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ON THE BALL-CONSTRAINED WEIGHTED MAXIMIN

DISPERSION PROBLEM ∗

SHU WANG† AND YONG XIA †

Abstract. The ball-constrained weighted maximin dispersion problem (Pball) is to find a point

in an n-dimensional Euclidean ball such that the minimum of the weighted Euclidean distance from

given m points is maximized. We propose a new second-order cone programming relaxation for

(Pball). Under the condition m ≤ n, (Pball) is polynomial-time solvable since the new relaxation

is shown to be tight. In general, we prove that (Pball) is NP-hard. Then, we propose a new

randomized approximation algorithm for solving (Pball), which provides a new approximation bound

of
1−O(

√
ln(m)/n)

2
.

Key words. maximin dispersion, convex relaxation, second-order cone programming, approxi-

mation algorithm
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1. Introduction. Consider the following weighted maximin dispersion problem

(Pχ) max
x∈χ

{
f(x) := min

i=1,...,m
ωi‖x− xi‖2

}
,

where χ = {y ∈ R
n | (y21 , . . . , y2n, 1)T ∈ K}, K is a convex cone, x1, . . . , xm ∈ R

n are

given m points, ωi > 0 for i = 1, . . . ,m and ‖x‖ =
√
xTx is the Euclidean norm. Let

v(Pχ) denote the optimal value of the problem (Pχ). Without loss of generality, we

assume that v(Pχ) > 0, since v(Pχ) = 0 if and only if χ ⊆ {x1, . . . , xm}. When all

weights are equal, intuitively, the problem (Pχ) is to find the largest sphere centering

in χ and enclosing none of the given m points. The maximin dispersion problem has

many applications in facility location, spatial management and pattern recognition,

see [3, 12, 14, 17] and references therein.

In a very recent paper [9], an approximation bound for (Pχ) is established based

on the following semidefinite programming relaxation (SDPχ) and second-order cone

programming relaxation (SOCPχ), respectively:

1

v(SDPχ)
= min

Z∈Sn+1
Zn+1,n+1(1.1)

s. t. ωiTr(A
iZ) ≥ 1, i = 1, . . . ,m,
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(Z11, . . . , Znn, Zn+1,n+1)
T ∈ K,

Z � 0,

1

v(SOCPχ)
= min

Z∈Sn+1
Zn+1,n+1(1.2)

s. t. ωiTr(A
iZ) ≥ 1, i = 1, . . . ,m,(1.3)

(Z11, . . . , Znn, Zn+1,n+1)
T ∈ K,(1.4)

∥∥∥∥∥

(
2Zj,n+1

Zjj − Zn+1,n+1

)∥∥∥∥∥ ≤ Zjj + Zn+1,n+1, j = 1, . . . , n,(1.5)

whereAi =

(
I −xi

−(xi)T ‖xi‖2

)
with I being the identity matrix of order n, Tr(ABT ) =

∑n
i=1

∑n
j=1 aijbij is the inner product of two matrices A and B, and Z � 0 means

that Z is positive semidefinite.

Let Z∗ ∈ Sn+1 be an optimal solution of the above SDP (or SOCP) relaxation,

where Sn+1 denotes the set of (n + 1) × (n + 1) real symmetric matrices. Haines et

al. [9] find an approximate solution x̃ ∈ χ satisfying

v(SDPχ) ≥ v(Pχ) ≥ f(x̃) ≥ 1−
√
2 ln(m/ρ)γ∗

1

2
· v(SDPχ),

or v(SOCPχ) ≥ v(Pχ) ≥ f(x̃) ≥ 1−
√
2 ln(m/ρ)γ∗

1

2
· v(SOCPχ),

where 0 < ρ < 1 and

γ∗
1 =

maxj=1,...,nZ
∗
jj∑n

j=1 Z
∗
jj

.(1.6)

Such a factor as
1−

√
2 ln(m/ρ)γ∗

1

2 is called an approximation bound in this paper. Notice

that the approximation algorithm used in Haines et al. [9] is a randomized one. We

refer to [10, 11] for more general randomized algorithms for polynomial optimization

over binary variables or hyperspheres.

Two typical cases of χ are considered in [9]. The first one is χ = [−1, 1]n, which

corresponds to setting

K = {y ∈ R
n+1 | yj ≤ yn+1, j = 1, . . . , n}.(1.7)

We denote this case of (Pχ) by (Pbox). Then, it has been shown in [9] that (Pbox)

is NP-hard. Moreover, in this case, γ∗
1 defined in (1.6) can be simplified to γ∗

1 = 1
n ,

which no longer depends on Z∗. It immediately follows that (Pbox) admits a 1/2

asymptotic approximation bound as n
ln(m) goes to infinity.

The other case is χ = {x | ‖x‖ ≤ 1}, which corresponds to letting

K = {y ∈ R
n+1 | y1 + ...+ yn ≤ yn+1}.(1.8)
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Accordingly, this special case of (Pχ) is denoted by (Pball). However, the results

similar to those for (Pbox) remain unknown for (Pball). Actually, they correspond

to the three open questions (i),(ii),(vi) raised in the concluding section in [9]. For

convenience, we write in the following these questions relating to (Pball):

(i) Can we extend the approximation bound
1−O(

√
ln(m)/n)

2 to (Pball)?

(ii) Is (Pball) NP-hard?

(iii) When the SDP (or SOCP) relaxation is tight?

This becomes the first motivation to give a comprehensive study on (Pball). On

the other hand, (Pball) has its own applications. Recently, Tenne et al. [15] propose a

model-classifier framework for solving optimization problems whose objective function

values have to be evaluated by computationally expensive simulation. The framework

employs a trust-region approach [2]. It tries to make the interpolation model accurate

enough in the trust region. Otherwise, a new point is selected from the trust region to

add into the set of evaluated points for improving the interpolation model. According

to the theory on the relation between the model accuracy and the distance among

the training points [14], the new added point is remote from the existing evaluated

points. The formulation of this subproblem is exactly the same as (Pball), see [15].

In this paper, we focus on the study of (Pball) and answer the above three

questions. Some of the new results can be extended to (Pbox). Firstly, we give

a new convex relaxation for the general (Pχ), denoted by (CRχ). We show that

v(CRχ) = v(SDPχ) = v(SOCPχ) when χ is a unit box or a unit ball. Besides, in

the former case, (CRχ) reduces to a linear programming problem. In the latter case,

(CRχ) is a new second-order cone programming problem, whose size is much smaller

than that of (SOCPχ). Then, we derive a new sufficient condition under which our

new convex relaxation for (Pball) is tight. Moreover, the new condition holds when

m ≤ n. It strictly improves the existing sufficient condition m ≤ n − 1 proposed in

[16]. Secondly, we prove that (Pball) remains NP-hard when m ≥ 2n. Thirdly, we

propose a new approximation algorithm for (Pball) based on uniform random sampling

on the surface of the ball. Using a new tail estimation, we show that the approxi-

mation bound of our new algorithm is
1−O(

√
ln(m)/n)

2 . It should be noticed that our

approximation algorithm does not rely on any convex relaxation.

The remainder is organized as follows. In Section 2, we study a new convex

relaxation for (Pχ). In Section 3, we show that (Pball) is NP-hard and then identify

a polynomial solvable class. In Section 4, we propose a new approximation algorithm

for (Pball) and establish the approximation bound. Section 5 presents some numerical

results. Conclusions are made in Section 6.

