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Global strong solutions of the full Navier-Stokes and Q-tensor

system for nematic liquid crystal flows in 2D: existence and

long-time behavior
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Abstract

We consider a full Navier-Stokes and Q-tensor system for incompressible liquid crystal
flows of nematic type. In the two dimensional periodic case, we prove the existence and
uniqueness of global strong solutions that are uniformly bounded in time. This result is
obtained without any smallness assumption on the physical parameter ξ that measures the
ratio between tumbling and aligning effects of a shear flow exerting over the liquid crystal
directors. Moreover, we show the uniqueness of asymptotic limit for each global strong
solution as time goes to infinity and provide an uniform estimate on the convergence rate.

Keywords: Nematic liquid crystal flow, Q-tensor system, global strong solution, uniqueness
of asymptotic limit.
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1 Introduction

In this paper, we study the global well-posedness and long-time dynamics of a full coupled
incompressible Navier-Stokes and Q-tensor system due to Beris-Edwards [4], which models the
evolution of incompressible liquid crystal flows of nematic type. In the Landau-de Gennes
theory [12], the local orientation and degree of ordering for the liquid crystal molecules are
characterized by a symmetric, traceless d × d tensor Q (here d stands for spatial dimension),
which measures the deviation of the second moment tensor from its isotropic value. The Q-tensor
can incorporate the biaxiality of the liquid crystal molecule alignment [28]. Moreover, if Q has
two equal non-zero eigenvalues then it can be formally written as Q(x) = s(n(x) ⊗ n(x) − 1

d
I),

with s ∈ R \ {0} and the vector n : Rd → S
d−1 representing the averaged macroscopic molecular

orientation, so that the coupled Q-tensor system (see (1.1)-(1.3) below) reduces to the well-
known Ericksen-Leslie system [24].

In this paper, we restrict ourselves to the periodic case. Denote by T
d the periodic box

with period ai in the i-th direction and by O = (0, a1) × ...× (0, ad) the periodic cell. Without
loss of generality, we can simply set O = (0, 1)d. The coupled PDE system we are going
to study consists of incompressible Navier-Stokes equations for the fluid velocity with highly
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nonlinear anisotropic force terms and nonlinear convection-diffusion equations of parabolic type
that describe the evolution of the Q-tensor (see, e.g., [31]). More precisely, the full coupled
Navier-Stokes and Q-tensor system takes the following form:

ut + u · ∇u− ν∆u + ∇P = λ∇ · (τ + σ), (x, t) ∈ T
d × R

+, (1.1)

∇ · u = 0, (x, t) ∈ T
d × R

+, (1.2)

Qt + u · ∇Q− S(∇u,Q) = ΓH(Q), (x, t) ∈ T
d × R

+. (1.3)

Here, the vector u(x, t) : Td × (0,+∞) → R
d denotes the velocity field of the fluid and Q(x, t) :

T
d × (0,+∞) → S

(d)
0 stands for the order parameter of liquid crystal molecules (see (2.1) for

the definition of the set S
(d)
0 ). We assume that the system (1.1)-(1.3) is subject to the periodic

boundary conditions

u(x + ei, t) = u(x, t), Q(x + ei, t) = Q(x, t), for (x, t) ∈ T
d ×R

+, (1.4)

where {ei}di=1 is the canonical orthonormal basis of Rd. Moreover, the system is subject to initial
spatially 1-periodic data

u|t=0 = u0(x) with ∇ · u0 = 0, Q|t=0 = Q0(x), for x ∈ T
d. (1.5)

We note that the system preserves for all time both the symmetry and tracelessness of any
solution Q associated to an initial datum with the same property [31,40].

The system (1.1)-(1.3) describes the complex interaction between the fluid and the alignment
of liquid crystal molecules: the evolution of the fluid affects the direction and position of the
molecules while changes in the alignment of molecules will also influence the fluid velocity. The
positive constants ν, λ and Γ stand for the fluid viscosity, the competition between kinetic energy
and elastic potential energy, and macroscopic elastic relaxation time (Deborah number) for the
molecular orientation field, respectively.

The free energy for the liquid crystal molecules is given by (see e.g., [28])

F(Q)
def
=

∫

Td

(

L

2
|∇Q|2 + fB(Q)

)

dx. (1.6)

In the definition of F(Q), the gradient term corresponds to the elastic part of the free energy and
L > 0 is the elastic constant. Here, we simply use the so-called one constant approximation of
the Oseen-Frank energy (cf. [3]). On the other hand, the bulk part fB(Q) of Landau-de Gennes
type takes the following form

fB(Q) =
a

2
tr(Q2) − b

3
tr(Q3) +

c

4
tr2(Q2),

where a, b, c ∈ R are material-dependent and temperature-dependent coefficients that are as-
sumed to be constants here. In particular, we assume that

c > 0,

which is necessary from the modeling point of view to guarantee that the free energy F(Q) (and
thus the total energy E(t) of the coupled system (1.1)-(1.3)) is bounded from below (see [27,28]).

The tensor H = H(Q) in equation (1.3) is related to the variational derivative of the free
energy F(Q) with respect to Q (under the constraint that Q is both symmetric and traceless)
such that

H(Q)
def
= −∂F(Q)

∂Q
= L∆Q− aQ + b

(

Q2 − 1

d
tr(Q2)I

)

− cQ tr(Q2), (1.7)
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where I ∈ R
d×d stands for the identity matrix. Then the matrix valued function S(∇u,Q) in

(1.3) takes the following form

S(∇u,Q)
def
= (ξD + Ω)

(

Q +
1

d
I
)

+
(

Q +
1

d
I
)

(ξD − Ω) − 2ξ
(

Q +
1

d
I
)

tr(Q∇u), (1.8)

where

D =
∇u + ∇Tu

2
, Ω =

∇u−∇Tu

2

represent the symmetric and skew-symmetric parts of the rate of strain tensor, respectively. We
note that S(∇u,Q) describes the rotating and stretching effects on the order parameter Q due to
the fluid, as the liquid crystal molecules can be tumbled and aligned by the flow. In particular,
the constant parameter ξ ∈ R in (1.8) depends on the molecular shapes of the liquid crystal and
it is a measure of the ratio between the tumbling and the aligning effect that a shear flow exerts
on the liquid crystal director.

Concerning the stress tensors τ and σ on the right-hand side of Navier-Stokes equations
(1.1), the symmetric part τ reads

τ
def
= −ξ

(

Q +
1

d
I
)

H(Q) − ξH(Q)
(

Q +
1

d
I
)

+ 2ξ
(

Q +
1

d
I
)

tr(QH(Q)) − L∇Q⊙∇Q, (1.9)

in which the last term is understood as (∇Q⊙∇Q)ij =
∑d

k,l=1∇iQkl∇jQkl. On the other hand,
the skew-symmetric part σ is given by

σ
def
= QH(Q) −H(Q)Q. (1.10)

We recall some related results in the literature. The coupled Beris-Edwards system (1.1)-
(1.3) has been recently studied by several authors. For the simpler case ξ = 0, which means
that the molecules only tumble in a shear flow, but they are not aligned by the flow (cf. [32]),
the first contribution is due to [32], in which the authors proved the existence of global weak
solutions to the Cauchy problem in R

d with d = 2, 3, and they obtained higher global regularity
as well as the weak-strong uniqueness for d = 2. Asymptotic behavior of the Cauchy problem in
R
3 with ξ = 0 is recently discussed in [10]. Besides, initial boundary value problems subject to

various boundary conditions for d = 2, 3 have been investigated by several authors in [2, 16,17]
under the assumption ξ = 0. In these works, they proved the existence of global weak solutions,
existence and uniqueness of local strong solutions as well as some regularity criteria etc. For the
full Navier-Stokes and Q-tensor system (1.1)-(1.3) with general ξ ∈ R, existence of global weak
solutions for the Cauchy problem in R

d with d = 2, 3 was established in [31] for sufficiently small
|ξ|, while the uniqueness of weak solutions in the 2D setting is given quite recently in [11]. On the
other hand, in [1] the authors proved existence of global weak solutions and local well-posedness
with higher time-regularity for the initial boundary value problem subject to inhomogeneous
mixed Dirichlet/Neumann boundary conditions.

Some recent progresses have also been made on the mathematical analysis of certain modified
versions of the Beris-Edwards system in terms of its free energy. For instance, in [40], the regular
bulk potential in (1.6) is replaced by a singular potential of Ball-Majumdar type (cf. [3]) that
ensures the Q-tensor always stays in the “physical” region. Then, in the co-rotational regime
ξ = 0, the author proved the existence of global weak solutions for d = 2, 3 and for d = 2.
Moreover, he obtained the existence and uniqueness of global regular solutions. In [13,14], non-
isothermal variants of the Beris-Edwards system were derived and the authors proved existence
of global weak solutions in the case of a singular potential under periodic boundary conditions
for general ξ and d = 3. In [19], the authors considered a general Beris-Edwards system where
the Dirichlet type elastic functional as in (1.6) is replaced by three quadratic functionals. For

3



the Cauchy problem in R
3, they proved existence of global weak solutions as well as the existence

of a unique global strong solution provided that the fluid viscosity is sufficiently large. We also
refer the interested readers to [9, 22] for well-posedness results regarding the Q-tensor gradient
flow generated by the general Landau-de Gennes energy with a cubic term (but without fluid
coupling).

It is worth mentioning that a rigorous derivation from the Beris-Edwards system (with
general free energy and arbitrary ξ) to the classical Ericksen-Leslie system is recently given
in [39] by using the Hilbert expansion method. We refer to [6,7,20,26,38,42] and the references
therein for mathematical analysis of the general Ericksen-Leslie system either under the unit
length constraint of the molecule director or with Ginzburg-Landau approximation of the free
energy.

In this paper, we are interested in the global well-posedness and long-time behavior of the
full Navier-Stokes and Q-tensor system (1.1)-(1.5) in the two dimensional periodic setting. The
main difficulty in handling the current full coupled system with ξ ∈ R is due to the fact that for
ξ 6= 0 the system (1.1)-(1.5) no longer enjoys the maximum principle for the Q-equation (1.3),
which is instead true in case ξ = 0 (see e.g., [17, Theorem 3]). Due to the loss of control on
Q in L∞(0, T ;L∞), extra difficulties arise in obtaining estimates for highly nonlinear terms of
the system (see Proposition 3.1). We note that a similar problem was encountered in [31] to
prove the existence of global strong solutions of the Cauchy problem in R

2 (assuming that |ξ| is
sufficiently small). In order to get such highly nonlinearities under control, the authors of [31]
chose to work within the technical Littlewood-Paley approach and then made use of the sharp
logarithmic Sobolev embedding of H1+ǫ in L∞ (cf. [5]) together with the precise growth of the
constant of the Sobolev embedding of H1 in Lp for any p > 1 (cf. [8]), and an optimal choice
of the non-constant index p of interpolation depending on the norm of the solution. Then they
established the existence of a unique global strong solution (u,Q) to the Cauchy problem in R

2,
whose Hs ×H1+s-norm (s > 0) may increases at most quadruply exponential in time.

