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Abstract. Let Pfaffian system ω define an intrinsically nonlinear control system which is
invariant under a Lie group of symmetries G. Using the contact geometry of Brunovsky normal
forms and symmetry reduction, this paper solves the problem of constructing subsystems α ⊂ ω
such that α defines a static feedback linearizable control system. A method for representing the
trajectories of ω from those of α using reduction by a distinguished class G of Lie symmetries
is described. A control system will often have a number of inequivalent linearizable subsystems
depending upon the subgroup structure of G. This can be used to obtain a variety of representations
of the system trajectories. In particular, if G is solvable, the construction of trajectories can be
reduced to quadrature. It is shown that the identification of linearizable subsystems in any given
problem can be carried out algorithmically once the explicit Lie algebra of G is known. All the
constructions have been automated using the Maple package DifferentialGeometry. A number of
illustrative examples are given.
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1. Introduction. Given a control system

(1) ẋ = f(t,x,u), x ∈ Rn, u ∈ Rq,

it is significant when there exists a static feedback linearization or, more generally,
when the system is flat. For those nonlinear systems which are not feedback lineariz-
able or flat there has been a question in the literature (for instance, [23], [25], [26]) as
to the existence of subsystems of (1) which are feedback linearizable and then to de-
termine how such structures may be useful in describing the trajectories of (1). In this
paper a complete solution to this problem is given for control systems with symmetry.

To introduce the ideas, consider the control system (see [1])

(2) ẋ = u1 cos θ − v sin θ, ẏ = u1 sin θ + v cos θ, θ̇ = u2, v̇ = −γu1u2 − βv,

representing a simplified model for the guidance of a ship, such as a tanker, at location
(x, y) with orientation θ. Parameter γ 6= 0 is related to the shape of the vessel while
β quantifies hydrodynamic drag. Control u1 represents the surge while u2 controls
the ship’s angular velocity about the point (x, y) and v denotes sway. For all γ 6= 0,
system (2) can be shown to be nonlinearizable by any local change of variables. A
question of interest for this system is trajectory planning [1]. That is, we wish to
prescribe an arbitrary surface path Γ(t) = (x(t), y(t)) and then determine the controls
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202 J. DE DONÁ, TEHSEEN, AND P. J. VASSILIOU

t 7→ (u1(t), u2(t)) that “realize” Γ. If the system were flat1 with flat outputs x and
y, this could be very easily resolved, for in that case, the full system trajectory could
be obtained by differentiation of the path Γ or some concomitants of it. However,
in this case linearization and flatness are not available. Nevertheless, we are able to
make a simple obervation: expressing u1 and v in terms of ẋ, ẏ, and θ from the first
two equations, substituting these into the fourth equation and then, using the third
equation, leads to

(3)
dθ

dt
=

(ÿ + βẏ) cos θ − (ẍ+ βẋ) sin θ
(1− γ)(ẋ cos θ + ẏ sin θ)

,

provided γ 6= 1. While for general choices of path Γ(t) this equation has no solution in
terms of known functions, we have nevertheless made progress. Prescribing Γ(t) gives
a differential equation for θ alone whose (generally numerical) solution determines
the required controls u1(t), u2(t) as well as the rest of the system dynamics. Notice
too that if we are content to approximate a given Γ(t) by a sequence of interpolating
straight line segments of the form t 7→ (ξ0 +tξ, η0 +tη), where ξ0, ξ, η0, η are constants,
then for each such segment, (3) becomes

(4)
dθ

dt
=

β

1− γ

(
η − ξ tan θ
ξ + η tan θ

)
.

Equation (4) has easily obtained elementary function solutions which can be used
to plan the trajectory to arbitrary accuracy by varying the number of straight line
interpolating segments. The main point we wish to make in relation to this example
is that while (2) is not flat (at least for γ 6= 1), we can nevertheless generate the full
system dynamics from the solution of a single ODE for one of the states, namely,
θ. Momentarily, we would like to view this circumstance as a type of generalization
of flatness, which we may temporarily call quasi-flatness: Γ(t) and θ are“quasi-flat
outputs” in that they fully determine the system trajectories but, unlike flat outputs,
a nontrivial ODE must be solved for one of the states (θ).

To bring this point into sharper focus, let us now consider the case γ = 1. Here
the calculations described above lead to an algebraic equation for θ (as opposed to a
differential equation), namely,

(5) tan θ =
ÿ + βẏ

ẍ+ βẋ
.

In other words, the formula (5) proves that (2) is flat in case γ = 1 in that there is
a simple “universal” relationship between Γ and θ, while for γ 6= 1, the relationship
continues to exist and continues to fully determine the system trajectories but is
mediated by the solution of a nonlinear first order ODE.2

Actually, for γ 6= 1, it is not known whether or not (2) is flat though its flatness
seems unlikely. Hence, the reduction of the trajectory planning problem to the differ-
ential equation (3) is a useful simplification—both theoretically and practically—in
the face of the system’s purported lack of flatness.

An important point to be made here is that (2) is simple enough, having a kind
of “triangular” structure, so that these results can be spotted without recourse to

1For information on flat control systems, see [21].
2The existence of formula (5) can be explained by the fact that a fourfold partial prolongation

of system (2) is static feedback linearizable when γ = 1.
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any deep theory. The purpose of this paper is to systematically explore the above
informally described notion of quasi-flatness using differential geometric tools, par-
ticularly Lie symmetry. The main motivation for the study of quasi-flatness is that
while flatness is an interesting and useful property of a nonlinear control system, it
is hampered by being rare. Quasi-flatness is a weaker requirement than flatness and
therefore likely to be more prevalent among control systems of interest. We will argue
in this paper that control systems that are invariant under certain types of Lie group
actions are candidates for quasi-flatness.

We do not want to place too much emphasis on the term “quasi-flatness” and
feel that it is premature to provide a definition in this paper. Instead our approach
will be to identify a distinguished class of Lie group actions, appearing as symmetries
of nonlinear control systems, that we believe capture features of the phenomena that
we have attempted to informally describe in the foregoing discussion. Indeed, we will
show that intrinsically nonlinear control systems that have static feedback linearizable
subsystems have “the quasi-flat property” and this paper provides a solution to the
problem of identifying and constructing such subsystems and showing how they may
be used to describe the trajectories of the original control system.

We now describe our approach and specific results. This paper studies control
systems (1) that are invariant under Lie groups of transformations, that is, control
systems with Lie symmetries. A given abstract control system is unlikely to possess
any nontrivial symmetry. By contrast, among control systems of interest in real ap-
plications, a great many do possess such symmetries due to the fact that they often
arise from physical or geometrical considerations which come with inherent symme-
tries such as, for instance, Galilean, Euclidean, or other invariances. Additionally,
left-invariant control systems on Lie groups are common in both theory and practice.
Therefore it is reasonable to ask, what can we discover about trajectory generation
and the structure of a control system from its Lie symmetries and Lie symmetry
reductions? These questions have been considered in numerous works over the last
few decades beginning with pioneering paper [17]. We refer to [29] and its references
where an overview of these developments is given. We also refer to [37], a companion
to the present paper.

To describe our own approach in slightly more detail, let (M,ω) be a control
system, where M is the manifold of states, controls, and time while ω is the control
system. As intimated in the previous paragraph, our approach to addressing the
question of quasi-flatness first involves the study of control systems that admit a
certain kind of Lie transformation group G acting on M that leaves ω invariant.
We call this Lie transformation group the control admissible symmetries. These, in
particular, generalize the state-space symmetries of [17] and [12]. Second, we shall
require that the quotient (symmetry reduction) ω̄ of the control system ω on M be
a static feedback linearizable control system on the quotient M/G by the G-action.
Subsequently, we make use of the reconstruction theorem of Anderson and Fels [2]
which permits us to construct, for each solution of the feedback linearizable system
ω̄ on M/G, a solution of ω. Due to its feedback linearizability, the trajectories of ω̄
are explicitly constructible and this very often permits an effective simplification in
representing all the trajectories of the original system ω.

We pay particular attention in this paper to showing how to efficiently identify
quotient control systems ω/G on M/G which are static feedback linearizable and
whose solution space has the same cardinality as that of ω. This solution space can
then be lifted to M so as to describe all the trajectories of ω. In this way, one is
able to factor the problem of representing the trajectories of ω into constructing the
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204 J. DE DONÁ, TEHSEEN, AND P. J. VASSILIOU

linearization of ω̄ = ω/G and then solving a system of Lie type [6], [11], [8] “over” each
integral manifold of ω̄. For a given control system with symmetry one usually has some
choice about the quotient ω̄ because the Lie group of control symmetries will have Lie
subgroups and each subgroup will lead to a choice of linearizable quotient. This gives
us a degree of control over the extent to which we must ”solve differential equations”
in order to describe the trajectories of ω. In general we regard the integration of ω̄
to be trivial, like the prescription of Γ(t) in our opening example. The result of the
integration of ω̄ then feeds into the system of Lie type as a set of parameters which is
analogous to the integration of the θ-equation (3). Picturesquely, one can say that the
quotients ω̄ define subsystems α ⊂ ω, whose properties can be designed via control
admissible symmetries.

The abstract notion of decomposing a nonlinear control system S into subsystems
S1, S2, . . . , Sk in which the set of trajectories of S is the ”cascade” of those of the
Si appears to go back to works of Krener [22], Respondek [33], and Nijmeijer [28],
among others. In [17], Grizzle and Marcus, formulated an authoritative differential
geometric structure theory for nonlinear control systems that built on and improved
the general notion of trajectory decomposition of earlier authors. We also here refer
to the textbook [12]. The present paper develops the theory of these pioneering works
in a number of ways, particularly that of [17]. This development is continued in [37].

The amount of integration required to elucidate all the trajectories of ω is con-
trolled by the size and structure of G. It will be seen that the number of components
of the Lie system is equal to the dimension of G and hence one ordinarily requires
dimG to be small. On the other hand, one requires dimG to be large enough so
that ω/G is static feedback linearizable. Hence there is a type of inverse relation
between the amount of quadrature and the requirement that the quotient be static
feedback linearizable. However, a further consideration is that even if dimG is small,
the parametrization of the trajectories of ω/G may thereby be complicated making
the parameters in the Lie system more complex. These are practical considerations
that vary from one problem to the next depending upon the precise control theoretic
question at hand.

We now give an outline of the contents of this paper. Section 2 is mainly concerned
with a brief review of Lie transformation group, Lie symmetry, exterior differential
systems, and an account of aspects of the Anderson–Fels reconstruction theorem, as
described in [2], that we require.

One of the chief goals of this paper is that of identifying and integrating static
feedback linearizable subsystems of intrinsically nonlinear control systems as algorith-
mically and efficiently as possible in order that any nontrivial integration be confined
to representing the solutions of the system of Lie type arising from the reconstruc-
tion theorem. To this end we begin in section 3 to reformulate the theory of static
feedback linearization in terms of contact geometry. Apart from achieving the above
stated goals, the reformulation allows us to unify and elucidate numerous results on
the theme of linearization of control systems and more generally Pfaffian systems.
For instance in Theorem 3.8 we give a simple, geometric characterization of static
feedback linearization of a control system regardless of its local form.

Section 4 solves the aforementioned problem on linearizable subsystems in terms
of the theory given in section 3 and the notion of control admissible symmetries
(Definition 4.8). These generalize the classical state-space symmetries of [17] and [12]
and we will see that the generalization is essential to the capture of the important
invariance properties of control systems. These symmetries, special cases of which also
implicitly appear in [29], may be described as the maximal class of static feedback
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self-equivalences. The main practical outcome of section 4 is that the existence and
structure of feedback linearizable subsystems can be determined literally in a matter of
minutes once one is in possession of the Lie algebra of infinitesimal control admissible
symmetries.

