.col_entry[entry ];
for (int e=0; e < s; ++e) {

sum[e] += A.values[entry*s + e] * x[col*s + e];
}

}
for (int e=0; e < s; ++e)

z[row*m + e] = sum[e];
}

}

Figure 4: Matrix vector product routine for ensemble matrix and vectors in
commuted layout.

and interconnect bandwidth pressure. The effects of ensemble size choice for
several architectures will be studied in Sect. 4.

The literature extensively discusses blocking solver algorithms to improve
performance. In particular, authors have explored approaches for exploiting
block matrix structure in sparse matrix-vector product algorithms to reduce
memory bandwidth and increase instruction throughput on superscalar archi-
tectures [19]. Similarly, matrix-vector product kernels have been developed for
solving linear systems with multiple right-hand sides that leverage reuse of the
matrix graph and values across right-hand sides as well as row-wise column or-
dering to apply SIMD/SIMT parallelism across right-hand-side columns [19].
The approach described here is distinct in that it groups together normally in-
dependent linear systems (each with a distinct right-hand side), and forms a
block solver algorithm from the constituent matrices and right-hand sides. It
does not rely on any block structure within each matrix, and can be viewed as
an extension of the multiple right-hand side approach to also include multiple
left-hand sides. Furthermore, the necessary row-wise layout occurs naturally
through the commuted Kronecker product ordering.

3 Embedded Implementation

In this section we discuss an embedded approach for implementing ensemble
propagation in general scientific simulation codes, based on C++ templates
and operator overloading. From this point on, we are only concerned with the
commuted ensemble system (3), henceforth refered to as the “ensemble system.”
We first describe a new ensemble scalar type and a systematic approach for
incorporating it into computer codes. We then describe its integration with the
manycore performance portability library Kokkos, and our solution to challenges
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// Ensemble scalar type
template <typename T, int s>
class Ensemble {

T val[s];
public:

Ensemble(const T& v) {
for (int e=0; e<s; ++e) val[m] = v;

}
Ensemble& operator =( const Ensemble& a) {

for (int e=0; e<s; ++e) val[m] = a.val[m];
return *this;

}
Ensemble& operator +=( const Ensemble& a) {

for (int e=0; e<s; ++e) val[m] += a.val[m];
return *this;

}
// ...

};

template <typename T, int s>
Ensemble <T,s>
operator *(const Ensemble <T,s>& a, const Ensemble <T,s>& b) {

Ensemble <T,s> c;
for (int e=0; e<s; ++e)

c.val[e] = a.val[e]*b.val[e];
return c;

}

Figure 5: Simplified ensemble scalar type definition. Only the portions relevant
to the CRS matrix-vector multiply routine are included, and complications such
as expression templates are excluded.

in maintaining proper memory access patterns and exploiting vector parallelism.
Finally, we explain how we incorporate the technique into Trilinos’ parallel linear
algebra library called Tpetra [3, 18] and the iterative solvers and multigrid
preconditioners that are built on Tpetra.

3.1 Ensemble Scalar Type

Converting the matrix-vector product routine to propagate ensembles of values
requires two fundamental steps: replace each sample-dependent variable with
a length-s array, and replace each sample-dependent arithmetic operation with
a length-s loop. Implementing such a change by hand is possible, but tedious
and error prone. Furthermore, this is only one of many computational ker-
nels and numerical algorithms that preconditioned iterative linear solvers need.
Others have explored using source-to-source transformation to automate this
conversion [14]. In this work we describe an approach based on compile-time
polymorphism, using C++ templates and operator overloading. The idea is
to write application code and solvers that are parametrized (“templated”) on
the data type, and then replace the customary floating-point data type (e.g.,
double) with one that propagates ensembles.

We begin by defining the Ensemble C++ class that stores an ensemble of
values. Fig. 5 displays a portion of it. The Ensemble class, along with support-
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ing utilities, is provided by the Stokhos package1 [31] within Trilinos [16, 17]. It
implements all of the necessary operations for making objects of this type act
like standard floating-point data types, and for making them work with Trilinos’
data structures and solvers. These operations fall into four categories:

1. Arithmetic and basic mathematical functions

2. Input and output (C++ stream operations << and >>)

3. What Kokkos needs for reductions and atomic updates

4. What Tpetra needs to tell MPI how to communicate ensemble values

The first category of operations make Ensemble objects act like a C++ built-in
floating-point type. They include:

• Copy constructors and assignment operators from ensemble values as well
as scalar values (that is, for objects of type Ensemble<T,s>, values of any
type U convertible to T)

• Arithmetic operations (+, −, ×, /) and arithmetic-assignment operators
(+=, −=, ×=, /=) from ensemble and scalar values

• Comparison operations >, <, ==, <=, and >= between ensembles and
scalar values, which base the result on the first entry in the ensemble

• Overloads of basic mathematical functions declared in cmath, such as
sin(), cos(), exp(), as well as other common operations such as min()

and max()

The third category of operations lets Kokkos produce ensemble values as the
result of a parallel reduction or scan, and ensures that if threads update the same
ensemble value concurrently, those updates are correct (assuming that order
does not matter). Kokkos needs overloads of the above operations for ensemble
values declared volatile, and an implementation of Kokkos’ atomic updates
for ensemble values. Sect. 3.4 will discuss the fourth category of operations.