Throughout the paper, the notation “:=”denotes “define”. We denote by R
n the

n-dimensional vector space. For two matrices A,B ∈ Sn, let A ≻ (�)B denote that
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A − B is positive (semi)definite. ‖A‖ := max‖x‖=1 ‖Ax‖ is the induced norm of the

matrix A. Diag(a1, . . . , an) stands for the diagonal matrix with principal diagonal

elements a1, . . . , an. The one-dimensional intervals {x | a < x < b}, {x | a <

x ≤ b}, {x | a ≤ x < b} and {x | a ≤ x ≤ b} are denoted by (a, b), (a, b], [a, b)

and [a, b], respectively. Denote the left- and right-hand limits by limx→a− f(x) and

limx→a+ f(x), respectively. For a ∈ R
1, [a] denotes the largest integer less than

or equal to a. For a nonnegative integer n, define the double factorial as n!! =
∏[n/2]

k=0 (n− 2k) and 0!! = 1. Pr(·) stands for the probability.

2. A new convex relaxation. We propose a new convex relaxation for (Pχ),

denoted by (CRχ), and then show that v(CRχ) = v(SDPχ) = v(SOCPχ) when either

χ = [−1, 1]n or χ = {x | ‖x‖ ≤ 1}. For convenience, throughout this paper, when χ =

[−1, 1]n, we re-denote (CRχ), (SDPχ) (1.1) and (SOCPχ) (1.2) by (CRbox), (SDPbox)

and (SOCPbox), respectively. Similarly, when χ = {x | ‖x‖ ≤ 1}, (CRχ), (SDPχ) and

(SOCPχ) are re-denoted by (CRball), (SDPball) and (SOCPball), respectively.

We first reformulate (Pχ) as an equivalent smooth optimization problem (see also

Proposition 2.1 and (11) in [9]):

(Pχ)
′ max

x, ζ
ζ

s. t. ωi(‖x‖2 − 2(xi)Tx+ ‖xi‖2) ≥ ζ, i = 1, . . . ,m,(2.1)

x ∈ χ.

Relaxing the nonlinear term ‖x‖2 in (2.1) to a constant upper bound

µ := max
x∈χ

‖x‖2 (or an upper bound if it is hard to solve)(2.2)

yields the following convex relaxation:

(CRχ) max
x, ζ

ζ

s. t. ωi(µ− 2(xi)Tx+ ‖xi‖2) ≥ ζ, i = 1, . . . ,m,

x ∈ χ.

When χ = [−1, 1]n, according to the definition (2.2), we have µ = n. Then, the above

convex relaxation (CRχ) becomes the following linear programming problem:

(CRbox) max
x, ζ

ζ

s. t. ωi(n− 2(xi)Tx+ ‖xi‖2) ≥ ζ, i = 1, . . . ,m,

x ∈ [−1, 1]n.

Surprisingly, it is actually as tight as both the SDP and the SOCP relaxations.

Theorem 2.1. v(CRbox) = v(SDPbox) = v(SOCPbox).
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Proof. The proof is divided into two parts.

(a) First we construct a feasible solution of (SDPbox) from an optimal solution

of (CRbox). Since the feasible region is compact, (CRbox) has an optimal solution,

denoted by (x∗, ζ∗). It is trivial to see that v(Pbox) > 0. Thus, we have ζ∗ =

v(CRbox) ≥ v(Pbox) > 0. Let x∗
i be the i-th component of x∗ for i = 1, . . . , n and

then define

Ẑ :=
1

ζ∗

((
x∗

1

)(
x∗T 1

)
+Diag

(
1− (x∗

1)
2, . . . , 1− (x∗

n)
2, 0
)
)
.(2.3)

We can verify that Ẑ � 0 and

Ẑjj = Ẑn+1,n+1, j = 1, . . . , n,

ωiTr(A
iẐ) =

ωi

ζ∗
(n− 2(xi)Tx∗ + ‖xi‖2) ≥ 1, i = 1, . . . ,m.

That is, Ẑ is a feasible solution of (SDPbox) (1.1). Then, it holds that

1

v(SDPbox)
≤ Ẑn+1,n+1 =

1

ζ∗
,

or equivalently,

v(SDPbox) ≥ v(CRbox) = ζ∗.(2.4)

(b) Next we construct a feasible solution of (CRbox) from an optimal solution

of (SOCPbox). let Z∗ =

(
Z̃∗ z∗

z∗T Z∗
n+1,n+1

)
be an optimal solution of (SOCPbox),

where z∗ = (Z∗
1,n+1, . . . , Z

∗
n,n+1)

T ∈ R
n. According to (1.5), we have

(Z∗
j,n+1)

2 ≤ Z∗
jjZ

∗
n+1,n+1, j = 1, . . . , n.(2.5)

It follows from (1.4) (where the set χ is defined in (1.7)) that

Z∗
jj ≤ Z∗

n+1,n+1, j = 1, . . . , n,(2.6)

which further implies that

Tr(Z̃∗) =
n∑

j=1

Z∗
jj ≤

n∑

j=1

Z∗
n+1,n+1 = nZ∗

n+1,n+1.(2.7)

Since v(SOCPbox) ≥ v(Pbox) > 0, we have Z∗
n+1,n+1 = 1

v(SOCPbox)
> 0. Define

x̃ := z∗

Z∗
n+1,n+1

. Then, we have

x̃2
j =

(Z∗
j,n+1)

2

(Z∗
n+1,n+1)

2
≤

Z∗
jjZ

∗
n+1,n+1

(Z∗
n+1,n+1)

2
=

Z∗
jj

Z∗
n+1,n+1

≤ 1, j = 1, . . . , n,



6 S. Wang, Y. Xia

where the two inequalities follows from (2.5) and (2.6), respectively. Using (2.7) and

(1.3), we obtain

ωi(n− 2(xi)T x̃+ ‖xi‖2) ≥ ωi(Tr(Z̃
∗)− 2(xi)T z∗ + ‖xi‖2Z∗

n+1,n+1)

Z∗
n+1,n+1

≥ 1

Z∗
n+1,n+1

.

Then,
(
x̃, 1

Z∗
n+1,n+1

)
is a feasible solution for (CRbox). Consequently, we obtain

v(CRbox) ≥
1

Z∗
n+1,n+1

= v(SOCPbox).(2.8)

Combining (2.4), (2.8) and the trivial fact v(SOCPbox) ≥ v(SDPbox) [9], we have

v(SOCPbox) ≥ v(SDPbox) ≥ v(CRbox) ≥ v(SOCPbox),

which completes the proof.

Remark 2.1. To our knowledge, the result v(SDPbox) = v(SOCPbox) is also

new. Though it can be observed from the numerical results in [9], the authors there

failed to realize that this is always true.

Below we study the ball case χ = {x | ‖x‖ ≤ 1}. According to the definition

(2.2), we have µ = 1. The new convex relaxation (CRχ) is recast as the following

second-order cone programming problem:

(CRball) max
x, ζ

ζ

s. t. ωi(1 − 2(xi)Tx+ ‖xi‖2) ≥ ζ, i = 1, . . . ,m,

‖x‖ ≤ 1.

It should be noted that the size of (CRball) is much smaller than that of (SDPball)

or (SOCPball). For the tightness of (CRball), similar to Theorem 2.1, we have the

following result.

Theorem 2.2. v(CRball) = v(SDPball) = v(SOCPball).

Proof. Similar to that of Theorem 2.1, the proof contains two constructive parts.

(a) First we construct a feasible solution of (SDPball) from an optimal solution

of (CRball). Since the feasible region of (CRball) is compact, (CRball) has an optimal

solution, denoted by (x∗, ζ∗). It is trivial to see that v(Pball) > 0. Thus, we have

ζ∗ = v(CRball) ≥ v(Pball) > 0. Define

Ẑ :=
1

ζ∗

((
x∗

1

)(
x∗T 1

)
+

(
1−‖x∗‖2

n · I 0

0 0

))
.(2.9)

We can show that Ẑ � 0 and

ωiTr(A
iẐ) =

1

ζ∗
(1 − 2(xi)Tx∗ + ‖xi‖2) ≥ 1, i = 1, . . . ,m,

Ẑ11 + Ẑ22 + . . .+ Ẑnn =
1

ζ∗
= Ẑn+1,n+1.
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That is, Ẑ is a feasible solution of (SDPball) (1.1), where the set K is defined in (1.8).

