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Abstract. The properties of finite dynamical systems (FDSs) have been investigated in the
context of coding theoretic problems, such as network coding and index coding, and in the context
of hat games, such as the guessing game and Winkler’s hat game. In this paper, we relate the
problems mentioned above to properties of FDSs, including the number of fixed points, their stability,
and their instability. We first introduce the guessing dimension and the coset dimension of an
FDS and their counterparts for directed graphs. Based on the coset dimension, we then refine the
existing equivalences between network coding and index coding. We also introduce the concept of the
instability of FDSs and we study the stability and the instability of directed graphs. We prove that
the instability always reaches the size of a minimum feedback vertex set for large enough alphabets.
We also obtain some nonstable bounds independent of the number of vertices of the graph. We then
relate the stability and the instability to the guessing number. We also exhibit a class of sparse
graphs with large girth that have high stability and high instability; our approach is code-theoretic
and uses the guessing dimension. Finally, we prove that the affine instability is always asymptotically
greater than or equal to the linear guessing number.

Key words. finite dynamical systems, network coding, index coding, hat games, stability,
guessing number

AMS subject classifications. 91A12, 94B05, 05C20

DOI. 10.1137/15M1044758

1. Introduction.

1.1. Finite dynamical systems. Many entities (such as genes, neurons, per-
sons, computers, etc.) organize themselves as complex networks, where each entity
has a finitely valued state and a function which updates the value of the state. Since
entities influence each other, this local update function depends on the states of some
of the entities. Such a network is modeled by a finite dynamical system (FDS).1 The
main problem when studying an FDS is to determine its dynamics, such as the number
of its fixed points, or how the trajectory of a state depends on the initial state.

FDSs have been used to represent a network of interacting entities as follows. Each
entity v has a local state xv taking its value in a finite alphabet [q] = {0, 1, . . . , q−1}.
The state of the whole network is then x = (x1, . . . , xn) ∈ [q]n. This state then
evolves according to a deterministic function f = (f1, . . . , fn) : [q]n → [q]n, where
fv : [q]n → [q] represents the update of the local state xv. Although different update
schedules have been studied, we are focusing on the parallel update schedule, where
all entities update their state at the same time, and x becomes f(x). FDSs have been
used to model gene networks [29, 46, 48, 27, 28], neural networks [34, 26, 23], social
interactions [38, 25], and more (see [47, 24]).
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1FDSs (or limited versions) appear under different names, such as Boolean networks [29, 46],

Boolean automata networks [37], multivalued networks [5], etc.
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The structure of an FDS f : [q]n → [q]n can be represented via its interaction
graph G(f), which indicates which update functions depend on which variables. More
formally, G(f) has {1, . . . , n} as vertex set and there is an arc from u to v if fv(x)
depends on xu. In different contexts, e.g., in molecular biology, the interaction graph
is known (or at least well approximated), while the actual update functions are not
[32, 48]. One main problem of research on FDSs is then to predict their dynamics
according to their interaction graphs.

1.2. Hat games. Hat games are an increasingly popular topic in combinatorics.
Typically, a hat game involves n players, each wearing a hat that can take a color
from a given set of q colors. No player can see their own hat, but each player can see
some subset of the other hats. All players are asked to guess the color of their own
hat at the same time.

For an extensive review of different hat games, see [31]. Different variations have
been proposed: for instance, the players can be allowed to pass [15], or the players can
guess their respective hat’s color sequentially [30]. The variation in [15] mentioned
above has been investigated further (see [31]) for it is related to coding theory via the
concept of covering codes [14]; in particular, some optimal solutions for that variation
involve the well-known Hamming codes [16].

In the variation called the “guessing game,” players are not allowed to pass, and
must guess simultaneously [42]. The team wins if everyone has guessed their color
correctly; the aim is to maximize the number of hat assignments which are correctly
guessed by all players. This version of the hat game then aims to determine the
guessing number of a directed graph (see section 1.3).

In Winkler’s hat game, the players are not allowed to pass, and must guess si-
multaneously. The team then scores as many points as there are players guessing
correctly. The aim is then to construct a guessing function f which guarantees a
score for any possible configuration of hats [49]. The relation between Winkler’s hat
game and auctions has been revealed in [1] and developed in [8].

The guessing game and Winkler’s hat game can be recast as problems about FDSs
as follows. Let D be a directed graph on n vertices where (u, v) is an arc if and only
if player v sees the color xu of player u’s hat. Then v’s guess is a function fv(xinn(v)),
where inn(v) is the in-neighborhood of v in D. More generally, a configuration of
hats is x = (x1, . . . , xn) and the team’s guess is f(x), where f : [q]n → [q]n is some
FDS whose interaction graph is contained in D. In the guessing game, the team wins
whenever f(x) = x, i.e., x is a fixed point of f . Thus the goal of the guessing game
is to maximize the number of fixed points of f . On the other hand, the score in
Winkler’s hat game is given by n − dH(x, f(x)), where dH is the Hamming distance.
Thus, the goal here is to maximize s(f) := minx∈[q]n(n− dH(x, f(x))), a quantity we
shall refer to as the stability of f .

1.3. Network coding and fixed points of FDSs. The aim of this section
is to give an overview of network coding, index coding, and their relationships to
different problems about FDSs. Since those relationships have been established in the
literature, and since network coding and index coding are not the main focus of this
paper, we shall only give an informal presentation. The interested reader will find
more details in the cited references.

Network coding is a technique to transmit information through networks, which
can significantly improve upon routing in theory [2, 51]. At each intermediate node v,
the received messages xu1

, . . . , xuk are combined, and the combined message
fv(xu1 , . . . , xuk) is then forwarded toward its destination. The main problem is to
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f3(x) = −x1 − x2

(b) Guessing game on K3

Fig. 1. Butterfly network and guessing game on K3.

functions fv can transmit the most information. In particular, the network coding
solvability problem tries to determine whether a certain situation, with a given set
of sources, destinations, and messages, is solvable, i.e. whether all messages can be
transmitted to their destinations.

The network coding solvability problem can be recast in terms of hat games
and fixed points of FDSs as follows [42, 41]. The so-called guessing number [42]
of a directed graph D is the logarithm in base q of the maximum number of fixed
points over all FDSs f : [q]n → [q]n whose interaction graph is a subgraph of D:
G(f) ⊆ D. The guessing number is always upper bounded by the size of a minimum
feedback vertex set of D (a set of vertices whose removal yields an acyclic graph);
if equality holds, we say that D is solvable and the FDS f reaching this bound
is called a solution. Then, a network coding instance N is solvable if and only if
the directed graph DN , obtained by “glueing” each source-receiver pair into a single
vertex, is solvable. For instance, the canonical example of (linear) network coding is
the butterfly network, depicted in Figure 1(a). A solution to the butterfly network is
depicted in the figure (all operations are done modulo q). This can be converted into
a problem of the guessing number on the triangle K3, as seen from Figure 1(b): the
FDS f has exactly q2 fixed points, namely every x such that x1 + x2 + x3 = 0. The
reader interested in this conversion is referred to [42, 41], where it was proposed, or
to the review in [22]. We shall take this conversion for granted and focus on FDSs
only, though our results can be interpreted in terms of network coding.