We note that in [31], the smallness of the parameter |ξ| is required because of the unbound-
edness of the whole plane R

2, which however can be removed in our current periodic setting (see
(2.8)). In the periodic domain T

2, the first main result we are able to prove is the existence and
uniqueness of global strong solutions (u,Q) for arbitrary ξ ∈ R, whose H1 ×H2-norm is indeed
uniformly bounded in time (see Theorem 2.1). To achieve this goal, we use the idea of [25] for the
simplified liquid crystal system together with the interpolation techniques in [31] to derive a suit-
able higher-order differential inequality for a specific quantity A(t) (see (3.5) for its definition),
which is essentially contained in the energy dissipation of the system (1.1)-(1.5) and is integrable
with respect to time on the unbounded half line R

+ such that A(t) ∈ L1(0,+∞) (see Proposi-
tion 3.1). The resulting higher-order energy inequality (3.6) has a delicate double-logarithmic
type structure and it plays a crucial role in three aspects of the subsequent proofs: (1) it yields
uniform-in-time estimates on H1 ×H2-norm of the global strong solution (u,Q) provided that
(u0, Q0) ∈ H1 ×H2 (see (4.17)); (2) it implies the decay of A(t) to zero as t → +∞ and thus
gives a characterization of the ω-limit set of the evolution system (1.1)-(1.5) (see Lemma 5.1);
(3) it helps to obtain an uniform estimate on the rate of convergence to equilibrium for the
global strong solution (see (5.36)).

Our second main result is about the long-time behavior of global strong solutions obtained in
Theorem 2.1 (see Theorem 2.2). The problem whether a bounded global solution of a nonlinear
evolution equation will converge to a single equilibrium as time tends to infinity is of great
importance. This issue is nontrivial since the structure of the equilibrium set may form a
continuum for many dynamic systems in higher space dimensions. For instance, under current
periodic boundary conditions, it is expected that the dimension of the equilibrium set of our
problem (1.1)-(1.5) is at least 2 due to the simple fact that a shift in each variable produces
another steady state. Hence, it is interesting to determine whether a trajectory defined by a
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global strong solution will converge to a single steady state or not. To this end, we first construct
a specific gradient inequality for tensor valued functions subject to periodic boundary conditions
(see Lemma 5.2), then we apply the  Lojasiewicz-Simon approach (see [34] and also [15]) to
achieve our aim. This approach turns out to be a powerful tool in the study of long-time
dynamics of evolution equations, and we refer interested readers to [21] and the references
therein for various applications.

The rest of this paper is organized as follows. In Section 2 we introduce the notations as
well as some preliminary results, and then state the main results of this paper. Section 3 is
devoted to the derivation of a specific higher-order differential inequality that will be crucial
in the subsequent proof. In Section 4, we prove the existence and uniqueness of global strong
solutions to the Beris-Edward system (1.1)-(1.5). In Section 5 we demonstrate that every global
strong solution will converge to a single equilibrium and provide a uniform estimate on the
convergence rate. Some detailed calculations will be presented in the Appendix Section.

2 Preliminaries and Main Results

2.1 Notations

Let X be a real Banach space with norm ‖ · ‖X and X∗ be its dual space. By < ·, · >X∗,X we
indicate the duality product between X and X∗. We denote by Lp(Td,M), Wm,p(Td,M) the
usual Lebesgue and Sobolev spaces defined on the torus Td for M -valued functions (e.g., M = R,
M = R

d or M = R
d × R

d) that are in Lp
loc(R

d) or Wm,p
loc (Rd) and periodic in T

d, with norms
denoted by ‖ · ‖Lp , ‖ · ‖Wm,p , respectively. For p = 2, we simply denote Hm(Td) = Wm,2(Td)
with norm ‖ · ‖Hm . In particular for m = 0, we denote H0(Td) = L2(Td) and the inner product
on L2(Td) will be denoted by (·, ·)L2 . For simplicity, we shall not distinguish functional spaces
when scalar-valued, vector-valued or matrix-valued functions are involved if they are clear from
the context.

Einstein summation convention will be used throughout this paper. For arbitrary vectors
u, v ∈ R

d, we denote u · v = uivi the inner product in R
d. For any matrix Q ∈ R

d×d, we use the

Frobenius norm |Q| =
√

tr(Q2) =
√

QijQij. Let S
(d)
0 denote the space of symmetric traceless

matrices with spatial dimension d,

S
(d)
0

def
=
{

Q ∈ R
d×d | Qij = Qji, tr(Q) = 0, i, j = 1, ..., d

}

. (2.1)

Then for matrices A,B ∈ S
(d)
0 , we denote A : B = tr(AB). Concerning the norms for derivatives,

we denote |∇Q|2(x) = ∇kQij(x)∇kQij(x) and |∆Q|2(x) = ∆Qij(x)∆Qij(x). Sobolev spaces for

Q-tensors will be defined in terms of the above norms. For instance, L2(Td, S
(d)
0 ) = {Q : Td →

S
(d)
0 ,
∫

Td |Q(x)|2 dx < ∞} and H1(Td, S
(d)
0 ) = {Q : Td → S

(d)
0 ,
∫

Td |∇Q(x)|2 + |Q(x)|2 dx < ∞}
etc. Concerning the divergence of a d × d differentiable matrix-valued function σ = (σij), its
i-th component is given by (∇ · σ)i = ∇jσij , 1 ≤ i, j ≤ d.

For any normed space X, the subspace of functions in X with zero-mean will be denoted by
Ẋ, that is Ẋ =

{

v ∈ X :
∫

Td v dx = 0
}

. Then we recall the well established functional settings
for periodic solutions to Navier-Stokes equations (see e.g., [36]):

H = {v ∈ L̇2(Td,Rd), ∇ · v = 0},

V =
{

v ∈ Ḣ1(Td,Rd), ∇ · v = 0
}

,

V′ = the dual space of V.

In the spatial periodic setting, one can define a mapping S associated with the Stokes problem:

Su = −∆u, ∀u ∈ D(S)
def
= {u ∈ H, ∆u ∈ H} = Ḣ2(Td,Rd) ∩H. (2.2)
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The operator S can be seen as an unbounded positive linear self-adjoint operator on H. If D(S)
is endowed with the norm induced by Ḣ2(Td), then S becomes an isomorphism from D(S) onto
H. For detailed properties of S, we refer to [36].

We denote by C a generic constant that may depend on ν, Γ, λ, ξ, L, a, b, c, Td and the
initial data (u0, Q0), whose value is allowed to vary on occurrence. Specific dependence will be
pointed out explicitly if necessary.

2.2 Basic energy law and global weak solutions

We first present some basic properties of the Navier-Stokes and Q-tensor system (1.1)-(1.5) that
are valid in both two and three dimensional cases.

The total energy of the system (1.1)-(1.5) consists of two parts: the kinetic energy for the
velocity field u and the free energy F(Q) (see (1.6)). More precisely, we have

E(t)
def
=

1

2

∫

Td

|u|2(x, t) dx + λF(Q(t)). (2.3)

By the same argument as in [31, Proposition 1] for the whole space case in R
d (see also [11,

Proposition 2.1]), we can derive the following basic energy law:

Lemma 2.1 (Basic energy law). Suppose d = 2, 3 and (u,Q) be a smooth solution to the problem
(1.1)-(1.5). Then we have

d

dt
E(t) = −ν

∫

Td

|∇u|2 dx− λΓ

∫

Td

|H(Q)|2 dx ≤ 0, ∀ t > 0. (2.4)

Lemma 2.1 reflects the energy dissipation of the liquid crystal flow and indicates that the
energy functional E(t) which is bounded from below since c > 0, serves as a Lyapunov func-
tional for the system (1.1)-(1.5). This property provides necessary uniform estimates for further
mathematical analysis of the PDE system (1.1)-(1.5), for instance, the existence of global weak
solutions.

Lemma 2.2. Suppose d = 2, 3. Let (u,Q) be a smooth solution to the problem (1.1)-(1.5). Then
we have

‖u(t)‖L2 + ‖Q(t)‖H1 ≤ C, ∀ t > 0, (2.5)

where the constant C > 0 depends on ‖u0‖, ‖Q0‖H1 , L, λ, a, b, c and T
d. Moreover, it holds

∫ T

0

∫

Td

|∇u(x, t)|2 + |∆Q(x, t)|2 dxdt < CT , ∀T > 0, (2.6)

where CT > 0 may further depend on ν, Γ and T .

Proof. It follows from Lemma 2.1 that

E(t) +

∫ t

0

∫

Td

ν|∇u|2 + λΓ|H(Q)|2dxdt = E(0), ∀ t > 0. (2.7)

We easily infer from the Sobolev embedding theorem (d = 2, 3) that

E(0) =
1

2
‖u0‖2L2 + λF(Q0) ≤ C(‖u0‖L2 , ‖Q0‖H1).

On the other hand, there exists a constant M = M(a, b, c) > 0 large enough (see [31, (18)]) such
that

M

2
tr(Q2) +

c

8
tr2(Q2) ≤

(

M +
a

2

)

tr(Q2) − b

3
tr(Q3) +

c

4
tr2(Q2),

6



which combined with the Young’s inequality and the fact c > 0 yields that

a

2
tr(Q2) − b

3
tr(Q3) +

c

4
tr2(Q2) ≥ −M

2
tr(Q2) +

c

8
tr2(Q2)

≥ 1

2
tr(Q2) +

c

16
tr2(Q2) − (M + 1)2

c
.

Then we have following estimate

1

2
‖u(t)‖2L2 +

λL

2
‖∇Q(t)‖2L2 + λ

∫

Td

1

2
tr(Q2(t)) +

c

16
tr2(Q2(t)) dx

≤ 1

2
‖u(t)‖2 + λF(Q(t)) +

λ(M + 1)2

c
|Td|, (2.8)

where |Td| stands for the Lebesgue measure of Td. As a consequence, we can deduce that E(t) is
uniformly bounded from below by a generic constant only depending on the coefficients a, b, c, λ
and the size of periodic domain. Hence, the estimate (2.5) easily follows from (2.7) and (2.8).

