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Lp-NORM REGULARIZATION ALGORITHMS FOR OPTIMIZATION

OVER PERMUTATION MATRICES

BO JIANG∗, YA-FENG LIU† , AND ZAIWEN WEN‡

Abstract. Optimization problems over permutation matrices appear widely in facility layout,
chip design, scheduling, pattern recognition, computer vision, graph matching, etc. Since this prob-
lem is NP-hard due to the combinatorial nature of permutation matrices, we relax the variable to be
the more tractable doubly stochastic matrices and add an Lp-norm (0 < p < 1) regularization term
to the objective function. The optimal solutions of the Lp-regularized problem are the same as the
original problem if the regularization parameter is sufficiently large. A lower bound estimation of the
nonzero entries of the stationary points and some connections between the local minimizers and the
permutation matrices are further established. Then we propose an Lp regularization algorithm with
local refinements. The algorithm approximately solves a sequence of Lp regularization subproblems
by the projected gradient method using a nonmontone line search with the Barzilai-Borwein step
sizes. Its performance can be further improved if it is combined with certain local search methods,
the cutting plane techniques as well as a new negative proximal point scheme. Extensive numerical
results on QAPLIB and the bandwidth minimization problem show that our proposed algorithms
can often find reasonably high quality solutions within a competitive amount of time.
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regularization, cutting plane, negative proximal point, Barzilai-Borwein method
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1. Introduction. In this paper, we consider optimization over permutation ma-
trices:

(1.1) min
X∈Πn

f(X),

where f(X) : Rn×n → R
n is differentiable and Πn is the set of n-order permutation

matrices, namely,

Πn = {X ∈ R
n×n | Xe = XTe = e, Xij ∈ {0, 1}},

in which e ∈ R
n is a vector of all ones. Given two groups of correlative objects asso-

ciated with the rows and columns of a square matrix, respectively, each permutation
matrix implies an assignment from objects in one group to objects in the other group.
Thus problem (1.1) is also referred to as the nonlinear assignment problem since it
looks for the best assignment with the smallest nonlinear cost among the two groups.

One of the most famous special cases of problem (1.1) is the quadratic assignment
problem (QAP) [33], one of the hardest combinatorial optimization problems:

(1.2) min
X∈Πn

tr(ATXBXT),
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2 optimization over permutation matrices

where A,B ∈ R
n×n. The QAP has wide applications in statistics, facility layout,

chip design, keyboards design, scheduling, manufacturing, etc. For more details, one
can refer to [11, 21] and references therein. Some generalizations of QAP are also
investigated, such as the cubic, quartic, and generally N -adic assignment problems,
see [35]. Burkard et al. [48] discussed one application of biquadratic assignment, a
special quartic assignment, in very-large-scale integrated circuit design. For other
applications of general nonlinear assignment, one can refer to [49].

It is generally not practical to solve problem (1.1) exactly due to its strong NP-
hardness. The goal of this paper is to develop fast algorithms which can find high
quality permutation matrices for problem (1.1), especially when the problem dimen-
sion is large.

1.1. Related works. Although most of the existing methods are mainly tailored
for QAP (1.2), many of them can be easily extended to the general problem (1.1).
Thus in this subsection, we simply review some related works on QAP. Since in this
paper we are interested in methods which can quickly find high quality solutions,
we shall not introduce the lower bound methods [32, 56] and the exact methods
[1, 23] in details. For these algorithms, we refer the readers to the review papers
[3, 11, 12, 21, 24, 40]. We next briefly introduce a few approximation methods, which
often return good approximate solutions (which are permutation matrices) for QAP
(1.2) in a reasonable time.

The philosophy of the vertex based methods is similar to that of the simplex
methods for linear programming. Specifically, it updates the iterates from one per-
mutation matrix to another. Different strategies of updating permutation matrices
lead to different methods, including local search methods [26, 45], greedy randomized
adaptive search procedures [22, 47], tabu search methods [6, 50], genetic algorithms
[2, 52]. For a comprehensive review on the vertex based methods, one can refer to
[11] and references therein.

The interior-point based methods generates a permutation matrix along some
“central” path (of interior points) of the set of doubly stochastic matrices, also known
as the Birkhoff polytope:

Dn = {X ∈ R
n×n | Xe = XTe = e, X ≥ 0},

where the symbol ≥ denotes the componentwise ordering and 0 ∈ R
n×n is the all-zero

matrix. By the Birkhoff-von Neumann theorem [10], we know that Dn is the convex
hull of Πn and the set of vertices of Dn is exactly Πn. Similar to the interior-point
methods for linear programming, these methods construct a path of interior points
by solving a sequence of regularization problems over Dn.

Xia [55] proposed a Lagrangian smoothing algorithm for QAP (1.2) which solves
a sequence of L2 regularization subproblem

(1.3) min
X∈Dn

tr(ATXBXT) + µk‖X‖2F

with dynamically decreasing parameters {µk | k = 0, 1, 2, . . .} . The initial value µ0 in
subproblem (1.3) was chosen such that the problem is convex and the subproblem with
fixed µk was approximately solved by the Frank-Wolfe algorithm up to fixed number of
iterations (it was called the truncated Frank-Wolfe method in [55]). Note that Bazaraa
and Sherali [7] first considered regularization problem (1.3) where µk is chosen such
that the problem is strongly concave, but they only solved (1.3) once. In addition,
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Huang [30] used the quartic term ‖X ⊙ (1 − X)‖2
F
to construct the regularization

problem, where ⊙ is the Hadamard product and 1 ∈ R
n×n is the matrix of all ones.

One special case of QAP (1.2) (and thus problem (1.1)) is the graph matching
problem:

(1.4) min
X∈Πn

‖AX −XB‖2
F
,

which has wide applications in pattern recognition, computer vision, etc [17]. Note
that the objective function in (1.4) is always convex in X and can be rewritten as
−2tr(ATXBXT) + ‖A‖2

F
+ ‖B‖2

F
, which is no longer convex in X . By constructing

a convex and a concave quadratic optimization problem over doubly stochastic ma-
trices, [39, 57] considered path following algorithms which solve a sequence of convex
combinations of the convex and concave optimization problems, wherein the combi-
nation parameters were chosen such that the resulting problems change from convex
to concave. Moreover, [42] observed that initialization with a convex problem can
improve the practical performance of the regularization algorithms.

Recently, Fogel et al. [25] used QAP to solve the seriation and 2-SUM problems.
QAP considered therein takes the following special structure:

(1.5) min
X∈Πn

πIX
TLAXπI ,

where A is binary symmetric, πI = (1, 2, . . . , n)T, and LA = Diag(Ae) − A. Here,
Diag(Ae) represents a diagonal matrix whose diagonal elements areAe. They used the
regularization term ‖PX‖2

F
with P = In − 1

n
1, where In denotes the identity matrix

of size n, to construct a convex relaxation problem over Dn for (1.5). Using a recent
result of Goemans [29], Lim and Wright [36] constructed a new convex relaxation
problem over a convex hull of the permutation vectors for (1.5). In their problem, the
number of variables and constraints reduces to O(n log n) in theory and O(n log2 n)
in practice. The advantage of this new formulation was illustrated by numerical
experiments. However, as pointed in [36], it is still unclear how to extend their new
formulation to the more general QAP (1.2).

The aforementioned regularization or relaxation methods all considered solving
optimization over Dn. By using the fact that Πn = {X | XTX = In, X ≥ 0}, Wen
and Yin [54] reformulated QAP (1.2) as

min
X∈Rn×n

tr(AT(X ⊙X)B(X ⊙X)T) s.t. XTX = In, X ≥ 0

and proposed an efficient algorithm by applying the augmented Lagrangian method to
handle the constraint X ≥ 0. In their algorithm, a sequence of augmented Lagrangian
subproblems with orthogonality constraint is solved inexactly.

1.2. Our contribution. In this paper, we consider optimization problem (1.1)
over permutation matrices and propose an Lp-norm regularization model with 0 < p <
1. The Lp-norm regularization is exact in the sense that its optimal solutions are the
same as the original problem if the regularization parameter is sufficiently large. We
derive a lower bound estimate for nonzero entries of the stationary points and establish
connections between the local minimizers and the permutation matrices. Then we
propose an algorithm with local refinements. Basically, it solves approximately a
sequence of Lp regularization subproblems by the projected gradient method using
nonmontone line search with the Barzilai-Borwein (BB) step sizes. The projection of a
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matrix onto the set of doubly stochastic matrices is solved by a dual gradient method
which is often able to find a highly accurate solution faster than the commercial solver
MOSEK. The performance of our algorithm can be further improved if it is combined
with certain local search methods, cutting plane techniques as well as a new negative
proximal point scheme. In fact, we show that the global solution of the regularized
model with a negative proximal point term is also the optimal solution of problem
(1.1). In particular, it is the farthest point in the solution set of (1.1) to the given
point in the proximal term. Therefore, this technique enables us to get rid of a large
portion of non-optimal permutation matrices. Numerical results on QAPLIB show
that the proposed algorithm can quickly find high quality approximate solutions. For
example, our proposed algorithm can find a solution of the largest problem instance
“tai256c” in QAPLIB with a gap 0.2610% to the best known solution in less than a
half minute on an ordinary PC.

1.3. Notation. For any X ∈ R
n×n, ‖X‖0 denotes the number of nonzero entries

of X and its Lp-norm is ‖X‖pp =
∑n

i=1

∑n
j=1 |Xij |p for 0 < p < 1. The matrix

Xp ∈ R
n is defined by (Xp)ij = Xp

ij for each (i, j) ∈ N × N with N := {1, . . . , n}.
The inner product of M,N ∈ R

m×n is defined as 〈M,N〉 = tr(MTN), where tr(·) is
the trace operator. The Kronecker product of any two matrices M and N is denoted
as M ⊗ N . We define D[0,1]n = {X ∈ R

n×n | 0 ≤ X ≤ 1}, where the symbol ≤
denotes the componentwise ordering. For any X ∈ Dn, let the support set of X be
Λ(X) = {(i, j) ∈ N × N | Xij > 0}. Denote Λ(Xi·) = {j ∈ N | (i, j) ∈ Λ(X)}
and Λ(X·j) = {i ∈ N | (i, j) ∈ Λ(X)}. For any X ∈ Πn, we define its corresponding
permutation vector as π ∈ R

n with the j-th element being πj = i, where i ∈ N satisfies
Xij = 1. We denote the 2-neighborhood ofX asN2(X) = {Z ∈ Πn : ‖Z−X‖2

F
≤ 4} =

{Z ∈ Πn | 〈Z,X〉 ≥ n − 2} and N best
2 (X) is the set of permutation matrices which

take the least function value, in the sense of f(·), among all permutation matrices in
N2(X). We say that X is locally 2-optimal if X ∈ N best

2 (X).

1.4. Organization. The rest of this paper is organized as follows. Some pre-
liminaries are provided in Section 2. The L0 regularization problem is introduced in
Section 3.1 and the extension to the general Lp regularization problem is presented
in Section 3.2. Our Lp regularization algorithmic framework is given in Section 4.1
and a practical Lp regularization algorithm is developed in Section 4.2. A fast dual
BB method for computing the projection onto the set of doubly stochastic matrices
is proposed in Section 4.3. We combine the Lp regularization algorithm with the cut-
ting plane technique in Section 5.1 and propose a negative proximal point technique
in Section 5.2. Some implementation details, including an efficient way of doing local
2-neighborhood search, are given in Section 6.1, while numerical results on QAPLIB
are reported in Sections 6.2 – 6.4. We apply our proposed algorithms to solve a class
of real-world problems, namely, the bandwidth minimization problem in Section 7.
Finally, we make some concluding remarks in Section 8.

2. Preliminaries. Assume that ∇f(X) is Lipschitz continuous on D[0,1]n with
Lipschitz constant L, that is,

(2.1) ‖∇f(X)−∇f(Y )‖F ≤ L‖X − Y ‖F, ∀ X,Y ∈ D[0,1]n .

Moreover, we assume

(2.2)
νf
2
‖Y −X‖2F ≤ f(Y )−f(X)−〈∇f(X), Y −X〉 ≤ νf

2
‖Y −X‖2F, ∀ X,Y ∈ Dn.
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Note that when νf < 0, (2.2) implies that f(·) is strongly concave. By some easy
calculations, (2.2) indicates that

(2.3) f(tX + (1− t)Y ) ≥ tf(X) + (1− t)f(Y )− νf

2
t(1− t)‖X − Y ‖2F

holds for all X,Y ∈ Dn and t ∈ [0, 1]. Notice that assumptions (2.1) and (2.2)
are mild. It can be easily verified that the objective in QAP (1.2) satisfies the two
assumptions with L = max{|νf |, |νf |}, where νf and νf are taken as the largest and

smallest eigenvalues of BT ⊗AT +B ⊗A ∈ R
n2×n2

, respectively.
Consider the function h(x) = (x+ ǫ)p over x ∈ [0, 1] with 0 < p < 1 and ǫ ≥ 0. It

is straightforward to show that h(·) is strongly concave with the parameter

(2.4) νh := p(1− p)(1 + ǫ)p−2

on the interval [0,1]. Moreover, the inequality h(x) − h(y) > 〈h′(x), x − y〉 holds for
any x 6= y ∈ [0, 1] and x+ ǫ > 0. Consider the function

(2.5) h(X) := ‖X + ǫ1‖pp =
n
∑

i=1

n
∑

j=1

(Xij + ǫ)p.

