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CONVEX ANALYSIS IN DECENTRALIZED STOCHASTIC
CONTROL, STRATEGIC MEASURES AND OPTIMAL SOLUTIONS

SERDAR YÜKSEL AND NACI SALDI ∗

Abstract. This paper is concerned with the properties of the sets of strategic measures in-
duced by admissible team policies in decentralized stochastic control and the convexity properties
in dynamic team problems. To facilitate a convex analytical approach, strategic measures for team
problems are introduced. Properties such as convexity, compactness and Borel measurability under
weak convergence topology are studied, and sufficient conditions for each of these properties are
presented. These lead to existence of and structural results for optimal policies. It will be shown
that the set of strategic measures for teams which are not classical is in general non-convex, but the
extreme points of a relaxed set consist of deterministic team policies, which lead to their optimality
for a given team problem under an expected cost criterion. Externally provided independent com-
mon randomness for static teams or private randomness for dynamic teams do not improve the team
performance. The problem of when a sequential team problem is convex is studied and necessary
and sufficient conditions for problems which include teams with a non-classical information struc-
ture are presented. Implications of this analysis in identifying probability and information structure
dependent convexity properties are presented.
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1. Introduction. Team decision theory has its roots in control theory and eco-
nomics. Marschak [37] was perhaps the first to introduce the basic elements of teams,
and to provide the first steps toward the development of a team theory. Radner
[42] provided foundational results for static teams, establishing connections between
person-by-person optimality, stationarity, and team-optimality [38]. Contributions of
Witsenhausen [56, 57, 58, 54, 53] on dynamic teams and characterization of infor-
mation structures have been crucial in the progress of our understanding of dynamic
teams. We refer the reader to Section 1.1, where Witsenhausen’s intrinsic model,
and characterization of information structures are discussed in detail. Further discus-
sion on design of information structures in the context of team theory is available in
[5, 48, 61].

Convexity is a very important property for optimization problems. A property
related to convex analysis that is relevant in team problems is the characterization
of the sets of strategic measures; these are the probability measures induced on the
exogenous variables, and measurement and action spaces by admissible control poli-
cies. In the context of single decision maker control problems, such measures have
been studied extensively in [45, 41, 24, 27]. A study of strategic measures for team
problems has not been made to our knowledge, and it will be observed in this paper
that many of the properties that are natural for fully-observed single-decision-maker
stochastic control problems, such as convexity, do not generally extend to a large class
of stochastic team problems. On the other hand, new results on the existence and the
structure of optimal team policies will be established through such a convex analytical
formulation.
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Another dimension of a convex analytical approach for team problems is on the
characterization of convexity of cost functions on the set of admissible team policies:
In the context of decentralized control problems, under convexity, for global optimal-
ity of team policies it may suffice to search for person-by-person optimal solutions
(through [42],[34, 21]; see [61] for extensions and a detailed literature review), and
iterative algorithms such as sequential update laws as well as gradient based com-
putational algorithms may converge to an optimal solution. In the context of linear
quadratic Gaussian (LQG) static teams, this leads to the optimality of linear poli-
cies. However, characterization of convexity is in general a difficult problem and only
restrictive conditions appear in the literature where these conditions do not utilize
the probabilistic and information structure related aspects of convexity even for static
teams. In view of this discussion, there are two main contributions of the paper:

• The first set of contributions involve the sets of strategic measures: Strategic
measures for static and dynamic team problems will be defined and stud-
ied, and their integral representations, convexity and Borel measurability
properties under the weak convergence topology will be investigated. It will
be shown that static and general dynamic team problems do not lead to a
convex set of strategic measures, even in the presence of common or inde-
pendent randomness, unlike a small class of dynamic team problems with
classical information structures (that includes fully observed single-decision-
maker stochastic control problems). It will be shown that externally provided
independent common randomness or private randomness is useless for static
teams or dynamic team problems, respectively. Conditions for compactness
of the sets of strategic measures under the weak convergence topology are pre-
sented, which lead to the existence of optimal team policies. Finally, Borel
measurability properties of strategic measures and universal measurability
properties of value functions are established.

• The paper addresses the problem of when a dynamic sequential team problem
is convex. It provides necessary and sufficient conditions for the convexity
of static and dynamic team problems by utilizing the information structure
and probability related properties. Building on these results, generalizations
of Radner’s [42] and Krainak et. al.’s [33] theorems will be presented. For
dynamic teams, static reduction is provided as a useful tool to establish not
only convexity, but also obtain a precise method through which a probabilistic
characterization of the lack of a signaling incentive among decision makers
can be characterized; this generalizes the partial nestedness conditions leading
to the characterization of a large class of convex teams.

We note that our formulation in this paper considers stochastic criteria under an
expected cost minimization objective. For further criteria where convexity properties
have been studied, we refer the reader to [44], [50] and [9] where operator theoretic
criteria have been considered; we also refer the reader to a tutorial paper [35] and [7].

Here is a summary of the rest of the paper. In the following, we first provide a
review of dynamic team problems, utilizing Witsenhausen’s intrinsic model. Section
2 introduces strategic measures and their representation, convexity and measurability
properties, as well as implications on the structural properties and sufficient conditions
for the existence of optimal solutions to team problems. Section 3.1 investigates
convexity for static teams and subsection 3.3 studies the convexity properties for
dynamic teams.
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1.1. Sequential dynamic teams and Witsenhausen’s characterization of
information structures. In this section, we introduce the characterizations as laid
out by Witsenhausen, termed as the Intrinsic Model [57]; see [61] for a more com-
prehensive overview and further characterizations and classifications of information
structures. In this model (described in discrete time), any action applied at any
given time is regarded as applied by an individual decision maker/agent, who acts
only once. One advantage of this model, in addition to its generality, is that the
definitions regarding information structures can be compactly described.

Suppose that in the decentralized system considered below, there is a pre-defined
order in which the decision makers act. Such systems are called sequential systems
(for non-sequential teams, we refer the reader to Andersland and Teneketzis [3], [4]
and Teneketzis [47], in addition to Witsenhausen [53]). Suppose that in the following,
the action and measurement spaces are standard Borel spaces, that is, Borel subsets of
Polish (complete, separable and metric) spaces. In the context of a sequential system,
the Intrinsic Model has the following components:

• A collection ofmeasurable spaces {(Ω,F), (Ui,U i), (Yi,Yi), i ∈ N}, specifying
the system’s distinguishable events, and the control and measurement spaces.
HereN = |N | is the number of control actions taken, and each of these actions
is taken by an individual (different) DM (hence, even a DM with perfect recall
can be regarded as a separate decision maker every time it acts). The pair
(Ω,F) is a measurable space (on which an underlying probability may be
defined). The pair (Ui,U i) denotes the measurable space from which the
action, ui, of decision maker i is selected. The pair (Yi,Yi) denotes the
measurable observation/measurement space.

• A measurement constraint which establishes the connection between the ob-
servation variables and the system’s distinguishable events. The Yi-valued ob-
servation variables are given by yi = ηi(ω,u[1,i−1]), u[1,i−1] = {uk, k ≤ i−1},
ηi measurable functions and uk denotes the action of DM k. Hence, the
information variable yi induces a σ-field, σ(Ii) over Ω×

∏i−1
k=1 U

k

• A design constraint which restricts the set of admissible N -tuple control laws
γ = {γ1, γ2, . . . , γN}, also called designs or policies, to the set of all measur-

able control functions, so that ui = γi(yi), with yi = ηi(ω,u[1,i−1]), and γi, ηi

measurable functions. Let Γi denote the set of all admissible policies for DM
i and let Γ =

∏

k Γ
k.

We note that, the intrinsic model of Witsenhausen gives a set-theoretic charac-
terization of information fields, however, for standard Borel spaces, the model above
is equivalent to that of Witsenhausen’s.

One can also introduce a fourth component:

• A probability measure P defined on (Ω,F) which describes the measures on
the random events in the model.

Under this intrinsic model, a sequential team problem is dynamic if the informa-
tion available to at least one DM is affected by the action of at least one other DM.
A decentralized problem is static, if the information available at every decision maker
is only affected by exogenous disturbances (Nature); that is no other decision maker
can affect the information at any given decision maker.

Information structures can also be classified as classical, quasi-classical or non-
classical. An Information Structure (IS) {yi, 1 ≤ i ≤ N} is classical if yi contains all
of the information available to DM k for k < i. An IS is quasi-classical or partially
nested, if whenever uk, for some k < i, affects yi through the measurement function
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ηi, yi contains yk (that is σ(yk) ⊂ σ(yi)). An IS which is not partially nested is
nonclassical.

Let

γ = {γ1, · · · , γN}

and let a cost function be defined as:

J(γ) = E[c(ω0,u)] = E[c(ω0, γ
1(y1), · · · , γN(yN ))], (1.1)

for some non-negative measurable loss (or cost) function c : Ω0×
∏

k U
k → R+. Here,

we have the notation u = {ut, t ∈ N}. Here, ω0 may be viewed as the cost function
relevant exogenous variable and is contained in ω.

Definition 1.1. For a given stochastic team problem with a given information
structure, {J ; Γi, i ∈ N}, a policy (strategy) N -tuple γ∗ := (γ1∗, . . . , γN ∗

) ∈ Γ is
an optimal team decision rule (team-optimal decision rule or simply team-optimal
solution) if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗, (1.2)

provided that such a strategy exists. The cost level achieved by this strategy, J∗, is the
minimum (or optimal) team cost.