It follows that

v(SDPball) ≥ v(CRball) = ζ∗.(2.10)

(b) Next we construct a feasible solution of (CRball) from an optimal solution of

(SOCPball). Let Z∗ =

(
Z̃∗ z∗

z∗T Z∗
n+1,n+1

)
be an optimal solution of (SOCPball),

where z∗ = (Z∗
1,n+1, . . . , Z

∗
n,n+1)

T . Then, (2.5) holds. Moreover, it follows from (1.4)

(where the set K is defined in (1.8)) that

Tr(Z̃∗) =
n∑

j=1

Z∗
jj ≤ Z∗

n+1,n+1.(2.11)

Since v(SOCPball) ≥ v(Pball) > 0, we have Z∗
n+1,n+1 = 1

v(SOCPball)
> 0. Define

x̃ := z∗

Z∗
n+1,n+1

. Using (2.5) and (2.11), we can show that

‖x̃‖2 =

∑n
j=1(Z

∗
j,n+1)

2

(Z∗
n+1,n+1)

2
≤
∑n

j=1 Z
∗
jjZ

∗
n+1,n+1

(Z∗
n+1,n+1)

2
=

∑n
j=1 Z

∗
jj

Z∗
n+1,n+1

≤ 1.

Furthermore, for i = 1, . . . ,m, it follows from (2.11) and (1.3) that

ωi(1− 2(xi)T x̃+ ‖xi‖2) ≥
ωi(Tr(Z̃

∗)− 2(xi)T z∗ + ‖xi‖2Z∗
n+1,n+1)

Z∗
n+1,n+1

≥ 1

Z∗
n+1,n+1

.

Thus,
(
x̃, 1

Z∗
n+1,n+1

)
is a feasible solution for (CRball). Consequently, we obtain

v(CRball) ≥
1

Z∗
n+1,n+1

= v(SOCPball).(2.12)

Combining (2.10), (2.12) and the fact v(SOCPball) ≥ v(SDPball) [9] yields

v(SOCPball) ≥ v(SDPball) ≥ v(CRball) ≥ v(SOCPball).

The proof is complete.

Remark 2.2. The reason behind the equivalence as shown in Theorems 2.1 and

2.2 may be that the constant µ defined in (2.2) is the smallest concave function ma-

jorizing ‖x‖2 over either [−1, 1]n or {x | ‖x‖ ≤ 1}.

3. Computational complexity. In this section, we first identify a polynomially

solvable class of (Pball) and then prove that (Pball) is generally NP-hard.

3.1. Polynomial solvable cases. In a very recent paper [16], we have shown

that (Pball) enjoys a hidden convexity when m ≤ n − 1. This sufficient condition is

further improved as follows.
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Theorem 3.1. Suppose the linear system

(xi)Tx ≤ 0, i = 1, . . . ,m(3.1)

has a nonzero solution. Then v(Pball) = v(CRball) and (Pball) can be solved in poly-

nomial time. Moreover, the above sufficient condition is satisfied when m ≤ n.

Proof. Since (CRball) is a second-order cone programming problem, we can solve

it in polynomial time and obtain an optimal solution (x∗, ζ∗). For each j ∈ {1, . . . , n},
solve the following absolute-value linear programming problem (or equivalently, two

linear programming problems):

v∗j := max
(3.1)

|xj | = max

{
max

xj≥0 and (3.1)
xj , max

xj≤0 and (3.1)
−xj

}
.

If v∗j = 0 for j = 1, . . . , n, the linear system (3.1) has no nonzero solution. Otherwise,

there is an index k such that v∗k > 0. If v∗k < +∞, let x̃ be an optimal solution

of max(3.1) |xk|. Otherwise, let x̃ be any nonzero feasible solution of (3.1). Then,

‖x̃‖ > 0. Define

α =
−(x∗)T x̃+

√
‖x̃‖2(1− ‖x∗‖2) + ((x∗)T x̃)2

‖x̃‖2 .

Clearly, α ≥ 0 and ‖x∗ + αx̃‖ = 1. Then, we have

f(x∗ + αx̃) = min
i=1,...,m

ωi‖x∗ + αx̃ − xi‖2

= min
i=1,...,m

ωi

(
‖x∗ + αx̃‖2 − 2(xi)T (x∗ + αx̃) + ‖xi‖2

)

= min
i=1,...,m

ωi

(
1− 2(xi)T (x∗ + αx̃) + ‖xi‖2

)

≥ min
i=1,...,m

ωi

(
1− 2(xi)T (x∗) + ‖xi‖2

)

= v(CRball) ≥ v(Pball),

where the first inequality follows from the definition of x̃ and the nonnegativity of α.

Therefore, x∗ + αx̃ is an optimal solution of (Pball).

Next, we show that the linear system (3.1) has a nonzero solution under the

assumption m ≤ n. Since m− 1 < n, the following linear equations

(xi)Tx = 0, i = 1, . . . ,m− 1,

have an infinite number of solutions. Let x̂ be a nonzero solution. Define

x̃ :=

{
−
(
(xm)T x̂

)
x̂, if (xm)T x̂ 6= 0,

x̂, otherwise.

Then, we can verify that x̃ is a nonzero solution of (3.1).
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As shown in the following example, our new sufficient condition could not be

further improved.

Example 3.1. Let n = 1, m = 2 and consider the following instance of (Pball):

max
x2≤1, x∈R1

min{(x− 1)2, (x+ 1)2}.

Correspondingly, (CRball) is rewritten as maxx2≤1, x∈R1 min{2 − 2x, 2 + 2x}. Our

sufficient condition fails to hold, since the corresponding linear system (3.1) has no

nonzero solution. It is not difficult to verify that

v(Pball) = 1 < v(CRball) = 2.

3.2. NP-hardness. In general, we show that the problem (Pball) remains NP-

hard even when ω1 = ω2 = . . . = ωm. Firstly, we present a useful lemma.

Lemma 3.1. Assume Q ≻ 0. Consider the binary quadratic program

(BQP) max xTQx(3.2)

s. t. x ∈ {−1, 1}n,

and the quadratic constrained quadratic program

(QCQP) max
x, s

xTQx+ s(3.3)

s. t. x ∈ [s− 1, 1− s]n,

xTQx ≤ 1.

Then, we have

v(QCQP) =





2− 1√
v(BQP)

, v(BQP) ≥ 1,

1, v(BQP) < 1.

Proof. Since Q ≻ 0, (BQP) is equivalent to the following continuous relaxation:

(QP) max xTQx

s. t. x ∈ [−1, 1]n,

in the sense that v(BQP) = v(QP). Besides, we have v(BQP) > 0.

According to the definition of (QCQP), it follows from s− 1 ≤ 1− s that s ≤ 1.

Moreover, it is trivial to verify that

max
x∈[s−1,1−s]n

xTQx = (1− s)2 · v(QP) = (1− s)2 · v(BQP).
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Therefore, we have

v(QCQP)

= max
s≤1

{
min{(1− s)2 · v(BQP), 1}+ s

}

= max



 max

1− 1√
v(BQP)

≤s≤1

{
(1− s)2 · v(BQP) + s

}
, max

1− 1√
v(BQP)

≥s
{1 + s}





= max

{
max

{
1 + 1− 1√

v(BQP)
, 1

}
, 1 + 1− 1√

v(BQP)

}
(3.4)

=





2− 1√
v(BQP)

, v(BQP) ≥ 1,

1, v(BQP) < 1,

where Equation (3.4) holds since the strictly convex function (1 − s)2 · v(BQP) + s

attains its maximum at a vertex.

Theorem 3.2. The ball-constrained problem (Pball) is NP-hard.

Proof. For readability, we present here the sketch of the proof and leave the

tedious supplementary proof in Appendix A.