Using the strong concavity of h(x) and the separable structure of h(X), we can es-
tablish the following result.

Proposition 2.1. The function h(X) with 0 < p < 1 and ǫ ≥ 0 is strongly

concave with parameter νh on D[0,1]n, namely,

(2.6) h(tX + (1 − t)Y ) ≥ th(X) + (1− t)h(Y ) +
νh
2
t(1− t)‖Y −X‖2F

holds for any X,Y ∈ D[0,1]n.

3. Lp-norm regularization model for (1.1). In this section, we first introduce
the L0-norm regularization model for (1.1) in Section 3.1. Then, we focus on the Lp-
norm regularization model for (1.1) in Section 3.2.

3.1. L0-norm regularization. Observe that Πn can be equivalently character-
ized as

(3.1) Πn = Dn ∩ {X | ‖X‖0 = n}.

Thus problem (1.1) is equivalent to the problem of minimizing f(X) over Dn inter-
secting with the sparse constraint ‖X‖0 = n. This fact motivates us to consider the
L0 regularization model for (1.1) as follows:

(3.2) min
X∈Dn

f(X) + σ‖X‖0,

where σ > 0. Let X∗ be one global solution of (1.1). Denote

(3.3) f∗ := f(X∗) and f := min
X∈Dn

f(X).

We immediately have f∗ ≥ f and obtain the following lemma.

Lemma 3.1. Suppose σ > 1
2 (f

∗ − f), where f∗ and f are given in (3.3). Then

any global solution X(σ) of (3.2) is also the global solution of (1.1).
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Proof. First, we use the contradiction argument to show that X(σ) is a permuta-
tion matrix. Suppose that X(σ) is not a permutation matrix, then ‖X(σ)‖0 ≥ n+2.
From the optimality of X(σ), we know that

(3.4) f∗ + σ‖X∗‖0 ≥ f(X(σ)) + σ‖X(σ)‖0.

Moreover, by the definition of f , we have f(X(σ))+σ‖X(σ)‖0 ≥ f +σ‖X(σ)‖0. This
inequality, together with (3.4) and the fact ‖X(σ)‖0 ≥ n+ 2, implies

σ ≤ (f∗ − f)/ (‖X(σ)‖0 − ‖X∗‖0) ≤ (f∗ − f)/2,

which is a contradiction to σ > 1
2 (f

∗ − f).
Using ‖X(σ)‖0 = ‖X∗‖0 = n and (3.4), we have f∗ ≥ f(X(σ)), which means

that X(σ) is the global solution of (1.2).
Lemma 3.1 shows that L0 regularization (3.2) is exact in the sense that L0 regu-

larization problem (3.2) shares the same global solution with problem (1.1). However,
‖X‖0 is not continuous in X, which makes the L0-norm regularization problem (3.2)
hard to be solved.

3.2. Lp-norm regularization. The L1-norm regularization ‖X‖1 has been
shown in [14, 20] to be a good approximation of ‖X‖0 under some mild conditions.
However, for any X ∈ Dn, ‖X‖1 is always equal to the constant n. This fact implies
that the L1-norm regularization does not work for problem (1.1). Considering the
good performance of the Lp-norm regularization in recovering sparse solutions [15,
31, 37], we aim to investigate this technique to handle the hard term ‖X‖0. Given
any ǫ ≥ 0 and 0 < p < 1, we use h(X) = ‖X + ǫ1‖pp to approximate ‖X‖0 in (3.2)
and obtain the corresponding Lp-norm regularization model:

(3.5) min
X∈Dn

Fσ,p,ǫ(X) := f(X) + σ‖X + ǫ1‖pp.

Note that the problem of minimizing h(X) over Dn and the problem of minimizing
‖X‖0 over Dn have the same solution set of permutation matrices. Therefore, h(X) is
a good approximation of ‖X‖0 and problem (3.5) is a good approximation of problem
(1.1). The parameter σ in problem (3.5) mainly controls the sparsity of X while the
parameter ǫ affects the smoothness of the regularizer. Roughly speaking, problem
(3.5) with a large σ returns a sparse X close to a permutation matrix, while problem
(3.5) with a relatively large (not too small) ǫ is often easier to be solved.

We now show the exactness of the Lp-norm regularization (3.5).
Theorem 3.2. Suppose that Xσ,p,ǫ is a global solution of problem (3.5) with

(3.6) σ > σ∗
p,ǫ := max

{

νf
νh

, 0

}

,

where νf and νh are defined in (2.2) and (2.4), respectively. Then Xσ,p,ǫ is also a

global solution of problem (1.1).
Proof. By (2.6) in Proposition 2.1, for any σ > 0, there holds

(3.7) σh(tX + (1− t)Y ) ≥ σ
(

th(X) + (1 − t)h(Y ) +
νh
2
t(1− t)‖Y −X‖2

F

)

for any X,Y ∈ Dn and 0 ≤ t ≤ 1. By the assumption (2.2), we always have (2.3).
Summing (3.7) and (2.3), and noticing the definition of Fσ,p,ǫ(·), we conclude that
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Fσ,p,ǫ(X) is strongly concave with the positive parameter σνh − νf over Dn. Thus,
the global minimum of (3.5) must be attained at the vertices of Dn, namely, Xσ,p,ǫ

must be a permutation matrix.
Since the global solution X∗ of (1.1) is feasible for (3.5), it follows that

(3.8) f(X∗) + σ‖X∗ + ǫ1‖pp ≥ f(Xσ,p,ǫ) + σ‖Xσ,p,ǫ + ǫ1‖pp,

which, together with ‖X∗‖pp = ‖Xσ,p,ǫ‖pp = n(1 + ǫ)p, implies f(X∗) ≥ f(Xσ,p,ǫ).
Recalling that Xσ,p,ǫ is a permutation matrix, we see that Xσ,p,ǫ is also a global
solution of (1.1).

Similar to the results in [8, 15], we define the KKT point of (3.5) as follows.
Definition 3.3. A point X ∈ Dn is called as a KKT point of (3.5) if there exist

S ∈ R
n×n and λ, µ ∈ R

n such that, for any (i, j) ∈ N ×N , there holds

(3.9)

{

XijSij = 0, Sij ≥ 0,

(Wij − λi − µj) (Xij + ǫ) + σp(Xij + ǫ)p = ǫSij ,

where Wij = (∇f(X))ij and S, λ, and µ are the Lagrange multipliers corresponding

to the constraints X ≥ 0, Xe = e, and XTe = e, respectively.

We now estimate the lower bound for nonzero elements of the KKT points of
problem (3.5).

Theorem 3.4. Suppose that X̄ is a KKT point of (3.5). Then, for any (i, j) ∈
Λ(X̄), we have

(3.10) X̄ij ≥ max (c̄− ǫ, 0) ,

where c̄ =
(

‖X̄‖1−p
0 (n+ ‖X̄‖0ǫ)p − (n− 1)(1 + ǫ)p−1 +

√
2nL

√
n+‖∇f(0)‖F

σp

)
1

p−1 .

Proof. Since X̄ is a KKT point of (3.5), it follows from (3.9) that

(3.11)
∑

i∈Λ(X̄·j)

X̄ij = 1, ∀ j ∈ N ,
∑

j∈Λ(X̄i·)

X̄ij = 1, ∀ i ∈ N

and

(3.12) W̄ij + σp(X̄ij + ǫ)p−1 = λi + µj , ∀ (i, j) ∈ Λ(X̄),

where W̄ij = (∇f(X̄))ij . Multiplying by X̄ij on both sides of (3.12) and then sum-
ming them over (i, j) ∈ Λ(X̄), we have

∑

(i,j)∈Λ(X̄)

(

W̄ijX̄ij + σp(X̄ij + ǫ)p−1X̄ij

)

=
∑

(i,j)∈Λ(X̄)

(λi + µj)X̄ij = (λ+ µ)Te,

(3.13)

where the second equality is due to (3.11) and

∑

(i,j)∈Λ(X̄)

(λi + µj)X̄ij =
n
∑

i=1

λi

(

∑

j∈Λ(X̄i·)

X̄ij

)

+
n
∑

j=1

µj

(

∑

i∈Λ(X̄·j)

X̄ij

)

.

We next claim that one can pick n elements from different columns and rows of
W̄ij+σp(X̄ij+ǫ)p−1 with i, j ∈ Λ(X̄) such that their summation is equal to (λ+µ)Te.
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To prove this claim, we consider any X̃ ∈ Πn and Λ(X̃) ⊆ Λ(X̄). The same argument
as in the derivation of (3.13) can be used to show

(3.14)
∑

(i,j)∈Λ(X̄)

(

W̄ijX̃ij +σp(X̄ij+ ǫ)p−1X̃ij

)

=
∑

(i,j)∈Λ(X̄)

(λi+µj)X̃ij = (λ+µ)Te.

Combining (3.13) and (3.14) and then rearranging the obtained equation, we have
(3.15)

∑

(i,j)∈Λ(X̄)

(X̄ij + ǫ)p−1X̃ij =
1

σp

∑

(i,j)∈Λ(X̄)

W̄ij(X̄ij − X̃ij) +
∑

(i,j)∈Λ(X̄)

(X̄ij + ǫ)p−1X̄ij

for any X̃ ∈ Πn with Λ(X̃) ⊆ Λ(X̄).
Given any (i0, j0) ∈ Λ(X̄), we choose some special X̃ ∈ Πn with Λ(X̃) ⊆ Λ(X̄)

such that X̃i0j0 = 1. Hence, using 0 < X̄ij ≤ 1, we have

(3.16)
∑

(i,j)∈Λ(X̄)

(X̄ij + ǫ)p−1X̃ij ≥ (X̄i0,j0 + ǫ)p−1 + (n− 1)(1 + ǫ)p−1.

It is easy to see that ‖X̄ − X̃‖F ≤
√
2n. Thus, we obtain

(3.17)
∑

(i,j)∈Λ(X̄)

W̄ij(X̄ij − X̃ij) ≤ ‖∇f(X̄)‖F‖X̄ − X̃‖F ≤
√
2n(L

√
n+ ‖ ∇f(0)‖F).

On the other hand, by the concavity of (z + ǫ)p and (1/z + ǫ)pz on (0, 1], we know

∑

(i,j)∈Λ(X̄)

(X̄ij + ǫ)p−1X̄ij ≤
n
∑

i=1

∑

j∈Λ(X̄i·)

(X̄ij + ǫ)p ≤
n
∑

i=1

( 1

‖X̄i·‖0
+ ǫ

)p

‖X̄i·‖0

≤
(

n+ ‖X̄‖0ǫ
)p ‖X̄‖1−p

0 .

(3.18)

Substituting (3.16), (3.17), and (3.18) into (3.15) and by some easy calculations, we
have (3.10).

It is worthwhile to remark that Chen et al. [15] and Lu [41] established the
lower bound theory for the nonzero elements of the KKT points of unconstrained Lp

regularization problems. Based on our limited knowledge, our lower bound estimate
(3.10) appears to be a novel explicit lower bound for the nonzero elements of the KKT
points of Lp regularization problem with linear (equality and inequality) constraints.
It provides a theoretical foundation for rounding the approximate optimal solutions
of (3.5) to be permutation matrices. In practice, we usually only solve problem (3.5)
inexactly (i.e., stop the algorithm early) and perform the rounding procedure when
the approximate solution is near to some permutation matrix. Consequently, the
computational cost can be saved.

We next characterize the connections between the local minimizers of problem
(3.5) and the permutation matrices. Our results are extentions of the properties in
[27] and [38] in the sense that theirs are only for problem (3.5) with ǫ = 0.

Theorem 3.5. Each permutation matrix is a local minimizer of (3.5) with

(3.19) σ > σ̄p,ǫ :=
c

p
· L(2 +

√
n) + ‖∇f(0)‖F

ǫp−1 − (1/2 + ǫ)p−1
,
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where c > 1 is a constant. On the other hand, any local minimizer of (3.5) with

σ > σ∗
p,ǫ is a permutation matrix, where σ∗

p,ǫ is defined in (3.6).

