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Abstract. Let N be a set of matroids. A matroid M is strictly N -
fragile if M has a member of N as minor and, for all e ∈ E(M), at least
one of M\e and M/e has no minor in N . In this paper we give a struc-
tural description of the strictly {U2,5, U3,5}-fragile matroids that have six
inequivalent representations over GF(5). Roughly speaking, these ma-
troids fall into two classes. The matroids without an {X8, Y8, Y

∗
8 }-minor

are constructed, up to duality, from one of two matroids by gluing wheels
onto specified triangles. On the other hand, those matroids with an
{X8, Y8, Y

∗
8 }-minor can be constructed from a matroid in {X8, Y8, Y

∗
8 }

by repeated application of elementary operations, and are shown to have
path width 3.

The characterization presented here will be crucial in finding the
explicit list of excluded minors for two classes of matroids: the Hydra-
5-representable matroids and the 2-regular matroids.

1. Introduction

Certain minor-closed classes of matroids can be characterized by the prop-
erty of having a representation by a matrix over a certain partial field (see
Section 2 for a definition). In this paper we consider two partial fields,
the Hydra-5 partial field H5 introduced by Pendavingh and Van Zwam [9]
and the 2-regular partial field U2 introduced by Semple [11] (called the 2-
uniform partial field by Pendavingh and Van Zwam). This paper is a major
step toward solving the following problem:

Problem 1.1. Find the full sets of excluded minors for the classes of H5-
representable and U2-representable matroids.

These classes are closely related (the latter is a subset of the former), and
it seems that any differences in their analysis can be confined to finite case
checks. The excluded minors for the class of H5-representable matroids are
the first step in a 5-step process to find the excluded minors for the class of
GF(5)-representable matroids, as described in [6]. The excluded minors for
the class of U2-representable matroids are a first step in a process to find
the excluded minors for the Golden Mean matroids (see [14]), and should
shed light on the following problem:

Problem 1.2. Find the partial field P such that the set of P-representable
matroids is exactly the set of matroids representable over GF(4) and all
larger fields.
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Van Zwam [13, Conjecture 4.4.2] conjectured a possible answer.
It is well-established that an important step in the search for the ex-

cluded minors mentioned above, is to find the matroids that are fragile with
respect to an appropriately chosen set of matroids in the class. In particu-
lar, in forthcoming work, Clark, Oxley, Semple, and Whittle will prove the
following.

Theorem 1.3. Let M be a sufficiently large excluded minor for the class
of matroids representable over H5 or U2. Then M has a {U2,5, U3,5}-minor,
and if M has a pair of elements a, b such that M\a, b is 3-connected with a
{U2,5, U3,5}-minor, then M\a, b is a {U2,5, U3,5}-fragile matroid.

In this paper we give a structural characterization of these {U2,5, U3,5}-
fragile matroids. We need some definitions before stating our main result.

Let N be a set of matroids. We say that a matroid M has an N -minor
if some minor N of M is isomorphic to a member of N . Let x ∈ E(M).
If M\x has an N -minor, then x is N -deletable. If M/x has an N -minor,
then x is N -contractible. If x is both N -deletable and N -contractible, then
we say that x is N -flexible, and if x is neither, it is N -essential. We say
that the matroid M is N -fragile if no element of M is N -flexible. If, in
addition, M has an N -minor, then we say that M is strictly N -fragile. In
this paper, whenever we omit the “N -” prefix from these terms, assume that
N = {U2,5, U3,5}.

A matroid has path width at most k if there is an ordering (e1, e2, . . . , en)
of its ground set such that {e1, . . . , et} is k-separating for all t. Gluing a
wheel to M is the process of taking the generalized parallel connection of
M with M(Wn) along a triangle T , and deleting any subset of T containing
the rim element. In this paper we prove the following:

Theorem 1.4. Let P ∈ {H5,U2}. Let M be a strictly fragile, P-representable
matroid with |E(M)| ≥ 10. Then either

(1) M or M∗ can be obtained by gluing up to three wheels to U2,5; or
(2) M has path width at most 3.

In fact, our main result (Theorem 4.2) describes the structure of the
matroids in this class in much more detail, using the concept of generalized
∆− Y exchange.

The paper is organized as follows. In Section 2, we collect basic results on
the generalized ∆− Y exchange and partial fields. In Section 3 we describe
the matroids in our classes on at most 9 elements. We identify three special
matroids X8, Y8, Y

∗
8 , and describe the exact structure of all matroids in our

classes that have no {X8, Y8, Y
∗

8 }-minor. These results rely on computer
calculations carried out with SageMath [12, 10] and a result from [2]. In
Section 4 we describe the exact structure of the matroids in our class that
do have a {X8, Y8, Y

∗
8 }-minor, and state our main result. The remainder of

the paper is devoted to the proof of the main result.
Any undefined matroid terminology will follow Oxley [7]. In addition, we

say x is in the guts of a k-separation (A,B) if x ∈ cl(A−x)∩ cl(B−x), and
we say x is in the coguts of (A,B) if x is in the guts of (A,B) in M∗. We

also use the shorthand x ∈ cl(∗)(X) if either x ∈ cl(X) or x ∈ cl∗(X).
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2. Preliminaries

2.1. Partial fields. We start with a brief introduction to partial fields. We
refer to [9] for a more thorough treatment and proofs.

Let R be a ring and G a subgroup of the units of R with −1 ∈ G. We say
P = (R,G) is a partial field. A matrix over P is a P-matrix if det(D) ∈ G∪{0}
for all square submatrices D of A. If φ : R → S is a ring homomorphism,
then φ(A) is an (S, φ(G))-matrix.

A rank-r matroid with ground set E is P-representable if there is an r×E
P-matrix such that for each r × r submatrix D, det(D) 6= 0 if and only if
the corresponding subset of E is a basis of M . We write M = M [A]. Note
that M [A] = M [φ(A)].

Denote the group generated by a set X by 〈X〉. The partial fields relevant
to this paper are

• The near-regular partial field

U1 =

(
Z[α,

1

α
,

1

1− α
], {±αi(1− α)j : i, j ∈ Z}

)
;

• The 2-regular partial field

U2 = (Q(α, β), 〈−1, α, β, 1− α, 1− β, α− β〉) ;

• The Hydra-5 partial field

H5 =
(
Q(α, β, γ), 〈−1,α, β, γ, α− 1, β − 1, γ − 1, α− γ,

γ − αβ, (1− γ)− (1− α)β〉
)
.

Note that instead of the field of fractions Q(α, β, γ) we could have taken the
smallest subring in which all group elements are invertible, as was done for
U1. We have

Lemma 2.1. [9, Lemma 5.17] Let M be a 3-connected matroid with a
{U2,5, U3,5}-minor. Then M is H5-representable if and only if M has six
inequivalent representations over GF(5).

By combining partial-field homomorphism results of [9, Theorem 1.3(ii)]
and [11, Corollary 3.1.3] we have the following.

Lemma 2.2. Let M be P-representable for some P ∈ {U2,H5}. If F is a
field with at least 5 elements, then M is F-representable.

2.2. Connectivity. If M is a connected matroid such that
min{r(X), r(Y )} = 1 or min{r∗(X), r∗(Y )} = 1 for every 2-separation
(X,Y ) of M , then we say that M is 3-connected up to series and parallel
classes. A subset S of E(M) is a segment if every 3-element subset of S is
a triangle. A cosegment is a segment of M∗.

The next result implies that every {U2,5, U3,5}-fragile matroid is 3-
connected up to series and parallel classes.

Proposition 2.3. [6, Proposition 4.3] Let M be a matroid with a 2-
separation (A,B), and let N be a 3-connected minor of M . Assume
|E(N) ∩ A| ≥ |E(N) ∩ B|. Then |E(N) ∩ B| ≤ 1. Moreover, unless B
is a parallel or series class, there is an element x ∈ B such that both M\x
and M/x have a minor isomorphic to N .
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The following is an easy consequence of the property that strictly
{U2,5, U3,5}-fragile matroids are 3-connected up to parallel and series classes.

Lemma 2.4. Let M be a strictly {U2,5, U3,5}-fragile matroid with at least 8
elements. If S is a triangle or 4-element segment of M such that E(M)−S
is not a series or parallel class of M , then S is coindependent in M . If C
is a triad or 4-element cosegment of M such that E(M)− S is not a series
or parallel class of M , then C is independent.

We also use the following consequence of orthogonality.

Lemma 2.5. Let (X, {e}, Y ) be a partition of E(M). Then e ∈ cl(X) if
and only if e /∈ cl∗(Y ).

2.3. Delta-Y exchange. The generalized ∆− Y exchange of Oxley, Sem-
ple, and Vertigan [8] is used frequently. Let M be a matroid with U2,k-
restriction A, and suppose A is coindependent in M . The generalized ∆−Y
exchange on A, denoted by ∆A(M), is defined to be the matroid obtained
from PA(Θk,M)\A by relabeling the elements in E(Θk) − A by A using
their natural bijection (see Oxley [7, Proposition 11.5.1] for the definition
of Θk). So E(∆A(M)) = E(M). Let M be a matroid such that M∗ has
U2,k-restriction A, and suppose A is independent in M . The generalized Y -
∆-exchange on A, denoted by ∇A(M), is defined to be the matroid obtained
from (PA(Θk,M

∗)\A)∗ by relabeling the elements in E(Θk)−A by A. That
is, ∇A(M) = (∆A(M∗))∗.

We now state some of the key properties here.

Lemma 2.6. [8, Lemma 2.5] For all k ≥ 2, the restriction of
(PA(Θk,M)\A)∗ to E(Θk) − A is isomorphic to U2,k if and only if A is
coindependent in M .

Lemma 2.7. [8, Lemma 2.11] Let A be a coindependent segment in M .
Then ∇A(∆A(M)) is well-defined and ∇A(∆A(M)) = M .

A key property of the Delta-Y exchange is that it preserves P-
representability for any partial field P.

Lemma 2.8. [8, Lemma 3.4] Θ3 is regular, and Θ4 is near-regular.

Lemma 2.9. [8, Lemma 3.5] Let k ≥ 2, and let M be a matroid such that
M |A ∼= U2,k. Let P be a partial field. If M and Θk are P-representable,
then the generalized parallel connection PA(Θk,M) of Θk and M across A
is P-representable.

Corollary 2.10. [8, Lemma 3.7] Let P be a partial field. Then M is P-
representable if and only if ∆A(M) is P-representable.

The following two results on minors are crucial.

Lemma 2.11. [8, Lemma 2.13] Suppose that ∆A(M) is defined. If
x ∈ A and |A| ≥ 3, then ∆A−x(M\x) is also defined, and ∆A(M)/x =
∆A−x(M\x).

Lemma 2.12. [8, Lemma 2.16] Suppose that ∆A(M) is defined.

(i) If x ∈ E(M) − A and A is coindependent in M\x, then ∆A(M\x)
is defined and ∆A(M)\x = ∆A(M\x);
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(ii) If x ∈ E(M) − cl(A), then ∆A(M/x) is defined and ∆A(M)/x =
∆A(M/x);

The next two results are employed for rearranging path sequences.

Lemma 2.13. [8, Lemma 2.18] Let M be a matroid, and S and T be disjoint
subsets of E(M) such that |S| ≥ 2 and |T | ≥ 2. If S and T are both
coindependent segments, then

∆S(∆T (M)) = ∆T (∆S(M)).

Corollary 2.14. [8, Corollary 2.19] Let M be a matroid, and S and T be
disjoint subsets of E(M) such that |S| ≥ 2 and |T | ≥ 2.

(i) If S and T are both independent cosegments, then

∇S(∇T (M)) = ∇T (∇S(M)).

(ii) If S is an independent cosegment and T is a coindependent segment,
then

∇S(∆T (M)) = ∆T (∇S(M)).

Let M be a matroid with an N -minor. We say a segment S of a matroid
M is N -allowable if S is coindependent and some element of S is not N -
deletable. Write N ∗ := {N∗ : N ∈ N}. A cosegment C of M is N -allowable
if the segment C of M∗ is N ∗-allowable. We say S is an N -allowable set
if S is either an N -allowable segment or an N -allowable cosegment of M .
The next two results give conditions for allowable segments and cosegments
to go up the minor order, and are used later in reductions.

Lemma 2.15. Let M , M\x be strictly N -fragile matroids such that M\x
has no N -essential elements. If A ⊆ E(M\x) is an N -allowable segment of
M\x, then A is an N -allowable segment of M .

We omit the straightforward proof.

