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Abstract

We present variants of the Conjugate Gradient (CG), Conjugate Residual (CR), and Generalized Min-
imal Residual (GMRES) methods which are both pipelined and flexible. These allow computation of inner
products and norms to be overlapped with operator and nonlinear or nondeterministic preconditioner
application. The methods are hence aimed at hiding network latencies and synchronizations which can
become computational bottlenecks in Krylov methods on extreme-scale systems or in the strong-scaling
limit. The new variants are not arithmetically equivalent to their base flexible Krylov methods, but are
chosen to be similarly performant in a realistic use case, the application of strong nonlinear precondi-
tioners to large problems which require many Krylov iterations. We provide scalable implementations
of our methods as contributions to the PETSc package and demonstrate their effectiveness with prac-
tical examples derived from models of mantle convection and lithospheric dynamics with heterogeneous
viscosity structure. These represent challenging problems where multiscale nonlinear preconditioners are
required for the current state-of-the-art algorithms, and are hence amenable to acceleration with our new
techniques. Large-scale tests are performed in the strong-scaling regime on a contemporary leadership
supercomputer, where speedups approaching, and even exceeding 2× can be observed. We conclude by
analyzing our new methods with a performance model targeted at future exascale machines.

1 Introduction

The current High Performance Computing (HPC) paradigm involves computation on larger and larger clus-
ters of individual compute nodes connected through a network. Since single-core performance has plateaued,
increased parallelism is used to increase total performance. As systems scale in this way, new perfor-
mance bottlenecks emerge in algorithms popularized before massive parallelism became relevant. While
peak compute power is abundant on modern high performance clusters, utilizing them at full capacity re-
quires modifications to many well established algorithms. We investigate modifications to flexible Krylov
subspace methods to better exploit computational resources available from modern clusters. As parallelism
increases, collective operations are more likely to become computational bottlenecks. For instance, dis-
tributed dot products can become performance limiting due to network latency exposed by synchronized
all-to-all communication. Similar concerns apply to hypothetical future machines and to current machines
in the strong-scaling limit, when small amounts of local work expose bottlenecks in collective operations.
One approach to mitigate these bottlenecks is to overlap these collective operations with local work, hiding
the latency. This is a non-trivial task due to data dependencies which forbid arbitrary rearrangements of
operations.
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1

http://arxiv.org/abs/1511.07226v2


1.1 Pipelining Flexible Krylov Subspace Methods

A classical way to use a system with independent hardware resources at higher efficiency is to pipeline.
Broadly, this technique can accelerate throughput of a repeated multi-stage process when different stages
require different resources. Concurrent work is performed on multiple iterations of the process, overlapped
such that multiple resources are used simultaneously. This induces latency as the pipeline is filled as well as
other overheads related to rearranging an algorithm and allowing simultaneous progress on multiple tasks.

We consider pipelining a particular class of algorithms, namely Krylov subspace methods for the solution
of large, sparse, linear systems Ax = b [34, 39]. Recent research has provided algorithms which loosen data
dependencies in these algorithms, allowing communication- and computation-oriented resources to operate
concurrently [12, 13, 23].

Krylov subspace methods for scientific applications are typically preconditioned [40]. This is essential for
scalability in many cases. For instance, when the operator A is a discretized elliptic operator, a multilevel
preconditioner [38] is required for algorithmic scalability. Preconditioners are often not available as assembled
matrices. They commonly involve nested approximate solves, an important case being the application of
another Krylov method [28]. The application of a nested Krylov method to a given tolerance and/or iteration
count is a nonlinear operation; the optimal polynomial chosen at each iteration depends on A, b, and x0.
This requires the ‘outer’ Krylov method to be flexible, able to operate with a nonlinear preconditioner.
Flexible Krylov methods do not involve Krylov subspaces but approximations to them. In comparison with
their non-flexible counterparts, flexible Krylov methods typically have higher storage requirements, as they
cannot exploit the structure of true Krylov spaces.

In this work, we explore, analyze, and implement Krylov methods which are both pipelined and flexible.
As shown in §5-7, promising applications of the new methods presented here involve preconditioners with
nested inexact solves used over many Krylov iterations. For the overlap of reductions to be useful, systems
must involve large numbers of nodes, or one must be in a strong-scaling regime where the time for a global
reduction is comparable to the time spent performing local and neighbor-wise work, or when local processing
times are very variable.

Our methods are applicable to the solution of any system of linear equations, but are expected to be useful
when the number of processing units is large, relative to the local problem size, and when strong, complex,
nonlinear (or even nondeterministic) preconditioners are applied to systems difficult enough to require enough
Krylov iterations to amortize the overhead of filling a pipeline. Thus, for the examples presented in §6, we
focus on applications in geophysics, in particular on mantle convection and lithospheric dynamics with
heterogeneous viscosity structure. These represent challenging problems, where strong multiscale nonlinear
preconditioners are typically required for acceptable convergence.

Nonlinear preconditioning is still an active area of research, and newly developed nonlinear methods
[6] may provide additional use cases for the methods presented here. The advent of non-deterministic and
randomized preconditioning techniques, promising for use with hybrid or heterogeneous clusters featuring
accelerators, may provide future use cases for algorithms of the type presented here; these allow overlap of
communication and computation and also loosen synchronization requirements, crucial when local processing
times have heavy-tailed distributions [30].

1.2 Notation and Algorithmic Presentation

We use similar notation to analyze variants of the Conjugate Gradient (CG), Conjugate Residual (CR),
and Generalized Minimal Residual (GMRES) methods, as described in Tables 1 and 2. This allows similar
presentation of the methods, despite the fact that CG and CR methods are written as left preconditioned,
while flexible GMRES methods are right preconditioned. Operators are denoted by capital letters, vectors
by lowercase Latin letters, and scalars by Greek letters. Algorithms are presented using 0-based iteration
counts. For readability and analysis, main iteration loops are arranged such that variables indexed by the
current index are updated. Convergence tests and optimizations related to initialization, elimination of
intermediates, and loop ordering are omitted for readability; the interested reader is referred to §5 where full
open-source implementations are discussed. We adopt the following coloring scheme for operations involving
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vectors. Scalar or ‘no operation’ operations are not colored.

• Green denotes an algorithmic step which is “local”, meaning that no internode communication is
required in a typical parallel implementation.

• Orange denotes an algorithmic step which operates “neighbor-wise”, only involving communication
between O(1) neighboring nodes interspersed with local work. Sparse matrix-vector multiplication
typically falls into this category.

• Red denotes an algorithmic step which is “global”, involving global communication, exposing the full
latency of the network. These operations, which include computing vector dot products and norms,
can become the computational bottleneck in massively parallel systems.