Proof. Let X̄ be a permutation matrix and X l, l = 1, . . . , n! − 1 are all the
remaining permutation matrices. For any fixed l, consider the feasible direction Dl =
X l − X̄ . Then X̄ + tDl ∈ Dn for any t ∈ [0, 1]. Denote

Λl
1 = {(i, j) | X̄ij = 0, X l

ij = 0}, Λl
2 = {(i, j) | X̄ij = 0, X l

ij = 1},
Λl
3 = {(i, j) | X̄ij = 1, X l

ij = 0}, Λl
4 = {(i, j) | X̄ij = 1, X l

ij = 1}.
(3.20)

Clearly, we can see that |Λl
1|, |Λl

4| ≥ 0 and |Λl
2| = |Λl

3| ≥ 2, and N ×N =
⋃4

i=1 Λ
l
i. In

addition, we also have that ‖Dl‖2
F
= 2|Λl

2| ≥ 4. By (2.1) and the mean-value theorem,
for any t ∈ (0, 1], there exists ξ ∈ (0, 1) such that

f(X̄ + tDl)− f(X̄) = t〈∇f(X̄ + ξtDl), Dl〉
≥ − t‖Dl‖F‖∇f(X̄ + ξtDl)‖F
≥ − t‖Dl‖F ·

(

L‖X̄ + ξtDl‖F + ‖∇f(0)‖F
)

≥ − t
(

L(‖Dl‖2
F
+ ‖Dl‖F

√
n) + ‖Dl‖F‖∇f(0)‖F

)

,

(3.21)

where the last inequality is due to ‖X̄‖F =
√
n. Moreover, for any t ∈ (0, 1/2), we

have

h(X̄ + tDl)− h(X̄) =
∑

(i,j)∈⋃4
i=1 Λl

i

(

(X̄ij + tDl
ij + ǫ)p − (X̄ij + ǫ)p

)

= |Λl
2| ((t+ ǫ)p − ǫp) + |Λl

3| ((1− t+ ǫ)p − (1 + ǫ)p)

>
p

2
‖Dl‖2

F

(

(t+ ǫ)p−1 − (1 − t+ ǫ)p−1
)

t

>
p

2
‖Dl‖2

F

(

(t+ ǫ)p−1 − (1/2 + ǫ)p−1
)

t,

(3.22)

where the second equality is due to (3.20); the first inequality uses |Λl
2| = |Λl

3| = ‖Dl‖2
F

2
and the strong concavity of the function h(x) = (x+ ǫ)p; the second inequality follows

from 0 < p < 1 and t ∈ (0, 1/2]. Denote t̃ :=
(

c−1ǫp−1+(1− c−1)(1/2+ ǫ)p−1
)

1
p−1 − ǫ.

Using the fact that the function (ξ1 + ξ2(1/2+ z)p−1)
1

p−1 with ξ1, ξ2 > 0 is increasing

with z in (0,∞), we have t̃ >
(

c−1ǫp−1 + (1 − c−1)ǫp−1
)

1
p−1 − ǫ = 0. Furthermore, if

we restrict t ∈ (0, t̄ ) with t̄ = min(1/2, t̃ ), we obtain from (3.22) that

h(X̄ + tDl)− h(X̄) >
p

2
‖Dl‖2

F

ǫp−1 − (1/2 + ǫ)p−1

c
,

which together with (3.19) and ‖Dl‖F ≥ 2 implies that

(3.23) σ(h(X̄ + tDl)− h(X̄)) > t
(

L(‖Dl‖2
F
+ ‖Dl‖F

√
n) + ‖Dl‖F‖∇f(0)‖F

)

.

Combining (3.21) and (3.23), we have

(3.24) Fσ,p,ǫ(X̄ + tDl)− Fσ,p,ǫ(X̄) > 0

for any t ∈ (0, t̄ ). This fact means that Dl, l = 1, . . . , n! − 1, are strictly increasing
feasible directions. Let Conv(X̄, t̄) denote the convex hull spanned by points X̄ and
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X̄ + t̄Dl, l = 1, . . . , n! − 1. Thus for any X ∈ Conv(X̄, t̄ ), we have Fσ,p,ǫ(X) >
Fσ,p,ǫ(X̄) by (3.24) and the strict concavity of h(X). Moreover, one can always
choose a sufficiently small but fixed t > 0 such that B(X̄, t)∩Dn ⊂ Conv(X̄, t̄), where
B(X̄, t) = {X ∈ R

n×n | ‖X − X̄‖F ≤ t}. Consequently, X̄ is a local minimizer of
problem (3.5).

On the other hand, if a local minimizer X̄ of (3.5) with σ > σ∗
p,ǫ is not a permu-

tation matrix, there must exist a feasible direction D such that X̄ + t′D and X̄ − t′D
both belong to Dn for some sufficiently small positive t′. Note that the function Fσ,p,ǫ

is strongly concave when σ > σ∗
p,ǫ. Thus, we must have

min
(

Fσ,p,ǫ(X̄ − t′D), Fσ,p,ǫ(X̄ + t′D)
)

< Fσ,p,ǫ(X̄),

which is a contradiction to the local optimality of X̄. Therefore, X̄ must be a permu-
tation matrix.

Theorem 3.5 on the equivalence between the local minimizers of problem (3.5) and
the permutation matrices implies that finding a local minimizer of problem (3.5) is
easy but finding the global solution of problem (3.5) is as difficult as finding the global
solution of the original NP-hard problem (1.1). Our extensive numerical experiments
show that our algorithm can often efficiently identify high quality solutions, in par-
ticular, with the help of certain techniques to exclude a large portion of non-optimal
permutation matrices.

4. An Lp regularization algorithm for (1.1). In this section, we give an Lp

regularization algorithmic framework and its practical version for solving problem
(1.1). Since the projection onto the set of doubly stochastic matrices needs to be
computed many times in our proposed algorithm, we also propose a fast dual gradient
method for solving it.

4.1. An Lp regularization algorithmic framework. Theorem 3.2 implies
that, for any ǫ > 0, we can choose a fixed σ larger than σ∗

p,ǫ to solve (3.5) and obtain
a permutation matrix for problem (1.1). In practical implementation, it might be
better to dynamically increase σ from an initial value σ0 since a large σ may result
in the ill-conditioned subproblem. Since σ∗

p,ǫ is increasing with respect to ǫ if νf > 0
(see Theorem 3.2), dynamically decreasing ǫ from a relatively large value ǫ0 is helpful
in finding a permutation matrix relatively faster.

To summarize, we solve a sequence of (3.5) with strictly increasing parameters
{σk | k = 0, 1, 2, . . .} and decreasing parameters {ǫk | k = 0, 1, 2, . . .}. For a fixed k,

we denote X
(0)
k as the starting point for solving (3.5) with σk and ǫk. After computing

a KKT point Xk for (3.5) with σk and ǫk, we use a warm start technique to set

(4.1) X
(0)
k+1 := Xk

if Xk is not a KKT point of problem (3.5) with σk+1 and ǫk+1. Otherwise, we set

(4.2) X
(0)
k+1 = a perturbation of Xk in Dn.

The following theorem shows that once we find a permutation matrix, which is a
KKT point of problem (3.5) with some σk and ǫk, it is reasonable to stop the iterative
procedure.

Theorem 4.1. If a permutation matrix X is a KKT point of (3.5) with fixed σ̂
and ǫ̂ > 0, then it is also a KKT point of (3.5) with σ and ǫ satisfying σ ≥ σ̂ and

0 < ǫ ≤ ǫ̂.
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Proof. Denote the corresponding permutation vector of X as π. Let the cor-
responding multipliers be λσ̂,ǫ̂, µσ̂,ǫ̂, and Sσ̂,ǫ̂. Then we know from (3.9) that for
i, j ∈ N , there holds

(4.3) Sσ̂,ǫ̂
ij =

{

Wij − λσ̂,ǫ̂
i − µσ̂,ǫ̂

j + σ̂p(1 + ǫ̂)p−1, i = π(j),

Wij − λσ̂,ǫ̂
i − µσ̂,ǫ̂

j + σ̂pǫ̂p−1, i 6= π(j),

and Sσ̂,ǫ̂
ij = 0 if i = π(j) and Sσ̂,ǫ̂

ij ≥ 0 if i 6= π(j). For any σ ≥ σ̂ and 0 < ǫ ≤ ǫ̂, define

λσ,ǫ = λσ̂,ǫ̂ + p
(

σ(1 + ǫ)p−1 − σ̂(1 + ǫ̂)p−1
)

e, µσ,ǫ = µσ̂,ǫ̂

and

(4.4) Sσ,ǫ
ij =

{

Wij − λσ,ǫ
i − µσ,ǫ

j + σp(1 + ǫ)p−1, i = π(j),

Wij − λσ,ǫ
i − µσ,ǫ

j + σpǫp−1, i 6= π(j).

We now show that Sσ,ǫ, λσ,ǫ, and µσ,ǫ satisfy KKT condition (3.9). For any i = π(j),
we have from (4.3) and (4.4) that

Sσ,ǫ
ij = Wij − λσ,ǫ

i − µσ,ǫ
j + σp(1 + ǫ)p−1 = Sσ̂,ǫ̂

ij = 0;(4.5)

for any i 6= π(j), we have

Sσ,ǫ
ij = Wij − λσ,ǫ

i − µσ,ǫ
j + σpǫp−1

= Sσ̂,ǫ̂
ij + pσ̂

(

(1 + ǫ̂)p−1 − ǫ̂p−1
)

− pσ
(

(1 + ǫ)p−1 − ǫp−1
)

≥ Sσ̂,ǫ̂
ij + p(σ̂ − σ)

(

(1 + ǫ)p−1 − ǫp−1
)

≥ Sσ̂,ǫ̂
ij ≥ 0,

(4.6)

where the first inequality is due to that (1 + z)p−1 − zp−1 is increasing in z in (0,∞).
Combining (4.5) and (4.6), we can see that X is also a KKT point of (3.5) with σ ≥ σ̂
and 0 < ǫ ≤ ǫ̂.

The Lp regularization algorithmic framework for solving problem (1.1) is outlined
in Algorithm 1.

Algorithm 1: An Lp regularization algorithmic framework for problem (1.1)

1 Given X0 ∈ Dn, set k = 0, ǫ0 > 0, σ0 > 0, ĉ > 0.
2 while ‖Xk‖pp > n do

3 Set X
(0)
k according to (4.1) and (4.2).

4 Find a KKT point Xk of problem (3.5) with σk and ǫk staring from X
(0)
k

such that Fσk,p,ǫk(Xk) ≤ Fσk,p,ǫk(X
(0)
k ).

5 Choose σk+1 > σk + ĉ, 0 < ǫk+1 ≤ ǫk and set k = k + 1.

The convergence of Algorithm 1 is summarized as follows.
Theorem 4.2. Algorithm 1 returns a permutation matrix in a finite number of

iterations.

Proof. By the update scheme of σk and ǫk, we have σk > max{σ∗
p,0, σ̄p,ǫ0} for some

finite k, where σ∗
p,ǫ and σ̄p,ǫ are defined in (3.6) and (3.19), respectively. The update

scheme of ǫk yields that σ∗
p,0 > σ∗

p,ǫk
and σ̄p,ǫ0 ≥ σ̄p,ǫk . It follows from the proof

of Theorem 3.2 that Fσk,p,ǫk(X) with σk > max{σ∗
p,0, σ̄p,ǫ0} and ǫk > 0 is strongly

concave. Consequently, any KKT point Xk of problem (3.5) with σ > max{σ∗
p,0, σ̄p,ǫ0}
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and 0 < ǫ ≤ ǫ0 is either a local minimizer (which must be a permutation matrix) or
the unique global maximizer of problem (3.5). Consider the case when Xk is the
unique global maximizer of problem (3.5) with (σ, ǫ) = (σk+1, ǫk+1). By the choice of

X
(0)
k+1, we have Fσk+1,p,ǫk+1

(X
(0)
k+1) < Fσk+1,p,ǫk+1

(Xk). This inequality together with

the fact that Fσk+1,p,ǫk+1
(Xk+1) ≤ Fσk+1,p,ǫk+1

(X
(0)
k+1) from Line 4 in Algorithm 1

implies that the KKT point Xk+1 must be a local minimizer of problem (3.5), which

means that Xk+1 is a permutation matrix. In the other case, we choose X
(0)
k+1 = Xk

by (4.1). A similar argument shows that Xk+1 is a permutation matrix.

4.2. A practical Lp regularization algorithm. We first use the projected
gradient method with the BB step sizes [5, 9] to compute an approximate KKT

point of problem (3.5). Specifically, starting from initial X
(0)
k , the projected gradient

method for solving problem (3.5) with σk and ǫk iterates as follows:

(4.7) X
(i+1)
k = X

(i)
k + δjD(i), δ ∈ (0, 1),

where the search direction D(i) = PDn

(

X
(i)
k − αi∇Fσk,p,ǫk(X

(i)
k )

)

−X
(i)
k and PDn

(·)
is the projection onto Dn. The step size αi is set to be the alternative usage of the
large and short BB steps [18, 54]. The parameter j is the smallest nonnegative integer
satisfying the nonmonotone line search condition:

(4.8) Fσk,p,ǫk(X
(i)
k + δjD(i)) ≤ Ci + θδj〈∇Fσk ,p,ǫk(X

(i)
k ), D(i)〉, θ ∈ (0, 1),

where the reference function value Ci+1 is updated as the convex combination of Ci

and Fσk,p,ǫk(X
(i)
k ), i.e., Ci+1 = (ηQiCi+Fσk,p,ǫk(X

(i)
k ))/Qi+1, where Qi+1 = ηQi+1,

η = 0.85, C0 = Fσk,p,ǫk(X
(0)
k ) and Q0 = 1. See [58] for more detailed information.