Next, we infer from (2.5), (2.7), (2.8) and the Sobolev embedding theorem (d = 2, 3) that

∫ t

0

∫

Td

∣

∣L∆Q
∣

∣

2
dxdτ

≤ 2

∫ t

0

∫

Td

∣

∣H(Q)
∣

∣

2
dxdτ + 2

∫ t

0

∫

Td

∣

∣

∣

∣

−aQ + b

(

Q2 − 1

3
tr(Q2)I

)

− cQ tr(Q2)

∣

∣

∣

∣

2

dxdτ

≤ 2

∫ t

0

∫

Td

∣

∣H(Q)
∣

∣

2
dxdτ + C

∫ t

0

(

‖Q(τ)‖2L2 + ‖Q(τ)‖4L4 + ‖Q(τ)‖6L6

)

dτ

≤ 2

λΓ

(

E(0) − E(t)
)

+ Ct

≤ C(1 + t), ∀ t > 0,

where C depends on ‖u0‖, ‖Q0‖H1 ,Γ, L, λ, a, b, c and T
d. Then the conclusion (2.6) follows from

the above estimate and (2.7).

Remark 2.1. For the full Navier-Stokes and Q-tensor system (1.1)-(1.5) with general ξ ∈ R,
existence of weak solutions for the Cauchy problem in the whole space R

d with d = 2, 3 is estab-
lished in [31] for sufficiently small ξ. On the other hand, for the initial boundary value problem
in a bounded domain in R

d, in [1] existence of global weak solutions under inhomogeneous mixed
Dirichlet/Neumann boundary conditions were obtained without any restriction on ξ. The small-
ness for ξ can be removed for the bounded domain case because one can use a generic constant
depending on the domain size to get a priori L2 estimates for the Q-tensor (see (2.8)).

Since we are working with the periodic domain, the following result can be easily proved in
a way similar to [1]:

Proposition 2.1 (Existence of global weak solutions). Suppose that d = 2, 3 and ξ ∈ R. For

any initial data (u0, Q0) ∈ H × H1(Td, S
(d)
0 ), the problem (1.1)-(1.5) possesses at least one

global-in-time weak solution (u,Q) such that

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V), (2.9)

Q ∈ L∞(0, T ;H1(Td, S
(d)
0 )) ∩ L2(0, T ;H2(Td, S

(d)
0 )). (2.10)

Moreover, for a.e. t ∈ (0, T ), the following energy inequality holds:

E(t) +

∫ t

0

∫

Td

ν|∇u|2 + λΓ|H(Q)|2dxdt ≤ E(0). (2.11)
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2.3 Main results

In the remaining part of this paper, we shall focus on the two dimensional case that d = 2.
First, we observe the simple fact that when d = 2, it holds tr(Q3) = 0 and thus the cubic term
with coefficient b in the free energy F(Q) (see (1.6)) vanishes (cf. [22]). As a consequence, we
have a simpler expression for H(Q) in the 2D case:

H(Q) = L∆Q− aQ− cQ tr(Q2). (2.12)

Let us introduce the notion of strong solutions to problem (1.1)-(1.5):

Definition 2.1. Suppose that d = 2 and (u0, Q0) ∈ V×H2
(

T
2, S

(2)
0

)

. A pair (u,Q) is called a
global strong solution to problem (1.1)-(1.5) if

u ∈ C([0,+∞);V) ∩ L2
loc(0,+∞;H2(T2,R2)), (2.13)

Q ∈ C([0,+∞);H2(T2, S
(2)
0 ) ∩ L2

loc(0,+∞;H3(T2, S
(2)
0 )). (2.14)

Moreover, the equations (1.1) for u and the equations (1.3) for Q are satisfied in L2
loc(0,+∞;H)

and L2
loc(0,+∞;L2(T2, S

(2)
0 )), respectively.

Then we state the main results of this paper. The first result is about the global well-
posedness of the hydrodynamic system (1.1)-(1.5) in T

2.

Theorem 2.1 (Existence and uniqueness of global strong solutions). Suppose d = 2 and ξ ∈ R.

Then, for any (u0, Q0) ∈ V ×H2
(

T
2, S

(2)
0

)

, problem (1.1)-(1.5) admits a unique global solution
(u,Q) in the sense of Definition 2.1, which satisfies

‖u(t)‖H1 + ‖Q(t)‖H2 ≤ C, ∀ t ≥ 0,

where C > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖H1 , ‖Q0‖H2 and ξ.

Our second main result states that for any global strong solution obtained in Theorem 2.1,
it has an unique asymptotic limit as t → +∞.

Theorem 2.2 (Uniqueness of asymptotic limit). Suppose that the assumptions in Theorem 2.1

are satisfied. For any (u0, Q0) ∈ V×H2
(

T
2, S

(2)
0

)

, the unique global strong solution to problem
(1.1)-(1.5) converges to a single steady state solution (0, Q∞) as time tends to infinity:

lim
t→+∞

(‖u(t)‖H1 + ‖Q(t) −Q∞‖H2) = 0, (2.15)

where Q∞ ∈ S
(2)
0 satisfies the elliptic problem in T

2

L∆Q∞ − aQ∞ − c tr(Q2
∞)Q∞ = 0, in T

2, Q∞(x + ei) = Q∞ for x ∈ T
2.

Furthermore, the following estimate on convergence rate holds

‖u(t)‖H1 + ‖Q(t) −Q∞‖H2 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (2.16)

Here, C > 0 is a constant that depends on ν,Γ, L, λ, a, c, ξ,T2, ‖u0‖H1 , ‖Q0‖H2 , ‖Q∞‖H2 , and
θ ∈ (0, 12 ) is the constant given in Lemma 5.2 depending on Q∞.
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3 Higher-Order Energy Inequality

In this section we will derive a useful higher-order energy inequality for problem (1.1)-(1.5).
For the sake of simplicity, the subsequent calculations shall be performed formally on smooth
solutions of the problem (1.1)-(1.5), without referring to any approximation. Nevertheless, they
can be justified by working within the Faedo-Galerkin approximation scheme (4.1)-(4.7) given
in Section 4.

We start by recalling the following special cases of the Gagliardo-Nirenberg inequality in 2D
that will be frequently used in the subsequent proofs (see, e.g., [23]):

Lemma 3.1. Suppose d = 2. We have

‖g‖L4 ≤ C
(

‖∇g‖
1
2

L2‖g‖
1
2

L2 + ‖g‖L2

)

, ∀ g ∈ H1(T2), (3.1)

‖∇g‖L2 ≤ ‖g‖
1
2

L2‖∆g‖
1
2

L2 , ∀ g ∈ H2(T2). (3.2)

Besides, we will make use of the following Lp-interpolation inequality with precise growth of
the constant in 2D, which follows from [8] (see also [30, Lemma 10]) and the Sobolev extension
theorem [29, Chap. 2, Sect. 3.6]:

Lemma 3.2. Suppose d = 2. For any η > 1, it holds:

‖g‖L2η ≤ C
√
η‖g‖1−

1
η

H1 ‖g‖
1
η

L2 , ∀ g ∈ H1(T2),

where the constant C is independent of the exponent η and function g.

Next, we recall that when ξ = 0 the system (1.1)-(1.5) enjoys a maximum principle for the
Q-equation (1.3) (see e.g., [17, Theorem 3]). However, since now the parameter ξ is allowed
to be non-zero, the maximum principle property is no longer valid. The loss of control on
Q ∈ L∞(0, T ;L∞) brings us several difficulties in obtaining estimates for highly nonlinear terms
of the system. In order to handle the L∞-norm of Q, we shall use the following well-known
results

Lemma 3.3 (Agmon’s Inequality [37]). When d = 2, it holds

‖g‖L∞ ≤ C‖g‖
1
2

L2‖g‖
1
2

H2 , ∀ g ∈ H2(T2). (3.3)

Lemma 3.4 (Brézis-Gallouet Inequality [5]). When d = 2, for any g ∈ H2(T2), it holds

‖g‖L∞ ≤ C‖g‖H1

√

ln(1 + ‖g‖H2) + C‖g‖H1 . (3.4)

Now we state the main result of this section.

Proposition 3.1. Let d = 2 and

A(t) = ‖∇u(t)‖2L2 + λ‖H(Q(t))‖2L2 . (3.5)

For any ξ ∈ R, the following energy inequality holds:

d

dt
A(t) +

ν

2
‖∆u(t)‖2L2 +

λΓ

2
‖∇H(Q(t))‖2L2

≤ C∗

[

1 + |ξ|
[

1 + ln(e + ln(e + A(t)))
]

(e + ln(e + A(t)))
]

[

e + A(t)
]

A(t), (3.6)

where C∗ > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖L2 , ‖Q0‖H1 and ξ.
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Proof. After a lengthy calculation (see Appendix for details), we obtain

1

2

d

dt
A(t) + ν‖∆u‖2L2 + λΓ‖∇H‖2L2

=

∫

T2

(

u · ∇u,∆u
)

dx− 2λ

∫

T2

∇luk∇l∇kQijHijdx +
λ

L

∫

T2

uk∇kFijHijdx

−2λ

∫

T2

∇jui(∇lQkj∇lHik − λ∇lQik∇lHkj)dx− λ

∫

T2

∇jui(∆QkjHik − ∆QikHkj)dx

+λξ

∫

T2

(

D∆Q + ∆QD) : Hdx + 4λξ

∫

T2

∇lDik∇lQkjHij dx

−2λξ

∫

T2

∆
(

QklQji

)

∇juiHkl dx− 4λξ

∫

T2

∇m

(

QklQji

)

∇m∇juiHkl dx

−λ

∫

T2

∂F (Q)

∂Q
(u · ∇Q) : Hdx + λ

∫

T2

∂F (Q)

∂Q
S(∇u,Q) : Hdx

+λΓ

∫

T2

∂F (Q)

∂Q
H : Hdx

:=

12
∑

i=1

Ji. (3.7)

Below we shall estimate the terms J1 through J12 in (3.7). Let us take ǫ ∈ (0, 1) to be a
small constant that will be determined later.

The term J1 can be easily estimated by using the Gagliardo-Nirenberg inequality (3.1) and
the lower-order estimate (2.5):

J1 ≤ ‖u‖L4‖∇u‖L4‖∆u‖L2

≤ C‖u‖
1
2

L2‖∇u‖L2‖∆u‖
3
2

L2

≤ ǫ‖∆u‖2L2 + C‖∇u‖4L2 .