• Purple is used for preconditioner application, which may be local (e.g. applying a Jacobi precondi-
tioner), neighbor-wise (e.g. applying a sparse approximate inverse), or global (e.g. applying a nested
Krylov method).

Algorithm line numbers corresponding to local, neighbor-wise, global, and preconditioning operations are
also marked with a dash(–), plus(+), bullet(•), and asterisk(∗), respectively.

1.3 Contributions

• We present pipelined variants of flexible methods, allowing for inexact and variable preconditioning.
(§2-4)

• We provide open-source, scalable implementations of three solvers as contributions to the PETSc

package. (§5)

• We provide analysis of a novel modification of a “naive” pipelining which gives unacceptable conver-
gence behavior in typical applications. This leads to useful, pipelined variants of the Flexible CG
(FCG) and Generalized CR (GCR) methods. (§2.2)

• We demonstrate the use of the methods with applications to solving linear systems from challenging
problems in lithospheric dynamics (§6), and with performance models to extrapolate to exascale (§7).

2 Pipelined Flexible Conjugate Gradient Methods

Notation We base the notation used in this section, collected in Table 1, on standard notation for Conju-
gate Gradient methods and its pipelined variant [13].

2.1 Review of Conjugate Gradient Methods

2.1.1 The Method of Conjugate Directions

A general class of methods known as conjugate direction (CD) methods [11, 19] have been investigated to
compute (approximate) numerical solutions to the linear system Ax = b, where A = AH and A is positive
definite. Presume one has a set of A-orthogonal (“conjugate”) vectors {pj}, j = 0, . . . , n− 1 available, that
is a set of n vectors with the property 〈pj , pk〉A = 〈pj , Apk〉 = 0 when j 6= k. At each step of the algorithm,
the conjugate directions method computes an approximate solution xi with the property that ||x − xi||2A is
minimal for xi − x0 ∈ span(p0, . . . , pi−1). The resulting process is described in Algorithm 1. Due to the
unspecified nature of the A-orthogonal directions {pj}, it includes a wide range of algorithms, including
Gaussian elimination and the family of Conjugate Gradient methods which are the main subject of this
section.
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A linear operator
M−1 linear, symmetric positive definite, left preconditioner
B nonlinear left preconditioner
x true solution vector A−1b
xi approximate solution vector at iteration i = 0, 1, . . .
ei error x− xi at iteration i
ri residual b−Axi = Aei at iteration i
ui preconditioned residual B(ri) or M−1ri
ũi approximation to ui, exact for a linear preconditioner
wi pipelining intermediate Aui or Aũi

mi pipelining intermediate B(wi) or M−1wi

ni pipelining intermediate Ami

pi search direction or basis vector
si transformed search direction Api
qi pipelining intermediate B(si) or M−1si
zi pipelining intermediate Aqi
αi scalar weight in solution and residual update
βi scalar weight in computation of new search direction or basis vector
ηi squared norm 〈Api, pi〉 = ||pi||

2
A

δi squared norm 〈Aui, ui〉 = ||ui||2A
γi L2-inner product involving preconditioned or unpreconditioned residuals

depending on the method under consideration (〈ri, ri〉, 〈ui, ui〉, or 〈ui, ri〉)

Table 1: Notation for Conjugate Gradient and related methods

We note an important property of all CD methods. By the minimization property, we have

ei ⊥A span(p0, . . . , pi−1) ⇐⇒ ri ⊥ span(p0, . . . , pi−1). (1)

That is, the residual is orthogonal to the previously explored space in the standard norm 1.
The directions pj need not be specified before the algorithm begins; they can be computed as needed,

based on the progress of the algorithm.

Algorithm 1 Conjugate Directions [19]

1: function CD(A, b, x0, p0, . . . , pn−1)
+ 2: r0 ← b −Ax0

– 3: p0 ← r0
+ 4: s0 ← Ap0
• 5: γ0 ← 〈p0, r0〉
• 6: η0 ← 〈p0, s0〉

7: α0 ← γ0/η0
8: for i = 1, 2, . . . , n do

– 9: xi ← xi−1 + αi−1pi−1

–10: ri ← ri−1 − αi−1si−1

•11: γi ← 〈pi, ri〉
+12: si ← Api
•13: ηi ← 〈si, pi〉
14: αi ← γi/ηi

2.1.2 Flexible Conjugate Gradient Methods

To ensure rapid convergence of the CD algorithm, it is desirable at each iteration for the new search direction
pi to be well-aligned with the remaining error ei = x−xi. As the true error is unknown, one available option
is the residual ri = Aei, A-orthogonalized against the other search directions.

1Other norms may be used, as described by Hestenes [18].
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Algorithm 2 Flexible Conjugate Gradients [31]
xxxxx

1: function FCG(A, B, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: u0 ← B(r0)
– 4: p0 ← u0

+ 5: s0 ← Ap0
• 6: γ0 ← 〈u0, r0〉
• 7: η0 ← 〈p0, s0〉

8: α0 ← γ0/η0
9: for i = 1, 2, . . . do

–10: xi ← xi−1 + αi−1pi−1

–11: ri ← ri−1 − αi−1si−1

∗12: ui ← B(ri)
•13: γi ← 〈ui, ri〉
14: for k = i− νi, . . . , i− 1 do
•15: βi,k ← −1

ηk

〈ui, sk〉
–16: pi ← ui +

∑i−1

k=i−νi
βi,kpk

+17: si ← Api
•18: ηi ← 〈pi, si〉
19: αi ← γi/ηi

Algorithm 3 Preconditioned Conjugate Gradients
[18]

1: function PCG(A, M−1, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: u0 ←M−1r0
– 4: p0 ← u0

+ 5: s0 ← Ap0
• 6: γ0 ← 〈u0, r0〉
• 7: η0 ← 〈s0, p0〉

8: α0 ← γ0/η0
9: for i = 1, 2, . . . do

–10: xi ← xi−1 + αi−1pi−1

–11: ri ← ri−1 − αi−1si−1

∗12: ui ←M−1ri
•13: γi ← 〈ui, ri〉
14:

15: βi ← γi/γi−1

–16: pi ← ui + βipi−1

+17: si ← Api
•18: ηi ← 〈si, pi〉
19: αi ← γi/ηi

The residual can be seen as a transformed error or as a gradient descent direction for the function
1
2
||x||2A − 〈b, x〉, a minimizer of which is a solution of Ax = b. Preconditioning can be seen as an attempt

to obtain a direction better aligned with ei by instead A-orthogonalizing ui
.
= B(ri) = B(Aei) against the

previous search directions p0, . . . , pi−1. If B is an approximate inverse of A, it is effective by this criterion,
and many preconditioners are motivated as such.