Any intermediate point X ∈ Dn can be converted to a permutation matrix via
rounding or a greedy procedure, which can be further improved by performing local
search. The specific algorithm will be introduced later in Section 6.1. Other suitable
greedy approaches can be adopted as well. The greedy procedure not only offers a
better permutation matrix, but also guides the update of the parameter ǫ. Specifically,

for any point X
(i)
k , we generate X̂

(i)
k from X

(i)
k such that X̂

(i)
k ∈ N best

2 (X̂
(i)
k ) and

update

fbest
k = min

i
{f(X̂(i)

k )} and Xbest
k = argmin

i
{f(X̂(i)

k )}.

Let fbest be the best function value among fbest
1 , . . . , fbest

k−1 . If f
best
k is less than or equal

to fbest, we set ǫk = ǫk−1; otherwise we set ǫk = γǫk−1 with γ ∈ (0, 1). Moreover,
recall that σ̄p,ǫ in Theorem 3.5 is increasing with respect to ǫ and limǫ→0 σ̄p,ǫ = 0.
Therefore, if ǫk is too small, then nearly all of the permutation matrices are local
minimizers of (3.5). This might lead to finding a bad permutation matrix (in terms
of solving problem (1.1)) with a high probability. To avoid this drawback, we propose
to set a safeguard ǫmin for ǫk. We summarize the strategy of updating ǫk as follows

(4.9)

if fbest
k < fbest

fbest = fbest
k , Xbest = Xbest

k , ǫk = ǫk−1,
else

ǫk = max{γǫk−1, ǫmin}.
end
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Finally, we use the continuation scheme to dynamically update σ such that prob-
lem (3.5) changes from being strongly convex to being strongly concave. To achieve

this goal, we choose σ0 = min
{

νf

p(1−p)ǫ
2−p
0 , σ−

}

, where νf is defined in (2.2) and

σ− < 0 is given. Motivated by the strategy used in [55], we update σk+1 by

(4.10) σk+1 := min{σ̃k+1, σmax} and σ̃k+1 =



















1
2σk, σk ≤ σ−,

0, σ− < σk < 0,

σ+, σk = 0,

2σk, σk ≥ σ+,

where σ+ = −2−lσ0, l = ⌈log2(−σ0)⌉ and σmax > 0 is a safeguard for σ.
We summarize the practical Lp regularization algorithm for solving problem

(1.1) in Algorithm 2. Specifically, the stopping rules on line 5 are tolxi = ‖X(i)
k −

X
(i−1)
k ‖F/

√
n, tolfi =

∣

∣Fσk,p,ǫk
(X

(i)
k

)−Fσk,p,ǫk
(X

(i−1)
k

)
∣

∣

1+
∣

∣Fσk,p,ǫk
(X

(i−1)
k

)
∣

∣

and τxk = max
{

τx0 /k
3, τxmin

}

, τfk =

max{τf0 /k3, τfmin}, where τxmin, τ
f
min > 0 are some small parameters. Of course, other

types of criteria can also be applied as well. As discussed after the proof of Theorem
3.4, the lower bound (3.10) may be helpful in Line 9.

Algorithm 2: A practical Lp regularization algorithm for problem (1.1).

1 Given X0 ∈ Dn, set ǫ0, τ
x
0 , τ

f
0 , τ

x
min, τ

f
min > 0, σ0 ≤ 0, θ, δ, γ, tol ∈ (0, 1).

2 Set k = 0, fbest = ∞.
3 while ‖Xk‖pp/n− 1 > tol do

// Lines 4 - 9: compute an approximate KKT point of (3.5)

4 Choose X
(0)
k by (4.1) and (4.2). Set i = 0, αi > 0, tolxi = tolfi = ∞.

5 while tolxi > τxk or tolfi > τfk do

6 Compute D(i) = PDn

(

X
(i)
k − αi∇Fσk,p,ǫk(X

(i)
k )

)

−X
(i)
k .

7 Find the smallest j such that δj satisfies (4.8).

8 Set X
(i+1)
k = X

(i)
k + δjD

(i)
k and i = i+ 1.

9 Compute X̂
(i)
k ∈ N best

2 (X̂
(i)
k ) starting from X

(i)
k and update fbest

k .

10 Update ǫk+1, σk+1, f
best, and Xbest by (4.9) and (4.10).

11 Set Xk+1 = X
(i)
k and k = k + 1.

4.3. Fast dual gradient algorithm for computing projection onto Dn.

Note that the dominant computational cost of Algorithm 2 is to compute projections
onto the set Dn. In this subsection, we propose a fast dual gradient method for solving
the projection problem

(4.11) min
X∈Rn×n

1

2
‖X − C‖2

F
s.t. Xe = e, XTe = e, X ≥ 0,

where C ∈ R
n×n is given.

The Lagrangian dual problem of (4.11) is

(4.12) max
y,z

min
X≥0

L(X, y, z),

where L(X, y, z) = 1
2‖X − C‖2

F
− 〈y,Xe− e〉 − 〈z,XTe − e〉, in which y, z ∈ R

n are
the Lagrange multipliers associated with the linear constraints Xe = e and XTe = e,
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respectively. Let P+(·) denote the projection onto the nonnegative orthant. Then the
dual problem (4.12) can be equivalently rewritten as

(4.13) min
y,z

θ(y, z) :=
1

2
‖P+

(

C + yeT + ezT
)

‖2
F
− 〈y + z, e〉.

It can be verified that θ(y, z) is convex and continuously differentiable and

∇θ(y, z) =

[

P+

(

C + yeT + ezT
)

e− e

P+

(

C + yeT + ezT
)T

e− e

]

.

Note that [4] computed a nearest doubly stochastic matrix with a fixed entry via
solving a dual problem similar to (4.13), by the nonsmooth Newton method.

We propose to use the gradient method using the BB step sizes to solve the
unconstrained problem (4.13). The method is named as “dualBB”. After obtain-
ing the solution y∗ and z∗ of (4.13), we recover the projection of C as PDn

(C) =
P+

(

C + y∗eT + e(z∗)T
)

. Our preliminary numerical results on the QAPLIB demon-
strate that our proposed dualBB method is faster than MOSEK in many cases.

5. Enhanced variants of Lp regularization algorithm. In this section, we
combine Lp regularization Algorithm 2 with two techniques to further enhance its
performance. The first variant uses the cutting plane technique and the second one is
based on a novel Lp regularization model, which has an additional negative proximal
point term compared with the model (3.5).

5.1. Lp regularization algorithm with cutting plane technique. Let X̃ be

a permutation matrix and let f̃ = f(X̃). Assume that X̃ is not optimal. Then there
must exist a constant c1 > 0 such that f∗ ≤ f̃ − c1. Next, we construct some cuts to
shrink the feasible region Πn of problem (1.1) based on the information of X̃.

Denote Fω(X) := f(X) + ω‖X‖2
F
, where the parameter ω is chosen such that Fω

is strongly convex. The ideal cut

(5.1) QC(X̃) : Fω(X) ≤ f̃ − c1 + ωn

is hard to be handled because of the nonlinear function f(X). The first order approx-
imation

(5.2) LC1(X̃): Fω(X̃) + 〈∇Fω(X̃), X − X̃〉 ≤ f̃ − c1 + ωn.

is easy but it might not be tight.
Suppose that X̃ is the best point in its 2-neighborhood, a linear cut is proposed

in [7] as

(5.3) LC2(X̃): 〈X̃,X〉 ≤ n− 3,

which precisely cuts n(n−1)
2 + 1 permutation matrices from Πn.

By using the above two cuts (5.2) and (5.3), we can shrink Πn to a strictly smaller
set AΠn

:= Πn∩LC1(X̃)∩LC2(X̃), which still contains the global solution of problem
(1.1). Therefore, we can solve the following problem (instead of problem (1.1)):

(5.4) min
X∈AΠn

f(X).
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By replacing Dn by A := Dn ∩ LC1(X̃) ∩ LC2(X̃), Algorithm 2 can be employed
to solve problem (5.4), where the Lp regularization subproblem becomes

(5.5) min
X∈A

Fσ,p,ǫ(X).

The Lp regularization algorithm with the cutting place technique (Lp-CP) is given
as follows.

Algorithm 3: An Lp-CP algorithm for problem (1.1).

1 Given A = Dn, set Kmax > 0 and K = 0.
2 while K < Kmax do

3 Solve (5.4) by Algorithm 2 with subproblem (3.5) there replaced by (5.5),

and obtain Xbest
K .

4 Set A = A ∩
(

LC1(Xbest
K ) ∩ LC2(Xbest

K )
)

.

5 Set Xbest = argminK{f(Xbest
K )} and K = K + 1.

The solution quality of Algorithm 3 is generally better than that of Algorithm
2 due to the cutting plane technique. However, Algorithm 3 might be slower than
Algorithm 2 because computing the projections onto the restricted domain A in Al-
gorithm 3 is slightly time consuming than computing the projections onto the set Dn

and computational cost of the projections is the dominant part in both algorithms.
Note that Algorithm 3 with Kmax = 1 reduces to Algorithm 2.

5.2. Lp regularization with negative proximal point technique. The cut-
ting plane technique may not improve the performance of Algorithm 2. For instance,
Algorithm 3 with Kmax = 4 and Algorithm 2 find the same permutation matrix when
they are used to solve the problem instance “chr20c” from QAPLIB. By investigating
the trajectories of the permutation matrices generated by Algorithm 3, we find that
the trajectories (corresponding to different K) are nearly the same for this problem.
To avoid this phenomenon, we need to push the trajectories of the permutation ma-
trices corresponding to different K far away from each other. It can be achieved by
adding a negative proximal point term to f(X).

Given µ > 0 and X̂ ∈ Dn, consider problem

(5.6) min
X∈Πn

f(X)− µ‖X − X̂‖2
F
.

The next theorem shows that the solution of (5.6) with an appropriate choice of µ is
a solution of (1.1). Moreover, the solution of (5.6) is the farthest point away from
the given point X̂ among the solution set of (1.1).

Theorem 5.1. Let c2 > 0 be such that

(5.7) |f(X)− f(Y )| ≥ c2, ∀ X,Y ∈ Πn with f(X) 6= f(Y ).

Suppose that 0 < µ < c2
2n . Then any solution X∗

µ of (5.6) is also a solution of (1.1).
Moreover, for any solution X∗ of (1.1), we have

(5.8) ‖X∗
µ − X̂‖F ≥ ‖X∗ − X̂‖F.

Proof. From the optimality of X∗
µ, we obtain

(5.9) f(X∗
µ)− µ‖X∗

µ − X̂‖2
F
≤ f(X∗)− µ‖X∗ − X̂‖2

F
,
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which is equivalent to

f(X∗
µ) ≤ f(X∗) + µ

(

‖X∗
µ‖2F − ‖X∗‖2

F
+ 2〈X∗ −X∗

µ, X̂〉
)

.

Combining the above inequality with the facts that ‖X∗
µ‖F = ‖X∗‖F =

√
n, 〈X∗, X̂〉 ≤

n, and 〈X∗
µ, X̂〉 ≥ 0 yields

(5.10) f(X∗
µ) ≤ f(X∗) + 2µn < f(X∗) + c2,

where the last inequality is due to the choice of µ. Moreover, it follows from the
optimality of X∗ that f(X∗) ≤ f(X∗

µ), which, together with (5.7) and (5.10), implies
f(X∗

µ) = f(X∗). This shows that X∗
µ is a solution to (1.1). From (5.9) and f(X∗

µ) =
f(X∗), we immediately obtain the desired result (5.8).

By setting X̂ = 1
K

∑K
i=1 X̂i in Theorem 5.1, where X̂i ∈ Dn for all i = 1, . . . ,K,

and combining it with Theorem 3.2, we obtain the following theorem.
Theorem 5.2. Suppose 0 < µ < c2

2n and σ > max((νf − 2µ)/νh, 0). Then any

global solution of

(5.11) min
X∈Dn

f(X) + σ‖X + ǫ1‖pp − µ
∥

∥

∥
X − 1

K

K
∑

i=1

X̂i

∥

∥

∥

2

F

is also a global solution of problem (1.1). Moreover, it is one of the farthest solutions

of (1.1) away from 1
K

∑K
i=1 X̂i.

Based on Theorem 5.2, we present the Lp regularization algorithm with the neg-
ative proximal point technique, which is dubbed as Lp-negProx.

Algorithm 4: An Lp-negProx algorithm for problem (1.1).

1 Set µ > 0, Kmax > 0 and K = 0. Define Xbest
K = 0.

2 while K < Kmax and Xbest
K 6∈ {Xbest

1 , . . . , Xbest
K−1} do

3 Solve (5.6) with X̂ = 1
K

∑K
i=1 X

best
i by Algorithm 2 with subproblem (3.5)

replaced by (5.11), and obtain Xbest
K .

4 Set µ = µ/2, Xbest = argminK{f(Xbest
K )}, and K = K + 1.

Consider the problem “chr20c” in QAPLIB again. By simply setting µ ≡ 0.1,
Algorithm 4 is able to find the global solution. More detailed numerical results are
reported in Section 6.3 to demonstrate the effectiveness of the proposed negative
proximal point technique.