Ensemble<T,s> meets the C++ requirements for a plain old data type. The
template parameter s fixes its size at compile time; it does no dynamic memory
allocation inside. Furthermore, it has default implementations of the default
constructor, copy constructor, assignment operator, and destructor. This im-
plies that arrays of ensemble values can be allocated with no more initialization
cost than built-in scalars. Ensemble objects can be easily serialized for parallel
communication and input / output, since all such objects have the same size on
all parallel processes.

Our ensemble scalar type employs expression templates [34] to avoid creation
of temporaries and fuse loops within expressions, thus reducing overhead. Since
the ensemble loop is always the lowest-level loop, it has a fixed trip count and no

1For expository purposes, we have simplified the Ensemble class described here. Stokhos’
actual ensemble class differs in both interface and implementation.
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iteration dependencies. This means that the compiler can easily auto-vectorize
each arithmetic operation, including insertion of packed load/store instructions.
However, difficulties do arise when mapping GPU threads to ensemble com-
ponents for GPU SIMT parallelization. We discuss our GPU optimizations in
Sect. 3.3.

Since the original CRS matrix-vector multiply routine in Fig. 2 is already
templated on the scalar type, instantiating this code on the ensemble scalar type,
crs mat vec< Ensemble<T,s> > >() results precisely in the ensemble matrix-
vector multiply routine in Fig. 4.

3.2 Incoporating the Ensemble Type in Complex Codes

Replacing the floating-point scalar type with the ensemble types accomplishes
both steps of replacing sample-dependent variables with ensemble arrays and
arithmetic operations with ensemble loops. We generally advocate the use of
C++ templates to facilitate this type change, whereby the floating-point type
is replaced by a general template parameter. This allows the original code to
be recovered by instantiating the template code on the original floating-point
type, and the ensemble code through the ensemble scalar type. Furthermore,
other scalar types can be used as well, such as automatic differentiation types
for computing derivatives. We refer to the process of using C++ templates and
a variety of scalar types to implement different forms of analysis as template-
based generic programming [29, 30]. This has been shown to be effective for
supporting analyses such as ensemble propagation in complex simulation codes.

The most challenging part of incorporating the ensemble scalar type in com-
plex code bases is its conversion to code templated on the scalar type. De-
velopers must analyze the code to determine which values depend (directly or
indirectly) on the input data that will be sampled, and therefore should be
converted to ensembles by replacing the types of those values with a template
parameter. While this is admittedly tedious, it is generally straightforward to
accomplish. Furthermore, the compiler helps in this process since the ensemble
scalar type does not allow direct conversions of ensemble values to scalar val-
ues. This prevents accidentally breaking the chain of dependencies from input
data to simulation outputs. It is possible to implement this conversion through
a helper function, which takes the first entry in the ensemble to initialize the
resulting scalar. Therefore one can incrementally convert a code to use ensem-
bles by manually converting ensembles to scalars whenever ensemble code calls
code that has not yet been converted. Note that scalars can be automatically
converted to ensemble values by the compiler, which implies it is possible to in-
correctly replace code that does not depend on the input data with ensembles.
This can only be discovered through programmer analysis and optimization of
the code.

Once all necessary scalar values have been replaced by ensembles in the sim-
ulation code, the ensemble propagation occurs automatically by “evaluating”
the resulting ensemble code. This requires adding suitable initialization and
finalization code to initialize ensemble values for input data and extracting en-
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semble values for simulation results (using various ensemble constructors and
coefficient access routines). Sample independent data are not replaced by en-
sembles, and therefore reuse happens naturally through the normal compiler
optimization process and overloaded operators that take a mixture of scalars
and ensembles as arguments.

3.3 Kokkos Performance Portability

Kokkos [7, 8] is a programming model and C++ library that enables applica-
tions and domain libraries to implement thread scalable algorithms that are
performance portable across diverse manycore architectures such as multicore
CPU, Intel Xeon Phi, and NVIDIA GPU. Kokkos’ design strategy is to define
algorithms with parallel patterns (for-each, reduction, scan, task-dag) and their
code bodies invoked within these patterns, and with multidimensional arrays of
their “scalar” data types. Performance portability is realized through the inte-
grated mapping of patterns, code bodies, multidimensional arrays, and datum
onto the underlying manycore architecture.

This mapping has three components. First, code is mapped onto the target
architecture’s best performing threading mechanism; e.g., pthreads or OpenMP
on CPUs and CUDA on NVIDIA GPUs. Second, parallel execution is mapped
with architecture-appropriate scheduling; e.g., each CPU thread is given a con-
tiguous range of the parallel iteration space while each GPU thread is given a
thread-block-strided range of the parallel iteration space. Third, multidimen-
sional arrays are given an architecture-appropriate layout; e.g., on CPUs ar-
rays have a row-major or “array of structs” layout and on GPUs arrays have a
column-major or “struct of arrays” layout. While this polymorphic multidimen-
sional array abstraction has conceptual similarities to Boost.MultiArray [11],
Kokkos’ abstractions for explicit dimensions and layout specializations provides
greater opportunities for performance optimizations.

When scalar types are replaced with ensemble types in a Kokkos multidi-
mensional array, the layout is specialized so that operations on ensemble types
may exploit the lowest level of hierarchical parallelism. Hierarchical thread
parallelism can be viewed as “vector” parallelism nested within thread paral-
lelism. The mechanism to which Kokkos maps “vector” parallelism is archi-
tecture dependent. On CPUs this level is mapped to vector instructions, typ-
ically through the compiler’s optimization algorithms. On GPUs this level is
mapped to threads within a GPU warp, and then Kokkos’ thread abstraction
is remapped to the entire warp. Thus on the GPU architecture ensemble op-
erations are, transparent to the user code, performed in parallel by a warp of
threads.

