
ar
X

iv
:1

50
1.

00
56

3v
2

 [
cs

.D
S]

 2
2

Fe
b

20
15

Spotting Trees with Few Leaves∗

Andreas Björklund†, Vikram Kamat‡, Lukasz Kowalik§, Meirav Zehavi¶

Abstract

We show two results related to the Hamiltonicity and k-Path algorithms in undi-
rected graphs by Björklund [FOCS’10], and Björklund et al., [arXiv’10]. First, we demon-
strate that the technique used can be generalized to finding some k-vertex tree with l leaves
in an n-vertex undirected graph in O∗(1.657k2l/2) time. It can be applied as a subroutine
to solve the k-Internal Spanning Tree (k-IST) problem in O∗(min(3.455k, 1.946n))
time using polynomial space, improving upon previous algorithms for this problem. In
particular, for the first time we break the natural barrier of O∗(2n). Second, we show that
the iterated random bipartition employed by the algorithm can be improved whenever the
host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex
coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved
bounds for k-Path and Hamiltonicity in any graph of maximum degree ∆ = 4, . . . , 12
or with vector chromatic number at most 8.

1 Introduction

In this paper we study the (k, l)-Tree problem. Given an undirected host graph G on n
vertices, (k, l)-Tree asks if G contains a tree T on k vertices, such that the number of leaves
in T is exactly l. This problem is a natural generalization of the classic k-Path problem: for
l = 2, the definitions of (k, l)-Tree and k-Path coincide. For k = n and l = 2 we get the
classic Hamiltonian Path. Furthermore, (k, l)-Tree is tightly linked to the well-studied
k-Internal Spanning Tree (k-IST) problem, which asks if a given graph G on n vertices
contains a spanning tree T with at least k internal vertices. Indeed, it is well-known that a
yes-instance of k-IST is a yes-instance of (k + l, l)-Tree for some l ≤ k, and vice versa (see
Section 3).

Because of the connections to Hamiltonian Path, the (k, l)-Tree, k-IST and k-Path
problems, even in bipartite graphs or in graphs of bounded degree 3, are NP-hard. In this
paper we study parameterized algorithms, i.e., algorithms that attempt to solve NP-hard
problems by confining the combinatorial explosion to a parameter k. More precisely, a problem
is fixed-parameter tractable (FPT) with respect to a parameter k if it can be solved in time
O∗(f(k)) for some function f , where O∗ hides factors polynomial in the input size. Our
results have also consequences in the field of moderately exponential-time algorithms, where

∗Work partially supported by the National Science Centre of Poland, grant number UMO-
2013/09/B/ST6/03136 (LK).

†Lund University, Lund, Sweden
‡University of Warsaw, Poland
§University of Warsaw, Poland
¶Technion IIT, Haifa, Israel

1

http://arxiv.org/abs/1501.00563v2

Reference Det./Rand. Space Graph G Running Time

Prieto et al. [37] det poly Undirected O∗(2O(k log k))

Gutin al. [25] det exp Directed O∗(2O(k log k))

Cohen et al. [8] det exp Directed O∗(55.8k)
rand poly Directed O∗(49.4k)

Fomin et al. [19] det exp Directed O∗(16k+o(k))

rand poly Directed O∗(16k+o(k))

Fomin et al. [18] det poly Undirected O∗(8k)

Shachnai et al. [42] det exp Directed O∗(6.855k)

Daligault [10], Zehavi [44] rand poly Directed O∗(4k)

Li et al. [30] det poly Undirected O∗(4k)

Zehavi [45] det exp Directed O∗(5.139k)
rand exp Directed O∗(3.617k)

This paper rand poly Undirected O∗(3.455k)

Table 1: Known FPT algorithms for k-IST.

one aims at providing an O(cn)-time algorithm, with the constant c > 1 being as small as
possible.

We develop an FPT algorithm for (k, l)-Tree in general graphs that relies upon a non-
trivial generalization of the technique underlying the Hamiltonicity and k-Path algorithms
in [2, 4]. As a result, we break the natural barrier of O∗(2n) in the running time bound for the
k-IST problem. Then, we conduct a thorough examination of the (k, l)-Tree problem in spe-
cial classes of graphs that admit a vertex coloring with few colors. This in turn implies faster
algoritms for Hamiltonicity, k-Path and k-IST in bounded degree graphs. Apart from
the classic vertex coloring, we consider fractional coloring and vector coloring, thus showing
that the latter tool, famous in approximation algorithms, is also helpful in parameterized
complexity.

1.1 Related Work

The k-IST problem, along with its directed version known as k-Internal Out-Branching
(k-IOB1), are of interest in database systems [11] and water supply network design [38].
Note that any algorithm for k-IOB works also for k-IST (after replacing every edge of the
input graph by two oppositely oriented arcs). Over the last 10 years k-IST and k-IOB were
heavily researched, resulting in a number of algorithms using a variety of approaches. We
present the progress for FPT algorithms in Table 1. For the special case of graphs of bounded

degree ∆, Zehavi [44] shows an algorithm for k-IOB running in time O∗(4
(1− ∆+1

2∆(∆−1)
)k
). An-

other specialized algorithm, due to Raible et al. [38], solves k-IST in graphs of maximum
degree 3 in time O∗(2.137k). There also has been quite some interest in moderately expo-
nential time algorithms for k-IST. Unlike in many other graph problems, even an O∗(2n)
algorithm is not completely trivial. Algorithms achieving this bound were shown by Raible
et al. [38] (with exponential space) and Nederlof [36] (polynomial space). Note that O∗(2n)

1In k-IOB problem, we need to decide if a directed graph G contains a spanning tree T with exactly one
vertex of in-degree 0 and at least k internal vertices.

2

is a natural barrier, as it corresponds to the number of all subsets of vertices. During recent
years researchers managed to surpass this barrier for a number of problems, like Dominat-
ing Set by Grandoni [24], Feedback Vertex Set by Razgon [39] and Hamiltonicity
by Björklund [2]. Raible et al. [38] explicitly posed an open question asking whether the
approach of Björklund [2] can be extended to k-IST either for general graphs or for graphs
of large vertex cover. Raible et al. [38] were able to cross the O∗(2n) barrier for graphs of

bounded degree — they get an algorithm running in time O∗((2∆+1−1)
n

∆−1) and present a
further improvement to O∗(1.862n) when ∆ = 3.

The (k, l)-Tree problem was implicitly introduced by Cohen et al. [8] as a tool for solv-
ing k-IOB. They obtained a O∗(6.14k)-time algorithm. Currently, the fastest randomized
algorithms, due to Daligault [10] and Zehavi [44], run in time O∗(2k) and have a polynomial
space complexity. Note that we meet the O∗(2k) barrier again. For the deterministic case,
Zehavi [45] (building upon [42]) shows a O∗(2.597k)-time algorithm for (k, l)-Tree with an
exponential space complexity.

The fundamental k-Path problem is well-studied in the field of Parameterized Complexity.
In the past three decades, it enjoyed a race towards obtaining the fastest FPT algorithm
(see [1, 4, 6, 7, 17, 20, 29, 34, 43, 45]). Currently, the best randomized algorithm, due to
Björklund et al. [4], runs in time O∗(1.657k) and has a polynomial space complexity, and
the best deterministic algorithm, due to Zehavi [45] runs in time O∗(2.597k) and has an
exponential space complexity.

The result in [4] extends Björklund’s O∗(1.657n) time algorithm for Hamiltonicity in [2].
The same paper contains also a better bound of O∗(2n/2) for bipartite graphs. Hamiltonic-
ity in graphs of bounded maximum degree ∆ received a considerable attention beginning with
the paper of Eppstein [14], followed by works of Iwama and Nakashima [28], Gebauer [22]
and Björklund et al. [3]. Currently the best algorithm for ∆ = 3, due to Cygan et al. [9],
runs in time O∗(1.201n) [9], while prior to this work for ∆ ≥ 4 the best bound was that of
the general Björklund’s O∗(1.657n)-time algorithm.

1.2 Our Contribution

We obtain improved algorithms for (k, l)-Tree, k-IST, k-Path and Hamiltonicity. All of
our algorithms are randomized Monte-Carlo and have polynomial space complexities. Our
contribution is twofold.

From Paths to Trees. First, we develop an algorithm that solves (k, l)-Tree in general
graphs in time O∗(1.657k2ℓ/2). This can be seen as a generalization of the technique of
Björklund et al. [2, 4] from detecting paths to detecting trees. In the original technique
one enumerates walks of length k (rather than paths, which are walks without repeating
vertices) and then uses an algebraic tool to sieve-out the walks which are not paths. The
algebraic tool is to design a polynomial which is a sum of monomials, each corresponding
to a walk. The trick is that thanks to the use of bijective labellings, the non-path walks
can be paired-up so that both corresponding monomials are the same and thus cancel over
a field of characteristic 2. It is quite clear that in the tree case walks should be replaced by
branching walks (see [35]). However, the main difficulty lies in the pairing argument, which
requires a new labelling scheme and becomes much more delicate. Indeed, this extension is
non-trivial as it is exactly the topic of the open problem posed by Raible et al. [38] mentioned
in the previous section. Our algorithm, similarly as in [4] uses a random bipartition of the

3

∆ Running Time

3 O∗(1.5705k)

4 O∗(22k/3) = O∗(1.5874k)

5, 6 O∗(27k/10) = O∗(1.6245k)

7, 8 O∗(25k/7) = O∗(1.6406k)

9, 10 O∗(213k/18) = O∗(1.6497k)

11, 12 O∗(28k/11) = O∗(1.6555k)

χv(G) Running Time

4 O∗(1.6199k)

5 O∗(1.6356k)

6 O∗(1.6448k)

7 O∗(1.6510k)

8 O∗(1.6554k)

Table 2: Running times of our k-Path algorithm in bounded degree graphs (left), and
bounded vector chromatic number (right). Replacing k by n gives bounds for Hamiltonic-
ity.

vertices. The running time depends in a crucial way on a random variable (called the number
of needed labels) in the resulting probability space. The second difficulty was to determine
the distribution of this variable (Lemma 2.10), and again this turned out to be much more
tricky than in the path case.