Section 5 is devoted to giving illustrative examples of the theory developed earlier
in the paper. We begin with a simple example of a provably nonflat control system
with two inputs and prove that it has a flat subsystem using a subalgebra of its Lie
algebra of control admissible symmetries. We demonstrate what this implies for the
representation of the system trajectories. Our next example, the Heisenberg control
system discussed in [4, p. 30], illustrates how trajectory generation in a control system
which has a complicated local form can be simplified using symmetry reduction and
reconstruction as developed in sections 2–4. Our final example discusses a more
sophisticated model of ship guidance than the one we described above and explains
the relationship between linearizable subsystems and quasi-flatness.

In this paper we use the language and methods of differential geometry to carry
out our analyses. We assume the reader is familiar with the basic elements of smooth
manifolds, Lie groups, tangent vectors, and differential forms although they will be
briefly recalled in section 2. For those who require it, a rapid, excellent introduction
to most of the relevant notions is given in Chapter 1 of [30]. Many parts of [31], [10],
[13] are also helpful in relation to providing background on geometric methods.

2. Exterior differential systems with symmetry. In this section we briefly
recall the geometric notions used in this paper as well as the results that we shall
require from Anderson and Fels [2]. Let M be a smooth manifold and G a Lie group.
A (left) Lie group action on M is a map µ : G ×M → M such that for all g, h ∈ G
and x ∈M ,

1. µ(e, x) = x,
2. µ(g, µ(h, x)) = µ(gh, x),

where e is the identity element of G. We somtimes write g · x for µ(g, x). If we want
to draw attention to the transformation µ for a fixed g ∈ G then we sometimes write
µg(x) for µ(g, x). That is, µg is a diffeomorphism from M to itself. A geometric
object such as a differential form ω on M is said to be invariant under the G-action
µ if µ∗gω = λω for all g ∈ G and some real-valued function λ on M × G, where µ∗g
denotes the pullback by µg. In this case µg or, briefly, g is said to be a symmetry of
ω. We sometimes say that ω is G-invariant if ω is invariant for all g ∈ G.

We shall use some elements of the theory of exterior differential systems; see [31],
[19]. An exterior differential system (EDS) on manifold M is a graded differential
ideal in the ring of all differential forms on M , denoted Ω∗(M). Let Ωk(M) denote
the set of all differential k-forms on M . The EDS I consists of a direct sum of subsets
Ik ⊂ Ωk(M),

I = I1 ⊕ I2 ⊕ · · · ⊕ In,

where n = dim M . Not all the subsets Ij need be nonempty. The qualification
“differential” in “differential ideal” implies that if θj ∈ Ij then dθj ∈ Ij+1. Given an
EDS I, a local basis B(U) on an open set U ⊂M is a subset B(U) ⊂ I(U) given by

B(U) =
(
θj11 , θ

j2
2 , . . . , θ

jn
n

)
,

where θjkk ∈ Ik(U).
In this paper we are only concerned with Pfaffian systems. Given a subbundle

of I ⊂ T ∗U with U an open subset of manifold M , then there is a differential ideal
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I generated by the sections of I given in a local basis by 1-forms ω1, . . . , ωr defined
over U . That is,

I = {αj ∧ ωj , βj ∧ dωj | αj , βj ∈ Ω∗(U)},

where Ω∗(U) is the set of all differential forms on U . We will generally not be interested
in this object because we are focused on the integral submanifolds of the 1-form
equations

(6) ω1 = 0, ω2 = 0, . . . , ωr = 0,

which is called a Pfaffian system [5]. For a Pfaffian system the important associated
object as far as its integral manifolds are concerned are its structure equations which
can be roughly described as dI mod I1. We will ilustrate this in section 2.1.

Because we shall only consider Pfaffian systems in this paper, we need only be
concerned with I and dI modulo I1 that generate the first two components of the
differential ideal I, that is, the degree 1 and degree 2 components I1 ⊕ I2. We will
not usually explicitly mention I2 and refer to the Pfaffian system by a convenient
generating set {ωj}rj=1 of its degree 1 component. We will often denote a Pfaffian
system by the symbol ω. For background on differential forms and their applications,
see [13], [10]. For background on exterior differential systems, see [31], [19].

Definition 2.1. Let µ : G×M →M be an action of a Lie group G on a smooth
manifold M . Let ω be a Pfaffian system on M .

1. Pfaffian system ω is said to be G-invariant if µ∗gω ⊆ ω for all g ∈ G.
2. If V is a smooth vector field distribution on M then we say that it is G-

invariant or that G constitutes the symmetries of V if µg∗V ⊆ V for all
g ∈ G, where µg∗ denotes the pushforward or induced tangent map of µg.

3. The G-action is said to be free if whenever x ∈ M satisfies µg(x) = x then
g = e := idG.

In practice the Lie symmetry group of a geometric structure on a manifold M
(such as V or ω) is constructed infinitesimally by seeking vector fields X on M such
that LXV ⊆ V, LXω ⊆ ω, where LX denotes the Lie derivative with respect to X.
Composing the flows of such vector fields then gives a local Lie transformation group.
The vector field X in then called an infinitesimal symmetry.

Definition 2.2. A solution or integral submanifold of ω on M is a submanifold
S ⊂ M each of whose tangent spaces is annihilated by ω. In this paper submanifolds
will be images of immersions s : U ⊂ Rp →M and the requirement that Image(U) =
S ⊂M be an integral submanifold is that s∗θ = 0 for all θ ∈ ω; U is an open subset.
The domain of s being p-dimensional implies that the dimension of the image of s is
(at most) p.

It follows from these definitions that if s is an integral manifold of ω then so
is µg ◦ s. All actions of Lie group G on smooth manifold M will be assumed to be
regular, ([30, p. 23, pp. 213–218]), such that the quotient of M by the action of G is
a smooth manifold denoted M/G together with a smooth surjection q : M → M/G
which assigns each point of M to its G-orbit. We will always assume that M/G has
the Hausdorff separation property possibly by restricting it to appropriate open sets.
From now on G will always denote a Lie group acting smoothly, freely, and regularly
on smooth manifold M .

Note that throughout this paper we use braces to denote the linear span of the
enclosed geometric objects. Thus if X1, X2, . . . , Xr are vector fields on a manifold M
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then {X1, X2, . . . , Xr} means the linear span of the Xi over the smooth functions on
M and denotes the distribution whose sections are given by such linear combinations
of the Xi. If the Xi form a basis for a (real) Lie algebra then the same notation
means the linear span over the real numbers of the enclosed vector fields. It should be
clear from the context when the notation refers to a distribution and when it refers
to a Lie algebra. As in the case of vector field distributions, if ω1, ω2, . . . , ωr are
differential p-forms then {ω1, ω2, . . . , ωr} denotes the linear span of the enclosed ωj

over the smooth functions on M .
To motivate the next definition, suppose that q : M →M/G is the quotient map

for the action of Lie group G on M . It induces the pullback q∗ : Ω∗(M/G)→ Ω∗(M)
from forms on M/G to those on M . Hence if ω is a Pfaffian system on M , we can
ask about the existence of a Pfaffian system ω̄ on M/G such that q∗ω̄ ⊆ ω. We
shall see that such a Pfaffian system on the quotient of M by G holds significance for
applications to control theory.

Definition 2.3. Let q : M → M/G be the quotient map for the smooth, regular
Lie group action on M by G. Let ω be a Pfaffian system on M that is invariant
under the action of G. The quotient of ω by the given G-action is the maximal
Pfaffian system ω̄ on M/G such that for all θ̄ ∈ ω̄, q∗θ̄ ∈ ω.

It is instructive to explore this definition further. The following definition is
central.

Definition 2.4 (see [2]). Let M be a smooth manifold with a smooth, regular,
and free action of Lie group G. For definiteness, we assume that G acts on the left.
Let q : M →M/G be the quotient map.

1. A map σ : Ū ⊆M/G→ U ⊂M is said to be a local section (to the action of
G) if q ◦ σ : Ū → Ū is the identity map on Ū , where Ū and U denote open
subsets.

2. Let V ⊂ TM be a distribution and Γ the Lie algebra of infinitesimal generators
of the action of G. We say that G is transverse to V if Γ ∩ V = {0} and
strongly transverse to V if Γ ∩ V(1) = {0}, where V(1) = V + [V,V], the
first derived bundle of V. If V = kerω, we say that G is transverse/strongly
transverse to ω.

3. Let I be an exterior differential system on M . The semibasic k-forms Iksb
satisfy θ(Γ) = 0 for all θ ∈ Ik.

Given the hypotheses imposed on the G-manifold M , then q : M → M/G is
a left-principal G-bundle. A section of q : M/G → M exists if and only if it is
trivial. However, every principal bundle is locally trivial and local sections always
exist. In more detail, if Ū ⊂ M̄ := M/G is open then there is a local trivialization
Φ : q−1(Ū)→ Ū ×G and there are local cross sections σ : Ū → q−1(Ū).

As proven in [2], many properties of the quotient ω̄ can be deduced from the
semibasic forms alone. In particular, if σ is a local section for the action of G then
the quotient ω̄ := ω/G is equal to σ∗ωsb, where ωsb, denotes the semibasic 1-forms.
In this paper we are not concerned with exterior differential systems in general but
only with Pfaffian systems. The quotient of Pfaffian systems need not be a Pfaffian
system. We will assume throughout that the quotient of a Pfaffian system is a Pfaffian
system. In [2, Theorem 5.1], conditions are given such that this is the case, namely,
that G is strongly tranverse to V.

Throughout this paper we are dealing exclusively with the situation where G acts
on M so that the quotient of M by G, denoted M/G, is a smooth manifold. Hence
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the differential of the quotient map

dq : TxM → Tq(x)(M/G)

is onto with dq = Γ—the Lie algebra of infinitesimal generators of the action of G;
see [30, pp. 213–216]. So

dq : TxM/Γx → Tq(x)(M/G)

is an isomorphism. Hence
dq : V/Γ→ dq(V)

is an isomorphism of vector bundles.

Lemma 2.5. Let ω be a Pfaffian system on M invariant under the smooth, regular,
and free action of a Lie group G and q : M →M/G the quotient map. Let distribution
V = kerω. Then dq(V) = ker ω̄.

Proof. Suppose X̄x̄ ∈ dq (Vx), where x̄ = q(x). Then there exist Xx ∈ Vx with
X̄x̄ = dq(Xx) and we have for all θ̄x̄ ∈ ω̄x̄, θ̄x̄(X̄x̄) = θ̄x̄(dq(Xx)) =

(
q∗θ̄
)
x

(Xx) =
θx(Xx) = 0 for some θ ∈ ω by Definition 2.3; so dq(Vx) ⊆ ker ω̄x̄ and this holds for
each x ∈M . Hence dq(V) ⊆ ker ω̄.

Suppose Ȳ ∈ ker ω̄. Then θ̄(Ȳ ) = 0 for all θ̄ ∈ ω̄. With local section σ we have
θ̄ = σ∗θsb, some θsb ∈ ωsb and, hence, 0 = (σ∗θsb) (Ȳ ) = θsb(σ∗Ȳ ). Now it is possible
to show (see proof of Theorem 4.5) that kerωsb = V ⊕ Γ and, hence, σ∗Ȳ ∈ V ⊕ Γ
whence Ȳ = dq

(
σ∗Ȳ

)
∈ dq(V ⊕ Γ) = dq(V). Hence ker ω̄ ⊆ dq(V).