Given a = (a1, . . . , an)
T with integer entries, the partition problem (PP) is to ask

whether the following equation

aTx = 0, x ∈ {−1, 1}n(3.5)

has a solution. The NP-hardness of (PP) can be found in [5]. Without loss of gener-

ality, we assume ai 6= 0 for i = 1, . . . , n.

For any t (0 < t < 1), define

β(t) =
1−

√
1− t

t
√
1− t

,(3.6)

γ(t) = 2β(t) + tβ(t)2.(3.7)

The following equations
{

Λii(t)
−1 + a2i γ(t)Λii(t)

−2 = 1, i = 1, . . . , n
∑n

i=1 a
2
iΛii(t)

−1 = t

are equivalent to
{

Λii(t) = 1
2 + 1

2

√
1 + 4a2i γ(t), i = 1, . . . , n,

g(t) = 0,

where

g(t) = t−
n∑

i=1

2a2i

1 +

√
1 + 4a2i

(
2 1−

√
1−t

t
√
1−t

+
(

1−
√
1−t

t
√
1−t

)2
t

) .
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Since limt→0+
1−

√
1−t

t
√
1−t

= 1
2 and limt→1−

1−
√
1−t

t
√
1−t

= +∞, we have

lim
t→0+

g(t) = −1

2

n∑

i=1

(√
1 + 4a2i − 1

)
< 0, lim

t→1−
g(t) = 1 > 0.

Therefore, there is a t∗ ∈ (0, 1) such that g(t∗) = 0. Notice that the root t∗ can

be approximately obtained in polynomial time by using the bisection method. For

readability, in the following proof, we use the exact value t∗. A supplementary proof

based on an approximated t∗ is presented in Appendix A. Define

Λ := Diag(Λ11(t
∗), . . . ,Λnn(t

∗)),(3.8)

L := Λ−1/2
(
I + β(t∗)Λ−1/2aaTΛ−1/2

)
,(3.9)

and Li be the i-th row of L for i = 1, . . . , n. Then, we can verify that

‖Li‖2 = Λii(t
∗)−1 + a2i γ(t

∗)Λii(t
∗)−2 = 1, i = 1, . . . , n.

Moreover, we have

LLT = Λ−1 +
Λ−1aaTΛ−1

1− aTΛ−1a
= (Λ− aaT )−1,

where the last equality follows from the Sherman-Morrison formula [8].

Denote by (BQP∗) and (QCQP∗) the problems obtained by replacing the Hessiam

matrix Q with 1
4

(
Λ − aaT

)
in (BQP) (3.2) and (QCQP) (3.3), respectively. Without

loss of generality, we assume n ≥ 5. Then, we have

1

4
Tr(Λ) >

n

4
> 1.

Therefore, (PP) (3.5) has a solution if and only if v(BQP∗) = 1
4Tr(Λ)(> 1). According

to Lemma 3.1, it is equivalent to v(QCQP∗) = 2 − 2√
Tr(Λ)

(> 1). Thus, (QCQP∗)

remains NP-hard.

By introducing y = 1
2L

−1x, we can reformulate (QCQP∗) as

max
y, s

yT y + s

s. t. 2Liy ≤ 1− s, i = 1, . . . , n,

−2Liy ≤ 1− s, i = 1, . . . , n,

yT y ≤ 1.

It is further equivalent to

max
yT y≤1

{
min

i=1,...,n

{
‖y − LT

i ‖2, ‖y + LT
i ‖2
}}

,

which corresponds to a special case of (Pball) with m = 2n. Therefore, (Pball) is

NP-hard.
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4. Approximation algorithms. In this section, we propose a new simple ap-

proximation algorithm for solving (Pball) and then establish the approximation bound

of
1−O(

√
ln(m)/n)

2 .

4.1. Approximation algorithms for (Pχ). We show that the following gen-

eral approximation algorithm for (Pχ) proposed in [9] should be slightly fixed and

then it can be significantly simplified when χ = [−1, 1]n.

An approximation algorithm for (Pχ)

1. Input ρ ∈ (0, 1) and xi for i = 1, . . . ,m. Let α =
√
2 ln(m/ρ).

2. Solve (SDPχ) (or (SOCPχ)) and return the optimal solution Z∗ ∈ Sn+1.

Set bi = (
√
Z∗
11x

i
1, . . . ,

√
Z∗
nnx

i
n)

T for i = 1, . . . ,m.

3. Repeatedly generate ξ = (ξ1, . . . , ξn)
T with independent ξi taking the

value ±1 with equal probability until (bi)T ξ < α‖bi‖ for i = 1, . . . ,m.

4. Output x̃ =

( √
Z∗

11ξ1√
Z∗

n+1,n+1

,

√
Z∗

22ξ2√
Z∗

n+1,n+1

, . . . ,

√
Z∗

nnξn√
Z∗

n+1,n+1

)T

.

It is trivial to see that the above algorithm breaks down when there is an index

k ∈ {1, . . . ,m} such that ‖xk‖ = 0. Fortunately, Step 3 of the above algorithm can

be revised to generate ξ by repeated random sampling such that

(bi)T ξ < α‖bi‖, for i ∈ I := {i ∈ {1, . . . ,m} | ‖xi‖ > 0}.

The existence of ξ is guaranteed by the following inequality:

Pr
(
(bi)T ξ < α‖bi‖, i ∈ I

)
≥ 1− ρ > 0,

which follows from the following well-known result:

Theorem 4.1. [1, Lemma A.3] Let ξ ∈ {−1, 1}n be a random vector, componen-

twise independent, with

Pr(ξj = 1) = Pr(ξj = −1) =
1

2
, ∀j = 1, . . . , n.

Let b ∈ R
n and ‖b‖ > 0. Then for any α > 0,

Pr(bT ξ ≥ α‖b‖) ≤ e−α2/2.

It is not difficult to verify that the approximation bound established in [9] is still

satisfied for the fixed algorithm.

Theorem 4.2. [9, Theorem 3] Let γ∗
1 be defined in (1.6). Then, for the solution

x̃ returned by the above (fixed) algorithm, we have

v(SDPχ) ≥ v(Pχ) ≥ f(x̃) ≥ 1− α
√

γ∗
1

2
v(SDPχ) ≥

1− α
√
γ∗
1

2
v(Pχ).
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Now, we focus on the special case (Pbox). According to the construction of the

optimal solution of (SDPbox) defined in (2.3), we have

Z∗
11 = Z∗

22 = . . . = Z∗
nn = Z∗

n+1,n+1.(4.1)

It turns out that γ∗
1 defined in (1.6) can be simplified to 1

n . The solution structure

(4.1) has also been shown in Proposition 2.10 in [9]. However, the authors there seem

not to realize that the equalities (4.1) can be used to simplify the above approximation

algorithm for (Pbox). Actually, as seeing in the following, we do not have to solve any

convex relaxation for (Pbox).

A simplified approximation algorithm for (Pbox)

1. Input ρ ∈ (0, 1) and xi for i = 1, . . . ,m. Let α =
√
2 ln(m/ρ).

2. Repeatedly generate ξ ∈ R
n with independent ξi taking the value ±1 with

equal probability until (xi)T ξ < α‖xi‖ for i ∈ {1, . . . ,m} \ {k | ‖xk‖ = 0}.
3. Output x̃ = ξ.

Unfortunately, the above simplified approach for (Pbox) can not be similarly ex-

tended to (Pball), since the equalities (4.1) no longer hold true for the ball-constrained

case as shown in the following example.

Example 4.1. Let n = 2, m = 3, x1 =

(
1

2

)
, x2 =

(
2

3

)
, x3 =

(
1

5

)
,

and ω1 = ω2 = ω3 = 1. Solving the SDP relaxation (SDPball) (1.1) by SDPT3 within

CVX [6] yields the optimal value 1
v(SDPball)

≈ 0.0955 and an optimal solution

Z∗ =




0.0191 0.0382 −0.0427

0.0382 0.0764 −0.0854

−0.0427 −0.0854 0.0955


 .