The process just described, found in Algorithm 2, describes the Flexible Conjugate Gradient (FCG)
method [31], with complete orthogonalization, i.e., the new search direction is found by A-orthogonalizing
the residual against all previous directions in every iteration. Full A-orthogonalization requires potentially
excessive memory usage and computation. Hence, it is a common approach to only A-orthogonalize against
a number νi of previous directions. Note however that only for full orthogonalization (νi = i) is a true
A-orthogonal basis computed by the Gram-Schmidt process in lines 14–16 of Algorithm 2, defining a CD
method in the strict sense.

One can observe from Algorithm 2 that no overlapping of reductions and operator or preconditioner
application is possible; the dot products depend on the immediately preceding computations.

2.1.3 Preconditioned Conjugate Gradients

Let Kj(A, b) represent the jth Krylov subspace span(b, Ab, . . . , Aj−1b). If B is a linear operator B(v) ≡
M−1v, then line 15 of Algorithm 2 evaluates to zero for all but the most recent previous direction, and the
search directions lie in Krylov subspaces Ki(M−1A,M−1b). We thus recover the Preconditioned Conjugate
Gradient Method [14, 18, 37] shown in Algorithm 3. Again, communication and computation cannot be over-
lapped using the algorithm as written, and in a parallel implementation, two reductions must be performed
per iteration.
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2.1.4 Pipelined Preconditioned Conjugate Gradients

Any rearrangement of the PCG algorithm beyond trivial options must appeal to a notion of algorithmic
equivalence more general than producing identical floating-point results. These notions include algebraic
rearrangements, which typically do not produce the same iterates in finite precision arithmetic, but which
are equivalent in exact arithmetic. One such operation is to rearrange the CG algorithm to involve a single
reduction, requiring less communication and synchronization overhead on parallel systems. This was done by
Chronopoulos and Gear [8], as described in Algorithm 4. The rearrangement is also particularly important in
the context of implementing efficient Krylov methods for current hybrid systems involving high throughput
coprocessors for which kernel fusion is beneficial [32].

This rearrangement is possible because CG relies on the geometric structure induced by interpreting
symmetric positive definite operators as inner products. Noting that ηi is defined as the squared A-norm of
pi and that pi is constructed by A−orthogonalizing ui with respect to pi−1, one can use the Pythagorean
Theorem to write

ηi = ||pi||2A = ||ui + βpi−1||2A = ||ui||2A − |βi|2||pi−1||2A = ||ui||2A − |βi|2ηi−1

where terms involving products of directions at different iteration numbers are zero because of the A-
orthogonality of pi and pi−1. The quantity δi

.
= ||ui||2A = 〈ui, Aui〉 does not depend on pi and can thus be

computed at the same time as γi. The quantity wi
.
= Aui needs to be computed, which apparently adds

another matrix multiply to the overall iteration. However, a second type of structure, namely linear structure,
can be exploited to reuse this computation and remove the existing matrix multiply with a recurrence relation

si = Api = Aui + βiApi−1 = wi + βsi−1. (2)

These rearrangements require additional storage (one extra vector w in this case) and floating point compu-
tations and come with potential numerical penalties as the computed norm could become negative (“norm
breakdown”) in finite precision arithmetic. These breakdowns are most easily handled through algorithm
restarts. Also, errors can accumulate in recursively computed variables.

As ηi is only used to calculate αi, one can avoid computing it and update αi directly as

αi =
γi
ηi

=
γi

(δi − |βi|2ηi−1)
=

γi

δi −
(

γi

γi−1

)2 (
γi−1

αi−1

) =
γi

δi − β̄i
γ̄i

αi−1

.

This recurrence is more concise, but we retain explicit computation of ηi in the algorithms as presented here
to allow for an easier comparison.

The Chronopoulos-Gear CG method cannot overlap the preconditioner and sparse matrix multiply with
the reductions, so some further rearrangement is desirable to allow concurrent use of computational resources.
Ghysels and Vanroose [13] developed a further variant of the Chronopoulos-Gear algorithm to accomplish
this, as described in Algorithm 5. The algorithm takes advantage of multiple “unrollings” using the linear
structure of the variable updates, as in (2). For example, since the computation of ui = M−1ri on line 20 of
Algorithm 4 blocks the subsequent inner product involving ui, one can use the identity

ui = M−1ri = M−1ri−1 − αi−1M
−1si = ui−1 − αi−1qi (3)

which shifts the application of M−1 from ri to si, to compute a new variable qi
.
= M−1si. Similarly, qi is

rewritten until computation, for mi in Algorithm 5, can be overlapped with the dot products in the previous
iteration. The identity in (3) relies on the linearity of M−1. This rearrangement allows for more concurrent
use of computational resources at the cost of storing more vectors, performing more floating point operations,
and reducing numerical stability [13]. Examples as well as a performance model [12, 13] show performance
gains on current and future parallel systems.

The Pipelined Conjugate Gradient method as presented in Algorithm 5 requires storing 10 vectors com-
pared to 6 for PCG and 7 for CGCG.
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Algorithm 4 Chronopoulos-Gear Conjugate Gra-
dients [8]

1: function CGCG(A, M−1, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: u0 ←M−1r0
+ 4: w0 ← Au0

5:

6:

• 7: γ0 ← 〈u0, r0〉
• 8: δ0 ← 〈u0, w0〉

9: η0 ← δ0
–10: p0 ← u0

–11: s0 ← w0

12:

13:

14: α0 ← γ0/η0
15: for i = 1, 2, . . . do

–16: xi ← xi−1 + αi−1pi−1

–17: ri ← ri−1 − αi−1si−1

18:

19:

∗20: ui ←M−1ri
+21: wi ← Aui

•22: δi ← 〈ui, wi〉
•23: γi ← 〈ui, ri〉
24: βi ← γi/γi−1

25: ηi ← δi − |βi|2ηi−1

26: αi ← γi/ηi
–27: pi ← ui + βipi−1

–28: si ← wi + βisi−1

29:

30:

Algorithm 5 Pipelined Conjugate Gradients [13]
xxxxx

1: function PIPECG(A, M−1, b, x0)
+ 2: r0 ← b−Ax
∗ 3: u0 ←M−1r0
+ 4: w0 ← Au0

∗ 5: m0 ←M−1w0

+ 6: n0 ← Am0

• 7: γ0 ← 〈u0, r0〉
• 8: δ0 ← 〈u0, w0〉

9: η0 ← δ0
–10: p0 ← u0

–11: s0 ← w0

–12: q0 ← m0

–13: z0 ← n0

14: α0 ← γ0/η0
15: for i = 1, 2, . . . do

–16: xi ← xi−1 + αi−1pi−1

–17: ri ← ri−1 − αi−1si−1

–18: ui ← ui−1 − αi−1qi−1

–19: wi ← wi−1 − αi−1zi−1

∗20: mi ←M−1wi

+21: ni ← Ami

•22: γi ← 〈ui, ri〉
•23: δi ← 〈ui, wi〉
24: βi ← γi/γi−1

25: ηi ← δi − |βi|2ηi−1

26: αi ← γi/ηi
–27: pi ← ui + βipi−1

–28: si ← wi + βisi−1

–29: qi ← mi + βiqi−1

–30: zi ← ni + βizi−1
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2.2 Pipelined Flexible Conjugate Gradient Methods

The FCG algorithm can be modified in the same manner used to produce the Chronopoulos-Gear CG
algorithm. This does not involve any assumption of linearity of B, so the new single reduction FCG algorithm
described in Algorithm 6 is equivalent to FCG in exact arithmetic, for an arbitrary preconditioner.