2.1. An example. We illustrate all of the notions introduced so far via a simple
example. The Pfaffian system ω is spanned by the 1-forms

ω1 = dx1 − x2dt, ω
2 = dx2 − x4dt, ω

3 = dx3 − x2
4dt

on R5 with coordinates t, x1, x2, x3, x4. This is a generating set for the degree 1
component I1. The degree 2 component consists of the exterior derivative of ω
modulo I1. We have dω1 = dt ∧ ω2, dω2 = dt ∧ dx4, dω

3 = 2x4dt ∧ dx4, and, hence,

dω mod I1 = {dt ∧ dx4}.

The vector field X = (t2/2)∂x1 + t∂x2 + 2x2∂x3 + ∂x4 is an infinitesimal symmetry of
ω in that

LXω1 = 0, LXω2 = 0, LXω3 = 2ω2,

where LX denotes the Lie derivative with respect to X. The Lie transformation group
acting on R5 that is, generated by X is the R-action

µε(t, x1, x2, x3, x4) =
(
t, x1 +

1
2
εt2, x2 + tε, x3 + 2εx2 + t2ε, x4 + ε

)
and we have µ∗εω

1 = ω1, µ∗εω
2 = ω2, µ∗εω

3 = 2εω2 + ω3. The local first integrals of
X are spanned by the functions

Inv = {tx2 − 2x1, 4x2
1 − 4tx1x2 + t3x3, t2x4 − 2x1}

in the the sense that if ψ is a real-valued smooth function such that Xψ = 0 then
ψ is a smooth function of the elements of Inv. It follows that the functions Inv can
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be taken to be local coordinates on the quotient of R5 by the R-action µ. That is,
q : R5 → R5/R is defined locally by

q(t, x1, x2, x3, x4) =
(
t, 2x1 − tx2, 4x2

1 − 4tx1x2+t3x3, t2x4 − 2x1
)

=
(t, y1, y2, y3).

It can be checked that

σ(t, y1, y2, y3) =
(
t = t, x1 =

1
2
y1, x2 = 0, x3 =

y2 − y2
1

t3
, x4 =

y1 + y3

t2

)
is a (local) section of the action: (q ◦ σ)(t, y1, y2, y3) = (t, y1, y2, y3). It is often
convenient to work with the dual vector field distribution V = kerω. We have

V =
{
∂t + x2∂x1 + x4∂x2 + x2

4∂x3 , ∂x4

}
.

It is easily verified that V is invariant under the R-action: (µε)∗V = V which is re-
flected in the infinitesimal condition [X,V] ⊂ V. If the quotient of a Pfaffian system
is also a Pfaffian system (which we assume throughout this paper) then we can com-
pute the quotient of V by the R-action as follows. Construct a local trivialization
ϕ : q−1(Ū)→ G× Ū , where Ū ⊂ R5/R is an open subset:

ϕ(t, x1, x2, x3, x4) = (x2/t, t, 2x1 − tx2, 4x2
1 − 4tx1x2 + x3, t2x4 − 2x1)

= (z, t, y1, y2, y3) ∈ G× Ū .

Then ϕ∗X = ∂z and

dqV = ϕ∗V mod ϕ∗X =
{
∂t −

1
t
(y1 + y3)∂y1 −

1
t
(4y2

1 − y2
3 − 3y2)∂y2 , ∂y3

}
= V̄.

The quotient Pfaffian system is ω̄ = ann V̄, where

ω̄ =
{
dy2 +

1
t
(4y2

1 − y2
3 − 3y2)dt, dy1 +

1
t
(y1 + y3)dt

}
.

As proven in [2], this can also be constructed by pulling back the semibasic forms by
the local section σ. In this case we calculate that the semibasic 1-forms are spanned
by

ω1
sb = ω1 − t

2
ω2, ω2

sb = ω3 − 2x2

t
ω2.

That is, letting ιX denote the interior product by X, if θ is a 1-form on R5 and
ιXθ = 0 then there are functions a1, a2 on R5 such that θ = a1ω

1
sb + a2ω

2
sb. It

can be verified that
{
σ∗ω1

sb, σ
∗ω2

sb

}
= ω̄. We note that there are no nontrivial

semibasic 2-forms as ιXdt ∧ dx4 6= 0. Because it can be shown that G is strongly
tranverse to V, Theorem 5.1 of [2] guarantees that this quotient ω̄ of ω is a Pfaffian
system, as verified. That is, the quotient of ω by this R-action is determined by
its degree 1 component. An instance of an integral submanifold s : R → R5 is
s(t) = (t, t+ sin t, cos t, (t− sin t cos t)/2, − sin t), meaning s∗ω = 0.

We will often refer to the quotient by Lie group G of distribution V on manifold
M by V/G or by V̄, a distribution on quotient manifold M/G. The quotient ω̄ of
ω by the action of G will sometimes be denoted ω/G. Frequently, we say that the
distribution {∂t + f(t,x,u)∂x, ∂u} whose integral submanifolds are the trajectories
of (1) is a control system.
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Remark 2.6. While symmetry reduction can produce a control system on a lower
dimensional manifold, this doesn’t imply that the quotient system is more tractable
than the original system; in fact, the opposite is very often the case. Therefore for
effective use of symmetry reduction in control we focus on the situation in which while
ω is not static feedback linearizable, we seek a quotient ω̄ that is static feedback
linearizable. We then go on to investigate the consequences of this for trajectory
generation.

2.2. Reduction and reconstruction. It is shown in [2] that under commonly
encountered circumstances the integral manifolds of an EDS I can be constructed
from those of its symmetry reduction I/G by solving an ODE of Lie type. Such
ODE systems form a particularly nice class since they themselves have a reduction
theory which aids their solution [6], [11], [8]. We present this in the context of control
systems.

Theorem 2.7 (see [2]). Let ω be a Pfaffian system on manifold M that is
invariant under the smooth, free, regular action of a Lie group G and such that the
G-action is transverse to ω. Let ω̄ be the quotient of ω on M/G by the G-action and
let s̄ : U ⊆ Rk → Ū ⊂ M/G be an integral manifold of ω̄, where Ū ,U are open sets.
Then

1. there exists a local section σ : Ū ⊂M/G→ U ⊂M to the G-action, where U
is an open set;

2. there exists a map g : U → G such that s(x) = µ(g(x), (σ◦s̄)(x)) is an integral
submanifold of ω for all x ∈ U , where µ : G×M →M is the G-action;

3. the function g is constructed by solving a Frobenius integrable system of Lie
type.

Theorem 2.7 is a specialization of the corresponding theorem in [2], adapted to
our situation. Another important specialization we make is that in this paper we are
dealing with the symmetry reduction of control systems (1) in which certain manifold
coordinates have special inviolable status. In particular we will always require our
group actions to preserve the independent variable, usually time t that appears in (1);
see section 4.

3. Contact geometry and static feedback linearization. This section and
the next are devoted to the task of characterizing static feedback linearizable quotients
(or subsystems) of control systems (1) based on the contact geometry of Brunovsky
normal forms and symmetry reduction. The main result of section 4 is a very sim-
ple method for determining when a given G-invariant control system has a static
feedback G-symmetry reduction based only on knowledge of the Lie algebra of the
infinitesimal generators of the G-action. In this we will be required to reformulate
the theory of static feedback linearization in terms of contact geometry and give new
easily computable criteria for the static feedback linearization of arbitrary smooth
control systems, including time-varying systems. This reformulation is described in
this section and is preparation for the characterization of static feedback linearizable
quotients described in section 4.

The classical problem of linearization is to determine when a (usually) time-
invariant nonlinear control system

(7) ẋ = f(x,u), x ∈ Rn, u ∈ Rq,

can be transformed by a static feedback transformation

(8) t 7→ t, x 7→ x̄ = α(x), u 7→ ū = β(x,u)
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to some member of the family of Brunovsky normal forms which can be viewed as the
family of Pfaffian systems B(κ1, . . . , κq), defined locally in standard jet coordinates as

(9)

ω1
0 = dx1

0 − x1
1dt, ω1

1 = dx1
1 − x1

2dt, . . . , ω1
κ1

= dx1
κ1
− v1dt,

ω2
0 = dx2

0 − x2
1dt, ω2

1 = dx2
1 − x2

2dt, . . . , ω2
κ2

= dx2
κ2
− v2dt,

· · · · · · · · · · · ·
· · · · · · · · · · · ·

ωq0 = dxq0 − x
q
1dt, ωq1 = dxq1 − x

q
2dt, . . . , ωqκq

= dxqκq
− vqdt,

each labeled by the sequence of positive integers κ1, κ2, . . . , κq. Relabeling controls
vj as xjκj+1, one notices immediately that the Brunovsky normal forms are identical
to the partial prolongations of the contact system

(10) {ωj0 = dxj0 − x
j
1 dt}

q
j=1

on the jet space J1(R,Rq) in which ωj0 is prolonged to order κj + 1. For instance,
B(1, 2, 2, 5) is the Pfaffian system

(11)

dx1
0 − x1

1dt,

dx2
0 − x2

1dt, dx
2
1 − x2

2dt,

dx3
0 − x3

1dt, dx
3
1 − x3

2dt,

dx4
0 − x4

1dt, dx
4
1 − x4

2dt, dx
4
2 − x4

3dt, dx
4
3 − x4

4dt, dx
4
4 − x4

5dt.

We say that ω1
0 is unprolonged; ω2

0 , ω
3
0 are each prolonged to order 2 and ω4

0 is pro-
longed to order 5. Some authors refer to this “prolongation” process as “adding
integrators.” A total prolongation of the ωj0 implies that for each j, we prolong the
same number of times, that is, we add the same number of integrators for each j. This
is contrasted with a partial prolongation in which we permit prolongation to different
orders. Pfaffian system (9) is also known as a chained form.

The Pfaffian system (10) is the contact system on jet space J1(R,Rq). The contact
system and its kth-order prolongations are responsible for the geometry of the ambient
jet space Jk(R,Rq).

Dually, we have the contact distribution on J1(R,Rq),

(12) C〈q〉 =
{
∂t + x1

1∂x1
0

+ x2
1∂x2

0
+ · · ·+ xq1∂xq

0
, ∂x1

1
, ∂x2

1
, . . . , ∂xq

1

}
.

Partially prolonging to arbitrary order in any or all “directions” ∂xj
0

produces a con-
trollable linear control system in Brunovsky normal form. We shall adopt the notation
C〈ρ1, ρ2, . . . , ρk〉 for the Brunovsky normal form in which ρ` denotes the “number of
variables of order `.” For instance kerB(1, 2, 2, 5) = C〈1, 2, 0, 0, 1〉. Note that a partial
prolongation of the contact distribution on J1(R,Rq), the contact distribution on a
partial prolongation of jet space J1(R,Rq), and a Brunovsky normal form are different
ways of refering to the same object.3 These terms are used interchangably in this pa-
per. Brunovsky proved the important result that a linear controllable control system
ẋ = A(t)x+B(t)u can be transformed to a Brunovsky normal form B(κ1, κ2, . . . , κq)
for some collection of indices κ1, κ2, . . . , κq. This spawned an active area of research
in which the key problem was that of static feedback linearization.