Recalling (2.12) and using again (2.5), we observe that

‖∆Q‖L2 ≤ 1

L
‖H(Q)‖L2 +

1

L

∥

∥aQ + c tr(Q2)Q
∥

∥

L2

≤ 1

L
‖H(Q)‖L2 + C(‖Q‖H1)

≤ 1

L
‖H(Q)‖L2 + C. (3.8)

Meanwhile, applying (3.2) and (3.3) once more, we get

‖∇∆Q‖L2 ≤ 1

L
‖∇H(Q)‖L2 +

1

L

∥

∥

∥
a∇Q + c∇

[

tr(Q2)Q
]

∥

∥

∥

L2

≤ 1

L
‖∇H(Q)‖L2 + C

(

1 + ‖Q‖2L∞

)

‖∇Q‖L2

≤ 1

L
‖∇H(Q)‖L2 + C

(

1 + ‖∆Q‖L2

)

≤ 1

L
‖∇H(Q)‖L2 + C

(

1 + ‖∇Q‖
1
2

L2‖∇∆Q‖
1
2

L2 + ‖∇Q‖L2

)

≤ 1

L
‖∇H(Q)‖L2 +

1

2
‖∇∆Q‖L2 + C,

which implies

‖∇∆Q‖L2 ≤ 2

L
‖∇H(Q)‖L2 + C. (3.9)
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On the other hand, we infer from Agmon’s inequality (3.3) and the estimates (2.5), (3.8) that

‖Q‖L∞ ≤ C‖Q‖
1
2

L2‖Q‖
1
2

H2 ≤ C(1 + ‖∆Q‖
1
2

L2) ≤ C(1 + ‖H(Q)‖
1
2

L2). (3.10)

As a consequence, we obtain from the Hölder inequality, the Gagliardo-Nirenberg inequality
(3.1) and the Young’s inequality that

J2 ≤ C‖∇u‖L2‖Q‖W 2,4‖H‖L4

≤ C‖∇u‖L2‖Q‖
1
2

H2‖Q‖
1
2

H3‖H‖
1
2

L2‖H‖
1
2

H1

≤ C‖∇u‖L2

(

‖∆Q‖
1
2

L2‖∇∆Q‖
1
2

L2 + ‖∆Q‖L2 + 1
)(

‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2

)

≤ C‖∇u‖L2

(

‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖∇H‖
1
2

L2 + ‖H‖L2 + 1
)(

‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2

)

≤ ǫ‖∇H‖2L2 + C‖∇u‖2L2 + C‖∇u‖4L2 + C‖H‖2L2 + C‖H‖4L2

≤ ǫ‖∇H‖2L2 + CA(1 + A).

For J3, using the inequalities (3.1) and (3.3), we obtain that

J3 ≤ ‖u‖L4‖∇Q‖L4(1 + ‖Q‖2L∞)‖H‖L2

≤ C‖∇u‖L2‖∆Q‖
1
2

L2‖∇Q‖
1
2

L2(1 + ‖∆Q‖L2)‖H‖L2

≤ C‖∇u‖L2(1 + ‖∇∆Q‖
1
2

L2‖∇Q‖
1
2

L2)‖∆Q‖
1
2

L2‖H‖L2

≤ ǫ‖∇H‖2L2 + C‖∇u‖4L2 + C‖H‖4L2 + C‖H‖2L2

≤ ǫ‖∇H‖2L2 + CA(1 + A).

And terms J4 and J5 can be estimated as follows

J4 ≤ C‖∇u‖L4‖∇Q‖L4‖∇H‖L2

≤ C‖u‖
1
2

L2‖∆u‖
1
2

L2‖∇Q‖
1
2

L2‖∆Q‖
1
2

L2‖∇H‖L2

≤ ǫ‖∆u‖2L2 + ǫ‖∇H‖2L2 + C‖∇u‖2L2 + C‖H‖4L2

≤ ǫ‖∆u‖2L2 + ǫ‖∇H‖2L2 + CA(1 + A),

J5 ≤ C‖∇u‖L4‖∆Q‖L2‖H‖L4

≤ C‖∇u‖
1
2

L2‖∆u‖
1
2

L2(1 + ‖H‖L2)(‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2)

≤ ǫ‖∆u‖2L2 + ǫ‖∇H‖2L2 + C‖∇u‖2L2 + C‖∇u‖4L2 + C‖H‖2L2 + C‖H‖4L2

≤ ǫ‖∆u‖2L2 + ǫ‖∇H‖2L2 + CA(1 + A).

Besides, for J10 and J12 the following inequality holds

J10 + J12

≤ C
(

1 + ‖Q‖2L∞

)(

‖H‖L2 + ‖u‖L∞‖∇Q‖L2

)

‖H‖L2

≤ C(1 + ‖H‖L2)
(

‖H‖L2 + ‖u‖
1
2

L2‖∆u‖
1
2

L2

)

‖H‖L2

≤ C(1 + ‖H‖L2)‖H‖2L2 + C‖H‖2L2‖u‖
1
2

L2‖∆u‖
1
2

L2 + C‖H‖L2‖∇u‖
1
2

L2‖∆u‖
1
2

L2

≤ ǫ‖∆u‖2L2 + C‖∇u‖2L2 + C‖∇u‖4L2 + C‖H‖2L2 + C‖H‖4L2

≤ ǫ‖∆u‖2L2 + CA(1 + A).
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It remains to estimate the terms J6, ..., J9 and J11 involving the parameter ξ, which all vanish
when ξ = 0. Thus, we only need to consider the case ξ 6= 0 (with ξ being fixed).

The term J6 can be estimated in the same way as for J2, that is

J6 ≤ C|ξ|‖∇u‖L2‖∆Q‖L4‖H‖L4

≤ ǫ‖∇H‖2L2 + C(1 + |ξ|2)A(1 + A).

For J7, using the Hölder inequality, (3.1), (3.8) and Young’s inequality, we have

J7 ≤ C|ξ|‖∆u‖L2‖∇Q‖L4‖H‖L4

≤ C|ξ|‖∆u‖L2‖∇Q‖
1
2

L2‖∆Q‖
1
2

L2

(

‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2

)

≤ ǫ‖∆u‖2L2 + ǫ‖∇H‖2L2 + C(1 + |ξ|4)(‖H‖2L2 + ‖H‖4L2)

≤ ǫ‖∆u‖2L2 + ǫ‖∇H‖2L2 + C(1 + |ξ|4)A(1 + A).

Next, we first treat J11 and postpone the estimates for terms J8, J9 that are more involved.

J11 ≤ C
(

1 + ‖Q‖2L∞

)

‖S(∇u,Q)‖L2‖H‖L2

≤ C(1 + ‖H‖L2)
(

1 + ‖Q‖L∞

)2‖∇u‖L2‖H‖L2

≤ C(1 + ‖H‖L2)2‖∇u‖L2‖H‖L2

≤ C‖∇u‖L2‖H‖L2 + C‖H‖3L2‖∆u‖
1
2

L2‖u‖
1
2

L2

≤ ǫ‖∆u‖2L2 + C‖∇u‖2L2 + C‖H‖2L2 + C‖H‖4L2

≤ ǫ‖∆u‖2L2 + CA(1 + A).

Now, let us consider the term J8. By a similar argument for J5 and using the Brézis-Gallouet
inequality (3.4), we obtain that

J8 ≤ 2|ξ|‖∇u‖L4‖H‖L4‖∆(QQ)‖L2

≤ C|ξ|‖∇u‖L4‖H‖L4

(

‖Q‖L∞‖∆Q‖L2 + ‖∇Q‖2L4

)

≤ C|ξ|‖∇u‖L4‖H‖L4

(

‖Q‖L∞‖∆Q‖L2 + ‖∆Q‖L2‖∇Q‖L2

)

≤ C|ξ|‖∇u‖
1
2

L2‖∆u‖
1
2

L2(1 + ‖H‖L2)(‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2)
(

‖Q‖L∞ + 1
)

≤ ǫ‖∆u‖2 + ǫ‖∇H‖2

+ C(|ξ| + |ξ|4)(1 + ‖Q‖2L∞)(‖∇u‖4L2 + ‖∇u‖2L2 + ‖H‖4L2 + ‖H‖2L2)

≤ ǫ‖∆u‖2 + ǫ‖∇H‖2 + C(|ξ| + |ξ|4)BA(1 + A),

where we have set

B = e + ln(e + A) > e. (3.11)

Concerning the last term J9, by the Hölder inequality we have, for any p ∈ (0, 1),

J9 ≤ 4|ξ|‖Q‖L∞‖∇Q‖
L

2
p
‖∇2u‖L2‖H‖

L
2

1−p
. (3.12)

For any p ∈ (0, 1/2), applying the Lp-interpolation inequality Lemma 3.2, with η = p−1 > 1 and
η = (1 − p)−1 ∈ (1, 2), respectively, we deduce that

‖∇Q‖
L

2
p
≤ C

√

p−1‖Q‖1−p

H2 ‖∇Q‖p
L2

≤ C
√

p−1‖H‖1−p

L2 ‖∇Q‖p
L2 + C

√

p−1
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≤ C
√

p−1‖H‖1−p

L2 + C
√

p−1, (3.13)

and

‖H‖
L

2
1−p

≤ C
√

(1 − p)−1‖H‖p
H1‖H‖1−p

L2

≤ C
√

(1 − p)−1‖∇H‖p
L2‖H‖1−p

L2 + C
√

(1 − p)−1‖H‖L2

≤ C‖∇H‖p
L2‖H‖1−p

L2 + C‖H‖L2 . (3.14)

Hence, by the Brézis-Gallouet inequality (3.4), estimates (3.12)-(3.14) and the Young’s inequal-
ity, we have

J9 ≤ C|ξ|
√

p−1‖∆u‖L2‖Q‖L∞

×
(

‖∇H‖p
L2‖H‖2(1−p)

L2 + ‖H‖2−p

L2 + ‖∇H‖p
L2‖H‖1−p

L2 + ‖H‖L2

)

≤ ǫ|ξ|‖∆u‖2L2 + ǫ|ξ|‖∇H‖2L2 + C|ξ|p−
1

1−p ‖Q‖
2

1−p

L∞ (‖H‖4L2 + ‖H‖2L2)

+ C|ξ|p−1‖Q‖2L∞(‖H‖4L2 + ‖H‖2L2)

≤ ǫ|ξ|‖∆u‖2L2 + ǫ|ξ|‖∇H‖2L2 + C|ξ|p−
1

1−p [e + ln(e + A)]
1

1−p (‖H‖4L2 + ‖H‖2L2)

+ C|ξ|p−1[e + ln(e + A)](‖H‖4L2 + ‖H‖2L2)

:= ǫ|ξ|‖∆u‖2L2 + ǫ|ξ|‖∇H‖2L2 + J9a + J9b, ∀ p ∈
(

0,
1

2

)

. (3.15)

Since the constant C in the estimate (3.15) is independent of the parameter p ∈ (0, 1/2), then,
in the spirit of [31], we can take the exponent

p = (1 + lnB)−1,

where B is given in (3.11). We note that with this choice p may not be a constant, but it is
always true that p ∈ (0, 1/2). Then it follows from (3.15) that

J9b ≤ C|ξ|(1 + lnB)BA(1 + A), (3.16)

and

J9a ≤ C|ξ|p−
1

1−p [e + ln(e + A)]
1

1−p (‖H‖4L2 + ‖H‖2L2)

≤ C|ξ|[(1 + lnB)B]1+
1

lnBA(1 + A)

≤ C|ξ|(1 + lnB)BA(1 + A), (3.17)

where we have used the following simple fact such that the quantity

[(1 + lnB)B]
1

lnB = [(1 + lnB)elnB]
1

lnB = e(1 + lnB)
1

lnB

is uniformly bounded for all B > e. As a consequence of (3.15)-(3.17), we deduce that

J9 ≤ ǫ|ξ|‖∆u‖2L2 + ǫ|ξ|‖∇H‖2L2 + C|ξ|(1 + lnB)BA(1 + A). (3.18)

Now we take the small constant

ǫ ∈
(

0,
min{ν, λΓ}
2(7 + |ξ|)

)

.