Algorithm 6 Single Reduction Flexible Conjugate Gradients

1: function CGFCG(A, B, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: u0 ← B(r0)
+ 4: w0 ← Ap0
• 5: γ0 ← 〈u0, r0〉
• 6: δ0 ← 〈u0, w0〉
– 7: p0 ← u0

– 8: s0 ← w0

9: η0 ← δ0
10: α0 ← γ0/η0
11: for i = 1, 2, . . . do

–12: xi ← xi−1 + αi−1pi−1

–13: ri ← ri−1 − αi−1si−1

∗14: ui ← B(ri)
+15: wi ← Aui

•16: γi ← 〈ui, ri〉
17: for k = i− νi, . . . , i− 1 do
18: βi,k ← −1

ηk

〈ui, sk〉
•19: δi ← 〈ui, wi〉
–20: pi ← ui +

∑i−1

k=i−νi
βi,kpk

–21: si ← wi +
∑i−1

k=i−νi
βi,ksk

22: ηi ← δi −
∑i−1

k=i−νi
β2
i,kηk

23: αi ← γi/ηi

One can now attempt to pipeline FCG in the same manner as pipelined variants of CG are obtained -
this leads to the variant described in Algorithm 7. The quantity ũ is used to reinforce the idea that the
preconditioned search directions differ in general from those computed by FCG.

A variant analogous to Gropp’s asynchronous CG [16] could also be defined. We do so for the corre-
sponding method based on conjugate residuals in §3.2.

2.2.1 Issues with Naive Pipelining and Variable Preconditioning

Convergence of Algorithm 7 typically stagnates for nonlinear preconditioners B. In cases where the precon-
ditioner has an associated “noise level” or tolerance which characterizes its variability, stagnation is typically
observed at a relative error comparable to this quantity. This is illustrated in Figure 1, plotting convergence
for a diagonal system with a preconditioner which simply adds Gaussian noise to the residual.

Analysis of preconditioned conjugate gradient methods typically makes use of the preconditioner as an
inner product. The CG method can be seen as a Ritz-Galerkin approach to a Krylov subspace method where
approximations in successive Krylov subspaces are chosen to satisfy the condition that the resulting residual
is orthogonal to the Krylov subspace [39, §4.1]. Choosing a different definition of orthogonality, based on
the metric induced by M−1, produces the PCG method. This is equivalent to the notion of simply replacing
the L2 inner product with a different inner product, wherever it appears in the algorithm. This freedom
to choose norms was recognized soon after the development of the CG method [18]. In terms of the PCG,
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Algorithm 7 Pipelined FCG (Naive)

1: function PIPEFCG?(A, B, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: ũ0 ← B(r0)
– 4: p0 ← ũ0

+ 5: w0 ← Ap0
∗ 6: m0 ← B(w0)
+ 7: n0 ← Am0

• 8: γ0 ← 〈ũ0, r0〉
• 9: δ0 ← 〈ũ0, w0〉
–10: s0 ← w0

–11: q0 ← m0

–12: z0 ← n0

13: η0 ← δ0
14: α0 ← γ0/η0
15: for i = 1, 2, . . . do

–16: xi ← xi−1 + αi−1pi−1

–17: ri ← ri−1 − αi−1si−1

–18: ũi ← ũi−1 − αi−1qi−1

–19: wi ← wi−1 − αi−1zi−1

•20: γi ← 〈ũi, ri〉
21: for k = i−−νi, . . . , i− 1 do
•22: βi,k ← −1

ηk

〈ũi, sk〉
•23: δi ← 〈ũi, wi〉
∗24: mi ← B(wi)
+25: ni ← Ami

–26: pi ← ũi +
∑i−1

k=i−νi
βi,kpk

–27: si ← wi +
∑i−1

k=i−νi
βi,ksk

–28: qi ← mi +
∑i−1

k=i−νi
βi,kqk

–29: zi ← ni +
∑i−1

k=i−νi
βi,kzk

30: ηi ← δi −
∑i−1

k=i−νi
β2
i,kηk

31: αi ← γi/ηi

Algorithm 8 Pipelined FCG ()

1: function PIPEFCG(A, B, b, x0)
+ 2: r0 ← b−Ax0

∗ 3: ũ0 ← B(r0)
– 4: p0 ← ũ0

+ 5: w0 ← Ap0
∗ 6: m0 ← B(w0)
+ 7: n0 ← Am0

• 8: γ0 ← 〈u0, r0〉
• 9: δ0 ← 〈u0, w0〉
–10: s0 ← w0

–11: q0 ← m0

–12: z0 ← n0

13: η0 ← δ0
14: α0 ← γ0/η0
15: for i = 1, 2, . . . do

–16: xi ← xi−1 + αi−1pi−1

–17: ri ← ri−1 − αi−1si−1

–18: ũi ← ũi−1 − αi−1qi−1

–19: wi ← wi−1 − αi−1zi−1

•20: γi ← 〈ũi, ri〉
21: for k = i− νi, . . . , i− 1 do
•22: βi,k ← −1

ηk

〈ũi, sk〉
•23: δi ← 〈ũi, wi〉
∗24: mi ← ũi +B(wi − ri)
+25: ni ← Ami

–26: pi ← ũi +
∑i−1

k=i−νi
βi,kpk

–27: si ← wi +
∑i−1

k=i−νi
βi,ksk

–28: qi ← mi +
∑i−1

k=i−νi
βi,kqk

–29: zi ← ni +
∑i−1

k=i−νi
βi,kzk

30: ηi ← δi −
∑i−1

k=i−νi
β2
i,kηk

31: αi ← γi/ηi
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Figure 1: A toy diagonal system, n = 100, with condition number 5, equally-spaced eigenvalues, and
b = 1/

√
n, solved with FCG, naively pipelined FCG (Algorithm 7), and our PIPEFCG (Algorithm 8). The

pathological preconditioner B adds Gaussian noise of magnitude η||r|| to the residual r. νmax = n. Note
that convergence for the naively pipelined algorithm stagnates at a relative error of approximately η.
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Algorithm 3,
γi = 〈ri, ri〉M−1 = 〈ui, ri〉. (4)

Here, the nonlinearity of the preconditioner precludes direct use of this idea. We opt to consider B in a
more general sense of a preconditioner, as an approximate inverse to A. Specifically, noting that Aei = ri,
we shall later require that ||B(ri)− ei||/||ei|| is controlled.