3The integer q in J1(R,Rq) agrees with the number of entries in B(κ1, κ2, . . . , κq) and with the
sum of entries in C〈ρ1, ρ2, . . . , ρk〉.
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3.1. Geometry of Brunovsky normal forms. While the problem of static
feedback linearization is considered by control theorists to be solved, it appears that
the field has by and large not emphasized its intimate relation to contact geometry.
A number of important practical and conceptual benefits accrue when the underlying
contact geometry of linearizable nonlinear control systems is given greater prominence
as we point out below. A key classical theorem that animates the direction of a good
deal of the work in linearization of control systems is the Goursat normal form and its
generalizations. In due course, it raised a general question in differential geometry as
to how much of the local structure of a subbundle V ⊂ TM of the tangent bundle to
smooth manifold M can be encoded by numerical invariants associated with its de-
rived flag. This is the filtration of the tangent bundle TM of the ambient manifold M
defined by V(j+1) = V(j) +[V(j),V(j)], j ≥ 0, and V(0) := V. Distribution V(i) is called
the ith derived distribution. Such a set of numerical invariants is referred to as the
derived type of V. It is rarely the case that the local structure of V is determined by its
derived type. However the situations for which the derived type is a complete local in-
variant include the most basic theorems of differential geometry such as the Frobenius
theorem, the Pfaff theorem, and the Goursat normal form. In recent years several im-
portant new cases have been added to this short list, effectively providing a geometric
characterization of the contact systems on jet spaces Jk(Rn,Rm). The simplest ex-
ample of a differential system for which the derived type does not determine its local
structure is the family of generic 2-plane fields on any 5-manifold [9]. In this section we
discuss one further case in which the derived type is a complete local invariant, the gen-
eralized Goursat normal form [34], [35]. This theorem provides a geometric characteri-
zation of the partial prolongations of the jet space J1(R,Rq) and inter alia a geometric
formulation of linearization in nonlinear control systems, that is to say, a geometric
formulation of Brunovsky normal forms. We explain here that the problem of static
feedback linearization of control systems (regardless of their local form) can be viewed
as a refinement of this general research program in relation to derived type. This re-
formulation unifies and extends a number of the standard results in control theory
such as the Gardner–Shadwick algorithm [16], the extended Goursat normal form [7],
the Hunt–Su–Meyer [18] and Respondek–Jakubczyk [24] linearization theorems, and
related results. Of immediate relevance for this paper are the benefits it confers on the
question of finding and analyzing linearizable symmetry reductions of control systems.

To explain this, let us first recall the classical Goursat normal form. Let V ⊂ TM
be a smooth, rank 2 subbundle over smooth manifold M such that V is bracket
generating and dimV(i) = 2 + i while V(i) 6= TM . Then there is a generic subset
M̂ ⊆ M such that in a neigborhood of each point of M̂ there are local coordinates
t, x0, x1, x2, . . . xk such that V has local expression

(13) C〈0, 0, . . . , 0, 1〉 =

∂t +
k∑
j=1

xj∂xj−1 , ∂xk

 ,

where k = dimM − 2. That is, V is locally equivalent to C〈0, 0, . . . , 0, 1〉 on M̂ , where
k − 1 zeros precede the final entry, 1.

The Goursat normal form solves the recognition problem of when differential sys-
tem V can be identified with the contact distribution (13) via a local diffeomorphism
of M in terms of a property of its derived flag. The generalized Goursat normal form
does the same job in the case distribution (13) is replaced by the partial prolongations
of the contact distribution on jet space J1(R,Rq) with q > 1, defined by (12).
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This is a much more delicate task involving more subtle invariants but the end
result is an analogous theorem. An example of a partial prolongation of (12) is given
by
(14)
C〈1, 2, 0, 0, 1〉 =

{
∂t + x1

1∂x1
0

+ x2
1∂x2

0
+ x2

2∂x2
1

+ x3
1∂x3

1
+ x3

2∂x3
1

+ x4
1∂x4

0
+ x4

2∂x4
1

+ x4
3∂x4

2
+ x4

4∂x4
3

+ x4
5∂x4

4
, ∂x1

1
, ∂x2

2
, ∂x3

2
, ∂x4

5

}
in which there is one “dependent variable of order 1,” two of order 2, and one of order
5 (so q = 4). The notation C〈1, 2, 0, 0, 1〉 denotes one dependent variable of order
1 (1st element), two dependent variables of order 2 (2nd element), zero dependent
variables of orders 3 and 4 (3rd and 4th elements), and one variable of order 5 (5th
element). Recall that ker B(1, 2, 2, 5) = C〈1, 2, 0, 0, 1〉; cf. (14) and (11).

We are now ready to describe the aforementioned generalized Goursat normal
form. This leads to a procedure based on the refined derived type [35] of a subbundle
for recognizing subbundles as partial prolongations in terms of natural numerical
invariants associated to the derived flag. It permits us to construct equivalences that
put no restriction on the local form of the subbundle under consideration. This is
important for our subsequent work. We begin with an introduction to the basic tools
required.

Suppose M is a smooth manifold and V ⊂ TM a smooth subbundle of its tangent
bundle. The structure tensor is the map δ : Λ2V → TM/V defined by

δ(X,Y ) = [X,Y ] mod V for all X,Y ∈ V.

In more detail, suppose X1, . . . , Xr is a basis for V and ω1, . . . , ωr is the dual basis
for its dual, V∗. Suppose Z1, . . . , Zs is a basis for TM/V such that [Xi, Xj ] ≡ ckijZk
mod V for some functions ckij on M . Then δ = ckijω

i ∧ ωj ⊗ Zk, that is, a section
of Λ2V∗ ⊗ TM/V. The structure tensor encodes important information about a sub-
bundle, the most obvious of which is the extent to which it fails to be Frobenius
integrable. Let us define the map ζ : V → Hom(V, TM/V) by ζ(X)(Y ) = δ(X,Y ).

For each x ∈ M , let Sx = {v ∈ Vx\0 | ζ(v) has less than generic rank}. Then
Sx is the zero set of homogeneous polynomials and so defines a subvariety of the
projectivization PVx of Vx. We call Sing(V) = ∪x∈MSx the singular variety of V. For
X ∈ V the matrix of the homomorphism ζ(X) will be called the polar matrix of [X] ∈
PV. There is a map degV : PV → N well defined by degV([X]) = rank ζ(X) for [X] ∈
PV. We shall call degV([X]) the degree of [X] (relative to V). Function degV([X]) is
a diffeomorphism invariant: degφ∗V([φ∗X]) = degV([X]). Hence the singular variety
Sing(V) is also a diffeomorphism invariant.

The computation of the singular variety for any given subbundle V ⊂ TM is
algorithmic. It involves only differentiation and commutative algebra operations.
One computes the determinantal variety of the polar matrix for generic [X]; see [34],
[35] for more details and examples.

Recall that an important invariant object associated with any distribution is its
Cauchy bundle. For V ⊆ TM , by CharV we denote the Cauchy characteristics of V,
that is, CharV = {X ∈ V | [X,V] ⊆ V}. If V is such that all derived bundles V(j) and
all their Cauchy characteristics CharV(j) have constant rank on M then we say that
V is totally regular. In this case we refer to CharV(j) as the Cauchy bundle of V(j).

The aforemention singular bundle has a natual counterpart in which the quotient
V/CharV replaces V. In this case, if Sing(V/CharV) is not empty then each of its
points has positive degree.
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Definition 3.1 (resolvent bundle). Suppose V ⊂ TM is totally regular of rank
c + q + 1, q ≥ 2, c ≥ 0, dimM = c + 2q + 1. Let Ṽ = V/CharV and suppose further
that V satisfies

(a) dim CharV = c, V(1) = TM ;
(b) Sing(Ṽ)|x = PB̃|x ≈ RPq−1 for each x ∈M and some rank q subbundle B̃ ⊂ Ṽ.

Then we call (V,PB̃) a Weber structure of rank q on M .
Given a Weber structure (V,PB̃), let R(V) ⊂ V denote the largest subbundle such that

π
(
R(V)

)
= B̃,

where π : V → V/CharV is the natural projection. We call the rank q + c bundle
R(V) the resolvent bundle associated with the Weber structure (V,PB̃). The bundle
B̃ determined by the singular variety of Ṽ will be called the singular subbundle of the
Weber structure. A Weber structure will be said to be integrable if its resolvent bundle
is integrable.

An integrable Weber structure descends to the quotient of M by the leaves of
CharV to be the contact bundle on J1(R,Rq).

Proposition 3.2 (see [34]). If (V,PB̃) is an integrable Weber structure then its
resolvent R(V) ⊂ V is the unique maximal integrable subbundle.

It is important to relate a given partial prolongation to its derived type. For this
it is convenient to introduce the notions of velocity and deceleration of a subbundle.

Definition 3.3. Let V ⊂ TM be a totally regular subbundle. The velocity of V
is the ordered list of k integers

vel(V) = 〈∆1,∆2, . . . ,∆k〉, where ∆j = mj −mj−1, 1 ≤ j ≤ k,

where mj = dimV(j).
The deceleration of V is the ordered list of k integers

decel(V) = 〈−∆2
2,−∆2

3, . . . ,−∆2
k, ∆k〉, where ∆2

j = ∆j−∆j−1.

The notions of velocity and deceleration are refinements of the well-known growth
vector of a subbundle. If we think of the growth vector as a type of “displacement” or
“distance” then the notions of velocity and deceleration acquire a natural meaning.
We will see that the deceleration vector is a complete invariant of a partial prolonga-
tion except when ∆k > 1, in which case one must also add that the resolvent bundle
be integrable.

To recognize when a given subbundle has or has not the derived type of a partial
prolongation we introduce one further canonically associated subbundle that plays a
crucial role.

Definition 3.4. If V ⊂ TM is a totally regular subbundle of derived length k we
let CharV(j)

j−1 denote the intersections

CharV(j)
j−1 = V(j−1) ∩ CharV(j), 1 ≤ j ≤ k − 1.

Let
χjj−1 = dim CharV(j)

j−1, 1 ≤ j ≤ k − 1.
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We shall call the integers {mj , χ
0, χj , χjj−1}

k−1
j=1 the type numbers of V ⊂ TM and

the list of lists

dr(V) =
[ [
m0, χ

0], [m1, χ
1
0, χ

1], [m2, χ
2
1, χ

2], . . . , [mk−1, χ
k−1
k−2, χ

k−1], [mk, χ
k
] ]

as the refined derived type of V.

It is easy to see that in every partial prolongation expressed in canonical contact
coordinates, subbundles CharV(j)

j−1 are nontrivial and integrable, an invariant property
of V. Furthermore, there are simple relationships between the type numbers in any
partial prolongation thereby providing further invariants for the local equivalence
problem.

Proposition 3.5 (see [34]). Suppose V is a partial prolongation of the contact
distribution of C〈q〉 on J1(R,Rq). Then the type numbers mj , χ

j , χjj−1 comprising
the refined derived type dr(V) satisfy

χj = 2mj −mj+1 − 1, 0 ≤ j ≤ k − 1,

χii−1 = mi−1 − 1, 1 ≤ i ≤ k − 1,

where k is the derived length of V.

Definition 3.6. Say that V ⊂ TM has the refined derived type of a partial pro-
longation (of the contact distribution on J1(R,Rq)) if its type numbers mj , χ

j , χii−1
are those of some partial prolongation, which then necessarily satisfy the equalities in
Proposition 3.5.