Definition 1.2. For a given N -person stochastic team with a fixed information
structure, {J ; Γi, i ∈ N}, an N -tuple of strategies γ∗ := (γ1∗, . . . , γN ∗

) constitutes a
Nash equilibrium (synonymously, a person-by-person optimal (pbp optimal) solution)
if, for all β ∈ Γi and all i ∈ N , the following inequalities hold:

J∗ := J(γ∗) ≤ J(γ−i∗, β), (1.3)

where we have adopted the notation

(γ−i∗, β) := (γ1∗, . . . , γ(i−1)∗, β, γ(i+1)∗, . . . , γN∗). (1.4)

For notational simplicity, let for any 1 ≤ k ≤ N , γ−k := {γi, i ∈ {1, · · · , N}\{k}}
In the following, we will denote by bold letters the ensemble of random variables

across the DMs; that is y = {yi, i = 1, · · · , N} and u = {ui, i = 1, · · · , N}.

1.2. Static reduction of sequential dynamic teams. Following Witsen-
hausen [58], we say that two information structures are equivalent if: (i) The policy
spaces are equivalent/isomorphic in the loose sense that policies under one information
structure are realizable under the other information structure, (ii) the costs achieved
under equivalent policies are identical almost surely, and (iii) if there are constraints
in the admissible policies, the isomorphism among the policy spaces preserves the
constraint conditions.

A large class of sequential team problems admit an equivalent information struc-
ture which is static. This is called the static reduction of an information structure.

1.2.1. Partially nested case. An important information structure which is
not nonclassical, is of the quasi-classical type, also known as partially nested; an IS

is partially nested if an agent’s information at a particular stage t can depend on the
action of some other agent at some stage t′ ≤ t only if she also has access to the
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information of that agent at stage t′. For such team problems with partially nested
information, one talks about precedence relationships among agents: an agent DM i
is precedent to another agent DM j (or DM i communicates to DM j), if the former
agent’s actions affect the information of the latter, in which case (to be partially
nested) DM j has to have the information based on which the action-generating
policy of DM i was constructed.

For partially nested (or quasi-classical) information structures, static reduction
has been studied by Ho and Chu in the specific context of LQG systems [31] and for a
class of non-linear systems satisfying restrictive invertibility properties [32]. We will
discuss partially nested team problems further in Section 3.3.2.

1.2.2. Nonclassical case: Witsenhausen’s equivalent model and static
reduction of sequential dynamic teams. Witsenhausen shows that a large class
of sequential team problems admit an equivalent information structure which is static.
This is called the static reduction of an information structure.

An equivalence between sequential dynamics teams and their static reduction is
as follows (termed as the equivalent model [58]).

Consider a dynamic team setting according to the intrinsic model where there are
N time stages, and each DM observes, for some t = 1, 2, · · · , N ,

yt = ηt(ω, u
1, u2, · · · , ut−1),

and the decisions are generated by ut = γt(y
t). Here, as before, ω is the collection of

primitive (exogenous) variables. The resulting cost under a given team policy is, as
in (1.1)

J(γ) = E[c(ω0,u)].

This dynamic team can be converted to a static team provided that the following
absolute continuity condition holds: For every t ∈ N , there exists a function ft such
that for all Borel S ⊂ Yt:

P (yt ∈ S|ω, u1, · · · , ut−1)

=

∫

S

ft(ω, u
1, u2, · · · , ut−1, yt)Qt(dy

t), (1.5)

where Qt is some arbitrary reference probability measure for the variable yt. Under
any fixed team policy, we can then write

P (dω, dy) = P (dω)

N
∏

t=1

ft(ω, u
1, u2, · · · , ut−1, yt)Qt(dy

t).

The cost function J(γ) can then be written as

J(γ) =

∫

P (dω)
N
∏

t=1

(ft(yt, ω, u
1, u2, · · · , ut−1, yt)Qt(dy

t))c(ω0,u), (1.6)

where now the measurement variables can be regarded as independent and by in-
corporating the {ft} terms into c, we can obtain an equivalent static team problem.
Hence, the essential step is to appropriately adjust the probability space and the cost

5



function. The new cost function may now explicitly depend on the measurement
values, such that

cs(ω,y,u) = c(ω0,u)

N
∏

t=1

ft(yt, ω, u
1, u2, · · · , ut−1, yt).

In this case, we can view ω,y as the cost-relevant exogenous variable: By an abuse of
notation, we will use the same notation ω0 to denote ω,y when it is clear that such
a cost function comes from a static reduction.

We note that, as Witsenhausen notes in [58], a static reduction always holds
when the measurement variables take values from countable set since a reference
measure as in Qt above can be constructed on the measurement variable yt (e.g.,
Qt(y

t) =
∑

i≥1 2
−i1{yt=mi} where Yt = {mi, i ∈ N}) so that the absolute continuity

condition always holds. On the other hand, for continuous spaces, observe that under
a control-sharing pattern with y2 = u1, the absolute continuity condition required for
Witsenhausen’s static reduction may fail: P (y2 ∈ A|u1) = 1{u1∈A}, leading to a delta
function supported at u1 and if the reference measure µ with y2 ∼ µ admits a density,
the absolute continuity condition will not hold. We also note that a continuous-time
generalization for static reduction similar to Girsanov’s method has been presented
by Charalambous and Ahmed [19].

1.3. Convex static teams: Radner’s and Krainak et.al.’s theorems. An
important property of convexity is that local optimality conditions imply global op-
timality conditions, as we briefly detail below. We note that a more general charac-
terization of convexity will be presented later in the paper.

Definition 1.3. Given a static stochastic team problem {J ; Γi, i ∈ N }, a policy
N -tuple γ ∈ Γ is stationary if (i) J(γ) is finite, (ii) the N partial derivatives in the
following equations are well defined, and (iii) γ satisfies these equations:

[

∇uiEω|yic(ω0; γ
−i(y), ui)

]

|ui=γi(yi) = 0, a.s. i ∈ N . (1.7)

The following results are due to Krainak et. al. [33] and [61], generalizing Radner
[42]. We follow the presentation in [61], which also contains the proofs of the results.

Theorem 1.1. [42] [33] Let {J ; Γi, i ∈ N } be a static stochastic team problem
where Ui = Rmi , i ∈ N , the loss function c(ω0,u) is convex and continuously differen-
tiable in u a.s., and J(γ) is bounded from below on Γ. Let γ∗ ∈ Γ be a policy N -tuple
with a finite cost (J(γ∗) < ∞), and suppose that for every γ ∈ Γ such that J(γ) < ∞,
the following holds:

∑

i∈N

E{∇uic(ω0; γ
∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, (1.8)

where E{·} denotes the total expectation. Then, γ∗ is a team-optimal policy, and it
is unique if c is strictly convex in u.

Note that the conditions of Theorem 1.1 above do not include the stationarity of
γ∗, and furthermore inequalities (1.8) may not generally be easy to check, since they
involve all permissible policies γ (with finite cost). Instead, either one of the following
two conditions will achieve this objective [33] [61]:
(c.5) For all γ ∈ Γ such that J(γ) < ∞, the following random variables have well-

defined (finite) expectations

∇uic(ω0; γ
∗(y))[γi(yi)− γi∗(yi)], i ∈ N
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(c.6) Γi is a Hilbert space for each i ∈ N , and J(γ) < ∞ for all γ ∈ Γ. Furthermore,

Eω|yi{∇uic(ω0; γ
∗(y)} ∈ Γi, i ∈ N .

Theorem 1.2. [33] [61] Let {J ; Γi, i ∈ N } be a static stochastic team problem
which satisfies all the hypotheses of Theorem 1.1, with the exception of the inequality
(1.8). Instead of (1.8), let either (c.5) or (c.6) be satisfied. Then, if γ∗ ∈ Γ is a
stationary policy it is also team optimal. Such a policy is unique if c(ω0;u) is strictly
convex in u, a.s.

2. Strategic Measures, Convexity Properties, and Optimal Solutions.

2.1. Viewing measurable policies as a subset of randomized policies
and strategic measures. We can view a measurable policy as a special case of
randomized policies. This interpretation has many useful properties, one being the
topological use of the space of probability measures under weak convergence. We recall
here the following representation result due to Borkar [17]. Let X,M be standard Borel
spaces. Let the notation P(X) denote the set of probability measures on X. Consider
the set of probability measures

Θ := {ζ ∈ P(X×M) : ζ(dx, dm) = P (dx)Qf (dm|x), Qf (·|x) = 1{f(x)∈·}, f : X → M},

on X ×M having fixed input marginal P , equipped with weak topology. This set is
the (Borel measurable) set of the extreme points of the set of probability measures
on X × M with a fixed input marginal P . For compact M, the Borel measurability
of Θ follows from [39] since set of probability measures on X×M with a fixed input
marginal P is a convex and compact set in a complete separable metric space, and
therefore, the set of its extreme points is Borel measurable. But the non-compact case
also holds; see Lemma 2.3 in [17]. Furthermore, given a fixed input marginal measure
P on X, any stochastic kernel from X to M can be identified by a probability measure
K ∈ P(X×M) such that

K(A) =

∫

Θ

ξ(dQ)Q(A), A ∈ B(X×M) (2.1)

for some ξ ∈ P(Θ). In particular, a stochastic kernel can thus be viewed as an integral
representation over probability measures induced by deterministic policies.