From (3.7) and the above estimates for terms J1,... J12, it follows that

dA
dt

+
ν

2
‖∆u‖2L2 +

λΓ

2
‖∇H‖2L2 ≤ C∗

[

1 + |ξ|(1 + lnB)B
]

A(1 + A), (3.19)

which easily implies the conclusion (3.6). The proof is complete.
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Remark 3.1. If ξ = 0, the inequality (3.6) reduces to

d

dt
A(t) ≤ C∗[e + A(t)]A(t), (3.20)

which is the same as the higher-order energy inequality derived in [2, Lemma 7.1].

4 Global Strong Solutions in 2D

In this section, we show that starting from initial data with higher regularity, the problem
(1.1)-(1.5) admits a unique global strong solution.

4.1 Semi-Galerkin approximation scheme

We can work with a semi-Galerkin scheme in the periodic setting, which is similar to [25] for
the simplified Ericksen-Leslie system for incompressible nematic liquid crystal flow. For the
convenience of the readers, we briefly describe it below. Recalling the classical spectral theorem
for compact operators in Hilbert spaces and standard results for the stationary Stokes system,
we have the following results on eigenfunctions of the Stokes operator S for u. Let {vn}∞n=1 be
the eigenvectors of the Stokes operator S in the torus T

2 with zero mean,

Svn = κnvn, ∇ · vn = 0,

∫

T2

vn(x) dx = 0, in T
2,

vn(x + ei) = vn(x), x ∈ T
2,

where 0 < κ1 ≤ κ2 ≤ ... ր +∞ are eigenvalues. The eigenvectors vn are smooth and the
sequence {vn}∞n=1 forms an orthogonal basis of H as well as V (see e.g., [36]).

Taking an arbitrary but fixed integer N ∈ N, we consider the finite-dimensional space VN =
span{vn}Nn=1 along with the orthogonal projection operators ΠN : H → VN , which are bounded
linear operators with norms bounded by one. For any T > 0, we seek approximations of solutions
to the problem (1.1)-(1.5). The approximation of velocity uN takes the form

uN =
N
∑

i=1

hi(t)vi(x),

which solves
∫

T2

(uN )t · vk dxdt−
∫

T2

(

uN ⊗ uN
)

: ∇vkdx + ν

∫

T2

∇uN : ∇vk dx

= −
∫

T2

(σN + τN ) : ∇vk dx, ∀ t ∈ (0, T ), (4.1)

for any k = 1, ..., N . In (4.1), the approximations of stress tensors are given by

τN
def
= −ξ

(

QN +
1

2
I
)

HN (QN ) − ξHN (QN )
(

QN +
1

2
I
)

+2ξ
(

QN +
1

2
I
)

tr(QNHN (QN )) − L∇QN ⊙∇QN , (4.2)

σN def
= QNHN (QN ) −HN (QN )QN , (4.3)

where

HN (QN )
def
= L∆QN − aQN − cQN tr((QN )2), (4.4)
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On the other hand, the approximate function QN is determined in terms of uN as the unique
solution of the parabolic system

QN
t + uN · ∇QN − S(∇uN , QN ) = ΓHN (QN ), (x, t) ∈ T

2 × R
+, (4.5)

where

SN (∇uN , QN )
def
= (ξDN + ΩN )

(

QN +
1

2
I
)

+
(

QN +
1

2
I
)

(ξDN − ΩN )

− 2ξ
(

QN +
1

2
I
)

tr(QN∇uN ) (4.6)

with

DN =
∇uN + ∇TuN

2
, ΩN =

∇uN −∇TuN

2
.

The initial conditions are given by

uN |t=0 = ΠNu0, QN |t=0 = Q0, x ∈ T
2. (4.7)

4.2 Proof of Theorem 2.1

The proof for the existence of global strong solutions consists of several steps.

Existence of approximate solutions. For any fixed integer N , we have the following
result on local existence of the approximate solution (uN , QN ):

Proposition 4.1. Suppose u0 ∈ V, Q0 ∈ H2(T2, S
(2)
0 ). For any N ∈ N, there exists TN > 0

depending on ‖u0‖H1 , ‖Q0‖H2 and N such that the approximate problem (4.1)-(4.7) admits a
solution (uN , QN ) satisfying

uN ∈ L∞(0, TN ;V) ∩ L2(0, TN ;H2(T2,R2)) ∩H1(0, TN ;H),

QN ∈ L∞(0, TN ;H2(T2, S
(2)
0 )) ∩ L2(0, TN ;H3(T2, S

(2)
0 )) ∩H1(0, TN ;H1(T2, S

(2)
0 )).

Proposition 4.1 can be proved by a classical Schauder’s argument (see e.g., [25]). Indeed,
given a vector ũ ∈ C([0, T ];VN ), then we find a Q = Q[ũ] by solving the equation (4.5) with uN

replaced by ũ. Inserting Q[ũ] back into the equation (4.1), then the solution u to the resulting
ODE system defines a mapping T : ũ 7→ T [ũ] = u. It is standard to show that T admits a fixed
point by means of the classical Schauder’s argument on (0, TN ), with certain TN > 0 depending
on ‖u0‖H1 , ‖Q0‖H2 and N . We leave the detailed proof to interested readers.

Remark 4.1. Since we are working in the periodic domain T
2, by the classical regularity theory

for parabolic equations (cf. [23]) and a bootstrap argument, we can see that (uN , QN ) is C∞ in
the interior of T2 × (0, TN ).

In order to prove the existence of global strong solutions, we need to derive some uniform esti-
mates for approximate solutions (uN , QN ) that are independent of the approximation parameter
N as well as the time t.

Lower-order estimates. A similar argument like in [1] yields that the approximate solu-
tions satisfy the following energy identity

d

dt
EN (t) = −ν

∫

T2

|∇uN |2 dx− λΓ

∫

T2

|HN (QN )|2 dx ≤ 0, ∀ t ∈ [0, TN ). (4.8)

where

EN (t)
def
=

1

2

∫

T2

|uN |2(x, t) dx + λF(QN (t)).
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As in Lemma 2.5, the energy identity (4.8) provides uniform estimates for uN and QN such that

‖uN (t)‖L2 + ‖QN (t)‖H1 ≤ C, ∀ t ∈ [0, TN ), (4.9)
∫ t

0

∫

Td

|∇uN (τ)|2 + |∆QN (τ)|2 dxdτ < C(1 + t), ∀ t ∈ [0, TN ), (4.10)

where the constant C > 0 depends on ‖u0‖, ‖Q0‖H1 , L, λ, ν,Γ, a, c and T
2, but it is independent

of the parameter N and the time t.

Higher-order estimates. It is easy to see that the calculations we made in Section 3
for smooth solutions (u,Q) to the problem (1.1)-(1.5) still hold for the approximate solutions
(uN , QN ). Thus, for (uN , QN ), we introduce the quantity

AN (t) = ‖∇uN (t)‖2L2 + λ‖HN (QN (t))‖2L2 . (4.11)

In particular, we infer from (4.8) that

∫ t

0

∫

T2

ν|∇uN (τ)|2 + λΓ|HN (QN (τ))|2 dxdτ ≤ K, ∀ t ∈ [0, TN ), (4.12)

where K > 0 is a constant that only depends on ‖u0‖L2 , ‖Q0‖H1 , L, λ, a, c,T2. Then we have

∫ t

0
AN (τ) dτ ≤ K

min{ν,Γ} , ∀ t ∈ [0, TN ). (4.13)

On the other hand, using the lower-order estimate (4.9), for any ξ ∈ R, we can get the
following higher-order energy inequality for all t ∈ [0, TN ):

d

dt
AN (t) +

ν

2
‖∆uN‖2L2 +

λΓ

2
‖∇HN (QN )‖2L2

≤ C∗

[

1 + |ξ|
[

1 + ln(e + ln(e + AN (t)))
]

(e + ln(e + AN (t)))
]

[e + AN (t)]AN (t), (4.14)

where C∗ > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖L2 , ‖Q0‖H1 , ξ, but is inde-
pendent of N and t.

Now we consider two cases.
Case 1. If ξ = 0, then we infer from (4.14) that

d

dt
ln[e + AN (t)] ≤ C∗AN (t),

which implies

AN (t) ≤ [e + AN (0)]eC∗
∫ t

0
AN (τ)dτ ≤ [e + AN (0)]e

C∗K
min{ν,Γ} ≤ C, ∀ t ∈ [0, TN ),

where C > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖V, ‖Q0‖H2 .
Case 2. If ξ 6= 0, then we deduce from (4.14) that

d

dt
lnZN (t) ≤ C∗(1 + |ξ|)AN (t), (4.15)

where
ZN (t) = 1 + ln[1 + ln[e + AN (t)]].

Integrating (4.15) with respect to time and using (4.13), we have

lnZN (t) ≤ lnZN (0) + C∗(1 + |ξ|)
∫ t

0
AN (τ)dτ
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≤ lnZN (0) +
(C∗)2K(1 + |ξ|)

min{ν,Γ} , ∀ t ∈ [0, TN ),

which again yields that

AN (t) ≤ C, ∀ t ∈ [0, TN ). (4.16)

For both cases, after integrating the differential inequality (4.14) with respect to time, we
obtain that

∫ t

0

(

‖∆uN (τ)‖2L2 + ‖∇HN (QN (τ))‖2L2

)

dτ ≤ C, ∀ t ∈ [0, TN ).

As a consequence, we have the following uniform higher-order estimates:

‖uN (t)‖H1 + ‖QN (t)‖H2 ≤ C, ∀ t ∈ [0, TN ), (4.17)
∫ t

0

∫

T2

|∆uN (τ)|2 + |∇∆QN(τ)|2 dxdτ < C(1 + t), ∀ t ∈ [0, TN ), (4.18)

where the constant C > 0 depends on ‖u0‖H1 , ‖Q0‖H2 , L, λ, ν,Γ, a, c, ξ and T
2, but it is inde-

pendent of the parameter N and the time t.