In the network coding literature, coding functions are typically not placed on
vertices, as in Figure 1, but on the edges instead. It is easy to verify that those two
conventions are equivalent from a solvability point of view, provided the network is
modified slightly. For instance, one of the numerous forms of the butterfly network
with coding functions on the edges is given in Figure 2. In that case, s1 still wants to
transmit x1 to d1 and s2 wants to transmit x2 to d2. This time, the bottleneck is the
arc (i3, i

′
3) and the message on that on that arc could be x3 = −x1 − x2 in order to
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Fig. 1. Butterfly network and guessing game on K3.

determine which functions fv can transmit the most information. In particular, the
network coding solvability problem tries to determine whether a certain situation,
with a given set of sources, destinations, and messages, is solvable, i.e., whether all
messages can be transmitted to their destinations.

The network coding solvability problem can be recast in terms of hat games and
fixed points of FDSs as follows [42, 41]. The so-called guessing number [42] of a
directed graph D is the logarithm in base q of the maximum number of fixed points
over all FDSs f : [q]n → [q]n whose interaction graph is a subgraph of D: G(f) ⊆ D.
The guessing number is always upper bounded by the size of a minimum feedback
vertex set of D (a set of vertices whose removal yields an acyclic graph); if equality
holds, we say that D is solvable and the FDS f reaching this bound is called a solution.
Then, a network coding instance N is solvable if and only if the directed graph DN ,
obtained by “gluing” each source-receiver pair into a single vertex, is solvable. For
instance, the canonical example of (linear) network coding is the butterfly network,
depicted in Figure 1(a). A solution to the butterfly network is depicted in the figure.
(All operations are done modulo q.) This can be converted into a problem of the
guessing number on the triangle K3, as seen from Figure 1(b): the FDS f has exactly
q2 fixed points, namely, every x such that x1 + x2 + x3 = 0. The reader interested in
this conversion is referred to [42, 41], where it was proposed, or to the review in [22].
We shall take this conversion for granted and focus on FDSs only, though our results
can be interpreted in terms of network coding.

In the network coding literature, coding functions are typically not placed on
vertices, as in Figure 1, but on the edges instead. It is easy to verify that those two
conventions are equivalent from a solvability point of view, provided the network is
modified slightly. For instance, one of the numerous forms of the butterfly network
with coding functions on the edges is given in Figure 2. In that case, s1 still wants to
transmit x1 to d1 and s2 wants to transmit x2 to d2. This time, the bottleneck is the
arc (i3, i

′
3) and the message on that arc could be x3 = −x1 − x2 in order to solve the

problem.
Linear network coding is the most popular kind of network coding, where the

intermediate nodes can only perform linear combinations of the packets they receive
[33]. The network coding instance N is then linearly solvable if and only if DN admits
a linear solution. Many interesting classes of linearly solvable directed graphs have
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s1

d1

s2

d2

i3

i′3

Fig. 2. The butterfly network with coding functions on the edges.

been given in the literature (see [40, 22]). On the other hand, graphs which are not
linearly solvable have been exhibited in [39, 43, 20].

Index coding is a means to broadcast information to different receivers who have
different partial information [9, 7], which we will only briefly describe. For example,
suppose that two people wish to know some information (x1, x2) ∈ [q]2, but the first
person only has x1 ∈ [q] while the second only has x2 ∈ [q]. We only need to broadcast
x3 = −x1−x2 to both of them so that each can recover the pair (x1, x2). This example
is equivalent to the butterfly network.

The problem of index coding in general is to find the smallest index code, i.e.,
the minimum amount of information to transmit to all destinations so that they all
can gather the same amount of information. Network coding solvability is closely
related to index coding [44, 7]. In particular, the length of a minimal index code (for
a given directed graph) is the same as the information defect [42, 22]. Since a graph is
solvable if and only if it is solvable in the sense of information defect [42, 18], there is
an equivalence between index coding and network coding. Index coding and network
coding were independently proved to be equivalent in [44, 17]; Mazumdar [36] shows
that they are also equivalent to determining the storage capacity. In fact, there are
two additional equivalences: an asymptotic version and a version in the linear case of
the equivalence between network coding and index coding can be found in [22].

1.4. Outline. This paper has three main contributions.
1. We relate the (in)stability of finite dynamical systems to the guessing number,

the information defect, and Winkler’s hat game.
2. We show that the (in)stability of FDSs can be studied by coding theoretic

concepts, such as the covering radius and the remoteness of codes.
3. We investigate the properties of the (in)stability of FDSs based on their in-

teraction graph.
The rest of the paper is organized as follows. We first review the relevant back-

ground in section 2. In section 3, we introduce the guessing dimension and the coset
dimension of an FDS and their counterparts for directed graphs. Based on the coset
dimension, we then refine the known equivalences between guessing number and in-
formation defect in Theorem 1. In section 4, we introduce the instability of FDSs
and we study the stability and the instability of directed graphs. We prove that the
instability always reaches the size of a minimum feedback vertex set in Theorem 2.
We also give some nonstable bounds based only on the size of a minimum feedback
vertex set (and independent on the number of vertices of the graph) in Theorem 3.
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We then relate the stability and the instability to the guessing number in Theorem
4. Finally, we obtain results for linear and affine FDSs in section 5. In Theorem 5,
we exhibit a class of sparse graphs with high girth and high affine (in)stability; our
approach is code-theoretic and uses the guessing dimension. We also prove that the
affine instability is always asymptotically greater than or equal to the linear guessing
number in Theorem 6.

2. Background.

2.1. Notation for directed graphs and finite dynamical systems. Let n
be a positive integer, V = {1, . . . , n}, and D be a (loopless directed) graph on V , i.e.,
D = (V,E) with E ⊆ V 2 \{(v, v) : v ∈ V }. Paths and cycles are always directed. The
girth of D is the minimum length of a cycle in D. The maximum number of vertex
disjoint cycles in D is denoted ν(D). A feedback vertex set is a set of vertices I such
that D− I has no cycles. The minimum size of a feedback vertex set is denoted τ(D).
If J ⊆ V , then D[J ] is the subgraph of D induced by J . If this graph is acyclic, then
the vertices of J can be sorted in acyclic ordering (also referred to as topological sort):
J = {j1, . . . , jk}, where (ja, jb) ∈ E only if a < b. The in-neighborhood of a vertex
v in D is denoted by inn(v), and its in-degree is denoted by ind(v). We denote the
maximum in-degree of D by ∆in(D); similarly, we denote the maximum out-degree
by ∆out(D). We say that a graph D is undirected if for any (u, v) ∈ E, we have
(v, u) ∈ E as well. (In other words, we identify bidirectional edges with undirected
edges.) If D is undirected, then ∆in(D) = ∆out(D) = ∆(D).

Let q ≥ 2, we denote [q] = {0, 1, . . . , q−1}. For all x = (x1, . . . , xn) ∈ [q]n, we use
the following shorthand notation for all J = {j1, . . . , jk} ⊆ V : xJ = (xj1 , . . . , xjk).
For all x, y ∈ [q]n we set ∆(x, y) := {i ∈ [n] : xi 6= yi}. The Hamming distance
between x and y is denoted dH(x, y) = |∆(x, y)|. The Hamming weight of x ∈ [q]n is
wH(x) = {i : xi 6= 0} = dH(x, (0, . . . , 0)). The volume of a ball of Hamming radius t
in [q]n does not depend on its center, and hence we denote it by

VH(q, n, t) = |{x ∈ [q]n : wH(x) ≤ t}| =
t∑

d=0

(
n

d

)
(q − 1)d.