For a team setup, for any DM k, let

Θk : =

{

ζ ∈ P(Yk × U
k) : ζ = PkQ

γk

, Qγk

(·|yk) = 1{γk(yk)∈·}, γ
k ∈ Γk,

Pk(·) = P (yk ∈ ·)

}

For a static team, Pk would be independent of the policies of the preceding DMs. The
set of all stochastic kernels from Yk to Uk with fixed input marginal measure Pk is
such that any element Kk in this space can be expressed in the form

Kk(A) =

∫

Θk

ξk(dQ)Q(A), A ∈ B(Yk × U
k) (2.2)

for some ξ ∈ P(Θk).
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For stochastic control problems, strategic measures are defined (see [45], [41], [24]
and [27]) as the set of probability measures induced on the product spaces of the state
and action pairs by measurable control policies: Given an initial distribution on the
state, and a policy, one can uniquely define a probability measure on the product
space. Certain measurability, compactness and convexity properties of strategic mea-
sures for single decision maker problems were studied in [24], [41], [27] and [14]. In
the following, we discuss the case for team problems, study some convexity properties
and implications on the existence and structure of optimal policies.

2.2. Convexity properties of sets of strategic measures and redundancy
of common or private independent randomness. Consider a static team prob-
lem defined under Witsenhausen’s intrinsic model in Section 1.1. Let LA(µ) be the set
of strategic measures induced by all admissible team policies with (ω0,y) ∼ µ. In the
following, B = B0×

∏

k(A
k×Bk) are used to denote the Borel sets in Ω0×

∏

k(Y
k×U

k),

LA(µ) :=

{

P ∈ P

(

Ω0 ×
N
∏

k=1

(Yk × U
k)

)

:

P (B) =

∫

B0×
∏

k Ak

µ(dω0, dy)
∏

k

1{uk=γk(yk)∈Bk},

γk ∈ Γk, B ∈ B(Ω0 ×
∏

k

(Yk × U
k))

}

(2.3)

Let LA(µ, γ) be the strategic measure under a particular γ ∈ Γ. Let LR(µ) be the
set of strategic measures induced by all admissible team policies where ω,y ∼ µ and
policies are individually randomized (that is, with independent randomizations):

LR(µ) :=

{

P ∈ P

(

Ω0 ×
N
∏

k=1

(Yk × U
k)

)

: P (B) =

∫

B

µ(dω0, dy)
∏

k

Πk(duk|yk)

}

where Πk takes place from the set of stochastic kernels from Yk to Uk for each k.
Consider Υ = [0, 1]N and let

LC(µ) :=

{

P ∈ P

(

Ω0 ×
N
∏

k=1

(Yk × U
k)

)

: P (B) =

∫

η(dz)LA(µ, γ(z))(B), η ∈ P(Υ)

}

(2.4)

where γ(z) denotes a collection of team policies measurably parametrized by z ∈ Υ so
that the map LA(µ, γ(z)) : Υ → LA(µ) is Borel measurable. Finally, let LCR denote
the set of strategic measures that are induced by some fixed but common independent
randomness and arbitrary private independent randomness.

LCR(µ) :=

{

P ∈ P

(

Ω0 ×
N
∏

k=1

(Yk × U
k)

)

:

P (B) =

∫

B×[0,1]N
η(dz)µ(dω0, dy)

∏

k

Πk(duk|yk, z)

}

Theorem 2.1. Consider a static team.
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• (i) LR has the following representation

LR(µ) ={P ∈ P

(

Ω0 ×
N
∏

k=1

(Yk × U
k)

)

: P (B) =

∫

U(dz)LA(µ, γ(z))(B),

U ∈ P(Υ), U(dv1, · · · , dvN ) =
∏

s

ηk(dvk), ηk ∈ P([0, 1])}, (2.5)

that is U ∈ P(Υ) is constructed by the product of N independent random
variables on [0, 1].

• (ii) LC(µ) is convex. Its extreme points form LA(µ). Furthermore, LR(µ) ⊂
LC(µ).

• (iii)

inf
γ∈Γ

J(γ) = inf
P∈LA(µ)

∫

P (ds)c(s) = inf
P∈LR(µ)

∫

P (ds)c(s) = inf
P∈LC(µ)

∫

P (ds)c(s)

In particular, deterministic policies are optimal among the randomized class.
• (iv) The sets LR(µ) and LCR(µ) are not convex. In particular, the presence
of independent or common randomness does not convexify the set of strategic
measures.

Proof.
• (i) Any stochastic kernel from a Polish space to another one, P (dx|y), can be
realized by some measurable function x = f(y, v) where v is a [0, 1]-valued
independent random variable and f is measurable (see Lemma 1.2 in Gikhman
and Shorodhod [28], Theorem 1 in Feinberg [26] or Lemma 3.1 of Borkar [17]).
In particular, in the representation (2.2), since Θk is a Borel set in a Polish
space, by the Borel isomorphism theorem (Appendix 1 in [24] or Chapter 13
in [23]), there exists a bijection κ between [0, 1] and Θk so that Kk(A) =
∫

p(ds)P κ(s)(A), for some p ∈ P([0, 1]) defined by p(κ−1(A)) = ξ(A). The
result then follows by replacing each of the stochastic kernels with such a
representation due to [28].

• (ii) For convexity, observe that for κ1 ∈ LC(µ), κ2 ∈ LC(µ), and α ∈ (0, 1),
ακ1 + (1− α)κ2 ∈ LC(µ) since with

κ1(B) =

∫

η1(dz)LA(µ, γ(z)), η ∈ P(Υ)

κ2(B) =

∫

η2(dz)LA(µ, γ(z)), η ∈ P(Υ),

(ακ1 + (1− α)κ2)(B) =

∫

(αη1 + (1− α)η2)(dz)LA(µ, γ(z)), η ∈ P(Υ)

For the extreme sets being in LA(µ): Suppose κ =
∫

η(dz)LA(µ, γ(z)) is not
in LA(µ), then it can’t be extreme since for every such κ one can construct
κ1, κ2 and λ ∈ (0, 1) so that κ = λκ1+(1−λ)κ2: Partition the support set of
κ to two disjoint components D1, D2 ∈ B(Υ) with λ = η(D1) and define κ1 =
∫

D2

η(dz)
λ

LA(µ, γ(z)), κ2 =
∫

D1

η(dz)
1−λ

LA(µ, γ(z)). For the converse, suppose

κ is not extreme, then there exists α, η1, η2 such that κ =
∫

(αη1 + (1 −
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α)η2)(dz)LA(µ, γ(z)) and in particular for some set of z values with a positive
measure, the measure cannot be represented as: δz

∏

k 1{γk(yk,z)∈·} for some
Dirac δz measure: If this were possible, η = αη1 + (1 − α)η2, since this has
to be a mixture of two such probability measures.
That, LR(µ) ⊂ LC(µ) follows from the representation in (2.5) and the defi-
nition in (2.4).

• (iii) The inequalities

inf
γ∈Γ

J(γ) = inf
P∈LA(µ)

∫

P (ds)c(s) ≥ inf
P∈LR(µ)

∫

P (ds)c(s) ≥ inf
P∈LC(µ)

∫

P (ds)c(s)

follow since LA(µ) ⊂ LR(µ) ⊂ LC(µ). On the other hand, the integral
∫

P (ds)c(s) is a linear mapping from the convex set LC(µ) to R (possibly to
be extended to include +∞). The extreme points of LC(µ) are those that are
in LA(µ). It then follows from convex analysis (see e.g. Section 2.3 in [41])
that

inf
P∈LC(µ)

∫

P (ds)c(s) = inf
γ∈Γ

J(γ).

• (iv) A convex combination of two measures leads to a new measure which will
not necessarily be the product measure of two marginal probability measures:
Consider two sets of measures P 1P 2 and P̄ 1P̄ 2. For λ ∈ (0, 1), a convex
combination λP 1P 2 +(1−λ)P̄ 1P̄ 2 cannot be written as the product of their
marginals (λP 1 + (1− λ)P̄ 1)(λP 2 + 1− λP̄ 2).

⋄
We state two remarks in the following.
Remark 1. Consider the following set of probability measures:

LM (µ) = {P : P (dω0,y) = µ(dω0, dy), P (dui|yi,y−i) = P (dui|yi), i ∈ N}

This set is a convex set and arises in applications in information theory in the context
of converse theorems in multi-terminal source coding (see e.g. [51]). It is tempting to
claim that LM (µ) = LC(µ), however, a counterexample in [2] reveals that this is not
the case.

Remark 2. In the representation of LR(µ) above in Theorem 2.1-(i), we could
also have gone one step further and allowed for the probability measure on [0, 1] to
be the Lebesgue (uniform) measure; but this would require us to alter the set LA(µ)
in the way the randomization appears. We will revisit this in the following (where
we build on a relevant result due to Gikhman and Skorodhod [28]), where we consider
sequential dynamic teams, instead of only static teams.