Passage to the limit N → ∞. First, we can deduce from the above uniform-in-time lower-
order and higher-order estimates (4.9), (4.17) that the approximate solutions (uN , QN ) can not
blow up in finite time. Thus, for any N ∈ N, it holds TN = +∞ such that every approximate
solution (uN , QN ) can be extended to the time interval [0, T ] for arbitrary T > 0.

Second, since the uniform estimates (4.9), (4.10), (4.17), (4.18) are also independent of the
approximation parameter N , we infer from the equations (4.1), (4.5) and the Hölder inequality
that for any T > 0 and N ∈ N,

uN ∈ L∞(0, T ;V) ∩ L2(0, T ;H2(T2,R2)) ∩H1(0, T ;H),

QN ∈ L∞(0, T ;H2(T2, S
(2)
0 )) ∩ L2(0, T ;H3(T2, S

(2)
0 )) ∩H1(0, T ;H1(T2, S

(2)
0 )).

The above uniform estimates together with standard weak compactness results and the Aubin-
Lions compactness lemma (see e.g., [35, Cor. 4, Sec. 8]) enable us to pass to the limit as N → ∞
(up to a subsequence) to obtain a limit pair (u,Q), which turns out to be a global strong solution
to the original Navier-Stokes and Q-tensor system (1.1)-(1.5). Since the argument is standard
(cf. [2]), we omit the details here.

Uniqueness. The uniqueness of strong solutions is a direct consequence of [31, Section 5],
where a weak-strong uniqueness result is given in R

2.
Let (ui, Qi), i = 1, 2 be two global strong solutions of the problem (1.1)-(1.5) subject to

initial data (ui0, Qi0), i = 1, 2, respectively. Since we are dealing with the periodic domain,
using the same argument as in [31], we can obtain the following estimates (however, without
any smallness assumption on ξ):

d

dt

(

‖u1 − u2‖2L2 + λL‖∇(Q1 −Q2)‖2L2 + λ‖Q1 −Q2‖2L2

)

+ ν‖∇(u1 − u2)‖2L2 + λΓL2‖∆(Q1 −Q2)‖2L2

≤ h(t)
(

‖u1 − u2‖2L2 + λL‖∇(Q1 −Q2)‖2L2 + λ‖Q1 −Q2‖2L2

)

, (4.19)

where h(t) ∈ L1(0, T ) is a time-integrable function. As a consequence, we have

‖(u1 − u2)(t)‖2L2 + ‖(Q1 −Q2)(t)‖2H1
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+

∫ t

0
(‖∇(u1 − u2)(s)‖2L2 + ‖∆(Q1 −Q2)(s)‖2L2)ds

≤ Ce
∫ t
0 h(s)ds

(

‖u01 − u02‖2L2 + ‖Q01 −Q02‖2H1

)

, ∀ t ∈ (0, T ). (4.20)

Therefore, the global strong solution to the problem (1.1)-(1.5) is unique.

The proof of Theorem 2.1 is complete.

Remark 4.2. It seems impossible to prove any continuous dependence results on initial data
for the strong solutions obtained above in the space V ×H2. Nevertheless, the estimate (4.20)
implies that for any (u0, Q0) ∈ V×H2, we are able to define a closed semigroup Σ(t) for t ≥ 0
(in the sense of [33]) by setting (u(t), Q(t)) = Σ(t)(u0, Q0), where (u,Q) is the global strong
solution to the problem (1.1)-(1.5).

5 Long-time Behavior

In this section we investigate the long-time behavior of the global strong solution to problem
(1.1)-(1.5) established in Theorem 2.1. The related study consists of two steps. First, we prove
that the asymptotic limit point of the global strong solution (u(t), Q(t)) as t tends to infinity is
unique. Then we provide an uniform estimate of the convergence rate.

5.1 Characterization of ω-limit set

For any initial datum (u0, Q0) ∈ V ×H2
(

T
2, S

(2)
0

)

, we denote its ω-limit set by

ω(u0, Q0)
def
=
{

(u∞, Q∞)| ∃ {tn} ր ∞ : u(tn) → u∞ in L2, Q(tn) → Q∞ in H1 as n → ∞
}

.

On the other hand, we denote the set of solutions to the elliptic problem

S =
{

Q∗ : L∆Q∗ − aQ∗ − c tr(Q2
∗)Q∗ = 0, Q∗ ∈ S

(2)
0 and Q∗(x + ei) = Q∗(x) in T

2
}

.

Remark 5.1. Since the free energy F(Q) given by (1.6) is bounded from below, using the
classical variational method and the elliptic regularity theorem, it is easy to see that the set S
is non-empty. Besides, every Q∗ ∈ S is a critical point of F(Q).

Next, by virtue of the properties of the ω-limit set ω(u0, Q0) as well as the higher-order
energy term A(t), we have

Lemma 5.1. Suppose that the assumptions in Theorem 2.1 are satisfied. For any initial datum

(u0, Q0) ∈ V×H2
(

T
2, S

(2)
0

)

, we have ω(u0, Q0) is a nonempty bounded subset in V×H2
(

T
2, S

(2)
0

)

which satisfies

ω(u0, Q0) ∈
{

(0, Q∗) : Q∗ ∈ S
}

and the total energy E(t) is a constant on ω(u0, Q0). Besides, the unique global strong solution
(u,Q) has the following decay property:

lim
t→+∞

(

‖u(t)‖H1 + ‖H(Q(t))‖L2

)

= 0. (5.1)

Proof. Since the global strong solution (u,Q) obtained in Theorem 2.1 satisfies the higher-order
energy inequality (3.6), using a similar argument as in Section 4.2, we get

A(t) ≤ C, ∀ t ≥ 0, (5.2)
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where C > 0 depends on ‖u0‖H1 , ‖Q0‖H2 , L, λ, ν,Γ, a, c, ξ and T
2. As a consequence, it follows

from (3.6) and (5.2) that
d

dt
A(t) ≤ C, ∀ t ≥ 0. (5.3)

On the other hand, the energy identity (2.7) for (u,Q) yields that

∫ +∞

0

∫

T2

ν|∇u|2 + λΓ|H(Q)|2 dxdt ≤ K0, (5.4)

where K0 > 0 is a constant that only depends on ‖u0‖L2 , ‖Q0‖H1 , L, λ, a, c,T2. This implies
that

∫ +∞

0 A(t) dt < +∞, which together with (5.3) leads to the conclusion (5.1).
Since the total energy E(t) is non-increasing in time and bounded from below by a generic

constant, there exists a constant F∞ ∈ R such that

lim
t→+∞

E(t) = F∞. (5.5)

By the definition of ω(u0, Q0), it is easy to see that E(t) is equal to the constant F∞ on the set
ω(u0, Q0). The proof is complete.

5.2 Convergence to equilibrium

In general, we cannot directly conclude that each global strong solution of system (1.1)-(1.5)
converges to a single equilibrium as t → +∞ because the set of steady states S for Q-tensors
can have a complicated structure. Besides, since we are working in the periodic torus T

2, we
may expect the dimension of the set S to be at least 2. However, we may establish a gradient
inequality of  Lojasiewicz-Simon type for this matrix valued function Q and apply Simon’s idea
(see [15,34]) to accomplish our goal.

To begin with, using (2.5) and (5.2), we have the following uniform-in-time estimates

‖u(t)‖H1 + ‖Q(t)‖H2 ≤ C, ∀ t ≥ 0. (5.6)

Then, from Lemma 5.1 we infer that there exists an increasing unbounded sequence {tn}n∈N
and a matrix function Q∞ ∈ H2

(

T
2, S

(2)
0

)

, such that

lim
tn→+∞

∥

∥Q(tn) −Q∞

∥

∥

H1 = 0, (5.7)

where (0, Q∞) ∈ ω(u0, Q0).
We now proceed to prove the convergence of Q(t) to Q∞ for all time as t → +∞, which

implies that the ω-limit set ω(u0, Q0) is actually a singleton. For this purpose, the following
 Lojaciewicz-Simon type inequality plays an important role.

Lemma 5.2. Let Q∗ ∈ H1(T2, S
(2)
0 ) be a critical point of the energy functional F(Q). Then there

exist some constants θ ∈ (0, 12) and β > 0 depending on Q∗, such that for any Q ∈ H1(T2, S
(2)
0 )

satisfying ‖Q−Q∗‖H1 < β, we have

∥

∥L∆Q− aQ− c tr(Q2)Q
∥

∥

(H1)′
≥ |F(Q) −F(Q∗)|1−θ. (5.8)

Here, (H1(T2, S
(2)
0 ))′ is the dual space of H1(T2, S

(2)
0 ).

Proof. If Q ∈ S
(2)
0 , then it can be written into the following form

Q(x) =

(

p(x) q(x)
q(x) −p(x)

)

, (5.9)
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where p, q are two scalar functions defined on T
2. Now we introduce the vector Q̃ : T2 → R

2

defined by

Q̃ =

(

p
q

)

.

By direct computations, we see that

F̃(Q̃) = F̃(p, q)
def
= F(Q) =

∫

T2

[

L(|∇p|2 + |∇q|2) + a(p2 + q2) + c(p2 + q2)2
]

dx.

Then the corresponding Fréchet derivative of F̃ with respect to Q̃ in L2 is given by

δF̃
δQ̃

=

(

δF̃
δp
δF̃
δq

)

= −2

(

L∆p− ap− 2c(p2 + q2)p
L∆q − aq − 2c(p2 + q2)q

)

Let Q̃∗ =

(

p∗
q∗

)

be a critical point of F(Q̃). Correspondingly, we can easily verify that

Q∗ =

(

p∗ q∗
q∗ −p∗

)

is a critical point of F(Q). Then, applying the  Lojaciewisz-Simon inequality

for vector valued functions derived in [21], we conclude that there exist some constants θ ∈ (0, 12)

and β > 0 depending on Q̃∗ (and thus Q∗), such that the following inequality holds

∥

∥

∥

δF̃
δQ̃

∥

∥

∥

(H1(T2))′
≥
∣

∣F̃(Q̃) − F̃(Q̃∗)
∣

∣

1−θ
, (5.10)

for any Q̃ ∈ H1(T2,R2), provided that ‖Q̃ − Q̃∗‖H1 < β
2 . Therefore, our conclusion (5.8) is an

immediate consequence of the inequality (5.10). The proof is complete.

Remark 5.2. Lemma 5.2 can be considered as an extended version for matrix valued functions
of Simon’s result in [34] for scalar functions. In the present case, there are two constraints (i.e.,

matrix symmetry and trace free) imposed on Q ∈ S
(2)
0 , which might bring extra difficulties in

the proof. However, due to the special structure of the Q-tensor in two dimensional case (5.9),
the possible difficulties can be avoided by reducing the problem to the vector case that has been
treated in the literature.