The (k, l)-Tree algorithm described above already implies an improved running time for
k-IST in general graphs. However, it works much faster if the hidden spannning tree has few
leaves. We design a different strategy, based on finding a maximum matching, to accelerate
the algorithm when it looks for solutions with many leaves. By merging the two strategies,
we obtain an O∗(3.455k) time algorithm for k-IST. This is the first O∗((4 − Ω(1))k)-time
algorithm that uses polynomial space. It immediately implies a moderately exponential time
algorithm running in time O∗(1.946n), which breaks the O∗(2n) barrier.

Paths and Trees in Colored Graphs. Next, we study the (k, l)-Tree problem in graphs
that admit a vertex coloring with d colors. This can be seen as an extension of Björklund’s
O∗(2n/2)-time algorithm for Hamiltonicity in bipartite graphs [2]. However, the insight
in [2] was to find a small vertex cover of the hidden solution. Here, we use a different
insight: by choosing roughly half of the color classes we get a small subset of the hidden
solution vertices which covers many (but not all) of its edges. The resulting algorithm runs in

O∗(2
(1−

⌊d/2⌋⌈d/2⌉
d(d−1)

)k
) time when l = O(1) (see Section 4.1 for a more complicated bound in the

general case). For a graph of bounded degree ∆ that is neither complete nor an odd cycle, it
is possible to construct a proper ∆-coloring in linear time (e.g., by Lovász’s proof of Brooks’
theorem [33]). This immediately results in a fast algorithm for (k, l)-Tree in bounded degree
graphs (see Table 2 for the special cases of k-Path and Hamiltonicity; the case ∆ = 3
is solved by a special algorithm, see below), along with an improved algorithm for k-IST in
such graphs (see Table 3 in Section 5.1).

Fractional coloring is a well studied generalization of the classical vertex coloring. Our
algorithm for graphs of low chromatic number generalizes quite easily to the case of low frac-
tional chromatic number. This has consequences in improved algorithms for some special
graph classes, e.g. an O∗(1.571k1.274l)-time algorithm for (k, l)-Tree in subcubic triangle-
free graphs, or O∗(1.571k)-time algorithm for k-Path in general subcubic graphs. For sub-
cubic graphs of even larger girth, we get further improved bounds.

Another relaxation of the classical coloring is vector coloring, known for its importance
in approximation algorithms (e.g. [23]). Its important advantage is that, contrary to the
classical or fractional coloring, a (1+ ǫ)-approximation can be found in polynomial time [21].

4

We provide an algorithm for (k, l)-Tree that applies vector coloring. It results in improved
running time when the vector chromatic number is at most 8.

1.3 Notation

Throughout the paper we consider undirected graphs. For an integer k, by [k] we denote the
set {1, 2, . . . , k}. For a set S and an integer k by

(S
k

)

we denote the family of all subsets of S
of size k. Let us write V = V (G) = [n] for the vertex set and E = E(G) for the edge set of
the host graph G.

2 Finding Trees on k Vertices with l Leaves

In this section we generalize the k-Path algorithm by Björklund et al. [2, 4] to finding subtrees
with k nodes including l leaves. We focus on undirected graphs. Throughout this section we
assume we are given a fixed partition V = V1 ∪ V2 of the vertices of the input graph. To
get the promised generalization, in Section 2.6 we will use a random bipartition, similarly as
in [2, 4]. In the next sections we investigate other partitions.

2.1 Branching Walks

The notion of branching walk was introduced by Nederlof [35]. A mapping h : V (T) → V (G)
is a homomorphism from a graph T to the host G if for all {a, b} ∈ E(T) it holds that
{h(a), h(b)} ∈ E(G). We adopt the convention of calling the elements of V (T) nodes and the
elements of V (G) vertices.

A branching walk in G is a pair B = (T, h) where T is an unordered rooted tree and
h : V (T) → V (G) is a homomorphism from T to G.

Let B = (T, h) be a branching walk in G.The walk starts from the vertex h(1) in G. The
size of the walk is |V (T)|. The walk is simple if h is injective. The walk is weakly simple
if for any node x ∈ V (T), the homomorphism h is injective on children of x. The walk is
U-turn-free if for any node a of T , every child b of a maps to a different vertex than the parent
c of a, i.e., h(b) 6= h(c).

A proper order of B is any permutation π : V (T) → {1, . . . , |V (T)|} such that for every
two nodes a, b ∈ V (T),

(i) if depth(a) < depth(b) then π(a) < π(b),

(ii) if a, b 6= root(T) and π(parent(a)) < π(parent(b)) then π(a) < π(b),

(iii) if a and b are siblings and h(a) < h(b) then π(a) < π(b).

The following proposition is immediate.

Proposition 2.1. Every weakly simple branching walk has exactly one proper order.

We say that a weakly simple branching walk B is properly ordered if V (T) = {1, . . . , |V (T)|}
and the proper order from Proposition 2.1 is the identity function.

5

2.2 Labeling

For a tree T , by L(T) we note the set of leaves of T and by I(T) we denote the set of internal
vertices of T , i.e., I(T) = V (T) \ L(T).

Like in [4] or [5] our crucial tool are labelled branching walks. In [5], every node in the
tree T of a branching walk (T, h) was assigned a label. Here, similarly as in [4], we do not
assign labels to some nodes, but we assign labels to some edges of T . We define the set of
labellable elements of a branching walk B = (T, h) as

la(B) = L(T) ∪ (h(I(T)) ∩ V1) ∪ {uv ∈ E(T) : h(u), h(v) ∈ V2}.

Similarly, for a subtree T of graph G, define

la(T) = L(T) ∪ (I(T) ∩ V1) ∪ {uv ∈ E(T) : u, v ∈ V2}.

We say that a branching walk B = (T, h) is admissible when B is weakly simple, U-turn-
free, and properly ordered. For nonnegative integers k, l, r, we also say that B is (k, l, r)-fixed
if T has k nodes and l leaves, and | la(B)| = r.

2.3 The Polynomial

Let r be an integer. We use three kinds of variables in our polynomial. First, for any edge
uv ∈ E(G), where u < v, we have a variable xuv. For simplicity we will denote xvu = xuv.
Second, for each q ∈ V ∪ E and for each l ∈ [r] we have a variable yq,l. Third, for each
v ∈ V (G), we have a variable zv. By x we denote the sequence of all xuv-type variables, while
by y we denote the sequence of all yq,l-type variables.

For a branching walk B = (T, h) and a labeling ℓ : la(B) → [| la(B)|] we define the
monomial

mon(B, ℓ) = zh(1)
∏

{u,v}∈E(T)
u<v

xh(u),h(v)
∏

q∈la(B)

yh(q),ℓ(q) ,

where for uv ∈ E(T), h(uv) refers to edge h(u)h(v) ∈ E(G). Next, we define a multivariate
polynomial Pi with coefficients in a field of characteristic two by setting

Pi =
∑

B=(T,h)
B is admissible
B is (k, l, i)-fixed

∑

ℓ:la(B)→[| la(B)|]
ℓ bijective

mon(B, ℓ) .

Finally, let Pr↓ =
∑r

i=2 Pi.

Lemma 2.2. The set of pairs of the form (B, ℓ), where B is a non-simple, admissible and
(k, l, i)-fixed branching walk and ℓ : la(B) → [| la(B)|] is a bijection, can be partitioned into
pairs, and the two monomials corresponding to each pair are identical.

6

Proof. Fix a pair (B, ℓ) from the set in the claim.
Case 1. There exist two elements e1, e2 ∈ la(B) such that h(e1) = h(e2). We take the pair
with lexicographically minimal value of (min{ℓ(e1), ℓ(e2)},max{ℓ(e1), ℓ(e2)}); note that there
is a unique minimum since ℓ is injective.

We define ℓ′ : la(B) → [| la(B)|] as follows:

ℓ′(x) =

ℓ(u) if x = v,

ℓ(v) if x = u,

ℓ(x) otherwise.

Note that ℓ′ 6= ℓ because ℓ is injective. In this way, to the labelled branching walk (B, ℓ) we
assigned another labelled branching walk (B, ℓ′). Note that mon(B, ℓ) = mon(B, ℓ′). Observe
that (B, ℓ′) is also admissible and (k, l, i)-fixed, and B is non-simple and falls into Case 1.
Moreover, if we begin from (B, ℓ′) and follow the same way of assigning labels, we get (B, ℓ).
Thus we have paired up all the non-simple labelled branching walks that fall into Case 1. In
what follows we assume that Case 1 does not apply.

Observe that once Case 1 is excluded, no two edges of T map to the same edge of G.
Indeed, assume that there is a pair of edges u1v1 and u2v2 of T that map to the same edge
uv ∈ E(G), with h(u1) = h(u2) = u and h(v1) = h(v2) = v. Then, either one of u or v is in V1

or both are in V2. By the definition of la(B), in the prior case u1, u2 ∈ la(B), or v1, v2 ∈ la(B)
and in the latter case u1v1, u2v2 ∈ la(B). In both situations Case 1 applies.

Define

A = {(u, v) : u, v ∈ V (T) and h(u) = h(v)}.

Since Case 1 does not apply, and B is not simple, we know that for every pair (u, v) ∈ A
at most one of u, v is in la(B). Let

A∗ = {(u, v) ∈ A : h(u) = min
(x,y)∈A

h(x)}.

Consider any node x ∈ V (T). Then, we define

ℓ↓(x) =

ℓ(x) if x ∈ la(B),

min{ℓ(z) : z ∈ children(x) ∩ la(B)} if children(x) ∩ la(B) 6= ∅,

min{ℓ(xz) : z ∈ children(x)} otherwise.