An FDS is any function f : [q]n → [q]n. We denote the set of FDSs f : [q]n → [q]n

by F (n, q). The image of f is denoted by Im(f). We write the FDS as f = (f1, . . . , fn),
where fv : [q]n → [q], v ∈ [n] is a local function of f . We also use the shorthand
notation fJ : [q]n → [q]|J|, fJ = (fj1 , . . . , fjk) for any J = {j1, . . . , jk} ⊆ [n]. We
associate with f a graph G(f), referred to as the interaction graph of f , defined by
the following: the vertex set is V ; and for all u, v ∈ V , there exists an arc (u, v) if
and only if fv depends essentially on xu, i.e., there exist x, y ∈ [q]n that only differ
by xu 6= yu such that fv(x) 6= fv(y). For a graph D, we denote by F (D, q) the set of
FDSs f ∈ F (n, q) with G(f) ⊆ D.

Example 1. We shall illustrate different properties of an FDS by the following
running example. Let q = 2, n = 4, and φ = (φ1, φ2, φ3, φ4) ∈ F (4, 2) be defined as

φ1(x) = x2 + x3 + 1,

φ2(x) = x3 + x1x4,

φ3(x) = x1 + 1,

φ4(x) = x1x2,

where all operations are done modulo 2. The values of φ(x) are listed in Table 1.
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Table 1
The values of φ(x).

x φ(x)
0000 1010
0001 1010
0010 0110
0011 0110
0100 0010
0101 0010
0110 1110
0111 1110
1000 1000
1001 1000
1010 0100
1011 0000
1100 0001
1101 0001
1110 1101
1111 1001

1 2

3 4

Fig. 3. The interaction graph G(φ).

The interaction graph D = G(φ) of φ is depicted in Figure 3. We then have
τ(D) = ν(D) = 2.

If q is a prime power, we shall endow [q] with the finite field structure GF(q).
In this case, we say that f is linear if every local function is a linear combination
of the local variables in x: fv(x) =

∑n
i=1mi,vxi. In other words, f is linear if it is

of the form f(x) = xM for some matrix M ∈ GF(q)n×n. We say that f is affine if
f = xM+y for some matrix M ∈ GF(q)n×n and some vector y ∈ GF(q)n. We denote
the set of linear (affine, respectively) functions f : GF(q)n → GF(q)n by Flin(n, q)
(Faff(n, q), respectively). We shall use the corresponding subscripts throughout this
paper.

2.2. Guessing game. The guessing number comes from the hat game called
“guessing game” [40, 42, 22], where the team wins if and only if all players guess
correctly, and the aim is to maximize the number of winning configurations. More
formally, for any f , the set of fixed points of f is denoted fix(f) = {x ∈ [q]n : f(x) =
x}. Then the guessing number of f is defined by

g(f) := logq |fix(f)|.

Then the q-guessing number of D is g(D, q) := maxf∈F (D,q) g(f).

Example 2 (continued from Example 1). Since φ has exactly one fixed point,
namely, 1000, its guessing number is equal to 0.
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The guessing number has been studied in the context of network coding solvability
[40, 42, 22]. Most importantly,

ν(D) ≤ g(D, q) ≤ τ(D)

for all q ≥ 2. If g(D, q) = τ(D), we then say that D is q-solvable. The guessing
number of the complete graph is g(Kn, q) = n− 1 for all q ≥ 2, where the solution is

fv(x) = −
∑
u6=v

xu mod q,

and hence the complete graph is q-solvable for all q. Moreover, the guessing number
tends to a limit for large q: the guessing number of D is g(D) := supq g(D, q) =
limq→∞ g(D, q) [13]. If g(D) = τ(D), then we say that D is asymptotically solvable.
Clearly, if D is q-solvable for some q, then it is asymptotically solvable. Third, we can
restrict the choice of FDSs to linear ones, thus yielding the linear guessing number
glin(D, q). If glin(D, q) = τ(D), we say that D is q-linearly solvable. We also denote
glin(D) := maxq glin(D, q). It is easy to check that gaff(D, q) = glin(D, q).

The guessing game on the triangle K3 for q = 3 was illustrated on Figure 1.
We consider two interesting families of graphs for the guessing number. First, the

family of odd undirected cycles {C2k+1 : k ≥ 2} satisfies n = 2k + 1 and [42, 13]

ν(C2k+1) = k < g(C2k+1) = k + 1/2 < τ(C2k+1) = k + 1.

These graphs are interesting for they are not asymptotically solvable.
Second, the strong product of two graphsD1 andD2, denoted byD1�D2 is defined

as follows. Its vertex set is the cartesian product V (D1)×V (D2), and there is an arc
from (u1, u2) to (v1, v2) if and only if either u1 = v1 and (u2, v2) ∈ E(D2), or u2 = v2

and (u1, v1) ∈ E(D1), or (u1, v1) ∈ E(D1) and (u2, v2) ∈ E(D2). Equivalently, the
adjacency matrix of the strong product is given by

AD1�D2
= (In1 +AD1)⊗ (In2 +AD2)− In1n2 ,

where ⊗ denotes the Kronecker product of matrices. The graph ~C2
3 = ~C3 � ~C3

is displayed in Figure 4. Then, for every value of the girth γ ≥ 3, the sequence
{~Ckγ : k ≥ 1} satisfies n = γk, ν(~Ckγ ) = γk−1, and

τ(~Ckγ ) = glin(~Ckγ , q) = g(~Ckγ ) = γk − (γ − 1)k

for any prime power q [22]. Hence these graphs are always linearly solvable and their
guessing number is relatively close to the number of vertices.

2.3. Index coding, information defect, and the guessing graph. The q-
information defect of D is defined as the smallest amount of information that the
players in the guessing game need to guess correctly for any configuration of hats.
Suppose a helper outside of the team wants to make the team win the guessing game
for every possible configuration of hats. The helper can give some information to the
whole team, say, it transmits to them the value a ∈ {1, . . . , b}. Based on a, the team
then agrees to use a guessing strategy fa, such that fa(x) = x. For instance, for
D = K3 and q = 3, we see that the players only need one symbol of information to
be correct: if they know the value of x1 + x2 + x3, then they know the color of their
own hats.
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Fig. 4. The graph ~C2
3 with linear guessing number 5. A minimum feedback vertex set is

highlighted.

Formally, the q-information defect is the logarithm in base q of the minimum
number of parts in a partition of [q]n into sets of fixed points [40, 42]:

b(D, q) := min

logq |B| : B ⊆ F (D, q),
⋃
f∈B

fix(f) = [q]n

 .

We always have g(D, q)+b(D, q) ≥ n [22]. If we restrict the set of functions B to only
contain affine functions, then we obtain the q-affine information defect baff(D, q). We
denote the asymptotic information defect of D by b(D) := infq≥2 b(D, q).

Graph solvability is equivalent to graph “information defect” solvability [22]. In
fact, there are three kinds of equivalence between the guessing number and the infor-
mation defect, given below.

1. Solvability equivalence. For any D and q, g(D, q) = τ(D) if and only if
b(D, q) = n− τ(D).

2. Asymptotic equivalence. For any D, b(D) = n− g(D) [22].
3. Linear-affine equivalence. For any D and q, baff(D, q) = n − glin(D, q) (see

[22], for instance).
In particular, for the complete graph Kn, we have b(Kn, q) = 1 = n− τ(Kn) for all q.