Then, we have Z∗
11 < Z∗

22 < Z∗
33. Moreover, since solving a modified model of

(SDPball) with an additional constraint Z11 = Z22 yields a larger optimal objective

value 0.0976, the equalities (4.1) can not hold for any optimal solution of (SDPball).

Besides, according to the definition (1.6), we have γ∗
1 = 0.0764

0.0191+0.0764 = 0.8. It

follows that the approximation bound established in Theorem 4.2 is quite poor for this

example as it is negative:

1− α
√

γ∗
1

2
=

1−
√
1.6 ln(3/ρ)

2
≤ 1−

√
1.6 ln(3)

2
< −0.1629 < 0.
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4.2. Tail estimation of uniformly sampling on the sphere. Similar to The-

orem 4.1, we establish a tail estimation theory for uniformly sampling over the sphere

of radius
√
n. It will serve as a key lemma in the analysis of our new approximation

algorithm presented in the next subsection.

Theorem 4.3. Let b = {b1, . . . , bn} ∈ R
n and ‖b‖ > 0. Let η = (η1, . . . , ηn)

T be

uniformly distributed over the sphere of radius
√
n in R

n (that is, ‖η‖ =
√
n). Then,

for any α > 0 and any n ≥ 2, we have

Pr
(
bT η ≥ α‖b‖

)
= S(n, α) :=





∫
1
α/

√
n(

√
1−t2)n−3

dt

2
∫ 1
0 (

√
1−t2)

n−3
dt

, if α ≤ √
n,

0, if α >
√
n.

(4.2)

Moreover, S(n, α) is strictly decreasing in terms of α ∈ (0,
√
n) and satisfies that

S(n, α) < e−0.45α2

, ∀n ≥ 2, ∀α > 0.(4.3)

Proof. According to the Cauchy-Schwartz inequality, we have bT η ≤ ‖b‖ · ‖η‖ =
√
n‖b‖, which implies that

0 ≤ Pr
(
bT η ≥ α‖b‖

)
≤ Pr

(
bT η >

√
n‖b‖

)
= 0,

when α >
√
n and ‖b‖ > 0. Below we are sufficient to assume α ≤ √

n.

When n = 2, define y = (η1/
√
2, η2/

√
2)T , then ‖y‖ = 1 and

Pr
(
bT η ≥ α‖b‖

)
= Pr

((
b

‖b‖

)T

y ≥ α√
2

)
=

arccos α√
2

π
.

In this case, Equation (4.2) holds true. Now, we assume n ≥ 3. Without loss of

generality, we further assume ‖b‖ = 1.

Denote by Ωn = {z = (z1, . . . , zn)
T ∈ R

n | ‖z‖ = 1} the n-dimensional unit

sphere centered at 0. The spherical cap is defined as a set of points y in Ωn located

within distance ρ =
√
2− 2 cosβ from a fixed point x ∈ Ωn:

Capn(x, β) = {y ∈ Ωn | ‖y − x‖ ≤ ρ} = {y ∈ Ωn | xT y ≥ cosβ}.

Due to the rotational invariance, the Lebesgue measure of the spherical cap Capn(x, β)

is independent of the location of x. We denote it by Cn(β). More precisely, we have

Cn(β) = kn−1

∫

0

β

sinn−2 θdθ,

where

kn−1 =





(2π)
n−1
2

(n−3)!! , n = 3, 5, . . . ,

2 · (2π)
n−2
2

(n−3)!! , n = 4, 6, . . . ,
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see for example, Appendix B of [4]. It is easy to see that Cn(π) = 2Cn(π/2) represents

the Lebesgue measure of the unit sphere Ωn.

Define ỹ = (η1/
√
n, . . . , ηn/

√
n)T . We have ỹ ∈ Ωn and

Pr
(
bT η ≥ α

)
= Pr

(
bT ỹ ≥ α√

n

)
= Cn

(
arccos

α√
n

)/
(2Cn(π/2)) ,

which completes the proof of (4.2) by replacing θ with arccos t in the two integrations.

The proof of the tail estimation (4.3) is tedious. We leave it in Appendix B.

Based on the strict monotonicity of S(n, α) in terms of α ∈ (0,
√
n) and the

inequality (4.3), we immediately have the following result.

Corollary 4.1. For any fixed n ≥ 2, S(n, α) in terms of α ∈ (0,
√
n) has an

inverse function S−1(n, β) satisfying S(n, S−1(n, β)) = β and

S−1(n, β) <

√
20

9
ln

(
1

β

)
, ∀β ∈ (0, 0.5).(4.4)

Following from Theorem 4.3, we can get the following tail estimation.

Corollary 4.2. Let bi ∈ R
n, i = 1, . . . ,m and I := {i ∈ {1, . . . ,m} | ‖bi‖ > 0}.

Let η be uniformly distributed over the sphere of radius
√
n in R

n. Then, for any fixed

ρ ∈ (0, 1),

Pr
(
(bi)T η < S−1

(
n,

ρ

m

)
‖bi‖, i ∈ I

)
≥ 1− ρ > 0.

Proof. Let |I| be the number of elements in I. If I = ∅, there is nothing to prove.

So, we assume 1 ≤ |I| ≤ m. Let β = S−1
(
n, ρ

m

)
. According to Theorem 4.3, we have

Pr
(
(bi)T η ≥ β‖bi‖

)
=

ρ

m
, i ∈ I.

Then, it holds that

Pr
(
(bi)T η < β‖bi‖, i ∈ I

)
= 1− Pr(

(
bi)T η ≥ β‖bi‖ for some i ∈ I

)

≥ 1−
∑

i∈I

Pr
(
(bi)T η ≥ β‖bi‖

)

= 1−
|I|∑

i=1

ρ

m
= 1− |I|

m
ρ ≥ 1− ρ > 0.

The proof is complete.

4.3. A new approximation algorithm for (Pball). In this subsection, we

propose a new approximation algorithm for solving (Pball) as follows and then show

that the approximation bound is
1−O(

√
ln(m)/n)

2 , which positively answers the first

open question raised in [9].
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A new approximation algorithm for (Pball)

1. Input ρ ∈ (0, 1) and xi for i = 1, . . . ,m. Let α = S−1
(
n, ρ

m

)
.

2. Repeatedly uniformly generate ζ ∈ R
n on the surface of an n-dimensional

unit sphere until
√
n(xi)T ζ < α‖xi‖ for i ∈ {1, . . . ,m} \ {k | ‖xk‖ = 0}.

3. Output x̃ = ζ.

Theorem 4.4. For the solution x̃ returned by the above algorithm, we have

v(CRball) ≥ v(Pball) ≥ f(x̃) > r · v(CRball) ≥ r · v(Pball),

where the approximation bound r satisfies that

r =
1− S−1(n, ρ

m )√
n

2
>

1−
√

20
9n ln

(
m
ρ

)

2
.