Case 2. There is a pair (u, v) ∈ A∗ such that u is an ancestor of v. Let us define a subset
A∗∗ ⊆ A∗ consisting of pairs (u, v) ∈ A∗ such that node u is an ancestor of v, and for every
node x on the path from v to the root, if h(x) = h(u) then x ∈ {u, v}. We choose the
pair (u, v) ∈ A∗∗ such that the pair (u, ℓ↓(v)) is lexicographically minimal. Note that there is
exactly one such pair. Indeed, consider another pair (u′, v′) ∈ A∗∗ with (u′, ℓ↓(v′)) = (u, ℓ↓(v)).
Clearly, u = u′. If v 6= v′ then, since ℓ↓(v) = ℓ↓(v′), it means that v is a child of v′ or vice
versa. However, h(v) = h(v′), so h is not a homomorphism, a contradiction.

Let T ′ be the tree obtained from T by reversing the path from u to v. More precisely,
consider the path puv = uu1 · · · utv. Remove the edges uu1 and utv from T , obtaining three

7

trees: Tu (rooted at root(T)), Tp (rooted at u1), and Tv (rooted at v). Next, root Tp at vt,
obtaining T ′

p. Finally, make the root of T ′
p the child of u in Tu, and make v the child of u1 in

T ′
p. The resulting tree is denoted by T ′.
Note that the multigraphs h(T ′) and h(T) are equal. Now we essentially want to leave h

unchanged; however the branching walk B′ = (T ′, h) is not properly ordered and we need to
renumber the nodes.

Note that B′ is weakly simple since no two edges of T (and hence also of T ′) map to the
same edge of G. Hence, by Proposition 2.1, there is exactly one proper order π of B′. Let T ′′

be obtained from T ′ by replacing every node x by π(x). Let us define homomorphism h′′ by
h′′(x) = h(π−1(x)) for every x ∈ V (T ′′), and let B′′ = (T ′′, h′′). Note that T ′′ has the same
number of leaves and internal vertices as T and B′′ is properly ordered. Also, T ′′ is weakly
simple and U-turn-free, for otherwise T ′′ has two edges that map by h′′ to the same edge e
of G, which implies that T has two edges that map by h to e, a contradiction. Hence B is
admissible. Note that there is a one-to-one correspondence between elements of la(B) and
la(B′′). It follows that B′′ is (k, l, i)-fixed.

Now let us define a labeling ℓ′′ of B′′. For every node x ∈ la(B′′), we put ℓ′′(x) = ℓ(π−1(x)).
Note that h(T) = h(T ′′) as multigraphs, and hence since in T no two edges are mapped by h
to the same edge of G, the same holds for T ′′. It follows that for every edge xy of T ′′ there
is a unique edge x0y0 of T such that h(xy) = h(x0y0). For every edge xy ∈ E(T ′′) ∩ la(B′′)
we pick the corresponding edge x0y0 of T , and we put ℓ′′(xy) = ℓ(x0y0). The definitions of
ℓ′′ and h′′ imply that mon(B, ℓ) = mon(B′′, ℓ′′).

We claim that B′′ 6= B. Note that v 6= u1, for otherwise h is not a homomorphism. Hence,
the path puv = uu1 · · · utv has at least one internal vertex, i.e., t ≥ 1. Consider the walks
W = h(u), h(u1), . . . , h(ut), h(v) and W ′′ = h(v), h(ut), . . . , h(u1), h(u) in G. If B′′ = B then,
in particular, W = W ′′. But this implies that T is not U-turn-free, a contradiction.

Hence to (B, ℓ) we have assigned a different pair (B′′, ℓ′′), which also satisfies Case 2 but
does not satisfy Case 1. Let (u′, v′) be the pair of nodes chosen in Case 2 for (B′′, ℓ′′). Note
that in (B′′, ℓ′′) we have h′′(u) = h′′(v) = h′′(u′) = h′′(v′). Since only the subtree of u is
changed, for every node x ≤ u we have π(x) = x. It follows that u′ = u. Note that ℓ′′↓

can differ from ℓ↓ only for the vertices u1, . . . , ut on the path puv. However, none of them
maps to h(u), because otherwise (u, v) 6∈ A∗∗. Hence, v′ = v. Thus we have paired up all the
non-simple, admissible and (k, l, i)-fixed labelled branching walks that fall into Case 2, but
do not fall into Case 1.
Case 3. There is a pair (u, v) ∈ A∗ such that neither u is an ancestor of v nor v is an ancestor
of u. Assume w.l.o.g. that h(parent(u)) ≤ h(parent(v)). If there are many such pairs (u, v),
we take the pair with lexicographically minimal value of (h(parent(u)), h(parent(v))). We
claim there is exactly one such pair. Indeed, consider another pair (u′, v′). Then h(u) =
h(u′) = h(v) = h(v′) since both pairs are in A∗. Also h(parent(u)) = h(parent(u′)) and
h(parent(v)) = h(parent(v′)) by the minimality. Then u = u′ for otherwise two edges of T
map to the same edge h(u)h(parent(u)) of G. Similarly, v = v′ for otherwise two edges of T
map to the same edge h(v)h(parent(v)) of G.

Let Tu and Tv be the subtrees of T rooted at u and v, respectively. Let T ′ be the tree
obtained from T by swapping Tu and Tv. Note that h(T ′) = h(T) as multigraphs. Now we
define a branching walk B′′ = (T ′′, h′′) by renumbering vertices of T ′ using a proper order π,
exactly as in Case 2. By the same argument as in Case 2, B′′ is admissible and (k, l, i)-fixed.
We also define a labeling ℓ′′ of B′′ exactly in the same way as in Case 2. It follows that
mon(B, ℓ) = mon(B′′, ℓ′′).

8

We claim that B′′ 6= B. Otherwise, there is an isomorphism i : V (Tu) → V (Tv) such that
for every node x ∈ V (Tx) we have h(x) = h(i(x)). Pick any leaf z ∈ V (Tu). Then i(z) is also
a leaf. Hence both z and i(z) are in la(B). It follows that Case 1 applies to z and i(z), a
contradiction.

It is clear that (B′′, ℓ′′) also satisfies Case 3 and it does not satisfy Case 1. Assume it
satisfies Case 2, i.e., there are nodes (u∗, v∗) ∈ A∗ such that u∗ is an ancestor of v∗. Note
that h(u∗) = h(v∗) = h(u) = h(v). We can assume that u∗ = u or u∗ = v, for otherwise
the pair (u, v) satisfies Case 2 for the labelled branching walk (B, ℓ), a contradiction. By
symmetry assume u∗ = u. Then {v, v∗} satisfies Case 2 for the labelled branching walk
(B, ℓ), a contradiction again. Hence to (B, ℓ) we have assigned a different pair (B′′, ℓ′′), which
also satisfies Case 3 but does not satisfy the earlier cases.

We claim that if we begin from (B′′, ℓ′′) and follow the same way of assignment we get
(B, ℓ) back. Indeed, note that only the subtrees of u and v are changed, but since Case 2 is
excluded, these subtrees contain no vertices that map to h(u), except for u and v. It follows
that in (B′′, ℓ′) the pair (π(u), π(v)) is chosen. After swapping the subtrees (and renumbering
the vertices, redefining the labelling, etc.) we get (B, ℓ) back.

Thus we have paired up all the non-simple, admissible and (k, l, i)-fixed labelled branching
walks that fall into Case 3, but do not fall into the earlier cases. This finishes the proof.

Lemma 2.3. The polynomial P↓r is non-zero iff the input graph contains a subtree TG with
k nodes and l leaves, such that la(TG) ≤ r.

Proof. First assume P↓r is non-zero. It follows that P↓r contains at least one monomial with
non-zero coefficient. By Lemma 2.2, every such monomial corresponds to a simple branching
walk B = (T, h), because all the monomials corresponding to non-simple branching walks
cancel-out over a field of characteristic two. Hence h(T) is the desired tree.

Let TG be a subtree of G with k nodes and l leaves such that la(T) ≤ r. Pick an arbitrary
vertex v of TG and let Tv be tree TG rooted at v. By Proposition 2.1, there is a proper order
π of the simple branching walk (Tv, idV (Tv

). Let T denote the tree Tv after replacing every
vertex x by π(x). Define a homomorphism h : V (T) → V (G) by putting h(x) = π−1(x). Then
B = (T, h) is admissible. Note that there is a one-to-one correspondence between la(TG) and
la(B). It follows that B is (k, l, | la(TG)|)-fixed.

Finally, choose an arbitrary bijection ℓ : la(B) → [la(B)]. We must now have P 6≡ 0 be-
cause we can uniquely reconstruct the pair (B, ℓ) from its monomial representation mon(B, ℓ):
indeed, first recover the root vertex v from the unique zv-type indeterminate; second, recover
B = (T, h) from the xa,b-type indeterminates using the fact that B is simple, properly or-
dered, and starts from v; then recover ℓ from the yx,l-type indeterminates using the fact that
ℓ is injective.

2.4 Evaluating the Polynomial P↓r in Time O∗(2r)

In this section we show that the polynomial P↓r can be evaluated in a given point (x,y, z)
in time O∗(2r). Clearly, it suffices to show this bound for every polynomial Pi. To this end,
let us rewrite Pi as a sum of 2r polynomials such that each of them can be evaluated in time
polynomial in the input size. For each X ⊆ [r], let

9

PX
i =

∑

B=(T,h)
B is admissible
B is (k, l, i)-fixed

∑

ℓ:la(B)→X

mon(B, ℓ) .

Note that we do not assume that the labelings in the second summation are bijective.

Lemma 2.4. Pi =
∑

X⊆{1,2,...,k}

PX
i .

Proof. Let us fix an admissible (k, l, i)-fixed branching walk B = (T, h). Note that a function
ℓ : la(B) → [| la(B)|] is bijective if and only if it is surjective, so

∑

ℓ:la(B)→[| la(B)|]
ℓ bijective

mon(B, ℓ) =
∑

ℓ:la(B)→[| la(B)|]
ℓ surjective

mon(B, ℓ). (1)

Recalling the coefficients of Pi are from a field of characteristic 2, and hence −1 = 1, we have,
by the Principle of Inclusion and Exclusion,

∑

ℓ:la(B)→[| la(B)|]
ℓ surjective

mon(B, ℓ) =
∑

X⊆[r]

∑

ℓ:la(B)→X

mon(B, ℓ) . (2)

From (1) and (2) we immediately obtain

Pi =
∑

B=(T,h)
B is admissible
B is (k, l, i)-fixed

∑

X⊆[r]

∑

ℓ:la(B)→X

mon(B, ℓ) . (3)

The claim follows by changing the order of summation.

