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A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING

NEUMANN PROBLEM ON ROUGH DOMAIN

PINGBING MING ∗ AND XIANMIN XU †

Abstract. We develop a new multiscale finite element method for Laplace equation with os-

cillating Neumann boundary conditions on rough boundaries. The key point is the introduction

of a new boundary condition that incorporates both the microscopically geometrical and physical

information of the rough boundary. Our approach applies to problems posed on domain with rough

boundary as well as oscillating boundary conditions. We prove the method has linear convergence

rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are

reported for both periodic and nonperiodic roughness.
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1. Introduction. Many problems in nature and industry applications are de-

scribed by partial differential equations in domain with multiscale boundary [10, 27].

Some of them even have oscillatory Neumann or Robin boundary conditions on the

multiscale boundary [20, 44]. Theoretical study for problems with rough boundary and

oscillating boundary data mainly concerns the effective boundary conditions, which

may be traced back to [28]. There are extensive work thereafter devoted to various

topics in this field, including Poisson problem, eigenvalue problems, and Navier-Stokes

equations with different types of boundary conditions; see [4, 9, 19, 29, 35, 36, 37, 39]

and the references therein.

Compared to the extensive theoretical study, numerical methods for the rough

boundary problem have been less developed, while many numerical methods have

been devoted to solve elliptic problems with rough coefficients [6, 7, 8, 5, 26, 24, 25,

13, 14, 40]. We refer to [12, Chapter 8] and [16] for a review on this active field. Only

recently, a multiscale finite element method (MsFEM) was introduced to solve Laplace

equation with homogeneous Dirichlet boundary value on rough domain [30]. The

multiscale basis functions are constructed for the elements near the rough boundary

by solving a cell problem with the homogeneous Dirichlet condition on the rough edge

and with linear nodal basis function as boundary condition on other edges, just as the
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standard MsFEM [24]. However, this approach cannot be applied either to problems

with non-Dirichlet boundary conditions over rough boundary, or to problems with

inhomogeneous Dirichlet boundary value over the rough boundary. Therefore, one

of our motivations is to develop a multiscale method for problem with oscillating

boundary condition given on the rough boundary.

We introduce a new multiscale finite element method for Laplace equation with

oscillating boundary flux on the rough boundary. A Neumann boundary condition

that depends on the magnitude of the flux oscillation has to be imposed on the local

cell problem posed on elements with rough edge. When the flux oscillation is of the

same order of the roughness parameter, the boundary condition contains only the

microscopical geometry of the rough boundary. Otherwise, one has to incorporate

both the microscopical geometry of the rough boundary and the flux oscillation into

the boundary condition. Such multiscale basis function coincides with the linear nodal

basis functions for elements without a rough edge. This method is H1-conforming,

with degrees of freedom at the mesh nodes and the basis functions are solved over

the elements near the rough boundary and can be computed off line. For periodic

roughness, we prove that our method has optimal convergence rate in the energy

norm besides a weak resonance term. The method also applies to problems with

non-periodic roughness as demonstrated by the numerical experiments. The proof is

based on certain homogenization results for Neumann rough boundary value problems,

which refine the corresponding results in [19] by clarifying the dependence of the error

bounds on the domain size. Our convergence results require that the right-hand side

function f ∈ H1. However, numerical experiments show that the optimal convergence

order is retained for even rougher L2 right-hand side function.

The novelty of the proposed method is that both the rough boundary and the

oscillating flux are considered and no structure is assumed for the oscillations. The

method can be naturally generalized to the inhomogeneous Dirichlet boundary value

problem over rough domain. It is also possible to combine the proposed method

with the standard MsFEM to deal with the problems with oscillatory coefficients and

oscillatory boundary data.

The so-called composite finite elements has been successfully applied to solve

boundary value problems over complicated domain [21, 22, 41]. The basic idea of

this method is to incorporate the geometrical complexity of the domain into the basis

function, while there is no local cell problems. Optimal convergence rate has been

achieved, which is independent of the geometrical structure of the domain [21, 38, 42].

In particular, homogeneous Neumann boundary value problems have been studied

in [21] and [38]. In contrast to composite finite elements, the multiscale basis function

is constructed by solving local problem that contains both the geometry complexity

and the oscillation of the boundary flux.

A multiscale method has been developed for elliptic equation with homogeneous

boundary condition on complicated domains very recently in [18]. The method is
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based on the localized orthogonal decomposition (LOD) technique developed in [31,

17, 32, 23, 33]. The method is quite general and has optimal convergence order. The

difference between LOD method and the proposed method is the way in dealing with

the multiscale basis function near the rough boundary. In the LOD method, cell

problems are solved in several layers of elements near the boundary. In our method,

the multiscale basis functions are solved only in cells with rough boundary. When the

underlying scales of the problem are well-separated, MsFEM would be less expensive.

Furthermore, we study the inhomogeneous oscillating flux on the boundary while

only homogeneous boundary conditions have been treated in [18]. In addition, we

note that the heterogeneous multiscale method and MsFEM have been employed to

solve partial differential equations on a rough surface in [1] and [15], respectively,

however, the authors have not dealt with the problems studied in this paper.

Finally, the problem with complicated domain can be discretized by adaptive

finite element method [43]. However, the mesh size of the adaptive method must

be much smaller than the characteristic length scale of the roughness for the sake

of resolution, which would results in a linear algebraic system with large condition

number. In contrast to the adaptive method, the condition number of the resulting

linear system of the proposed method is proportional to O(h−2) as demonstrated in

the numerical experiment, while the coarse grid size h is not necessarily smaller than

the roughness length scale.

The structure of the paper is as follows. In Section 2, we describe the model

problem and introduce the multiscale finite element method. In Section 3, we re-

visit the homogenization results for a Possion equation with an oscillatory Neumann

boundary condition over rough domain. In Section 4, we estimate the convergence

rate in energy norm of the proposed method. Numerical examples are illustrated in

the last section.

2. The Model Problem and Multiscale Finite Element Method. Let

Ωε ⊂ R
2 be a bounded domain with boundary ∂Ωε, a part of which is rough and

denoted as Γε, where ε is a small parameter that characterizes the roughness of Γε.

We consider a model problem with Neumann boundary conditions on Γε: Given the

source term f and the flux gε that is oscillatory, we find uε satisfying





−∆uε = f(x), in Ωε,

uε = 0, on ΓD,

∂uε

∂n
= gε(x), on Γε,

(2.1)

where ΓD = ∂Ωε \ Γε.

For any measurable subset D of Ωε, we define

V (D) =
{
v ∈ H1(D) | v|∂D\Γε

= 0
}
.

Here H1(D) is the standard Sobolev space, and the notations and definitions for
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Sobolev spaces can be found in [2]. To clarify the dependence of the roughness pa-

rameter ε, we denote uε the solution of Problem (2.1), whose weak form is: Find

uε ∈ V (Ωε) such that

a(uε, v) = (f, v) + (gε, v)Γε for all v ∈ V (Ωε), (2.2)

where

a(uε, v) :=

∫

Ωε

∇uε · ∇v dx, (f, v) :=

∫

Ωε

fv dx, (gε, v)Γε :=

∫

Γε

gεv ds.

We triangulate Ωε by a shape regular mesh Th in the sense of [11], with element

τ ∈ Th be either a triangle or a quadrilateral, where h = maxτ∈Th
hτ with hτ the

diameter of τ , and S (τ) is a suitable index set for nodes in τ . We assume that an

element near Γε has at most one rough edge on the rough boundary and denote such

elements by τε; see Fig. 2.1. For triangular mesh, there are elements that may have

only one node on the rough boundary. In Section 5, we shall give more details on the

triangulation.