Lemma 2.16. Let M , M\x be strictly N -fragile matroids such that M\x
has no N -essential elements. If A ⊆ E(M\x) is an N -allowable cosegment
of M\x and x ∈ cl(E(M) − (A ∪ x)), then A is an N -allowable cosegment
of M .

Proof. Assume that A ⊆ E(M\x) is an N -allowable cosegment of M\x and
x ∈ cl(E(M)− (A∪ x)). Then A is a coindependent segment of M∗/x, and
x /∈ cl∗(A), so A is a coindependent segment of M∗. Finally, since M\x has
no N -essential elements A has an N -deletable element in M\x and hence
in M . �

We have the following properties on connectivity, rank and closure for the
generalized ∆− Y exchange.

Lemma 2.17. [5, Lemma 9.3] Let M be a 3-connected matroid.

(i) If A is a segment of M , then, for all A′ ⊆ A, PA(Θk,M)\A′ is
3-connected up to series pairs.

(ii) If A is a cosegment of M , then, for all A′ ⊆ A, (PA(Θk,M)\A′)∗ is
3-connected up to parallel pairs.
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Performing generalized ∆−Y exchanges on a set A of a matroid preserves
the connectivity of separations that are nested with A. We omit the easy
proof.

Lemma 2.18. Let M be a matroid, and let (X,Y ) be a partition of E(M).
If A is an allowable segment of M , and A ⊆ X, then λM (X) = λ∆A(M)(X).
Moreover, for any e /∈ A and Z ∈ {X,Y }, e ∈ clM (Z) if and only if e ∈
cl∆A(M)(Z) and e ∈ cl∗M (Z) if and only if e ∈ cl∗∆A(M)(Z).

We now work towards a proof that the generalized ∆−Y operations pre-
serve fragility. We use the excluded-minor characterisation of near-regular
matroids.

Theorem 2.19. [4, Theorem 1.2] The excluded minors for the class of
near-regular matroids are U2,5, U3,5, F7, F ∗7 , F−7 , (F−7 )∗, AG(2, 3)\e,
(AG(2, 3)\e)∗, ∆T (AG(2, 3)\e), and P8.

We let EX (U1) denote the set of excluded minors for the class of near-
regular matroids. We now obtain a representability certificate of losing the
{U2,5, U3,5}-minor.

Corollary 2.20. Let M be a U2- or H5-representable matroid. Then M is
near-regular if and only if M has no {U2,5, U3,5}-minor.

Proof. If M is near-regular, then M has no {U2,5, U3,5}-minor by Theorem
2.19. Conversely, suppose M is P-representable for some P ∈ {U2,H5} and
that M has no {U2,5, U3,5}-minor. It follows from Theorem 2.19 and well-
known results (see [4, 7]) that, for each matroid M ′ in EX (U1)−{U2,5, U3,5},
there is some prime power q ≥ 5 such that M ′ is not GF(q)-representable.
Therefore M also has no minor in EX (U1)− {U2,5, U3,5} by Lemma 2.2, so
M is near-regular. �

We can now show how the generalized ∆ − Y operations can be used to
build new fragile matroids.

Lemma 2.21. Let P ∈ {U2,H5}, and let M be a strictly {U2,5, U3,5}-fragile
P-representable matroid. If A is an allowable segment of M with |A| ∈ {3, 4},
then ∆A(M) is a {U2,5, U3,5}-fragile P-representable matroid. Moreover, A
is an allowable cosegment of ∆A(M).

Proof. It follows immediately from Corollary 2.10 and Corollary 2.20 that
∆A(M) is a P-representable matroid with a {U2,5, U3,5}-minor. Moreover,
A is an independent cosegment of ∆A(M) by Lemma 2.6. It remains to
show that ∆A(M) is {U2,5, U3,5}-fragile, and that some element of A is non-
contractible in ∆A(M).

Since A is an allowable segment of M , there is some x ∈ A that is non-
deletable in M . Then M\x is near-regular by Lemma 2.20, so ∆A−x(M\x) is
also near-regular by Lemma 2.10. But ∆A(M)/x = ∆A−x(M\x) by Lemma
2.11, so ∆A(M)/x has no {U2,5, U3,5}-minor by Corollary 2.20. Thus x
is non-contractible in ∆A(M), so A is an allowable cosegment of ∆A(M).
Now suppose that ∆A(M)\y has a {U2,5, U3,5}-minor for some y ∈ A − x.
But A − y is a non-trivial series class of ∆A(M)\y, so x is contractible in
∆A(M)\y; a contradiction because x is non-contractible in ∆A(M). Thus
each y ∈ A− x is non-deletable in ∆A(M).
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If clsi(M)(A) contains at least 5 elements, then M must have rank 2. Since
A is allowable, some element is non-deletable, so this closure has exactly five
elements. Let e ∈ clM (A) − A be such that M |(A ∪ e) ∼= U2,5. Since A is
coindependent, there is an f ∈M such that clM ({e, f}) = E(M). It is easy
to see that, in ∆M (A), element e is not deletable, and f is not contractible,
so the result holds. Hence we may assume that clsi(M)(A) has at most four
elements.

Suppose that e ∈ E(M) − A is non-deletable in M . Then M\e is near-
regular by Corollary 2.20. First, suppose that A is not coindependent in
M\e. Let B = E(M)− (A ∪ e). Then (A,B) is a 2-separation of M\e, and
either |A| = 3 or |A| = 4 and B spans a point of A. Suppose ∆A(M)\e has
a {U2,5, U3,5}-minor N . Then |E(N)∩A| ≤ 1 or |E(N)∩B| ≤ 1. We claim
that the former holds. Indeed: suppose E(N) ∩ B = {f}. After deleting
or contracting all elements of B − {f} so that the N -minor is preserved,
we are left with a matroid of rank 3 on 4 elements, or a matroid of rank 4
on 5 elements. Neither can have a minor isomorphic to N , a contradiction.
Hence |E(N) ∩ A| ≤ 1. Suppose x is deletable in ∆A(M)\e. Then A− x is
a series class in this matroid, so we can contract all but one of the elements
and still preserve N . But now we have obtained a matroid that is a minor
of M\e, a contradiction. Hence x ∈ E(N). By the above, all y ∈ A − x
are contractible but not deletable. Once again, contracting them results in
a minor of M\e, a contradiction.

Now A is a coindependent segment in M\e. The matroid ∆A(M\e) is
near-regular by Lemma 2.10. Thus ∆A(M\e) has no {U2,5, U3,5}-minor.
But ∆A(M\e) = ∆A(M)\e, so e is non-deletable in ∆A(M).

Next suppose that e ∈ E(M) − A is deletable but non-contractible in
M . First suppose that e ∈ clM (A) − A. Seeking a contradiction, suppose
that e is contractible in ∆A(M). Then ∆A(M)/e has an N -minor for some
N ∈ {U2,5, U3,5}. Now (A,E(M)−A) is a 3-separation of ∆A(M) and e is in
the guts of (A,E(M)−A), so ∆A(M)/e has a 2-separation (A,B). Suppose
|B ∩ E(N)| ≤ 1. Contract e in ∆A(M), and contract or delete all other
members of B preserving N , until only a single element f ∈ B remains.
Then we must have |A| = 4, and E(N) = A ∪ f . But since e is in parallel
with some element of A in M , there will be a triangle in the rank-3 matroid
N , a contradiction. Hence |A ∩ E(N)| ≤ 1.

Since e is in the guts of the 3-separation (A,E(M) − A) in ∆A(M), it
follows that A contains a circuit C of ∆A(M)/e. Let a ∈ A be an element
in the circuit C. We claim that a is flexible in ∆A(M). We can assume that
∆A(M)/e is the 2-sum of matroids MA and MB with basepoint p. Let Ca

and C∗a be a maximum-sized circuit and cocircuit of MA containing {a, p}.
If |Ca| > 2, then ∆A(M)/e/a has an N -minor, hence a is contractible in
∆A(M). Dually, if |C∗a | > 2, then ∆A(M)/e\a has an N -minor, hence a is
deletable in ∆A(M). Thus a is flexible unless |Ca| = 2 or |C∗a | = 2. Suppose

that |Ca| = 2 or |C∗a | = 2. Then a ∈ cl
(∗)
∆A(M)/e(B). But a ∈ cl∆A(M)/e(A−a)

since a is in the circuit C, and a ∈ cl∗∆A(M)/e(A−a) because A is a cosegment

of ∆A(M)/e. Thus a /∈ cl
(∗)
∆A(M)/e(B) by Lemma 2.5; a contradiction. Thus

e ∈ clM (A)−A is non-contractible in ∆A(M).
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We may therefore assume that e /∈ clM (A)−A. Then A is a coindependent
segment of M/e and ∆A(M/e) is well-defined. Now ∆A(M)/e = ∆A(M/e)
by Lemma 2.12. But M/e is near-regular, so ∆A(M/e) is near-regular.
Therefore ∆A(M/e) has no {U2,5, U3,5}-minor by Corollary 2.20, and so e is
non-contractible in ∆A(M). �

2.4. Gluing on wheels. LetM be a matroid, and (a, b, c) an ordered subset
of E(M) such that T = {a, b, c} is a triangle. Let N be obtained from
M(Wr) by relabeling some triangle as {a, b, c}, where a, c are spoke elements,
and let X ⊆ {a, b, c} such that b ∈ X. Following the terminology from [2],
we say the matroid M ′ := PT (M,N)\X was obtained from M by gluing an
r-wheel onto (a, b, c). We also say that M∗ is obtained from N∗ by gluing a
wheel to the triad T .

Lemma 2.22. Let P ∈ {U2,H5}, and let M be a strictly {U2,5, U3,5}-fragile
P-representable matroid. Let A = {a, b, c} be an allowable triangle of M ,
such that b is non-deletable. Let M ′ be obtained from M by gluing an r-
wheel onto (a, b, c), where X ⊆ {a, b, c} is as above. If M ′ is 3-connected,
then M ′ is a strictly {U2,5, U3,5}-fragile P-representable matroid. Moreover,
F = E(Wr)−X is the set of elements of a fan, the spoke elements of F are
non-contractible in M ′, and the rim elements of F are non-deletable in M ′.

The proof hinges on the following observations, whose proofs we omit.

Lemma 2.23. Let M1,M2,M3 be matroids, such that E(M1)∩E(M2) = A,
E(M2) ∩ E(M3) = B, E(M1) ∩ E(M3) = ∅, and such that A is a modular
flat of M2, and B a modular flat of M3. Then

PA(M1, PB(M2,M3)) = PB(M3, PA(M1,M2)).

Lemma 2.24. Let N ′ be isomorphic to the r-wheel, with T a triangle. Let
N be obtained from N ′ by adding elements in parallel to each of the spokes
in T . Let M be isomorphic to M(W3) with a triangle labeled by T . Then
PT (N,M)\T = ∆T (N) is isomorphic to M(Wr+1).

Proof of Lemma 2.22. We proceed by induction on the rank r of the wheel
glued onto A = (a, b, c). Since representability and fragility are minor-closed
properties, it suffices to prove the result when the set of deleted elements
when gluing is X = {b}. Let Mr be the matroid obtained by gluing an
r-wheel onto M and deleting X. For the base case, observe that since A is
allowable, a and c are non-contractible. Let M+ be the matroid obtained
from M by adding elements a′, c′ in parallel with a and c respectively, and
consider M3 = P{a′,b,c′}(M+,W )\{a′, b, c′} = ∆{a′,b,c′}(M+). The conclusion
now follows from Lemma 2.21.

Assume the result holds for Mr. Let T be any triangle of M(Wr) other
than {a, b, c}. Clearly T is allowable. Now apply the base case with M
replaced by Mr. This matroid, M ′r+1 say, satisfies all conclusions of the
lemma. That M ′r+1 is isomorphic to Mr+1 follows from Lemmas 2.23 and
2.24. �
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3. Small cases and fan-extensions

In [1], we used a computer to enumerate all 3-connected, strictly
{U2,5, U3,5}-fragile, H5-representable matroids on up to nine elements. Fig-
ures 1–5 give some geometric representations, and Figure 6 gives a labeling
of the elements of some of them. We refer the reader to [1] for a more de-
tailed description of the construction of the matroids in Figures 1–6 from
either U2,5 or M7,1.

In [1] we apply the main result of [2] together with a case analysis (carried
out by a computer) to prove the following Theorem.