Now we are left with a tedious job of evaluating PX
i (x,y, z) in polynomial time. To

simplify notation in the running time bounds, let us write m for the number of edges in G,
and µ = O((k+r) log(k+r) log log(k+r)) for the time needed to multiply or add two elements
of F2⌈log((k+r))⌉+O(1).

Lemma 2.5. Given a nonempty X ⊆ [r] and three vectors x,y, z of values in F2⌈log(k)⌉+O(1) as
input, all the values of PX

i (x,y, z) for i = 0, . . . , r can be computed by dynamic programming
in time O(mk4l2µ) and space O(mk2l).

Proof. W.l.o.g. we assume that V (G) = {1, 2, . . . , n}. For a vertex a ∈ V (G), denote the
ordered sequence of neighbors of a in G by a1 < a2 < · · · < adegG(a). We say that a U-turn-
free branching walk B = (T, h) starting in a vertex a ∈ V (G) is j-forced when for any child
u of the root 1 in T it holds that h(u) ≥ aj .

Our objective is to compute a five-dimensional array AX whose entries are defined by

AX [a, j, k′, l′, i] =
∑

B=(T,h)

∑

ℓ:la(B)\{1}→X

∏

{u,v}∈E(T)
u<v

xh(u),h(v)
∏

q∈la(B)\{1}

yh(q),ℓ(q) ,

10

where the outer sum is over all branching walks B which are admissible, (k′, l′, i)-fixed, j-forced
and start from a. The entries of AX admit the following recurrence. For j = degG(a) + 1, or
k′ = 1, or l′ = 0, or i < 0 we have

AX [a, j, k′, l′, i] =

{

1 if k′ = 1, l′ = 0 and i = [a ∈ V1],

0 otherwise.

Define

f(u, v, b) =

xu,v
∑

t1,t2∈X
yv,t1yuv,t2 if u, v ∈ V2 and b = 1,

xu,v
∑

t∈X yuv,t else if u, v ∈ V2,

xu,v
∑

t∈X yv,t else if v ∈ V1 or b = 1,

xu,v otherwise.

For 1 ≤ j ≤ degG(a), 2 ≤ k′ ≤ k, 1 ≤ l′ ≤ l, 0 ≤ i ≤ r we have

AX [a, j, k′, l′, i] = AX [a, j + 1, k′, l′, i]+

f(a, aj, 1) ·A
X [a, j + 1, k′ − 1, l′ − 1, i− 1− [a, aj ∈ V2]]+

f(a, aj, 0) ·
∑

k1+k2=k′

k1,k2≥1

∑

l1+l2=l′

l1≥0
l2≥1

∑

i1+i2=i−[a,aj∈V2]
i1≥0
i2≥1

AX [a, j + 1, k1, l1, i1] · A
X [aj , 1, k2, l2, i2].

(4)

To see that the recurrence is correct, observe that the three lines above correspond to branch-
ing walks which are admissible, (k′, l′, i)-fixed, j-forced and start from a, where either (a) the
root has no child which maps to aj , or (b) the root has exactly one child which maps to aj
and the child is a leaf, or (c) the root has exactly one child which maps to aj and the child
is an internal node. (At most one such child may exist because the branching walk is weakly
simple.)

To recover the value of the polynomial PX(x,y, z), we observe that

PX
i (x,y, z) =

∑

v∈V1

zv
∑

t∈X

yv,t ·A
X [v, 1, k, l, i] +

∑

v∈V2

zv ·A
X [v, 1, k, l, i] . (5)

The time bound follows by noting that the values of f(u, v) can be precomputed and
tabulated in O(k(n +m)µ) time to accelerate the computations for the individual entries of
AX .

From Lemmas 2.4 and 2.5, we immediately obtain the following.

Lemma 2.6. The polynomial P↓r can be evaluated in time O∗(2r) and polynomial space.

2.5 A Single Evaluation Algorithm

Assume we choose the value of parameter r large enough so that if there is a (k, l)-tree TG

in G, then | la(TG)| ≤ r. Then, by Lemma 2.3, we can test the existence of a (k, l)-tree by
testing whether the polynomial P↓r is non-zero. The latter task can be performed efficiently
using a single evaluation of the polynomial P↓r. To show that this is the case we need the
Schwartz-Zippel Lemma, shown independently by DeMillo and Lipton [12], Schwartz [41] and
Zippel [46].

11

Lemma 2.7. Let p(x1, x2, . . . , xn) ∈ F [x1, . . . , xn] be a polynomial of degree at most d over
a field F , and assume p is not identically zero. Let S be a finite subset of F . Sample values
a1, a2, . . . , an from S uniformly at random. Then,

Pr(p(a1, a2, . . . , an) = 0) ≤ d/|S|.

Lemma 2.8. Let V (G) = V1 ∪ V2 be a fixed bipartition of the vertex set of the host graph G.
There is an algorithm running in O∗(2r) time and polynomial space such that

• If G does not contain a (k, l)-tree then the algorithm always answers NO,

• If G contains a (k, l)-tree TG such that | la(TG)| ≤ r, then the algorithm answers YES
with probability at least 1

2 .

Proof. The algorithm is as follows: using the algorithm from Section 2.4, we evaluate the poly-
nomial P↓r over the field GF(2⌈log2(k+r)⌉+1), substituting the indeterminates by independently
chosen random field elements. The time bound follows from Lemma 2.6.

If there is no (k, l)-tree in the input graph, by Lemma 2.3 the evaluation returns 0, so we
report the correct answer.

Now assume there is a (k, l)-tree TG such that la(TG) ≤ r. Then, by Lemma 2.3, P is
a non-zero polynomial. Note that deg(Pi) = k + i, hence deg(P↓r) ≤ k + r. Hence, by the
Schwartz-Zippel Lemma P evaluates to the zero field element with probability at most 1

2 .
This finishes the proof.

2.6 The random bipartition algorithm

In this section we assume that V = V1 ∪ V2 is a random bipartition, i.e., every vertex goes to
V1 independently with probability 1/2. Our plan is to choose the value of parameter r large
enough so that if there is a (k, l)-tree TG in G, then with high probability | la(TG)| ≤ r. Then,
by Lemma 2.8, we are done. Of course, putting r = k would perfectly achieve the above goal,
but then we only get the running time of O∗(2k), matching that of Zehavi [44].

A natural choice is to set the value of r close to the expectation of | la(TG)|. The following
lemma follows from the definition of la(TG), by the linearity of expectation.

Lemma 2.9. For every (k, l)-tree TG in G, we have E(| la(TG)|) =
3
4k + 1

2 l −
1
4 .

By the lemma above and Markov’s inequality, if we put r = 3
4k+

1
2 l, then the probability

that | la(TG)| ≤ r is Ω(1
k+l). Hence it suffices to repeat the algorithm from Lemma 2.8 (i.e.,

evaluate the polynomial P↓r) O(k+ l) times answering true iff at least one evaluation was non-
zero, to get a Monte-Carlo algorithm for testing the existence of a (k, l)-tree. The complexity
of this algorithm is O∗(2(3k+2l)/4). However, similarly as in [2, 4], we can do better. The idea
is to use a value of r smaller than that appearing in the expectation by an Ω(k) term. Then
the probability that a (k, l)-subtree is admissible is inverse-exponential. Hence, we need to
repeat the algorithm from Lemma 2.8 exponentially many times, every time for a different
random bipartition. However, it turns out that for carefully selected values of r, this pays
off. To find this value, the following lemma is crucial.

Lemma 2.10. Fix an arbitrary (k, l)-tree TG in G. For any integer t such that 0 ≤ t ≤
(k − 1)/2, we have

Pr
(

| la(TG)| ≤ k + l
2 − t

)

≥
1

2k+1

(

k − 1

2t

)

.

12

Proof. Root TG at an arbitrary vertex r. Let the random variable X22 denote the number of
edges uv ∈ E(TG) such that u, v ∈ V2. Also, let X1,i denote the number of internal vertices
in V1. Then, by the definition of la(TG), we have | la(GT)| = l +X1,i +X22.

Fix a subset of edges S ∈
(E(TG)

2t

)

. For a = 0, 1, let ca : V (TG) → {1, 2} be the assignment
of vertices of TG to sets V1, V2 such that for every v ∈ V (TG), we have ca(v) = 1 if and only if
on the path from r to v in TG the number of edges from S is congruent to a modulo 2. Since
every vertex is colored 1 in exactly one of the colorings c0, c1, we infer that

X1,i(c0) +X1,i(c1) = k − l.

Similarly, every edge in E(TG) \ S is colored 22 in exactly one of the colorings c0, c1; hence

X22(c0) +X22(c1) = k − 1− 2t.

It follows that

min{X1,i(c0) +X22(c0),X1,i(c1) +X22(c1)} ≤ (k − l + k − 1− 2t)/2

< k − l
2 − t.

Hence, for at least one of the colorings c0, c1, we have | la(TG)| < k+ l
2 − t. For all choices of

S there are at least 1
2

(k−1
2t

)

such colorings, so the claim follows.

The following lemma follows immediately from Stirling’s approximation.

Lemma 2.11. For any fixed α, 0 < α < 1,
(

n

αn

)

= O∗

((

1

αα(1− α)1−α

)n)

Theorem 2.12. There is an O∗(1.66k2l/2)-time Monte-Carlo polynomial space algorithm
for finding a (k, l)-tree which never reports a false positive, and reports false negatives with
constant probability.