 

 

Ωε

Γε

(a) rectangular mesh

 

 

Ωε

Γε

(b) triangular mesh

Fig. 2.1. Examples for the triangulation of the domain Ωε.

For any measurable subset D of Ωε, we define a localized version of a as

aD(v, w) :=

∫

D

∇v · ∇w dx v, w ∈ H1(D).

For each p ∈ S (τ) we construct nodal basis functions ΦMS
p , whose restriction to

each element τ is denoted by ΦMS
p,τ , which satisfies

aτ (Φ
MS
p,τ , v) = (θp,τ , v)∂τ∩Γε for all v ∈ V (τ), (2.3)

and ΦMS
p is supplemented with the boundary condition

ΦMS
p,τ = φp,τ on ∂τ \ Γε, ΦMS

p,τ (xq) = δp,q for all p, q ∈ S (τ), (2.4)
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where φp,τ is the restriction of the standard linear nodal basis function φp on τ .

The flux θp,τε is defined as follows. If τ has no edge on Γε, then we let θp,τ = 0.

Problem (2.3) changes to a Dirichlet boundary value problem with a unique solution

ΦMS
p,τ = φp,τ , i.e., the multiscale basis function coincides with the linear basis function.

If τε has one edge on Γε, then

θp,τε(x) :=





∂nφp,τ0

r
if ‖gε − 〈 gε 〉‖L∞(∂τε) ≤ Cε,

∂nφp,τ0

r

gε(x)

〈 gε 〉
otherwise.

(2.5)

In this case, the local problem has mixed boundary conditions. Here the parameter

r = |sε| / |s0| with sε being the rough edge of τε, while s0 being the homogenized

rough edge, and n is the unit outer normal of s0, τ0 is the homogenized element of τε

and 〈 gε 〉 =
∫
−sε gε is the mean of gε over sε.

The flux θp,τε defined in (2.5)2 contains both geometrical and physical information

of the boundary. If the flux has no oscillations, i.e., gε = 〈 gε 〉, then (2.5)2 changes

to (2.5)1, and the flux does not contain the physical information any more. Further-

more, if the boundary is also flat, i.e., r = 1, then the unique solution of the cell

problem is the linear nodal basis functions, and the method automatically changes to

the standard finite element method.

The bound Cε in (2.5) is a threshold for determining whether the physical in-

formation should be incorporated into the cell problem. Roughly speaking, if ‖gε −
〈 gε 〉‖L∞(∂τε) is as small as O(ε), then we need not any physical information but the

geometrical information of the rough boundary. Otherwise, the physical information

should be incorporated into the cell problem. This is consistent with our intuition

as seen from the example below. If there is no information on ε, we can use (2.5)2

whenever 〈 gε 〉 6= 0.

Example 2.1. If gε(x) = ε sin(x/ε), it is clear that ‖gε − 〈 gε 〉‖L∞ = ε, then we

may use (2.5)1. On the other hand, if gε(x) = 1 + sin(x/ε), then ‖gε − 〈 gε 〉‖L∞ = 1,

and we have to use (2.5)2. There are some special cases beyond (2.5), e.g., gε(x) =

sin(x/ε) so that ‖gε‖∞ = 1 but 〈 gε 〉 = 0. In this case, the method works as well

if we decompose gε as gε = g1 + g2 with g1: = 1 and g2: = sin(x/ε) − 1 and split

Problem (2.1) into two problems with boundary conditions g1 and g2, respectively.

We would like to emphasis that this splitting technique does not apply to the nonlinear

problems because the flux is not well-defined when 〈 gε 〉 = 0 and ‖gε‖L∞ = O(1).

Nevertheless, it may be directly applied to the corresponding linearized problems.

Under the conditions (2.3), (2.4) and (2.5), we have, for all τ ∈ Th,
∑

p∈S (τ)

ΦMS
p,τ = 1.

The basis function φMS
p is continuous across the element boundary so that

Vh: = span
{
φMS
p | p ∈ S (Ωε)

}
⊂ V (Ωε).
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The MsFEM approximation of Problem (2.1) is to find uh ∈ Vh such that

a(uh, v) = (f, v) + (gε, v)Γε for all v ∈ Vh. (2.6)

This is a conforming method, and the existence and uniqueness of the solution follow

from Lax-Milgram theorem. Moreover, we have

‖∇(uε − uh)‖L2(Ωε)
= inf

v∈Vh

‖∇(uε − v)‖L2(Ωε)
. (2.7)

The error estimate now boils down to the interpolate error estimate, which will be

the focus of the later sections.

The MsFEM problem (2.6) has O(h−2) freedoms in two dimension. To calculate

each multiscale basis, we need O(h̃−2) freedoms with h̃ the mesh size of the local cell

problem. The number of the cell problem is O(h−1). The overall complexity of the

proposed method is of O(h−2 + h−1h̃−2). Note that h̃ ≃ M−1h, the complexity is of

O(M2h−3). The cell problems are independent of each other, and could be solved in

parallel.

Remark 2.2. The proposed method can be generalized to the problem with oscil-

latory inhomogeneous Dirichlet boundary conditions on the rough surface. We assume

uε = gε on Γε. The MsFEM basis functions ΦMS
p,τ satisfy

aτ (Φ
MS
p,τ , v) = 0 for all v ∈ H1

0 (τ), (2.8)

and is supplemented with the boundary condition: ΦMS
p,τ = θp,τε(x) on the rough edge

∂τ ∩ Γε and ΦMS
p,τ = φp,τ on ∂τ\Γε, where

θp,τε(x) :=





φp,τ0

r(x)
if ‖gε − 〈 gε 〉‖L∞(∂τε) ≤ Cε,

φp,τ0

r(x)

gε(x)

〈 gε 〉(x)
otherwise,

(2.9)

The detailed analysis of the MsFEM for inhomogeneous Dirichlet boundary value prob-

lem will be addressed in a future paper.

3. Error Estimate for the Homogenization Problem. In this section, we

revisit some homogenization results for Problem (2.1), which have been established

in [19], while we clarify the dependence of the estimates on the domain size, which is

crucial for studying the accuracy of the proposed method. Our approach is different

from that in [19] for estimate of the first order approximation.

We assume that Ωε is given by

Ωε: =
{
x ∈ R

2 | 0 < x1 < 1, εγ(x1/ε) < x2 < 1
}
, (3.1)

and the oscillating bottom boundary Γε is given by

Γε =
{
x ∈ Ωε | 0 < x1 < 1, x2 = εγ(x1/ε)

}

6



with γ a positive smooth 1−periodic function. We assume that gε(x1) = g(x1/ε) with

g a smooth 1−periodic function and satisfying

‖g − 〈 g 〉‖L∞(Σ) ≤ C(|〈 g 〉|+ ε), (3.2)

where Σ =
{
ξ ∈ R

2 | 0 < ξ1 < 1, ξ2 = γ(ξ1)
}
with 〈 g 〉 the mean of g over Σ:

〈 g 〉 = 1

r

∫ 1

0

g(t)[1 + (γ′(t))2]1/2 d t and r =

∫ 1

0

[1 + (γ′(t))2]1/2 d t.

Ωε

Γε: x2
=ε γ(x

1
/ε) Γ

0
: x

2
=0

Ω
0

Fig. 3.1. The domains Ωε and Ω0.

Remark 3.1. The assumption γ ≥ 0 ensures Ωε ⊂ Ω0. This may make the

presentation slightly simpler. All the results in this section remain valid for general

γ, we refer to [19, §8] and [36] for related discussions.