Definition 3.7. A totally regular subbundle V ⊂ TM of derived length k will be
called a Goursat bundle with deceleration σ = 〈ρ1, ρ2, . . . , ρk〉 if

1. V has the refined derived type of a partial prolongation with signature σ =
decel(V);

2. each intersection CharV(i)
i−1 is an integrable subbundle;

3. in the case ∆k > 1, then V(k−1) determines an integrable Weber structure of
rank ∆k.

The recognition problem for partial prolongations is solved by the generalized
Goursat normal form.

Theorem 3.8 (generalized Goursat normal form [34]). Let V ⊂ TM be a Gour-
sat bundle over manifold M of derived length k > 1, and signature σ = decel(V).
Then there is an open, dense subset M̂ ⊆ M such that the restriction of V to M̂ is
locally equivalent to C(σ). Conversely any partial prolongation of C〈q〉 is a Goursat
bundle.

A partial prolongation is generically classified, up to a local diffeomorphism of
the ambient manifold, by its deceleration vector. For this reason the deceleration
of a Goursat bundle V will sometimes be called its signature, a unique identifier of
its local diffeomorphism class. If V is a Goursat bundle and nonnegative integer ρj
is the jth component of its signature, then V is locally diffeomorphic to a partial
prolongation with ρj dependent variables of order j. The theorem has a counterpart
which provides an efficient procedure, Contact, for constructing an equivalence to
C(σ), where σ = decel(V) is the signature of V. Procedure Contact is described in
detail in [35], where its proof of correctness is given, and will be used in this paper. The
basic result is that one characterizes the total differential operators and the function
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spaces that are used to generate the equivalences by differentiation. The first integrals
of the resolvent bundle and those of the fundamental bundles Ξ(j)

j−1(V)/Ξ(j)(V) [35] are

the required functions, where Ξ(j)(V) = ann CharV(j) and Ξ(j)
j−1(V) = ann CharV(j)

j−1.
If ∆k = 1 then the resolvent is replaced by another integrable distribution, Πk. It is
defined in [34], and illustrated in [35] and [36]. Further details, proofs of all results,
and illustrative examples can be found in the previously named references.

3.2. Extended static feedback transformations. The generalized Goursat
normal form primarily solves the problem of general equivalence of a differential system
(M,V) to a partial prolongation C(σ) of the contact distribution C〈q〉, that is, the
existence of some local diffeomorphism ϕ : M → Jσ(R,Rq) such that ϕ∗V = C〈σ〉.
If such an equivalence between (M,V) and (Jσ(R,Rq), C〈σ〉) exists then there also
exists an infinite dimensional family of equivalences since the contact transformations
form an infinite Lie pseudogroup. If (M,V) is a control system then it is of great
importance to know that within the infinite dimensional family of equivalences at
least one can be chosen to be an extended static feedback transformation, which is
a natural and simple generalization of static feedback transformation to the case of
time-varying control.

Definition 3.9. If (M,V) is the distribution associated with control system (1)
then locally there are submanifolds X(M), the submanifold of states and U(M), the
submanifold of controls such that locally M = R×X(M)×U(M), where the factor R
is the time coordinate space.

From now on, when distribution V or Pfaffian system ω define a control system
on manifold M then M is to be viewed as the local product of the manifold of
states, controls, and time and we use the notation M =

loc
R × X(M) × U(M), where

dim X(M) = n, dim U(M) = q.

Definition 3.10 (extended static feedback transformations). A local diffeomor-
phism of the manifold M =

loc
R×X(M)×U(M) of states, controls, and time, x, u, t

of the form
t 7→ t, x 7→ x̄ = α(t,x), u 7→ ū = β(t,x,u)

identifying a pair of control systems

{∂t + f(t,x,u)∂x, ∂u} and {∂t + f̄(t, x̄, ū)∂x̄, ∂ū}

will be called an extended static feedback transformation (ESFT).

The existence of an ESFT identifying a control system to a Brunovsky normal
form can be usefully established in terms of the generalized Goursat normal form.

Theorem 3.11. Let V = {∂t + f(t,x,u)∂x, ∂u} be a control system defining a
totally regular subbundle of TM , where M =

loc
R × X(M) × U(M), dim X(M) = n,

dim U(M) = q. Suppose (M,V) is a Goursat bundle. Then it is equivalent to a
Brunovsky normal form C〈σ〉 via local diffeomorphism ϕ : M → Jσ(R,Rq), ϕ∗C〈σ〉,
with derived length k > 1. Furthermore, ϕ can be chosen to be an extended static
feedback transformation if and only if

(1) {∂u} ⊆ CharV(1)
0 ,

(2) dt ∈ ann CharV(k−1).

Proof. Suppose ϕ is an ESFT identifying (M,V) with Brunovsky normal form
(Jσ(R,Rq), C(σ)). Then ϕ has the form

(15) (t, x, u) 7→ (t, α(t,x), β(t,x,u)) = (x, zpjp , z
p
kp

), 0 ≤ jp ≤ kp − 1,
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where zpjp , z
p
kp

are the standard coordinates on Jσ(R,Rq). Here p is an index for the
contact coordinates of order kp; the largest of these is equal to the derived length of V.
In contact coordinates, x can be taken to be the parameter along the trajectories of
C〈σ〉 and by explicit computation one sees that it is a first integral of Char C〈σ〉(k−1).
Hence ϕ∗x = t is a first integral of CharV(k−1) since ϕ identifies Cauchy bundles,
hence (2) holds.

Again by an explicit computation, it can be verified that zpjp , 0 ≤ jp ≤ kp − 1,
are first integrals of Char C〈σ〉(1)

0 and hence ϕ∗zpjp = α(t,x) span the first integrals of

CharV(1). The elements of CharV(1)
0 are spanned by vector fields

Y = T∂t +
n∑
i=1

Ai∂xi
+

q∑
`=1

B`∂u`
.

We have (dα)(Y ) = 0, and we deduce that T = 0 (since t is a first integral of
CharV(1) ⊂ CharV(k−1)) and

∂(α1, α2, . . . , αn)
∂(x1, x2, . . . , xn)

A = 0,

where A =
(
A1 A2 · · · An

)T . It follows that A = 0 since the components of
α are functionally independent. Hence CharV(1)

0 contains vector fields of the form
Y =

∑q
`=1B`∂u`

only. Let H be the set of all vector fields of the form {Ys = B`s∂u`
} ⊆

CharV(1)
0 which have the n+1 functions (t, α(t,x)) as functionally independent first

integrals. Because CharV(1)
0 is Frobenius integrable, we have H(∞) ⊆ CharV(1)

0 .
Suppose H(∞) 6= {∂u1 , ∂u2 , . . . , ∂uq}. Then there is a first integral of H which has
u-dependence which contradicts the functional form of ϕ. Hence (1) follows.

Conversely suppose hypotheses (1) and (2) of the theorem statement hold with
(M,V) a Goursat manifold so that local diffeomorphism ϕ exists which identifies V
with partial prolongation C〈σ〉. By the proof of correctness of procedure Contact [35,
pp. 286–287], hypothesis (2) implies that ϕ∗x = t can be taken to be an independent
variable in the image system C〈σ〉, that is, a parameter along the trajectories of V.
Further, according to procedure Contact, the components of the transformation to
Brunovsky normal are constructed by differentiating the fundamental functions of
order j, ψ`j ,j0 , 1 ≤ `j ≤ ρj , by the total differential operator Z:

ψ
`j ,j
0 , ψ

`j ,j
1 = Zψ`j ,j0 , . . . , ψ

`j ,j
j = Zψ`j ,jj−1.

The proof of Theorem 4.2 in [35] shows that the functions {ψ`j ,js }j−1
s=0 are first integrals

of CharV(1)
0 . Hypothesis (1) in the theorem statement therefore allows us to conclude

that ϕ has the form (15). Hence ϕ is an ESFT.

4. Linearizable quotients. Flat quotients. If an invariant control system is
not static feedback linearizable or even flat, it is desirable to know of the existence
of static feedback linearizable subsystems. Otherwise, it is desirable to know of the
existence of flat subsystems. In either case it would be useful to have an a priori
algorithmic test for the existence of such quotients, that is, without the necessity of
constructing the quotient first.

In this section we use the results of section 3 to give such an a priori check for the
existence of static feedback linearizable subsystems only using as data our knowledge
of the Lie algebra of infinitesimal generators of the symmetries of the control system.
To establish this, we introduce a slight refinement of the notion of Goursat bundle.
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Definition 4.1. Let (M,V) be a totally regular distribution over manifold M .
We say that V is a relative Goursat bundle if its type numbers satisfy Proposition 3.5
and items 2 and 3 of Definition 3.7 are satisfied.

If ∆ ⊂ TM is a (constant rank) integrable, smooth distribution then we have
the following equivalence relation. For all x, x′ ∈ M we say x ∼ x′ if and only if
x and x′ lie on the same maximal, connected, integral submanifold of ∆. The set
of equivalence classes M/∆ may not have the structure of a smooth manifold. Call
∆ regular if M/∆, endowed with the quotient topology, can be given the structure
of a smooth manifold such that the natural projection π : M → M/∆ is a smooth
submersion [32, Chapter 1].

If V ⊂ TM is a distribution we shall henceforth assume that CharV is regular
in the above sense and denote the quotient map πV : M → M/CharV. There is a
Pfaffian system ϑ̄ on M/CharV which is the quotient of ϑ = annV by the equivalence
relation ∼; see also [19, pp. 209–212]. Let us denote ker ϑ̄ by V̄.

Theorem 4.2. Let (M,V) be a totally regular, bracket generating distribution
with type numbers mj , χ

j , χii−1 and suppose CharV is regular with dim CharV = c >
0. Then the quotient distribution V̄ has type numbers m̄j , χ̄

j , χ̄ii−1 satisfying

(16) mj − m̄j = χj − χ̄j = χii−1 − χ̄ii−1 = c, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ k − 1.

If V is a relative Goursat bundle on M then V̄ will be a Goursat bundle on M/CharV.

Proof. Since CharV is regular, we have a smooth submersion πV and hence for
each p ∈M ,

dπV : TpM → TπV(p) (M/CharV)

is onto with ker (dπV) = CharV. Hence,

dπV : V/CharV → dπV(V)

is an isomorphism of vector bundles. Let (U, x1, . . . , xm) be a chart containing p ∈M ,
where m = dimM and U ⊂ M is open. By the Frobenius theorem, [30], there is a
chart (V, y1, . . . , ym−c, z1, . . . , zc), V ⊂ M an open set with U ∩ V 6= ∅, where the
transition function

τ(x) = (y1(x), . . . , ym−c(x), z1(x), . . . , zc(x))

is such that the yj are independent first integrals of CharV. We can change basis in V
such that there is a distribution P satisfying V = P⊕CharV, that is P∩CharV = {0}.
Expressing V in the coordinates (y, z), it is not difficult to show, by recalling that the
ya are first integrals of CharV, that CharV = {∂z1 , . . . , ∂zc} and hence there are
functions η, ζ such that locally

V = P ⊕ CharV =


m−c∑
b=1

ηb`(y, z)∂yb +
c∑
j=1

ζj` (y, z)∂zj


r

`=1

⊕ {∂z1 , . . . , ∂zc},

where r is defined by dimV = r + c. We can further refine the basis in V so that
there are no components in P in directions ∂zj and that furthermore the basis of P
is resolved,

P =

{
Y1 = ∂y1 +

m−c∑
`=h

η̄`1(y, z)∂y` , . . . , Yr = ∂yr +
m−c∑
`=h

η̄`r(y, z)∂y`

}
, h = m−c−r+1.
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Since [CharV,V] ⊆ V, it follows that ∂zj η̄`α = 0. Moreover, in this local coordi-
nate system and basis for V, we have shown that [Y`, ∂zj ] = 0 for all `, j. Since
{∂z1 , . . . , ∂zc} = ker (dπV) we have dπV(P) = dπV(V) and similarly to Lemma 2.5,
we have ker ϑ̄ = dπV(V). But in the given local coordinates on M , dπV acts trivially
on P and we can write dπV(V) = P. Letting Z = CharV, we have [P(i),Z(i)] = 0 and
P(i) ∩ Z(i) = 0 for all i ≥ 0. Then using the constructed basis for V, we deduce that

(17)
dimV(i) = dimP(i) + c, dim CharV(j) = dim CharP(j) + c,

dim CharV(i)
i−1 = dim CharP(i)

i−1 + c.