Proof. Fix an ǫ ≥ 0 and let t = ⌊(14 + ǫ)k⌋. Put r = k− t+⌈ l
2⌉ = ⌈(34 − ǫ)k⌉+⌈ l

2⌉. We choose
a random bipartition V = V1 ∪ V2 and apply the algorithm from Lemma 2.8. We repeat this
⌈2k+1/

(k−1
2t

)

⌉ times, and we return YES iff at least one of the executions of the algorithm
from Lemma 2.8 returned YES. If there is no (k, l)-tree in the input graph, by Lemma 2.8
we report the correct answer. Now assume there is a (k, l)-tree TG. Call a bipartition nice
if | la(TG)| ≤ r. By Lemma 2.10, a random bipartition is nice with probability at least
p = 1

2k+1

(k−1
2t

)

. Hence, at least one of the tried bipartitions is nice with probability at least

1− (1− p)1/p ≥ 1− 1/e. For such a bipartition, the algorithm from Lemma 2.8 answers YES
with probability at least 1

2 . Hence our algorithm reports a false-negative with probability at
most 1/e+ 1

2 < 1.
By Lemma 2.8, the running time is

O∗

(

2r+k/

(

k − 1

2t

))

= O∗

(

2(7/4−ǫ)k+l/2/

(

k

(1/2 + 2ǫ)k

))

.

By Lemma 2.11 we can express this by O∗((f(ǫ))k2l/2), for f(ǫ) = 27/4−ǫ(12 + 2ǫ)
1
2
+2ǫ(12 −

2ǫ)
1
2
−2ǫ. The function f attains a minimum smaller than 1.65685 for ǫ = 0.042894. Hence

the claim.

13

3 Spanning Trees with Many Internal Vertices

In this section we give an improved algorithm for k-IST. As previous algorithms (see, e.g.,
[8]) for this problem, we depend on the following insight.

Lemma 3.1. A graph G contains a spanning tree with at least k internal vertices iff G
contains a subtree with exactly k internal vertices and at most k leaves.

We call such a tree a witness for k-IST. A witness tree is minimal if one cannot remove
any leaf from it without reducing the number of internal nodes. It is easy to see that such a
tree can be extended to a k-IST simply by connecting each remaining vertex in the graph to
the tree arbitrarily.

We will use two strategies to search for a minimal witness tree. In the first, which we
refer to as strategy A, we search for a (k + l, l)-tree for every l = 2, . . . , αk, for some α to
be specified later, with our algorithm from Theorem 2.12. Its runtime gets worse the more
nodes, and especially leaves, the tree has. Running only strategy A to solve for a k-IST (i.e.
let α = 1) results in an O∗(3.883k) time algorithm using polynomial space, already improving
over state of the art.

In our second strategy, strategy B, we search indirectly for a (k + l, l′)-tree for every
l = αk, . . . , k, where l′ ≤ l, by using an observation from Zehavi [45], that a tree with many
leaves can be trimmed to a small tree with few leaves and a disjoint matching. Furthermore,
such a disconnected subgraph can easily be combined into a (k + l, l′)-tree for some l′ ≤ l by
connecting the edges of the matching one-by-one to the tree in an arbitrary order.

For completeness, we state and prove the following lemma implicit in [45]:

Lemma 3.2. Every minimal (k + l, l)-tree with l > (k/2) + 1 has a subgraph consisting of a
minimal (k + l − 2, l − 1)-tree and a disjoint edge.

Proof. Let us root the tree at an arbitrary leaf. Every leaf’s parent has only one child,
otherwise it will not be minimal since we can remove the leaf. Associate with a leaf ℓ the
path p(ℓ) of all internal vertices which have only the leaf ℓ as their descendant among all
leaves. Note that every internal node is associated with at most one leaf, and that p(ℓ)
contains at least the parent (since the tree is minimal). If there is no leaf ℓ with exactly one
internal node in p(ℓ), we would have at least twice as many internal nodes as leaves violating
the assumption l > (k/2) + 1. Hence there is a leaf ℓ with |p(ℓ)| = 1, and we can remove
ℓ, p(ℓ) as the disjoint edge from the tree, leaving a minimal (k + l − 2, l − 1)-tree.

By iteratively applying the lemma above, we have that

Corollary 3.3. If a k-IST instance graph G has a ((1+β)k, βk)-tree witness for some β > 0.5,
then it also has a minimal (3(1− β)k, (1− β)k)-tree and a disjoint (2β − 1)k edge matching.

In contrast to [45], that uses representative sets to separate the matching from the tree for
k-IOB (the directed version of the k-IST problem), we will simply use a random bipartition.
It turns out to be a faster algorithm because in our algorithm for (k + l, l)-tree from Theo-
rem 2.12, the leaves cost much more than internal nodes, unlike in the directed counterpart
from [44] where all nodes cost the same.

For each l = αk, . . . , k, we let γ = l/k and repeat the following r(γ) times. We partition the
vertices in VM ∪VT = V . With probability p(γ) we put a vertex in VM , otherwise we put it in
VT . First we compute in polynomial time a maximum matching in the induced graph G[VM].

14

If we find one with at least (2γ−1)k edges, then we also search for a (3(1−γ)k, (1−γ)k)-tree
in the induced graph G[VT] with the algorithm from Theorem 2.12. If we also find a tree, we
combine the found matching and the tree into a (k + l, l′)-tree witness and output yes. If all
runs for all l fail we output no. We set the parameters r(γ) and p(γ) as

r(γ) =

(

1 + γ

4γ − 2

)(4γ−2)k (1 + γ

3(1 − γ)

)3(1−γ)k

, p(γ) =
4γ − 2

1 + γ
.

The probability that none of the r(γ) tries succeeds in separating the tree and the matching
is at most

(

1−

(

4γ − 2

1 + γ

)(4γ−2)k (3(1− γ)

1 + γ

)3(1−γ)k
)r(γ)

= (1− r(γ)−1)r(γ) < e−1.

We get that with probability at least 1 − e−1 we successfully separate the matching and
the tree in the bipartition, and hence strategy B works. The running time for a fixed ratio
γ is O∗(r(γ)1.6573(1−γ)k2(1−γ)k/2). One can check that this is a decreasing function for γ ∈
[0.68, 1]. Hence, when α ∈ [0.68, 1], the total time of strategy B isO∗(r(α)1.6573(1−α)k2(1−α)k/2).
On the other hand, strategy A takes time O∗(1.657(1+α)k2αk/2), which increases with α. The
best trade-off between strategy A and B is obtained for α = 0.8627..., which gives a total
running time of O∗(3.455k).

For α = 0.8627, in both strategies, the worst running time bound is obtained when l = αk
and k + l = n; indeed, if k + l > n, it is clear that there is no solution. Therefore, the worst
running time bound is obtained when k = n/(1 +α), which makes our algorithm run in time
O∗(3.455n/(1+α)) = O∗(1.946n). Thus, we have proved the following result.

Theorem 3.4. There is an O∗(min{3.455k , 1.946n})-time Monte-Carlo polynomial space al-
gorithm for k-IST in general graphs.

4 Colored Graphs

In this section we improve the running times of algorithms from Section 2 in restricted settings.
This is done by adjusting the partition V = V1 ∪ V2 to particular graph classes where vertex
colorings guide us in making the partition. We will consider three ways of coloring the vertices.
The first is ordinary proper vertex coloring of the graph, i.e. color the vertices so that no
edge has both its endpoints colored by the same color. The least number of colors needed
is denoted by χG. The second way is fractional vertex coloring, that assigns a subset of b
colors to each vertex from a palette of a colors so that the endpoints of each edge receive
disjoint subsets of colors. The smallest possible ratio a/b is denoted by χf (G). The third
way is vector coloring that assigns unit length vectors to the vertices so the minimum angle
α between every edge’s endpoints’ vectors is as large as possible. The smallest possible value
of 1 + cos−1(α) is denoted by χv(G).

The following chain of inequalities holds (see e.g. [26]), where ω(G) is the clique number,
i.e., the size of the largest clique in G.

Theorem 4.1. For any graph G,

ω(G) ≤ χv(G) ≤ χf (G) ≤ χ(G).

15

4.1 The Ordinary Vertex Coloring

Consider a proper d-coloring c : V → {1, . . . , d} of the host graph G. Fix a number t ∈
{0, . . . , d}. Our idea is to define V1 as the union of t color classes, and V2 as the remaining
vertices. Clearly, for some choices of the colors the set la(TG) for a solution TG can be large,
and then by Lemma 2.3 we need to set the parameter r high, which makes the running time
large. However, if we try all the possible choices of t colors, in at least one of them the set
la(TG) will be small enough. This is stated in the following lemma.

Lemma 4.2. Let c be a given d-coloring of G. Let TG be a fixed (k, l)-tree in G. There is a
choice of t color classes c1, . . . , ct such that if we put V1 =

⋃t
i=1 c

−1(i), then

la(TG) ≤

(

1−
x(d− x)

d(d− 1)

)

k +
(

1−
x

d

)

l,

where x = ⌊d+(l/k)(d−1)
2 ⌉. In particular, | la(TG)| ≤

(

1−
⌊d2⌋⌈

d
2⌉

d(d− 1)

)

k +
l

2
.

Proof. For i = 1, . . . , d, let ki denote the number of nodes of TG colored by i. Similarly, let li
denote the number of leaves of TG colored by i. Finally, for i, j = 1, . . . , d, let ki,j denote the
number of edges in TG with one endpoint colored with i and the other colored with j. Note
that

d
∑

i=1

ki = k (6)

d
∑

i=1

li = l (7)

∑

1≤i<j≤d

ki,j = k − 1. (8)

Fix t = 0, . . . , d. It follows that the average size of | la(TG)|, over all possible choices of
the set S of t colors, equals

1
(

d
t

)

∑

S∈([d]t)

∑

i∈S

ki +
∑

i 6∈S

li +
∑

{i,j}∩S=∅

ki,j

 =

(

d−1
t−1

)

k +
(

d−1
t

)

l +
(

d−2
t

)

(k − 1)
(d
t

) ≤

(

1−
t(d− t)

d(d− 1)

)

k +
d− t

d
l.