The guessing graph G(D, q) is the undirected graph with vertex set [q]n in which
x, y ∈ [q]n are adjacent if and only if there is no f ∈ F (D, q) such that x, y ∈ fix(f).
More concretely, G(D, q) has vertex set [q]n and edge set E =

⋃n
v=1{{x, y} : xinn(v) =

yinn(v), xv 6= yv}. The guessing graph was first introduced in [6, 3], where it was
referred to as “confusion graph.” It was then independently introduced in [22] and
extended in two different fashions in [18, 21]. By definition, any set of fixed points
of some function f ∈ F (D, q) is an independent set of G(D, q). Conversely, any
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1930 MAXIMILIEN GADOULEAU

Table 2
The values of n− dH(x, φ(x)).

x φ(x) n− dH(x, φ(x))
0000 1010 2
0001 1010 1
0010 0110 3
0011 0110 2
0100 0010 2
0101 0010 1
0110 1110 3
0111 1110 2
1000 1000 4
1001 1000 3
1010 0100 1
1011 0000 1
1100 0001 1
1101 0001 2
1110 1101 2
1111 1001 2

independent set of the guessing graph is fixed by some FDS in F (D, q); thus

g(D, q) = logq α(G(D, q)),

b(D, q) = logq χ(G(D, q)),

where α denotes the independence number and χ denotes the chromatic number (see
[22] and [3]).

2.4. Winkler’s hat game. Winkler’s hat game is based on the same setting as
the guessing game, but now the team scores a point for every correct guess. The main
problem is as follows: How many points can the team be guaranteed to score for any
possible configuration of hats? In the language of FDS, let us define the stability of
an FDS f as the number of points the team is guaranteed to score if they use the
guessing strategy f , i.e.,

s(f) := min
x∈[q]n

(n− dH(x, f(x))).

In other words, for any x, f always fixes at least s(f) coordinates of x. We also define
the q-stability of D as s(D, q) = maxf∈F (D,q) s(f).

Example 3 (continued from Examples 1 and 2). Let us determine the stability of
φ. We compute n− dH(x, φ(x)) for all x in Table 2.

We then have s(φ) = 1.

Then on a clique of size q, the optimal solution is to cover all possibilities of the
sum of all xi’s, i.e.,

fv(x) = v −
∑
u 6=v

xu mod q.

This guarantees exactly one correct guess (for v =
∑n
u=1 xu mod q) for any value of

x. By double counting, this is the best possible. We note the similarity between the
solutions for the guessing game and for Winkler’s hat game on the clique. In general,
packing disjoint copies of Kq in the complete graph Kn yields

s(Kn, q) =

⌊
n

q

⌋
.

In particular, s(Kn, q) = 0 if q > n and hence for any D s(D, q) = 0 if q > n.
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Some work has been done on s(D, q), or on determining whether s(D, q) > 0,
in which case D is q-stable. If D is undirected, then s(D, 2) = M , the size of a
maximum matching in D; in general, ν(D) ≤ s(D, 2) ≤ τ(D) [11]. For any q, there
exists a q-stable bipartite undirected graph D (first proved in [11], then refined in
[19]). Moreover, there exists a 4-stable oriented graph [19]. In [19], the authors ask
whether there exists a q-stable oriented graph for all q ≥ 5; we shall give an affirmative
answer to that question in Theorem 5.

Conversely, some graphs have been proved to be not q-stable. IfD is an undirected
tree, then D is not 3-stable [11]. The complete bipartite graph Km,s is not (m+ 2)-
stable for any s ≥ 1 [19]. If τ(D) = 1, then D is not 3-stable [19]. The undirected
cycle Cn is 3-stable if and only if n = 4 or n is divisible by 3; moreover, Cn is not
4-stable for all n [45].

3. The guessing and coset dimensions. We remark that the information
defect is defined for a graph, but cannot be defined for a function, since it considers
arbitrary subsets of F (D, q). To replace it, define the coset dimension of a function
f ∈ F (D, q) as follows:

c(f) := min

{
logq |S| : S ⊆ [q]n,

⋃
a∈S

(fix(f)− a) = [q]n

}
.

Thus, the q-coset dimension of D is

c(D, q) := min
f∈F (D,q)

c(f),

and we also denote c(D) := infq≥2 c(D, q).

Lemma 1. For any D and q,

c(D, q) ≥ b(D, q) ≥ n− g(D, q) ≥ n− τ(D).

Proof. For any f ∈ F (D, q) and any a ∈ [q]n, define fa ∈ F (D, q) by fa(x) =
f(x + a) − a; then fix(fa) = fix(f) − a. Denoting B(f, S) = {fa : a ∈ S} for all
S ⊆ [q]n, we obtain

c(D, q) = min
f,S

{
logq |S| :

⋃
a∈S

fix(fa) = [q]n

}

= min
f,S

logq |B(f, S)| :
⋃

g∈B(f,S)

fix(g) = [q]n


≥ b(D, q).

For any f , the guessing code and the guessing dimension of f are

Cf := {f(x)− x : x ∈ [q]n},
l(f) := logq |Cf |.

Using the guessing game intuition, the guessing code is all the possible ways in which
players guess incorrectly if they use the guessing strategy f .
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1932 MAXIMILIEN GADOULEAU

Table 3
The values of φ(x) − x.

x φ(x) φ(x) − x
0000 1010 1010
0001 1010 1011
0010 0110 0100
0011 0110 0101
0100 0010 0110
0101 0010 0111
0110 1110 1000
0111 1110 1001
1000 1000 0000
1001 1000 0001
1010 0100 1110
1011 0000 1011
1100 0001 1101
1101 0001 1100
1110 1101 0011
1111 1001 0110

Example 4 (continued from Examples 1 through 3). To determine the guessing
code and the guessing dimension of φ, we determine the values of φ(x)−x in Table 3.

Therefore, Cφ = {0, 1}4 \ {0010, 1111}.
The q-guessing dimension of D is then denoted by l(D, q) := minf∈F (D,q) l(f),

and also l(D) := infq≥2 l(D, q). The guessing dimension of a graph is closely related
to the information defect b(D, q).

Lemma 2. For any D and q,

l(D, q) = min

{
logq |S| : S ⊆ [q]n, ∃f ∈ F (D, q) :

⋃
a∈S

fix(f − a) = [q]n

}
,

whence l(D, q) ≥ b(D, q) ≥ n− g(D, q).

Proof. We have⋃
a∈S

fix(f − a) = [q]n ⇔ ∀x ∈ [q]n ∃a ∈ S : x ∈ fix(f − a)

⇔ ∀x ∈ [q]n ∃a ∈ S : f(x)− x = a

⇔ Cf ⊆ S,

and the equation follows.

We refine the triple equivalence between guessing number and information defect
by replacing the information defect by the coset dimension. This is a refinement
because c(D, q) ≥ b(D, q) for all D and q, and similarly in the asymptotic (c(D) ≥
b(D)) and linear (caff(D, q) ≥ baff(D, q)) cases.

Theorem 1. We have three kinds of equivalence.
1. Solvability equivalence. For any D and q, the following are equivalent.