Naively replacing the linear preconditioner M−1 in (3) with a nonlinear one, we obtain the unrolling used
in Algorithm 7,

ui = B(ri) ≈ B(ri−1)−B(αi−1si) ≈ ui−1 − αi−1qi, (5)

which is inexact even in exact arithmetic. This unrolling is not a priori unacceptable, as FCG is designed
to cope with varying and inexact preconditioning, and the rearrangement amounts to a different nonlinear
preconditioner, albeit one derived using intuition from the linear case. However, unlike the unrolling (3) the
above leads to an accumulation of errors in the preconditioned residual ũi, with respect to ui = B(ri). This
invalidates the equivalence (4), which PCG structurally relies on for projecting out search directions from
the residual.

Note that when introducing a nonlinear preconditioner with FCG2 the basis vectors pj remain A-
orthogonal with this rearrangement, yet the residuals ri, which are M−1-orthogonal when B(v) ≡ M−1v,
are now orthogonal with respect to an equivalent linear operator B̂, using Notay’s concept and notation
of an equivalent linear operator [31]. This operator is defined by the relations ui = B(ri) = B̂ri, depends
on b and x0, and is unique except in degenerate cases. It seems to be the case that the equivalent linear

operator ˆ̃B implicitly defined (Cf. (3)) by the update on line 18 of Algorithm 7 is unbounded as i → ∞,
mapping residuals of arbitrarily small magnitude to preconditioned residuals of the same order, making it
an unacceptable approximation for any given linear operator M−1 bounded as n→∞.

Thus, it will be useful to distinguish between the equivalent linear operators as induced by the base

and pipelined methods, B̂ and ˆ̃B, respectively. The operator ˆ̃B is defined by the relations ũi =
ˆ̃Bri. The

quantities αi, in a CD method like FCG, are chosen to minimize ||x − (xi+1 + αi−1ui)||A. However, in the
pipelined variant, the effective update is xi ← xi−1+αi−1ũi. Thus, deviation from the base method induced
by pipelining can of course be characterized by the difference between u and ũ, or equivalently the difference

between B̃ and ˆ̃B. The advantage of this second view is that it suggests a repair procedure. Namely, one
should respect the already-defined part of B̂ as much as possible when computing ũ, hence partially defining
ˆ̃B. One approach is to note that the operation of the equivalent linear operator in direction ri has already
been defined, so one can project this direction out of the quantity which B is applied to. Thus, the algorithm
can be modified to compute the vector

mi ← θiũi−1 +B(wi−1 − θiri−1), θi
.
=
〈r, w〉
||r||2 (6)

Indeed, numerical experiments show that this modification can restore convergence in some cases. This
modification is, unfortunately, not useful as it stands for the purposes of improving the naive pipelined FCG
algorithm, as it requires additional blocking reductions. A natural question, however, is how one might
estimate θi. One useful property is that as the preconditioner approaches A−1, θi approaches 1 for all i.
This motivates the choice of θi ≡ 1 as at least an “unbiased” approximation.

2.2.2 Faithful Preconditioners

To be more precise, we restrict our attention to a subclass of nonlinear preconditioners.

Definition 2.1 A family of functions Bn : Cn 7→ Cn, n = 1, 2, . . . represents a faithful preconditioner with
respect to a family of linear operators An ∈ L(Cn,Cn) if Bn(An(.)) − In(.) is a uniformly bounded sequence
of operators, with respect to the standard norm on Cn. That is, there exists c ∈ R such that

||Bn(Anv)− v|| < c||v|| ∀v ∈ Cn\{0}, ∀n ∈ {1, 2, . . .}
2We assume νi = i, that is complete orthogonalization, for all of the analysis in this section.
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Remark 2.2 We will typically abuse notation and omit the dependence on n.

Remark 2.3 Applied to the special case where v = ei
.
= x − xi, the error in a particular iteration of a

Krylov method, noting that B(Aei) = B(ri) = ui, the condition above implies that

||ui − ei|| < c||ei||,

which is to say that the preconditioned residual is a uniformly accurate approximation to the error.

Remark 2.4 The class of Sparse Approximate Inverse preconditioners are a special case of faithful precon-
ditioners, if the approximation quality is uniform in the problem size.

To compute θi in (6) requires additional inner products, so instead we seek to cheaply estimate it. Note
that θi minimizes the distance ||wi − θiri||. If we assume our preconditioner to be faithful with a small
constant, so that the operator AB(·) − I(·) is bounded with a small constant, then θi ≡ 1 is a reasonable
estimate, as ||w − r||/||r|| = ||AB(r) − r||/||r|| is then small.

Note that θi ≡ 0 corresponds to the naive unrolling as in (5).

2.2.3 Defining an Improved Pipelined Flexible Conjugate Gradient Algorithm

In a modified version of the naive pipelined Flexible Conjugate Gradients, Algorithm 7, we take advantage
of the estimate θi ≡ 1 to mitigate the observed stagnation of convergence.

Motivated by the considerations above, we observe great improvements employing the approximation

ũi = B(ri) = B(ri−1 − αi−1Api−1) ≈ (1− αi−1)B(ri−1)− αi−1B(Api−1 − ri−1) (7)

instead of the recurrence relation (5). This leads to a replacement of the algorithmic step mi ← B(wi) in
line 24 of Algorithm 7 by

mi ← ũi +B(wi − ri). (8)

For a linear preconditioner these are equivalent in exact arithmetic.
We proceed to show that this can be interpreted in terms of improved control of the accumulation of

perturbations in ũi with respect to B(ri), assuming the preconditioner is sufficiently faithful.
Note that wi = Aũi in exact arithmetic and rewrite (8) as

mi ← ũi +B(Aũi − ri) = ũi +B (A(ũi − ei)) .

With qi = mi +
∑

k βkqk we write out the recurrence relation

ũi = ũi−1 − αi−1

(

ũi−1 +B
(
A(ũi−1 − ei−1)

)
+
∑

k

βkqk

)

= (1 − αi−1)ũi−1 − αi−1

(

B
(
A(ũi−1 − ei−1)

)
+
∑

k

βkqk

)

.