Theorem 3.1. [1, Theorem 1.3] Let M ′ be a 3-connected strictly
{U2,5, U3,5}-fragile H5-representable matroid. Then M ′ is isomorphic to a
matroid M for which one of the following holds:

(i) M has an {X8, Y8, Y
∗

8 }-minor;
(ii) M ∈ {U2,6, U4,6, P6,M9,9,M

∗
9,9};

(iii) M or M∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by
gluing wheels to (a, c, b),(a, d, b),(a, e, b);

(iv) M or M∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by
gluing wheels to (a, b, c),(c, d, e);

(v) M or M∗ can be obtained from M7,1 by gluing a wheel to (1, 3, 2).

We also obtain the following Corollary of Theorem 3.1.

Corollary 3.2. [1, Corollary 1.4] Let M ′ be a 3-connected strictly
{U2,5, U3,5}-fragile U2-representable matroid. Then M ′ is isomorphic to a
matroid M for which one of the following holds:

(i) M has an {X8, Y8, Y
∗

8 }-minor;
(ii) M ∈ {M9,9,M

∗
9,9};

(iii) M or M∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by
gluing wheels to (a, c, b),(a, d, b),(a, e, b);

(iv) M or M∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by
gluing wheels to (a, b, c),(c, d, e);

(v) M or M∗ can be obtained from M7,1 by gluing a wheel to (1, 3, 2).

U2,5 U3,5

Figure 1. The 3-connected H5-representable fragile ma-
troids on 5 elements.

4. The main result

In this paper we augment Threorem 3.1 and Corollary 3.2 by giving a con-
structive description of the 3-connected U2- and H5-representable strictly
{U2,5, U3,5}-fragile matroids that have an {X8, Y8, Y

∗
8 }-minor. Roughly
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U2,6 U4,6Q6 P6

Figure 2. The 3-connected H5-representable fragile ma-
troids on 6 elements.

M7,0 M7,1 M7,2 = M∗7,0 M7,3 = M∗7,1

Figure 3. The 3-connected H5-representable fragile ma-
troids on 7 elements.

Y8 = M8,0 = M∗8,7

M8,3 = M∗8,4

M8,1 M8,1, alternative X8 = M8,2

M8,6M8,5

Figure 4. The 3-connected H5-representable fragile ma-
troids on 8 elements.

speaking, in addition to gluing on wheels as in the other classes, we can
also build paths of 3-separations along the 4-element segments and coseg-
ments of the matroids in {X8, Y8, Y

∗
8 }. In order to describe the structure of

these matroids formally we need some more definitions.
A set X ⊆ E(M) is fully closed if X is closed in both M∗ and M . The

full closure of X, denoted fclM (X) is the intersection of all fully closed
sets containing X. It can be obtained by repeatedly taking closures and
coclosures until no new elements are added. We call X a path-generating
set if X is a 3-separating set of M such that fclM (X) = E(M). For example,
the 4-element segments of Y8 are path-generating sets, but the triangles of
Y8 that meet both the 4-element segments are not path-generating sets. It is
easy to see that the notion of path-generating sets is invariant under duality.

A path-generating set X thus gives rise to a natural path of 3-separating
sets (P1, . . . , Pm), where P1 = X and each step Pi is either the closure
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M9,3 = M∗9,13M9,1 = M∗9,11M9,0 = M∗9,10

M9,4 = M∗9,14 M9,6 = M∗9,16

M9,2 = M∗9,12

M9,15 = M∗9,5 M9,7 = M∗9,17

M9,18 = M∗9,8 M9,9 = M∗9,19

Figure 5. The 3-connected H5-representable fragile ma-
troids on 9 elements.

M7,1 M8,6 M9,7

0 4 1

3

6
2

5

4
1

3

2
7

6
5

0
4

1

3

2
7

6
5

0

8

Figure 6. The matroids M7,1, M8,6, and M9,7. In the right-
most diagram, the 2-point lines were omitted to emphasize
the fan (1, 3, 2, 7, 8).

or coclosure of the 3-separating set Pi−1. The path-generating sets in this
paper will be allowable sets or fans.

Let X be an N -allowable cosegment M . A matroid Q is an N -allowable
series extension along X if M = Q/Z and, for every element z of Z there is
some element x of X such that x is N -contractible in M and z is in series
with x in Q. We also say that Q∗ is an N ∗-allowable parallel extension along
X.

In what follows, S will be the elements of the 4-element segment of X8,
and C the elements of the 4-element cosegment of X8, so E(X8) = S∪C. We
say that M is obtained from N by a ∆-∇-step along A if A ∈ {S,C} and,
up to duality, M is obtained from N by performing a non-empty allowable
parallel extension along a path-generating allowable set A of N , followed by
a generalized ∆− Y exchange on A. Note that, in N , each of S and C can
be either a segment or a cosegment.
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We also use the notation M = ∆Q
A(N) and N = ∇Q

A(N) if there is some
allowable parallel or series extension Q of N along A such that M = ∆A(Q)
or M = ∇A(Q).

A sequence of matroids M1, . . . ,Mn is called a path sequence if the fol-
lowing conditions hold:

(P1) M1 = X8; and
(P2) For each i ∈ {1, . . . , n− 1}, there is some 4-element path-generating

segment or cosegment A ∈ {S,C} of Mi such that either:
(a) Mi+1 is obtained from Mi by a ∆-∇-step along A; or
(b) Mi+1 is obtained from Mi by gluing a wheel onto an allowable

subset A′ of A.

Note in (P2) that each ∆-∇-step described in (a) increases the number
of elements by at least one, and that the wheels in (b) are only glued onto
allowable subsets of 4-element segments or cosegments.

We say that a path sequence M1, . . . ,Mn describes a matroid M if Mn
∼=

M . We also say that M is a matroid described by a path sequence if there
is some path sequence that describes M . Let P denote the class of matroids
such that M ∈ P if and only if there is some path sequence M1, . . . ,Mn

that describes a matroid M ′ such that M can be obtained from M ′ by 0 or
more allowable parallel and series extensions. Since X8 is self-dual it is easy
to see that the sequence of dual matroids M∗1 , . . . ,M

∗
n of a path sequence

M1, . . . ,Mn is also a path sequence. Thus the class P is closed under duality.
We say that M1, . . . ,Mn is a path sequence ending in a 4-element segment

A if Mn is obtained from Mn−1 by a ∆-∇-step along A, and A is a 4-element
segment of Mn. We say that M1, . . . ,Mn is a path sequence ending in a 4-
element cosegment A if M∗1 , . . . ,M

∗
n is a path sequence ending in a 4-element

segment A.
Suppose that M1, . . . ,Mn is a path sequence such that Mn is obtained

from Mn−1 by gluing a wheel W onto an allowable triangle A′ of Mn−1. Then
Mn = PA′(Mn−1,W )\X for some subset X of A′ containing the unique
rim element of A′. Let F = E(W ) − X. Then we call M1, . . . ,Mn (and
M∗1 , . . . ,M

∗
n) a path sequence ending in a fan F . We also call M1, . . . ,Mn

a path sequence ending in a triangle F or a path sequence ending in a triad
F if M1, . . . ,Mn is a path sequence ending in a fan F , where the fan F is a
triangle or triad of Mn respectively.

Given a path sequence M1, . . . ,Mn, a path of 3-separations can be de-
termined as follows: for X8, we let (S,C) be the path of 3-separations.
Otherwise n ≥ 2, so we can assume by duality that either M1, . . . ,Mn

is a path sequence ending in a 4-element segment A or else M1, . . . ,Mn

is a path sequence ending in a fan A, where Mn is obtained from Mn−1

by gluing a wheel onto an allowable triangle of Mn−1. We set P1 = A,
and then define the remaining steps of the path of 3-separations by alter-
nately taking the closure and coclosure respectively until no new steps can
be added. That is, Pk = cl(P1 ∪ · · ·Pk−1) for k ≥ 2 and k even, and
Pk = cl∗(P1 ∪ · · ·Pk−1) for k ≥ 2 and k odd. We call the resulting path of
3-separations P = (P1, . . . , Pm) the path of 3-separations associated with the
path sequence M1, . . . ,Mn. A 3-separation (R,G) of Mn is displayed by P
if (R,G) = (P1 ∪ · · · ∪ Pi−1, Pi ∪ · · · ∪ Pn) for some i ∈ {2, . . . , n}.
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The following is an easy consequence of the definition of a path sequence,
together with Lemma 2.21 and Lemma 2.22.

Lemma 4.1. Let P ∈ {U2,H5}. If M is a 3-connected matroid described
by a path sequence, then M is a strictly {U2,5, U3,5}-fragile P-representable
matroid. Moreover, M has a path of 3-separations P = (P1, . . . , Pm)
such that P1 and Pm are path-generating allowable sets, and, for each
i ∈ {2, . . . ,m − 1}, the elements of Pi are in the guts or coguts of the 3-
separation (P1 ∪ · · · ∪ Pi−1, Pi ∪ · · · ∪ Pn) and |Pi| ≤ 3.

We can now state the main result of the paper.

Theorem 4.2. If M is a 3-connected {U2,5, U3,5}-fragile H5-representable
matroid that has an {X8, Y8, Y

∗
8 }-minor, then there is some path sequence

that describes M .

The proof will take up the remaining sections. We also have the following
corollary for the class of U2-representable matroids.

Corollary 4.3. If M is a 3-connected {U2,5, U3,5}-fragile U2-representable
matroid that has an {X8, Y8, Y

∗
8 }-minor, then there is some path sequence

that describes M .

5. Path sequence rearrangement

Path sequence descriptions are generally not unique. That is, we can have
distinct path sequences M1, . . . ,Mn and M ′1, . . . ,M

′
n such that Mn

∼= M ′n.
One reason for this is that X8 has two disjoint path-generating sets, and
the order in which these are used does not change the resulting matroid
described by a path sequence. Another reason is because of symmetry. We
will focus on the ends of path sequences in the following sections, and we
often speak of path sequences with a particular ordering of steps. In this
section we show when we can obtain a path sequence with a desired ordering.
The results found here are mostly routine and follow from corresponding
properties of the generalized ∆− Y exchange.

We introduce some terminology here to avoid cumbersome statements,
but note that these terms will not appear in the following sections. We
call a path sequence a ∆-∇-sequence if only moves of type (P2)(a) are
used. That is, if no step involves gluing a wheel onto an allowable set.
Let M1, . . . ,Mn be a ∆-∇-sequence, and remember that S and C are the
4-element segment and cosegment of X8 respectively. There is an associ-
ated sequence a[M1, . . . ,Mn] : {2, . . . , n} → {S,C} for M1, . . . ,Mn where,
for i ∈ {2, . . . n}, we define a[M1, . . . ,Mn](i) = X if Mi is obtained from
Mi−1 by using the set X. We call a[M1, . . . ,Mn] the adjacency sequence for
M1, . . . ,Mn. The adjacency sequence records the order of the steps used by
the path sequence. If n = 2 then either S and C are both segments of M2

or both cosegments of M2. In the former case, a[M1,M2](2) = (C), and in
the latter, a[M1,M2](2) = S. When there are two or more steps, there is
a lot of flexibility in the adjacency sequence. First, we show that moves on
disjoint path-generating sets commute.
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Lemma 5.1. Let M1, . . . ,Mn be a ∆-∇-sequence. If a[M1, . . . ,Mn](i) 6=
a[M1, . . . ,Mn](i + 1) for some i ∈ {2, . . . , n}, then there is some ∆-
∇-sequence M ′1, . . . ,M

′
n such that Mn = M ′n, and a[M ′1, . . . ,M

′
n](j) 6=

a[M1, . . . ,Mn](j) if and only if j ∈ {i, i+ 1}.
Proof. Suppose that a[M1, . . . ,Mn](i) = C and a[M1, . . . ,Mn](i + 1) = S

for some i ∈ {2, . . . , n}. Suppose that Mi = ∆Ni
C (Mi−1) and Mi+1 =

∆
Ni+1

S (Mi). Let Q = E(Ni) − E(Mi−1) and R = E(Ni+1) − E(Mi), and
consider the matroid P = ∇C(∇S(Mi+1)). Then P is a parallel exten-
sion of Mi−1 with the elements of Q along C and the elements of R along
S. Now Pi = P\Q is an allowable parallel extension of Mi−1 along S, so

M ′i = ∆Pi
S (Mi−1) is obtained from Mi−1 using S. Next Pi+1 = ∆S(P ) is

an allowable parallel extension of M ′i along C, so M ′i+1 = ∆
Pi+1

C (M ′i) is ob-
tained from M ′i using C. But now M ′i+1 = ∆C(∆S(P )), so M ′i+1 = Mi+1

by Lemma 2.13. The argument when Mi or Mi+1 use the ∇ operation is
symmetric, with Corollary 2.14 used in place of Lemma 2.13. �

The following lemma is a key to exchanging the order of the ∆-∇-steps
of a ∆-∇-sequence.