We present the following characterization for strategic measures in dynamic se-
quential teams. Let for all n ∈ N, hn = {ω0, y

1, u1, · · · , yn−1, un−1, yn, un}, and
pn(dy

n|hn−1) = p(dyn|ω0, u
1, · · · , un−1) be the transition kernel characterizing the

measurements of DM n according to the intrinsic model. We note that this may be
obtained by the relation:

pn(y
n ∈ ·|ω0, u

1, · · · , un−1) := P

(

ηn(ω, u1, · · · , un−1) ∈ ·

∣

∣

∣

∣

ω0, u
1, · · · , un−1

)

(2.6)

Let LA(µ) be the set of strategic measures induced by deterministic policies and
let LR(µ) be the set of strategic measures induced by independently provided ran-
domized policies. We note as earlier that such an individual randomized policy can
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be represented in a functional form: By Lemma 1.2 in Gikhman and Shorodhod [28]
and Theorem 1 in Feinberg [26], for any stochastic kernel Πk from Yk to Uk, there
exists a measurable function γk : [0, 1]× Yk → Uk such that

m{r : γk(r, yk) ∈ A} = Πk(uk ∈ A|yk), (2.7)

and m is the uniform distribution (Lebesgue measure) on [0, 1].

Theorem 2.2.

• A probability measure P ∈ P

(

Ω0 ×
∏N

k=1(Y
k × Uk)

)

is a strategic measure

induced by a deterministic policy (that is in LA(µ)) if and only if for every
n ∈ {1, · · · , N}:

∫

P (dhn−1, dy
n)g(hn−1, y

n) =

∫

P (dhn−1)

(
∫

Yn

g(hn−1, z)pn(dz|hn−1)

)

,

and

∫

P (dhn)g(hn−1, y
n, un) =

∫

P (dhn−1, dy
n)

(
∫

Un

g(hn−1, y
n, a)1{γn(yn)∈da}

)

,

for some γn ∈ Γn, for all continuous and bounded g, with P (dω0) = µ(dw0).

• A probability measure P ∈ P

(

Ω0 ×
∏N

k=1(Y
k × Uk)

)

is a strategic measure

induced by a randomized policy (that is in LR(µ)) if and only if for every
n ∈ {1, · · · , N}:

∫

P (dhn−1, dy
n)g(hn−1, y

n) =

∫

P (dhn−1)

(
∫

Yn

g(hn−1, z)pn(dz|hn−1)

)

,

(2.8)

and

∫

P (dhn)g(hn−1, y
n, un) =

∫

P (dhn−1, dy
n)

(
∫

Un

g(hn−1, y
n, a)Πn(da|yn)

)

,

(2.9)

for some stochastic kernel Πn on Un given Yn, for all continuous and bounded
g, with P (dω0) = µ(dw0).

Proof. The proof follows from the fact that testing the equalities such as (2.8-2.9)
on continuous and bounded functions implies this property for any measurable and
bounded function (that is, continuous and bounded functions form a separating class,
see e.g. p. 13 in [12] or Theorem 3.4.5 in [25]) and thus we recover the measurability
properties leading to Witsenhausen’s intrinsic model. ⋄

Remark 3. Theorem 2.2 will be useful later when we will establish sufficient
conditions for the compactness and Borel measurability properties (under the weak
topology) of the set of strategic measures. This will then lead to the existence of optimal
team policies in Sections 2.3 and 3.2, and further Borel and universal measurability
properties for sets of strategic measures and value functions.

Theorem 2.3. Consider a sequential (static or dynamic) team.
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• (i) LR(µ) has the following representation so that for any P ∈ LR(µ), with

B = B0 ×
∏

(Ak ×Bk) ∈ B(Ω0 ×
∏N

k=1(Y
k × U

k)),

P (B) =

∫

U(dz)LA(µ, γ(z))(B)

U(dv1, · · · , dvN ) =
∏

s

η(dvs), ηs ∈ P([0, 1]), (2.10)

where η(a, b) = b − a, 0 ≤ a ≤ b ≤ 1, that is η is the Lebesgue measure on
[0, 1] and γ(z) is a collection of deterministic policies parametrized by z.

• (ii)

inf
γ∈Γ

J(γ) = inf
P∈LA(µ)

∫

P (ds)c(s) = inf
P∈LR(µ)

∫

P (ds)c(s)

In particular, deterministic policies are optimal among the randomized class.
Proof.
• (i) Here, we build on Lemma 1.2 in Gikhman and Shorodhod [28] discussed
earlier in (2.7). For any stochastic kernel πk from Yk to Uk, there exists
a measurable function γk : [0, 1] × Yk → Uk such that m{r : γk(r, yk) ∈
A} = Πk(uk ∈ A|yk), and m is the uniform (Lebesgue measure) on [0, 1]. By
concatenating N such measures in a product form on Υ = [0, 1]N , we obtain
the representation result.

• (ii) This follows as in Theorem 2.1 (iii), but rather than a convex analytic
argument, here we use the integral representation as a consequence of (i); see
also Theorem 1-c in [26].

⋄
If a sequential team is not classical (and not necessarily non-classical), the set of

strategic measures is not convex. Note here that the team can be static or dynamic.
For the special case of single-decision maker stochastic control problems with fully
available state information at the controller (note that this can be viewed as a team
problem with a classical information structure), convexity of the set of strategic mea-
sures has been established in [24] and [40]. We present a concise proof for the more
general team problems with classical information structures.

Theorem 2.4 (Convexity for classical information structures). If the
information structure is classical and the information structure is expanded so that
when independently randomized policies are allowed DM i has access to yk, uk, k < i
and yi, then the set of strategic measures is convex.

Proof. The proof follows from Theorem 2.2 and the fact that the condition on
the control policies is redundant. Nonetheless, to present a direct proof, note that
with N = 1, convexity is immediate since any stochastic kernel can be realized by a
representation of the form γ1(y1, r1) for an independent [0, 1] valued r1. With N > 1,
consider two strategic measures defined sequentially for 1 ≤ k ≤ N ,

P 1
k (du, dy, dω0) = Π1(duk|y1, · · · , yk, u1, · · · , uk−1)P (dyk|y1, · · · , yk−1, u1, · · · , uk−1, ω0)

×P 1
k−1(y

1, · · · , yk−1, u1, · · · , uk−1, dω0) (2.11)

P 2
k (du, dy, dω0) = Π2(duk|y1, · · · , yk, u1, · · · , uk−1)P (dyk|y1, · · · , yk−1, u1, · · · , uk−1, ω0)

×P 2
k−1(y

1, · · · , yk−1, u1, · · · , uk−1, dω0) (2.12)

12



Now, write the above as:

P 1(du, dy, dω0) = P 1(y1, · · · , yk, u1, · · · , uk|u1, y1)P 1(du1|y1)µ(dy1, dω0)

P 2(du, dy, dω0) = P 2(y1, · · · , yk, u1, · · · , uk|u1, y1)P 2(du1|y1)µ(dy1, dω0)

We would like to see if λP 1 + (1 − λ)P 2 can be realized. If one takes the convex
combinations λP 1(du1|y1)+(1−λ)P 2(du1|y1), the convex combination will be realized
by not altering any of the policies adopted by the subsequent DMs. ⋄

An implication of the representation results in Theorems 2.1 and 2.3 is that an
optimal policy can be obtained within the deterministic team policies. Earlier, we used
Blackwell’s Principle of Irrelevant Information ([13] [15]; see [61, p. 457]) to derive
such a result in a setting where the randomizations were restricted to be independent
(see [30] for further discussions and Chapter 4 of [61] in the context of comparison of
experiments).

Theorem 2.5. [30] For a sequential dynamic team, any randomized team policy
(with independent and private randomization) can be replaced with a policy which
is deterministic and which performes at least as good as the original (randomized)
policy.

Both results have their own merits: (i) Theorem 2.5 allows one to replace any se-
quential team policy with independently randomized policies with a deterministic one.
However, it requires private independent randomness, that is common randomness is
not allowed. On the other hand, (ii) Theorems 2.1 and 2.3 use the powerful theory of
convex analysis; they allow for establishing the fact that even common independent
randomness does not help for static teams or private randomness does not help for
sequential teams; these theorems do not utilize backwards induction, and are thus
applicable to teams with countably many DMs (by generalizing the representation
result accordingly) as well as allow for the analysis to be applicable to constrained
team problems.

2.3. Existence of optimal team policies. Establishing the existence and
structure of optimal policies is a challenging problem. Existence of optimal poli-
cies for static and a class of sequential dynamic teams have been studied recently in
[30]. More specific setups and non-existence results have been studied in [59], [55], [62]
and [61]. Existence of optimal team policies has been established in [20] for a class of
continuous-time decentralized stochastic control problems. For a class of teams which
are convex, one can reduce the search space to a smaller parametric class of policies,
as discussed earlier. Finally, the strategic measure approach for single-decision maker
problems and fully observed Markov models has been studied in [45] and [41], among
other contributions in the literature.

For team problems, considering the set of strategic measures and compactification
or convexification of these sets of measures through introducing private or common
randomness will allow for placing a useful topology, that of weak convergence of prob-
ability measures, on the strategy spaces. Combined with a compactness condition,
this allows for establishing the existence of optimal team policies.

We recall that a sequence of probability measures µn on a standard Borel space
converges to some probability measure µ weakly if

∫

µn(dz)f(z) →
∫

µ(dz)f(z) for
all continuous and bounded f . The sequence converges setwise if

∫

µn(dz)f(z) →
∫

µ(dz)f(z) for all measurable and bounded f . Thus, setwise convergence is stronger
than weak convergence.