3.1. The zeroth order approximation. Let

Ω0 =
{
x ∈ R

2 | 0 < x1 < 1, 0 < x2 < 1
}

and Γ0 = ∂Ω0 ∩
{
x ∈ R

2 | x2 = 0
}
.

Define ΓD: = ∂Ω0 \ Γ0 and

V (Ω0) =
{
v ∈ H1(Ω0) | v|ΓD = 0

}
.

The zeroth order approximations u0 of uε is such that u0 ∈ V (Ω0) and

aΩ0
(u0, v) = (f, v)Ω0

+ (r〈 g 〉, v)Γ0
for all v ∈ V (Ω0). (3.3)

We start with an extension result that will be frequently used later on, which

slightly refines that in [34, Appendix A].

Lemma 3.2. There exists an extension operator E : H1(Ωε) → H1(Ω0) such that,

for any φ ∈ H1(Ωε),

‖Eφ‖H1(Ω0)
≤
√
2 + 2A2 + 2A

√
1 +A2 ‖φ‖H1(Ωε)

, (3.4)
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where A = ‖γ′‖L∞(0,1).

Proof. For any φ ∈ H1(Ωε), we define Eφ by reflection with respect to Γε.

Eφ(x) =

{
φ(x) x ∈ Ωε,

φ(x1, 2εγ(x1/ε)− x2) x ∈ Ω0\Ωε.

A direct calculation gives

∂x1
Eφ(x) =

{
∂x1

φ(x) x ∈ Ωε,

∂x1
φ+ 2∂x2

φγ′(x1/ε) x ∈ Ω0\Ωε.

and

∂x2
Eφ(x) =

{
∂x2

φ(x) x ∈ Ωε,

−∂x2
φ(x1, 2εγ(x1/ε)− x2) x ∈ Ω0\Ωε.

Note the module of the Jacobian of the substitution

(x1, x2) 7→ (x1, 2εγ(x1/ε)− x2)

is equal to one. Observe that the inequality

‖Eφ‖2L2(Ω0)
≤ 2 ‖φ‖2L2(Ωε)

holds, where we have used

‖Eφ‖2L2(Ω0\Ωε)
=

∫ 1

0

∫ εγ(x1/ε)

0

|φ(x1, 2εγ(x1/ε)− x2)|2 dx

=

∫ 1

0

∫ 2εγ(x1/ε)

εγ(x1/ε)

|φ(x1, x2)|2 dx

≤ ‖φ‖2L2(Ωε)
.

Next, we estimate ∂x1
Eφ and ∂x2

Eφ.

‖∂x1
Eφ‖2L2(Ω0)

≤ ‖∂x1
φ‖2L2(Ωε)

+ ‖∂x1
φ+ 2γ′∂x2

φ‖2L2(Ωε)

≤ (2 + t) ‖∂x1
φ‖2L2(Ωε)

+ 4A2(1 + 1/t) ‖∂x2
φ‖2L2(Ωε)

with any t > 0, and

‖∂x2
Eφ‖2L2(Ω0)

≤ 2 ‖∂x2
φ‖2L2(Ωε)

.

The above three estimates imply

‖Eφ‖2H1(Ω0)
≤ (2 + t) ‖∂x1

φ‖2L2(Ωε)
+
(
2 + 4A2(1 + 1/t)

)
‖∂x2

φ‖2L2(Ωε)
+ 2 ‖φ‖2L2(Ωε)

.

Hence,

‖Eφ‖2H1(Ω0)
≤ max{2 + t, 2 + 4A2(1 + 1/t)} ‖φ‖2H1(Ωε)

.
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Optimizing the maximum with respect to parameter t, we obtain the maximum is

minimal if t = 2A2 + 2
√
A2 +A4. This completes the proof.

To estimate the error between u0 and uε, we need an auxiliary result [39, Lemma

1.5, p.7]. The present form can be found in [38, inequality (17) in Lemma 10].

Lemma 3.3. Let Ω be a Lipschitz domain, and Sε: = {x ∈ Ω | dist(x, ∂Ω) ≤ ε },
then for any 1/2 < κ ≤ µ ≤ 1 and v ∈ Hµ(Ω), there holds

‖v‖L2(Sε)
≤ C

(√
ε ‖v‖Hκ(Ω) + εµ ‖v‖Hµ(Ω)

)
, (3.5)

where C > 0 is a constant independent of ε.

Lemma 3.4. Let uε and u0 be the solutions to Problems (2.1) and (3.3), respec-

tively. Then

∥∥∇(uε − u0)
∥∥
L2(Ωε)

≤ C
√
ε(‖f‖L2(Ω0)

+
∥∥∇u0

∥∥
H1(Ω0)

+ ‖gε‖L2(Γε)). (3.6)

Proof. Denote e = uε − u0 ∈ V (Ωε). For any φ ∈ V (Ωε), we have

∫

Ωε

∇e∇φdx = −
∫

Ω0\Ωε

(fφ−∇u0 · ∇φ) dx +

∫

Γε

gεφdσ(x) −
∫

Γ0

r〈 g 〉φdx1

=−
∫

Ω0\Ωε

(fφ−∇u0 · ∇φ) dx

+

∫ 1

0

(
g(x1/ε)φ(x1, εγ(x1/ε))[1 + (γ′(x1/ε))

2]1/2 − r〈 g 〉φ(x1, 0)
)
dx1

=I1 + I2.

Using (3.5), we bound I1 as

|I1| ≤ ‖f‖L2(Ω0\Ωε)
‖φ‖L2(Ω0\Ωε)

+
∥∥∇u0

∥∥
L2(Ω0\Ωε)

‖∇φ‖L2(Ω0\Ωε)

≤ C
√
ε ‖f‖L2(Ω0)

‖φ‖H1(Ω0)
+ C

√
ε
∥∥∇u0

∥∥
H1(Ω0)

‖∇φ‖L2(Ω0)

≤ C
√
ε
(
‖f‖L2(Ω0)

+
∥∥∇u0

∥∥
H1(Ω0)

)
‖∇φ‖L2(Ω0)

, (3.7)

where in the last step we have used Poincaré’s inequality for φ.

Denote by pε(x1) = p(x1/ε) with p(t) = g(t)[1 + γ′(t)2]1/2, we have

I2 =

∫ 1

0

(pε(x1)φ(x1, εγ(x1/ε))− 〈 p 〉φ(x1, 0)) dx1,

where 〈 p 〉 denotes the average of p and 〈 p 〉 = r〈 g 〉, i.e., 〈 p 〉 =
∫ 1

0 g(t)[1+γ′(t)2]
1
2 d t.

It is clear to see

I2 =

∫ 1

0

pε(x1) (φ(x1, εγ(x1/ε))− φ(x1, 0)) dx1 +

∫ 1

0

(pε − 〈 p 〉)φ(x1, 0) dx1.
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A direct calculation gives that

∣∣∣∣
∫ 1

0

pε(x1) (φ(x1, εγ(x1/ε))− φ(x1, 0)) dx1

∣∣∣∣ =
∣∣∣∣∣

∫ 1

0

pε(x1)

∫ εγ(x1/ε)

0

∂φ

∂x2
dx2 dx1

∣∣∣∣∣

≤
√
ε ‖∇φ‖L2(Ω0\Ωε)

∥∥∥pεγ1/2
∥∥∥
L2(Γ0)

≤ C
√
ε ‖∇φ‖L2(Ω0)

‖gε‖L2(Γε)
,

where we have used
∥∥∥pεγ1/2

∥∥∥
2

L2(Γ0)
≤ A ‖γ‖L∞(0,1) ‖gε‖

2
L2(Γε)

.