We can also combine Algorithm 2 with both the cutting plane technique and
the negative proximal point technique. The resulting algorithm is named as Lp-CP-
negProx and it is described as follows.

Algorithm 5: An Lp-CP-negProx algorithm for problem (1.1).

1 Given A := Dn, set µ > 0, Kmax > 0 and K = 0. Define Xbest
K = 0.

2 while K < Kmax and Xbest
K 6∈ {Xbest

1 , . . . , Xbest
K−1} do

3 Solve (5.6) with X̂ = 1
K

∑K
i=1 X̂

best
i by Algorithm 2 with subproblem (3.5)

replaced by (5.11), wherein Dn being replaced by A, and obtain Xbest
K .

4 Set A = A ∩ LC1(Xbest
K ) ∩ LC2(Xbest

K ).

5 Set µ = µ/2, Xbest = argminK{f(Xbest
K )}, and K = K + 1.

We give some remarks on Algorithms 4 and 5 to conclude this section.
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Firstly, the term −
∥

∥X− 1
K

∑K
i=1 X̂i

∥

∥

2

F
plays the role in pushing Algorithms 4 and

5 to find a new permutation matrix which is far away from the average 1
K

∑K
i=1 X̂i of

{X̂i}Ki=1. More generally, given nonnegative {wi}Ki=1 satisfying
∑K

i=1 wi = 1, we can

choose −‖X −∑K
i=1 wiX̂i‖2F.

Secondly, Theorem 5.2 shows that problem (5.11) with any µ ∈ (0, c2
2n ) shares the

same global solution with problem (1.1). However, (i) since c2 is generally unknown,
it is hard to choose the parameter µ satisfying µ < c2

2n and (ii) µ ∈ (0, c2
2n ) might be

too small to effectively improve the performance of Algorithms 4 and 5. Therefore, we
initialize µ with a relatively large value and gradually decrease it by setting µ = µ/2
in the two algorithms. We terminate the two algorithms by checking that if the newly
obtained permutation matrix X̂K has already been explored or not; see line 2 of
Algorithms 4 and 5.

6. Numerical results on QAPLIB. In this section, we report numerical re-
sults to demonstrate the efficiency and effectiveness of our proposed algorithms for
solving QAP (1.2), which is a special and important case of problem (1.1).

We consider 134 instances from QAPLIB [13] except esc16f and tai10b since the
elements of matrix A of esc16f are all zero and the best feasible solution of tai10b
is not provided. All the experiments were performed in OS X 10.10 on an iMac with
a 3.2GHz Intel Core i5 Processor with access to 8GB of RAM. We implemented our
methods in MATLAB (Release 2014b).

For each problem instance, we scale the matrix A and B as A := A/ρA and
B := B/ρB with ρA = maxij |Aij | and ρB = maxij |Bij |. We use the relative gap
ratio

gap :=

(

obj− obj∗

obj∗
× 100

)

%

to measure the quality of the solution returned by different algorithms, where obj∗ is
the optimal or best known function value provided by QAPLIB and obj is the function
value obtained by each algorithm. Note that the values of obj∗ and obj are computed
based on the original A and B, and all obj∗ are positive integers.

6.1. Implementation details. For Algorithm 2, we choose the initial point
X0 = 1

n
1, the initial guess ǫ0 = 0.1, the safeguards ǫmin = 10−3, σmax = 106,

and the shrinkage parameter for updating ǫk as γ = 0.9. Our experience shows
that Algorithm 2 also works on an ǫ0 larger than 1, smaller shrinkage and safeguard
parameters, but the choices of these parameter might affect its efficiency. We set the
stopping tolerance tol = 10−3, which guarantees that the returned Xk is sufficiently
close to some permutation matrix. For the projected gradient method, we choose
the initial stepsize α0 = 10−3, the parameters of nonmonotone linesearch condition
(4.8) as θ = 10−4, δ = 0.5, η = 0.85, the initial guess of the tolerance for solving

the subproblems (3.5) as τx0 = 10−3, τf0 = 10−6 and the corresponding safeguards

as τxmin = 10−5, τfmin = 10−8. For problems with n > 50, we use MOSEK 7.11 to
compute the projection onto Dn if maxij |Xij | > 8, and use dualBB otherwise. For
problems with n ≤ 50, we always use MOSEK 7.1 to compute the projection onto Dn.
For Algorithms 3 – 5, we choose Kmax = 10. As for computing projections onto the
restricted domain A in Algorithms 3 and 5, MOSEK 7.1 is always employed no matter
how large n is. For Algorithms 4 and 5, we choose µ = min

{

0.5, (νf − νf )/100
}

,

1Downloadable from https://www.mosek.com/resources/downloads.

https://www.mosek.com/resources/downloads
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where νf and νf are taken as the largest and smallest eigenvalues of BT⊗AT+B⊗A ∈
R

n2×n2

, respectively. The parameter ω in (5.1), which is used in Algorithms 3 and 5,
is chosen to be 1− 0.5νf .

For a given X ∈ Dn, a locally 2-optimal permutation matrix can be generated by
a procedure with two steps: (i) generating a permutation X̂(0) ∈ Πn by some greedy
procedure; (ii) finding a permutation matrix X̂(k) ∈ N best

2 (X̂(k)) starting from X̂(0).
Their details are outlined as follows.

Step (i). Given X ∈ Dn, we use a fast greedy procedure in the code “LagSA”
of [55] to generate X̂(0) ∈ Πn. It computes an approximate solution of the linear
assignment problem maxY ∈Πn

〈X,Y 〉 in a greedy way as follows: (a) Calculate a
vector x ∈ R

n with the i-th element xi = maxj∈N Xij . (b) Identity a permutation

vector π ∈ R
n such that xπ1 ≤ xπ2 ≤ · · · ≤ xπn

. (c) Let X̂(0) := 0. For each i ∈ N ,

compute kπi
= arg maxj∈N\{kπ1 ,...,kπi−1

} Xπi,j with {kπ0} = ∅ and set X̂
(0)
πi,kπi

= 1.

We can also apply the canonical Hungarian algorithm to solve the linear assignment
problem. The complexity of the Hungarian algorithm and “LagSA” is O(n3) and
O(n2), respectively.

Step (ii). Starting from X̂(0), we perform an iterative local 2-neighborhood search
to find a locally 2-optimal permutation matrix. More specifically, for k ≥ 0, we

compute X̂
(k)
s ∈ arg min

Y ∈N2(X̂(k))
f(Y ) and update

(6.1) X̂(k+1) =

{

X̂
(k)
s , if f(X̂

(k)
s ) < f(X̂(k)),

X̂(k), otherwise.

The above procedure is terminated until a locally 2-optimal permutation matrix is
found, i.e., X̂(k+1) = X̂(k) for some k.

The above iterative local 2-neighborhood search procedure terminates within
⌈(f(X̂(0))−f∗)/c2⌉ iterations. This is because of the facts f(X̂(k)) ≤ f(X̂(k−1))−c2 ≤
f(X̂(0)) − kc2 (i.e., (5.7)) and f(X̂(k)) ≥ f∗. The cost of computing X̂

(k)
s is cheap

for QAP. Suppose the procedure terminates within k0 iterations. Then the total
computational cost is 4n3 +O(k0n

2); see [43, 50, 51] for detailed information.

6.2. Comparisons of Lp and L2 regularization algorithms. In this sub-
section, we compare our proposed Lp regularization algorithms (Algorithm 2) using
p = 0.25, 0.5, 0.75 with the L2 regularization algorithm LagSA [55]. We also test a
variant of LagSA, where subproblem (1.3) is solved by the projected gradient method,
and name the variant as LagSA-BB. Note that LagSA and LagSA-BB do not use the
local 2-neighborhood search or the rounding techniques2. Therefore, for fair of com-
parisons, we use a basic version of our proposed algorithm, named as Lp-bs, which
does not use the local 2-neighborhood search technique neither.

We summarize the numerical results in Table 1, where the number denotes how
many problem instances can be solved by the corresponding algorithm within the
given gap. For instance, Table 1 shows that LagSA can solve 14 instances within gap
0.0 (to global optimality) and 99 instances within gap 5.0. It can be seen from Table 1
that our proposed Lp regularization algorithms generally perform better than LagSA
and LagSA-BB and L0.75-bs performs the best (among all the five algorithms). It can
also be seen from Table 1 that LagSA-BB performs better than LagSA by using the

2The local 2-neighborhood search and the rounding techniques can be used to improve the per-
formance of the two algorithms.
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projected gradient method to solve L2 regularization subproblem (1.3) instead of the
(truncated) Frank-Wolfe method.

Table 1

Comparison of gap levels of the five algorithms on 134 instances in QAPLIB

gap ≤ % 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0

LagSA 14 21 29 41 42 44 48 51 53 57 61 80 91 95 99
LagSA-BB 26 39 50 56 58 62 65 68 73 78 80 96 105 111 116

L0.25-bs 22 37 46 57 58 59 62 68 71 74 75 90 102 105 109
L0.5-bs 24 37 50 56 59 60 64 70 76 77 77 89 107 111 113
L0.75-bs 27 44 52 65 67 69 73 74 80 82 84 98 108 114 115

To make the comparison clearer, we make a pairwise comparison of the five al-
gorithms as used in [18]. Given a problem and a collection of the five algorithms,
algorithm i is called the winner if the gap obtained by the algorithm is the smallest
among all algorithms. We summarize the comparison results in Table 2. The second
line of Table 2 reports the winners of each algorithm among all the five algorithms for
solving the 134 instances. In particular, Table 2 shows that L0.75-bs wins 62 of the
134 instances. Starting from the third line, we perform pairwise comparisons of the
algorithms. It follows from the last line of this table that L0.75-bs shows its superiority
over the other algorithms. In summary, L0.75-bs performs the best among all the five
algorithms. Therefore, we set p = 0.75 in our proposed Lp regularization algorithms
in the subsequent numerical experiments. It should be pointed out that the perfor-
mance of L0.75 is much better than that of L0.75-bs due to the local 2-neighborhood
search and rounding techniques. For instance, L0.75 can solve 51 problems to a zero
gap while L0.75-bs can only solve 27 problems to a zero gap.

Table 2

Pairwise comparison of the five algorithms

methods LagSA LagSA-BB L0.25-bs L0.5-bs L0.75-bs
# of winners 28 53 47 49 62

LagSA : i — 47 : 107 53 : 92 49 : 98 46 : 101

LagSA-BB : i 107 : 47 — 88 : 66 79 : 76 71 : 88

L0.25-bs : i 92 : 53 66 : 88 — 85 : 96 69 : 99

L0.5-bs : i 98 : 49 76 : 79 96 : 85 — 86 : 93

L0.75-bs : i 101 : 46 88 : 71 99 : 69 93 : 86 —

6.3. Comparisons of L0.75-negProx, L0.75-CP, and L0.75-CP-negProx. Nu-
merical results of L0.75-negProx, L0.75-CP, and L0.75-CP-negProx are presented in
Tables 3 and 4. For the sake of saving space, we only present in Table 3 the results on
problem instances such that the best gap returned by L0.75-negProx, L0.75-CP, and
L0.75-CP-negProx is zero.

In the tables in this and subsequent subsections, “Rgap” denotes the average rel-
ative gap of 100,000 random permutation matrices, which can illustrate the hardness
of the corresponding problem to some extent; “gap” denotes the relative gap achieved
by our proposed algorithm; and “time” denotes the running time in seconds of dif-
ferent algorithms. We put the best gaps among all the gaps returned by different
algorithms in bold. In the last line of each table, we summarize the total number of
instances Nbest such that the gap returned by each algorithm is the best among the
gaps returned by all algorithms.
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It can be seen from Tables 3 and 4 that the performance of L0.75-negProx and
L0.75-CP are better than that of L0.75 on most of problem instances. This shows
that both the negative proximal point technique and the cutting plane technique are
helpful in improving the performance of L0.75. It can also be seen from Tables 3 and 4
that L0.75-negProx (which employs the negative proximal point technique) performs
much better than L0.75-CP (which uses the cutting plane technique). In particular,
L0.75-negProx reduces the gaps of 17 problem instances to zero and L0.75-CP reduces
the gaps of only 5 problem instances to zero. This demonstrates that our proposed
negative proximal point technique is more effective in improving the performance of
L0.75.

It can also be observed from the two tables that L0.75-CP-negProx (which employs
both the cutting plane technique and the negative proximal point technique) performs
slightly better in terms of the solution quality than L0.75-negProx. However, L0.75-
negProx is faster than L0.75-CP-negProx since the projections in L0.75-CP-negProx
are more difficult to compute than those in L0.75-negProx.