Theorem 2.6. (i) Consider a static or dynamic team. Let the loss function c be

13



lower semi-continuous in (ω0,u) and LR(µ) be a compact subset under weak topology.
Then, there exists an optimal team policy. This policy is deterministic and hence
induces a strategic measure in LA(µ).
(ii) Consider a static team or the static reduction of a dynamic team with c denoting
the loss function. Let c be lower semi-continuous in ω0,u and LC(µ) be a compact
subset under weak topology. Then, there exists an optimal team policy. This policy is
deterministic and hence induces a strategic measure in LA(µ).

Proof. The proofs of both results build on the result that for a lower semi-
continuous (and not necessarily bounded) f : X → R, where X is Polish;

∫

f(x)µ(dx)
is lower semi-continuous on P(X) under weak convergence (see, e.g., Lemma 4.3 in
[49]). Weierstrass theorem then leads to the existence of an optimal strategic measure,
and thus an optimal policy (which is deterministic as a result of Theorems 2.1) or 2.5.
⋄

In the following, we present and review some sufficient conditions for the com-
pactness of LR(µ) under weak topology. However, we first show that unless certain
conditions are imposed, the conditional independence property is not preserved under
weak or setwise convergence and thus LR(µ) is in general not compact.

Theorem 2.7. Consider a sequence of probability measures Pn ∈ P(U1×Y×U2)
so that for all n:

Pn(du
1|y, u2) = Pn(du

1|y).

If Pn → P setwise (and thus also weakly), it is not necessarily the case that

P (du1|y, u2) = P (du1|y).

That is, conditional independence of u1 and u2 given y is not preserved under setwise
convergence.

Proof. It suffices to provide a counterexample. We build on an example from
[62] (used in a different context) in the following. Let Y = [0, 1], U1 = U2 = {0, 1},
and y ∼ m where m the Lebesgue measure (uniform distribution) on [0, 1]. Let

Lnk =

[

2k − 2

2n
,
2k − 1

2n

)

, Rnk =

[

2k − 1

2n
,
2k

2n

)

(2.13)

and define the square wave function

hn(t) =

n
∑

k=1

(

1{t∈Lnk} − 1{t∈Rnk}

)

.

Define further fn(t) = hn(t)+1. Let Bn,1 =
⋃n

k=1 Lnk and Bn,2 = [0, 1]\Bn,1. Define
{Qn} as the sequence of 2-cell quantizers given by

Qn(1|y) = 1{y∈Bn,1}, Qn(2|y) = 1{y∈Bn,2}.

Let

Pn(u
1 = 1|y) = Pn(u

2 = 1|y) = Qn(1|y).

Define P ∈ P(U1 ×Y×U2) as P (a,A, b) = 1{a=b}
1
2m(A), where a, b ∈ {0, 1} and

A ∈ B([0, 1]).
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By the proof of the Riemann-Lebesgue lemma ([52], Thm. 12.21), observe that
for all A ∈ B([0, 1]),

lim
n→∞

∫

A

Qn(1|y)m(dy) = lim
n→∞

∫ 1

0

1

2
fn(t) dt =

1

2
m(A),

and thus for all A ∈ B([0, 1])

lim
n→∞

Pn(u
1 = 1, y ∈ A, u2 = 1)

= lim
n→∞

∫

A

Pn(u
1 = 1|y)Pn(u

2 = 1|y)m(dy)

= lim
n→∞

∫

A

Pn(u
1 = 1|y)m(dy)

=
1

2
m(A)

= P (1, A, 1) (2.14)

A similar property applies for (u1, u2) = (0, 0), (0, 1) and (1, 0) so that

lim
n→∞

Pn(u
1 = a, y ∈ A, u2 = b) → P (a,A, b) = 1{a=b}

1

2
m(A)

Thus, Pn → P setwise. But even though Pn satisfies the conditional independence
property that Pn(u

1 = 1|y, u2) = Qn(1|y), P does not satisfy the conditional indepen-
dence property of u1 and u2 given y: Under P , u1 and y are independent but u1 = u2

and thus P (u1 = a|y, u2 = b) = 1{a=b} 6= 1
2 = P (u1 = a|y). Thus, setwise (and hence

weak) convergence does not preserve the conditional independence property. ⋄
We refer the reader to [10], and the references therein, for further related results.
Some sufficient conditions for compactness of LR under the weak convergence

topology are given in [30]:
Theorem 2.8. Consider a static team where the action sets Ui, i ∈ N are

compact. Furthermore, if the measurements satisfy

P (dy|ω0) =

n
∏

i=1

Qi(dyi|ω0),

where Qi(dyi|ω0) = ηi(yi, ω0)ν
i(dyi) for some positive measure νi and continuous ηi

so that for every ǫ > 0, there exists δ > 0 so that for ρi(a, b) < δ (where ρi is a metric
on Yi)

|ηi(b, ω0)− ηi(a, ω0)| ≤ ǫhi(a, ω0),

with supω0

∫

hi(a, ω0)ν
i(dyi) < ∞, then the set LR(µ) is weakly compact and if

c(ω0,u) is lower semi-continuous, there exists an optimal team policy (which is deter-
ministic and hence in LA(µ)).

The results in [30] also apply to static reductions for sequential dynamic teams,
and a class of teams with unbounded cost functions and non-compact action spaces
that however satisfies some moment-type cost functions leading to a tightness con-
dition on the set of strategic measures leading to a finite cost. In particular, the
existence result applies to the celebrated counterexample of Witsenhausen [55].
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We also note that for a class of sequential teams with perfect recall, one can
establish the existence of optimal team policies through Theorem 2.2 and Theorem
2.3. Note that the cost function is given by c(ω0,u), where ω0 is an exogenous random
variable.

Theorem 2.9. Consider a sequential team with a classical information structure
with the further property that σ(ω0) ⊂ σ(y1). Suppose further that

∏

k(Y
k × Uk) is

compact. If c is lower semi-continuous and each of the kernels pn (defined in (2.6))
is weakly continuous so that

∫

f(yn)pn(dy
n|ω0, u

1, · · · , un−1) (2.15)

is continuous in ω0, u
1, · · · , un−1 for every continuous and bounded f , there exists an

optimal team policy which is deterministic.
Proof. We note that when

∏

k Y
k×Uk is compact, the set of all probability measures

with a fixed marginal on ω0 would form a weakly compact set. Therefore, it suffices to
ensure the closedness of the set of strategic measures, which leads to the compactness
of the set. To facilitate such a compactness condition, we first expand the information
structure so that DM k has access to all the previous actions u1, · · · , uk−1 as well.
Later on, we will see that this expansion is redundant. With this expansion, any
weakly converging sequence of strategic measures will continue satisfying (2.9) in
the limit due to the fact that there is no conditional independence property in the
sequence since all the information is available at DM k. On the other hand, to show
that for any weakly converging sequence of strategic measures satisfying (2.8) so does
the limit, it suffices to show that

∫

g(yn, ω0, u
1, · · · , un−1)pn(dy

n|ω0, u
1, · · · , un−1) (2.16)

is continuous in ω0, u
1, · · · , un−1. With fω0,u1,··· ,un−1(yn) := g(yn, ω0, u

1, · · · , un−1),
it follows that as a sequence (ω0, u

1, · · · , un−1)k → (ω0, u
1, · · · , un−1), and ynk → yn

the following holds:

f(ω0,u1,··· ,un−1)k(y
n
k ) → fω0,u1,··· ,un−1(yn).

In other words, fω0,u1,··· ,un−1(yn) converges continuously as it is defined in [46]. Thus,
the continuity of (2.15) ensures that (2.16) holds by a generalized convergence theorem
given in Theorem 3.5 of [46]. Thus, the properties (2.8)-(2.9) are preserved under weak
convergence. As a result, the existence follows from Theorem 2.6. Now, we know that
an optimal policy will be deterministic as a consequence of Theorem 2.3. Thus,
a deterministic policy may not make use of randomization, therefore DM k having
access to {yk, yk−1, yk−2, · · · , ω0} is informationally equivalent to him having access
to {yk, (yk−1, uk−1), (yk−2, uk−2), · · · , ω0} for an optimal policy. Thus, an optimal
team policy exists.

⋄
A further existence result along similar lines, for a class of static teams, is pre-

sented in Theorem 3.5

2.4. Measurability properties of sets of strategic measures. We have the
following result.

Theorem 2.10. Consider a sequential (static or dynamic) team.
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• (i) The set of strategic measures LR(µ) is Borel when viewed as a subset of the
space of probability measures on Ω0 ×

∏

k(Y
k ×Uk) under weak convergence.

• (ii) The set of strategic measures LA(µ) is Borel when viewed as a subset of the
space of probability measures on Ω0 ×

∏

k(Y
k ×Uk) under weak convergence.

Proof. Recall the following supporting results. The following appears in [1] (see
Theorem 15.13 in [1] or p. 215 in [16])

Fact 2.1. Let S be a Polish space and M be the set of all measurable and bounded
functions f : S → R. Then, for any f ∈ M , the integral

∫

π(dx)f(x)

defines a measurable function on P(S) under the topology of weak convergence.
This is a useful result since it allows us to define measurable functions in integral

forms on the space of probability measures when we work with the topology of weak
convergence. The following result follows from Fact 2.1 and Theorem 2.1 of Dubins
and Freedman [22] and Proposition 7.25 in Bertsekas and Shreve [11].