Proof. According to the definition of x̃ and α, we can verify that for i = 1, . . . ,m

and ‖xi‖ > 0, it holds that

‖x̃− xi‖2 = ‖x̃‖2 − 2(xi)T x̃+ ‖xi‖2

= ‖x̃‖2 − 2(xi)T ζ + ‖xi‖2

> ‖x̃‖2 − 2α√
n
‖xi‖+ ‖xi‖2

= 1− 2α√
n
‖xi‖+ ‖xi‖2(4.5)

≥
(
1− α√

n

)(
1 + ‖xi‖2

)
,(4.6)

where the last inequality (4.6) follows from the fact

2‖xi‖ ≤ 1 + ‖xi‖2.(4.7)

If there is an index k such that ‖xk‖ = 0, then

‖x̃− xk‖2 = 1 >

(
1− α√

n

)(
1 + ‖xk‖2

)
.(4.8)

Let (x∗, ζ∗) be an optimal solution of (CRball). Then, for i = 1, . . . ,m and ‖xi‖ > 0,

we have

ζ∗ ≤ ωi(1− 2(xi)Tx∗ + ‖xi‖2)
≤ ωi(1 + 2‖xi‖ · ‖x∗‖+ ‖xi‖2)(4.9)

≤ ωi(1 + 2‖xi‖+ ‖xi‖2)(4.10)

≤ 2ωi(1 + ‖xi‖2),(4.11)
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where the second inequality (4.9) follows from the Cauchy-Schwartz inequality and

the last inequality (4.11) holds due to (4.7). In the case that there is an index k such

that ‖xk‖ = 0, we have

ζ∗ ≤ ωk(1− 2(xk)Tx∗ + ‖xk‖2) = ωk < 2ωk(1 + ‖xk‖2).(4.12)

Combining the inequalities (4.6), (4.8), (4.11) and (4.12) yields

min
i=1,...,m

ωi‖x̃− xi‖2 >
1− α√

n

2
ζ∗.

Thus, we get

v(CRball) ≥ v(Pball) ≥ f(x̃) >
1− α√

n

2
v(CRball) ≥

1− α√
n

2
v(Pball).

According to the definition of α, it follows from (4.4) in Corollary 4.1 that

α = S−1
(
n,

ρ

m

)
<

√
20

9
ln

(
m

ρ

)
.(4.13)

The proof is complete.

Theorem 4.4 guarantees that (Pball) admits a 1/2 asymptotic approximation

bound as n
ln(m) increases to infinity.

Corollary 4.3. Let x̃ be the solution returned by the above algorithm. Then, it

holds that

lim inf
n

ln(m)
→+∞

v(Pball)

v(CRball)
≥ lim inf

n
ln(m)

→+∞

f(x̃)

v(CRball)
≥ 1

2
.

Finally, we show that Theorem 4.4 can be further refined with some additional

information on ‖xi‖ (i = 1, . . . ,m).

Theorem 4.5. Let d = min
i=1,...,m

‖xi‖. For the solution x̃ returned by the above

algorithm, we have

v(Pball) ≥ f(x̃) >

(
ν

2 + ν
− 2

2 + ν

√
20

9n
ln

(
m

ρ

))
v(CRball),

where

ν = min
t≥d

{t+ 1/t} =

{
d+ 1/d, if d > 1,

2, otherwise.

Proof. If d = 0, that is, there is an index k such that ‖xk‖ = 0, then it holds that

ωk‖x̃− xk‖2 = ωk = ωk(1− 2(xk)Tx∗ + ‖xk‖2) ≥ v(CRball),(4.14)
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which completes the proof when m = 1. Generally, it follows from (4.5), (4.10) and

(4.14) that

f(x̃) = min
i=1,...,m

ωi‖x̃− xi‖2 > min
i=1,...,m

{
1− 2α√

n
‖xi‖+ ‖xi‖2

1 + 2‖xi‖+ ‖xi‖2

}
· v(CRball)

≥ min
t≥d

{
1− 2α√

n
t+ t2

1 + 2t+ t2

}
· v(CRball)

= min
t≥d

{
1−

(
2 +

2α√
n

)
t

(1 + t)2

}
· v(CRball)

=

(
1−

(
2 +

2α√
n

)
1

2 + mint≥d {t+ 1/t)

)
· v(CRball).(4.15)

Plugging (4.13) into (4.15) completes the proof.

5. Numerical experiments. In this section, we present the numerical compar-

ison between our new approximation algorithm and the general algorithm proposed

in [9] (see also Section 4.1 in this paper) for solving (Pball).

5.1. Algorithm implementation. We first give some details for implementing

the two algorithms for solving (Pball).

In the second step of the general algorithm in [9], according to Theorem 2.2, we do

not need to solve (SDPball). Instead, we first solve the second-order cone programming

relaxation (CRball) using SDPT3 within CVX [6] and then construct the optimization

solution of (SDPball) based on (2.9).

While in our new algorithm, none of the convex relaxations needs to be solved. In

our first step, the value α = S−1
(
n, ρ

m

)
is obtained by solving the nonlinear equation

S(n, α) = ρ
m with respect to α. In the second step, there are many approaches

to randomly and uniformly generate points on the surface of an n-dimensional unit

hypersphere, for example, see [7] and references therein. As pointed out by one

referee, there is a much simpler method [10] as follows. The existence of such a point

is guaranteed by Corollary 4.2.

Uniform random sampling of points on a unit-hypersphere
1. Generate µ ∈ R

n with independent standard normal random
components µi, i = 1, . . . , n.

2. Output µ/‖µ‖.

5.2. Numerical results. We do numerical experiments on 25 random instances

of dimension n = 5, where all weights ω1, . . . , ωn are equal to 1 and the number of

input points m varies from 6 to 30, as the instances when m ≤ n are trivial to solve

according to Theorem 3.1. All the numerical tests are implemented in MATLAB

R2013b and run on a laptop with 2.3 GHz processor and 4 GB RAM.
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All the input points xi (i = 1, . . . ,m) withm = 6, 7, . . . , 30 orderly form an n×450

matrix. We randomly generate this matrix using the following Matlab scripts:

rand(’state’,0); X = 2*rand(n,450)-1;

and then independently run each of the two random algorithms 10 times for each

instance using the same setting ρ = 0.9999. As references, we globally solve the 25

instances of (Pball) by calling the branch-and-bound type algorithm proposed in [13]

for the general quadratic constrained quadratic programming problem.

We report the numerical results in Table 5.1. The columns ‘v(P)’ and ‘v(CR)’

present the optimal objective function values of the 25 instances of (Pball) and the

convex relaxation (CRball), respectively. The next two columns present the statistical

results over the 10 runs of the general algorithm proposed in [9] and those of our new

algorithm, respectively. The subcolumns ‘vmax’, ‘vmin’ and ‘vave’ give the best, the

worst and the average objective function values found among 10 tests, respectively.

The subcolumns ‘l.b.’ present the lower bounds on the optimal objective function

values estimated by the two algorithms in comparison, i.e.,
1−

√
2 ln(m/ρ)γ∗

1

2 v(SDPball)

in [9] (see also Theorem 4.2 in this paper) and
1−S−1(n, ρ

m )/
√
n

2 v(CRball) established

in Theorem 4.4. We highlight each statistical result for the general algorithm in bold,

if it is better (i.e., larger) than the corresponding result for our new algorithm.

Table 5.1 shows that the qualities of the solutions returned by our algorithm are

generally higher than those obtained by the general algorithm in [9]. In particular,

there are a little more than half of instances such that the objective function values

of the worst solutions returned by the general algorithm are even less than our new

estimated lower bounds on the optimal values. Thus, our approximation solutions are

more robust. Moreover, the lower bounds on the positive optimal values estimated

by the general algorithm in [9] are all negative and have been significantly improved

by our new estimated lower bounds.

6. Conclusions. For the n-dimensional ball-constrained weighted maximin dis-

persion problem (Pball), complexity and approximation bounds remain unknown. In

this paper, we propose a new second-order cone programming (SOCP) relaxation

for (Pball), which is shown to be equivalent to the standard semidefinite program-

ming (SDP) relaxation. Besides, applying the new relaxation approach to the box-

constrained weighted maximin dispersion problem (Pbox) yields a linear programming

relaxation, which is also equivalent to the corresponding SDP relaxation. Further-

more, with the help of the new SOCP relaxation, we show that (Pball) is polynomially

solvable if m ≤ n, where m is the number of given points. A more general sufficient

condition is also provided. In general, we have proved that (Pball) is NP-hard. Then,

we propose a new randomized approximation algorithm for solving (Pball), which pro-

vides an approximation bound of
1−O(

√
ln(m)/n)

2 . Notice that (Pball) and (Pbox) are
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Table 5.1

Numerical results for n = 5.

m v(P) v(CR)
the general algorithm in [9] our new algorithm

vmax vmin vave l.b. vmax vmin vave l.b.