Denote by s0 = 0 < s1 = ε < · · · < sN = Nε = 1, using the fact that

〈 p 〉 = 〈 pε 〉i =
∫
−

si+1

si

pε(x1) dx1,

we decompose the second term into

∫

Γ0

(pε(x1)− 〈 p 〉)φ(x1, 0) dx1 =

N−1∑

i=0

∫ si+1

si

pε(x1) (φ(x1, 0)− 〈φ 〉i) dx1,

where 〈φ 〉i =
∫
−si+1

si
φ(x1, 0) dx1. Using Poincaré’s inequality, we obtain

∣∣∣∣
∫

Γ0

(pε(x1)−〈 p 〉)φ(x1, 0) dx1

∣∣∣∣ ≤
N−1∑

i=0

‖pε‖L2(si,si+1)
‖φ− 〈φ 〉i‖L2(si,si+1)

≤ C
√
ε

N−1∑

i=0

‖pε‖L2(si,si+1)
‖φ‖H1/2(si,si+1)

≤ C
√
ε

(
N−1∑

i=0

‖pε‖2L2(si,si+1)

)1/2(N−1∑

i=0

‖φ‖2H1/2(si,si+1)

)1/2

≤ C
√
ε ‖gε‖L2(Γε)

‖φ‖H1/2(Γ0)

≤ C
√
ε ‖gε‖L2(Γε)

‖φ‖H1(Ω0)
,

where we have used the fact that
∑N−1

i=0 ‖pε‖2L2(si,si+1)
≤ (1 + A) ‖gε‖2L2(Γε)

. This

implies

|I2| ≤ C
√
ε ‖φ‖H1(Ω0)

‖gε‖L2(Γε)
. (3.8)

Using the extension result (3.4), we have

∥∥uε − u0
∥∥
H1(Ω0)

≤ C
∥∥uε − u0

∥∥
H1(Ωε)

,

where C only depends on ‖γ′‖L∞(0,1). This inequality together with (3.7) and (3.8)

implies (3.6).

The above lemma shows that u0 approximates to uε in H1 seminorm with rate

O(
√
ε). The convergence rate is inadequate in many applications. We step to the first

order approximation in the next part.
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3.2. Some auxiliary problems. To find the next order approximation of Prob-

lem (2.1), we define a semi-infinite tube as

Zbl: =
{
ξ ∈ R

2 | 0 < ξ1 < 1, ξ2 > γ(ξ1)
}

with a curved boundary Σ: =
{
ξ ∈ R

2 | 0 < ξ1 < 1, ξ2 = γ(ξ1)
}
.

Three auxiliary problems are defined as follows. Let β0, β1 and β2 be three un-

known functions posed on Zbl, which are periodic in ξ1 with period 1 and satisfy




−△ξβ0 = 0, in Zbl,

∂β0

∂n
= g(ξ1)− 〈 g 〉, on Σ,

lim
ξ2→∞

β0 = 0,

(3.9)

and




−△ξβ1 = 0, in Zbl,

∂β1

∂n
= − γ′(ξ1)

[1 + (γ′(ξ1))2]1/2
, on Σ,

lim
ξ2→∞

β1 = 0,

(3.10)

and




−△ξβ2 = 0, in Zbl,

∂β2

∂n
=

1

[1 + (γ′(ξ1))2]1/2
− 1

r
, on Σ,

lim
ξ2→∞

β2 = 0.

(3.11)

Here △ξ: = ∂2
ξ1

+ ∂2
ξ2
. It is well-known that each problem has a unique solution, and

the solutions have the following decay properties [19, Theorem 2.2]. Similar results

for Dirichlet boundary value problems can also be found in [3, 35].

Lemma 3.5. Let β0, β1 and β2 be the solutions of (3.9),(3.10) and (3.11), respec-

tively. Then, for i = 0, 1 and 2, there exist constants C and δ such that

‖βi‖L∞(Zbl)
+ ‖∇ξβi‖L∞(Zbl)

≤ Ce−δξ2 . (3.12)

3.3. The first order approximation. Denote βε
i (x) = βi(x/ε) for i = 0, 1, 2,

and define

u1(x) = βε
0(x) + βε

i ∂xiu
0(x). (3.13)

The first order approximation uε
1: = u0+εu1, which does not satisfy the homogeneous

Dirichlet boundary condition as uε on ΓD. It is useful to introduce a corrector ucr to

the first order approximation, which satisfies ucr − u1 ∈ V (Ω0) and

aΩ0
(ucr, v) = 0 for all v ∈ V (Ω0). (3.14)
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The corrector ucr can be estimated as follows.

Lemma 3.6. Let ucr be the solution of (3.14), then there exists C that is inde-

pendent of the size of Ω0 such that

‖∇ucr‖L2(Ω0)
≤ C

(
1 +

∥∥∇u0
∥∥
L∞(Ω0)

+
∥∥∇2u0

∥∥
L2(Ω0)

)
. (3.15)

Proof. Define a smooth cut-off function ρε ∈ C∞
0 (Ω0) by

ρε(x) =

{
1, x ∈ Ω0, dist(x,ΓD) ≥ 2ε,

0, x ∈ Ω0, dist(x,ΓD) ≤ ε,

and ‖ρε‖L∞(Ω0)
≤ 1 and ‖∇ρε‖L∞(Ω0)

≤ C/ε.

Let ηε(x) = (1− ρε(x))u
1(x). It is clear to see

‖∇ucr‖L2(Ω0)
≤ ‖∇ηε‖L2(Ω0)

.

A direct calculation gives

∂ηε

∂xi
= −∂xiρεu

1 + (1− ρε)β
ε
j ∂

2
xixj

u0 + (1− ρε)
(
∂xiβ

ε
0 + ∂xiβ

ε
j∂xju

0
)
.

Using the decay estimate for βε
i in Lemma 3.5, we may bound ‖∇ηε‖L2(Ω0)

as

follows. We only estimate the first term, other terms can be bounded similarly.

‖∂xiρεβ
ε
0‖2L2(Ω0)

≤ Cε−2

(∫ 2ε

ε

+

∫ 1−ε

1−2ε

)∫ ∞

0

e−2δx2/ε dx+ Cε−2

∫ 1

0

∫ 1−ε

1−2ε

e−2δx2/ε dx

≤ Cε−2
(
ε2 + εe−2δ/ε

)
≤ C,

where we have used (3.12) and the fact that ρε supports in a narrow layer of width

O(ε). Similarly, we have

∥∥∂xiρε∂xju
0βε

j

∥∥
L2(Ω0)

≤ C
∥∥∇u0

∥∥
L∞(Ω0)

,
∥∥∥(1− ρε)∂

2
xixj

u0βε
j

∥∥∥
L2(Ω0)

≤ C
∥∥∇2u0

∥∥
L2(Ω0)

,

‖(1− ρε)∂xiβ
ε
0‖L2(Ω0)

≤ C,
∥∥(1− ρε)∂xju

0∂ξiβ
ε
j

∥∥
L2(Ω0)

≤ C
∥∥∇u0

∥∥
L∞(Ω0)

.

Summing up all the terms, we obtain (3.15) and complete the proof.

The next theorem gives the error estimate for the first order approximation.