Lemma 5.2. Let M be such that M = ∆Q
S (X8) or M = ∇Q

C(X8). Then M
has an automorphism exchanging S and C.

Proof. Assume M = ∆Q
S (X8). The other case follows by duality. We have

M = ∆Q
S (X8) = ∆Q

S (∆R
C(U2,5)), where R is an allowable parallel extension

of U2,5 by three elements. For concreteness, let S = {s1, s2, s3, s4}, let
C = {c1, c2, c3, c4}, suppose E(U2,5) = {s1, s2, s3, s4, c4}, and E(R)−E(S) =
{c1, c2, c3} with {si, ci} a parallel pair for i = 1, 2, 3. Now Q is an allowable
parallel extension of X8, and up to symmetry we may assume it was obtained
by placing elements pi in parallel with si, for i ⊆ {1, 2, 3}. Let Q′ be the
matroid obtained from U2,5 by doing both parallel extensions, i.e. Q′ =
∇C(Q). Clearly Q′ has an automorphism exchanging S and C, and therefore
M = ∆S(∆C(Q′)) = ∆C(∆S(Q′)) also has the desired automorphism. �

Next, we show that we can exchange an S and a C. We omit the dual
statement of the following result.

Corollary 5.3. Let M1, . . . ,Mn be a ∆-∇-sequence such that a[M1, . . . ,Mn]
has k entries equal to C and n−k−1 entries equal to S. If k ≥ 1, then there
is some equivalent ∆−∇-sequence M ′1, . . . ,M

′
n such that a[M ′1, . . . ,M

′
n] has

k − 1 entries equal to S and n− k entries equal to C.

Proof. This follows from Lemma 5.2 when n ≤ 2. For n ≥ 3, apply Lemma
5.1 to assume a[M1, . . . ,Mn](2, 3) = (C,C) or a[M1, . . . ,Mn](2, 3) = (S,C).
By Lemma 5.2, there is an automorphism of M2 that exchanges S and C.
Let M ′2 be the image of this automorphism. Applying it to all other Mj , we
find a ∆−∇-sequence M ′1,M

′
2, . . . ,M

′
n whose adjacency sequence starts with

(C, S) or (S, S) respectively. Note that all remaining entries get swapped
from C to S and vice versa. This yields the desired result. �

We now return to considering general path sequences. Since, by Lemma
2.24, gluing a wheel onto an allowable triangle contained in an allowable 4-
element segment is the same as performing a sequence of moves, where each
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move consists of allowable parallel-extensions followed by a ∆-Y exchange, it
again follows easily from Lemma 2.13 and Corollary 2.14 that this operation
commutes with moves described in (P2) that are performed on a disjoint
path-generating set. When a wheel is glued onto on an allowable subset of
a 4-element segment or cosegment A, it is clear that A can no longer be a 4-
element segment or cosegment, so no additional ∆-∇-step can be performed
on A. Thus we have the following lemma, whose proof is similar to the last.

Lemma 5.4. Let M1, . . . ,Mn be a path sequence that describes M , and let
F be a fan of M . If there is some k ∈ {1, . . . , n} such that M1, . . . ,Mk is
a path sequence ending in the fan F , then M can be described by a path
sequence M ′1, . . . ,M

′
n ending in the fan F . Moreover, if M ′1, . . . ,M

′
n−1 is a

∆-∇-sequence with at least one ∆-∇-step, then M can be described by a path
sequence M ′′1 , . . . ,M

′′
n ending in either a 4-element segment or cosegment A

of M , where A ∈ {S,C} and A is disjoint from F .

Let M be a matroid described by a path sequence M1, . . . ,Mn. If

M1, . . . ,Mn has a subsequence of the form Mi = ∆Q
A(Mi−1) and Mi+1 =

∇R
A(Mi), then r ∈ E(R) − E(Mi) is called an internal coguts element and

q ∈ E(Q) − E(Mi−1) is called an internal guts element. Dually, for the
subsequence M∗i and M∗i+1 of M∗1 , . . . ,M

∗
n, we call r ∈ E(R) − E(M∗i ) an

internal guts element and q ∈ E(Q)− E(M∗i−1) an internal coguts element.
Internal guts and coguts elements can be removed without disturbing the
end steps of the path sequence, in the following sense.

Lemma 5.5. Let M be a matroid described by a path sequence M1, . . . ,Mn

ending in either a 4-element segment, 4-element cosegment, or fan X. If
q ∈ E(M) is an internal guts element and r ∈ E(M) is an internal coguts
element, then M\q ∈ P and M/r ∈ P. Moreover, there are matroids M ′

and M ′′ that can each be described by path sequences ending in the 4-element
segment, 4-element cosegment, or fan X such that M\q is a series extension
of M ′ and M/r is a parallel extension of M ′′.

Proof. Suppose some subsequence of steps of the path sequence has the

form Mi = ∆Q
A(Mi−1) and Mi+1 = ∇R

A(Mi). Let r ∈ E(R)− E(Mi). Then
either R/r = Mi or R/r is an allowable series extension of Mi along A.
Suppose first that R/r = Mi. Then Mi+1/r = Q by Lemma 2.7, so Mi+1/r
is a parallel extension of a matroid described by a path sequence ending
in the 4-element segment A. Now consider contracting the element r of
M . The contraction operation commutes with any subsequent steps of the
path sequence that describes M by Lemma 2.12, so M/r is also is a parallel
extension of a matroid described by a path sequence ending in X. For
the second case, suppose that R/r is an allowable series extension of Mi.
Consider contracting r from M . Again the contraction of r commutes with
any subsequent steps of the path sequence that describes M by Lemma 2.12,

and the (i+ 1)-th step becomes ∇R/r
A (Mi). It follows that M/r is described

by a path sequence ending in X.
Similarly, for q ∈ E(Q) − E(Mi−1), either Q\q = Mi−1 or Q\q is an

allowable parallel extension of Mi−1. Suppose that Q\q = Mi−1. Then
Mi\q = ∆A(Mi−1) by Lemma 2.7. Thus Mi+1\q is equal to Mi−1 up to
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series pairs by Lemma 2.7, and since the deletion of q commutes with any
subsequent steps of the path sequence that describes M by Lemma 2.12, it
follows that M\q ∈ P and M\q is a series extension of a matroid described
by a path sequence ending in X. Suppose that Q\q is an allowable parallel
extension of Mi−1. Then the deletion of q commutes with any subsequent
steps of the path sequence that describes M by Lemma 2.12, and the (i+1)-

th step becomes ∆
Q\q
A (Mi−1), so M\q is described by a path sequence ending

in X. �

Next we handle elements belonging to path-generating sets for matroids
described by long path sequences.

Lemma 5.6. Let M be a matroid described by a path sequence M1, . . . ,Mn

ending in a 4-element segment A, where M1, . . . ,Mn has at least two ∆-∇-
steps. If s ∈ E(M) − A is in parallel with an element of A, then M\s is
described by a path sequence M ′1, . . . ,M

′
n ending in A.

Proof. Let s ∈ E(M)−A be an element in parallel with an element of A. If s
were added in some ∆-∇-step, then, since M1, . . . ,Mn has at least two ∆-∇-
steps, it follows from Corollary 5.3 that M is described by a path sequence
M ′1, . . . ,M

′
n where s is an internal guts element of M ′1, . . . ,M

′
n and the result

would follow immediately from Lemma 5.5. We may therefore assume that s
belongs to a maximal allowable path-generating set X contained in E(Mn)−
A. Now it follows from the path sequence construction that s is the only
element of X in parallel with A. Moreover, it follows by orthogonality that
X is either a 4-element segment or a fan with |X| ≥ 4 such that s is an end
spoke element of X. We handle the two cases now.

Suppose that X is a 4-element segment. Since M1, . . . ,Mn has at least
two ∆-∇-steps, it follows from Corollary 5.3 that M is described by a path
sequence M ′1, . . . ,M

′
n ending in X, so that M ′n = ∇N

X(M ′n−1). Hence M\s =
∇X−s(N/s) by Lemma 2.11, where (X − s) ∪ (E(N) − (E(M ′n−1 ∪ s)) is a
fan of M\s. Thus M\s has a path sequence M ′1, . . . ,M

′
n−1,M

′′
n , where M ′′n

is obtained from M ′n−1 by gluing a wheel onto the triangle X − s ⊆ X of
M ′n−1. Since M ′1, . . . ,M

′
n−1,M

′′
n must have at least one ∆-∇-move, it follows

by Lemma 5.4 that M\s has a path sequence ending in A.
Suppose that X is a fan with |X| ≥ 4 such that s as an end spoke element.

By Lemma 5.4 it follows that M is described by a path sequence M ′1, . . . ,M
′
n

such that M ′n is obtained from M ′n−1 by gluing a wheel onto an allowable
triangle of S, where X is the corresponding fan. Since s is an end spoke
element of X and |X| ≥ 4, it follows that X − s is a fan of M\s. Moreover,
it is easy to see that M\s has a path sequence M ′1, . . . ,M

′
n−1,M

′′
n where M ′′n

is obtained from M ′n−1 by gluing a wheel onto an allowable triangle of S,
where X − s is the corresponding fan. Since M ′1, . . . ,M

′
n−1,M

′′
n has at least

one ∆-∇-move, it follows from Lemma 5.4 that M\s has a path sequence
ending in A. �

Let M ∈ P, and let A be a path-generating allowable 4-element segment
of M . We say that A is parallel to a 4-element segment A′ if A′ is obtained
by possibly replacing one or more deletable elements a of A by an element
a′ in parallel with a in M . It is easy to see that the parallel relation is an
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equivalence relation on the path-generating allowable 4-element segments of
M , and that if A and A′ are equivalent, then ∆A(M) ∼= ∆A′(M).

Lemma 5.7. Let M be a matroid described by a path sequence M1, . . . ,Mn

that has at least one ∆-∇-step, and let A be a path-generating allowable 4-
element segment of M . There is a path sequence that describes M such that
A is parallel to a 4-element segment in {S,C}.

Proof. Assume that neither A nor any 4-element segment parallel to A be-
longs to {S,C}. Then since M is a matroid described by a path sequence,
it follows that A = T ∪ {t} where T is a path-generating allowable triangle
contained in either S or C, and t is a deletable element of M . We may
assume that T ⊆ C by Corollary 5.3.

Now, by Lemma 5.4, we may assume that C is a 4-element cosegment
of Mn−1 and that M = ∇T (Mn−1). We show that we can construct a new
path sequence that describes M ending in a 4-element segment parallel to
A. Let N be the series extension of Mn−1 obtained by adding an element in
series with c ∈ C −T . Let M ′n = ∇N

C (Mn−1). By the dual of Lemma 2.11 it
follows that ∇C(N)\c = ∇C−c(N/c) = M , so M ′n is a parallel extension of
M where c is in parallel with the element t. Thus C is parallel to A in M ′n.
Moreover, since M1, . . . ,M

′
n is a path sequence with at least two ∆-∇-steps,

it follows from Lemma 5.6 that M ′n\t = M is described by a path sequence
ending in the 4-element segment C, as required. �

We have the following important consequence of Lemma 5.7.

Lemma 5.8. Let M ∈ P, and let A be a path-generating allowable 4-element
segment of M . If N is an allowable parallel extension of M along A, then
∆A(N) ∈ P.

Proof. Since M ∈ P, we know that M is some series-parallel extension of
a matroid M ′ described by a path sequence, so up to removing parallel
or series elements and replacing A by an equivalent 4-element segment if
necessary, we can assume that there is some path sequence M1, . . . ,Mn that
describes M . Now, if M1, . . . ,Mn has no ∆-∇-step, then M is obtained
from X8 or Y8 by gluing a wheel onto an allowable set X ′ ⊆ X for some
X ∈ {S,C}, so it is clear that, up to symmetry, any 4-element segment A of
M is in {S,C}. Hence ∆A(N) ∈ P. Suppose that M1, . . . ,Mn has at least
one ∆-∇-step. Then it follows from Lemma 5.7 that A is equivalent to a
4-element segment in {S,C}, so by the definition of a path sequence there is
some path sequence that describes ∆A(N), and therefore ∆A(N) ∈ P. �

Next we consider path sequences that end in a fan.

Lemma 5.9. Let M be a matroid described by a path sequence M1, . . . ,Mn

ending in a fan F . If F is not a maximal fan, then F ∪ {s} is a maximal
fan of M for some s ∈ E(M) − A. Moreover, there is a path sequence
M ′1, . . . ,M

′
t ending in F ∪ {s} that describes M .