(a) c(D, q) = n− τ(D).
(b) b(D, q) = n− τ(D).
(c) g(D, q) = τ(D).
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2. Asymptotic equivalence. For any D,

c(D) = lim
q→∞

c(D, q) = lim
q→∞

c(D, q),

b(D) = lim
q→∞

b(D, q) = lim
q→∞

b(D, q),

c(D) = b(D) = n− g(D).

3. Linear-affine equivalence. For any D and q,

llin(D, q) = laff(D, q),

clin(D, q) = caff(D, q),

glin(D, q) = gaff(D, q),

laff(D, q) = caff(D, q) = baff(D, q) = n− gaff(D, q).

Proof. 1. Solvability equivalence. By Lemma 1, 1(a) ⇒ 1(b) ⇒ 1(c). Now, if
g(D, q) = τ(D), let fix(f) = {zi : i = 1, . . . , qτ(D)} be an independent set of G(D, q)
of size qτ(D). Let I be a minimum feedback vertex set of D.

First, ziI 6= zjI for all i 6= j. Indeed, the set ∆(zi, zj) contains a cycle of D, and
hence it intersects I. Second, for any aJ ∈ [q]n−τ(D), let a = (0I , aJ). Then for
any i, j, ∆(zi − a, zj − a) = ∆(zi, zj) and hence zi − a 6∼ zj − a. Thus denoting
S := {a : aJ ∈ [q]n−τ(D)}, we have

⋃
a∈S(fix(f) − a) = [q]n and by Lemma 2,

c(D, q) = n− τ(D).
2. Asymptotic equivalence. By Lemma 1, we only need to prove that c(D, q)

tends to n− g(D) as q tends to infinity. We shall adapt the argument (attributed to
Szegedy) in the proof of [4, Proposition 3.12] to prove that

c(D, q) ≤ n− g(D, q) + logq ln qn.

Let Z = fix(f) with f ∈ F (D, q) be an independent set of the guessing graph of size
qg(D,q). Let Q be the family of sequences of [q]n of length s = dqn−g(D,q) ln qne, and
let T ∈ Q maximize the cardinality of the translate Z+T (where we view T as a set).
We then have the following double summation:

Σ :=
∑
S∈Q

∑
x∈[q]n

1{x /∈ Z + S}

=
∑
S∈Q

(qn − |Z + S|)

≥ qns(qn − |Z + T |),

Σ =
∑
x∈[q]n

∑
S∈Q

1{x /∈ Z + S}

=
∑
x∈[q]n

(qn − |Z|)s

= qn(qn − |Z|)s,
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where 1{P} returns 1 when property P is satisfied and 0 otherwise. Thus,

qn − |Z + T | ≤ qn
(

1− qg(D,q)

qn

)s
< qn exp

(
−qg(D,q)−ndqn−g(D,q) ln qne

)
< 1.

We hence obtain Z + T = [q]n and c(D, q) ≤ logq s.
3. Linear-affine equivalence. The equivalences between affine guessing dimension,

coset dimension, and guessing number and their linear counterparts are easy to see
(by translation). Moreover, let f be linear, i.e., f(x) = xM , then

l(f) = c(f) = rank(M − I) = n− g(f).

Problem 1. Can we obtain the counterparts of the solvability equivalence and
of the asymptotic equivalence, if we replace the coset dimension with the guessing
dimension?

4. Stability and instability. For an FDS f , we define the instability of f as

i(f) := min
x∈[q]n

dH(x, f(x)).

Hence, for any x, f is guaranteed to modify at least i(f) coordinates of x.

Example 5 (continued from Examples 1 to 4). Since φ has a fixed point, its in-
stability is equal to zero.

For any graph D, the q-instability of D is i(D, q) := maxf∈F (D,q) i(f), and again
the instability of D is i(D) = maxq≥2 i(D, q).

4.1. General properties.

Proposition 1. For every graph D we have i(D, 2) = s(D, 2). Moreover, for
every graph D and q ≥ 2 we have

i(D, q) ≤ i(D, q + 1),

s(D, q) ≥ s(D, q + 1).

Proof. For every f ∈ F (D, 2), we have i(f) = s(¬f) and ¬f ∈ F (D, 2), and hence
i(D, 2) = s(D, 2) and i(D, 2) = s(D, 2).

For every x ∈ [q+ 1]n let x′ ∈ [q]n be defined by x′i = min(xi, q−1) for all i ∈ [n].
Let f : [q]n → [q]n and let f ′ : [q + 1]n → [q + 1]n be defined by f ′(x) = f(x′) for
all x ∈ [q + 1]n. It is easy to see that G(f ′) = G(f). Furthermore dH(x, f ′(x)) ≥
dH(x′, f(x′)) for all x ∈ [q + 1]n, and thus i(f ′) ≥ i(f). The proof for the stability
number is similar.

Proposition 2. For every graph D and q ≥ 2 we have

ν(D) ≤ i(D, q) ≤ τ(D).

Proof. For a cycle C we have i(C, 2) = 1, by the following function:

fi(x) =

{
¬xn if i = 1,

xi−1 if 2 ≤ i ≤ n.
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Indeed, if x is a fixed point, we have xn + 1 = x1 = x2 = · · · = xn. By Proposition 1,
we obtain iaff(C, q) ≥ 1 for all q ≥ 2 and thus the lower bound is obtained by packing
negative cycles. For the upper bound, let f ∈ F (D, q) and let I be a feedback vertex
set of D with of minimum size. Since D − I has no cycle we deduce that for every
x ∈ [q]I there exists at least one x′ ∈ [q]n such that x′I = x and ∆(x′, f(x′)) ⊆ I.
Then i(D, q) ≤ dH(x′, f(x′)) ≤ |I| = τ(D).

Proposition 3. For every n ≥ q ≥ 2,

i(Kn, q) = n−
⌈
n

q

⌉
.

Proof. Let n = kq + r, where k and r are integers and 0 ≤ r < q. The classical
solution of Winkler’s hat game shows that i(Kp, p) = p − 1 for every p ≥ 2. Thus if
p ≤ n, then i(Kp, n) ≥ p − 1. Therefore, by taking the union of k disjoint copies of
Kq and one residual Kr we obtained a spanning subgraph H of Kn such that if r > 0,

i(Kn, q) ≥ i(H, q) ≥ k(q − 1) + r − 1 = n−
⌈
n

q

⌉
,

and the same end result holds for r = 0.
Conversely, let f ∈ F (Kn, q) with i(f) = i(Kn, q). By double counting, again we

obtain

qni(Kn, q) = qni(f) ≤ n(q − 1)qn−1

showing that i(Kn, q) ≤ bn− n
q c.

For any f , we have s(f)+i(f) ≤ n by definition; this observation is refined below.

Corollary 1. For any D and q, s(D, q) + i(D, q) ≤ n.

4.2. Suprema of stability and instability. We know that the stability s(D, q)
= 0 for q large enough; we shall also prove in Theorem 2 below that i(D, q) = τ(D)
for q large enough. This is particularly interesting when compared to the guessing
number, which does not always reach the feedback bound, for odd cycles, for instance
[40]. Therefore, we also investigate how fast these asymptotic bounds are reached.

For anyD, let E′(D) be the set of chordless cycles ofD, let L(D) be the undirected
graph on E′(D) such that two chordless cycles are adjacent if they meet in at least
one vertex of D, and let χ′(D) be the chromatic number of L(D). In particular, if D
is undirected, E′(D) is the edge set of D, L(D) is the line graph of D, and χ′(D) is
the chromatic index of D. According to Vizing’s theorem, χ′(D) ∈ {∆(D),∆(D)+1}
if D is undirected [10].