Theorem 3.7. Let uε and u0 be the solutions of Problems (2.1) and (3.3),

respectively. Let u1 be defined in (3.13). There exists C independent of the size of Ω0

such that

‖∇(uε − uε
1)‖L2(Ωε)

≤ Cε
(
1 +

∥∥∇u0
∥∥
W 1,∞(Ω0)

+
∥∥∇2u0

∥∥
H1(Ω0)

)
. (3.16)
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Proof. For any v ∈ V (Ωε), an integration by parts yields
∫

Ωε

∇u0∇v dx =

∫

Ωε

fv dx +

∫

Γε

∂u0

∂n
v dσ(x),

which together with (2.2) gives
∫

Ωε

∇(uε − u0)∇v dx =

∫

Γε

(
gε −

∂u0

∂n

)
v dσ(x). (3.17)

Next we calculate
∫
Ωε

∇u1∇v dx. Under the change of variables ξ = x/ε, Ωε is

mapped onto a domain

Dε,ξ: =
{
ξ ∈ R

2 | 0 < ξ1 < 1/ε, γ(ξ1) < ξ2 < 1/ε
}

with the curved boundary Γε,ξ: =
{
ξ ∈ R

2 | 0 < ξ1 < 1/ε, ξ2 = γ(ξ1)
}
. We denote

D0,ξ as the mapped domain of Ω0 under this map. Notice that for any function v,

Dxv = ∇xv +
1

ε
∇ξv.

Clearly,
∫

Ωε

∇u1∇v dx =

∫

Ωε

∇xu
1∇v dx+

∫

Dε,ξ

∇ξu
1∇ξv dξ.

A direct calculation gives
∫

Dε,ξ

∇ξu
1∇ξv dξ =

∫

Dε,ξ

(
∇ξβ0∇ξv +∇ξβi∇ξ

(
∂u0

∂xi
v

))
dξ

+

∫

Dε,ξ

∂

∂xi
(∇ξu

0) (βi∇ξv − v∇ξβi) dξ.

Using the definition of {βi}2i=0, an integration by parts yields
∫

Dε,ξ

∇ξβ0∇ξv dξ =

∫

Γε,ξ

(g − 〈 g 〉) v dσ(ξ),

and
∫

Dε,ξ

∇ξβi∇ξ

(
∂u0

∂xi
v

)
dξ = −

∫

Γε,ξ

(
n1
ξ

∂u0

∂x1
+ n2

ξ

∂u0

∂x2

)
v dσ(ξ) − 1

r

∫

Γε,ξ

∂u0

∂x2
v dσ(ξ)

= −1

ε

∫

Γε,ξ

∂u0

∂nξ
v dσ(ξ) − 1

rε

∫

Γε,ξ

∂u0

∂ξ2
v dσ(ξ).

Using the fact that ∂u0/∂n = r〈 g 〉 on Γ0, we rewrite the last term in the right-hand

side of the above identity as

− 1

rε

∫

Γε,ξ

∂u0

∂ξ2
v dσ(ξ) = − 1

rε

∫

Γε,ξ

∂u0

∂ξ2
(ξ1, 0)v dσ(ξ)

− 1

rε

∫

Γε,ξ

(
∂u0

∂ξ2
(ξ1, γ(ξ1))−

∂u0

∂ξ2
(ξ1, 0)

)
v dσ(ξ)

=

∫

Γε,ξ

〈 g 〉v dσ(ξ) − 1

rε

∫

D0,ξ\Dε,ξ

∂2u0

∂ξ22
dξ.
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Combining the above three equations, we obtain

∫

Dε,ξ

∇ξu
1∇ξv dξ =

∫

Γε,ξ

(
g − 1

ε

∂u0

∂nξ

)
v dσ(ξ)

+

∫

Dε,ξ

∂

∂xi
(∇ξu

0) (βi∇ξv − v∇ξβi) dξ −
1

rε

∫

D0,ξ\Dε,ξ

v
∂2u0

∂ξ22
dξ.

Denote e = uε − u0 − εu1 − εucr, we have the following error expansion:

∫

Ωε

∇e∇v dx =
1

r

∫

Ω0\Ωε

∂2u0

∂x2
2

v dx− ε

∫

Ωε

∇xu
1∇v dx− ε

∫

Ωε

∇ucr∇v dx

−
∫

Dε,ξ

∂

∂ξi
(∇ξu

0) (βi∇ξv − v∇ξβi) dξ.

By Lemma 3.3, we obtain

∣∣∣∣∣
1

r

∫

Ω0\Ωε

∂2u0

∂x2
2

v dx

∣∣∣∣∣ ≤ Cε
∥∥∇2u0

∥∥
H1(Ω0)

‖v‖H1(Ω0)
.

The second term can be bounded as
∣∣∣∣ε
∫

Ωε

∇xu
1∇v dx

∣∣∣∣ ≤ ε
∥∥∇xu

1
∥∥
L2(Ωε)

‖∇v‖L2(Ωε)
≤ Cε

∥∥∇2u0
∥∥
L2(Ωε)

‖∇v‖L2(Ωε)
,

where C depends on ‖βi‖L∞ , which are uniformly bounded.

We transform the last integrand back to Ωε as

∫

Dε,ξ

∂

∂ξi
(∇ξu

0) (βi∇ξv − v∇ξβi) dξ = ε

∫

Ωε

∂

∂xi
(∇xu

0) (βi∇xv − v∇xβi) dx.

The first term can be bounded as

ε

∣∣∣∣
∫

Ωε

∂

∂xi
(∇xu

0)βi∇xv

∣∣∣∣ ≤ εmax
i

‖βi‖L∞

∥∥∇2u0
∥∥
L2(Ωε)

‖∇v‖L2(Ωε)
.

By Lemma 3.5, we bound the second term as

ε

∣∣∣∣
∫

Ωε

∂

∂xi
(∇xu

0)v∇xβi dx

∣∣∣∣ ≤ C
∥∥∇2u0

∥∥
L∞(Ωε)

∫

Ωε

e−δx2/ε |v| dx

≤ C
∥∥∇2u0

∥∥
L∞(Ωε)

∫ ∞

0

e−δx2/ε

∫ 1

0

|v| dx1dx2.

By trace inequality, for any x2 ∈ (0, 1), we have

∫ 1

0

|v(x1, x2)| dx1 ≤ C ‖v‖H1(Ωε)
.

Combining the above two inequalities, we obtain

ε

∣∣∣∣
∫

Ωε

∂

∂xi
(∇xu

0)v∇xβi dx

∣∣∣∣ ≤ Cε
∥∥∇2u0

∥∥
L∞(Ωε)

‖v‖H1(Ωε)
.

14



Summing up all the estimates, we obtain that for any v ∈ V0(Ωε),

∣∣∣∣
∫

Ωε

∇e∇v dx

∣∣∣∣ ≤ Cε
(∥∥∇2u0

∥∥
H1(Ω0)

+
∥∥∇2u0

∥∥
L∞(Ωε)

+ 1
)
‖v‖H1(Ω0)

+ ε ‖∇ucr‖L2(Ωε)
‖∇v‖L2(Ωε)

. (3.18)

Since Γε is uniformly Lipschitz, we can extend uε from Ωε to Ω0 so that

‖e‖H1(Ω0)
≤ C ‖e‖H1(Ωε)

,

where C only depends on ‖h′‖L∞(Y ) by Lemma 3.2. Taking v = e in (3.18), we obtain

‖∇e‖2L2(Ωε)
≤ Cε

(∥∥∇2u0
∥∥
H1(Ω0)

+
∥∥∇2u0

∥∥
L∞(Ωε)

+ 1 + ‖∇ucr‖L2(Ωε)

)
‖e‖H1(Ωε)

.