The specialized layout integrates the ensemble dimension into the multidi-
mensional array such that the ensemble’s values remain contiguous in memory
on any architecture. This contiguity is necessary to obtain the best “vector”
level parallel performance for computations on irregular data structures; such
as sparse matrices and unstructured finite elements. These data structures
typically impede performance by requiring non-contiguous scalar values to be
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gathered into contiguous memory (vector registers), processed with vector in-
structions, and then results scattered back to non-contiguous scalar values. On
CPU architectures these gather/scatter operations might be automatically gen-
erated by a compiler that recognizes the indirection patterns of irregular data
structures. When the scalar type is an ensemble each indirect access that pre-
viously referenced a single scalar value instead references the ensemble types’
contiguous set of values (recall Fig. 5). As such, gather/scatter operations are
no longer needed for vector instructions, and compilers can more easily generate
vectorized operations.

On NVIDIA GPU architectures, warp-level gather/scatter operations are
generated by hardware, removing the need for sophisticated indirection-pattern
recognition by the compiler. However, memory accesses are still non-coalesced
gather/scatter operations thus reducing performance. When the scalar type
is an ensemble, indirect access patterns lead to coalesced reads and writes of
contiguous ensemble values, resulting in improved performance.

In summary, replacing scalar types with ensemble types in computations
on irregular data structures enables improved utilization of hierarchical parallel
hardware such as multicore CPUs with vector instructions and GPUs. To realize
this improvement (1) Kokkos multidimensional array layouts are specialized to
insure ensemble values are contiguous in memory and (2) ensemble operations
are mapped to the “vector” level of Kokkos’ hierarchical thread-vector paral-
lelism. On CPU architectures, this mapping happens automatically through the
normal compiler vectorization process when applied to the ensemble loops. For
GPU architectures however, this mapping occurs by creating a strided subview
within the ensemble dimension of the multidimensional array for each GPU
thread within a warp. These two mappings insure that CPU vector instructions
or GPU warp operations are performed on contiguous memory.

3.4 Linear Algebra and Iterative Solvers

The ensemble scalar type and Kokkos library described above have both been
incorporated into the Tpetra linear algebra package [3, 18] within Trilinos. Tpe-
tra implements parallel linear algebra data structures, computational kernels,
data distributions, and communication patterns. “Parallel” includes both MPI
(the Message Passing Interface) for distributed-memory parallelism, and Kokkos
for shared-memory parallelism within an MPI process. Supported data struc-
tures include vectors, “multivectors” that represent groups of vectors with the
same parallel distribution, sparse graphs, sparse matrices, and “block” sparse
matrices (where each block is a small dense matrix). Tpetra’s computational
kernels include vector arithmetic, sparse matrix-vector products, sparse trian-
gular solve, and sparse matrix-matrix multiply. It lets users represent arbitrary
distributions of data over MPI processes, and communicate data between those
distributions.

Tpetra is templated on the “scalar” type, the type of each entry in the matrix
or vector. In theory, this lets Tpetra work with any type that “looks like” one
of the C++ built-in floating-point types. Tpetra uses this flexibility to provide
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built-in support for both single- and double-precision real and complex floating-
point values, as well as 128-bit real floating-point arithmetic if the compiler
supports it. In practice, in order to support an arbitrary scalar type, Tpetra
needs it to implement all of the operations described in Sect. 3.1. In particular,
Tpetra needs to tell MPI how to communicate scalars. This means that Tpetra
either needs to know the MPI Datatype corresponding to the scalar type, or how
to pack and unpack scalars into byte arrays. The scalar type tells Tpetra this
by implementing a C++ traits class specialization. Tpetra in turn provides a
type-generic MPI interface, both for itself and for users.

The Belos package [4] in Trilinos builds upon Tpetra data structures to pro-
vide parallel iterative linear solvers such as CG and GMRES. It is also templated
on the scalar type, allowing ensembles to be propagated through these linear
solver algorithms. Iterative solver algorithms do not directly access matrix and
vector entries. They only need to know the results of inner product and norm
calculations, and only deal with matrices and vectors as abstractions. Further-
more, viewing the ensemble system as the Kronecker product system (3), inner
products and norms of ensemble vectors should be scalars and not ensembles.
That is, given two ensemble vectors Uc =

∑s
i=1 ui ⊗ ei and Vc =

∑s
i=1 vi ⊗ ei,

UT
c Vc =

s∑
ij=1

uTi vj ⊗ eTi ej =

s∑
i=1

uTi vi. (4)

Tpetra assists Belos by defining a traits class that defines the proper data type
for the result of inner product and norm calculations, and exposing these types
to solvers and application code as public typedefs. First

s∑
i=1

uTi vi ⊗ ei (5)

is computed, which naturally arises when propagating the ensemble scalar type
through the inner product code. The final inner product value is then com-
puted by adding together each ensemble component. Thus, Belos does not
directly generate or access ensemble values; they only appear internally within
the matrix and vector data structures. Belos only needs one implementation for
Tpetra objects of all scalar types, with no significant abstraction overhead.