Table 3

Numerical results of L0.75-negProx, L0.75-CP, L0.75-CP-negProx for 19 problem instances with
n < 80 in QAPLIB

Problem L0.75 L0.75- L0.75- L0.75-
negProx CP CP-negProx

name Rgap gap time gap time gap time gap time

bur26a 9.6 0.1212 0.8 0.0000 2.6 0.0889 3.3 0.0000 3.0
bur26b 10.4 0.1769 1.0 0.0000 3.0 0.1716 4.6 0.0000 3.1
bur26d 10.2 0.0020 0.6 0.0000 3.6 0.0020 3.3 0.0000 4.3
bur26e 10.3 0.0091 0.7 0.0000 2.2 0.0000 4.0 0.0000 2.5
chr15c 546.6 30.9554 0.4 20.1178 3.9 30.9554 2.0 0.0000 3.6
chr20c 656.5 18.2152 0.4 0.0000 3.5 18.2152 1.7 0.0000 4.3
esc32b 171.0 9.5238 1.8 0.0000 10.5 0.0000 19.9 0.0000 10.6
had20 12.2 0.0289 0.5 0.0000 2.2 0.0867 2.5 0.0000 2.6
kra30a 51.5 0.8999 1.1 1.3498 10.2 1.5298 12.4 0.0000 10.8
lipa20a 7.0 2.0092 0.1 0.0000 2.3 1.8192 0.6 0.0000 4.6
nug14 34.5 0.1972 0.3 0.0000 1.7 0.1972 1.3 0.0000 1.9
nug18 32.9 0.4145 0.5 0.0000 4.3 0.4145 2.0 0.0000 5.6
nug28 34.2 0.1549 1.3 0.0000 5.5 0.0000 6.0 0.0000 6.7
scr12 89.2 2.3368 0.1 0.0000 1.0 0.0000 0.9 0.0000 1.4
scr20 105.7 0.6525 0.3 0.0000 4.0 0.0254 2.4 0.0000 2.5
ste36b 439.0 4.5672 0.7 0.0000 4.0 1.1734 3.1 1.5519 8.3
tai20b 163.6 0.4526 0.3 0.0000 2.3 0.4526 1.4 0.0000 2.8
tai30a 21.0 1.7887 2.2 0.0000 7.7 1.7887 10.6 0.0000 9.0
tai64c 59.2 0.0926 5.3 0.0000 24.2 0.0000 12.4 0.0000 21.1
Nbest 0 17 5 18

6.4. Comparisons of L0.75, Ro-TS, and their hybrid L0.75-Ro-TS. To
illustrate the efficiency and effectiveness of our proposed L0.75 regularization algorithm
(Algorithm 2 with p = 0.75), we compare it with one of the state-of-the-art heuristics
Ro-TS3 in this subsection. Ro-TS implements the robust taboo search for solving
QAP. For QAP problem instances with n < 80, we set the parameters in Ro-TS to
be nr_iterations = 1500*n; nr_resolutions = 10; for instances with n ≥ 80, we
set nr_iterations = 500*n; nr_resolutions = 10. We also test a hybrid, named
as L0.75-Ro-TS, of L0.75 and Ro-TS by using the permutation matrix returned by

3Downloadable from http://mistic.heig-vd.ch/taillard/codes.dir/tabou_qap2.c

http://mistic.heig-vd.ch/taillard/codes.dir/tabou_qap2.c
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Table 4

Numerical results of L0.75-negProx, L0.75-CP, L0.75-CP-negProx for 14 problem instances with
n ≥ 80 in QAPLIB

Problem L0.75 L0.75- L0.75- L0.75-
negProx CP CP-negProx

name Rgap gap time gap time gap time gap time

lipa80a 2.1 0.7540 0.4 0.7255 3.6 0.7168 2.8 0.7255 6.3
lipa90a 1.9 0.7179 0.9 0.6827 7.7 0.6960 3.2 0.6893 4.3
sko100b 17.4 0.0858 13.9 0.0832 141.4 0.0793 177.9 0.0858 127.8
sko100d 17.5 0.1712 13.9 0.1043 97.0 0.1712 103.9 0.1043 157.7
sko100e 18.2 0.0134 14.0 0.0000 88.2 0.0094 95.7 0.0000 117.7
sko100f 17.3 0.0550 12.3 0.0523 199.9 0.0550 95.7 0.0550 92.6
sko81 19.2 0.1143 12.2 0.0813 71.0 0.1143 50.4 0.0813 94.1
tai100b 50.9 0.3800 13.7 0.2237 62.8 0.3789 76.9 0.2237 90.7
tai150b 30.6 0.5098 86.2 0.1422 221.5 0.4995 836.6 0.1462 330.2
tai256c 19.8 0.2610 24.6 0.1112 311.0 0.1041 493.2 0.1581 277.3
tai80a 15.6 0.6904 20.0 0.4734 111.8 0.6904 93.6 0.4734 129.0
tai80b 51.9 0.0378 6.7 0.0378 36.0 0.0336 53.4 0.0378 53.6
tho150 20.6 0.1500 53.4 0.1302 225.7 0.1302 377.5 0.1223 478.2
wil100 9.8 0.0146 21.0 0.0146 91.7 0.0132 177.9 0.0132 277.1
Nbest 0 8 5 7

L0.75 as the input of Ro-TS. The combination of L0.75-negProx, L0.75-CP, and L0.75-
CP-negProx with Ro-TS can improve the performance similarly but their results are
not shown for the simplicity of presentation.

In the tables in this subsection, the numbers “min gap”, “mean gap”, and “max
gap” denote the minimum, mean, and maximum gap of Ro-TS among 10 runs, re-
spectively; “nfe” denotes the total number of the objective function evaluations of
(3.5) with p = 0.75; ‘time” denotes the mean running time in seconds of different
algorithms. Note that the implementation of Ro-TS is in the C language, while our
proposed algorithm is implemented in the MATLAB environment. Hence, the com-
parison of the running time is more favorable for Ro-TS.

In Table 5, we present numerical results on 51 problem instances in QAPLIB
for which our proposed algorithm L0.75 is able to achieve the optimal value or the
best known upper bound. It can be observed from Table 5 that the time used by
our algorithm is comparable to that of Ro-TS. Particularly, for the problem instance
“esc128”, our algorithm is twice faster than Ro-TS.

Table 5

Numerical results of L0.75 and Ro-TS on 51 problem instances in QAPLIB

Problem L0.75 Ro-TS, 10 runs

name obj∗ Rgap gap time nfe gap time

(min, mean, max)
bur26c 5426795 9.5 0.0000 0.7 161 (0.0000, 0.0004, 0.0036) 1.0
bur26f 3782044 11.3 0.0000 1.2 246 (0.0000, 0.0001, 0.0006) 1.0
bur26g 10117172 9.9 0.0000 0.6 147 (0.0000, 0.0000, 0.0000) 1.0
bur26h 7098658 10.9 0.0000 0.6 149 (0.0000, 0.0003, 0.0035) 1.0
chr12a 9552 372.5 0.0000 0.3 185 (0.0000, 0.0000, 0.0000) 0.1
chr12b 9742 363.4 0.0000 0.2 152 (0.0000, 0.0000, 0.0000) 0.1
chr18b 1534 199.9 0.0000 1.0 366 (0.0000, 0.0000, 0.0000) 0.3
esc16a 68 63.3 0.0000 0.4 199 (0.0000, 0.0000, 0.0000) 0.2
esc16b 292 7.9 0.0000 3.8 269 (0.0000, 0.0000, 0.0000) 0.2
esc16c 160 55.8 0.0000 0.4 195 (0.0000, 0.0000, 0.0000) 0.2
esc16d 16 226.0 0.0000 0.7 308 (0.0000, 0.0000, 0.0000) 0.2

Continued on next page
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Table 5

continued from the previous page

Problem L0.75 Ro-TS, 10 runs

name obj∗ Rgap gap time nfe gap time

(min, mean, max)
esc16e 28 118.5 0.0000 0.3 158 (0.0000, 0.0000, 0.0000) 0.2
esc16g 26 152.6 0.0000 0.3 120 (0.0000, 0.0000, 0.0000) 0.2
esc16h 996 41.6 0.0000 0.4 187 (0.0000, 0.0000, 0.0000) 0.2
esc16i 14 288.7 0.0000 0.3 132 (0.0000, 0.0000, 0.0000) 0.2
esc16j 8 268.0 0.0000 0.3 160 (0.0000, 0.0000, 0.0000) 0.2
esc32c 642 45.3 0.0000 1.0 227 (0.0000, 0.0000, 0.0000) 1.8
esc32d 200 80.2 0.0000 1.0 237 (0.0000, 0.0000, 0.0000) 1.8
esc32e 2 2428.2 0.0000 0.8 187 (0.0000, 0.0000, 0.0000) 1.8
esc32g 6 637.6 0.0000 0.7 151 (0.0000, 0.0000, 0.0000) 1.8
esc32h 438 53.7 0.0000 1.1 242 (0.0000, 0.0000, 0.0000) 1.8
esc64a 116 140.1 0.0000 5.7 443 (0.0000, 0.0000, 0.0000) 14.9
had12 1652 14.3 0.0000 0.3 181 (0.0000, 0.0000, 0.0000) 0.1
had14 2724 15.7 0.0000 0.2 128 (0.0000, 0.0000, 0.0000) 0.1
had16 3720 13.6 0.0000 0.4 171 (0.0000, 0.0000, 0.0000) 0.2
had18 5358 11.8 0.0000 0.4 177 (0.0000, 0.0000, 0.0000) 0.3
kra32 88700 54.6 0.0000 1.0 192 (0.0000, 0.0000, 0.0000) 1.8
lipa20b 27076 31.3 0.0000 0.3 131 (0.0000, 0.0000, 0.0000) 0.4
lipa30b 151426 29.2 0.0000 0.4 108 (0.0000, 0.0000, 0.0000) 1.5
lipa40b 476581 30.4 0.0000 0.5 83 (0.0000, 0.0000, 0.0000) 3.6
lipa50b 1210244 28.9 0.0000 0.9 94 (0.0000, 0.0000, 0.0000) 7.1
lipa60b 2520135 29.9 0.0000 1.6 113 (0.0000, 0.0000, 0.0000) 12.3
lipa70b 4603200 30.1 0.0000 1.5 84 (0.0000, 0.0000, 0.0000) 19.6
nug12 578 40.5 0.0000 0.3 191 (0.0000, 0.0000, 0.0000) 0.1
nug15 1150 37.8 0.0000 0.4 220 (0.0000, 0.0000, 0.0000) 0.2
nug16b 1240 39.3 0.0000 0.3 152 (0.0000, 0.0000, 0.0000) 0.2
nug20 2570 32.6 0.0000 0.6 205 (0.0000, 0.0000, 0.0000) 0.4
nug21 2438 40.3 0.0000 0.5 162 (0.0000, 0.0000, 0.0000) 0.5
nug22 3596 43.2 0.0000 0.6 186 (0.0000, 0.0000, 0.0000) 0.6
nug24 3488 36.7 0.0000 0.7 191 (0.0000, 0.0000, 0.0000) 0.8
nug25 3744 33.7 0.0000 0.6 158 (0.0000, 0.0000, 0.0000) 0.9
nug27 5234 36.2 0.0000 0.6 147 (0.0000, 0.0000, 0.0000) 1.1
rou15 354210 32.2 0.0000 0.9 544 (0.0000, 0.0000, 0.0000) 0.2
scr15 51140 99.5 0.0000 0.3 149 (0.0000, 0.0000, 0.0000) 0.2
tai10a 135028 38.4 0.0000 0.3 177 (0.0000, 0.0000, 0.0000) 0.1
tai12a 224416 39.3 0.0000 0.3 159 (0.0000, 0.0000, 0.0000) 0.1
tai12b 39464925 111.8 0.0000 0.3 178 (0.0000, 0.0000, 0.0000) 0.1
tai15b 51765268 676.6 0.0000 0.2 70 (0.0000, 0.0000, 0.0000) 0.2
esc128 64 397.6 0.0000 19.8 390 (0.0000, 13.4375, 28.1250) 41.5
lipa80b 7763962 30.8 0.0000 3.1 163 (0.0000, 0.0000, 0.0000) 9.8
lipa90b 12490441 30.5 0.0000 2.2 84 (0.0000, 0.0000, 0.0000) 14.1
Nbest 51 51

There are still 65 problem instances with n < 80, for which L0.75 cannot achieve
the optimal value or the best known upper bound. For the sake of saving space,
we only report in Table 6 the results on problem instances, for which the maximal
gap returned by L0.75-Ro-TS or Ro-TS in 10 runs is greater than zero. For these
problems, although L0.75 does not perform as well as Ro-TS, the hybrid L0.75-Ro-TS
can achieve a satisfactory performance (compared with Ro-TS). Note that the time
of L0.75-Ro-TS does not include the time of L0.75.
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Table 6

Numerical results of L0.75, L0.75-Ro-TS, and Ro-TS on 41 problem instances with n < 80 in
QAPLIB