6 2.74 2.74 2.74 1.12 1.80 -0.43 2.01 1.42 1.78 0.71

7 2.50 2.50 1.94 0.25 1.03 -0.67 1.88 0.98 1.54 0.59

8 1.80 1.80 1.78 0.45 1.00 -0.74 1.44 0.77 1.07 0.40

9 2.45 2.45 2.23 0.25 0.71 -0.47 1.59 0.75 1.15 0.51

10 2.29 2.31 1.45 0.29 0.71 -0.62 1.69 0.79 1.12 0.45

11 2.22 2.22 1.80 0.33 1.00 -0.80 2.08 0.73 1.18 0.41

12 2.21 2.21 2.21 0.37 1.14 -0.58 1.21 0.60 0.90 0.39

13 1.73 1.74 1.39 0.61 0.91 -0.70 1.30 0.66 1.01 0.30

14 1.81 1.81 1.81 0.24 0.89 -0.36 1.51 0.57 0.89 0.30

15 2.02 2.19 1.44 0.09 0.80 -0.20 1.48 0.68 0.96 0.35

16 1.89 1.89 1.45 0.31 0.71 -0.84 1.42 0.62 0.97 0.29

17 2.13 2.13 2.11 0.44 0.76 -0.60 1.57 0.84 1.18 0.31

18 1.65 1.93 0.88 0.23 0.50 -0.37 0.91 0.51 0.74 0.28

19 1.72 1.93 1.02 0.27 0.61 -0.32 1.28 0.63 0.94 0.27

20 2.09 2.51 1.69 0.43 0.85 -0.13 1.42 0.75 1.06 0.34

21 1.92 2.07 0.94 0.27 0.53 -0.76 1.22 0.55 0.82 0.27

22 1.77 2.20 0.80 0.44 0.62 -0.37 1.41 0.64 0.98 0.28

23 1.83 2.13 1.18 0.39 0.67 -0.26 1.04 0.52 0.75 0.27

24 1.76 1.85 0.76 0.49 0.59 -0.31 1.28 0.59 0.78 0.23

25 1.73 1.92 1.05 0.20 0.45 -0.35 1.26 0.43 0.87 0.23

26 1.53 1.82 1.17 0.05 0.45 -0.43 1.08 0.53 0.74 0.21

27 1.56 1.88 0.85 0.25 0.49 -0.21 1.23 0.43 0.73 0.22

28 1.73 1.85 1.46 0.18 0.54 -0.41 1.42 0.45 0.78 0.21

29 2.38 2.39 1.83 0.24 0.71 -0.87 1.53 0.49 1.02 0.27

30 1.60 1.82 1.07 0.14 0.50 -0.57 1.24 0.47 0.84 0.20

the two special cases of (Pχp), where χp = {x | ‖x‖p ≤ 1} and ‖x‖p := (
∑n

i=1 |xi|p)
1
p

is the ℓp-norm of x. It is the future work to study the complexity and approximation

bound of (Pχp) for p ∈ [1,+∞).
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7. Appendix.

7.1. Appendix A: supplementary proof of Theorem 3.2. Since the root

t∗ can be polynomially approximated, let L̃ be an invertible rational matrix and Λ̃ be

a rational diagonal matrix such that they are sufficiently close to Λ (3.8) and L (3.9),

respectively. Suppose it holds that
∣∣∣‖L̃i‖2 − ‖Li‖2

∣∣∣ =
∣∣∣‖L̃i‖2 − 1

∣∣∣ ≤ ǫ1,(7.1)
∣∣∣Tr(Λ̃)− Tr(Λ)

∣∣∣ ≤ ǫ2,(7.2)

‖Λ̃− aaT − L̃−T L̃−1‖ ≤ ǫ2
8n

,(7.3)

Λ̃− aaT ≻ 0,

where ǫ2 ∈ (0, 1
2 ),

ǫ1 ∈


0,

ǫ2

4
√
U + ǫ2/8

√
U + 3ǫ2/8

(√
U + ǫ2/8 +

√
U + 3ǫ2/8

)


 ,(7.4)

and U is any constant satisfying U ≥ Tr(Λ).

Let va := minx∈{−1,1}n(aTx)2. (PP) (3.5) has no solution if and only va ≥ 1.

Since the elements of a are all integers, va remains an integer. Then, it holds that

va ≥ 1 ⇐⇒ va >
ǫ2
2
,

va < 1 ⇐⇒ va < ǫ2.

http://arxiv.org/abs/1508.01000
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Let the Hessian matrix of (BQP) (3.2) be Q = 1
4

(
Λ̃− aaT

)
. Let (BQP) and (QCQP)

be the problems obtained by replacing the Hessian matrix Q with 1
4 L̃

−T L̃−1 in (BQP)

(3.2) and (QCQP) (3.3), respectively.

Clearly, it holds that

v(BQP) =
1

4
Tr(Λ̃)− 1

4
va.

Therefore, (PP) (3.5) has a solution if and only if v(BQP) > 1
4Tr(Λ̃) − ǫ2

4 and (PP)

(3.5) has no solution if and only if v(BQP) < 1
4Tr(Λ̃)− ǫ2

8 .

According to Lemma 3.1, we have

v(QCQP) =





2− 1√
v(BQP)

, v(BQP) ≥ 1,

1, v(BQP) < 1.
(7.5)

According to (7.3), we have

∣∣∣∣x
TQx− xT

(
1

4
L̃−T L̃−1

)
x

∣∣∣∣ ≤
1

4
‖Λ̃− aaT − L̃−T L̃−1‖ · ‖x‖2 ≤ ǫ2

32
, ∀x ∈ [−1, 1]n,

which implies that

∣∣v(BQP)− v(BQP)
∣∣ ≤ ǫ2

32
.(7.6)

Without loss of generality, we assume n ≥ 5. Then, we have

Tr(Λ̃) ≥ Tr(Λ)− ǫ2 > Tr(Λ)− 1

2
> n− 1

2
≥ 9

2
.(7.7)

According to (7.5), the inequality

v(BQP) >
1

4
Tr(Λ̃)− 7ǫ2

32
(> 1)(7.8)

holds if and only if

v(QCQP) > 2− 2√
Tr(Λ̃)− 7ǫ2/8

.(7.9)

Similarly, the following inequality

v(BQP) <
1

4
Tr(Λ̃)− 5ǫ2

32
(7.10)

holds if and only if either v(QCQP) < 2 − 2√
Tr(Λ̃)−5ǫ2/8

or v(QCQP) = 1, which is

further equivalent to

v(QCQP) < 2− 2√
Tr(Λ̃)− 5ǫ2/8

,(7.11)
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since we always have 1 < 2 − 2√
Tr(Λ̃)−5ǫ2/8

according to (7.7) and the inequality

ǫ2 < 1
2 < 4

5 .

By introducing y = 1
2 L̃

−1x, we can reformulate (QCQP) as

max
y, s

yT y + s

s. t. 2L̃iy ≤ 1− s, i = 1, . . . , n,

−2L̃iy ≤ 1− s, i = 1, . . . , n,

yT y ≤ 1.

On the other hand, setting ω1 = . . . = ωn = 1, m = 2n and

xi = L̃T
i , i = 1, . . . , n,

xi = −L̃T
i−n, i = n+ 1, . . . , 2n,

in (Pball) yields

(PL
ball) max

x, s
xTx+ s

s. t. 2L̃ix ≤ ‖L̃i‖2 − s, i = 1, . . . , n,

−2L̃ix ≤ ‖L̃i‖2 − s, i = 1, . . . , n,

xTx ≤ 1.