Proof. We may assume, by duality, that Mn is obtained from Mn−1 by gluing
a wheel onto an allowable triangle A′ of a 4-element segment A ∈ {S,C}.
Suppose that F is not a maximal fan. By the path sequence that describes
M the fan F is obtained by gluing a wheel onto a triangle A′ that is contained
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in a 4-element segment A, so it follows from orthogonality that no triads
meet both F and E(M) − F . Thus any fan properly containing F is an
extension of F by adding end spoke elements, and the end spoke elements
must be parallel with elements of A′ in Mn−1. But from the definition of a
∆-∇-step we see that clMn−1(A) meets E(Mn−1)−A in at most a rank one
set. Thus F ∪ s is maximal for some end spoke element s ∈ E(M) − F . It
remains to show that there is a path sequence that describes M ending in
F ∪ s.

Since Mn−1 is described by a path sequence, there must be at least one
∆-∇-step in M1, . . . ,Mn−1.

If there are at least two ∆-∇-steps in the path sequence M1, . . . ,Mn−1,
then Mn−1\s is described by a path sequence M ′1, . . . ,M

′
n−1 ending in A by

Lemma 5.6. Then M is described by a path sequence M ′1, . . . ,M
′
n−1,M

′
n,

where M ′n is obtained from M ′n−1 by gluing a wheel onto A′, such that the
element of A′ that was parallel to s in Mn−1 is not deleted.

Assume that M1, . . . ,Mn−1 has exactly one ∆-∇-step. Then, since Mn−1

has an element in parallel with A, either Mn−1 is a single-element parallel
extension of Y8, where an element of C is in parallel with an element of S,
or Mn−1 is obtained from that matroid by gluing a wheel onto a triangle of
S∪C−A. In either case, Mn−1\s is described by a path sequence such that
A ∈ {S,C}, and M can be obtained from Mn−1\s by gluing a wheel onto A′,
where the element of A′ that was parallel to s in Mn−1 is not deleted. �

The following is another important consequence of Lemma 5.7 and 5.9.

Lemma 5.10. Let M ∈ P, and let A be a path-generating allowable triangle
of M . If N is an allowable parallel extension of M along A, then ∆A(N) ∈
P. Moreover, if A is contained in a 4-element segment of M , then ∆A(M) ∈
P.

Proof. We may assume that M is a matroid described by a path sequence
M1, . . . ,Mn. Then, since A is a path-generating allowable triangle of M ,
either A is contained in a 4-element segment or A is contained in a path-
generating fan of M .

Suppose that A is contained in a 4-element segment of M . If M1, . . . ,Mn

has no ∆-∇-step, then M is obtained from X8 or Y8 by gluing a wheel onto
an allowable set X ′ ⊆ X where X ∈ {S,C}. In either case we can assume,
up to symmetry, that A ⊆ S. Hence ∆A(M) ∈ P, and if N is an allowable
parallel extension of M along A, then ∆A(N) can be obtained from M by
gluing a wheel onto A ⊆ S, so ∆A(N) ∈ P. We may therefore assume that
M1, . . . ,Mn has at least one ∆-∇-step. Then by Lemma 5.7 we may assume
that A is contained in a 4-element segment parallel to S. Thus ∆A(M) and
∆A(N) can be obtained from M by gluing a wheel onto A ⊆ S, so both
∆A(M) and ∆A(N) belong to P.

Assume that A is contained in a path-generating fan F of M . By Lemma
5.4 and Lemma 5.9 we can assume that M1, . . . ,Mn is a path sequence
ending in F . Now it follows from Lemma 2.24 that ∆A(N) is either a series
extension of M or else ∆A(N) can be obtained from Mn−1 by gluing a fan
onto an allowable triangle, so in either case ∆A(N) ∈ P. �
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Finally, we show that we can remove an element from a path sequence
and obtain, essentially, another path sequence.

Lemma 5.11. Let M be described by a path sequence with |E(M)| ≥ 10.
There is an e ∈ E(M) − (S ∪ C) such that at least one of M\e, M/e,
co(M\e), and si(M/e) is described by a path sequence.

Proof. Let M be a counterexample with |E(M)| minimal. Let M1, . . . ,Mn

be a path sequence that describes M . Suppose that M1, . . . ,Mn is a path
sequence ending in a fan F . If |F | ≥ 4, then the result follows easily, so
we may assume that |F | = 3. Then it is easy to see that Mn−1 must be
a counterexample as well. Hence we may assume M1, . . . ,Mn is a ∆-∇-
sequence.

Suppose M1, . . . ,Mn has exactly one ∆-∇-step. Up to duality, we can

assume M = ∆Q
S (X8), with |E(Q) − E(M)| ≥ 2. Let e ∈ E(Q) − E(M).

Then M\e = ∆
Q\e
S (X8) is again described by a path sequence. Hence we

may assume there are at least two ∆-∇-steps. By Corollary 5.3, we may
assume that the last two ∆-∇-steps both use A ∈ {S,C}, and that A is a

segment of M , so M = ∇Nn
A (∆

Nn−1

A (Mn−2)). Let e ∈ E(Nn)−E(Mn−1). If

|E(Nn) − E(Mn−1)| ≥ 2, then M/e = ∇Nn/e
A (Mn−1) can be described by a

path sequence. Hence E(Nn)− E(Mn−1) = {e}. Now we have

M/e = ∇A(Mn−1) = ∇A(∆
Nn−1

A (Mn−2)) = Nn−1.

But Nn−1 is an allowable parallel extension of Mn−2, so si(M/e) = Mn−2,
which can be described by a path sequence, as desired. �

6. The setup

We start the proof of our main result as follows.

Lemma 6.1. Let M be a matroid described by a path sequence. Then M
has a minor in S = {M8,6, X8, Y8, Y

∗
8 }.

Proof. By Lemma 5.11, it suffices to verify the lemma for |E(M)| ≤ 9. We
omit this easy finite case check, which includes matroids from Figures 4, 5,
as well as some matroids that are not simple or not cosimple. See also [1,
Lemma 4.6]. �

Our strategy is to prove that the class of U2- or H5-representable fragile
matroids with an S-minor is contained in P. If M is 3-connected and has
a proper M8,6-minor, but no minor in {X8, Y8, Y

∗
8 }, then M has a minor

isomorphic to one of M9,7,M9,9,M9,17,M9,19. This implies we are in case
(ii) or (v) of, respectively, Theorems 2.9 and 2.10. Hence our strategy will
yield the main result.

In what follows, let M be a P-representable fragile matroid M with an
{X8, Y8, Y

∗
8 }-minor. Suppose that M is not in the class P, and that M

is minimum-sized with respect to this property. Then M is 3-connected
because P is closed under series-parallel extensions. Moreover, the dual
M∗ is also not in P because P is closed under duality. By inspecting the
small matroids Figure 9.7, it is easy to see that M must have at least 10
elements. Thus, by the Splitter Theorem and duality, we can assume there
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is some element x of M such that M\x is also a 3-connected P-representable
fragile matroid with an {X8, Y8, Y

∗
8 }-minor. By the assumption that M is

minimum-sized with respect to being outside the class P, it follows that
M\x ∈ P. Thus M\x is described by a path sequence M1, . . . ,Mn. We
show that there are three possibilities for the structure of x in M relative
to the path of 3-separations associated with M1, . . . ,Mn.

Let (A,B) be a k-separation of M\x. Recall that x blocks (A,B) if neither
(A ∪ x,B) nor (A,B ∪ x) is a k-separation of M . We use the following
characterisation frequently.

Proposition 6.2. [3, Proposition 3.5] Let (A, x,B) be a partition of M . If
(A,B) is an exact k-separation of M\x, then x blocks (A,B) if and only if
x is not a coloop of M , x /∈ clM (A) and x /∈ clM (B).

We can now locate x.

Lemma 6.3. Let M and M\x be 3-connected {U2,5, U3,5}-fragile matroids.
If M\x is described by a path sequence with associated path of 3-separations
P, then either:

(i) x is in the guts of some 3-separation displayed by P; or
(ii) x blocks some 3-separation displayed by P; or

(iii) for each 3-separation (R,G) of M displayed by P, there is some
X ∈ {R,G} such that x ∈ clM (X) and x ∈ cl∗M (X).

Proof. Assume that neither (i) nor (ii) holds, and let (R,G) be a 3-separation
of M\x displayed by a maximal path-generating set. Then, by Proposition
6.2, we may assume that x ∈ clM (R). Now x /∈ clM (G) because (i) does not
hold, so x ∈ cl∗M (R) by Lemma 2.5. Thus (iii) holds. �

We consider the three possible cases of Lemma 6.3 in the next three
sections respectively. In case (i) we will obtain a direct contradiction to the
assumption that M /∈ P. In cases (ii) and (iii) we bound the size of M so
that M is at most a 12-element matroid. This reduces the proof to a finite
case-analysis, from which the contradiction to the assumption that M /∈ P
is then obtained.

Note that by Lemma 6.1 we only need to keep the path sequence to keep
the S-minor.

7. Guts case

In this section, with M and x ∈ E(M) as in Section 6, we assume that x
is in the guts of some 3-separation displayed by the path of 3-separations P
associated with a path sequence that describes M\x.

First we show that x is not in the closure of a 4-element segment.

Lemma 7.1. If M\x has a 4-element segment S, then x /∈ clM (S).

Proof. Suppose that M\x has a 4-element segment S, and that x ∈ clM (S).
Then M has a U2,5-restriction S∪{x}, so y ∈ E(M)− clM (S∪x) is flexible,
a contradiction because M is fragile. �

Next we show that M\x cannot be described by a path sequence ending
in a 4-element segment or cosegment.
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Lemma 7.2. M\x is not described by a path sequence ending in either a
4-element segment or cosegment.

Proof. Suppose that M\x is described by a path sequence M1, . . . ,Mn end-
ing in a 4-element cosegment A. Then A is an allowable 4-element cosegment
of M by Lemma 2.16, so ∇A(M) is well-defined. Moreover, it follows from
Lemma 2.12 that ∇A(M)\x = ∇A(M\x), which is an allowable parallel ex-
tension of Mn−1. Now, by the definition of a ∆-∇-step, there is at least one
element a′ /∈ A ∪ x such that a′ is parallel with an element of A in ∇A(M).
Let M ′ = ∇A(M)\a′. Then |E(M ′)| < |E(M)|, so M ′ ∈ P by the minimal-
ity of M . Now, by Lemma 2.7, an allowable parallel-extension of M ′ along A
by a′ followed by a 4-element generalized ∆-Y exchange gives a matroid iso-
morphic to M . But M ′ ∈ P and A is a path-generating allowable 4-element
segment of M ′, so it follows from Lemma 5.8 that M ∈ P, a contradiction
to the assumption that M /∈ P. The argument when M\x is described by a
path sequence ending in a 4-element segment is symmetric. �

Next we deal with the case where M\x is described by a path sequence
ending in a fan.

Lemma 7.3. M\x is not described by a path sequence ending in a fan with
at least 4 elements.

Proof. Suppose that M\x is described by a path sequence M1, . . . ,Mn end-
ing in a fan F . The fan F must contain a path-generating allowable triad T
of M\x because F has at least 4 elements. Since x ∈ clM (E(M\x)− F ), it
follows from Lemma 2.15 and Lemma 2.16 that F is a fan of M and that T
is a path-generating allowable triad of M . Moreover, it follows from Lemma
2.24 that ∇A(M) has at least one element f ∈ F − T in parallel with an
element of T . Let M ′ = ∇T (M)\f . Then |E(M ′)| < |E(M)|, so M ′ ∈ P by
the minimality of M . Now, by Lemma 2.7, an allowable parallel-extension
of M ′ along A by f followed by a 3-element ∆-Y -exchange gives a matroid
isomorphic to M . But M ′ ∈ P and A is a path-generating allowable triangle
of M ′, so it follows from Lemma 5.10 that M ∈ P, a contradiction to the
assumption that M /∈ P. �

We can now finish off the first case from Lemma 6.3.

Lemma 7.4. The element x is not in the guts of a 3-separation displayed
by the path of 3-separations associated with a path sequence that describes
M\x.

Proof. Seeking a contradiction, suppose that x is in the guts of a 3-separation
of M\x. Then it follows from Lemma 7.2 and Lemma 7.3 that M\x is
described by a path sequence ending in a triad or triangle. Moreover, since
|E(M\x)| 6= 8, some step of the path sequence that describes M\x must be
a ∆-∇-step.