Distribution V̄ = P has type numbers m̄j , χ̄
j , χ̄ii−1 while V = P⊕Z has type numbers

mj , χ
j , χii−1. The relation between the two sets of type numbers follows from (17).

If V is a relative Goursat bundle then it follows from (17) that the type numbers
of V̄ will satisfy Proposition 3.5. This together with the fact that Char V̄ = {0} im-
plies that V̄ will have the type numbers of a partial prolongation and hence will be a
Goursat bundle on M/CharV according to Definitions 3.7 and 4.1.

Proposition 4.3. If (M,V) is a relative Goursat bundle then

decelV = decel ((dπV)V) .

That is, the signature of V and that of its quotient by CharV both agree.

Proof. From the previous theorem, we have m̄j = mj − c. Since the deceleration
of any bundle is a first or second difference of the derived flag bundle ranks, m̄j ,mj ,
we deduce that the decelerations of V and V/CharV are identical.

Lemma 4.4. Let V ⊂ TM be a smooth distribution invariant under the free action
of Lie group G with Lie algebra Γ. If G is strongly transverse to V and CharV = {0}
then Char (V ⊕ Γ) = Γ.

Proof. Denote V ⊕ Γ by V̂. Certainly Γ ⊆ Char V̂ but suppose Char V̂ contains
an element ξ /∈ Γ. Then ξ = η + γ, where 0 6= η ∈ V and γ ∈ Γ. Let X ∈ V be
an arbitrary nonzero element. Then [X, ξ] = η1 + γ1 for some η1 ∈ V and γ1 ∈ Γ.
Now [X, ξ] = [X, η] + [X, γ] and it is easy to see that the right-hand side must be an
element of V(1). It then follows that γ1 ∈ V(1) and by strong transversality we deduce
that γ1 = 0. Since X is arbitrary this implies that ξ ∈ CharV and hence ξ = 0,
contradicting ξ /∈ Γ.

Theorem 4.5 (existence of linearizable quotients). Let V ⊂ TM be a subbundle
over smooth manifold M that is invariant under the smooth, free, regular action of
a Lie group G with Lie algebra Γ, where G is strongly transverse to V and suppose
CharV = {0}. Then

(1) the semibasic 1-forms for the G-action satisfy kerωsb = V ⊕ Γ;
(2) if (M,V ⊕ Γ) is a relative Goursat bundle then the quotient (M/G,V/G) of

(M,V) is locally equivalent to a partial prolongation of the contact distribution
on J1(R,Rq), some q ≥ 1;

(3) if (M,V ⊕Γ) is a relative Goursat bundle then signature σ = decel
(
V ⊕Γ

)
=

decel(V/G), whence (M/G,V/G) ' C〈σ〉.
Proof. Let ω = annV, q : M → M/G the quotient map, and ω̄ = ω/G the

quotient of ω by the action of G. Recall that q∗ω̄ ⊂ ω; in particular, V ⊂ ker q∗ω̄.
We also have Γ ⊂ ker q∗ω̄ since (q∗ω̄) (v) = ω̄(q∗v) = ω̄(0) = 0 for all v ∈ Γ. Hence
V ⊕ Γ ⊆ ker q∗ω̄.
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Lemma 4.6. q∗ω̄ = ωsb.

Proof of Lemma 4.6. Since (q∗ω̄)(Γ) = 0 we have q∗ω̄ ⊆ ωsb. We invoke the
following elementary fact: If f : M → N is a smooth surjective submersion with
dimN = n and Ψ ⊂ T ∗N is a rank k ≤ n subbundle then f∗Ψ ⊂ T ∗M has rank
k. Then from [2, Theorem 5.1], we have that dim ω̄ = dimω − dim Γ = dimωsb and
using the above fact, Lemma 4.6 is proven.

Returning now to the proof of Theorem 4.5, we have dim ker q∗ω̄ = dimM −
dim q∗ω̄ = dimM − dimωsb = dimV + dim Γ = dim (V ⊕ Γ) . We have therefore
proven that ker q∗ω̄ = kerωsb = V ⊕ Γ, which is item (1). Now suppose that V ⊕ Γ
is a relative Goursat bundle. By Lemma 4.4 we have Char (V ⊕ Γ) = Γ and hence
by application of Theorem 4.2, dq(V ⊕ Γ) = dq(V) has the refined derived type of
a partial prolongation and hence is a Goursat bundle. By Theorem 3.8, this proves
item (2). From this and Proposition 4.3, the quotient dq (V) /Char(dq(V)) is locally
equivalent to C〈σ〉, where σ = decel(V ⊕ Γ), proving item (3). This concludes the
proof of Theorem 4.5.

Remark 4.7. An important conclusion we draw from Theorem 4.5 is that the
existence of a static feedback linearizable quotient can be checked algorithmically from
the refined derived type of V ⊕ Γ: the kernel of the semibasic 1-forms. In particular,
explicit construction of the quotient dq(V) is unnecessary. Ordinarily integration is
required in order to construct ω/G if the action is not known or else only known
infinitesimally.

4.1. Control morphisms and linearizable quotients. We next investigate
the extent to which the quotient of a control system (M,V) by its Lie symmetry
group G is also a control system on the quotient M/G. Ultimately, this leads to the
following.

Definition 4.8 (control symmetries). Let µ : G ×M → M be a Lie transfor-
mation group with Lie algebra Γ of infinitesimal generators leaving control system (1)
invariant and acting regularly, and freely on M . We say that G is a control admis-
sible or simply admissible symmetry group if the function t is invariant: µ∗gt = t for
all g ∈ G and the rank of the distribution dπ(Γ) is equal to dimG, where π is the
projection π : M → R×X(M), satisfying π(t,x,u) = (t,x).

We will now show that if G is an admissible transformation group acting on M =
loc

R×X(M)×U(M) then its elements are extended static feedback transformations.

Theorem 4.9. Let µ : G ×M → M be an admissible Lie transformation group
acting smoothly, regularly, and freely on M and leaving invariant the control system
(M, V) defined by (1) such that G is strongly transverse to V. Suppose dimG <
dim X(M). Then locally the quotient (M/G,V/G) is a control system in which

dim X(M/G) = dim X(M)− dimG and dim U(M/G) = dim U(M).

Proof. The distribution V has the form V = {∂t + f(t,x,u)∂x, ∂u} and any
admissible symmetry of V must preserve the subdistribution {∂u}. For if v ∈ Γ
is admissible then v(t) = 0 and hence [v, ∂ua ](t) = 0. Since v is an infinitesimal
symmetry, [v, ∂ua

] = αT+βa∂ua
for some functions α, βa, where T = ∂t+f(t,x,u)∂x.

We deduce that α = 0.
Next if v = ξi∂xi

+ ηa∂ua
is an infinitesimal generator of an admissible symmetry

of V then {∂u} 3 [∂ua
, v] = ∂ξi

∂ua
∂xi

+ ∂ηb

∂ua
∂ub

which implies that ∂ξi

∂ua
= 0. Hence, the
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corresponding infinitesimal generators of such an admissible symmetry group consists
of vector fields of the form v = ξ(t,x)∂x + η(t,x,u)∂u. If µ : G ×M → M is the
Lie transformation group with infinitesimal generators of the form v then µ has the
general local form

µg(t,x,u) = (t,a(t,x, g), b(t,x,u, g)) = (t̄, x̄, ū).

Recall that r = dimG < dim X(M) = n. The action being admissible means that
dπ(Γ) is a rank r subbundle of TM , r = dimG. If Γ = {X1, . . . , Xr}, then

dπ(Xi) =
∂a`
∂gi

∂x`
∣∣
g=id

, 1 ≤ i ≤ r.

Since the dπ(Xi) span a rank r subbundle, there is a subset ai1 , ai2 , . . . , air such
that

det
∂(ai1 , ai2 , . . . , air )
∂(g1, g2, . . . , gr)

∣∣
g=id

6= 0.

By the implicit function theorem, in a neighborhood of a point (p, id) ∈ R ×X × G
there are functions gj = γj(t,x) such that ais(t,x,γ(t,x)) = cs, 1 ≤ s ≤ r, for
some constants cs. By the theory of equivariant moving frames [14, 15], the n − r
nonconstant functions that remain among the components of a(t,x,γ(t,x)) and the q
nonconstant functions b(t,x,u,γ(t,x)) together with t span the n+q+1−r invariants
of the G-action. Setting y`, 1 ≤ ` ≤ n − r, equal to the nonconstant functions
among the a(t,x,γ(t,x)) and va, 1 ≤ a ≤ q, equal to the functions b(t,x,u,γ(t,x))
produces the quotient map q : M → M/G in which local coordinates on M/G have
the form

(18) t, y` = y`(t,x), va = va(t,x,u), 1 ≤ i ≤ n− r, 1 ≤ a ≤ q,

and are components of the quotient map q. It follows that the quotient dq(V) has
the local form of control system

(19) dq(V) =
{
∂t +

n−r∑
`=1

f̄ `(t,y,v)∂y`
, ∂v1 , . . . , ∂vq

}
for some functions f̄ ` with the claimed dimensions of X(M/G) and U(M/G).

Corollary 4.10. The control admissible symmetries of a control system form a
Lie transformation group of extended static feedback self-equivalences.

Definition 4.11. If q : M → M/G is such that dq(V) is a control system then
we will say that q is a control morphism.

Not only do we wish to know when a symmetry group induces a control morphism
q but also when dq(V) is locally equivalent to a Brunovsky normal form by an (ex-
tended) static feedback transformation, directly from knowledge of the Lie algebra Γ.

Theorem 4.12. Let (M,V = {∂t+f(t,x,u)∂x, ∂u}) determine a control system
and be a totally regular subbundle of TM , where M =

loc
R×X(M)×U(M), dim X(M) =

n, dim U(M) = q. Suppose V is invariant under the free, regular, and admissible
action of Lie group G on M with Lie algebra Γ. Suppose (M,V ⊕ Γ) is a relative
Goursat bundle of derived length k > 1 and that G is strongly transverse to V with
CharV = {0}. Then q : M → M/G is a control morphism and dq(V) is locally
equivalent to a Brunovsky normal form C〈σ〉 via local diffeomorphisms ϕ : M/G →
Jσ(R,Rq), ϕ∗dq(V) = C(σ). A local equivalence ϕ identifying dq(V) and C〈σ〉 can be
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chosen to be an (extended) static feedback transformation if and only if
(1) {∂u} ⊆ Char V̂(1)

0 ,
(2) dt ∈ ann Char V̂(k−1),

where V̂ = V ⊕ Γ.