The convergence of the order parameter Q(t) can be proved by adapting the argument in [15]
for parabolic equations, which relies on the following analysis lemma (see e.g., [15, Lemma 7.1])

Lemma 5.3. Let θ ∈ (0, 12 ). Assume that Z(t) ≥ 0 be a measurable function on (0,+∞),
Z(t) ∈ L2(0,+∞) and there exist C > 0 and t0 ≥ 0 such that

∫ ∞

t

Z2(s)ds ≤ CZ(t)
1

1−θ , for a.e. t ≥ t0.

Then Z(t) ∈ L1(t0,+∞).

To this end, by Lemma 5.2, for each element (0, Q∞) ∈ ω(u0, Q0), there exist some constants
βQ∞ > 0 and θQ∞ ∈ (0, 12 ) such that the inequality (5.8) holds for

Q ∈ BβQ∞
(Q∞) :=

{

Q ∈ H1(T2, S
(2)
0 ), ‖Q−Q∞‖H1 < βQ∞

}

.

The union of balls {0} × {BβQ∞
(Q∞) : (0, Q∞) ∈ ω(u0, Q0)} forms an open cover of ω(u0, Q0).

Due to the compactness of ω(u0, Q0) in H1 (see Lemma 5.1), there exists a finite sub-cover
{0} × {Bβi

(Qi
∞) : i = 1, 2, ...,m} of ω(u0, Q0) in H1, where the constants βi, θi corresponding
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to the limit point Qi
∞ (and thus a critical point of F(Q)) in Lemma 5.2 are indexed by i. From

the definition of ω(u0, Q0), there exists a sufficient large t0 >> 1 such that the global strong
solution Q(t) satisfies

Q(t) ∈ U :=
m
⋃

i=1

Bβi
(Qi

∞), for t ≥ t0.

Taking θ = minm
i=1{θi} ∈ (0, 12), using Lemma 5.2 and convergence of the total energy E(t) (see

(5.5)), we deduce, for all t ≥ t0,

∣

∣F(Q(t)) −F∞

∣

∣

1−θ ≤
∥

∥L∆Q(t) − aQ(t) − c tr(Q(t)2)Q(t)
∥

∥

(H1)′

≤ ‖H(Q(t))‖L2 . (5.11)

Therefore, we have

(

E(t) −F∞

)1−θ ≤
(

1

2
‖u(t)‖2L2 +

∣

∣F(Q(t)) −F(Q∞)
∣

∣

)1−θ

≤
(1

2
‖u‖2L2 + ‖H(Q(t))‖

1
1−θ

L2

)1−θ

≤ C‖u(t)‖2(1−θ)
L2 + C‖H(Q(t))‖L2

≤ C(‖u(t)‖L2 + ‖H(Q(t))‖L2)

≤ CA 1
2 (t), ∀ t ≥ t0, (5.12)

in which we use the fact 0 < θ < 1
2 and the uniform estimate (5.6).

On the other hand, it follows from the energy inequality (2.4) that

E(t) −F∞ ≥ min{ν,Γ}
∫ ∞

t

A(s)ds, ∀ t ≥ t0. (5.13)

As a consequence,
∫ ∞

t

A(s)ds ≤ CA(t)
1

2(1−θ) , ∀ t ≥ t0. (5.14)

Taking Z(t) = A(t)
1
2 , from (5.14) and Lemma 5.3 we conclude that

∫ +∞

t0

(‖∇u(t)‖L2 + ‖H(Q(t))‖L2)dt ≤
∫ +∞

t0

A(t)
1
2dt < +∞. (5.15)

Then, by using the equation (1.3) for Q, the uniform bounds on ‖u(t)‖H1 , ‖Q(t)‖H2 and the
Sobolev embedding theorem (d = 2), we have

∫ ∞

t0

‖Qt(t)‖L2 dt ≤
∫ ∞

t0

(

‖u · ∇Q‖L2 + ‖S(∇u,Q)‖L2 + Γ‖H(Q)‖L2

)

dt

≤ C

∫ ∞

t0

[

‖u‖L4‖∇Q‖L4 + ‖∇u‖L2

(

‖Q‖2L∞ + 1
)

+ ‖H(Q)‖L2

]

dτ

≤ C

∫ ∞

t0

(

‖∇u(t)‖L2 + ‖H(Q)(t)‖L2

)

dt

< +∞, (5.16)

which indicates that Q(t) converges in L2(T2) for all t → +∞. Combining the sequential
convergence result (5.7), it is easy to check that

lim
t→+∞

‖Q(t) −Q∞‖L2 = 0. (5.17)
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Next, by the uniform bound on ‖Q(t)‖H2 (see (5.6)) and (5.17), from the standard interpolation
we obtain that

lim
t→+∞

‖Q(t) −Q∞‖H1 = 0. (5.18)

Finally, observing the following fact

‖∆Q− ∆Q∞‖ ≤ 1

L
‖H(Q) −H(Q∞)‖ +

1

L

∥

∥aQ + c tr(Q2)Q− aQ∞ − c tr(Q2
∞)Q∞

∥

∥

≤ 1

L
‖H(Q)‖ + C‖Q−Q∞‖H1 ,

we further deduce from Lemma 5.1 and (5.18) that

lim
t→+∞

‖Q(t) −Q∞‖H2 = 0. (5.19)

5.3 Convergence rate

In what follows, we derive uniform estimates on the convergence rate. First, the rate on lower-
order norm ‖Q(t) − Q∞‖L2 follows from the  Lojasiewicz-Simon approach (cf. [18]). We infer
from the basic energy law (2.4), (5.5) and (5.12) that

d

dt
(E(t) −F∞)θ + C(‖∇u‖L2 + ‖H(Q)‖L2) ≤ 0, ∀ t ≥ t0, (5.20)

and
d

dt
(E(t) −F∞) + C(E(t) −F∞)2(1−θ) ≤ 0, ∀ t ≥ t0. (5.21)

As a consequence of (5.21), we can deduce the rate on energy decay:

0 ≤ E(t) −F∞ ≤ C(1 + t)−
1

1−2θ , ∀ t ≥ t0.

Then similar to (5.16), on (t,+∞), where t ≥ t0, it follows from (5.20) that

∫ ∞

t

‖Qt(s)‖L2 ds ≤ C

∫ ∞

t

(

‖∇u(s)‖L2 + ‖H(Q)(s)‖L2

)

ds

≤ (E(t) −F∞)θ

≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ t0, (5.22)

which further implies

‖Q(t) −Q∞‖ ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.23)

Higher-order estimates on the convergence rate can be achieved by constructing proper dif-
ferential inequalities via a suitable energy method (see e.g., [41] for the simplified liquid crystal
system). The key idea relies on the use of the basic energy law (2.4) and the higher-order energy
inequality (3.6).

It follows from Lemma 5.1 that the limit system of problem (1.1)–(1.5) takes the following
form

∇P∞ = −λ∇ · (∇Q∞ ⊙∇Q∞), x ∈ T
2, (5.24)

H(Q∞) = 0, x ∈ T
2, (5.25)

subject to periodic boundary conditions. Subtracting the stationary problem (5.24)–(5.25) from
the evolution problem (1.1)-(1.5), then testing the velocity equation by u and the Q-equation
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by −λ(H(Q) − H(Q∞)), respectively, adding the results together and integrating over T
2, we

can infer from (2.4) that

d

dt

(

1

2
‖u‖2L2 +

λL

2
‖∇Q−∇Q∞‖2L2 + λ

∫

T2

[fB(Q) − fB(Q∞) − f ′
B(Q∞)(Q−Q∞)]dx

)

+ν‖∇u‖2L2 + λΓ‖H(Q)‖2L2

= −λL

∫

T2

ui∇j(∇i(Q∞)kl∇j(Q∞)kl)dx

= −λ

∫

T2

ui∇i(Q∞)kl(L∆(Q∞)kl − [f ′
B(Q∞)]kl)dx− λ

∫

T 2

ui∇i(Q∞)kl[f
′
B(Q∞)]kldx

−λL

2

∫

T2

ui∇i|Q∞|2dx

= 0, (5.26)

where f ′
B(Q) = aQ+ cQ tr(Q2). On the other hand, testing the equation (1.3) by Q−Q∞, from

the uniform estimate (5.6), the Hölder inequality and the Sobolev embedding theorem (d = 2)
we conclude that

1

2

d

dt
‖Q−Q∞‖2L2 + ΓL‖∇(Q−Q∞)‖2L2

=

∫

T2

[−u · ∇Q + S(∇u,Q)] : (Q−Q∞)dx

− Γ

∫

T2

(f ′
B(Q) − f ′

B(Q∞)) : (Q−Q∞)dx

≤ C‖u‖L4‖∇Q‖L4‖Q−Q∞‖L2 + C‖u‖L2(‖Q‖2L∞ + 1)‖Q −Q∞‖L2

+ C

∫

T2

∫ 1

0
f ′′
B(sQ + (1 − s)Q∞)(Q−Q∞) : (Q−Q∞)dsdx

≤ ǫ1‖∇u‖2L2 + C1‖Q−Q∞‖2L2 . (5.27)

Multiplying (5.27) by µ > 0 and adding the resultant to (5.26), we get

d

dt
Y(t) + (ν − µǫ1) ‖∇u‖2L2 + λΓ‖H(Q)‖2L2 + µΓL‖∇(Q−Q∞)‖2L2

≤ C1µ‖Q−Q∞‖2L2 , (5.28)

where

Y(t) =
1

2
‖u(t)‖2L2 +

λL

2
‖∇Q(t) −∇Q∞‖2L2 +

µ

2
‖Q(t) −Q∞‖2L2

+ λ

∫

T2

[fB(Q(t)) − fB(Q∞) − f ′
B(Q∞)(Q(t) −Q∞)]dx, ∀ t ≥ 0. (5.29)

It follows from the Newton-Leibinz formula and (5.6) that

∣

∣

∣

∣

∫

T2

[fB(Q) − fB(Q∞) − f ′
B(Q∞) : (Q−Q∞)]dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

T2

∫ 1

0
s

∫ 1

0
f ′′
B(ρ(sQ + (1 − s)Q∞) + (1 − ρ)Q∞)(Q−Q∞) : (Q−Q∞)dρdsdx

∣

∣

∣

∣

≤ ‖f ′′
B‖L∞‖Q−Q∞‖2L2

≤ C2‖Q−Q∞‖2L2 . (5.30)
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Thus we can choose µ ≥ 2 + 2λC2 > 0 to see that there exists a constant k1 > k2 > 0,

k1(‖u(t)‖2L2 + ‖Q(t) −Q∞‖2H1) ≥ Y(t) ≥ k2(‖u(t)‖2L2 + ‖Q(t) −Q∞‖2H1). (5.31)

We now take ǫ1 = ν
2µ in (5.28). It follows from (5.31) that there exist some constants C3, C4 > 0

such that
d

dt
Y(t) + C3[Y(t) + A(t)] ≤ C4‖Q(t) −Q∞‖2L2 , (5.32)

which together with (5.23) yields

Y(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0. (5.33)

In view of (5.31), we thus obtain

‖u(t)‖L2 + ‖Q(t) −Q∞‖H1 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.34)

At last, from the higher-order energy inequality (3.6) and the uniform estimate (5.6), it
follows that

d

dt
A(t) ≤ C5A(t). (5.35)

Multiplying (5.35) with α = C3
2C5

and adding the resultant with (5.32), we deduce

d

dt
[Y(t) + αA(t)] + C6[Y(t) + αA(t)] ≤ C(1 + t)−

2θ
1−2θ . (5.36)

As a consequence,

Y(t) + αA(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0,

which together with the fact Y(t) ≥ 0 (see (5.31)) yields

A(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0. (5.37)

Then from the definition of A(t) and estimates (5.34), (5.37), we can see that

‖∇u(t)‖L2 + ‖∆Q(t) − ∆Q∞‖L2 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.38)

Collecting the estimates (5.34) and (5.38), we arrive at the conclusion (2.16).