Using Poincare’s inequality to e because e ∈ V0(Ωε), we obtain

‖∇e‖L2(Ωε)
≤ Cε

(∥∥∇2u0
∥∥
H1(Ω0)

+
∥∥∇2u0

∥∥
L∞(Ωε)

+ 1 + ‖∇ucr‖L2(Ωε)

)
,

which together with (3.15) yields the desired estimate (3.16).

4. Error Estimate. We are ready to prove the convergence rate of the proposed

MsFEM by the homogenization results in the last section. For any element τε with

a rough side on Γε, we assume that τε is contained in its homogenized domain τ0.

Given this assumption, we could apply Theorem 3.7 to each element. In fact, this

seemingly restrictive assumption is not essential because Theorem 3.7 remains valid

without such assumption. Therefore, the error estimate also holds true without this

assumption, which is also confirmed by the numerical examples in the next section.

In addition, to avoid too many technical complexity, the estimate is restricted to the

triangular element, while the proof can be generalized to the quadrilateral element

with minor modifications.

4.1. Homogenization of multiscale basis functions. We start with some

homogenization results of the multiscale basis functions ΦMS
p,τε . By the homogenization

results in last section, we may clarify the zeroth order approximation and the first

order approximation of ΦMS
p,τε , which are denoted by Φ0

p,τε and Φ1
p,τε , respectively.

Note that Φ0
p,τε − φp,τ0 ∈ V0(τ0) and

aτ0(Φ
0
p,τε , v) = (r〈 θ 〉p,τε , v)∂τ0∩Γ0

for all v ∈ V0(τ0).

It is clear r〈 θ 〉p,τε = ∂nφp,τ0 . We conclude that the unique solution of the above

problem is Φ0
p,τε = φp,τ0 .

The first order corrector Φ1
p,τε of ΦMS

p,τε is given by

Φ1
p,τε = β̃ε

0∂nφp,τ0 + βε
i

∂φp,τ0

∂xi
,
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where β̃ε
0(x) = β̃0(x/ε) with β̃0 being the solution of





−△ξβ̃0 = 0, in Zbl,

∂nβ̃0 =
1

r

(
g(ξ1)/〈 g 〉 − 1

)
, on Σ,

lim
ξ2→∞

β̃0 = 0.

It is clear that β̃0 = 0 if g = 〈 g 〉. When β̃0 = 0, the proof is simpler than the case

β̃0 6= 0 but the estimate is same. We only consider the later case in the following.

For any τ ∈ Th, we define the MsFEM interpolant of uε as

Πhu
ε: =

∑

p∈S (τ)

u0(xp)Φ
MS
p,τε .

It is clear to see Πhu
ε reduces to the standard linear Lagrange interpolant of u0, which

is denoted by πhu
0 when τ has no side on Γε. For element τε with a rough side, we

define the first-order approximation of the MsFEM interpolant by

(Πhu
ε)1: =

∑

p∈S (τε)

u0(xp)
(
φp,τ0 + εΦ1

p,τε

)
.

The interpolate estimate is based on the following decomposition

uε −Πhu
ε = (uε − uε

1) + (uε
1 − (Πhu

ε)1) + ((Πhu
ε)1 −Πhu

ε) . (4.1)

The following lemma is a direct consequence of Theorem 3.7.

Lemma 4.1. For any rough-sided element τε, we have

‖∇Πhu
ε −∇(Πhu

ε)1‖L2(τε)
≤ Cε(1 +

∥∥∇u0
∥∥
L∞(τ0)

). (4.2)

By definition, we rewrite (Πhu
ε)1 as

(Πhu
ε)1 = πhu

0 + εβ̃ε
0

∂πhu
0

∂n
+ εβε

i

∂πhu
0

∂xi
, (4.3)

and

uε
1 = u0 + εβ̃ε

0

∂u0

∂n
+ εβε

i

∂u0

∂xi
. (4.4)

A direct consequence of the representations (4.3) and (4.4) is

Lemma 4.2. For any rough-sided element τε, we have

‖∇uε
1 −∇(Πhu

ε)1‖L2(τε)
≤ C (hτε + ε)

∥∥D2u0
∥∥
L2(τε)

.
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Proof. A direct calculation gives that for i = 1, 2,

∂

∂xi
(uε

1 −∇(Πhu
ε)1) =

∂

∂xi
(u0 − πhu

0) + ε
∂β̃ε

0

∂xi

∂

∂n
(u0 − πhu

0)

+ εβ̃ε
0

∂2u0

∂n∂xi
+ ε

∂βε
j

∂xi

∂

∂xj
(u0 − πhu

0) + εβε
j

∂2u0

∂xi∂xj
.

Note that β̃0 satisfies the same decay estimate (3.12) as β0, and proceeding along the

same line that leads to Lemma 3.6, we obtain

∫

τε

∣∣∣∇β̃ε
0∂n(u

0 − πhu
0)
∣∣∣
2

dx ≤ Cε−2

∫

τε∩Γε

∣∣∇(u0 − πhu
0)
∣∣2 dx1

∫ h

0

e−2δx2/ε dx2

≤ Cε−1

∫

τε∩Γε

∣∣∇(u0 − πhu
0)(x1, x2)

∣∣2 dx1.

By the trace inequality, we get

∥∥∥∇β̃ε
0∂n(u

0 − πhu
0)
∥∥∥
L2(τε)

≤ Cε−1/2
∥∥∇(u0 − πhu

0)
∥∥1/2
L2(τε)

∥∥∇2(u0 − πhu
0)
∥∥1/2
L2(τε)

≤ C(hτε/ε)
1/2
∥∥∇2u0

∥∥
L2(τε)

.

Proceeding along the same line that leads to the above inequality, we obtain

∥∥∇βε
i ∂xi(u

0 − πhu
0)
∥∥
L2(τε)

≤ C(hτε/ε)
1/2
∥∥∇2u0

∥∥
L2(τε)

.

The remaining terms may be bounded as follows.

∥∥∇(u0 − πhu
0)
∥∥
L2(τε)

≤ Chτε

∥∥∇2u0
∥∥
L2(τε)

,

and
∥∥∥β̃ε

0∂n(∇u0)
∥∥∥
L2(τε)

≤ C
∥∥∇2u0

∥∥
L2(τε)

,
∥∥βε

i ∂xi(∇u0)
∥∥
L2(τε)

≤ C
∥∥∇2u0

∥∥
L2(τε)

.

Combining the above estimates, we obtain the desired estimate.

For any element τ without rough edge, Πhu
ε = πhu

0. The decomposition (4.1) is

replaced by uε −Πhu
ε = uε − uε

1 + u0 − πhu
0 + εu1. Therefore, we need the a priori

estimate for u1 over elements without rough edge. We divide the elements into three

groups; the elements with one rough edge belong to T 1
h , the elements with one vertex

on the rough boundary belong to T 2
h , and the remaining elements belong to T 3

h .

Lemma 4.3. When τ ∈ T 2
h , then

∑

τ∈T 2
h

∥∥∇u1
∥∥2
L2(τ)

≤ Ch−1
(
1 +

∥∥∇u0
∥∥2
L∞(Ωε)

)
+ C

∑

τ∈T 2
h

∥∥∇2u0
∥∥2
L2(τ)

. (4.5)

When τ ∈ T 3
h , then

∑

τ∈T 3
h

∥∥∇u1
∥∥2
L2(τ)

≤ C
h

ε

(
1 +

∥∥∇u0
∥∥2
W 1,∞(Ωε)

)
+ C

∑

τ∈T 3
h

∥∥∇2u0
∥∥2
L2(τ)

. (4.6)
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Proof. For an element τ ∈ T 2
h , we assume that the two sides intersect with Γε

are given explicitly by x1 = α1x2 and x1 = α2x2, with |αi| ≤ c1 and the bound c1

depends only on the minimal angle of τ . Using (3.12), a direct calculation gives

‖∇βε
0‖L2(τ)≤ Cε−1

(∫

τ

e−2δx2/εdx

)1/2

≤Cε−1

(∫ ∞

0

(α2 − α1)x2e
−2δx2/ε dx2

)1/2

≤ C.