Rearranging terms we obtain

ũi =

[

(1− αi−1)ũi−1 − αi−1

∑

k

βkqk

]

︸ ︷︷ ︸

I

−
[

αi−1B
(
A(ũi−1 − ei−1)

)

]

︸ ︷︷ ︸

II

, (9)

where Term II is affected by the nonlinear preconditioner but Term I is not. Using Definition 2.1 and
Remark 2.3 we rewrite II as

αi−1B
(
A(ũi−1 − ei−1)

)
= αi−1Ĩ

(
ũi−1 − ei−1

)
≈ αi−1

(
ũi−1 − ei−1

)
,
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with the operator Ĩ close to the identity operator using the notion of a faithful preconditioner. Comparing
magnitudes of I and this approximation of II we expect that

‖(1− αi−1)ũi−1 − αi−1

∑

k

βkqk‖ > ‖αi−1

(
ũi−1 − ei−1

)
‖ (10)

as a faithful preconditioner transforms the residual such that it is similar to the true error e. If instead we
use B(w) as in the naive Algorithm 7, then

ũi = ũi−1 − αi−1

∑

k

βkqk

︸ ︷︷ ︸

III

−B
(
Aũi−1

)

︸ ︷︷ ︸

IV

.

Following the same line of arguments we obtain that B(Aũi−1) = Ĩ(ũi−1) ≈ ũi−1. Hence, Terms III and IV
are of similar magnitude. While for the modified formulation the application of a nonlinear preconditioner
leads to small perturbations of the preconditioned residual and consequently of the next search directions,
this does not hold true for the naive formulation. Through recurrence of the preconditioned residual the
accumulation of perturbations eventually leads to effectively random search directions and stagnation of
convergence. This is observed in Figure 1, Once the “noise level” of the preconditioner is reached, convergence
stagnates.

By employing the modification to the computation of the quantity m, analyzed in the previous section,
we arrive at a useful pipelined variant of the FCG method, Algorithm 8.

Remark 2.5 Algorithm 8 satisfies several desiderata:

• In exact arithmetic, with a linear preconditioner, it is equivalent to CG and FCG.

• As B → A−1, the operator becomes increasingly “faithful”, hence the algorithm approaches the behavior
of FCG.

• No new reductions are introduced.

• A single reduction phase per iteration is used, which can be overlapped with application of the operator
and preconditioner.

The pipelined Flexible Conjugate Gradient method requires storing (4νmax + 11) vectors, compared to
(νmax + 6) vectors for FCG (Algorithm 2) and (2νmax + 7) for Single Reduction FCG (Algorithm 6).

3 Pipelined Generalized Conjugate Residuals Methods

The Conjugate Residual family of Krylov subspace methods is applicable to systems with a Hermitian
but not necessarily positive definite operator. While CG methods enforce A-conjugacy of search directions
and minimize ||e||A, CR methods construct AHA-orthogonal search directions. In some derivations of the
method, such as in Saad’s textbook [34], iterates minimize ||ei||AHA = ||ri|| over a Krylov subspace, which
puts these methods in close relation to MINRES [39, §6.4] and GMRES [33, 35]. However, in some other
derivations [25], these methods are described as minimizing ||e||A, as does CG. Here, we consider methods
of the first kind, that is minimal-residual methods.

3.1 Review of Conjugate Residuals Methods

There is also an ambiguity regarding the terminology within the related flexible Krylov subspace methods.
We note that the Generalized Conjugate Residual (GCR) method [10], which this section is concerned with,
is closely related to FCG. However, despite its name, the GCR method is less closely related to Axelsson’s
Generalized Conjugate Gradients (GCG) method [2, 1]. While FCG and GCR both employ a multi term
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Algorithm 9 Generalized CR

1: function GCR(A, B, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: u0 ← B(r0)
– 4: p0 ← u0

+ 5: s0 ← Ap0
• 6: γ0 ← 〈u0, s0〉
• 7: η0 ← 〈s0, s0〉

8: α0 ← γ0/η0
9: for i = 1, 2, . . . do

–10: xi ← xi−1 + αi−1pi−1

–11: ri ← ri−1 − αi−1si−1()
∗12: ui ← B(ri)
13: for k = i− νi, . . . , i− 1 do
•14: βi,k ← −1

ηk

〈Aui, sk〉
–15: pi ← ui +

∑i−1

k=i−νi
βi,kpk

+16: si ← Api
•17: γi ← 〈ui, si〉
•18: ηi ← 〈si, si〉
19: αi ← γi/ηi

Algorithm 10 Preconditioned CR

1: function PCR(A, M−1, b, x0)
+ 2: r0 ← b−Ax0

∗ 3: u0 ←M−1r0
– 4: p0 ← u0

+ 5: s0 ← Ap0
• 6: γ0 ← 〈u0, s0〉
• 7: η0 ← 〈s0, s0〉

8: α0 ← γ0/η0
9: for i = 1, 2, . . . do

–10: xi ← xi−1 + αi−1pi−1

–11: ri ← ri−1 − αi−1si−1

∗12: ui ←M−1ri
•13: γi ← 〈ui, si〉
14: βi ← γi/γi−1

–15: pi ← ui + βipi−1

+16: si ← Api
17:

•18: ηi ← 〈si, si〉
19: αi ← γi/ηi

Gram-Schmidt orthogonalization of new search directions against previous ones, GCG additionally applies
old directions in the update of the solution and residual vectors.

As in the preceding section, we describe the flexible method (GCR) and proceed to show its reduction to
Preconditioned CR (PCR) for constant preconditioners and extension to pipelined CR [13]. We introduce
pipelined GCR in §3.2.

The GCR method is shown in Algorithm 9. From a comparison of the GCR and FCG Algorithms 9 and
2 it is straightforward to see that they employ AHA- and A-inner products, respectively. As in Sec 2.1.3,
we recover the non-flexible (or non-generalized) Preconditioned Conjugate Residuals method by restricting
to linear preconditioners. In this case all βk but one are zero, giving Algorithm 10.

3.2 Pipelined Generalized Conjugate Residual Methods

GCR and PCR do not allow any overlapping of global reductions in their standard formulation. Reformulat-
ing the algorithms using the Chronopoulos-Gear trick and introducing unrollings and pipelining intermediates
leads to two pipelined GCR variants shown in algorithms 11 and 12. These employ the same modification
to the computation of mi as discussed in §2.2.3.