The proof of Theorem 2.2 is complete.

6 Appendix

The following calculations hold for both two and three dimensional cases.

Lemma 6.1. Suppose d = 2, 3. Let (u,Q) be a smooth solution to the problem (1.1)-(1.5).
Define the quantity

A(t) = ‖∇u‖2L2 + λ‖H(Q)‖2L2 . (6.1)

Then we have the following equality

1

2

d

dt
A(t) + ν‖∆u‖2L2 + λΓ‖∇H‖2L2

=

∫

Td

(

u · ∇u,∆u
)

dx− 2λ

∫

Td

∇luk∇l∇kQijHijdx +
λ

L

∫

Td

uk∇kFijHijdx
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−2λ

∫

Td

∇jui(∇lQkj∇lHik −∇lQik∇lHkj)dx− λ

∫

Td

∇jui(∆QkjHik − ∆QikHkj)dx

+λξ

∫

Td

(

D∆Q + ∆QD) : Hdx + 4λξ

∫

Td

∇lDik∇lQkjHij dx

−2λξ

∫

Td

∆
(

QklQji

)

∇juiHkl dx− 4λξ

∫

Td

∇m

(

QklQji

)

∇m∇juiHkl dx

−λ

∫

Td

∂F (Q)

∂Q
(u · ∇Q) : Hdx + λ

∫

Td

∂F (Q)

∂Q
S(∇u,Q) : Hdx

+λΓ

∫

Td

∂F (Q)

∂Q
H : Hdx

:=
12
∑

i=1

Ji, (6.2)

where

F (Q) = −aQ + b

(

Q2 − 1

d
tr(Q2)I

)

− cQ tr(Q2) = −∂fB(Q)

∂Q
− b

d
tr(Q2)I. (6.3)

Proof. Using the equations (1.1), (1.3) and integration by parts, we have

1

2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2

=

∫

Td

(u · ∇u,∆u) dx− λ

∫

Td

(∇ · σ,∆u) dx − λ

∫

Td

(∇ · τ,∆u) dx

:= I1 + I2 + I3, (6.4)

where

I2 = −λ

∫

Td

∇j(QikHkj −HikQkj)∆ui dx, (6.5)

and

I3 = λL

∫

Td

∇j(∇iQkl∇jQkl)∆ui dx + λξ

∫

Td

∇j

(

QikHkj + HikQkj +
2

d
Hij

)

∆ui dx

− 2λξ

∫

Td

∇j

(

QklHklQij +
1

d
QklHklδij

)

∆ui dx

:= I3a + I3b + I3c. (6.6)

As in [2, A.3], using the incompressibility condition ∇·u = 0 , the definition of F (Q) (see (6.3))
and the fact ∇tr(Q) = 0, we get

I3a = λ

∫

Td

∇iQkl(Hkl − Fkl)∆ui dx + λL

∫

Td

∇j∇iQkl∇jQkl∆ui dx

= λ

∫

Td

∇iQklHkl∆ui dx + λ

∫

Td

∇fB(Q) · ∆u dx +
λb

d

∫

Td

tr(Q2)∇tr(Q) · ∆udx

+
λL

2

∫

Td

(∇|∇Q|2) · ∆u dx

= λ

∫

Td

∇iQklHkl∆ui dx. (6.7)

Using the symmetry of Q and H(Q), and the basic algebra for arbitrary matrices A,B,C ∈ R
d×d

(AB) : C = B : (ATC) = A : (CBT ), (6.8)
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we have

I3b = −2λξ

d

∫

Td

Hij∇j∆ui dx− λξ

∫

Td

(QikHkj + HikQkj)∇j∆ui dx

= −2λξ

d

∫

Td

Hij∆Dij dx− λξ

∫

Td

QikHkj∆Dij dx

−λξ

∫

Td

HikQkj∆Dij dx

= −λξ

∫

Td

(

∆DQ + Q∆D +
2

d
∆D

)

: H dx. (6.9)

By the incompressibility condition ∇ · u = 0, it holds

I3c = −2λξ

∫

Td

∇j

(

QklHklQij)∆uidx− 2λξ

d

∫

Td

∇i(QklHkl)∆ui dx

= −2λξ

∫

Td

∇j

(

QklHklQij)∆uidx. (6.10)

On the other hand, we have

λ

2

d

dt
‖H(Q)‖2L2 + λΓ‖∇H(Q)‖2L2

= λL

∫

Td

(∆Qt : H(Q)) dx + λ

∫

Td

∂tF (Q) : H(Q) dx + λΓ‖∇H(Q)‖2L2

= λL

∫

Td

(Qt : ∆H(Q)) dx + λ

∫

Td

∂tF (Q) : H(Q) dx + λΓ‖∇H(Q)‖2L2

= −λ

∫

Td

uk∇kQij∆Hijdx + λ

∫

Td

S(∇u,Q) : ∆Hdx + λ

∫

Td

∂tF (Q) : H(Q) dx

:= I4 + I5 + I6. (6.11)

Then by the incompressibility condition ∇ · u = 0 and (1.3) we have

I4 = −λ

∫

Td

uk∇kQij∆Hijdx

= λ

∫

Td

(∇luk∇kQij + uk∇l∇kQij)∇lHijdx

= −λ

∫

T d

∆uk∇kQijHijdx− 2λ

∫

Td

∇luk∇l∇kQijHijdx

−λ

L

∫

Td

uk∇k(Hij − Fij)Hijdx

= −λ

∫

Td

∆uk∇kQijHijdx− 2λ

∫

Td

∇luk∇l∇kQijHijdx

+
λ

L

∫

Td

uk∇kFijHijdx

:= I4a + I4b + I4c. (6.12)

I5 = λ

∫

Td

(ξD + Ω)
(

Q +
1

d
I
)

+
(

Q +
1

d
I
)

(ξD − Ω) − 2ξ
(

Q +
1

d
I
)

tr(Q∇u) : ∆Hdx

= λ

∫

Td

(ΩQ−QΩ) : ∆Hdx + λξ

∫

Td

(

DQ + QD +
2

d
D
)

: ∆Hdx

−2λξ

∫

Td

tr(Q∇u)
(

Q +
1

d
I
)

: ∆Hdx
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:= I5a + I5b + I5c.

Using the symmetry properties of Q, H and (6.8), after integration by parts, it is easy to check
that

I5a = λ

∫

Td

(ΩQ−QΩ) : ∆Hdx

=
λ

2

∫

Td

(∇uQ−∇TuQ−Q∇u + Q∇Tu) : ∆Hdx

= λ

∫

Td

∇u : (∆HQ−Q∆H)dx

= λ

∫

Td

∆(∇juiQkj)Hik dx− λ

∫

Td

∆(∇juiQik)Hkj dx

= λ

∫

Td

∆∇jui(QkjHik −QikHkj)dx + 2λ

∫

Td

∇l∇jui(∇lQkjHik −∇lQikHkj)dx

+λ

∫

Td

∇jui(∆QkjHik − ∆QikHkj)dx

= λ

∫

Td

∇j(QikHkj −QkjHik)∆uidx− 2λ

∫

Td

∇jui(∇lQkj∇lHik −∇lQik∇lHkj)dx

−λ

∫

Td

∇jui(∆QkjHik − ∆QikHkj)dx. (6.13)

Moreover, using integration by parts, we have

I5b = λξ

∫

Td

∆
(

DQ + QD +
2

d
D
)

: Hdx

= λξ

∫

Td

(

∆DQ + Q∆D +
2

d
∆D

)

: H dx

+ λξ

∫

Td

(

D∆Q + ∆QD) : Hdx + 4λξ

∫

Td

∇lDik∇lQkjHij dx. (6.14)

Next, for I5c, using the property tr(H(Q)) = 0 and after integration by parts, we obtain that

I5c = −2λξ

∫

Td

∆
[

tr(Q∇u)Q
]

: H dx

= −2λξ

∫

Td

∆
(

QklQji∇jui
)

Hkl dx

= −2λξ

∫

Td

QklQji∇j∆uiHkl dx− 2λξ

∫

Td

∆
(

QklQji

)

∇juiHkl dx

− 4λξ

∫

Td

∇m

(

QklQji

)

∇m∇juiHkl dx

= 2λξ

∫

Td

∇j

(

QklHklQji

)

∆ui dx− 2λξ

∫

Td

∆
(

QklQji

)

∇juiHkl dx

− 4λξ

∫

Td

∇m

(

QklQji

)

∇m∇juiHkl dx. (6.15)

Finally, using the equation (1.3), the term I6 can be expressed as follows

I6 = λ

∫

Td

∂F (Q)

∂Q
∂tQ : H(Q) dx

= λ

∫

Td

∂F (Q)

∂Q
(−u · ∇Q + S(∇u,Q) + ΓH(Q)) : H(Q)dx.

In summary, we find the following special cancellations between those highly nonlinear terms:
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(a) the term I2 (i.e., (6.5)) cancels with the first term in (6.13),

(b) the term I3a (i.e., (6.7)) cancels with the term I4a in (6.12),

(c) the term I3b (i.e., (6.9)) cancels with the first term in (6.14),

(d) the term I3c (i.e., (6.10)) cancels with the first term in (6.15).

Taking into account the above cancellation relations, we can easily conclude (6.2).

Remark 6.1. We note that in the above cancellations, the relation (a) is the same as for the
simpler case with ξ = 0 (see e.g., [2]). However, for the general case ξ 6= 0, we have found extra
relations (b)-(d) between higher-order nonlinear terms of the full Navier-Stokes and Q-tensor
system (1.1)-(1.5).
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