Therefore, we have

v(PL
ball) = max

xTx≤1
{xTx+ min

i=1,...,n
{‖L̃i‖2 − 2L̃ix, ‖L̃i‖2 + 2L̃ix}}

≤ max
xTx≤1

{xTx+ min
i=1,...,n

{1 + ǫ1 − 2L̃ix, 1 + ǫ1 + 2L̃ix}}

= ǫ1 + max
xT x≤1

{xTx+ min
i=1,...,n

{1− 2L̃ix, 1 + 2L̃ix}}

= ǫ1 + v(QCQP),

where the inequality follows from (7.1). Similarly, we can show that

v(PL
ball) ≥ −ǫ1 + v(QCQP).

Now, if the inequality

v(PL
ball) > 2− 2√

Tr(Λ̃)− 7ǫ2/8
+ ǫ1,(7.12)

holds, then we obtain (7.9). It follows from (7.6) and (7.8) that

v(BQP) > v(BQP)− ǫ2
32

>
1

4
Tr(Λ̃)− 7ǫ2

32
− ǫ2

32
=

1

4
Tr(Λ̃)− ǫ2

4
.
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Consequently, (PP) (3.5) has a solution. Similarly, suppose

v(PL
ball) < 2− 2√

Tr(Λ̃)− 5ǫ2/8
− ǫ1,(7.13)

then (7.11) holds. According to (7.6) and (7.10), we obtain

v(BQP) < v(BQP) +
ǫ2
32

<
1

4
Tr(Λ̃)− 5ǫ2

32
+

ǫ2
32

=
1

4
Tr(Λ̃)− ǫ2

8
.

It implies that (PP) (3.5) has no solution.

Since the upper bound in the definition ǫ1 (7.4) is a decreasing function with

respect to U , and according to the inequalities

U ≥ Tr(Λ) ≥ Tr(Λ̃)− ǫ2,

where the second inequality follows from (7.2), we have

ǫ1 <
1√

Tr(Λ̃)− 7ǫ2/8
− 1√

Tr(Λ̃)− 5ǫ2/8
.

It implies that one of the two inequalities (7.12) and (7.13) must be satisfied. There-

fore, we conclude that (Pball) is NP-hard.

7.2. Appendix B: proof of the tail estimation (4.3) in Theorem 4.3. For

any fixed n, since

∂S(n, α)

∂α
= − (1 − α2/n)

n−3
2

2
√
n
∫ 1

0

(√
1− t2

)n−3
dt

< 0,(7.14)

S(n, α) is strictly decreasing in terms of α ∈ (0,
√
n).

The proof of (4.3) is divided into two parts: (a) n ≥ 40 and (b) 2 ≤ n ≤ 39.

(a) Suppose n ≥ 40. First, we have

∫ α√
n

0

(√
1− t2

)n−3

dt

>

∫ α√
n

0

(
1−

√
n−

√
n− α2

α
t

)n−3

dt(7.15)

=
n+

√
n2 − α2n

α(n− 2)
√
n

·
(
1−

(
1− α2

n+
√
n2 − α2n

)n−2
)

>
1

α
√
n

(
1−

(
1− α2

2n

)n·n−2
n

)

≥ 1

α
√
n

(
1−

(
1− α2

2n

)0.95n
) (

as
n− 2

n
≥ 40− 2

40
= 0.95

)

>
1

α
√
n

(
1− e−0.475α2

)
,(7.16)
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where the first inequality (7.15) holds as the strict concavity of
√
1− t2 implies that

√
1− t2 > 1−

√
n−

√
n− α2

α
t, ∀ t ∈

(
0,

α√
n

)
,

and the last inequality (7.16) holds since
(
1− 1

2n

)n
= en log(1− 1

2n ) is an increasing

function of n and has a limit e−
1
2 when n → ∞.

Secondly, we have

∫ 1

α√
n

(√
1− t2

)n−3

dt

=

[(1− α√
n
)n]∑

k=0

∫ min(1, α√
n
+ k+1

n )

α√
n
+ k

n

(√
1− t2

)n−3

dt

≤
[(1− α√

n
)n]∑

k=0

1

n
·
(√

1−
(

α√
n
+

k

n

)2)n−3

(7.17)

=
1

n

[(1− α√
n
)n]∑

k=0

(
1−

(
α√
n
+

k

n

)2)n−3
2

<
1

n

[(1− α√
n
)n]∑

k=0

e
−n−3

2 ·( α√
n
+ k

n )2
(7.18)

≤ 1

n

∞∑

k=0

e−
n−3
2n ·α

2n+2α
√

nk+2k−1
n

≤ 1

n

∞∑

k=0

e
−0.4625·

(
α2− 1

n+ 2α
√

n+2
n k

) (
as

n− 3

2n
≥ 40− 3

80
= 0.4625

)

=
e−0.4625(α2− 1

n)

n

∞∑

k=0

e
−0.4625

(
2α√
n
+ 2

n

)
k

≤ e−0.4625(α2− 1
40 )

n
· 1

1− e
−0.4625

(
2α√
n
+ 2

n

)

≤ e−0.4625(α2− 1
40 )

√
n

· 1
√
n
(
1− e

−0.4625 2α√
n

)

≤ e0.4625/40e−0.4625α2

√
n
√
40
(
1− e

−0.4625 2α√
40

) (as n ≥ 40)(7.19)

<
0.16 e−0.4625α2

√
n (1− e−0.1462α)

,(7.20)

where the inequality (7.17) holds since
√
1− t2 is decreasing with respect to t ∈ [0, 1],

the inequality (7.18) follows from 1 − x2 < e−x2

, ∀ x ∈ (0, 1), and the inequality

(7.19) holds since the function w(x) = x

(
1− e−0.925α

x

)
is strictly increasing in terms
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of x, which can be verified by checking the positivity of the derivative of w(x):

w′(x) = e−
0.925α

x

(
e

0.925α
x −

(
1 +

0.925α

x

))
> 0.

Plugging (7.16) and (7.20) into (4.2) yields

S(n, α) <
0.08α e−0.4625α2

0.16α e−0.4625α2 + (1− e−0.1462α)
(
1− e−0.475α2

) .

In order to prove (4.3), it is sufficient to show that the inequality

g(α) := 0.08α e−0.0125α2
(
1− 2e−0.45α2

)
< h(α) :=

(
1− e−0.1462α

) (
1− e−0.475α2

)

holds for any α > 0. Firstly, we have

g(α) < 0 < h(α), ∀α ∈ (0, 1.24],

g(α) < 0.08max
α

{α e−0.0125α2} < 0.32 < h(2.8) ≤ h(α), ∀α > 2.8.

Secondly, since both g(α) and h(α) are increasing in the interval [1.24, 2.8], we have

g(α) ≤ g(1.8) < h(1.24) ≤ h(α), ∀α ∈ [1.24, 1.8],

g(α) ≤ g(2.5) < h(1.8) ≤ h(α), ∀α ∈ [1.8, 2.5],

g(α) ≤ g(2.8) < h(2.5) ≤ h(α), ∀α ∈ [2.5, 2.8].

The proof of (4.3) in the case of n ≥ 40 is complete.

(b) Suppose n ∈ {2, 3, . . . , 39}. Define q(α) := e−0.45α2

and

m(α) := max
n∈{2,3,...,39}

S(n, α).

Since S(n, α) is decreasing in terms of α, m(α) is also monotonically decreasing. Let

{x1, x2, x3, x4, x5, x6} = {0, 1.2, 2.9, 3.8, 4.9, 6.3}. We can verify that

m(xk) < q(xk+1), k = 1, . . . , 5.

According to the monotonicity of q(α) and m(α), we have

m(α) ≤ m(xk) < q(xk+1) ≤ q(α), ∀α ∈ [xk, xk+1], k = 1, . . . , 5.(7.21)

Since (0,
√
39] ⊆ ∪5

k=1[xk, xk+1] and m(α) = 0 when α ≥
√
39, the proof of (4.3) in

the case of n ∈ {2, 3, . . . , 39} is complete.