Fact 2.2. Let S be a Polish space. A function F : P(S) → P(S) is measurable
on B(P(S)) (under weak convergence), if for all B ∈ B(S) (F (·))(B) : P(S) → R is
measurable under weak convergence on P(S), that is for every B ∈ B(S), (F (π))(B)
is a measurable function when viewed as a function from P(S) to R.

We note that the topology considered in [22] is not the weak convergence topology,
but since the topology considered there is not stronger than weak convergence, the
result applies in this case as well.

• (i) Measurability of LR(µ) If
∏

k Y
k × Uk were compact, one could use

the characterization in Theorem 2.2: For every given g, both sides of (2.8)-
(2.9) define measurable functions on P(Ω0 ×

∏

k Y
k × U

k). One can con-
struct a countable collection of weak-convergence determining functions on
Ω0 ×

∏

k Y
k × Uk, by Theorem 3.4.5 in [25]: By Facts 2.1 and 2.2, for each

continuous function the set of probability measures which satisfy the equal-
ities in (2.8)-(2.9) is measurable and one only needs a countable number of
such equalities, the intersection of the sets of probability measures satisfying
all of these has to be Borel. If

∏

k Y
k × Uk is not compact, by the Borel

isomorphism theorem (Appendix 1 in [24] or Chapter 13 in [23]), one could
construct a bijection between [0, 1] and Ω0×

∏

k Y
k×U

k, and one could follow
the proof of Theorem 1 in [24] so that only polynomial functions on [0, 1] are
used as the test functions on this new space. By the same reasoning as the
compact case, the intersection of the sets of probability measures satisfying
countably many equalities of the form (2.8)-(2.9) has to be Borel.

• (ii) Measurability of LA(µ): To establish the measurability of LA(µ),
define Lclassical(µ) as follows. Enlarge the information structure so that
the information structure is classical such that the information at DM k is
Ik = {yk}

⋃

∪1≤s≤k−1I
s for k > 1, and write

Lclassical(µ):=

{

P ∈ P

(

Ω0 ×
N
∏

k=1

(Yk × U
k)

)

:

P (B) =

∫

µ(dω, dy)
∏

k

1{γk(Ik)∈Bk}

}

(2.17)

It follows that Lclassical(µ) is Borel by Theorem 3.2 in Feinberg [27] (which
attributes the result to Blackwell [14]) since this information structure may be
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viewed as a fully observed Markov decision process with xk = Ik . The mea-
surability of LA(µ) follows from the fact that LA(µ) = LR(µ) ∩ Lclassical(µ),
with both intersected sets being measurable.

⋄
Remark 4 (Implications of measurability properties and Witsenhausen’s Stan-

dard Form). The Borel measurability properties of LR(µ) is useful in establishing the
universal measurability and the lower semi-analytic properties of the value functions:
Define

J∗(µ) = inf
P∈LR(µ)

∫

P (ds)c(s)

Building on the Borel measurability result for LR(µ), and following steps similar to
Dynkin and Yushkevich [24] and Lemma 4.1 of Feinberg [27] for single decision maker
problems, the universal measurability of J∗ can be established. Such a notion is useful
when Borel measurability of J∗ cannot be established, yet algorithms such as dynamic
programming can be carried out through the verification of universal measurability
properties: It suffices for a function to be universally measurable (and not necessarily
Borel measurable) for its integration with respect to some probability measure to be
well-defined. We refer the reader to Chapter 7 in Bertsekas and Shreve [11] for a
comprehensive discussion on such measurability properties. In particular, according to
another model for sequential teams, known as Witsenhausen’s Standard Form [54], for
optimization of sequential dynamic teams with finite horizons, a dynamic programming
principle can be applied which essentially expresses the optimization problem as a
terminal-stage cost function. Here, every DM acts given the policies of the previous
DMs optimally. The universal measurability and the stronger condition of having
the lower semi-analytic property allow for the dynamic programming recursions to
be well-defined: A measurable image of a Borel set is called an analytic set and a
function f is called lower semi-analytic if {x : f(x) ≤ c} is analytic for each scalar
c; see [24]. It follows then that the dynamic programming recursions can be defined
under Witsenhausen’s Standard Form for a large class of problems. We also note
that when the cost function is stage-wise additive and further assumptions are placed
on the primitive variables, the analysis reduces to the usual dynamic programming
formulation for state-space models.

3. Convexity of Team Problems and Information Structures.

3.1. Convexity of static team problems and an equivalent representa-
tion of cost functions. We begin this section with the following definition.

Definition 3.1. A (static or dynamic) team problem is convex on Γ if J(γ) < ∞
for all γ ∈ Γ and for any α ∈ (0, 1), γ

1
, γ

2
∈ Γ:

J(αγ
1
+ (1− α)γ

2
) ≤ αJ(γ

1
) + (1− α)J(γ

2
)

We state the following immediate result without proof, more general refinements
will be stated later in the paper.

Theorem 3.1. Consider a static team. J(γ) is convex if c(ω0,u) is convex in u
for all ω0, provided that J(γ) < ∞ for all γ ∈ Γ.

The condition in Theorem 3.1 is not tight, however, due to information structure
and measurability aspects.
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Example 1. Consider Ω = [0, 1] and let P be the uniform distribution on Ω,
with N = 2, U1 = U2 = [1, 2]. Let:

c(ω, u1, u2) = 1{ω∈[0,0.9]}

(

(u1 − 2)2 + (u2 − 2)2
)

+ 1{ω∈(0.9,1]}

(

√

1 + u1 +
√

1 + u2

)

Now, suppose further that I1 = I2 = η1(ω) = η2(ω) = 1{ω∈[0,0.1)}. It follows that here
the team problem is convex, even though c(ω, u1, u2) is not convex on {ω : ω ∈ (0.9, 1]},
which has a non-zero probability measure. To see this, note that one may view this
optimization problem as J(u1

1, u
1
2;u

2
1, u

2
2) where ui

j = γi(ωj), with ω1 ≡ {ω : ω ∈
[0, 0.1)} and ω2 ≡ {ω : ω ∈ [0.1, 1]}. It follows that

J(u1
1, u

1
2;u

2
1, u

2
2) =

∑

i=1,2

0.1(ui
1 − 2)2 + 0.8(ui

2 − 2)2 + 0.1(
√

ui
2 + 1)

The Hessian of J is a diagonal matrix with strictly positive entries, leading to the
convexity of the problem.

In the following, we will make use of the fact that uk ↔ yk ↔ {y−k, ω} form a
Markov chain almost surely. Before proceeding further, let us note that the join of
two σ-fields over some set X is the coarsest σ-field containing both. The meet of two
σ-fields is the finest σ-field which is a subset of both. Let F i be the σ-field generated
by ηi over Ω, and let Fc =

⋂

k F
k be the meet of these fields, this is termed as common

knowledge by Aumann [6] for finite probabilities spaces. In addition, let Fj be the
join of the σ-field, denoted with Fj =

⋃

k F
k.

An equivalent representation of the cost through iterated expectations.
Let us express the expected cost under a given measurable team policy γ as follows.
We obtain from the law of the iterated expectations that

E[c(ω0,u)] = E

[

E[c(ω0,u)|y,u]

]

=

(
∫

P (dω0|y)c(ω0, u
1, · · · , uN )

)

, (3.1)

and thus with c̃(y1, · · · , yN , u1, · · · , uN) =
∫

P (dω0|y)c(ω0, u
1, · · · , uN), the function

to be minimized can be viewed as E[c̃(y1, · · · , yN , u1, · · · , uN)]. To simplify the no-
tation, we will use the expression E[c(ω0,u)|y] instead of E[c(ω0,u)|y,u] by viewing
u as a fixed team control action (and not as a random variable).

Theorem 3.2.
(i) If a team problem is convex, then E[c(ω0,u)|Fc] is convex in u almost surely.

(ii) If E[c(ω0,u)|Fj ] is convex in u almost surely, then the team problem is convex
on the set of team policies that satisfy J(γ) < ∞.

Proof. (i) We will show the contra-positive. Let B be a Borel set such that
P (B) > 0, B ∈ Fc, and E[c(ω0,u)|B] be non-convex so that there exist u and u′ and
λ ∈ (0, 1) such that

E[c(ω0, λu+ (1− λ)u′)|B] > λE[c(ω0,u)|B] + (1− λ)E[c(ω0,u
′)|B]

Now, let γ and γ be two team policies so that these only differ on B; and on B γ = u
and γ = u′. Such measurable policies exist, for example by taking γ(ω) = {0, 0, · · · , 0}
when ω /∈ B. These policies are both Borel measurable and are admissible given the
information structure. Then J(λγ + (1− λ)γ) > λJ(γ) + (1− λ)J(γ).

19



(ii) We adopt the equivalent representation (3.1) in this part of the proof. Note
that under any measurable policy, the random variable c̃(y1, · · · , yN , u1, · · · , uN) is
measurable on the σ-field generated by y and thus the join σ-field. The proof then
follows from the following. Consider two policies γ and γ̄ with finite expected costs.
It follows then that

J(λγ + (1− λ)γ̄)

=

∫

P (dy)c̃(y1, · · · , yN , λγ1(y1) + (1 − λ)γ̄1(y1), · · · , λγN (yN ) + (1− λ)γ̄N (yN ))

≤

∫

P (dy)

(

λc̃(y1, · · · , yN , γ1(y1), · · · , γN (yN ))

+(1− λ)c̃(y1, · · · , yN , γ̄1(y1), · · · , γ̄N(yN ))

)

= λJ(γ) + (1− λ)J(γ̄)

⋄
It can be observed that Example 1 satisfies the conditions of Theorem 3.2. We

will use these to study Witsenhausen’s counterexample [55] later in the paper.