3.5 Multigrid Preconditioners

Multigrid is a provably optimal linear solution method in work per digit of
accuracy for systems arising from elliptic PDEs. Multigrid works by accelerating
the solution of a linear system of interest, A0x0 = b0, through a sequence or
hierarchy of increasingly smaller linear systems Aixi = bi, i > 0. The purpose
of each system or level is to reduce particular ranges of errors in the i = 0
problem. Any errors that are not quickly damped by a particular system should
be handled by a coarser problem.

The main components of a multigrid solver are smoothers, which are solvers
that operate only on particular levels, and transfer operators to migrate data
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Algorithm 1 V-cycle multigrid with N levels to approximate solution Ax = b.

A0 = A
function VCycle(Ak, b, x, k)

// Solve Ak x = b (k is current grid level)
x = Sk

1 (Ak, b, x)
if (k 6= N− 1) then

rk+1 = Rk(b−Akx)
Ak+1 = RkAkP k

z = 0
VCycle(Ak+1, rk+1, z, k + 1)
x = x+ P kz
x = Sk

2 (Ak, b, x)
else

x = Sc(AN−1, x, b)
end if

end function

between levels. The transfer from level i + 1 to i is called a prolongator and
denoted P i. The transfer from level i to i+1 is the restrictor and denoted Ri. A
typical schedule for visiting the levels, called a V-cycle, is given in Algorithm 1.
In practice, this algorithm is divided into two phases: the setup phase where all
of the matrix data used at each level is generated (e.g., Rk, P k, Ak, Sk

1 , Sk
2 and

Sc), and the solve phase where given b and the data from the setup phase, x is
computed.

Multigrid algorithms such as this have been implemented in the MueLu
package within Trilinos [32]. MueLu’s performance with traditional scalar types
on very large core counts has been studied before [20, 21]. This library builds
upon the templated Tpetra data structures and algorithms described above,
with all of the functionality used in setup (such as the matrix-matrix multiply
RkAkP k) and application of the V-cycle in Algorithm 1 (such as the smoothers
Sk
1 and Sk

2 ) templated on the scalar type. Furthermore, the V-cycle algorithm
in MueLu is encapsulated within an operator z = Mx allowing it to serve as a
preconditioner for the Krylov methods in Belos. In this work, the restriction and
prolongation operators Rk and P k are generated from the graph of Ak at each
level, without any thresholding or dropping. This implies that given matrices
A1, . . . , As corresponding to s samples within an ensemble, and corresponding
multigrid preconditioners M1, . . . ,Ms generated for each matrix individually,
then the corresponding ensemble preconditioner Mc is equivalent to

Mc =

s∑
i=0

Mi ⊗ eieTi . (6)

In the experiments described below, we use order-2 Chebyshev polynomial
smoothers (Sk

1 , Sk
2 ) and continue to generate levels in the multigrid hierarchy

until the number of matrix rows falls below 500. For the coarse-grid solve Sc,
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a simple sparse-direct solver that is built into Trilinos, called Basker, is used.
Note that in the current version of the code, the preconditioner setup and coarse
grid solver do not leverage Kokkos directly and thus are thread-serial (but are
MPI-parallel). Furthermore, for the GPU architecture, the coarse-grid solve is
executed on the host using recent Unified Virtual Memory (UVM) features to
automatically transfer data between the host and GPU. All other aspects of the
V-cycle solve phase are fully thread-parallel using Kokkos.

A major concern in parallel multigrid is the relative cost of communication
to computation for levels i > 0. For a good-performing multigrid method,
matrix Ai+1 can typically have 10–30 times fewer rows than Ai, with only a
modest increase in the number of nonzeros per row. Practically, this means
that the ratio of communication to computation can increase by an order of
magnitude per level. In MueLu, this issue is addressed by moving data to
a subset of processes for coarser levels. Once, the number of processes for a
coarser level is determined, a new binning of the matrix rows (weighted by the
number of nonzeros per row) is found using the multi-jagged algorithm [6] from
the Zoltan2 library [5]. Each bin is assigned to a process so that data movement
is restricted in the coarser level to fewer processes. This improves scalability of
the preconditioner, particularly with large numbers of processes. Propagating
ensembles through the preconditioner further reduces communication costs by
amortizing communication latency across the ensemble.

3.6 Build times and library sizes

Some developers worry that extensive use of C++ templates may increase com-
pilation times and library sizes. The issue is that plugging each scalar type into
templated linear algebra and solver packages results in an entirely new version
of the solver to build. The compiler sees a matrix-vector multiply with double

as distinct code from a matrix-vector multiply of Ensemble<T,s>, for example.
More versions of code means longer compile times and larger libraries. This
is not particular to C++ templates; the same would occur when implementing
ensemble computations automatically using source-to-source translation with
Fortran or C, with manual translation, or with some other language’s flavor of
compile-time polymorphism.

A second issue is particular to C++. Most C++ compilers by default must
re-build templated code from scratch in each source file that uses it. Further-
more, deeply nested “stacks” of solver code do not actually get compiled until
an application source file uses them with a specific scalar type. For example,
MueLu is templated and depends on many Trilinos packages that are also tem-
plated, so using MueLu means that the application must build code from many
different Trilinos packages. In practice, this shows up as long application build
times, or even running out of memory during compilation.

Trilinos fixes this with its option to use what it calls explicit template instan-
tiation (ETI). This “pre-builds” heavyweight templated code so applications do
not have to build it from scratch each time. ETI corresponds to the second
option in Section 7.5 of the GCC Manual [10], where Trilinos manually instanti-
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// ...

Scalar x = ...