Problem L0.75 L0.75-Ro-TS, 10 runs Ro-TS, 10 runs

name Rgap gap time nfe gap time gap time

(min, mean, max) (min, mean, max)
bur26a 9.6 0.1212 0.8 188 (0.0000, 0.0137, 0.0845) 1.0 (0.0000, 0.0000, 0.0000) 1.0
bur26b 10.4 0.1769 1.0 259 (0.0000, 0.0022, 0.0189) 1.0 (0.0000, 0.0000, 0.0000) 1.0
bur26d 10.2 0.0020 0.6 152 (0.0000, 0.0001, 0.0008) 1.0 (0.0000, 0.0006, 0.0021) 1.0
chr15a 520.4 0.4042 0.5 276 (0.0000, 0.0404, 0.4042) 0.2 (0.0000, 0.0829, 0.8286) 0.2
chr15b 668.1 17.6971 0.3 136 (0.0000, 0.5507, 2.7534) 0.2 (0.0000, 0.0000, 0.0000) 0.2
chr15c 546.6 30.9554 0.4 243 (0.0000, 0.0000, 0.0000) 0.2 (0.0000, 0.6355, 6.3552) 0.2
chr18a 600.0 11.7679 0.5 221 (0.0000, 0.0000, 0.0000) 0.3 (0.0000, 0.0396, 0.3965) 0.3
chr20a 388.5 12.5000 0.8 274 (0.0000, 2.4453, 6.3869) 0.4 (0.0000, 1.8887, 5.4745) 0.4
chr20b 366.0 13.8381 0.7 271 (3.0461, 4.4822, 5.9182) 0.4 (0.0000, 4.3777, 6.6144) 0.4
chr20c 656.5 18.2152 0.4 141 (0.0000, 2.9359, 10.4370) 0.4 (0.0000, 1.8894, 4.7235) 0.4
chr22a 153.8 5.7180 0.5 163 (0.0000, 0.7797, 1.8194) 0.6 (0.0000, 0.6790, 2.1767) 0.6
chr22b 152.3 5.2954 0.6 192 (0.0000, 0.9106, 1.8405) 0.6 (0.7104, 1.3497, 1.8082) 0.6
chr25a 423.8 25.2371 0.9 279 (0.0000, 7.1286, 11.6965) 0.9 (2.3182, 5.8061, 10.6428) 0.9
esc32a 233.2 1.5385 3.1 440 (0.0000, 0.6154, 1.5385) 1.8 (0.0000, 0.0000, 0.0000) 1.8
kra30a 51.5 0.8999 1.1 222 (0.0000, 0.0000, 0.0000) 1.5 (0.0000, 0.3690, 1.3386) 1.5
kra30b 49.9 0.3172 1.3 274 (0.0000, 0.0077, 0.0766) 1.5 (0.0000, 0.0077, 0.0766) 1.5
lipa60a 2.7 0.9858 0.3 38 (0.0000, 0.0671, 0.6706) 12.3 (0.0000, 0.0000, 0.0000) 12.3
lipa70a 2.4 0.8807 0.3 36 (0.0000, 0.0596, 0.5956) 19.7 (0.0000, 0.0590, 0.5903) 19.6
nug30 32.8 0.0653 1.0 205 (0.0000, 0.0000, 0.0000) 1.5 (0.0000, 0.0131, 0.0653) 1.5
rou20 25.5 0.2021 0.9 362 (0.0000, 0.0233, 0.1778) 0.4 (0.0000, 0.0074, 0.0193) 0.4
sko42 26.9 0.2150 2.6 352 (0.0000, 0.0076, 0.0253) 4.2 (0.0000, 0.0051, 0.0253) 4.2
sko49 24.2 0.1197 2.9 284 (0.0000, 0.0735, 0.1197) 6.7 (0.0086, 0.0804, 0.1368) 6.7
sko56 23.8 0.0348 5.2 327 (0.0348, 0.0348, 0.0348) 10.0 (0.0116, 0.0818, 0.2264) 10.0
sko64 21.3 0.0206 5.7 321 (0.0124, 0.0198, 0.0206) 15.0 (0.0041, 0.0499, 0.1361) 15.0
sko72 20.3 0.0664 7.7 380 (0.0211, 0.0580, 0.0664) 21.3 (0.0060, 0.1210, 0.3139) 21.4
ste36a 138.8 2.2045 1.0 141 (0.0000, 0.0042, 0.0420) 2.6 (0.0000, 0.0945, 0.2939) 2.6
ste36c 127.7 2.3769 1.2 183 (0.0000, 0.0011, 0.0112) 2.6 (0.0000, 0.0188, 0.1883) 2.6
tai20a 27.5 0.9763 1.1 488 (0.0000, 0.1852, 0.4697) 0.4 (0.0000, 0.1825, 0.3042) 0.4
tai25a 23.9 2.1781 1.5 498 (0.0000, 0.0884, 0.3658) 0.9 (0.0000, 0.3898, 0.8721) 0.9
tai30a 21.0 1.7887 2.2 565 (0.0000, 0.3436, 0.7806) 1.5 (0.0000, 0.3254, 0.6595) 1.5
tai30b 106.7 2.5101 0.9 183 (0.0000, 0.0406, 0.1456) 1.5 (0.0000, 0.0782, 0.2637) 1.5
tai35a 21.1 2.3491 3.9 801 (0.1642, 0.5192, 0.8617) 2.4 (0.0671, 0.5541, 0.9723) 2.4
tai35b 82.1 4.7863 1.3 217 (0.0000, 0.0569, 0.2153) 2.4 (0.0000, 0.1596, 0.9763) 2.4
tai40a 20.6 1.6882 3.1 494 (0.3336, 0.6905, 0.9928) 3.6 (0.3753, 0.7424, 1.0622) 3.6
tai40b 77.8 0.0051 1.6 202 (0.0000, 0.0000, 0.0000) 3.6 (0.0000, 0.2639, 2.1123) 3.6
tai50a 19.5 1.1252 6.2 715 (0.9638, 1.0725, 1.1252) 7.1 (0.9764, 1.2008, 1.4282) 7.1
tai50b 72.0 0.5660 5.1 591 (0.0106, 0.3520, 0.5660) 7.1 (0.0029, 0.1101, 0.4161) 7.1
tai60a 18.2 1.0398 8.5 476 (0.8591, 0.9631, 1.0398) 12.3 (0.9338, 1.1456, 1.3461) 12.3
tai60b 66.0 0.0986 5.6 478 (0.0000, 0.0732, 0.0986) 12.3 (0.0010, 0.2838, 0.9002) 12.3
tho40 42.0 0.2545 2.2 292 (0.0000, 0.0523, 0.1172) 3.6 (0.0000, 0.0369, 0.0632) 3.6
wil50 13.7 0.1311 6.9 799 (0.0000, 0.0238, 0.0533) 7.1 (0.0000, 0.0315, 0.1024) 7.1
Nbest 0 35 34

In Table 7, we present numerical results on 21 problem instances with n ≥ 80.
Table 7 shows that our proposed L0.75 regularization algorithm significantly outper-
forms Ro-TS in terms of both the solution quality and the speed for solving these
problems. More specifically, our algorithm can find a permutation matrix whose gap
is less than 0.8% for all 21 problem instances and whose gap is less than 0.1% for 11
problem instances. In contrast, the corresponding two numbers for Ro-TS (min) are
18 and 9 and for Ro-TS (mean) are only 15 and 2. For the largest problem instance
“tai256c”, our proposed algorithm is able to find a solution with gap 0.2610% while
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the best gap returned by Ro-TS (among 10 runs) is 0.3169%, and our algorithm is 15
times faster than Ro-TS.

Table 7

Numerical results of L0.75, L0.75-Ro-TS, Ro-TS on 21 problem instances with n ≥ 80 in QAPLIB

Problem L0.75 L0.75-Ro-TS, 10 runs Ro-TS, 10 runs

name Rgap gap time nfe gap time gap (%) time

(min, mean, max) (min, mean, max)

esc128 397.6 0.0000 19.8 390 (0.0000, 0.0000, 0.0000) 0.0 (0.0000, 13.4375, 28.1250) 41.5
lipa80a 2.1 0.7540 0.4 37 (0.0000, 0.4808, 0.5593) 9.8 (0.5016, 0.5351, 0.5644) 9.8
lipa80b 30.8 0.0000 3.1 163 (0.0000, 0.0000, 0.0000) 0.0 (0.0000, 0.0000, 0.0000) 9.8
lipa90a 1.9 0.7179 0.9 37 (0.4689, 0.4872, 0.5025) 14.0 (0.4453, 0.4734, 0.4980) 14.1
lipa90b 30.5 0.0000 2.2 84 (0.0000, 0.0000, 0.0000) 0.0 (0.0000, 0.0000, 0.0000) 14.1
sko100a 17.4 0.0645 14.5 396 (0.0645, 0.0645, 0.0645) 19.4 (0.0961, 0.1962, 0.5987) 19.4
sko100b 17.4 0.0858 13.9 371 (0.0195, 0.0489, 0.0819) 19.4 (0.0871, 0.2102, 0.3808) 19.4
sko100c 18.0 0.0203 16.8 464 (0.0108, 0.0185, 0.0203) 19.3 (0.0555, 0.2252, 0.4355) 19.4
sko100d 17.5 0.1712 13.9 381 (0.0949, 0.1296, 0.1645) 19.4 (0.0388, 0.2434, 0.4279) 19.5
sko100e 18.2 0.0134 14.0 298 (0.0134, 0.0134, 0.0134) 19.3 (0.1824, 0.4008, 0.6195) 19.4
sko100f 17.3 0.0550 12.3 328 (0.0550, 0.0550, 0.0550) 19.5 (0.1342, 0.3073, 0.5569) 19.4
sko81 19.2 0.1143 12.2 535 (0.0440, 0.0963, 0.1143) 10.2 (0.1165, 0.2024, 0.3143) 10.2
sko90 18.5 0.0554 14.7 526 (0.0554, 0.0554, 0.0554) 14.1 (0.0450, 0.2612, 0.3653) 14.1
tai100a 14.4 0.4131 33.8 968 (0.4131, 0.4131, 0.4131) 19.4 (0.9459, 1.1252, 1.3004) 19.4
tai100b 50.9 0.3800 13.7 400 (0.3701, 0.3786, 0.3800) 19.4 (0.4035, 1.1940, 2.8654) 19.4
tai150b 30.6 0.5098 86.2 1220 (0.4858, 0.4899, 0.4926) 67.1 (1.8733, 3.4037, 4.4771) 66.9
tai256c 19.8 0.2610 24.6 191 (0.2610, 0.2610, 0.2610) 390.3 (0.3169, 0.4097, 0.5283) 387.2
tai80a 15.6 0.6904 20.0 894 (0.5827, 0.6571, 0.6904) 9.8 (1.0769, 1.2615, 1.4734) 9.8
tai80b 51.9 0.0378 6.7 329 (0.0283, 0.0283, 0.0283) 9.8 (0.0379, 0.9246, 2.0504) 9.8
tho150 20.6 0.1500 53.4 679 (0.1500, 0.1500, 0.1500) 67.0 (0.2551, 0.6223, 1.0213) 67.1
wil100 9.8 0.0146 21.0 542 (0.0110, 0.0134, 0.0139) 19.5 (0.1267, 0.1762, 0.2740) 19.4
Nbest 8 13 6

7. Application in the bandwidth minimization problem. In this section,
we apply Algorithm 2 to solve the bandwidth minimization (BM) problem. It is
NP-hard [46] and has many applications in different fields such as sparse matrix
computations, circuit design, and VLSI layout [16, 34]. For a real symmetric matrix
A ∈ R

n×n, its bandwidth is defined as b(A) = maxAij 6=0 |i − j|. The BM problem
is to find a permutation matrix X such that the matrix XTAX takes the minimum
bandwidth. Define Āij = 1 if Aij 6= 0 and Āij = 0 otherwise. Clearly, XTĀX has
the same bandwidth with XTAX . Let Bm ∈ R

n×n be the symmetric Toeplitz matrix
with (Bm)ij = max{|i− j| −m, 0} and define

(7.1) h(m) = min
X∈Πn

tr(XTĀXBm).

Then, h(m) = 0 if and only if the bandwidth of XTĀX is at most m. Therefore, the
above BM problem for a given matrix A can be formulated as the problem of finding
the smallest nonnegative integer root of the equation h(m) = 0, namely,

(7.2) min m, s.t. h(m) = 0.

The BM problem can also be defined for a given graph. More specifically, for a
graph G = (V , E) with V = {v1, . . . , vn} being the vertices and E being the edges, the
BM problem is to find a bijection φ : V → N such that the number max

(i,j)∈E
|φ(vi) −

φ(vj)| is minimal. Denote the adjacency matrix of G by AG . Then the BM problem for
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the graph G is equivalent to the BM problem for the matrix AG . For more discussions
on the BM problem for graphs and matrices, please refer to [16, 53].

Let m∗ be the unique solution of (7.2). By the definition of h(m), we have that
h(i) > h(j) for 0 ≤ i < j ≤ m∗ and h(i) = 0 for i ≥ m∗. Moreover, it is trivial
that h(n − 1) = 0. Based on the above properties of h(m), we invoke the bisection
procedure to solve (7.2), where the subproblem (7.1) is solved by Algorithm 2. The
resulting method is named as Bi-Lp and described in Algorithm 6.

Algorithm 6: An Bi-Lp algorithm for BM problem (7.2).

1 Set m = 0,m = n− 1 and the integer m0 ∈ (1, n− 1), k = 0.
2 while m−m > 1 do

3 Compute h(mk) by Algorithm 2.
4 if h(mk) > 0 then m = mk if h(mk) = 0 then m = mk Set

mk = 1
2⌈m+m⌉ and k = k + 1.