Suppose first that M\x is described by a path sequence M1, . . . ,Mn end-
ing in a triad. We may assume, by Corollary 5.3 and Lemma 5.4, that the
(n − 1)-th step uses A′ ∈ {S,C}, that Mn−1 has a 4-element segment A′,
and that Mn = ∆A(Mn−1) for some allowable triangle A ⊆ A′ of Mn−1.
Now since x is a guts element of the path generated by A, it follows from
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Lemma 2.16 that A is an allowable triad of M , so the matroid ∇A(M)
is well-defined. Moreover, it follows from Lemma 2.7 and Lemma 2.12 that
∇A(M)\x = ∇A(M\x) = Mn−1, so A is contained in an allowable 4-element
segment A′ of ∇A(M) by Lemma 2.15. Now if ∇A(M) ∈ P, then it follows
from Lemma 2.7 and Lemma 5.10 that M ∈ P, a contradiction. Therefore
∇A(M) is also a minimum-sized counterexample, and x is in the guts of the
path of 3-separations associated with the path sequence M1, . . . ,Mn−1 that
describes ∇A(M)\x = Mn−1. But Mn−1 is described by a path sequence
M1, . . . ,Mn−1 ending in a 4-element segment A′, which contradicts Lemma
7.2.

We may therefore assume that M\x can only be described by a path
sequence M1, . . . ,Mn ending in a triangle. We may assume by Corollary
5.3 and Lemma 5.4 that M1, . . . ,Mn−1 is a path sequence ending in a 4-
element cosegment A′, and that Mn = ∇A(Mn−1) for some allowable triad
A ⊆ A′ of Mn−1. Suppose that x ∈ clM (A). Then A ∪ x is a path-
generating allowable 4-element segment of M , so ∆A∪x(M) is a well-defined
fragile matroid. Moreover, there is an element a′ ∈ A′ − A in series with
an element of A ∪ x by the dual of Lemma 7.1. Since M is minimum-
sized outside of P it follows that ∆A∪x(M)/a′ ∈ P. But then M ∈ P
by Lemma 2.7 and the dual of Lemma 5.8; a contradiction. Now assume
that x /∈ clM (A). Now A is an allowable triangle of M by Lemma 2.15, so
∆A(M) is a well-defined fragile matroid and A is contained in a 4-element
cosegment A′ of ∆A(M). If ∆A(M) ∈ P, then it follows from Lemma 2.7
and the dual of Lemma 5.10 that M ∈ P; a contradiction. Thus ∆A(M)
is a minimum-sized counterexample and x is in the guts of the path of 3-
separations associated with the path sequence M1, . . . ,Mn−1 that describes
∆A(M)\x = ∆A(M\x) = Mn−1. But Mn−1 is described by a path sequence
M1, . . . ,Mn−1 ending in a 4-element cosegment; a contradiction to Lemma
7.2. �

8. Blocking case

In this section, we assume that the matroid M satisfies the conclusion of
Lemma 6.3 (ii). That is, M has an element x of M such that:

(B1) M\x is 3-connected and M\x ∈ P; and
(B2) x blocks some 3-separation displayed by the path of 3-separations P

associated with a path sequence that describes M\x.

Our strategy in this section is to show that a minimum-sized matroid M
with respect to properties (B1) and (B2) has at most 11 elements. The fact
that M is minimum-sized gives the following straightforward restriction on
the elements of E(M)− {x}.

Lemma 8.1. There is no element y ∈ E(M)− {x} such that:

(i) y is deletable in M\x, M\x, y is 3-connected, M\x, y ∈ P, and x
blocks some 3-separation displayed by the path of 3-separations P′

associated with a path sequence that describes M\x, y; or
(ii) y is contractible in M\x, M\x/y ∈ P, and x blocks some 3-

separation displayed by the path of 3-separations P′ associated with
a path sequence that describes si(M\x/y).
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We make the following observations about rank that we will use for finding
elements that can be contracted while preserving the property (B2).

Lemma 8.2. Let M be a matroid in P, and A ⊆ E(M).

(i) If A is an allowable 4-element cosegment of M , and R ⊆ E(M)−A
is a 3-separating set in M , then r(R ∪ {a, a′}) = r(R) + 2 for all
distinct pairs a, a′ ∈ A.

(ii) If A = (a1, . . . , an) is a fan with n ≥ 5 such that the ends of A are
rim elements, and R ⊆ E(M) − A is a 3-separating set in M , then
r(R ∪ {a1, an}) = r(R) + 2.

(iii) If M is described by a path sequence ending in A, and (R,G) is a
3-separation displayed by the associated path of 3-separations with
A ⊆ R, and y, z ∈ G are contractible elements in coguts steps of the
path of 3-separations, then r(R ∪ {y, z}) = r(R) + 2.

We first show that M\x is not described by a path sequence ending in a
large fan.

Lemma 8.3. M\x is not described by a path sequence ending in a fan
with at least 5 elements. Moreover, if M\x is described by a path sequence
M1, . . . ,Mn ending in a fan with 4 elements, then Mn is obtained from Mn−1

by gluing a wheel onto an allowable triad of Mn−1.

Proof. Suppose that M\x is described by a path sequence ending with a fan
F of M\x such that |F | ≥ 5. By Lemma 5.9 or its dual we may assume
that F is a maximal fan. Suppose that s ∈ F is a spoke end of F . Then s
is deletable in M\x, M\x, s is 3-connected, M\x, s is described by a path
sequence ending in the fan F − s with |F − s| ≥ 4. Since x blocks some
3-separation of M\x displayed by the path of 3-separations associated with
F , it follows that x blocks a 3-separation of M\x, s displayed by the path of
3-separations associated with F −s. Then the element s contradicts Lemma
8.1 (i). We may therefore assume that the ends of F are rim elements.
Then it follows from Lemma 8.2 (ii) that at least one of the ends of F , say
r, satisfies r /∈ clM ((E(M) − F ) ∪ x). Then it is easy to see that r is an
element that contradicts Lemma 8.1 (ii).

For the second statement, suppose that M\x is described by a path se-
quence M1, . . . ,Mn such that A ∈ {S,C} is a 4-element segment of Mn−1,
and that Mn is obtained from Mn−1 by gluing a wheel onto an allowable
triangle A′ ⊆ A of Mn−1. Let F be the corresponding 4-element fan. By
Lemma 5.9 we may assume that F is a maximal fan. Let s ∈ F be the
end spoke element of F . Then M\x, s is 3-connected, and M\x, s is de-
scribed by the path sequence M1, . . . ,Mn−1,M\x, s ending in the triad
F − s. Since x blocked a 3-separation of M\x displayed by the path of
3-separations associated with M1, . . . ,Mn it follows that x also blocks a 3-
separation of M\x, s displayed by the path of 3-separations associated with
M1, . . . ,Mn−1,M\x, s. But then s contradicts Lemma 8.1 (i). �

Finding elements to remove such that the path sequence structure is pre-
served is important in what follows. We now prove some technical results
that will enable us to find such elements. The first observation is on 4-
element segments and, by duality, on 4-element cosegments.



24 BEN CLARK, DILLON MAYHEW, STEFAN VAN ZWAM, AND GEOFF WHITTLE

Lemma 8.4. If M ′ is described by a path sequence M1, . . . ,Mn ending in a
4-element segment A, then there is some a ∈ A such that M ′\a is 3-connected
and M1, . . . ,Mn−1,M

′\a is a path sequence where M ′\a is obtained from

Mn−1 by gluing a wheel onto A−a. Moreover, if M ′ = ∇Q
A(Mn−1) for some

Q such that |E(Q)−E(Mn−2)| ≥ 2, then there are at least two such elements
in A.

Proof. Since M1, . . . ,Mn is a path sequence ending in A we may assume

that Mn = ∇Q
A(Mn−1) for some Q. Let a ∈ A be an element that is in series

with an element q ∈ E(Q)−E(Mn−1) in Q. Then M ′\a is 3-connected since

A is a 4-element segment of M ′, and M ′\a = ∇Q/q
A−a(Mn−1) by Lemma 2.11.

Thus M ′\a is obtained from Mn−1 by gluing a wheel onto the allowable triad
A− a of Mn−1. �

We next consider path sequences ending in a triad or triangle.

Lemma 8.5. Let M1, . . . ,Mn−1 be a path sequence ending in a 4-element
cosegment A, and let M ′ = ∆A′(Mn−1) for some allowable triad A′ ⊆ A of
Mn−1. If M ′ is 3-connected, and M ′ cannot be described by a path sequence
where A′ is contained in a fan with at least 4-elements, then either:

(i) M ′\a′ is 3-connected for some a′ ∈ A′, and M1, . . . ,Mn−2,M
′\a′

is a path sequence, where M ′\a′ is obtained from Mn−2 by gluing a
wheel onto A− a′; or

(ii) M ′/a is 3-connected for a ∈ A − A′, and M1, . . . ,Mn−2 is a path
sequence that describes M ′/a.

Proof. Since A′ is not contained in a fan with at least 4-elements, it follows
that M ′\a′ is 3-connected for each deletable element a′ ∈ A′. Moreover
it follows from Lemma 2.11 and Lemma 2.12 that M ′\a′ = Mn−1/a

′ =

∆A−a′(Q\a′), where Q is the matroid such that Mn−1 = ∆Q
A(Mn−2). There-

fore (i) holds if a′ is in parallel with an element of E(Q) − E(Mn−2) in
Q.

Now suppose that M ′\a′ /∈ P for all deletable elements a′ ∈ A′. Since
M ′\a′ = Mn−1/a

′ = ∆A−a′(Q\a′) it follows that Q\a′ is not isomorphic to
an allowable extension of Mn−2 for each deletable a′ ∈ A′. But Q must
add at least one element in parallel with a deletable element of A by the
definition of a ∆-∇-step, so there is a single element of E(Q) − E(Mn−2)
and that element is in parallel with the element a ∈ A−A′. Then it follows
from Lemma 2.7 and Lemma 2.11 that M ′/a = Q\a. But Q\a is isomorphic
to Mn−2 because a was the only element in parallel with an element of
E(Q)− E(Mn−2). Therefore (ii) holds. �

Now we eliminate 4-element segments.

Lemma 8.6. If |E(M\x)| ≥ 10, then M\x does not have a path-generating
allowable 4-element segment.

Proof. Seeking a contradiction, suppose that M\x has a path-generating
allowable 4-element segment A. Let M1, . . . ,Mn be a path sequence that
describes M\x. Since |E(M\x)| ≥ 10 and, by Lemma 8.3, M\x is not
described by a path sequence ending in a fan with at least 5 elements, it
follows that M1, . . . ,Mn has at least one ∆-∇-step. Thus A ∈ {S,C} by
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Lemma 5.7. Hence, by Corollary 5.3 and Lemma 5.4, we can assume that
M1, . . . ,Mn is a path sequence ending in A. But then it follows from Lemma
8.4 that M\x has an element that contradicts Lemma 8.1 (i). �

We can now prove the main result of this section:

Lemma 8.7. |E(M\x)| ≤ 10.

Proof. Let M1, . . . ,Mn be a path sequence that describes M\x. We may
assume by Lemma 8.3 and Lemma 8.6 that M\x cannot be described by a
path sequence ending in a either a 4-element segment or a fan with at least
5 elements. Seeking a contradiction, suppose that |E(M\x)| ≥ 11. Clearly
M1, . . . ,Mn must have at least one ∆-∇-step.

8.7.1. M1, . . . ,Mn has at least two ∆-∇-steps.

Subproof. We consider the cases for the end step of M1, . . . ,Mn.
First suppose that M1, . . . ,Mn is a path sequence ending in a 4-element

cosegment A. Then Mn = ∆N
A (Mn−1) for some N . Seeking a con-

tradiction, suppose that M1, . . . ,Mn has exactly one ∆-∇-step. Now
|E(N) − E(Mn−1)| ≥ 2 because |E(M\x)| ≥ 11. Then it follows from
the dual of Lemma 8.4 that there are at least two elements a, a′ ∈ A such
that M\x/a and M\x/a′ are 3-connected and M\x/a,M\x/a′ ∈ P, and x
blocks a 3-separation of at least one of M\x/a and M\x/a′ by Lemma 8.2
(i); a contradiction to Lemma 8.1 (ii).