For t = x and t = ⌈d/2⌉, we get the claimed bounds.2

2We chose t = x in order to minimize the expression
(

1 − t(d−t)
d(d−1)

)

k + d−t
d

l. The choise t = ⌈d/2⌉ gives a

simpler bound, but, if l is large, it is greater than the one with x.

16

By combining Lemma 2.8 with Lemma 4.2 we get the following theorem.

Theorem 4.3. Assume we are given a proper d-coloring of the host graph, for some fixed
d. Then, there is a Monte-Carlo polynomial space algorithm for finding a (k, l)-tree running

in time O∗

(

2

(

1−
x(d−x)
d(d−1)

)

k+(1−x
d)l
)

, where x = ⌊d+(l/k)(d−1)
2 ⌉. In particular, the running time

can be bounded by O∗

(

2

(

1−
⌊ d
2 ⌋⌈ d

2 ⌉

d(d−1)

)

k+ l
2

)

. The algorithm never reports a false positive, and

reports false negatives with constant probability.

4.2 Fractional Vertex Coloring

There is a considerable gap between the running time of the (k, l)-tree algorithm for 2-
colorable graphs and 3-colorable graphs: O∗(1.415k+l) vs O∗(1.588k1.415l). It is natural
to ask whether for graphs with chromatic number 3, which are in some sense almost 2-
colorable, one can do better than just run the algorithm for 3-colorable graphs. To address
this and related questions in this section, we consider a relaxed concept of graph coloring,
called the fractional chromatic number. We say that a graph G has an (a : b)-coloring if,
to each vertex of G, one can assign a b-element subset of {1, 2, 3, . . . , a} in such a way that
adjacent vertices are assigned disjoint subsets. The fractional chromatic number is defined
as χf (G) = inf{a

b | G can be (a : b)-colored}. To avoid confusion let us clarify that for
a
b = c

d , the fact that G is (a : b)-colorable does not imply that it is (c : d)-colorable (for an
example consider Kneser graph K6:2 which is (6 : 2)-colorable but not 3-colorable, see e.g. the
monograph of Scheinerman and Ullman [40]). In particular, not every (a : b)-colorable graph
is ⌈ab ⌉-colorable. Indeed, the gap between the fractional chromatic number and the chromatic
number can be arbitrarily large.

Now we show an analog of Lemma 4.2.

Lemma 4.4. Let c : V (G) →
([a]
b

)

be a given (a : b)-coloring of G. Let TG be a fixed (k, l)-tree

in G. There is a set of t colors S ∈
([a]

t

)

such that if we put V1 = {v ∈ V (G) | c(v) ∩ S = ∅}
and V2 = V (G) \ V1, then

| la(TG)| ≤

(

1−

(a−b
t

)

−
(a−2b

t

)

(

a
t

)

)

k +

(

1−

(a−b
t

)

(

a
t

)

)

l.

In particular, there is a color r ∈ [a] such that if we put V1 = {v ∈ V (G) | r 6∈ c(v)} and
V2 = V (G) \ V1, then

| la(TG)| ≤

(

1−
b

a

)

k +
b

a
l.

Proof. For a given set of t colors S, let V S
1 = {v ∈ V (G) | c(v) ∩ S = ∅} and V S

2 = V \ V S
1 .

For two indices i, j ∈ {1, 2} define the set

ES
ij = {uv ∈ E(TG) | u is the parent of v, u ∈ V S

i and v ∈ V S
j }.

17

Also, let ISi be the set of internal vertices of TG in Vi. Similarly, let LS
i be the set of leaves of

TG in Vi. Then, by the definition of la(TG),

| la(TG)| = l + |IS1 |+ |ES
22| =

l + |IS1 |+ |V S
2 | − |ES

12| − [root(TG) ∈ V S
2] ≤

l + k − |LS
1 | − |ES

12|.

For I ∈
([a]
b

)

, let kI denote the number of nodes of TG colored by set I. Similarly, let lI denote

the number of leaves of TG colored by I. Finally, for I, J ∈
([a]
b

)

, let kI,J denote the number
of edges in TG with the parent colored with I and the child colored with J . Note that

∑

I∈([a]b)

kI = k (9)

∑

I∈([a]b)

lI = l (10)

∑

I,J∈([a]b)

kI,J = k − 1. (11)

It follows that the average size of | la(TG)|, over all possible choices of the set S of t colors,
equals

1
(a
t

)

∑

S∈([a]t)

(

k − |ES
12|+ l − |LS

1 |
)

=

1
(a
t

)

∑

S∈([a]t)

(

k −
∑

I,J∈([a]b)
I∩S=∅
J∩S 6=∅

kI,J + l −
∑

I∈([a]b)
I∩S=∅

lI

)

=

1
(a
t

)

∑

S∈([a]t)

(

k −
∑

I,J∈([a]b)
I∩S=∅

kI,J +
∑

I,J∈([a]b)
I∩S=J∩S=∅

kI,J + l −
∑

I∈([a]b)
I∩S=∅

lI

)

=

(

1−

(a−b
t

)

−
(a−2b

t

)

(a
t

)

)

k +

(

1−

(a−b
t

)

(a
t

)

)

l.

This implies the first part of the claim. The second part follows after putting t = 1.

By combining Lemma 2.8 with Lemma 4.4 we get the following theorem.

Theorem 4.5. Assume we are given a proper (a : b)-coloring of the host graph, for some
fixed a, b. Then, for any t = 1, . . . , b there is a Monte-Carlo polynomial space algorithm for
finding a (k, l)-tree running in time

O∗

(

2

(

1−
(a−b

t)−(a−2b
t)

(at)

)

k+

(

1−
(a−b

t)
(at)

)

l
)

which never reports a false positive, and reports false negatives with constant probability.

18

Note that t = 1 gives time of O∗(2(1−
b
a)k+

b
a
l). For fixed values of a and b, it is easy to

find optimal value of t in Theorem 4.5.
The following equivalence is well-known (see e.g. [16]).

Proposition 4.6 (folklore). Graph G has fractional chromatic number χf (G) ≤ r iff there
exists a probability distribution π on the independent sets of G such that for each vertex v,
the probability that v is contained in a random independent set (with respect to π) is at least
1/r.

Proposition 4.6 is interesting because an upper bound B on the fractional chromatic
number can be proven by providing a polynomial-time randomized algorithm which outputs
an independent set I such that, for every vertex v, the probability that v ∈ I is at least 1/B.
This strategy was used e.g. by Ferguson et al. [16]. It is not hard to show that having such
an algorithm one can build in randomized polynomial time an (a : b)-coloring of G such that
a
b = B + ǫ for arbitrary fixed ǫ > 0. However, for our applications in (k, l)-tree this is not
needed as observed in the following lemma (the main observation behind this lemma traces
back to Björklund[2], Theorem 2).

Theorem 4.7. Assume there is a polynomial-time randomized algorithm A which outputs an
independent set I such that, for every vertex v of G, the probability that v ∈ I is at least p,
for some p ∈ (0, 1). Then, there is a Monte-Carlo polynomial space algorithm for finding a
(k, l)-tree running in time

O∗(2(1−p)k+pl)

which never reports a false positive, and reports false negatives with constant probability.

Proof. (Sketch.) Put r = ⌈(1− p) k + pl⌉+1. Let TG be a (k, l)-tree in G. Run the algorithm
A and let I be the resulting independent set. Put V1 = V \ I and V2 = I. It is easy to
see that E(| la(TG)|) = |V (TG) ∩ V1| + |L(TG) ∩ V2| = (1 − p)k + pl ≤ r − 1. By Markov’s
inequality, Pr(| la(TG)| ≤ r) = Ω(1r) = Ω(1k). We run the algorithm from Lemma 2.8 and it
finds a (k, l)-tree with probability Ω(1k). By repeating the whole procedure O(k) times, we
can increase the success probability to a positive constant.

4.3 Vector Coloring

A vector coloring of a graph G on n vertices of value r > 1 is an assignment of unit length
vectors vu in R

n for each vertex u so that for every edge uv, vu ·vv ≤ −1/(r− 1). The vector
chromatic number χv(G) is the smallest real r admitting a vector coloring.

Once we have a vector coloring, we can use a random hyperplane through the origin with
normal h chosen uniformly over the surface of the unit hypersphere to divide the vertices in
V1 and V2: For vertex u, we put u in V1 if vu · h ≥ 0; otherwise, we put it in V2.

By the linearity of expectation, we can upper bound the expected number of labels as
the expected number of vertices put in V1, which is half of them, plus an upper bound of the
expected number of edges in the tree that have both endpoints in V2, which depend on the
angle between these two vertices’ vectors. The vector coloring value gives us a lower bound
on the size of this angle. Paraphrasing Lemma 3.2 in Goemans and Williamson [23], we have

Lemma 4.8. For a random hyperplane normal h and two vectors vu and vv, we have

Pr(sign(vu · h) 6= sign(vv · h)) =
1

π
arccos(vu · vv).

19

Hence we have

E(| la(TG)|) ≤
k + l

2
+

(

1−
arccos(−1/(r − 1))

π

)

k − 1

2
.

By Markov’s inequality and by using that | la(TG)| is an integer quantity, we see that such a
random hyperplane gives us at most the expected number of labels with probability at least
1/(E(| la(TG)|)+1). If we pick E(| la(TG)|)+1) hyperplanes independently of each other, with
probability at least 1−e−1 one of them will use at most E(| la(TG)|) labels. Since E(| la(TG)|)
is a polynomial in k, we can run Lemma 2.8 for each hyperplane to obtain the following
algorithm guarantee.

Theorem 4.9. Assume we are given a vector coloring of the host graph of some value r.
Then there is a Monte-Carlo polynomial space algorithm for finding a (k, l)-tree running in
time

O∗

(

2

(

k+l
2

+
(

1−
arccos(−1/(r−1))

π

)

k−1
2

))

which never reports a false positive, and reports false negatives with constant probability.

5 Corollaries

5.1 Solving (k, l)-Tree and k-IST in Bounded Degree Graphs

For a graph of bounded degree ∆ that is neither complete nor an odd cycle, it is possible to
construct a proper ∆-coloring in linear time (e.g., by Lovász’s proof of Brooks’ theorem [33]).
Note that, given a graph that is either complete or an odd cycle, (k, l)-Tree can clearly be
solved in polynomial time. In conjunction with Theorem 4.3, this yields the following result.