Scalar y;
if (x > 0) {

Scalar z = x*x;
y = x + z;

else
y = x;

// ...

Figure 6: Example of ensemble divergence due to conditional evaluation result-
ing in multiple code branches. Here Scalar is a general template parameter
that could be double for single-point evaluation or Ensemble for ensemble eval-
uation.

ates some of its templated classes. ETI means that building Trilinos might take
longer, but building the application takes less time. Trilinos breaks up many
of its instantiations of templated classes and functions into separate source files
for different template parameters, which keeps down build times and memory
requirements for Trilinos itself.

3.7 Ensemble Divergence

The most significant algorithmic issue arising from the embedded ensemble prop-
agation approach described above is ensemble divergence. Depending on the
values of two given samples, the code paths taken during evaluation of the sim-
ulation code at those two samples may be different. These code paths must
some how be joined together when those samples are combined into a single en-
semble. We now describe different approaches for accomplishing this depending
on how and where the divergence occurs within the simulation code.

When divergence occurs at low levels within the simulation code, for example
during element residual or Jacobian evaluation of the PDE, a simple approach
for handling it is to add a loop over ensemble components that evaluates each
sample individually. An example of this is demonstrated in Figs. 6 and 7. In
Fig. 6, a code branch is chosen based on the value of x, whose type is determined
by the template parameter Scalar. When Scalar is a basic floating-point type
such as double for a single-point evaluation, everything is fine. However when
Scalar is Ensemble<T,s>, only one of the branches can be chosen even when the
components of x would choose different branches when evaluated separately.
This is remedied in Fig. 7 by adding a type-generic loop around the conditional,
evaluating the loop body separately for each sample within the ensemble. This
recovers the single-point behavior. This is accomplished through the type trait
EnsembleTrait<T> displayed in Fig. 7 which has a trivial implementation for
built-in types such as double allowing the code to be instantiated for both
double and Ensemble. Clearly, the use of an ensemble loop such as this elim-
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// Base template definition of EnsembleTrait that is empty.
// It must be specialized for each scalar type T
template <typename T> struct EnsembleTrait {};

// Specialization of EnsembleTrait for T = double
template <> struct EnsembleTrait <double > {

typedef double value_type;
static const int ensemble_size = 1;
static const double& coeff(const double& x, const int i) { return x; }
static double& coeff( double& x, const int i) { return x; }

};

// Specialization of EnsembleTrait for T = Ensemble
template <typename T, int s> struct EnsembleTrait < Ensemble <T,s> > {

typedef T value_type;
static const int ensemble_size = s;
static const T& coeff(const Ensemble <T,s>& x, const int i) { return x.val[i]; }
static T& coeff( Ensemble <T,s>& x, const int i) { return x.val[i]; }

};

// ...

typedef EnsembleTrait <Scalar > ET;
typedef typename ET:: value_type ScalarValue;
const int s = ET:: ensemble_size;

Scalar x = ...

Scalar y;
for (int i=0; i<s; ++i) {

const ScalarValue& xi = ET::coeff(x,i);
ScalarValue& yi = ET::coeff(y,i);

if (xi > 0) {
ScalarValue z = xi*xi;
yi = xi + z;

}
else

yi = xi;

// ...
}

Figure 7: Handling ensemble divergence through the EnsembleTrait type trait
which enables loops over ensemble components in a type-generic fashion.

inates the architectural benefits of ensemble propagation through the body of
the loop, and therefore should only be applied to small portions of the code
where the bodies of the conditional branches are small.

Divergence may also occur at high levels within the simulation code. Ex-
amples include iterative linear and nonlinear solver algorithms that require a
different number of solver iterations for each sample, and adaptive time step-
ping and meshing schemes that dynamically adjust the temporal and spatial
discretizations based on error estimates computed for previous time steps or
solutions. While adding an ensemble loop around these calculations is certainly
feasible, it defeats the original intent of incorporating ensemble propagation.

Alternately, recall that the use of an ensemble scalar type is merely a ve-
hicle for implementing the Kronecker product system (3). As we discussed



18

in Sect. 3.4, the norm and inner product calculations that drive convergence
decisions for iterative solver algorithms as well as adaptivity decisions for time-
stepping and meshing do not produce ensemble values. Instead, they produce
traditional floating-point values, which are the results of norms and inner prod-
ucts over entire ensemble vectors. This effectively couples all of the ensemble
systems together, resulting in a single convergence or adaptivity decision for
the entire ensemble system. Thus divergence is handled in these cases through
proper definition of the types used for magnitudes and inner products, with as-
sociated traits classes for computing these quantities in a type-generic fashion.
The resulting coupled linear solver algorithm is analogous to block Krylov sub-
space methods [28]. First, it couples the linear systems together algorithmically,
not just computationally. Second, our approach opens up opportunities for in-
creasing spatial locality and reuse in computational kernels, just as block Krylov
methods do. (See, for example, [2]). Just as with block Krylov methods, how-
ever, coupling the component systems comprising the ensemble system means
that the solves are no longer algorithmically equivalent to uncoupled solves.
This means that the choice of the ensemble size s, as well as which samples
are grouped together within each ensemble, will affect the performance of the
resulting simulation algorithms. Therefore, the solution to managing high-level
solver divergence across ensemble values is group samples together in ensembles
that minimize this divergence.