Theoretically, if problem (7.1) is solved exactly, the above bisection procedure
will also solve the BM problem globally. Even if problem (7.1) is only approximately
solved (i.e., the h(mk) obtained is only an upper bound), Algorithm 6 would still yield
an upper bound on the minimum bandwidth. We can also invoke Algorithms 3 – 5
or other solvers for QAP to compute h(mk). For simplicity, we only use Algorithm 2
with p = 0.75 in Algorithm 6.

We compare the performance of Algorithm 6 with that of three other solvers,
including the MATLAB built-in function “symrcm” which implements the reverse
Cuthill-McKee (rCM) algorithm [28], the code “imprRevCMcK” (irCM) which is an
improved rCM algorithm proposed in [53], and “Bi-RoTS” which utilizes the same
algorithm framework as Algorithm 6 but uses Ro-TS to compute h(mk). The initial
bandwidth guess m0 in Bi-L0.75 and Bi-RoTS is set to be the minimal bandwidth
returned by symrcm. We replace the implementation of rCM in irCM by symrcm,
which can improve the performance of rCM based on our experience. The method
irCM consists of a number of independent runs, which is set to be 2000 in our tests.
Each run of irCM first generates a random ordering of the vertices of the graph, then
performs the rCM algorithm and the improvement procedure developed in [53]. In
order to investigate the impact of this number, we run irCM until it takes twice as
much CPU time as Bi-L0.75 on each test instance. We denote the resulting method
as irCM+. For some other methods, one can refer to [44] and references therein.

The numerical results for three different kinds of bandwidth minimization prob-
lems are reported in Tables 8 – 10. In these tables, “bwr” denotes the upper bound
of the minimal bandwidth returned by symrcm and “bw” denotes the upper bound of
the minimal bandwidth returned by the other methods. The running time is counted
in seconds. Since symrcm is fast, we do not report its running time in these tables.
The term “nrun” denotes the total number of independent runs of irCM+. For each
algorithm, the term “Nbest” denotes the total number of problem instances when the
upper bound of the minimal bandwidth provided by this algorithm is the smallest
among the bounds provided by all the algorithms. In Table 9, “k” denotes the min-
imal bandwidth, and we use “ ” to denote the average values of each term over 10
instances.

Table 8 reports the results on several symmetric graphs, including the Hamming
graph, the 3-dimensional generalized Hamming graph, the Johnson graph and the
Kneser graph. For details on these graphs, one can refer to [53]. Table 9 reports
the results on some random symmetric sparse matrices. For each n and the minimal
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Table 8

Numerical results on the upper bound for the bandwidth of a few symmetric graphs

Problem Bi-L0.75 irCM irCM+ Bi-RoTS

name n bwr bw time bw time bw nrun bw time

H(3, 5) 125 76 60 49.4 60 6.0 60 32795 64 197.7
H(3, 6) 216 145 101 281.9 101 72.4 101 15533 113 860.3
H(4, 3) 81 35 35 13.6 35 0.3 35 209742 35 70.3
H(4, 4) 256 114 113 329.0 113 2.0 113 655738 114 1569.8
GH(3, 4, 5) 60 33 30 17.0 29 0.4 29 176368 29 41.8
GH(4, 5, 6) 120 68 59 77.2 57 4.1 57 72972 60 203.8
GH(5, 6, 7) 210 135 99 251.9 99 58.1 99 17100 114 783.6
J(9, 3) 84 49 49 36.2 49 0.9 49 164372 49 77.5
J(10, 3) 120 71 68 98.1 68 3.2 68 124717 68 239.9
J(11, 3) 165 97 92 241.1 92 10.6 92 90684 97 638.8
J(12, 3) 220 127 120 601.1 120 36.2 120 65944 127 457.1
J(8, 4) 70 41 40 26.1 40 0.5 40 215414 40 107.4
J(9, 4) 126 70 70 100.1 70 0.9 70 462981 70 161.3
J(10, 4) 210 110 110 297.6 110 3.7 110 325865 110 588.8
J(11, 4) 330 170 170 865.2 171 15.3 170 228949 170 3603.8
K(9, 3) 84 66 56 52.2 59 3.6 58 58243 56 62.2
K(10, 3) 120 96 86 90.4 90 7.5 90 49212 88 204.5
K(11, 3) 165 135 125 164.3 131 15.0 131 43851 129 548.4
K(12, 3) 220 183 173 315.6 181 27.9 180 44361 183 228.1
K(9, 4) 126 61 51 40.4 52 5.2 52 31173 52 165.1
K(10, 4) 210 169 106 377.9 118 72.1 117 21061 132 588.3
K(11, 4) 330 294 197 1289.7 223 229.5 219 21995 221 1787.7
Nbest 5 20 14 15 9

Table 9

Numerical results on the upper bound for the bandwidth of random symmetric sparse matrices

Problem Bi-L0.75 irCM irCM+ Bi-RoTS

n k bwr bw time bw time bw nrun bw time

80 15 20.8 15.4 5.7 16.4 1.1 16.4 21129 15.4 28.9
80 23 31.6 23.0 7.7 24.6 1.8 24.6 18648 23.5 26.9
80 31 39.9 31.4 10.1 33.5 2.2 33.5 19925 31.4 36.0
80 39 51.0 39.0 13.4 41.7 2.3 41.7 24668 39.4 32.4
100 19 26.4 19.4 10.5 20.2 1.7 20.1 26017 19.5 63.7
100 29 38.7 29.4 13.2 31.1 2.9 31.1 21398 29.6 65.1
100 39 51.3 39.4 16.3 41.9 3.8 41.9 18292 39.9 73.5
100 49 61.6 49.4 24.6 53.0 4.7 53.0 23037 49.5 71.1
200 39 52.5 39.5 73.4 41.4 13.8 41.4 23358 40.3 555.2
200 59 75.9 59.5 73.2 62.9 23.7 62.9 12882 60.8 718.7
200 79 99.3 79.4 91.7 84.1 35.6 84.1 11786 80.8 657.8
200 99 130.3 99.4 134.6 105.6 51.6 105.6 11191 101.3 635.5
300 59 75.1 59.5 235.0 63.3 37.3 63.3 28214 60.9 2733.1
300 89 112.4 89.6 279.2 94.0 131.3 94.0 8948 90.9 2679.4
300 119 154.9 119.6 334.0 125.9 203.5 125.9 7050 120.9 3142.0
300 149 190.4 149.5 592.5 157.1 280.9 157.1 8847 151.4 2748.5
Nbest 0 16 0 0 0

bandwidth k, we generate 10 random matrices by the MATLAB commands “A =
toeplitz([ones(k,1); zeros(n-k,1)]); T = rand(n) > 0.4; T = (T + T’); AS = A.*T; ps
= randperm(n); A = AS(ps,ps); ” In Table 10, we present the results on 49 sparse
matrices from the UF Sparse Matrix Collection [19]. From these three tables, we
can observe that Bi-L0.75 performs the best in terms of the solution quality while
Bi-RoTS performs the worst. In particular, for the Kneser graphs and the random
sparse matrices, Bi-L0.75 returns much better bounds than those of irCM and irCM+.
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Table 10

Numerical results on the upper bound for the bandwidth of 49 symmetric sparse matrices with
80 ≤ n ≤ 300 from the UF Sparse Matrix Collection [19]

Problem Bi-L0.75 irCM irCM+ Bi-RoTS

name n bwr bw time bw time bw nrun bw time

GD06 theory 101 57 34 39.8 35 15.5 35 10266 34 65.1
GD97 a 84 23 18 9.8 18 1.1 17 36174 17 47.6
GD98 c 112 50 26 34.1 32 10.9 32 12569 28 111.0
Journals 124 116 98 77.1 102 4.2 102 73658 103 151.5
Sandi authors 86 22 12 17.3 12 9.6 12 7177 13 36.0
Trefethen 150 150 79 67 91.4 71 1.3 70 289009 79 203.2
Trefethen 200 200 99 87 167.7 88 1.5 88 461919 99 678.5
Trefethen 200b 199 99 86 243.1 87 1.5 87 643423 99 667.1
Trefethen 300 300 152 132 652.5 132 3.2 132 817720 150 3973.7
adjnoun 112 67 38 32.5 42 20.8 42 6225 42 55.9
ash292 292 32 23 316.3 21 26.6 21 47741 32 3718.3
ash85 85 13 10 10.0 10 0.6 10 70416 9 47.3
bcspwr03 118 17 12 19.6 11 11.8 11 6459 17 193.5
bcspwr04 274 49 31 304.1 29 207.1 29 5876 49 2509.4
bcsstk03 112 3 3 3.8 3 0.3 3 54309 3 162.2
bcsstk04 132 54 37 52.4 40 3.5 40 58609 38 184.2
bcsstk05 153 24 20 41.8 20 4.7 20 35781 24 294.0
bcsstk22 138 12 11 63.5 10 2.4 10 102888 12 158.5
can 144 144 18 13 25.9 13 8.5 13 12159 18 247.4
can 161 161 18 18 30.1 19 1.3 18 90297 18 258.9
can 187 187 23 14 62.0 15 2.0 15 123730 23 546.6
can 229 229 37 32 155.4 32 16.1 32 39029 37 1041.5
can 256 256 123 67 405.7 62 249.2 62 6561 85 1179.5
can 268 268 98 57 359.7 53 334.7 53 4256 82 1836.2
can 292 292 76 40 716.8 50 50.2 50 56878 76 628.3
can 96 96 23 13 16.0 21 0.6 21 99598 13 39.5
dwt 162 162 16 13 72.0 14 2.8 14 102152 16 174.3
dwt 193 193 54 32 145.3 34 56.0 34 10505 42 891.7
dwt 198 198 13 8 70.5 10 3.4 10 83262 13 488.2
dwt 209 209 33 26 97.9 29 12.8 29 30822 33 773.0
dwt 221 221 15 14 97.8 14 2.8 14 139580 15 1152.0
dwt 234 234 24 12 110.3 12 13.5 12 32277 24 990.3
dwt 245 245 55 28 267.1 31 132.3 31 8100 53 1609.1
dwt 87 87 18 12 9.1 12 4.0 12 9072 11 38.6
football 115 76 37 43.8 42 10.6 42 16866 39 157.3
grid1 252 22 22 409.5 19 0.7 19 2200545 22 1799.5
grid1 dual 224 17 17 162.2 17 0.7 17 984859 17 1195.5
jazz 198 141 69 162.2 81 105.1 81 6188 88 324.7
lshp 265 265 18 18 129.2 17 0.8 17 612015 18 951.9
lund a 147 23 23 42.4 23 0.4 23 396257 23 263.5
lund b 147 23 23 49.5 23 0.4 23 462959 23 260.3
mesh3e1 289 17 17 192.7 17 0.9 17 839178 17 2368.1
mesh3em5 289 17 17 189.4 17 0.9 17 824889 17 2367.0
nos1 237 4 3 43.8 3 1.1 3 156608 4 1706.8
nos4 100 12 10 9.9 10 4.2 10 9422 11 97.1
polbooks 105 30 20 17.7 21 12.2 21 5883 22 112.4
spaceStation 1 99 55 28 24.1 33 3.9 33 25099 30 90.5
sphere3 258 32 30 328.0 28 1.7 27 744388 32 1649.3
tumorAntiAngiogenesis 1 205 199 100 170.6 100 67.0 100 10212 101 542.7
Nbest 7 37 24 27 12

8. Concluding remarks. In this paper, we considered optimization problem
(1.1) over permutation matrices. We proposed an Lp regularization model for prob-
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lem (1.1). We studied theoretical properties of the proposed model, including its
exactness, the connection between its local minimizers and the permutation matrices,
and the lower bound theory of nonzero elements of its KKT points. Based on the Lp

regularization model, we proposed an efficient Lp regularization algorithm for solving
problem (1.1). To further improve the performance of the proposed Lp regularization
algorithm, we combined it with the classical cutting plane technique and/or a novel
negative proximal point technique. Our numerical results showed that the proposed
Lp regularization algorithm and its variants performed quite well for QAP instances
from QAPLIB. For the bandwidth minimization problem which has many applications
in different fields, our proposed algorithms also exhibit satisfactory performance.

Notice that the main computational cost of our proposed algorithms arises from
many projections onto Dn (or the restricted domain A). It would be helpful to develop
faster algorithms for computing these projection especially when n is large. Moreover,
how to take full advantage of the low rank and/or sparse structure of the matrices A
and B in our algorithms remains further investigation.

Our Lp regularization model/algorithm for solving problem (1.1) can be directly
extended to solve a general nonlinear binary programming with a fixed number of
nonzero elements as:

min
x∈Ω

f(x) s.t. xi ∈ {0, 1}, i = 1, 2, . . . , n, ‖x‖0 = N,

where Ω ⊂ R
n is convex and N is given. The Lp regularization model for the above

problem is

min
x∈Ω

f(x) + σ‖x+ ǫe‖pp s.t. 0 ≤ xi ≤ 1, i = 1, 2, . . . , n, eTx = N,

and it can be solved efficiently by the projected gradient method. It would be inter-
esting to extend the Lp-norm regularization to solve some general nonlinear integer
programming problems.
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