Corollary 5.1. There is a Monte-Carlo polynomial space algorithm for (k, l)-Tree in graphs

of bounded degree ∆ which runs in time O∗

(

2

(

1− x(∆−x)
∆(∆−1)

)

k+(1− x
∆)l
)

, where x = ⌊∆+(l/k)(∆−1)
2 ⌉.

In particular, the running time can be bounded by O∗

(

2

(

1−
⌊∆
2 ⌋⌈∆

2 ⌉

∆(∆−1)

)

k+ l
2

)

. With l = 2, the

same result holds for k-Path, and with k = n, for Hamiltonicity.

In particular, if ∆ < 13 we get k-Path and Hamiltonicity algorithms in O∗(1.655k)
and O∗(1.655n) time, respectively, that are faster than the algorithms from [4, 2].

As shown in [44], a graph G of bounded degree ∆ has a spanning tree with at least k
internal vertices iff it contains a tree with exactly k internal vertices and at most k − k−2

∆−1 =
∆−2
∆−1k + O(1) leaves.3 Therefore, by the above corollary,4 we can solve k-IST in time

O∗

(

2

(

1− x(∆−x)
∆(∆−1)

)

(1+∆−2
∆−1)k+(1−

x
∆)(

∆−2
∆−1)k

)

, where x = ⌊3∆
2−6∆+2

2(2∆−3) ⌉. That is, we can solve

3For graphs with a small bounded degree, this bound is better than the one of Strategy A in Section 3 (i.e.,
l ≤ 0.8628k). Indeed, for ∆ ≤ 8, this bound implies that l ≤ 0.8572k.

4Note that now, in the context of k-IST, k is the number of internal vertices, where in Corollary 5.1, it is
the total number of vertices.

20

Reference Variant ∆ = 3 ∆ = 4 ∆ = 5 ∆ = 6

Zehavi [44] Directed O∗(2.51985k) O∗(2.99662k) O∗(3.24901k) O∗(3.40267k)

Corollary 5.2 Undirected O∗(2.24493k) O∗(2.66968k) O∗(2.87787k) O∗(3.00355k)

Raible et al. [38] Undirected O∗(1.96799n) O∗(1.98735n) O∗(1.99376n) O∗(1.99777n)

Corollary 5.2 Undirected O∗(1.71449n) O∗(1.80251n) O∗(1.82948n) O∗(1.84227n)

Table 3: Some concrete figures for running times of algorithms for k-IST in bounded degree
graphs.

k-IST in time O∗

(

2

[

(3∆−5
∆−1

)−(x(3∆
2+3x+2−6∆−2x∆)

∆(∆−1)2
)

]

k
)

. Moreover, the worse running time is ob-

tained when k+ l = n and l = ∆−2
∆−1k. Therefore, the worse running time is obtained when k =

∆−1
2∆−3n, which makes our algorithm run in time O∗

(

2

[

(3∆−5
∆−1

)−(x(3∆
2+3x+2−6∆−2x∆)

∆(∆−1)2
)

]

[∆−1
2∆−3]n

)

,

which is equal to O∗

(

2

[

(3∆−5
2∆−3

)−(x(3∆
2+3x+2−6∆−2x∆)
∆(∆−1)(2∆−3)

)

]

n
)

. Thus, we also have the following

result.

Corollary 5.2. There is a Monte-Carlo polynomial space algorithm for k-IST in graphs of
bounded degree ∆ which runs in time

O∗(min

{

2

[

(3∆−5
∆−1

)−(x(3∆
2+3x+2−6∆−2x∆)

∆(∆−1)2
)

]

k
, 2

[

(3∆−5
2∆−3

)−(x(3∆
2+3x+2−6∆−2x∆)
∆(∆−1)(2∆−3)

)

]

n
}

),

where x = ⌊3∆
2−6∆+2

2(2∆−3) ⌉.

5.2 Subcubic Graphs of Large Girth

Fractional chromatic number has been intensively studied for graphs of maximum degree 3
(aka subcubic graphs) of large girth. Perhaps the most important result in this field is due to
Dvořák, Sereni and Volec [13], stating that every subcubic triangle-free graph has fractional
chromatic number at most 14/5. Unfortunately, their proof does not provide a polynomial-
time algorithm for finding such a coloring. By Lemma 4.4, such an algorithm would imply
an algorithm for (k, l)-tree running in time O∗(2

9
14

k+ 5
14

l) = O∗(1.562k1.281l). However, we
may use an earlier result of Liu [31], which gives a bound of 43

15 . Liu’s proof is inductive and
can be turned to a polynomial-time algorithm which finds a (516 : 180)-coloring [32]. By the
second claim of Lemma 4.4, we get the following corollary.

Corollary 5.3. There is a O∗(1.571k1.274l)-time Monte-Carlo polynomial space algorithm
for finding a (k, l)-tree in a subcubic triangle-free graph.

Hatami and Zhu [27] analyzed the following simple algorithm for sampling an independent
set I: choose a random bijection π : [n] → V (G), and for every i = 1, . . . , n, include π(i) in the
independent set I if none of its neighbors is included in I. They show lower bounds pk for the
probability that any vertex v is included in I, assuming that G is subcubic and has girth at

21

least 2k+1. In particular, they proved that p3 = 1/2.78571 ≥ 0.3589, p5 = 1/2.67215 ≥ 0.3742
and p7 = 1/2.66681 ≥ 0.3749. These bounds, together with Lemma 4.7 imply Monte-Carlo
algorithms for finding a (k, l)-tree in a subcubic graphs of girth at least 7, 11 and 15 running
in times O∗(1.5595k1.283l), O∗(1.5431k1.2962l) and O∗(1.5423k1.2969l), respectively.

5.3 k-Path in Undirected Subcubic Graphs

In this section we reduce the k-Path problem in subcubic graphs to vertex-weighted k-Path in
triangle-free subcubic graphs. This is inspired by a similar technique used by Feder, Motwani
and Subi [15] and Eppstein [14] for finding long cycles, where triangles are removed at a cost
of introducing weights at edges. By plugging in results from Section 5.2, we get an O(1.571k)-
time algorithm. This is faster than the algorithm running in time O(22/3k) = O(1.588k) that
follows from Corollary 5.1. The improvement we get is admittedly modest, but at least it
shows that the natural barrier of O(22/3k) can be broken.

Let G be a graph and let w : V → N be a weight function. Let vertices a, b and c form
a triangle in G. By G/abc we denote the graph obtained by contracting vertices a, b and c
into a single vertex t, without introducing multiple edges or loops (this is sometimes called a
∆− Y transform). Let w/abc : V (G/abc) → N be a weight function defined by

w/abc(x) =

{

w(x) if x 6= t,

w(a) + w(b) + w(c) otherwise.

Lemma 5.4. Let (G,w) be an undirected vertex-weighted subcubic graph, and let vertices a,
b and c form a triangle in G. If (G,w) contains a path of weight k and length d, then
(G/abc,w/abc) contains a path of weight at least k and length at most d. Moreover, if
(G/abc,w/abc) contains a path of weight k, then (G,w) contains a path of weight k.

Proof. Let P be a path of largest weight in (G,w) among paths of length at most d. If
{a, b, c} ∩ V (P) = ∅ then P is a path of weight w(P) in (G/abc,w/abc). Hence assume
{a, b, c} ∩ V (P) 6= ∅. We claim that there is a path P1 of length at most d in (G,w) such
that vertices {a, b, c} ∩ V (P) appear consecutively in P . Indeed, if {a, b, c} ∩ V (P) do not
appear consecutively in P then for two of them, say for a and b, for some integer p ≥ 1, path
P contains a subpath av1 . . . vpb, such that c 6∈ {v1, . . . , vp}. Since G is subcubic, one of the
vertices a, b is an endpoint of P ; assume w.l.o.g. that a is an endpoint of P . Then we set
P1 = P − {bvp} ∪ {ab}. Note that P1 has the same length as P and if c ∈ V (P1), then c is
a neighbor of b in P1. Hence P1 is the claimed path. Let t be the vertex of G/abc obtained
by contracting triangle abc. After replacing cba in P1 by t, we get a path of weight at least
w(P) in (G/abc,w/abc).

Consider a path P ′ in (G/abc,w/abc). If t 6∈ V (P ′), then P ′ is a path of weight w/abc(P ′)
in (G,w). Otherwise it is easy to see that we can obtain a path of weight w/abc(P ′) in (G,w)
by replacing t in P ′ by one of the paths abc, bca or cab.

Corollary 5.5. For a given an undirected subcubic graph G one can build in O(n) time a
weighted subcubic triangle-free graph (G′, w) such that G contains a path of length k iff G′

contains a path of weight at least k and length at most k.

Proof. Assign weight 1 to every vertex and apply Lemma 5.4 as long as the graph contains a
triangle.

22

Now we observe that Lemma 2.8 generalizes to vertex weighted graphs, provided that the
weights are integral, positive and not too big, similarly as shown in [2].

Lemma 5.6. Let W be a positive integer. Let G be an undirected graph with a vertex-weight
function w : V (G) → [W]. Let V (G) = V1 ∪ V2 be a fixed bipartition of the vertex set of the
host graph G. There is an algorithm running in O∗(2rW + W logW) time and polynomial
space such that

• If G does not contain a (k, l)-tree of weight at least W , then the algorithm always answers
NO,

• If G contains a (k, l)-tree TG of weight at least W such that | la(TG)| ≤ r, then the
algorithm answers YES with probability at least 1

2 .

Proof. (Sketch.) We add an additional indeterminate η in such a way that a vertex x of
weight w(x) contributes ηw(x) to the monomial. More precisely, for a branching walk B and
labelling ℓ, we redefine the corresponding monomial as follows.

mon(B, ℓ) = zh(1)
∏

{u,v}∈E(T)
u<v

xh(u),h(v)
∏

q∈la(B)

yh(q),ℓ(q)
∏

x∈V (T)

ηw(h(x)) ,

It is straightforward to verify that the proof of Lemma 2.2 is still valid in this setting and
the polynomial evaluation algorithm can be easily adapted. Let us group the terms of P↓r

according to the exponent at η.