3.1.1. A generalization of Radner and Krainak et. al.’s theorems. We
provide a generalization of Radner’s or Krainak et al.’s theorem by utilizing an in-
formation structure dependent nature of convexity. For example, Radner or Krainak
et.al’s theorems are not applicable to Example 1.

Theorem 3.3. Let {J ; Γi, i ∈ N } be a static stochastic team problem, the loss
function E[c(ω0,u)|Fj ] is convex and continuously differentiable in u almost surely.
Let γ∗ ∈ Γ be a policy N -tuple with a finite cost (J(γ∗) < ∞), and suppose that for
every γ ∈ Γ such that J(γ) < ∞, the following holds:

∑

i∈N

E{∇ui c̃(y, γ∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, (3.2)

where c̃(y,u) := E[c(ω0,u)|Fj ]. Then, γ∗ is a team-optimal policy, and it is unique
if c̃(y,u) is strictly convex in u almost surely.
Proof. The proof follows by defining the new loss function c̃(y,u) = E[c(ω0,u)|Fj ].
The result then follows as in Theorem 1.1. ⋄

Theorem 3.4. Let {J ; Γi, i ∈ N } be a static stochastic team problem which
satisfies all the hypotheses of Theorem 3.3, with the exception of inequality (3.2).
Instead of (3.2), let either (c.5) or (c.6) be satisfied with c replaced with c̃. Then,
if γ∗ ∈ Γ is a stationary policy it is also team optimal. Such a policy is unique if
E[c(ω0,u)|Fj ] is strictly convex in u, a.s.
Proof. The proof follows by defining the new loss function c̃ as in the proof of
Theorem 3.3, and following Theorem 1.2. ⋄

3.2. A further existence result for static teams through the equivalent
representation. By defining c̃ as the new loss function, we can obtain an existence
result which allows for Theorem 2.9 to be applicable to a static team where the
information is nested (and thus the information structure is classical). These relax
some of the conditions presented in [29].

Theorem 3.5. Consider a static team with a classical information structure
(that is, with an expanding information structure so that σ(yn) ⊂ σ(yn+1), n ≥ 1).
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Suppose further that
∏

k(Y
k × Uk) is compact. If

c̃(y1, · · · , yN , u1, · · · , uN ) := E[c(ω0,u)|y,u]

is jointly lower semi-continuous in u for every y, and for every n > 1,

∫

f(yn)P (dyn|yn−1) (3.3)

is continuous in yn−1 for every continuous and bounded f , there exists an optimal
team policy which is deterministic.
Proof. Different from Theorem 2.9, we eliminate the use of ω0, and study the proper-
ties of the set of strategic measures. Also, instead of the weak topology, we will use the
w-s topology introduced by Schäl [45]: The w-s topology on the set of probability mea-
sures P(X×U) is the coarsest topology under which

∫

f(x, u)ν(dx, du) : P(X×U) → R

is continuous for every measurable and bounded f which is continuous in u for every
x (but unlike weak topology, f does not need to be continuous in x).

As in the proof of Theorem 2.9, when
∏

k Y
k × Uk is compact, the set of all

probability measures on
∏

k Y
k×Uk forms a weakly compact set. Since the marginals

on
∏

k Y
k is fixed, [45, Theorem 3.10] (or [8, Theorem 2.5]) establishes that the set of

all probability measures with a fixed marginal on
∏

k Y
k is relatively compact under

the w-s topology. Therefore, it suffices to ensure the closedness of the set of strategic
measures, which leads to the sequential compactness of the set under this topology.
To facilitate such a compactness condition, as earlier we first expand the information
structure so that DM k has access to all the previous actions u1, · · · , uk−1 as well.
Later on, we will see that this expansion is redundant. With this expansion, any w-s
converging sequence of strategic measures will continue satisfying (2.9) in the limit due
to the fact that there is no conditional independence property in the sequence since all
the information is available at DM k. That is, Pn(du

n|yn, y[0,n−1], u[0,n−1]) satisfies
the conditional independence property trivially as all the information is available. On
the other hand, for each element in the sequence of conditional probability measures,
the conditional probability for the measurements writes as P (dyn|y[0,n−1], u[0,n−1]) =
P (dyn|yn−1). We wish to show that this also holds for the w-s limit measure. Now,
we have that for every n, yn ↔ yn−1 ↔ u[0,n−1] forms a Markov chain. By considering
the convergence properties only on continuous functions, as in (2.8), if P (yn|yn−1) is
weakly continuous, the w-s limit (and thus the weak limit also, since weak convergence
is weaker than w-s convergence) will also satisfy this property.

Thus, (2.8) is also preserved by the weak continuity condition (3.3) as in (2.16)
in the proof of Theorem 2.9. Hence, for any w-s converging sequence of strategic
measures satisfying (2.8)-(2.9) so does the limit since the team is static and with
perfect-recall. By [45, Theorem 3.7], and the generalization of Portmanteau theorem
for the w-s topology, the lower semi-continuity of

∫

µ(dy, du)c̃(y,u) over the set of
strategic measures leads to the existence of an optimal strategic measure. As a result,
the existence follows from similar steps to that of Theorem 2.6. Now, we know that
an optimal policy will be deterministic as a consequence of Theorem 2.3. Thus,
a deterministic policy may not make use of randomization, therefore DM k having
access to {yk, yk−1, yk−2, · · · } is informationally equivalent to him having access to
{yk, (yk−1, uk−1), (yk−2, uk−2)} for an optimal policy. Thus, an optimal team policy
exists. ⋄

3.3. Convexity of Sequential Dynamic Teams.
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3.3.1. Convexity of the reduced model. The static reduction of a sequential
dynamic team problem, if exists, is not unique. However, the following holds: Either
all of the static reductions are convex or none is. This argument follows from the fact
that the policy spaces are isomorphic in the sense discussed earlier in Section 1.2, and
the induced costs are identical given a fixed team policy under the static reduction
and the original formulation. The following is then immediate.

Theorem 3.6. A stochastic dynamic team problem with a static reduction is
convex if and only if its static reduction is.

Remark 5. Consider the condition discussed in Theorem 3.2. If the expression
E[c(ω0,u)|Fj ] is convex almost surely in one reduction given by (1.5)-(1.6), so it
is in another, since the reduced models are such that the measure induced on the
measurements are mutually absolutely continuous.

Non-convexity of the Witsenhausen counterexample and its variants.
Consider the celebrated Witsenhausen’s counterexample [55]: This is a dynamic non-
classical team problem with y1 and w1 zero-mean independent Gaussian random
variables with unit variance and u1 = γ1(y1), u2 = γ2(u1 +w1) and the cost function
c(ω, u1, u2) = k2(y1−u1)2+(u1−u2)2 for some k > 0: The static reduction proceeds
as follows:
∫

(k(u1 − y1)2 + (u1 − u2)2)Q(dy1)γ1(du1|y1)γ2(du2|y2)P (dy2|u1)

=

∫
(

(k(u1 − y1)2 + (u1 − u2)2)γ1(du1|y1)γ2(du2|y2)
η(y2 − u1)dy2

η(y2)

)

Q(dy1)η(y2)dy2

=

∫
(

(k(u1 − y1)2 + (u1 − u2)2)γ1(du1|y1)γ2(du2|y2)
η(y2 − u1)dy2

η(y2)

)

Q(dy1)Q(dy2)

(3.4)

where Q denotes a zero-mean Gaussian measure with unit variance, and η its density.
Another interesting example is the point-to-point communication problem: Here, the
setup is exactly as in the Witsenhausen’s counterexample, but c(ω, u1, u2) = k2(u1)2+
(y1 − u2)2. This problem is a peculiar one in that, even though the information
structure is non-classical, and is non-convex; an optimal encoder and decoder is linear.
A proof of this result builds on information theoretic ideas, such as the data-processing
inequality (see Chapters 3, 11 in [61] for a detailed account). In this case, the reduction
writes as:

∫

(k(u1)2 + (y1 − u2)2)Q(dy1)γ1(du1|y1)γ2(du2|y2)P (dy2|u1)

=

∫
(

(k(u1)2 + (y1 − u2)2)γ1(du1|y1)γ2(du2|y2)
η(y2 − u1)dy2

η(y2)

)

Q(dy1)Q(dy2)

(3.5)

Consider the static reduction of Witsenhausen’s counterexample and the Gaussian
signaling problem (3.4)-(3.5). For both (3.4) and (3.5), using the fact that e−x2

is not
a convex function, we recognize that this problem is not convex by Theorem 3.2(i)
(with the common knowledge/information being the trivial σ-algebra consisting of
the empty set and its complement).

We note that Witsenhausen states without proof in [55] (p. 134) that the coun-
terexample is non-convex in γ1 for every optimal γ2 (selected as a best response to
γ1). The discussion above can be viewed as an explicit proof for this result. Note
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also that for both problems above, linear policies contain person by person optimal
policies, but this does not imply global optimality. For the first problem, Witsen-
hausen had shown the suboptimality of linear policies. For the second problem (3.5),
however, linear policies are indeed optimal.