In Algorithm 11 the quantity wi is computed by performing the sparse matrix-vector product Aui in
line 15, whereas in Algorithm 12 w is a recurred quantity. Note that the overlapping properties of the
variants are different as in Algorithm 11 the application of the preconditioner overlaps the reductions while
in Algorithm 12 a sparse matrix-vector product also contributes to the overlapping. The performance of both
variants is modeled in §7. The suitability of one or the other algorithm depends on the cluster architecture,
in particular the speed of the connecting network, and the available memory. Algorithm 12 has a larger
memory footprint due to the storage of the extra intermediate variable z and its history of length νi.

The original GCR method [10] as presented in Algorithm 9 requires a total of (2νmax + 7) vectors to be
stored . The pipelined variants of Algorithms 11 and 12 require (νmax+2) and (2νmax+4) additional vectors
to be stored.
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Algorithm 11 Pipelined GCR (w unrolled)

1: function PIPEGCR(A, B, b, x0)
+ 2: r0 ← b −Ax0

∗ 3: ũ0 ← B(r0)
– 4: p0 ← u0

+ 5: s0 ← Ap0
∗ 6: q0 ← B(s0)

7: z0 ← Aq0
• 8: γ0 ← 〈r0, Ar0〉
• 9: η0 ← ||s0||
10: α0 ← γ0/η0
11: for i = 1, 2, . . . do

–12: xi ← xi−1 + αi−1pi−1

–13: ri ← ri−1 − αi−1si−1

–14: ui ← ũi−1 − αi−1qi−1

+15: wi ← Aui

∗16: mi ← B(wi − ri) + ũi

17: ni ← Ami

•18: γi ← 〈ri, wi〉
•19: δi ← 〈wi, wi〉
20: for k = i− νi, . . . , i− 1 do
•21: βi,k ← −1

ηk

〈wi, sk〉
–22: pi ← ũi +

∑i−1

k=i−νi
βi,kpk

–23: si ← wi +
∑i−1

k=i−νi
βi,ksk

–24: qi ← mi +
∑i−1

k=i−νi
βi,kqk

25: zi ← ni +
∑i−1

k=i−νi
βi,kzk

26: ηi ← δi −
∑i−1

k=i−νi
β2
i,kηk

27: αi ← γi/ηi

Algorithm 12 Pipelined GCR (w unrolled)

1: function PIPEGCR w(A, B, b, x0)
+ 2: r0 ← b−Ax0

∗ 3: ũ0 ← B(r0)
– 4: p0 ← ũ0

+ 5: s0 ← Ap0
∗ 6: q0 ← B(s0)
+ 7: z0 ← Aq0
• 8: γ0 ← 〈r0, Ar0〉
• 9: η0 ← ||s0||
10: α0 ← γ0/η0
11: for i = 1, 2, . . . do

–12: xi ← xi−1 + αi−1pi−1

–13: ri ← ri−1 − αi−1si−1

–14: ui ← ũi−1 − αi−1qi−1

–15: wi ← wi−1 − αi−1zi−1

∗16: mi ← B(wi − ri) + ũi

+17: ni ← Ami

•18: γi ← 〈ri, wi〉
•19: δi ← 〈wi, wi〉
20: for k = i− νi, . . . , i− 1 do
•21: βi,k ← −1

ηk

〈wi, sk〉
–22: pi ← ũi +

∑i−1

k=i−νi
βi,kpk

–23: si ← wi +
∑i−1

k=i−νi
βi,ksk

–24: qi ← mi +
∑i−1

k=i−νi
βi,kqk

–25: zi ← ni +
∑i−1

k=i−νi
βi,kzk

26: ηi ← δi −
∑i−1

k=i−νi
β2
i,kηk

27: αi ← γi/ηi
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4 Pipelined Flexible GMRES Methods

GMRES methods use explicitly-orthonormalized basis vectors and as such do not rely on the same identities
which were so easily disturbed by algorithmic rearrangement in the FCG and GCR cases above. Thus,
deriving a usable pipelined FGMRES method is a relatively straightforward extension of pipelined GMRES,
as predicted with the introduction of that method [12].

4.1 Notation

We base our notation in Table 2 on standard notation for GMRES methods and pipelined GMRES. It is
distinct from the notation used for CG and its variants because Flexible GMRES methods naturally use
right preconditioning. The symbols pi, ri, ei, A, B, and M−1 have identical meaning to those in Table 1.

ui preconditioned basis vector B(pi) or M−1pi
ũ approximation to ui, exact if B is linear
zi transformed and preconditioned basis vector Aui or Aũi

z̄i preconditioned, transformed and shifted basis vector Aui − σipi or Aũi − σipi
q̄i pipelining intermediate B(z̄i)
w̄i pipelining intermediate Aq̄i

Table 2: Notation for GMRES and related methods

4.2 Review of the Flexible GMRES Method

The Flexible GMRES
(FGMRES) method [33] modifies the GMRES method [35] to admit variable right preconditioning. It
accomplishes this by finding approximate solutions xi with xi−x0 having minimal residual 2-norm ||b−Axi||2
in the subspace span(b, u1, . . . , ui−1), where ui

.
= B(pi) and pi is formed by orthonormalizing zi−1

.
= Aui−1 =

AB(pi−1) with p0, . . . , pi−1
3. This Arnoldi process can be summarized as AU = PH , where P is a matrix

with ith column pi, U is a matrix with ith column ui, and H is an upper Hessenberg matrix. Let P be a
matrix with ith column pi. If B = M−1 for some fixed linear operator, GMRES is recovered: the solution is
found in the Krylov space Ki(AM−1, b) and the relation AU = AM−1P = PH is available to avoid the need
to explicitly store the vectors ui. Algorithm 13 describes the FGMRES method. Replacing line 15 with

x← x0 +M−1Py

in the case of a linear preconditioner recovers the right preconditioned GMRES algorithm. The FGMRES
method may be preferable even for a constant preconditioner if this additional application of the precondi-
tioner (“unwinding”) is expensive and the required additional memory is available. Restarting and conver-
gence checks (including on-the-fly QR decomposition of H and happy breakdown checks) are not included
for simplicity. Similarly, checks for the (rare in practice) possibility that the Hessenberg matrix H is singular
are omitted.

4.3 Review of the Pipelined GMRES Method

The GMRES algorithm can be pipelined with the strategy outlined by Ghysels and Vanroose [12]. They
observe that at the cost of degraded numerical stability, GMRES can be modified to only involve one global re-
duction (l1-GMRES in their nomenclature). This parallels the modification of preconditioned CG (Algorithm

3) to derive Chronopoulos-Gear CG (Algorithm 4). They use the identity pi = Api−1 −
∑i−1

k=1〈Api−1, pk〉pk
and note that if zi

.
= Api−1 is already available, this update can be performed while Azi = A2pi−1 is being

computed. Using the now available value of pi, one can (locally) compute zi+1
.
= Api.