For example, the convergence of iterative linear solvers (or its number of
iterations) for each sample depends on several factors. Among these, the most
important are the condition number of the matrix associated with ∂f/∂u and
the spatial variation and magnitude of the sample-dependent parameters. When
the ensemble system Fc is formed, the solver’s convergence is always poorer
than the solver applied to each sample individually. This happens because
the spectrum of the ensemble matrix is the union of the matrix spectra of the
samples that comprise it; this likely increases the condition number and hence
the number of iterations. For this reason, it is convenient to have a grouping
strategy that gathers samples requiring a similar number of iterations in the
same ensemble. Since this information is not known a priori, quantities such as
those mentioned above can be used to predict which samples feature a similar
number of iterations. Preliminary studies show that the variation of the sample-
dependent parameters over the computational domain may induce a grouping
very similar to the one based on the number of iterations. Algorithmic ideas
along these lines will be explored in a future paper. In the computational studies
below however, we assume the matrix spectra for all samples are similar so that
the number of iterations of the ensemble system is constant with regards to
grouping.

4 Computational Results

We now investigate the performance improvements possible for the ensem-
ble propagation approach described above. We consider the simple nonlinear
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advection-diffusion system

−∇ · (κ(x, y)∇u) + αv · ∇u+ βu2 = 0, x ∈ D = [0, 1]3. (7)

The diffusion coefficient κ is treated as uncertain and is represented by a trun-
cated Karhunen-Loéve expansion [13]:

κ(x, y) = κ0 + σ

m∑
i=1

κi(x)yi, x ∈ D, y ∈ Γ = [−1, 1]m, (8)

where each yi is a uniform random variable over [−1, 1], κ0 is the mean of the
diffusion coefficient, σ its standard deviation, the κi are eigenfunctions of the
exponential covariance function

C(x, x′) = σ2e−
‖x−x′‖1

L , x, x′ ∈ D, (9)

and L is the correlation length (in this case, the κi are tensor products of sines
and cosines with frequencies that grow with i [13]). We discretize Eq. 7 using
linear finite elements, resulting in a discrete nonlinear system f(u, y) = 0. For
each sample of y, we solve this system iteratively via Newton’s method, which
at each iteration requires computing the solution to the linear system

A∆u = −f, A =
∂f

∂u
. (10)

We assemble and solve Eq. 10 via a hybrid distributed-shared memory parallel
approach where given the number of MPI ranks p, the spatial domain D is
divided into p disjoint subdomains resulting in a partitioning of Eq. 10 into
p disjoint sets of rows. The processors associated with each MPI rank then
assemble and solve the equations belonging to them using a shared-memory
parallel approach implemented by Kokkos described below.

A pseudocode description of the assembly portion of the calculation is pre-
sented in Algorithm 2. Given values for u and y, the residual f(u, y) and
Jacobian ∂f/∂u = A are evaluated. Here Nmesh is the number of mesh cells
for a given MPI rank, Nnode = 8 is the number of finite element basis function-
s/vertices per cell, and Nqp = 8 is the number of quadrature points per cell.
First entries of u owned by other MPI ranks that are needed within each MPI
rank’s assembly are imported in the halo exchange. This communication pat-
tern is precisely the same as needed in sparse matrix-vector products involving
A. Then each element (cell) in the mesh belonging to the given MPI rank is
visited, where local contributions to the global residual and Jacobian are com-
puted. This loop is executed in parallel by Kokkos, where each cell is assigned
a unique thread. A mapping from mesh nodes to global degree-of-freedom in-
dices (NodeIndex) is used to initialize the local element solution vector ue. The
element residual and Jacobian are computed through a numerical integration
which requires evaluating the finite element basis functions, their gradients, the
corresponding solution vector ue, the gradient of the solution vector ∇ue, and
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Algorithm 2 Pseudo-code description of PDE assembly algorithm.

function Residual Jacobian Assembly(A, f , u, y)
// Import needed off-processor elements of u
halo exchange(u)

// Thread-parallel for loop over mesh cells
for e = 0 to Nmesh do

// Sparse gather of element solution vector
for i = 0 to Nnode do

I = NodeIndex(e,i)
ue(i) = u(I)

end for

// Evaluate element residual fe and Jacobian Ae

for qp = 0 to Nqp do
// Evaluate basis functions, gradients, and
// transformation from reference cell at
// quadrature point qp

// Evaluate element solution ue and
// gradient ∇ue at quadrature point

// Evaluate diffusion, advection, source terms
// and sum into element residual/Jacobian

end for

// Sparse scatter into global residual/Jacobian
for i = 0 to Nnode do

I = NodeIndex(e,i)
atomic add(f(I), fe(i))
for j = 0 to Nnode do

J = ElemGraph(e,i,j)
atomic add(A(I,J), Ae(i, j))

end for
end for

end for
end function
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Name Processor
Description

Intercon-
nect
Descrip-
tion

Thread
Paral-
lelism

Compiler

Sandy Bridge Dual-socket 2.6 GHz,
Intel Xeon E5-2670
CPU

Infiniband
QDR

OpenMP Intel 14.0

Blue Gene/Q 16 core, IBM
PowerPC A2 CPU

5-D Torus OpenMP GNU 4.7.2

Cray XK7 16-core, 2.2 GHz,
AMD Interlagos
CPU

3-D Torus OpenMP GNU 4.8.2

GPU NVIDIA K20x GPU Infiniband
QDR

CUDA NVCC 6.5

Accelerator Intel Xeon Phi
7120P, 60 cores, 4
threads/core

N/A OpenMP Intel 15.0

Table 1: Computational architectures studied.

the PDE diffusion, advection, and source terms at each quadrature point (not
shown for brevity). The results of these calculations are accumulated into the
local residual and Jacobian. Finally the element residual and Jacobian contri-
butions are accumulated into the global residual and Jacobian data structures
using the NodeIndex mapping as well as a second mapping of element Jacobian
columns to global matrix columns (ElemGraph). Since multiple cells contribute
to the same residual/Jacobian row, these contributions must use atomic in-
structions to prevent thread race conditions. The C++ code implementing the
assembly algorithm (2) is templated on the scalar type as described above, using
templated Tpetra matrix and vector data structures for storing f and A. This
allows reuse of the same templated code base for both scalar (single sample
value) and ensemble systems.