Theorem 2. For any graph D,

i(D) = lim
q→∞

i(D, q) = τ(D).

Moreover, we have i(D, q) = τ(D) if q = 2χ
′(D) or if q = 2∆(D) and D is undirected.

Before detailing the proof, we first explain the basic idea. Let C1, . . . , Ck be the
set of all cycles in D. Each cycle has instability equal to 1, meaning that for any
i = 1, . . . , k, there is a function f i ∈ F (Ci, 2) with the following property: for any

xi ∈ [2]|C
i| there exists vi ∈ Ci, where f i(xi) differs from xi. By taking the direct

product of the alphabets x = (x1, . . . , xk) ∈ [2]nk (where we extend each xi to length
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1936 MAXIMILIEN GADOULEAU

n), the resulting function f(x) = (f1(x1), . . . , fk(xk)) has the following property:
for any x, there exist v1, . . . , vk, where f(x) differs from x. Since {v1, . . . , vk} is a
set of vertices which intersects every cycle, they are a feedback vertex set and hence
dH(f(x), x) ≥ |{v1, . . . , vk}| ≥ τ(D).

Proof. If D is acyclic, then i(D, q) = 0 = τ(D) for all Q. Otherwise, by definition,
we can partition the set of chordless cycles into χ = χ′(D) parts

{C1,1, . . . , C1,p1}, . . . , {Cχ,1, . . . , Cχ,pχ}

such that Cα,i, Cα,j are disjoint for all 1 ≤ α ≤ χ and 1 ≤ i < j ≤ pα. Denote each
chordless cycle by

Cα,i = (uα,i1 , . . . , uα,ilα,i).

Let q = 2χ: we then view xv ∈ [q] as xv = (x[v, 1], . . . , x[v, χ]). Then consider the
function f ∈ F (D, q), where

fv(x) = (f [v, 1](x), . . . , f [v, χ](x)),

f [v, α](x) =


¬x[uα,ilα,i , α] if v = uα,i1 ,

x[uα,ik−1, α] if v = uα,ik , k > 1,

0 otherwise.

For any x, let J denote the set of coordinates j such that fj(x) = xj . We claim that
J is acyclic. Indeed, if J contains the chordless cycle Cα,i, then

x[uα,i1 , α] = x[uα,i2 , α] = · · · = x[uα,ilα , α] = ¬x[uα,i1 , α].

Since J is acyclic, its complement is a feedback vertex set, of cardinality at least τ(D).
If D is undirected, for all v ∈ [n] let inn(v) = {u1, . . . , uind(v)} sorted in increasing

order. Then P be the n×∆(D) matrix such that

P (v, d) =

{
ud if 1 ≤ d ≤ ind(v),

0 if d > ind(v).

Also, let Q be the n× n matrix such that for all v and d ≤ ind(v),

Q(P (v, d), v) = d,

and all other entries are zero. Therefore,

P [P (v, d), Q(v, P (v, d))] = v, Q{P (v, d), P [P (v, d), Q(v, P (v, d))]} = d.

Let q = 2∆(D): we then view xv ∈ [q] as xv = (x[v, 1], . . . , x[v,∆(D)]). Consider
the function f ∈ F (D, q), where

fv(x) = (f [v, 1](x), . . . , f [v,∆(D)](x)),

f [v, d](x) =


x[P (v, d), Q(v, P (v, d))] if 1 ≤ P (v, d) < v,

¬x[P (v, d), Q(v, P (v, d))] if v < P (v, d) ≤ n,
0 if P (v, d) = 0.
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Again, for every x, denote the set of coordinates j such that fj(x) = xj by J . We
claim that J is an independent set. Indeed, if J contains the edge {v, P (v, d)} with
P (v, d) < v, then

x[v, d] = f [v, d](x)

= x[P (v, d), Q(v, P (v, d))]

= f [P (v, d), Q(v, P (v, d))](x)

= ¬x[P [P (v, d), Q(v, P (v, d))], Q{P (v, d), P [P (v, d), Q(v, P (v, d))]}]
= ¬x[v, d].

Corollary 2. For any k ≥ 2,

k = i(C2k+1, 2) < g(C2k+1, 2) < k + 1/2 = g(C2k+1) < k + 1 = i(C2k+1).

In particular, there exists a graph D such that for all q large enough, g(D, q) <
i(D, q) = τ(D).

We note that the value of q such that i(D, q) = τ(D) in Theorem 2 is far from
being optimal. For instance, for D = Kn, we have i(Kn, n) = n − 1 = τ(Kn), while
Theorem 2 only implies i(Kn, 2

n−1) = n − 1. In general, the value in Theorem 2 is
exponential in some parameter of D, but we believe that this may be strengthened.

Problem 2. There is an absolute constant c > 0 such that for n large enough,
i(D,nc) = τ(D) for all graphs D on n vertices.

We now move on to the stability. As noted previously, D is not (n+ 1)-stable. In
Theorem 3, we give the first known upper bound on the stability entirely based on the
minimum size of a feedback vertex set of D. In particular, this shows that D is not
Q(τ(D))-stable for some function of τ(D) only (and in particular, this is independent
of n).

Theorem 3. For any D and q and m ≥ 1, let Q(m) = 2 +
∑m
a=1 a

a, then

s(D, q) ≤ τ(D)

b(q − 1)1/τ(D)c ,

s(D,Q(m)) ≤ τ(D)−m,

and in particular D is not Q(τ(D))-stable.

Proof. Let τ = τ(D), I be a minimum feedback vertex set of D, and J = V \ I =
{j1, . . . , jn−τ} in acyclic ordering. Let f ∈ F (D, q) with s(f) = s(D, q).

Claim. For any set X ⊆ [q]τ such that |X| < q, there exists y(X) ∈ [q]n−τ such
that

dH(y(X), fJ(x, y(X))) = n− τ
for all x ∈ X.

Proof of claim. Recursively define y = y(X) ∈ [q]n−τ such that

yj1 /∈ fj1(X),

yj2 /∈ fj2(X, yj1)

...

yjn−τ /∈ fjn−τ (X, yj1 , . . . , yjn−τ−1
).

D
ow

nl
oa

de
d 

10
/0

4/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1938 MAXIMILIEN GADOULEAU

First, let p = b(q−1)1/τc, so that q ≥ pτ +1 and consider the set X = [p]τ ⊆ [q]τ .
Then we claim that there exists x ∈ X such that

dH(x, fI(x, y
(X))) ≥ τ − s(D[I], p).

Indeed, otherwise the function g ∈ F (D[I], p) defined as g(x) = max{p−1, fI(x, y
(X))}

has stability greater than s(D[I], p), which is a contradiction. Thus, s(D, q) ≤
s(D[I], p) ≤ s(Kτ , p) ≤ τ

p .

Second, let q = Q(m) and consider the sets Xl ⊆ [l+1]τ ⊆ [q]τ defined recursively
by X1 = {(0, 0, . . . , 0), (1, 0, . . . , 0)} and for all 2 ≤ l ≤ m,

Al = {x ∈ [q]τ : x1,...,l ∈ [l]τ , xl+1 = · · · = xτ = 0},
Bl = {x ∈ [q]τ : (x1,...,l−1, 0, . . . , 0) ∈ Xl−1, xl = l, xl+1 = · · · = xτ = 0},
Xl = Al ∪Bl.