Proof. By Lemma 4.4 we have Char V̂ = Γ. Let us construct a distribution P as in
the proof of Theorem 4.2 but replacing CharV by Γ. This defines a local trivialization
of the principal bundle q : M → M/G, τ : q−1(Ū) → Ū ×G, where Ū ⊂ M/G is an
open subset. Using this coordinate system on M , we have V̂ = V ⊕ Γ = P ⊕ Γ and
hence dq(V̂) = dq(V) = dq(P) = P, since dq acts as the identity on P and hence
P = V̄. Thus, we can write V̂ = V̄ ⊕ Γ. From Theorem 4.9, V̄ is a control system of
the form (19) with quotient map q of the form (18). Suppose there is an extended
static feeback transformation ϕ : M/G→ Jσ(R,Rs) such that ϕ∗V̄ = C(σ). Then by
Theorem 3.11, we conclude that

{∂v} ⊆ Char V̄(1)
0 and dt̄ ∈ ann Char V̄(k−1),

where t̄ = (π1 ◦ τ)(p) and k is the derived length of V̄ which agrees with the derived
length of V̂ by Theorem 4.3. Here π1 : R×X × U → R is a projection onto the first
factor and p ∈ R × X × U is a typical point. Thinking of the local trivialization τ
from the active point of view, we have dt̄(τ∗Γ) = d(τ∗t̄)(Γ) = dt(Γ) = 0 and hence
dt̄ ∈ ann (Char V̄(k−1) ⊕ τ∗Γ) = ann (τ∗Char V̂(k−1)) and thus dt ∈ ann Char V̂(k−1)

which is item (2).
We deduce {∂v} = τ∗{∂u} ⊆ Char V̄(1)

0 ⊕ τ∗Γ = τ∗Char V̂(1)
0 from which item (1)

follows.
Conversely, suppose (1) and (2) hold. Since V̂ is a relative Goursat bundle,

by Theorem 4.9, there is a local diffeomorphism ϕ : M/G → Jσ(R,Rq) such that
ϕ∗
(
V/G

)
= C〈σ〉, some integer q, and signature σ. With τ the local trivialization and

hypothesis (1), we have τ∗{∂u} ⊆ τ∗Char V̂(1)
0 which implies {∂v} ⊆ Char V̄(1)

0 . Since
(π1 ◦ τ)(p) = t, from (2) we deduce that dt̄ ∈ ann τ∗Char V̂(k−1) which implies that
dt ∈ ann Char V̄(k−1). By Theorem 3.11, we conclude that ϕ can be chosen to be an
extended static feedback transformation.

5. Examples. In this section we give three examples to illustrate the implemen-
tation of the foregoing results and highlight particular features.

5.1. Example 1: Nonflat control systems with flat subsystems. We begin
with a simple example that illustrates most of the constructions. Furthermore, it
exemplifies a nonflat control system that has a flat quotient and we comment on its
role in trajectory generation. We work through the constructions in this example in
some detail. For background on flat control systems, see, [21].

While the generic control system is not flat, there are a few results that provide
us with classes of provably nonflat control systems with more than a single input. One
source of 2-input nonflat control systems is described by the following result.

Theorem 5.1 (see [27]). A driftless system ẋ = f1(x)u1 + f2(x)u2 in n states x
and two inputs u is flat if and only if the elements of the derived flag of E = {f1, f2}
satisfy

dimE(k) = dimE(k−1) + 1, E(0) = E, k = 1, . . . , n− 2.

A particularly elegant class of provably nonflat control systems in 5 states and
2 controls can be constructed by taking E to be a generic 2-plane distribution on
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R5, characterized by growth vector [2, 3, 5]. Such distributions have been classified
[9]—the Cartan systems. The most symmetric of these has local realization E =
{∂x1 + x3∂x2 + x5∂x3 + x2

5∂x4 , ∂x5} = {f1, f2}. The control system corresponding to
the driftless system of Theorem 5.1 is therefore

(20) V =
{
∂t + u1f1 + u2f2, ∂u1 , ∂u2

}
.

Because of its nonflatness it is guaranteed that the trajectories of V cannot be
expressed in integration-free terms. Thus, we investigate the role that symmetry
reduction may play in identifying flat subsystems of (20). A goal will be to describe
all the trajectories of V in a way that involves the “least” quadrature.

It turns out that the Lie algebra of control admissible symmetries Γ of V is 14-
dimensional acting on the space of states and controls. Lie algebra Γ is isomorphic
to the symmetry algebra Sym(E) of E which acts on R5. For instance, one of the 14
elements forming a basis of Γ is

1
3
x3

1∂x2 + x2
1∂x3 + (−x2 + x3x1)∂x4 + x1∂x5 + u1∂u2 .

In this case there is a 5-dimensional subalgebra of state-space symmetries g⊂ Γ given
by g = {X1, . . . , X5}, where

X1 =
1
2
x2

1∂x2 + x1∂x3 + 2x3∂x4 + ∂x5 ,

X2 = x1∂x2 + ∂x3 , X3 = ∂x4 , X4 = ∂x1 , X5 = ∂x2 .

Let us, for instance, consider the quotient of (R8,V) by the local Lie transformation
group G0 generated by the abelian subalgebra Γ0 = {X1, X3}.

Invoking Theorem 4.5, we check that the refined derived type of V̂ := V ⊕ Γ0 is
dr(V̂) = [ [5, 2], [7, 4, 5], [8, 8] ] which satisfies the constraints of Proposition 3.5 with
signature σ = decel V̂ = 〈1, 1〉. The only nontrivial fundamental bundle is Ξ(1)

0 /Ξ(1)

while calculation shows that this is equal to {dt} and Ξ(1)
0 is integrable. These obser-

vations guarantee, by Definition 4.1, that V̂ is a relative Goursat bundle of signature
σ = 〈1, 1〉. By Theorem 4.5, the quotient V/G0 is locally diffeomorphic to the partial
prolongation C〈1, 1〉. That is, the control system defined by (20) can be put into the
Brunovsky normal form

ẋ1
0 = v1,

ẋ2
0 = x2

1, ẋ2
1 = v2,

by some local diffeomorphism of the ambient manifold. However, this local diffeo-
morphism may not be a static feedback transformation. We turn to Theorem 4.12 to
check for the existence of a static feedback linearization taking V/G0 to C〈1, 1〉. We
find that (with derived length k = 2), dt /∈ Ξ(1)(V̂) := ann Char V̂(1) and hence no
static feedback transformation exists; cf. Theorem 4.12, item (2). In summary, we
have the following facts, so far, concerning control system (20):

• System (20) is not flat by Theorem 5.1.
• The quotient V/G0 of (20) is linearizable but not via a static feedback trans-

formation according to Theorem 4.12.
It turns out that V/G0 is flat. To see this, prolong V to get prV = {∂t+u1f1 +u2f2 +
v∂u1 , ∂v, ∂u2}. This is equivalent to augmenting the control system by the equation
u̇1 = v. Again, as per Theorem 4.12, we study the augmented distribution pr V̂ :=
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prV⊕Γ0 and calculate the refined derived type to be dr(pr V̂) = [ [5, 2], [7, 4, 4], [9, 9] ].
This satisfies item 1 of Definition 3.7 with signature σ = decel(pr V̂) = 〈0, 2〉. Since
the final entry of σ is greater than 1, we complete the check that pr V̂ is a relative
Goursat bundle by verifying that its resolvent bundle is integrable. Indeed, we get
Char pr V̂(1) = {∂x4 , ∂u2 , ∂v1 , X1} and calculate that the rank 6 resolvent bundle is
integrable. Therefore we deduce that the prolongation prV of V has a static feedback
linearizable quotient by G0. This settles the recognition problem for the existence of a
static feedback linearizable quotient by G0. Let us now implement the static feedback
linearization of prV/G0 and the reconstruction theorem for the solutions of V. The
Lie transformation group G0 generated by Γ0 acts freely on R9. The first integrals of
Γ0 are spanned by Γ0 = {t, u1, u2, x1, x1x3 − 2x2, x

2
1x5 − 2x2, v} and determine

the quotient map q : R9 → R9/G0. With w1 = x1, w2 = (x1x3 − 2x2)/x1, w3 =
(x2

1x5 − 2x2)/x2
1, we obtain V̄ := prV/G0 with

(21)

V̄ =
{
∂t + u1∂w1 −

u1

w1
(w3w1 − 2w2) ∂w2 +

1
w2

1

(
u2w

2
1 − 2u1w2

)
∂w3 + v∂u1 , ∂v, ∂u2

}
as the quotient by the G0-action. We implement procedure Contact [35] (see also
[36]) to construct the feedback linearization of V̄ (and hence its integral submani-
folds). Computing the singular bundle of V̄(1)/Char V̄(1) leads to the integrable re-
solvent {∂v, ∂u1 , ∂u2 , ∂w3} whose annihilator {dt, dw1, dw2} shows that we can take
w1, w2 as the fundamental functions of highest order 2. These are the functions that
generate the static feedback linearization upon successive differentiation by the total
differential operator Z, the first element of V̄. Procedure Contact is described and
its proof of correctness is given in [35]. It shows the components of the static feedback
linearization are determined by

(22) x1
0 = w1, x

2
0 = w2, x

1
1 = Zx1

0, x
2
1 = Zx2

0, x
1
2 = Zx1

1, x
2
2 = Zx2

1.

Since the xaj are contact coordinates then there are arbitrary functions f1(t), f2(t)
such that

xaj =
djfa

dtj
, j = 0, 1, 2, a = 1, 2,

describe all the integral submanifolds of the Brunovsky normal form C〈0, 2〉. It follows
that solving (22) for w1, w2, w3, u1, u2, v determines the integral submanifolds of prV.
Thereby we obtain the explicit formulas

(23)
w1 = f1, w2 = f2, w3 =

2ḟ1f2 + f1ḟ2

f1ḟ1
, u1 = ḟ1, v = f̈1,

u2 =
1

f1(ḟ1)2

(
2(ḟ1)2ḟ2 − f1(f̈1ḟ2 − ḟ1f̈2)

)
.

Thus the w1, w2, w3, u1, and u2 components of the above solution of V̄ are the solutions
s̄ : R → R8/G0 of V/G0. Next we wish to implement the reconstruction theorem,
Theorem 2.7, in which for each solution of V/G0 we determine a solution of V by
solving an ODE of Lie type. Since the symmetry group G0 that we are dividing by is
abelian, we expect these ODEs to reduce to quadrature.

For this we require the explicit action of G0 and a local section σ : R8/G0 → R8.
From the quotient map q : R8 → R8/G0 we easily compute σ:

x1 = w1, x2 = −1
2
w1w2, x3 = 0, x4 = 0, x5 = w3 −

w2

w1
, u1 = u1, u2 = u2,
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and the G0-action is

µg(t, x, u) =
(
t, x1, x2 +

1
2
ε1x

2
1, x3 + ε1x1, x4 + ε2 + ε2

1x1 + 2ε1x3, x5 + ε1, u1, u2

)
,

where ε1, ε2 are coordinates on G0. The reconstruction theorem now amounts to
letting the εi depend upon the parameter t along the integral curves of V/G0, forming
the trial solution

s(t) = µ
(
g(t), σ ◦ s̄(t)

)
and deducing the ODE for the components of g(t) = (ε1(t), ε2(t)) by forming the
equation s∗ω = 0, where ω = annV. We obtain

(24)
dε1

dt
=
Ḟ1

F 2
2
,

dε2

dt
=

Ḟ 2
1

Ḟ2F 2
2

,

where F1 = f1f2, F2 = f1. The controls ua were recorded above. The states xi are
given by

x1 = F2, x2 =
1
2
(
ε1F

2
2 − F1

)
, x3 = ε1F2, x4 = ε2

1F2 + ε2, x5 = ε1 +
∂t(F1F2)
F 2

2 Ḟ2
.