In the experiments below, we choose α = β = 0, in which case the resulting
discrete equations are linear, symmetric, and positive-definite. Thus only a
single iteration of Newton’s method is required, and the Newton system Eq. 10
is solved by CG preconditioned by multigrid as described in Sect. 3.5. We
also choose m = 5, κ0 = 1, σ = 0.1, and L = 1, in which case the diffusion
coefficient varies smoothly with respect to both x and y, the number of CG
iterations is very nearly constant with respect to samples of y, and the number
of CG iterations does not vary with s.

Given an ensemble size s, we measure speed-up of the ensemble approach for
assembling and solving Eq. 10 for s values of y simultaneously over the scalar
approach of assembling and solving this system s time sequentially, by measuring
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the timings of the two approaches implemented on the parallel architectures2

displayed in Table 1. Here speed-up is defined as

Speed-Up =
s× Time for single sample

Time for ensemble
. (11)

First in Fig. 8 we display the measured speed-up for the ensemble propa-
gation approach applied to the sparse matrix-vector product kernel discussed
above for the matrix A generated on a 64×64×64 spatial mesh, for a single com-
pute node of each architecture in Table 1.3 For reference, we display in Table 2
the measured sparse matrix-vector product floating-point throughput for each
architecture, as well as optimistic and pessimistic bounds for this throughput
based on bandwidth considerations. Assuming storage of 8 B per matrix value,
4 B per matrix column entry, and 8 B per vector value, these bounds are given
by

Scalar Optimistic = Bandwidth× 2 FLOPS

12 B

Scalar Pessimistic = Bandwidth× 2 FLOPS

20 B

Ensemble Optimistic = Bandwidth× 2 FLOPS

8 B

Ensemble Pessimistic = Bandwidth× 2 FLOPS

16 B

(12)

where the optimistic bounds assume vector entries are read from a fast cache,
and the pessimistic bound assumes they are read from main memory. The
bounds listed in Table 2 are based on bandwidth measured by the STREAM
Triad benchmark [22]. For the Sandy Bridge and Cray XK7 architectures with
multiple NUMA regions per node, the bandwidth measurements, bounds, and
matrix-vector product timings are based on a single NUMA region (8/16 and
8/8 cores/threads respectively). One can see from Fig. 8 that significant im-
provements in matrix-vector product throughput are achievable by the ensemble
approach (even for the relatively well-structured finite element matrix used in
this example). On the CPU architectures, performance of which is better mod-
eled by the optimistic bounds due to their large caches, most of this improvement
derives from the 33% reduction in bandwidth arising from reuse of the matrix
graph. However the speed-ups are larger for the GPU and accelerator architec-
tures where coalesced/packed memory access patterns are required to achieve
full bandwidth.

2Due to insufficient support for the C++98 standard by the native IBM compilers, the
GNU compilers were used on the Blue Gene/Q architecture, disallowing the use of vector
instructions. At the time of this writing, performance issues associated with the CUDA
toolkit available for the Cray XK7 prohibited generating computational results with this code
base on the GPU. Therefore GPU results were obtained on a small cluster. Also, only a single
Intel Xeon Phi accelerator card is available to the authors.

3The scalar kernel used in these experiments is a custom matrix-vector product kernel
provided by Kokkos that has been optimized for these architectures. The ensemble kernel is
identical to the one described Fig. 4, but with an additional specialization for CUDA that
loads the sparse graph into shared memory to facilitate reuse.
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Scalar Mat-Vec Ensemble Mat-Vec

Name Band-
width

Measured Op-
ti-

mistic

Pes-
simistic

Measured Op-
ti-

mistic

Pes-
simistic

(GB/s) Bound Bound Bound Bound

Sandy Bridge 36.2 5.9 6.0 3.6 8.5 9.1 4.5
Blue Gene/Q 28.5 3.5 4.8 2.9 5.0 7.1 3.6
Cray XK7 11.2 2.3 1.9 1.1 3.2 2.8 1.4
GPU 178 17.5 29.7 17.8 34.7 44.5 22.3
Accelerator 147 12.2 24.5 14.7 21.7 36.8 18.4

Table 2: Measured and expected sparse matrix-vector product throughput (in
GFLOP/s) for the scalar and ensemble matrix-vector product (for s = 32) on
each architecture. Optimistic and pessimistic bounds are based on the main-
memory bandwidth as measured by the STREAM Triad benchmark [22].
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Figure 8: Ensemble matrix-vector product performance.