A direct calculation gives that for i = 1, 2, there holds

∥∥∇(∂xiu
0βε

i )
∥∥
L2(τ)

≤ C
(∥∥∇u0

∥∥
L∞(τ)

+
∥∥∇2u0

∥∥
L2(τ)

)
.

Combining the above estimates and using the fact that the cardinality of T 2
h isO(h−1),

we obtain (4.5).

Using the facts that the triangulation is regular, for the element in k-th layer,

there exists a constant c0 such that c0kh ≤ dist(τ,Γε) ≤ c0(k + 1)h. By (3.12), a

direct calculation gives

‖∇βε
0‖L2(τ) ≤ Cε−1

(∫

τ

e−2δx2/εdx

)1/2

≤ Ch1/2
τ ε−1

(∫ c0(k+1)h

c0kh

e−2δx2/ε dx2

)1/2

≤ C(h/ε)1/2 exp(−c0δkh/ε).

Proceeding along the same line that leads to the above estimate, we have for i = 1, 2,

∥∥∇(∂xiu
0βε

i )
∥∥
L2(τ)

≤ C(hτ/ε)
1/2 exp(−c0δkh/ε)

∥∥∇u0
∥∥
L∞(τ)

+ C
∥∥∇2u0

∥∥
L2(τ)

A combination of the above estimates leads to

∥∥∇u1
∥∥
L2(τ)

≤ C exp (−c0δkh/ε)(hτ/ε)
1/2
(
1 +

∥∥∇u0
∥∥
L∞(τ)

)
+ C

∥∥∇2u0
∥∥
L2(τ)

.

Summing up all the elements in T 3
h leads to (4.6).

τ

θ
1

θ
2

Fig. 4.1. An element with a vertex on the rough boundary.
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4.2. Interpolation error estimate. The next theorem gives the interpolate

error estimate.

Theorem 4.4. Let uε be the solution of the problem (2.1), we have

‖∇(uε −Πuε)‖L2(Ωε)
≤ Cε

(∥∥∇2u0
∥∥
H1(Ω0)

+
∥∥∇u0

∥∥
W 1,∞(Ω0)

)
+ Ch

∥∥∇2u0
∥∥
L2(Ω0)

+ Cεh−1/2(
∥∥∇u0

∥∥
L∞(Ω0)

+ 1). (4.7)

Proof. We start from the following decomposition (4.1). Using Lemma 4.2,

∑

τ∈T 1
h

‖∇uε
1 −∇(Πhu

ε)1‖2L2(τ) ≤ C(ε+ h)2
∑

τ∈T 1
h

∥∥∇2u0
∥∥2
L2(τ)

.

For τ ∈ T 2
h , we have uε

1 − (Πhu
ε)1 = u0 − πhu

0 + εu1. Therefore,

∑

τ∈T 2
h

‖∇uε
1 −∇(Πhu

ε)1‖2L2(τ) ≤ 2
∑

τ∈T 2
h

∥∥∇(u0 − πhu
0)
∥∥2
L2(τ)

+ 2ε2
∑

τ∈T 2
h

∥∥∇u1
∥∥2
L2(τ)

.

Using Lemma 4.3, we obtain

∑

τ∈T 2
h

‖∇uε
1 −∇(Πhu

ε)1‖2L2(τ)≤C(ε+ h)2
∑

τ∈T 2
h

∥∥∇2u0
∥∥
L2(τ)

+ C
ε2

h

(
1 +

∥∥∇u0
∥∥2
L∞(τ)

)
.

Proceeding along the same line that leads to the above estimate, we obtain

∑

τ∈T 3
h

‖∇uε
1 −∇(Πhu

ε)1‖2L2(τ)≤C(ε+ h)2
∑

τ∈T 3
h

∥∥∇2u0
∥∥2
L2(τ)

+ Cεh
(
1 +

∥∥∇u0
∥∥2
L∞(Ωε)

)
.

Summing up all the above estimates, we obtain

‖∇uε
1 −∇(Πhu

ε)1‖L2(Ωε)
≤ C(ε+ h)

∥∥∇2u0
∥∥
L2(Ωε)

+ Cεh−1/2
(
1 +

∥∥∇u0
∥∥
L∞(Ωε)

)
.

By Lemma 4.1,

‖∇Πhu
ε −∇(Πhu

ε)1‖2L2(Ωε)
=
∑

τ∈T 1
h

‖∇Πhu
ε −∇(Πhu

ε)1‖2L2(τε)

≤ Cε2
∑

τ∈T 1
h

∥∥∇u0
∥∥
L∞(τ0)

≤ C
ε2

h

∥∥∇u0
∥∥
L∞(Ω0)

.

Finally, the term ‖∇(uε − uε
1)‖L2(Ωε)

can be bounded by Theorem 3.7. Summing

up all the estimates we obtain the desired estimate (4.7).

Using the above interpolation estimate, we obtain the main result of this paper.

Theorem 4.5. Let uε and uh be the solutions of Problem (2.1) and Problem

(2.6), respectively. Then

‖∇(uε − uh)‖L2(Ωε)
≤ Cε

(∥∥∇2u0
∥∥
H1(Ω0)

+
∥∥∇u0

∥∥
W 1,∞(Ω0)

)
+ Ch

∥∥∇2u0
∥∥
L2(Ω0)

+ Cεh−1/2(
∥∥∇u0

∥∥
L∞(Ω0)

+ 1). (4.8)
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Remark 4.6. We have not estimated the L2 error of the method, because the H1

error estimate is not optimal with respect to the regularity of the data. Standard dual

argument only yields a suboptimal convergence rate as the original MsFEM [25]. This

would be a topic for further study.

5. Numerical Examples. In this section, we perform three numerical exper-

iments to verify the convergence rate and efficiency of the proposed method. We

solve Problem (2.1) for different rough domains, different source terms and different

boundary fluxes.

5.1. Implementation. The implementation of the method is similar to the

standard MsFEM [24, 25]. The cell problem (2.3) is numerically solved only for

elements with a rough side, and we use P1 element to solve (2.3) with the subgrid

mesh size around ε/20 in the simulations below.

As an example, we consider a square domain with a rough boundary. The more

general case can be done similarly. The domain Ωε is given in (3.1) as in Figure 3.1.

The function γε ≃ O(ε) that represents the curved boundary will be specified in the

examples. We partition Ωε with a uniform triangular mesh as in Figure 2.1(b). For

a given number N , we set h = 1/N . The vertexes far away from the rough boundary

are given by xi,j = {(ih, jh)}, where i = 0, · · ·N, j = 1, · · · , N ; and the vertexes on

the rough boundary are given by xi,0 = (ih, γε(ih)), i = 0, · · ·N .