Hence two quadratures are required to determine all the trajectories. Taking a slightly
different approach to the linearization, this can be reduced to a single quadrature.
Recall that f1 and f2 are arbitrary functions of t. This is the minimum possible
quadrature for this control system.

Finally let us explicitly identify the feedback linearizable subsystem of the pro-
longation prω of ω in this example. Setting pr ω̄ = ann V̄, we have

prω ⊃ q∗pr ω̄ =
{
ω1, ω3 − 2

x1
ω2, ω5 − 2

x2
1
ω2, du1 − v dt

}
is a subsystem of prω = {ω1, . . . , ω5, du1 − v dt} = ann prV which, as shown, projects
to a static feedback linearizable control system on M/G0, q : M → M/G0 being the
quotient map.

Much more challenging examples having the same structure as (20) can be ob-
tained by choosing the Cartan system E to be less symmetric. The symmetry group
of any Cartan system E is a subgroup of the exceptional simple Lie group G2 which
has dimension 14. For instance, the Cartan system

E = {f1 = ∂x1 + x3∂x2 + 2υ∂x3 + υx5∂x4 , f2 = ∂x5},

where
υ = x1x2x3x4x5

has a 3-dimensional symmetry group. The corresponding driftless control system

(25) F =
{
∂t + u1f1 + u2f2, ∂u1 , ∂u2

}
has a 3-dimensional Lie group of control symmetries whose Lie algebra is ∆ =
{X1, X2, X3}, where

X1 = x2∂x2 + x3∂x3 − x5∂x5 − u2∂u2 ,

X2 = 2x1∂x1 − x2∂x2 − 3x3∂x3 − 3x4∂x4 + 2u1∂u1 ,

X3 = − 1
x4
∂x4 +

x5

x2
4
∂x5 −

1
x2

4
(2x1x2x3x

3
5u1 − u2)∂u2 .
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226 J. DE DONÁ, TEHSEEN, AND P. J. VASSILIOU

Explicitly, the trajectories of F satisfy

ẋ1 = u1, ẋ2 = u1x3, ẋ3 = 2u1υ, ẋ4 = u1υx5, ẋ5 = u2.

Interestingly, for the above control system the subalgebra of pure state-space symme-
tries is trivial. This exemplifies the reason for our introduction of control admissible
symmetries (Definition 4.8). The subalgebra ∆0 = {X1, X2} is abelian and we find
again that F/H0 is locally equivalent to C〈1, 1〉, where H0 is the Lie transformation
group generated by ∆0. After prolongation we find a static feedback equivalence to
C〈0, 2〉 which permits us to implement the reconstruction theorem. As before the
trajectory generation problem is reducible to two quadratures though in this case the
formulas for the solutions of V̄ are much more complicated.

5.2. The Heisenberg system. We refer to the control system

(26) ẍ =
1
∆
(
(1 + x2)u1 + xyu2

)
, ÿ =

1
∆
(
(1 + y2) + xy

)
u1, z̈ =

1
∆

(yu1 − xu2) ,

where ∆ = 1+x2 +y2, as described in [4, p. 30, (1.8.3)]. With x1 = ẋ, y1 = ẏ, z1 = ż,
the distribution corresponding to (26) is
(27)

V =
{
∂t + x1∂x + y1∂y + z1∂z +

1
∆

(
((1 + x2)u1 + xyu2)∂x1 + u1((1 + y2) + xy)∂y1

+ (yu1 − xu2)∂z1
)
, ∂u1 , ∂u2

}
.

It’s refined derived type is dr(V) = [[3, 0], [5, 2, 2], [7, 2, 2], [9, 9]], proving that it is not
equivalent to any Brunovsky form (Proposition 3.5). Furthermore, after experiment-
ing with various prolongations, we conclude that V does not obviously prolong to a
static feedback linearizable system. Hence, we study its symmetries and symmetry
reductions with the goal of reducing the construction of its trajectories to quadrature,
if possible. Calculation obtains that the infinitesimal control symmetries of V consist
of the 2-dimensional abelian Lie algebra spanned by

Γ = {t∂z + ∂z1 , ∂z} .

We deduce that V̂ = V ⊕ Γ is a relative Goursat bundle with signature 〈0, 2〉. It can
also be checked that V̂ satisfies the hypotheses of Theorem 4.12 and hence the quotient
V/G is static feedback equivalent to Brunovsky form C〈0, 2〉, that is, V/G is static
feedback linearizable. In this case the quotient system has a local expression given by
V with the ∂z and ∂z1 components omitted. Again invoking procedure Contact [35]
we obtain the integral submanifolds s̄ : R→M/G of (M/G,V/G),

(28)
x = f, x1 = ḟ , y = g, y1 = ġ, u1 =

g̈(f2 + g2 + 1)
fg + g2 + 1

,

u2 = − g̈(f2 + 1)(f2 + g2 + 1)
fg(fg + g2 + 1)

+
f̈

fg
,

where f, g are arbitrary smooth functions of t. The action on M is easily computed,

(29) x′ = µ(x, ε) = (t, x, y, z + tε1 + ε2, z1 + ε1, u1, u2) ∀ (ε1, ε2) ∈ G.
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The quotient map q and a local cross section σ are conveniently given by

q(x) = (t, x, x1, y, y1, u1, u2)

and
σ(t, x, x1, y, y1, u1, u2) = (t, x, x1, y, y1, 0, 0, u1, u2).

Allowing t 7→ ε(t) = (ε1(t), ε2(t)) to be a smooth curve in G, we form (according to
Theorem 2.7), the trial solution s(t) = µ(ε(t), σ ◦ s̄(t)) and find that s∗ω = 0 if and
only if the curve in G satisfies the system of Lie type given by

(30) ε̇1 = ρ, ε̇2 = −tρ,

where

ρ =
g̈(f2 + g2 + 1)
g(fg + g2 + 1)

− f̈

g
.

For any choice of curve t 7→ (x(t), y(t)) = (f, g) in the xy-plane, the trajectories of V
are

x = f, y = g, x1 = ḟ , y1 = ġ, z = tε1 + ε2, z1 = ε1, u1 =
g̈(f2 + g2 + 1)
fg + g2 + 1

,

u2 = − g̈(f2 + 1)(f2 + g2 + 1)
fg(fg + g2 + 1)

+
f̈

fg
,

where ε(t) solves (30) subject to ε(0) = (0, 0) = idG. In this way, the representation
of the trajectories of the Heisenberg system (27) is reduced to two quadratures. In
[37] it is shown how this quadrature can in fact be eliminated.

5.3. The underactuated ship. We briefly comment on the relation between
existence of static feedback linearizable subsystems and trajectory planning for a con-
trol system closely related to the one we considered in our introduction. A frequently
studied control system for the guidance of marine vessels is given by (see [20])

(31)
ẋ = u cos θ − v sin θ, ẏ = u sin θ + v cos θ, θ̇ = r,

u̇ =
1
γ1
vr − β1u+ u1, v̇ = −γ1ur − β2v, ṙ = γ2uv − β3r + u2,

where
γ1 =

m11

m22
, γ2 =

m11 −m22

I33
.

In fact this is a more sophisticated model of ship guidance than the one presented
in the introduction but as we shall see, it is closely related to it. The parameters
mii and I33 are the components of the diagonal mass-inertia tensor. The βj quantify
hydrodynamic drag. A crucial parameter is γ2. It can be shown that if γ2 = 0
then this system has the same reduction as we found for (2) when γ = 1. Namely,
we can express θ in the form (5) but with the parameter β replaced by β2. In the
case γ2 6= 0, we obtain (3) but again with β2 replacing β. Hence, as in our opening
example (2), we can view θ as a quasi-flat output for (31) as we did for (2). The
flatness or otherwise of (31), according to whether γ2 is zero or otherwise is reflected
in the structure of its Lie group of control symmetries. If γ2 6= 0 we find that the Lie
algebra of control admissible symmetries Γ is 4-dimensional and solvable. Then if ω
is the Pfaffian system associated with (31), it can be shown that for all subalgebras
h ⊂ Γ such that dim h > 1 then ω/H is static feedback linearizable, where H is the
Lie transformation group generated by Lie algebra h. It turns out that the symmetry
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reduction by a certain 3-dimensional subalgebra of Γ leads to the aforementioned
equation for θ, namely, (3).

For γ2 = 0, system (31) is flat and we discover that the Lie algebra of infinitesimal
control admissible symmetries Γ0 is 8-dimensional and has quite a different structure
from that of Γ. Lie algebra Γ0 is isomorphic to sl(2) ⊕s s, where s is a solvable Lie
algebra of dimension 5. This can be compared to Γ which is a solvable Lie algebra
of dimension 4. Interestingly, precisely the same dichotomy arises in the control
symmetries of (2). Lie algebra Γ0 has a 4-dimensional abelian subalgebra and gives
rise to the formula (5) via symmetry reduction. Thus the solvability properties of (2),
and reflected in (31), have their counterparts in the control admissible symmetries and
corresponding symmetry reductions. The corresponding trajectory planning problem
is divided into cases depending upon parameter ranges for the γi.

6. Conclusion and open questions. The main contribution of this paper is
the introduction of control admissible symmetries and consequent formulation of a
coordinate-free approach to the identification and construction of static feedback lin-
earizable subsystems α ⊂ ω of a given intrinsically nonlinear control system ω that is
invariant under the action of a Lie group, G, and the application of this to trajectory
generation. Control symmetries are a natural generalization of state-space symme-
tries since they constitute the maximal class of static feedback self-equivalences and
are essential for apprehending the invariance properties of control systems. We have
shown that once a linearizable subsystem α has been identified, then the representa-
tions of the trajectories of ω can be expressed as the composition of the trajectories
of α together with those of an ODE system of Lie type, the latter fact arising from
the reconstruction theorem of Anderson and Fels [2]. A general goal has been to min-
imize the extent to which the practitioner is required to solve differential equations
in order to obtain an explicit representation of the trajectories of intrinsically nonlin-
ear G-invariant systems, ω. In general, if G is solvable then any required differential
equations can be reduced to quadrature. In [37] the geometry of the concomitant Lie
system is analyzed to reveal further properties and applications.

Numerous interesting questions have arisen in the course of our study. For in-
stance, given a control system with symmetry, will there always be a flat or else static
feedback linearizable subsystem? We have observed this to be the case in all the ex-
amples we have examined to date. We conjecture that if a control system is feedback
linearizable then the Lie transformation group of control symmetries will be infinite
dimensional and otherwise finite dimensional.4 Futhermore, will reconstruction over
(M/G, ω̄) always account for all trajectories of ω, as we have observed in all exam-
ples so far? Can the control symmetries or symmetry reductions of flat or dynamic
feedback linearizable systems be characterized? How can the Lie structure of the Lie
system evolving along the fibers of the principal bundle q : M → M/G be best ex-
ploited, for instance, for building controllers or for motion planning? These matters
are, of course, only a sample of those we hope to better understand in due course.

Acknowledgments. The research in this paper was greatly facilitated by the use
of the Maple symbolic processing package DifferentialGeometry [3]. We thank the
anonymous referees for their close reading of the manuscript and suggestions which
led to significant improvements.

4The set of all symmetries of a linearizable control system is infinite dimensional. It is isomorphic
to the Lie pseudogroup of contact transformations.
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