We next perform a similar experiment comparing the performance of scalar
and ensemble assembly for A and f in Eq. 10 in Fig. 9 (again using only a single
NUMA region for the Sandy Bridge and Cray architectures). As is clear from
Algorithm 2 the assembly process involves substantially more operations than
the matrix-vector product kernel, with significantly more reuse of data from
sample to sample (such as the NodeIndex and ElemGather mappings, and basis
function evaluations) and more opportunities for vectorization. This reuse and
vectorization generally results in substantially improved assembly performance
for the ensemble approach except for the GPU architecture. Because of the large
operation count, assembly performance is less sensitive to coalesced memory
accesses in the sparse gather operation than the matrix-vector product kernel.
Furthermore there is little captured reuse of sample-independent data since reuse
can only occur by communicating values between CUDA threads using shared-
memory (which for portability reasons is not included in this implementation).
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Figure 9: Ensemble linear system assembly performance.

Next we measure the performance of MPI communication through the halo
exchange that is needed for each sparse matrix-vector product and linear system
assembly on both the Cray XK7 and Blue Gene/Q architectures. In Figs. 10(a)
and 10(c) we display the total ensemble halo exchange time (in milliseconds)
for varying node counts and ensemble sizes, and in Figs. 10(b) and 10(d) the
corresponding ensemble speed-up. It is reasonable to assume both halo exchange
message latency and bandwidth are roughly constant with regards to message
size over the limited range of ensemble sizes considered, and thus the total
exchange time can be approximated by

Thalo(s) = a+ bs, (13)

where a and b are related to the interconnect latency and bandwidth respec-
tively. Included in Figs. 10(a) and 10(c) is a plot of Eq. 13 based on a linear
regression for approximating a and b for each architecture (black curve). Based
on Eq. 13 the speed-up for the ensemble halo exchange is approximately

Speed-up =
sThalo(1)

Thalo(s)
=
s(a+ b)

a+ bs
. (14)

Also included in Figs. 10(b) and 10(d) is a plot of Eq. 14 based on the above
regression analysis (black curve), which matches the measured data well. Thus
the reduction in total halo exchange time for propagating s samples using the
ensemble approach is due to the factor as reduction in communication latency.

Finally, we investigate the performance of our ensemble approach with multi-
grid preconditioned CG solves of Eq. 10 for both the Cray XK7 and Blue Gene/Q
architectures, as well as 64 nodes of a Sandy Bridge cluster, 8 nodes of a K20X
cluster, and a single Xeon Phi 7120P accelerator. In Figs. 11(a) and 11(b) we
show preconditioned CG solve time relative to the time for a single node of each
architecture for the scalar and ensemble systems respectively, with the spatial
mesh size fixed at 643 cells per compute node as the number of compute nodes
is increased (weak scaling). For the ensemble system, we use s = 32. In Fig. 12
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Figure 10: Ensemble halo exchange performance on Cray XK7 (a)-(b) and Blue
Gene/Q (c)-(d) architectures, including a linear fit (black curves) of the ex-
change time (Eq. 13) and resulting ensemble speed-up (Eq. 14).
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Figure 11: Time for multigrid preconditioned CG solve of scalar system (a) and
ensemble system (b) relative to time for a single compute node (weak scaling).
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Figure 12: Ensemble preconditioned linear solver speed-up relative to scalar
solve.

we display the resulting ensemble solve speed-up. The cost of the precondi-
tioned CG solves is dominated by applications of the multigrid preconditioner,
which are in turn dominated by the matrix-vector products within the Cheby-
shev smoothers and transfer operators. This leads to improved single-node
performance for all architectures, particularly so for the GPU and Accelerator
architectures, deriving from the results in Fig. 8. We also see substantially
improved weak-scaling due primarily to the reduced MPI communication costs
for the smoothers and transfer operators, particularly for the GPU architecture
where communication costs are much higher even at small node counts.

5 Conclusions

In this work we described an approach for improving uncertainty propagation
performance for sampling-based uncertainty quantification methods based on
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propagating multiple samples together through scientific simulations. We ar-
gued this should lead to improved aggregate performance by enabling reuse
of sample-independent data, improving memory access patterns by replacing
sparse gather/scatter instructions with packed/coalesced loads/stores, improv-
ing opportunities for fine-grained SIMD/SIMT parallelism, and reducing latency
costs associated with message passing. We described a C++ template and oper-
ator overloading approach for incorporating the ensemble propagation approach
in general scientific simulation codes, and discussed how tools implementing this
technique have been incorporated into a variety of libraries within Trilinos, in-
cluding the Kokkos manycore performance portability library. Furthermore, we
argued how the approach improves portability by providing uniform access to
fine-grained vector parallelism independent of the simulation code’s ability to
exploit those hardware capabilities. Finally, we demonstrated performance and
scalability improvements for the approach by applying it to the solution of a
simple PDE.

Practical application of these ideas for uncertainty quantification requires
grouping samples generated by the uncertainty quantification algorithm into
sets of ensembles of a size most appropriate for the architecture. In the exper-
iments covered in this paper, we found an ensemble size of 32 generally works
well for all architectures considered. Grouping samples appropriately is criti-
cal for the approach to be effective for real scientific and engineering problems,
where the simulation process should be as similar as possible for all samples
within an ensemble. For example, the spectra of matrices used in the solution
of linear/nonlinear systems should be similar to prevent growth in solver iter-
ations. Furthermore the code-paths required for samples within an ensemble
need to be similar to achieve effective speed-ups. Work exploring algorithmic
grouping approaches is underway and will be discussed in a subsequent publi-
cation. However once samples have been grouped, each ensemble can be prop-
agated independently using the traditional coarse-grained distributed memory
approach.
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