Now suppose that M\x is described by a path sequence M1, . . . ,Mn such
that A a 4-element cosegment of Mn−1, and that Mn is obtained from Mn−1

by gluing a wheel onto an allowable triad A′ ⊆ A of Mn−1. Let F be
the corresponding 4-element fan. Assume that M\x is described by a path
sequence with exactly one ∆-∇-step and let A = C. By Corollary 5.3
and Lemma 5.4, and the fact that M\x cannot be described by a path
sequence ending in either a 4-element segment or cosegment, it follows that
M\x can also be described by a path sequence whose end step is a fan
F ′ corresponding to a wheel glued onto an allowable triad of S. That is,
M1,M2,M3 is a path sequence that describes M\x, where M2 is obtained
from X8 by gluing a wheel onto A′, M3 = ∆N

S (M2), and M4 is obtained from
M3 by gluing a wheel onto an allowable subset of S. Then |E(N)−E(M2)| ≥
2 because |E(M\x)| ≥ 11. Suppose that F ′ is a 4-element fan, and let
s ∈ F ′ be the end spoke element. Then M\x, s is 3-connected and has a
path sequence M1,M2,M3. Hence by Lemma 5.4 M\x, s can be described
by a path sequence ending in F . But x must still block a 3-separation
of M\s; a contradiction to Lemma 8.1 (i). Thus we may assume that F ′

is a triangle of M\x. Then it follows from Lemma 8.5 and the fact that
|E(N) − E(M2)| ≥ 2 that there is some s ∈ F ′ such that M\x, s is 3-
connected and M\x, s is described by a path sequence M1,M2,M\x, s. But
M\x, s has a path sequence ending in F by Lemma 5.4, and x must still
block a 3-separation of M\s; a contradiction to Lemma 8.1 (i).

Suppose that M\x is described by a path sequence M1, . . . ,Mn ending in
a triangle. By Corollary 5.3 and Lemma 5.4, we can assume that M\x is
described by a path sequence M1, . . . ,Mn such that A a 4-element segment
of Mn−2, Mn−1 = ∆N

A (Mn−2), and finally Mn = ∇A′(Mn−1) for some al-
lowable triad A′ ⊆ A of Mn−1. Moreover, |E(N) − E(Mn−2)| ≥ 2 because
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|E(M\x)| ≥ 11. Then it follows from Lemma 8.5 that, for some a′ ∈ A′,
M\x, a′ is 3-connected and M\x, a′ is described by a path sequence ending
M1, . . . ,Mn−1,M\x, a′ ending in a fan F spanned by A − a′. But x must
block a 3-separation of M\x, a′; a contradiction to Lemma 8.1 (i).

Finally, suppose that M1 . . .Mn is a path sequence ending in a triad.
Then, by Corollary 5.3 and Lemma 5.4, we can assume that A is a 4-
element cosegment of Mn−2, that Mn−1 = ∇N

A (Mn−2), and finally that
Mn = ∆A′(Mn−1) for some allowable triangle A′ ⊆ A of Mn−1. More-
over, we can assume that M\x is not described by a path sequence ending
in a fan F with |F | ≥ 4, a 4-element segment or cosegment, or triangle.
Thus, if M1 . . .Mn has exactly one ∆-∇-step, then x must block the 3-
separation (A′, E(M\x)−A′). Furthermore |E(N)−E(Mn−2)| = 3 because
|E(M\x)| ≥ 11. Then M\x has an element y ∈ E(N)−E(Mn−2) that con-
tradicts Lemma 8.1 (ii), since at most one element from E(N) − E(Mn−2)
can be spanned by A′ ∪ x by Lemma 8.2 (iii). Thus there are at least two
∆-∇-steps in the path sequence M1, . . . ,Mn. �

By 8.7.1 the path sequence M1 . . .Mn has at least two ∆-∇-steps. Thus,
by Corollary 5.3 and Lemma 5.4, we may assume that the path sequence
M1 . . .Mn has least two ∆-∇-steps on A. We can assume by Corollary 5.3
that A = S.

We first assume that Mn is obtained from Mn−1 by gluing a 4-element
fan onto an allowable triad A′ ⊆ A of Mn−1. Let a ∈ A − A′, and let
G = E(M\x)− F . Suppose that x /∈ clM (F ∪ a). Then x must block some
3-separation (X,Y ) of M\x where F ∪ a ⊆ X. Let s ∈ F be the end spoke
element of the fan F . Then M\x, s is 3-connected and can be described by
a path of 3-separations M1, . . . ,Mn−1 ending in the 4-element cosegment
(F − s) ∪ a. But then (X − s, Y ) is a 3-separation of M\x, s displayed
by the path of 3-separations associated with M1, . . . ,Mn−1, and x blocks
(X − s, Y ). Thus s contradicts Lemma 8.1 (i). We may therefore assume
that x ∈ clM (F ∪ a). Then x must block the 3-separation (F,G) of M\x.
Since M1, . . . ,Mn has at least two ∆-∇-steps on A it follows that there is
an internal coguts element r ∈ G. But then, up to parallel elements, M\x/r
is described by a path sequence ending in F by Lemma 5.5, and x blocks
(F,G− r) in M/r because r /∈ clM (F ∪ a) and hence x /∈ clM (F ∪ r). Thus
r contradicts Lemma 8.1 (ii).

It remains to consider the cases where M1, . . . ,Mn−1 is a path sequence
ending in a 4-element segment or cosegment A, and M1, . . . ,Mn is either a
path sequence ending in a 4-element segment A or a path sequence ending
in a triangle or triad A′ ⊆ A. Let B = E(M\x)−A.

8.7.2. x blocks the 3-separation (A,B).

Subproof. We show that x /∈ clM (A) and x /∈ clM (B), so the claim will follow
from Proposition 6.2.

Since x blocks some 3-separation (R,G) of M\x displayed by the path
of 3-separations generated by the end step A or A′ ⊆ A of M1, . . . ,Mn, it
follows from Proposition 6.2 that x /∈ clM (A).

Assume that M1, . . . ,Mn is a path sequence ending in a triad A′ ⊆ A.
Suppose that x ∈ clM (B). Then since x blocks a 3-separation (R,G)
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displayed by the path of 3-separations associated with M1, . . . ,Mn where
A ⊆ R and G ⊆ B. Since x ∈ clM (B) the triad A′ of M\x is also an
allowable triad of M by Lemma 2.16, so ∇A′(M) is fragile. Moreover, by
Lemma 2.12, we have ∇A′(M)\x = ∇A′(M\x) = Mn−1. Now x must block
a 3-separation (R,G) displayed by the path of 3-separations associated with
M1, . . . ,Mn−1. But M1, . . . ,Mn−1 is a path sequence ending in a 4-element
segment A, which contradicts Lemma 8.6.

Suppose that M1, . . . ,Mn is a path sequence ending in a 4-element coseg-
ment A, then it follows from the dual of Lemma 8.4 that there is some a ∈ A
such that M\x/a is described by a path sequence ending in a fan F that
contains A − a. Thus by Lemma 8.1 (ii) x does not block a 3-separation
of M\x/a displayed by the path of 3-separations generated by F . That
is, x does not block a 3-separation of the form (R − a,G) in M/a where
A ⊆ R and G ⊆ B. Thus x ∈ clM (G ∪ a) − clM (G) by Lemma 6.2, and
a ∈ clM (G ∪ x) ⊆ clM (B ∪ x) by the Mac Lane-Steinitz exchange property.
But a /∈ clM (B), so it follows that clM (B) 6= clM (B∪x). Hence x /∈ clM (B).

Finally, suppose that M1, . . . ,Mn is a path sequence ending in a triangle
A′ ⊆ A. Suppose that x ∈ clM (B). Then x blocks a 3-separation (R,G)
displayed by the path of 3-separations associated with M1, . . . ,Mn where
A ⊆ R and G ⊆ B. By Lemma 2.15 the set A′ is an allowable triangle of M ,
and ∆A′(M)\x = ∆A′(M\x) = Mn−1. But x must still block a 3-separation
(R,G) displayed by the path of 3-separations associated with M1, . . . ,Mn−1.
But M1, . . . ,Mn−1 is a path sequence ending in a 4-element cosegment A,
so now by the above argument x /∈ clMn−1(B) = clM (B), which contradicts
the assumption that x ∈ clM (B). �

Since M1, . . . ,Mn has at least two ∆-∇-steps it follows that there is an
internal coguts element r ∈ B. Then it follows from Lemma 5.5 that, up to
parallel elements, M\x/r is described by a path sequence ending in the same
allowable set as M\x. By Lemma 8.1 (ii) x does not block a 3-separation
of M\x/r, so in particular x does not block (A,B − r) in M/r. Hence
x ∈ clM (A ∪ r) − clM (A) by Lemma 6.2. It follows from the Mac Lane-
Steinitz exchange property that r ∈ clM (A ∪ x).

8.7.3. There is some c ∈ B− r such that M\x/c can be described by a path
sequence ending in the same allowable set as M1, . . . ,Mn.

Subproof. By Corollary 5.3 and Lemma 5.4 we can assume there is a path
sequence M ′1, . . . ,M

′
n describing M\x ending in a 4-element cosegment C ⊆

B or a triangle or triad C ′ ⊆ C ⊆ B. If C is a 4-element cosegment, then
it follows from the dual of Lemma 8.4 that M\x/c is described by a path
sequence ending in a fan F containing C − c for some c ∈ C. But again by
Corollary 5.3 and Lemma 5.4 M\x/c can be described by a path sequence
ending in either the cosegment A or the triad or triangle A′ ⊆ A.

Suppose that M ′1, . . . ,M
′
n is a path sequence ending in a triangle or triad

C ′ ⊆ C ⊆ B. We may assume by Corollary 5.3 and Lemma 5.4 that
M ′1, . . . ,M

′
n−1 is a path sequence ending in C. By Lemma 8.1 (i) and Lemma

8.5 or its dual, it follows that M\x/c is 3-connected and described by a path
sequence M ′1, . . . ,M

′
n−2 or M ′1, . . . ,M

′
n−2,M\x/c. Again by Corollary 5.3
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and Lemma 5.4 it follows that M\x/c can be described by a path sequence
ending in either the cosegment A or the triad or triangle A′ ⊆ A. �

It follows from Lemma 8.1 (ii) that x does not block the 3-separation
(A,B − c) of M/c. Then x ∈ clM (A ∪ c) − clM (A) by Lemma 6.2, so
c ∈ clM (A ∪ x) by the Mac Lane-Steinitz exchange property. But now we
have c, r ∈ clM (A ∪ x), which contradicts Lemma 8.2 (iii). �

9. Spanning and cospanning case

In this section, we assume that the matroid M satisfies the conclusion of
Lemma 6.3 (iii). That is, M has an element x of M such that:

(i) M\x is 3-connected and M\x ∈ P; and
(ii) For each 3-separation (R,G) displayed by the path of 3-separations

P associated with a path sequence that describes M\x, there is some
X ∈ {R,G} such that x ∈ clM (X) and x ∈ cl∗M (X).

Lemma 9.1. If M\x is described by a path sequence M1, . . . ,Mn ending in
a 4-element segment or cosegment A, then cl∗M (A) spans and cospans x in
M .

Proof. Assume that M1, . . . ,Mn is a path sequence for M\x ending in a
4-element cosegment A. We may assume that Mn = ∆N

A (Mn−1) for some
N . Seeking a contradiction, suppose that x is not spanned and cospanned
by A. Then A is an allowable 4-element cosegment of M by Lemma 2.16,
so ∇A(M) is fragile. Moreover, ∇A(M)\x = N by the dual of Lemma
2.12 (ii) and Lemma 2.7. Now there is some y ∈ E(N) − E(Mn−1) in
parallel with an element of A in N by the definition of a ∆-∇-step. Let
M ′ = ∇A(M)\y. Then M ′ ∈ P by the minimality of M , and M ′ has a

path-generating allowable 4-element segment A. But now M = ∆N ′
A (M ′)

for some N ′. Hence M ∈ P by Lemma 5.8; a contradiction.
Assume that M\x is described by a path sequence M1, . . . ,Mn ending in a

4-element segment A. Let Mn = ∇Q
A(Mn−1), and let B = E(M\x)− cl∗(A).

Suppose that x ∈ clM (B) and x ∈ cl∗M (B). Then A is an allowable 4-element
segment of M by Lemma 2.15, so ∆A(M) is fragile. Now ∆A(M)\x =
∆A(M\x) = Q by Lemma 2.12. Thus ∆A(M)\x has at least one element
q ∈ Q in series with some element of A, and since x ∈ cl∗M (B) it follows that
∆A(M) has some element of Q in series with some element of A. By the
minimality of M it follows that ∆A(M)/q ∈ P. But then it follows from the
dual of Lemma 5.8 that M ∈ P, which is a contradiction. �

The next result follows using essentially the same argument as Lemma
7.3.