3.3.2. Partially nested information structures: Convexity of the re-
duced model. As reviewed earlier in Section 1.1, an important information struc-
ture which is not nonclassical, is of the partially nested type. For such team problems
with partially nested information, a static reduction exists under certain invertibility
conditions as discussed earlier. For such problems, the cost function is not altered by
the static reduction. This leads to the following result.

Theorem 3.7. Consider a partially nested stochastic dynamic team which admits
a static reduction where the cost function c(ω0,u) convex in u. The team problem is
convex.

We note that Ho and Chu [31] established this result that for the special setup
involving the partially nested LQG teams. In this case, optimal policies are linear
through an equivalence to static teams.

3.3.3. Stochastic partial nestedness: A probabilistic definition of nest-
edness, its relation to convexity and signaling. When the information structure
is non-classical, the decision makers may use their actions to communicate with each
other. This phenomenon is known as signalling. When signaling is present, the
problem has a communications flavour and any communication problem is inherently
non-convex, see Theorem 4.3.1 in [61]. It is known that quasi-classical information
structures eliminate the incentive for signaling, since the future decision makers al-
ready have access to the information at the signaling decision maker (see [43], but
also [18], [50], [9] and [44] among other papers). On the other hand, one can also
put a probabilistic flavor: [60] identified such a probabilistic, but rather restrictive,
characterization; see also [36]. In the following, we exhibit that the static reduction
provides an effective method to identify when lack of a signaling incentive can be
established and can lead to a more refined probability and information structure de-
pendent characterization of nestedness, that encompasses partial nestedness which is
a probability-free characterization.

Definition 3.2. The information structure of a sequential team problem is
stochastically partially nested, if for an arbitrary cost function c : Ω0 ×

∏

k U
k → R

there exists a static reduction of this team which does not alter the loss function.
This definition implies the following result.
Lemma 3.1. Consider a sequential team problem with a stochastically partially

nested information structure. If the cost function c(ω0,u) is convex in u, then the
team problem is convex.

Proof. The static reduction of this team preserves convexity of the loss function,
for an arbitrary convex loss function c : Ω0×

∏

k U
k → R. Thus, the reduced problem,

and hence the original problem is convex. ⋄
This definition essentially requires that there is no active information transmis-

sion and there is no signaling incentive. To provide an example of an information
structure that is not partially nested, but that preserves convexity properties and is
stochastically partially nested, let us consider the following example from [60], with
the approach of this paper.

Definition 3.3. Let x =
[

x1 x2 . . . xL
]T

, and a system evolve as

xi
t+1 = f i(xi

t, u
i
t, w

i
t), yit = gi(xt, v

i
t), i ∈ {1, 2, . . . , L},
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zt+1 = f(zt, u
1
t , u

2
t , . . . , u

L
t ),

for measurable functions f i, gi, f and {wi
t} independent state disturbance processes

and {vit}, observation noise processes for i ∈ {1, 2, . . . , L}. In the above (xi
t, w

i
t, v

i
t, i ∈

{1, 2, . . . , L}, z0) are independent second-order processes. Suppose each of the DMs
has access to the additional {zt} process: ỹit = {yit, zt}, i ∈ {1, 2, . . . , L}. If the
information available at each controller is such that

xi
t ↔ (yi[0,t], u

i
[0,t−1]) ↔ {xj

0, z0, w
j

[0,t−1], y
j

[0,t], j 6= i}

form Markov chains, so that almost surely,

P

(

dxi
t|y

i
[0,t], u

i
[0,t−1]

)

= P

(

xi
t|y

i
[0,t], u

i
[0,t−1], {x

j
0, z0, w

j

[0,t−1], y
j

[0,t], j 6= i}

)

for all t and i, then such an information structure is said to be stochastically decou-
pled.

Note that this information structure is non-classical since the DMs can signal
information to each other, yet there is no nestedness in the information σ-fields.

Theorem 3.8. Let there be an optimization problem with the objective to be
minimized as: E[

∑T−1
t=0 c1(x

1
t , u

1
t )+ c2(x

2
t , u

2
t )+ . . . cL(x

L
t , u

L
t )]. If the controllers have

stochastically decoupled information structures, the optimization problem can be cast
as L decoupled optimization problems with a classical information structure.

Proof: As earlier, through the law of the iterated expectations

E[

T−1
∑

t=0

c1(x
1
t , u

1
t ) + c2(x

2
t , u

2
t ) + . . . cL(x

L
t , u

L
t )]

= E[E[

T−1
∑

t=0

c1(x
1
t , u

1
t ) + c2(x

2
t , u

2
t ) + . . . cL(x

L
t , u

L
t )|ỹt, It−1]].

Here Iik = {ỹis, s ≤ k} and Ik := {I1k , · · · , I
L
k }. We will show that due to the Markov

chain condition in Definition 3.3, the above writes as: E[
∑T−1

t=0

∑L
i=1 E[ci(x

i
t, u

i
t)|y

i
t, I

i
t−1)].

This follows from the following observation. Let x = {x1, x2, . . . , xL}. Suppose in the
following we first assume that the conditional densities exist almost surely and are
denoted by p(·|·). The conditional densities then write (almost surely) as:

p(xt|ỹt, It−1) =
p(xt, ỹt|It−1)

∫

X
p(xt, ỹt|It−1)

=
p(zt|It−1)p(xt,yt|It−1)

∫

X
p(zt|It−1)p(xt,yt|It−1)

=
p(zt|It−1)p(xt,yt|It−1)

p(zt|It−1)
∫

X
p(xt,yt|It−1)

= p(xt|yt, It−1) =

L
∏

i=1

p(xi
t|yt, x

1
t , x

2
t , . . . , x

i−1
t , It−1)

=

L
∏

i=1

P

(

dxi
t|yt, (F

1
t (x

1
0, w

1
[0,t−1], It−1)), . . . , (F

i−1
t (xi−1

0 , wi−1
[0,t−1], It−1)), It−1

)

=

L
∏

i=1

p(xi
t|y

i
t, I

i
t−1) (3.6)

If densities do not exist, the Radon-Nikodym derivative of P (dxt, dỹt|It−1) and P (dỹt|It−1)
ensures that a conditional probability measure P (dxt|ỹt, It−1) can be defined so that

P (dxt, dỹt|It−1) = P (dxt|ỹt, It−1)P (dỹt|It−1)
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and the analysis above can be carried out by studying the properties of P (dxt|ỹt, It−1),
and for other terms.

In the analysis above, (3.6) follows from the Markov chain hypothesis of the
theorem and the rest of the arguments uses the properties of total probability. In
the above, we write xi

t = F i
t (x

i
0, w

i
[0,t−1], It−1), to express the explicit dependence on

the variables. Since the cost function is also decoupled, it turns out that one can
write the dynamic programming recursions as L decoupled optimization problems.
Given the new expression, E[

∑T−1
t=0

∑L
i=1 E[ci(x

i
t, u

i
t)|y

i
t, I

i
t−1], we can write the cost

as: E[
∑T−1

t=0

∑L
i=1 E[ci(x

i
t, u

i
t)]]. Thus, the cost can be written as a summation of

decoupled classical systems.
⋄

Example 2. An example is the following. Consider a dynamical system described
by

x1
t+1 = a1x

1
t + u1

t + w1
t , x2

t+1 = a2x
2
t + u2

t + w2
t , x3

t+1 = a3x
3
t + u1

t + u2
t + w3

t

y1t = (x1
t + v1t , x

2
t + v2t + v21t , x3

t + v31t ), y2t = (x1
t + v1t + v12t , x2

t + v2t , x
3
t + v32t ),

where all the external random variables are zero-mean Gaussian, and the goal is the

minimization of E

[

∑T−1
t=0

(

(x1
t )

2 +(x2
t )

2 + ρ1(u
1
t )

2 + ρ2(u
2
t )

2

)]

, with ρ1, ρ2 > 0 con-

stants. The control actions are measurable with the sigma-algebra generated by their
causal observations and past controls: Iit = {yit, I

i
t−1}, with Ii0 = yi0. This system has

a non-classical information structure, as controller 1 affects the observation at con-
troller 2 (the third state x3 acts as a communications medium between the controllers),
but controller 2 cannot recover the information at controller 1. However, the optimal
team policy is linear by stochastic partial nestedness and the static reduction.

4. Conclusion. In this paper, strategic measures for stochastic team problems
have been introduced and properties such as convexity, and compactness and Borel
measurability under weak convergence topology are studied. Sufficient conditions for
each of these properties have been presented, where these conditions lead to existence
of and structural results for optimal policies. It is established that team problems do
not lead to a convex set of strategic measures, even in the presence of common or
private independent randomness, and the global optimality of deterministic policies
among the possibly randomized class has been established using such a convex analysis
under an expected cost criterion. The problem of when a sequential team problem is
convex is studied, and necessary and sufficient conditions for convexity of problems
which include teams with a non-classical information structure are presented. Building
on these results, generalizations of Radner’s theorem have been reported. For dynamic
teams, static reduction is provided as a useful method to establish not only convexity,
but also obtain a systematic method through which a probabilistic relaxation for
partial nestedness can be established.
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decentralized control. In IEEE Conference on Decision and Control, Hawaii, USA, 2012.
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