Then |Xl| = Q(l) − 1 and we claim that for all 1 ≤ l ≤ m, there exists x ∈ Xl such
that

dH(x1,...,l, f1,...,l(x, y
(Xm))) = l.

We prove it by induction on l; the case l = 1 is clear. Suppose it holds for l−1 but not
for l. Note that in Xl, the value of (xl+1, . . . , xτ ) is fixed, so we write fi(x1,...,l) for
any 1 ≤ i ≤ l. Then in Al, there is always one player from 1 to l who guesses correctly,
and hence for every value of x1,...,l−1 ∈ [l]τ , there exists xl such that x1,...,l is guessed
correctly by player l. In other words, fl(x1,...,l−1) ∈ [l] for any x1,...,l−1 ∈ [l]l−1. Now
in Bl, the players 1 to l − 1 cannot always guess correctly, by induction hypothesis.
Thus, there exists z ∈ [l]l−1 such that fl(z) = l, which is a contradiction. Thus,
s(D, q) ≤ τ −m.

Corollary 3. If τ(D) = 1, then s(D, 3) = 0; if τ(D) = 2, then s(D, 7) = 0.
Also, for any D, s(D, 3) ≤ τ(D)− 1, i.e., the τ(D) upper bound on the stability can
only be reached for q = 2.

The first statement of Corollary 3 is tight: the cycle Cn satisfies τ(Cn) = 1 and
s(Cn, 2) = 1. We now prove that the second statement is also tight. For any disjoint
sets L = {l1, l2} and R = {r1, . . . , rb}, the split graph S2,b is the undirected graph
with edges

E = {(u, v) : u 6= v and (u ∈ L or v ∈ L)}.
In other words, S2,b is the complete bipartite graph K2,b with an additional unidrected
edge on the left part.

Proposition 4. Let b = 662

and D = S2,b. Then τ(D) = 2 and s(D, 6) = 1.

Proof. First, we have τ(D) = 2, and hence s(D, 6) ≤ τ(D) − 1 = 1. Let L =
{l1, l2} and R = {r1, . . . , rb} be the set of all functions ri : [6]2 → [6]. We construct a
function f ∈ F (D, 6) with stability 1 as follows. First, fri(xL) = ri(xL) for all ri ∈ R.

Then, we claim that for any y = (y1, . . . , yb), there are at most five possible
choices for xL such that fri(xL) 6= yi for all i = 1, . . . , b. Indeed, suppose fi(x

k
L) 6= yi

for all i = 1, . . . , b and all k ∈ [6]. Then consider ri ∈ R such that ri(x
k
L) = k for all

k: we have ri(x
yi
L ) = yi, which is a contradiction.

Now, we construct fL(x) = (f1(x2), f2(x1)) by fixing xR and assuming that
fri(xL) 6= xri for all i. We then have xL = xkL for some k ∈ {0, . . . , 4}. Depending
on the“shape” of the set X = {x0

L, . . . , x
4
L}, the function fL will behave differently.

For i = 1, 2, let di = |{x0
i , . . . , x

4
i }| denote the number of values taken by the ith
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FDSs, HAT GAMES, AND CODING THEORY 1939

coordinate in X. Without loss, we assume d1 ≤ d2; moreover, we have d1 + d2 ≥ 5,
and hence d2 ≥ 3.

1. d2 = 5. All elements of X have distinct second coordinate values, say,
x0

2 = c0, . . . , x4
2 = c4, then let f1(xa2) = ca, i.e., l1 guesses all elements of

X correctly.
2. d2 = 4. Similarly as above, l1 can guess four elements of X correctly. The

fifth one can then be guessed correctly by l2 instead.
3. d2 = 3. Then it can be easily shown that X can be partitioned in two parts: a

part of three elements, say, x0, x1, x2, with pairwise distinct first coordinate,
and a part with two elements, say, x3, x4, with distinct second coordinate.
Therefore, l1 can guess x0, x1, x2 correctly while l2 can guess x3, x4 correctly
instead.

4.3. Relation with the guessing number. We can relate the guessing number
of a graph with its stability and instability.

Theorem 4. For every graph D we have

g(D, q) ≥ τ(D)− logq

[
qτ(D) − VH(q, τ(D), i(D, q)− 1)

]
,

g(D, q) ≥ τ(D)− logq VH(q, τ(D), τ(D)− s(D, q)).

Proof. We begin with an important property of acyclic sets.
Claim. Let I be a feedback vertex set of D and J = V \ I. Then for any

f ∈ F (D, q), x ∈ [q]I , a ∈ [q]J , there exists x(a) ∈ [q]n such that x
(a)
I = x and

f(x(a))− x(a) = a.

Proof of claim. We sort J in acyclic ordering J = {j1, . . . , jk} and we construct

x
(a)
J recursively. We have

x
(a)
j1

= fj1(xI)− aj1 ,
x

(a)
j2

= fj2(xI , x
(a)
j1

)− aj2
...

x
(a)
jk

= fj1(xI , x
(a)
j1
, . . . , x

(a)
jk−1

)− ajk .

Let I be a feedback vertex set of D of size τ = τ(D) and J = V \ I. Let
f ∈ F (D, q) with maximal instability, and

Y = {y ∈ [q]τ : wH(y) ≥ i(f)}.

By the claim, for every x ∈ [q]I there exists a unique point x′ ∈ [q]n such that
x′I = x and y = f(x′) − x′ satisfies yJ = (0, . . . , 0), and hence yI ∈ Y. The function
x 7→ δ(x) = yI is thus a function from [q]I to Y, and hence there exists a ∈ Y such
that

|δ−1(a)| ≥ |[q]
I |
|Y| =

qτ

qτ − VH(q, τ, i(D, q)− 1)
.

Consider then the FDS f ′ ∈ F (D, q) defined as

f ′v(x) =

{
fv(x)− av if v ∈ I,
fv(x) if v ∈ J.
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For every x ∈ δ−1(a), x′ is a fixed point of f ′. Since x 7→ x′ is an injection, g(f ′) ≥
logq |δ−1(a)|, which combined with the above, proves the result.

The proof for the stability is similar. Let f ∈ F (D, q) with maximal instability,
I and J as above, and

Z = {z ∈ [q]τ : wH(z) ≤ τ − s(f)}.

By the claim, for every x ∈ [q]I there exists a unique point x′′ ∈ [q]n such that
x′′I = x and z = f(x′′)− x′′ satisfies zJ = (1, . . . , 1), and hence zI ∈ Z. The function
x 7→ ε(x) = zI is thus a function from [q]I to Z, and hence there exists b ∈ Z such
that

|ε−1(b)| ≥ |[q]
I |
|Z| =

qτ

VH(q, τ, τ − s(D, q)) .

Consider then f ′ ∈ F (D, q) defined as

f ′′v (x) =

{
fv(x)− bv if v ∈ I,
fv(x)− 1 if v ∈ J.

For every x ∈ ε−1(b), x′′ is a fixed point of f ′′. Since x 7→ x′′ is an injection,
g(f ′′) ≥ logq |ε−1(b)|, which combined with the above, proves the result.

Corollary 4. If i(D, 2) = s(D, 2) = τ(D), then g(D, 2) = τ(D).