P↓r =
∑

i≥0

Riη
i.

Our task reduces now to determine whether there is an integer i∗ ≥ W such that the poly-
nomial Ri∗ is non-zero. This is done in a standard way, by sampling the values of all inde-
terminates except for η. Then, by Schwartz-Zippel Lemma, Ri∗(x,y, z) 6= 0 with probability
at least 1/2, provided that we use a field and of size at least 6k (and still of characteristic
two). The value of the largest integer i such that Ri(x,y, z) 6= 0 can be determined using
interpolation in O(W logW) time after W evaluations of the polynomial, see e.g. [2] or [5] for
details.

By combining Corollary 5.5, Lemma 5.6 (for l = 2), Lemma 4.4 and Liu’s bound [31]
similarly as in Section 5.2, we get the following corollary.

Corollary 5.7. There is a O∗(1.571k)-time Monte-Carlo polynomial space algorithm for find-
ing a k-path in an undirected subcubic graph.

We note, similarly as we did in Section 5.2, that if there is a (possibly randomized)
polynomial-time algorithm that finds an a : b coloring for a/b = 14/5, then the above bound
improves to O∗(1.562k).

5.4 Solving (k, l)-Tree in Graphs with Small Vector Chromatic Number

One of the most striking powers of semidefinite programming is that it is possible to obtain
a vector coloring of value r = χv(G) + ǫ for any fixed ǫ > 0 in polynomial time, see for
instance [21]. Combining such a vector coloring algorithm with Lemma 4.9, we have the
following corollary.

23

Corollary 5.8. There is a Monte-Carlo polynomial space algorithm for (k, l)-Tree that for
every fixed constant ǫ > 0 runs in time

O∗

(

2

(

k+l
2

+
(

1−
arccos(−1/(χv(G)+ǫ−1))

π

)

k−1
2

))

.

With l = 2 the same result holds for k-Path and with k = n for Hamiltonicity.

In particular, if χv(G) ≤ 8, we get k-Path and Hamiltonicity algorithms in O∗(1.655k)
and O∗(1.655n) time, respectively, that are faster than the previous algorithms [4, 2].

Let us observe that thanks to Theorem 4.1, we can apply Corollary 5.8 whenever we
know that a chromatic number or the fractional chromatic number is low, even if no efficient
algorithm for finding the coloring is known. For example, since χf ≤ 14/5 for triangle-free
subcubic graphs [13], by plugging it into Corollary 5.8 and using the triangle-removing trick
from Section 5.3, one gets an O∗(1.576k)-time algorithm for k-Path in subcubic graphs (which
is slightly worse than the bound of Corollary 5.7, but avoids the use of the complicated Liu’s
algorithm [31]).

Acknowledgments

We thank Zdenek Dvořák and Dan Král’ for helpful discussions on fractional chromatic num-
ber.

References

[1] N. Alon, R. Yuster, and U. Zwick. Color coding. J. ACM, 42(4):844–856, 1995.

[2] A. Björklund. Determinant sums for undirected hamiltonicity. SIAM J. on Computing,
43(1):280–299, 2014.

[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling salesman problem
in bounded degree graphs. In Proc. ICALP’08, pages 198–209, 2008.

[4] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Narrow sieves for parameterized
paths and packings. CoRR, abs/1007.1161, 2010.

[5] A. Björklund, P. Kaski, and L. Kowalik. Probably optimal graph motifs. In N. Portier
and T. Wilke, editors, STACS, volume 20 of LIPIcs, pages 20–31. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[6] H. L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithm,
14(1):1–23, 1993.

[7] J. Chen, J. Kneis, S. Lu, D. Molle, S. Richter, P. Rossmanith, S. H. Sze, and F. Zhang.
Randomized divide-and-conquer: Improved path, matching, and packing algorithms.
SIAM J. on Computing, 38(6):2526–2547, 2009.

[8] N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo. Algorithm for
finding k-vertex out-trees and its application to k-internal out-branching problem. J.
Comput. Syst. Sci., 76(7):650–662, 2010.

24

[9] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Woj-
taszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In Proc. FOCS’11, pages 150–159, 2011.

[10] J. Daligault. Combinatorial techniques for parameterized algorithms and kernels, with
applicationsto multicut. PhD thesis, Universite Montpellier II, Montpellier, Herault,
France, 2011.

[11] A. Demers and A. Downing. Minimum leaf spanning tree. US Patent no. 6,105,018,
August 2013.

[12] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7:193–195, 1978.

[13] Z. Dvorak, J. Sereni, and J. Volec. Subcubic triangle-free graphs have fractional chro-
matic number at most 14/5. J. London Math. Society, 89(3):641–662, 2014.

[14] D. Eppstein. The traveling salesman problem for cubic graphs. J. Graph Algorithms
Appl., 11(1):61–81, 2007.

[15] T. Feder, R. Motwani, and C. S. Subi. Approximating the longest cycle problem in sparse
graphs. SIAM J. Comput., 31(5):1596–1607, 2002.

[16] D. G. Ferguson, T. Kaiser, and D. Král’. The fractional chromatic number of triangle-free
subcubic graphs. Eur. J. Comb., 35:184–220, 2014.

[17] F. Fomin, D. Lokshtanov, and S. Saurabh. Efficient computation of representative sets
with applications in parameterized and exact agorithms. In SODA, pages 142–151, 2014.

[18] F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear vertex kernel for
maximum internal spanning tree. J. Comput. Syst. Sci., 79(1):1–6, 2013.

[19] F. V. Fomin, F. Grandoni, D. Lokshtanov, and S. Saurabh. Sharp separation and appli-
cations to exact and parameterized algorithms. Algorithmica, 63(3):692–706, 2012.

[20] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Representative sets of product
families. In ESA, pages 443–454, 2014.

[21] B. Gärtner and J. Matǒusek. Approximation algorithms and semidefinite programming.
Springer, 2012.

[22] H. Gebauer. On the number of hamilton cycles in bounded degree graphs. In Proc.
ANALCO’08, pages 241–248, 2008.

[23] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, 1995.

[24] F. Grandoni. A note on the complexity of minimum dominating set. J. Discrete Algo-
rithms, 4(2):209–214, 2006.

[25] G. Gutin, I. Razgon, and E. J. Kim. Minimum leaf out-branching and related problems.
Theor. Comput. Sci., 410(45):4571–4579, 2009.

25

[26] N. Gvozdenovic and M. Laurent. The operator psi for the chromatic number of a graph.
SIAM Journal on Optimization, 19(2):572–591, 2008.

[27] H. Hatami and X. Zhu. The fractional chromatic number of graphs of maximum degree
at most three. SIAM J. Discrete Math., 23(4):1762–1775, 2009.

[28] K. Iwama and T. Nakashima. An improved exact algorithm for cubic graph TSP. In
Proc. COCOON’07, pages 108–117, 2007.

[29] I. Koutis. Faster algebraic algorithms for path and packing problems. In Proc. ICALP’08,
volume 5125 of LNCS, pages 575–586, 2008.

[30] W. Li, J. Wang, J. Chen, and Y. Cao. A 2k-vertex kernel for maximum internal spanning
tree. CoRR abs/1412.8296, 2014.

[31] C. Liu. An upper bound on the fractional chromatic number of triangle-free subcubic
graphs. SIAM J. Discrete Math., 28(3):1102–1136, 2014.

[32] C. Liu. personal communication, 2015.

[33] L. Lovász. Three short proofs in graph theory. J. Combin. Theory Ser., 19:269–271,
1975.

[34] B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics, 25:239–
254, 1985.

[35] J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on
Steiner tree and related problems. In Proc. ICALP’09, volume 5555 of LNCS, pages
713–725, 2009.

[36] J. Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):868–884, 2013.

[37] E. Prieto and C. Sloper. Reducing to independent set structure – the case of k-internal
spanning tree. Nord. J. Comput., 12(3):308–318, 2005.

[38] D. Raible, H. Fernau, D. Gaspers, and M. Liedloff. Exact and parameterized algorithms
for max internal spanning tree. Algorithmica, 65(1):95–128, 2013.

[39] I. Razgon. Exact computation of maximum induced forest. In Proc. SWAT’06, pages
160–171, 2006.

[40] E. R. Scheinerman and D. H. Ullman. Fractional graph theory. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons Inc., 1997.

[41] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

[42] H. Shachnai and M. Zehavi. Representative families: A unified tradeoff-based approach.
In ESA, pages 786–797, 2014.

[43] R. Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–
318, 2009.

26

[44] M. Zehavi. Algorithms for k-internal out-branching. In Proc. IPEC’13, volume 8246 of
LNCS, pages 361–373. Springer, 2013.

[45] M. Zehavi. Solving parameterized problems by mixing color coding-related techniques.
CoRR, abs/1410.5062, 2014.

[46] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. International Sym-
posium on Symbolic and Algebraic Computation, volume 72 of LNCS, pages 216–226,
1979.

27

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Notation

	2 Finding Trees on k Vertices with l Leaves
	2.1 Branching Walks
	2.2 Labeling
	2.3 The Polynomial
	2.4 Evaluating the Polynomial P"3223379 r in Time O*(2r)
	2.5 A Single Evaluation Algorithm
	2.6 The random bipartition algorithm

	3 Spanning Trees with Many Internal Vertices
	4 Colored Graphs
	4.1 The Ordinary Vertex Coloring
	4.2 Fractional Vertex Coloring
	4.3 Vector Coloring

	5 Corollaries
	5.1 Solving (k,l)-Tree and k-IST in Bounded Degree Graphs
	5.2 Subcubic Graphs of Large Girth
	5.3 k-Path in Undirected Subcubic Graphs
	5.4 Solving (k,l)-Tree in Graphs with Small Vector Chromatic Number