The basis function is constructed as follows. For elements without rough bound-

ary, the basis function coincides with the standard linear basis function. For elements

with a rough boundary, we compute the multiscale basis function for an element

e =
{
x ∈ R

2 | 0 < x1 < h, γε(x1) < x2 < γε(0) + (1− γε(0)/h)x1

}

for example. Here we actually assume that γε(x1) < γε(0) + (1 − γε(0)
h )x1 holds for

all x1 ∈ (0, h). In reality, we can always make it true by choosing proper vertexes in

the triangulation near the rough boundary. We firstly rescale e and solve cell problem

(2.3) by linear finite element over the rescaled element

ê =
{
x̂ ∈ R

2 | 0 < x̂1 < 1, h−1γε(hx̂1) < x̂2 < γε(0)/h+ (1− γε(0)/h)x̂1

}

with a rough boundary Γ̂e =
{
x̂ ∈ R

2 | 0 < x̂1 < 1, x̂2 = h−1γε(hx̂1)
}
. We triangu-

late ê by a subgrid with maximum mesh size h̃; see, e.g., h̃ ≤ ε/20. Γ̂e is approximated

by Γ̂e,h̃. For gε whose average on Γ̂e,h̃ is given by

〈 gε 〉 =
∫

Γ̂e,h̃

gε(x1/h) ds/r with r =
∣∣∣Γ̂e,h̃

∣∣∣ .

The flux is given by

θ̂i(x̂1) =





bi/r if ‖gε − 〈 gε 〉‖L∞(Γ̂e,h̃)
< ε,

bi
r

gε
〈 gε 〉

otherwise,
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where b1 = 0, b2 = 1 and b3 = −1.

5.2. Numerical experiments. First Example In this example, the rough

domain is given by

Ωε =
{
x ∈ R

2 | 0 < x1 < 1, εγ(x1/ε) < x2 < 1
}
,

where γ(y1) = (cos(2πy1)− 1)/10. The rough boundary is given by

Γε =
{
x ∈ R

2 | 0 < x1 < 1, x2 = εγ(x1/ε)
}
,

and ΓD = ∂Ωε \ Γε. We choose f = 1 and g = 0 in (2.1), and set homogeneous

Dirichlet boundary condition on ΓD and ε = 1/128.

The grid in this example is the uniform triangular grid as the right subfigure in

Fig. 2.1 with the mesh size h varying from 1/5 to 1/160. The errors are measured by

ErrL2 = ‖uh − ũ‖L2(Ωε)
, ErrH1 = ‖∇uh −∇ũ‖L2(Ωε)

.

Here ũ is a solution computed on an adaptive refined mesh with mesh size h ≈ 10−4

by linear finite element.

Fig. 5.1 shows two different scenarios of the convergence behaviour of the method.

When the mesh size h is larger than the roughness parameter ε, the method is first

order in theH1 semi-norm and second order in the L2 norm. When h is commensurate

with ε, the method degenerates due to the resonance error. This is consistent with

our theoretical prediction, at least for the H1 error.
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Fig. 5.1. Convergence behavior of the method for the first example.

Second example In this example, the domain Ωε is the same with that in the

first example. Unlike the first example, we choose f = 0 and an inhomogeneous
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boundary flux gε = (1− cos(2πx1/ε)) /2. In addition, we impose an inhomogeneous

Dirichlet boundary value u(x) = (1− x2)/2 on ΓD.

Uniform triangular grid with the mesh size h varying from 1/5 to 1/80 is employed

in this example. Fig. 5.2 shows the convergence behavior of the method. It is clear

that the method has nearly optimal convergence rate for both the H1 semi-norm and

the L2 norm when h = 1/40 > 2ε, while the resonance error gets to dominate and

the convergence rate degenerates when h is approximately 1/80.

In this example, we use linear finite element to solve the homogenized problem





−∆u0 = 0 in Ω0,

u0 =
1− x2

2
on ΓD,

∂u0

∂n
=

r

2
on Γ0.

where Ω0 = {x ∈ R
2 : 0 < x1 < 1, 0 < x2 < 1}, Γ0 = {(x1, 0) : 0 < x1 < 1} and

r =
∫ 1

0 [1 + (γ′(y1))
2]1/2 dy1 ≈ 1.01. This problem is solved by linear finite element

with a uniform triangulation of the homogenized domain Ω0. The numerical solutions

is denoted by u0
h. We compute the following quantities

errL2 =
∥∥u0

h − ũ
∥∥
L2(Ω0)

, and errH1 =
∥∥∇u0

h −∇ũ
∥∥
L2(Ω0)

,

which is reported in Figure 5.2. It seems that the linear finite element method is less

accurate as MsFEM. This is due to the fact that the homogenization errors dominate

as the mesh is refined. This degeneracy of the convergence rate is more significant for

the L2 error.

Third Example In this example, we test the problem with a non-periodic rough

boundary, which is not covered by our theoretical results, while the method works as

well. The domain is

Ωε =
{
x ∈ R

2 | 0 < x1 < 1,
ε

10
(γ(x1)− 1) < x2 < 1

}

with γ an oscillating function defined as follows. We firstly divide the interval (0, 1)

uniformly as 0 = s0 < s1 < · · · < sM = 1 with M = 1/ε = 128. The function

γ is set to be a piecewise continuous linear function over such partition, with γ(si),

i = 0, · · · ,M , a series of pseudo-random numbers between 0 and 1 generated by a

standard C++ library function. The rough boundary

Γε =
{
x ∈ R

2 | 0 < x1 < 1, x2 = ε(γ(x1)− 1)/10
}
.

We choose f = 1, g = 0, and impose a homogeneous Dirichlet boundary condition on

ΓD. We use a uniform triangular grid with the mesh size h varies from 1/5 to 1/160.

The results for MsFEM is reported in Fig. 5.3. Similar to the previous examples, we

get optimal convergence rate when h > 2ε. The resonance errors becomes dominate

for the L2 error when h = 1/80, but still small for the H1 error even when h = 1/160.

This might indicate the resonance error for the L2 error is more pronounced.
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Fig. 5.2. Convergence behavior of the method and standard P1-element approximation for the

second example.
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Fig. 5.3. Convergence behavior of the method for the third example.

Fourth Example In this example, we test the problem with a discontinuous

right-hand side function f as well as a non-periodic rough boundary, which is slightly

more general than that in the previous example. The domain is

Ωε =
{
x ∈ R

2 | 0 < x1 < 1, ε(γ(x1)− 1) < x2 < 1
}

with γ an oscillating function defined as follows. We firstly divide the interval (0, 1)
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by 0 = s0 < s1 < · · · < sM = 1 with M = 1/ε = 128. In comparison with the

third example, here s1, · · · , sM−1 ∈ (0, 1) are chosen randomly. For that purpose, we

generate a series of pseudo-random numbers between 0 and 1 generated by a standard

C++ library function. Then we sort them in a sequence and denoted as {si}. The

function γ is set to be a piecewise continuous linear function over such partition, with

γ(si), i = 0, · · · ,M , also a series of pseudo-random numbers between 0 and 1. The

rough boundary

Γε =
{
x ∈ R

2 | 0 < x1 < 1, x2 = ε(γ(x1)− 1)
}
.

We choose g = 0, and impose a homogeneous Dirichlet boundary condition on ΓD.

In addition, we choose a discontinuous right hand side function as

f(x) =

{
1, if x1 < 1

2 ;

−1, if x1 ≥ 1
2 .

In this case, the homogenized solution u0 ∈ H2(Ω0) and but not in H3(Ω0), i.e., it

does not satisfy the regularity assumption in our theoretical analysis.

We use a triangular grid with the mesh size h varies from 1/5 to 1/80. The results

for MsFEM is reported in Fig. 5.4. Similar to the previous examples, we get optimal

convergence rate when h > 2ε. We also calculate the 2-norm condition number of the
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Fig. 5.4. Convergence behavior of the method for the fourth example.

resulting linear system. As shown in Fig. 5.5, the condition number scales as O(h−2),

which is optimal and is independent of the microstructure.
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