The implication does not hold for all q. Indeed, for q large enough we have
i(D, q) = τ(D) for all D, while there are graphs D for which g(D, q) < τ(D) for all
q (see Corollary 2, for example). Moreover, we remark that for q large enough, then
the bounds in Theorem 4 become trivial.

5. Linear and affine (in)stability.

5.1. Digraphs with high affine stability and instability. The canonical
way to obtain a graph which is q-stable for large q is to include a clique of size q, as
seen from section 2.4. Previous work on Winkler’s hat game has shown that graphs
without large cliques may be q-stable for large q as well. For instance, [11] shows that
for any q, there exists a q-stable bipartite graph whose size is doubly exponential in
q. In [19], that construction is refined to a bipartite graph of size only exponential
in q; graphs without very large cliques and with a linear number of vertices are also
designed. Moreover, in [19], the authors exhibit a 4-stable oriented graph (i.e., a
graph without K2, or equivalently a graph with girth of 3 or more), and leave it as
an open problem whether there exist q-stable oriented graphs for all q.

In this section, we give an affirmative answer to that open problem: for any
constant γ, there exist a q-stable graph with girth γ. It is remarkable that the proof
technique is based on the guessing dimension and the coset dimension, which were
used in section 3 to refine the equivalences between the guessing number and the
information defect. The graphs we construct exhibit high (i.e., close to the n/2 upper
bound) binary (in)stability and high (i.e., close to n) asymptotic instability as well.

Theorem 5. For any γ ≥ 3, any ε > 0, and any q ≥ 2 there exists D with girth
γ such that

saff(D, 2) = iaff(D, 2) > (1− ε)n
2
, iaff(D) = τ(D) > (1− ε)n, saff(D, q) > 0.
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The strategy is to recast the problem in terms of metric properties of codes, and
then to use our results on the guessing code. A q-ary code C of length n is a subset
of [q]n. The remoteness and the covering radius of C are, respectively, defined as
[35, 14, 12]

rem(C) := min
y∈[q]n

max
c∈C

dH(c, y),

cr(C) := max
y∈[q]n

min
c∈C

dH(c, y).

The remoteness of C is the smallest r such that all the codewords can be covered by
the same sphere of radius r (in the Hamming metric). Conversely, the covering radius
of C is the smallest r such that spheres of radius r centered around the codewords in
C cover the whole space.

Example 6 (continued from Examples 1 through 5). For Cφ = {0, 1}4\{0010, 1111},
we have cr(Cφ) = 1 and rem(Cφ) = 3.

Lemma 3. For any D and any q,

i(D, q) = max
f∈F (D,q)

cr(Cf ),

s(D, q) = max
f∈F (D,q)

(n− rem(Cf )) .

The same results hold in the affine case.

Proof. We only prove the first equality, the second one being very similarly proved.
First, we can express f as f = φ+ f(0), where φ(0) = 0 and G(f) = G(φ) (where

0 denotes the all-zero vector of length n). Thus, for any graph D, the set F (D, q) can
be partitioned into classes of the form {φ− y : y ∈ [q]n}. Then

i(D, q) = max
φ∈F (D,q),φ(0)=0

max
y∈[q]n

min
x∈[q]n

dH(x, φ(x)− y)

= max
φ∈F (D,q),φ(0)=0

max
y∈[q]n

min
x∈[q]n

dH(φ(x)− x, y)

= max
φ∈F (D,q),φ(0)=0

max
y∈[q]n

min
c∈Cφ

dH(c, y)

= max
φ∈F (D,q),φ(0)=0

cr(Cφ).

Finally, since Cf = Cφ+f(0) = Cφ + f(0), we have cr(Cf ) = cr(Cφ), which concludes
the proof.

If Cf is small, it has a high covering radius, yielding high instability; it also has
low remoteness, thus yielding high stability as well.

Lemma 4. For any D and q,

logq VH(q, n, i(D, q)) ≥ n− l(D, q),
logq(q

n − VH(q, n, n− s(D, q)− 1)) ≥ n− l(D, q).

The same results hold in the affine case.

Proof. The sphere-covering bound [14] states that for any code C of covering
radius ρ, |C|VH(q, n, ρ) ≥ qn. Moreover, if C has remoteness r, then |C|
(qn − VH(q, n, r − 1)) ≥ qn [12]. The results then follow from applying these bounds
to C = Cf of cardinality ql(D,q).
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Proof of Theorem 5. Let H2(p) = −p log2 p−(1−p) log2(1−p) denote the binary

entropy for 0 ≤ p ≤ 1. Let D = ~Ckγ , where k is chosen such that

τ(D) > nmax

{
H2

(
1− ε

2

)
, 1− ε, logq(q − 1)

}
.

By Theorem 1, laff(D, 2) = laff(D, q) = τ(D).
First, by [35, Chapter 10, Corollary 9], we obtain

H2

(
i(D, 2)

n

)
≥ log2 VH(2, n, i(D, 2)) ≥ τ(D) > H2

(
1− ε

2

)
,

and hence i(D, 2) > (1 − ε)n2 . Second, i(D) = τ(D) = n(1 − ε). Third, suppose
s(D, q) = 0, then

logq (qn − VH(q, n, n− s(D, q)− 1)) = logq(q − 1)n < τ(D) = n− l(D, q),

which violates Lemma 4.

5.2. Additional properties. First, note that ilin(D, q) = 0, since any linear
FDS fixes the all-zero vector. Also, from our preliminary results on the stability and
instability, we have iaff(D, 2) = saff(D, 2) and iaff(D, q) ≥ ν(D).

We now prove that the stability of a linear FDS is severely limited by its interac-
tion graph.

Proposition 5. For any linear FDS f ,

s(f) ≤ n−∆out(G(f))− 1.

Proof. We have f(x)− x = xM , where M has support In +AG(f). Therefore,

s(f) = n− max
x∈[q]n

dH(x, f(x)) = n− max
c∈Cf

wH(c).

Since the rows ofM are codewords of Cf , the maximum weight is at least ∆out(G(f))+
1.

This bound is trivially achieved if ∆out(G(f)) = n − 1, in which case s(f) =
0. More interestingly, it is also achieved for the graphs constructed from the cyclic
simplex codes (n = 2r − 1, ∆ = 2r−1 − 1, slin(D, 2) = 2r−1 − 1). See [22] for how
to construct a graph from a cyclic code. In particular, for r = 3 we obtain another
example of an oriented graph D with i(D, 2) = bn/2c, namely, the Paley tournament
on seven vertices displayed on Figure 5, the first example being the directed triangle.

Although we do not know whether the affine instability always reaches the feed-
back upper bound, we can prove that it always exceeds the linear guessing number.

Theorem 6. For any D, iaff(D) := supq≥2 iaff(D, q) ≥ glin(D).

Proof. Due to [50, Theorem 4.3], it is easy to check that glin(D, pm) ≥ glin(D, p)
for any prime power p and any integer m ≥ 1. Therefore, there exists q large enough
so that n logq 2 < ε and n− laff(D, q) = glin(D, q) = glin(D). Then let i := iaff(D, q);

we have VH(q, n, i) ≤ 2nqi and hence by Lemma 4 and Theorem 1,

i+ ε > logq VH(q, n, i) ≥ n− laff(D, q) = glin(D).
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Fig. 5. The Paley tournament on seven vertices with binary instability 3.
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