Lemma 9.2. If M\x is described by a path sequence ending in a fan F with
|F | ≥ 4, then x ∈ clM (F ) and x ∈ cl∗M (F ).

Next we consider path sequences ending in a triangle or triad.

Lemma 9.3. Let M1, . . . ,Mn be a path sequence that describes M\x.
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(a) If M1, . . . ,Mn is a path sequence ending in a triad A, and x is
spanned and cospanned by E(M\x)−A, then ∇A(M) is a minimum-
sized counterexample such that ∇A(M)\x is described by the path
sequence M1, . . . ,Mn−1 and satisfies Lemma 6.3 (iii).

(b) If M1, . . . ,Mn is a path sequence ending in a triangle A, and x
is spanned and cospanned by E(M\x) − cl∗(A), then ∆A(M) is a
minimum-sized counterexample such that ∆A(M)\x is described by
the path sequence M1, . . . ,Mn−1 and satisfies Lemma 6.3 (iii).

Proof. We prove (a), with the proof of (b) being essentially the same ar-
gument. Suppose that that M\x can be described by a path sequence
M1, . . . ,Mn ending in a triad A, where Mn is obtained from Mn−1 by
gluing a wheel onto an allowable triangle of S. Since x is spanned and
cospanned by E(M\x) − A it follows from Lemma 2.16 that A is an al-
lowable triad of M . Hence ∇A(M) is fragile. If ∇A(M) ∈ P, then so is
M by Lemma 2.7 and Lemma 5.8; a contradiction. Thus ∇A(M) /∈ P, so
∇A(M) is also a minimum-sized counterexample. Moreover, we see that
∇A(M)\x = Mn−1 by Lemma 2.12, so ∇A(M)\x is described by the path
sequence M1, . . . ,Mn−1. Since Lemma 6.3 (iii) holds for M\x, and every 3-
separation displayed by the path of 3-separations associated with the path
sequence M1, . . . ,Mn−1 is also displayed by the path of 3-separations asso-
ciated with the path sequence M1, . . . ,Mn, it follows that Lemma 6.3 (iii)
holds for ∇A(M)\x. �

As a consequence of Lemma 9.3 we can assume that M is chosen so that
if M\x is described by a path sequence ending in a triangle or triad A, then
x is spanned and cospanned by cl∗(A).

We can now show that a bound can be obtained unless M\x is described
by a path sequence ending in a fan.

Lemma 9.4. If M\x is described by a path sequence M1, . . . ,Mn ending
in a fan F with |F | ≥ 4, then M\x is obtained from X8 by gluing a wheel
onto an allowable subset. Moreover, if M\x cannot be described by a path
sequence ending in a fan F with |F | ≥ 4, then |E(M\x)| ≤ 11.

Proof. Suppose that M\x is described by a path sequence M1, . . . ,Mn end-
ing in a fan F with |F | ≥ 4. Then x is spanned and cospanned by F by
Lemma 9.2. Assume that Mn is obtained from Mn−1 by gluing a wheel
onto an allowable subset of S. Seeking a contradiction, suppose that M\x
is described by a path sequence M ′1, . . . ,M

′
n ending in either a 4-element

segment or cosegment C or a fan F ′, where M ′n is obtained from M ′n−1 by
gluing a wheel onto an allowable subset of C. Suppose M ′1, . . . ,M

′
n is a

path sequence ending in either a 4-element segment or cosegment C. Then,
since x is spanned and cospanned by F , it follows that x cannot be spanned
and cospanned by cl∗(C); a contradiction to Lemma 9.1. Suppose that
M ′1, . . . ,M

′
n is a path sequence ending in a fan F ′, where M ′n is obtained

from M ′n−1 by gluing a wheel onto an allowable subset of C. Then, since x is
spanned and cospanned by F , it follows from the choice of M that |F ′| ≥ 4.
But x cannot be spanned and cospanned by F ′; a contradiction to Lemma
9.2. Therefore the path sequence M1, . . . ,Mn has no ∆-∇-steps.
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For the second statement, suppose that M\x cannot be described by a
path sequence ending in a fan F with |F | ≥ 4, but that |E(M\x)| ≥ 12.
Then it follows that M\x is described by a path sequence M1, . . . ,Mn with
at least two ∆-∇-steps. By Lemma 5.4 and Corollary 5.3 we can assume
that M1, . . . ,Mn is a path sequence ending in either a 4-element segment or
cosegment S, or a triangle or triad T where Mn is obtained from Mn−1 by
gluing a wheel onto an allowable subset of S. In the former case it follows
from Lemma 9.1 that x is spanned and cospanned by cl∗(S), while in the
latter case it follows from the choice of M that x is spanned and cospanned
by cl∗(T ). But, by Lemma 5.4 or Corollary 5.3 together with the choice of
M , it follows that M\x is also described by a path sequence M ′1, . . . ,M

′
n is a

path sequence ending in either a 4-element segment or cosegment C. Since
x is spanned and cospanned by either cl∗(S) or cl∗(T ), and M ′1, . . . ,M

′
n has

at least two ∆-∇-steps, it follows that x cannot be spanned and cospanned
by cl∗(C); a contradiction to Lemma 9.1. Therefore M1, . . . ,Mn has at most
one ∆-∇-step, and hence |E(M\x)| ≤ 11. �

Let F be a fan of a matroid M ′\x with fan ordering (f1, . . . , fn). We say
that x is on a guts line of F if there are fan elements fi and fj of F with
i < j such that x is in the guts of the 3-separation (R,G) of M ′, where
R = {fi, fi+1, . . . , fj−1, fj}.

Lemma 9.5. Let M1, . . . ,Mn be a path sequence ending in a fan F with
|F | ≥ 4 that describes M\x. Then x is not on a guts line of F .

Proof. Seeking a contradiction, suppose that x is on a guts line of the fan
F .

9.5.1. For each triangle {fi, fi+1, fi+2} of M\x contained in F , there is no
4-element segment A = {x, fi, fi+1, fi+2} of M .

Subproof. Suppose that A = {x, fi, fi+1, fi+2} is a 4-element segment of M
for some triangle {fi, fi+1, fi+2} of M\x contained in F . Since the rim ele-
ment fi+1 is contractible in M\x, it follows that fi+1 is contractible in M .
Thus fi+1 is non-deletable in M , so it follows that A is a path-generating
allowable 4-element segment of M . Thus ∆A(M) is fragile and A is an al-
lowable 4-element cosegment of ∆A(M) with non-contractible element fi+1.
Let S = cl∗M (A) − A. Since F is a fan of M\x with |F | ≥ 4, it follows
that S is non-empty. Moreover, the members of S are in series with con-
tractible elements of A in ∆A(M) because A∪S cannot contain a 5-element
cosegment by the dual of Lemma 7.1. Let M ′ = ∆A(M)/S. Then M ′ ∈ P
because M is minimum-sized with respect to not being in P. But M ′ has
a path-generating allowable 4-element cosegment A, so it follows from the
dual of Lemma 5.8 and Lemma 2.7 that M ∈ P; a contradiction. �

We can assume, by 9.5.1, that x is not spanned by a triangle contained in
F . Suppose that T = {x, f1, f2} is a triangle of M , where f1 a rim element
of F . Then T is an allowable triangle of M , and ∆T (M) has an allowable
4-element cosegment A = T ∪ {f3}. But then it follows from 9.5.1 that
(∆T (M))∗ ∈ P, hence M ∈ P by Lemma 5.10; a contradiction.

We may therefore assume that x is in the guts of the 3-separation (R,G) of
M\x, where R = {fi, fi+1, . . . , fj−1, fj} for non-consecutive i, j ∈ {1, . . . , n}.
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Since x ∈ clM (G) it follows from orthogonality that x /∈ cl∗M (R), so an allow-
able triad T = {fk, ff+1, fk+2} of M\x that is contained in R is an allowable
triad of M . It follows from Lemma 2.24 that there is some non-empty set
S ⊆ {fk−1, fk+3} of elements of ∇T (M)\x in parallel with elements of T .
Now ∇T (M)\S ∈ P because M is minimum-sized with respect to not being
in P, and T is a path-generating allowable triangle of ∇T (M)\S. Hence
M ∈ P by Lemma 5.10; a contradiction. �

We now bound the size of F when M\x is described by a path sequence
ending in a fan F .

Lemma 9.6. If M\x is described by a path sequence ending in a fan F ,
then |F | ≤ 5 and x blocks (T,E(M\x)− T ) for some triad T of F .

Proof. Suppose that M\x is described by a path sequence ending in a fan
F . We can assume that F is a maximal fan of M by Lemma 5.9, and that
x ∈ clM (F ) and x ∈ cl∗M (F ) by Lemma 9.2.

9.6.1. x blocks a 3-separation (R,G) of M\x, where R = {fi, fi+1, . . . , fj}
for some i < j.

Subproof. Seeking a contradiction, suppose that x does not block any 3-
separation of M\x nested with F . Let T = {fi−1, fi, fi+1} be a triad of
F . Suppose x ∈ clM (T ). Since M\x is obtained from X8 by gluing a
wheel onto an allowable subset of S or C, we can obtain an M7,0 minor
with triad T by contracting the rim elements of F outside of the span of
T , then contracting elements of C until T is spanning, and then simplifying
the resulting matroid. Removing the same elements of M gives a fragile
extension of M7,0 by x, and the only such matroid is Y8 where {fi−1, fi, x}
or {fi, fi+1, x} is a triangle. Therefore either {fi−1, fi, x} or {fi, fi+1, x}
is a triangle of M . But then x is on a guts line of F ; a contradiction
to Lemma 9.5. Thus x /∈ clM (T ). Since we assume that x cannot block
(T,E(M\x)−T ), it follows that x ∈ cl(E(M\x)−T ) by Lemma 6.2. Hence
∇T (M) is a fragile matroid, and∇T (M)\x = ∇T (M\x). By Lemma 2.24 the
matroid∇T (M)\x has a fan F ′ = F−P where P ⊆ {fi−1, fi+1} is some non-
empty set of elements in parallel with elements of F ′. Let M ′ = ∇T (M)\P
and let T ′ be the triangle ofM ′ containing fi. Then we see that x ∈ clM ′(F

′),
and that for any subset F ′′ such that T ′ ⊆ clM ′(F

′′), x ∈ clM ′(F
′′) if and

only if x ∈ clM (F ′′ ∪ T ), while for subsets F ′′ such that T ′ is not contained
in clM ′(F

′′), x ∈ clM ′(F
′′) if and only if x ∈ clM (F ′′). Thus x does not block

a 3-separation of M ′\x nested with F ′. But we can repeat this process until
F ′ has a single triad T ′′, so that x ∈ clM ′(T

′′). Then x is on a guts line of
F ; a contradiction to Lemma 9.5. �

Now by 9.6.1 we may assume that x blocks the 3-separation (R,G). We
use the minimality of M to show that |F | ≤ 5. If |F | ≥ 5 and F has a spoke
end s, then M\x, s is described by a path sequence ending in the fan F − s
and x blocks a 3-separation nested with F − s. Thus if |F | ≥ 5 then we
can assume that the ends of F are rim elements. If R contains at least two
triads, then it follows from Lemma 8.2 (ii) that there is some rim element
r ∈ R such that si(M\x/r) is described by a path sequence ending in a fan
F ′ contained in F − r and x blocks a 3-separation nested with F ′. Thus we
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can assume R contains a single triad. Similarly, if F ∩G has at least two rim
elements, then there is some rim element g ∈ F ∩ G such that si(M\x/g)
is described by a path sequence ending in a fan F ′ contained in F − g and
x blocks a 3-separation nested with F ′. Therefore |F | ≤ 5, and x blocks
(T,E(M\x)− T ) for some triad T of F . �

Thus a largest minimum-sized counterexample M has 11 elements.

Lemma 9.7. |E(M\x)| ≤ 11.

Proof. We may assume by Lemma 9.4 that M\x is described by a path
sequence M1,M2 ending in a fan F with |F | ≥ 4. Then |F | ≤ 5 by Lemma
9.6. Hence |E(M\x)| ≤ 10. �

10. Wrapping up

Finally we can prove our main result.

Proof of Theorem 4.2. Suppose M is a minimal counterexample to the the-
orem. Up to duality, let x ∈ E(M) be such that M\x is 3-connected and
has a U2,5− or U3,5-minor. By Lemma 6.3, there are three possibilities for
x. By Lemmas 7.4, the first case cannot occur. By Lemma 8.7 and Lemma
9.7, a minimal counterexample has at most 12 elements. The result now fol-
lows from a finite case check, which we verified by computer in [1, Lemma
4.5]. �
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