3For improved numerical stability, the same subspace can be spanned by orthogonalizing z̄i−1
.
= Aui−1 − σipi−1 [12].
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Algorithm 13 Flexible GMRES [33]

1: function FGMRES(A,B,b,x0,m)
+ 2: r0 ← b −Ax0

• 3: p0 ← r0/||r0||2
∗ 4: u0 ← B(p0)
+ 5: z0 ← Au0

6: for i = 1, . . . ,m do
7: for j = 0, . . . , i− 1 do
• 8: hj,i−1 ← 〈pj , zi−1〉
– 9: p̄← zi−1 −

∑i−1

k=0 pjhj,i−1

•10: hi,i−1 ← ||p̄||2
–11: pi ← p̄/hi,i−1

∗12: ui ← B(pi)
+13: zi ← Aui

–14: y ← argmin||Hm+1,my − ||r0||2e0||2
–15: x← x0 + Uy

4.4 Pipelining the Flexible GMRES Method

The same procedure used to pipeline GMRES can also be used to produce a single-reduction variant of
FGMRES, as shown in Algorithm 14, and a pipelined version of FGMRES, shown in Algorithm 15.

This algorithm can suffer “norm breakdown” requiring a restart and refilling of the pipeline. Tuning of
the shift parameters can help avoid this. We allow for a distinct shift σi to be used at each iteration, but
note that if this value is constant, the expression on line 22 of Algorithm 15 simplifies to

z̄i ← (w̄i−1 −
i−1∑

k=0

hk,i−1z̄k)/hi,i−1 (11)

A practical choice, and the one we use in our implementations discussed in § 5-6, is to set σi to a constant
value which approximates the largest eigenvalue of the preconditioned operator.

In exact arithmetic, the iterates produced by Algorithm 15 are not equivalent to the FGMRES al-
gorithm because of the approximation in computing ũi on line 21. Recall that ui

.
= B(pi) = B((vi −

∑
−1

k=1 hk,i−1pk)/hi,i−1). If B were linear, then the approximation ũi on line 21 would be arithmetically
equivalent. PIPEFGMRES requires storage of 4m + 2 vectors, as opposed to 2m + 2 for FGMRES and
CGFGMRES.

5 Implementation

As a practical consequence of our choice of pipelined algorithms which are not arithmetically equivalent to
their base flexible methods, useful preconditioners for the base solver, for a given problem, will not necessarily
translate to be effective solvers with the pipelined variant. In particular, for the Pipelined FCG and GCR
methods, the preconditioner must be compatible with the approximation θi ≡ 1, as described in §2.2.1.
Thus, experimentation is required, as it is in general when choosing preconditioners for complex systems
where canonical solutions or analysis tools are not available.

To allow for this experimentation to be performed easily, and to allow for usage in highly distributed
settings by way of MPI, we implement the PIPEFCG (Alg. 8), PIPEGCR (Alg. 11), PIPEGCR w (Alg. 12),
and PIPEFGMRES (Alg. 15) algorithms within the KSP class in PETSc [3, 4]. The implementations are
identified as KSPPIPEFCG, KSPPIPEGCR, and KSPPIPEFGMRES4.

4See bitbucket.org/pascgeopc/petsc for current information.
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Algorithm 14 Single Reduction FGMRES

1: function CGFGMRES(A,B,b,x0,m)
+ 2: r0 ← b −Ax0

• 3: p0 ← r0/||r0||2
∗ 4: u0 ← B(p0)
+ 5: z̄0 ← Au0 − σ0p0

6: for i = 1, . . . ,m do
7: for j = 0, . . . , i− 2 do
• 8: h̄j,i−1 ← 〈pj , z̄i−1〉

9: hj,j−1 ← h̄j,i−1

•10: h̄i−1,i−1 ← 〈pi−1, z̄i−1〉
11: hi−1,i−1 ← h̄i−1,i−1 + σi−1

•12: t← ||z̄i−1||22 −
∑i−1

k=0 h̄
2
k,i−1

13: if t < 0 then
14: BREAKDOWN
15: h̄i,i−1 ←

√
t

16: hi,i−1 ← h̄i,i−1

17: if i = m then break
–18: pi ← (z̄i−1 −

∑i−1

k=0 h̄k,i−1pk)/h̄i,i−1

∗19: ui ← B(pi)
+20: z̄i ← Aui − σipi

–21: y ← argmin||Hm+1,my − ||r0||2e0||2
–22: x← x0 + Uy

An important practical point is that although many residual norms may be used to monitor convergence,
only the natural norm for the CG- and CR-based solvers may be used without introducing extra computations
and reductions. Similarly, the right preconditioned residual norm for PIPEFGMRES should be used when
performance is important. Other norms can and should be used to assess convergence behavior.

All of the pipelined algorithms may suffer from norm breakdown, although in practice this is typically
only observed near convergence. Our implementations detect norm breakdown and respond by restarting
the algorithm, flushing the pipeline in the process.

Remark 5.1 (Truncation strategies for FCG and GCR methods) In [31] Notay proposes a truncation–
restart technique for determining the number of old directions νi to be used in the current iteration i as
νi = max (1, mod (i, νmax + 1)). With this technique after every restart there are two consecutive iterations
using only the respective last search direction. Consequently, the first two steps after a restart are actually
standard CG iterations. In our implementations we implement the rule νi = mod (i, νmax) + 1. This em-
ploys n + 1 directions in the nth iteration after a restart. If νmax = 1 we recover the IPCG algorithm as
analyzed by Golub and Ye [15]. We also provide a standard truncation procedure, νi = min(i, νmax).

Remark 5.2 (Shift parameters for KSPPIPEFGMRES) Our implementation only covers the constant-σ case,
as discussed in §4.4.

Remark 5.3 (Scaling) We observe that scaling the system matrix A is often essential to allow for a faithful
preconditioner (and see the survey by Wathen [40] for an exposition on scenarios which may otherwise profit
from diagonal scaling). This is due to the fact that an effective preconditioner for A may not be faithful,
as we have defined it in Definition 2.1. Indeed, a Krylov method will typically converge rapidly when the
preconditioned operator has a small number of tight clusters of eigenvalues, a property which is not affected
by scaling of the preconditioner or operator. Operators close to the identity frequently exhibit this property,
but this property is neither necessary nor sufficient.
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Algorithm 15 Single-stage Pipelined FGMRES

1: function PIPEFGMRES(A,B,b,x0,m)
+ 2: r0 ← b −Ax0

• 3: p0 ← r0/||r0||2
∗ 4: u0 ← B(p0)
+ 5: z̄0 ← Au0 − σ0p0
∗ 6: q̄0 ← B(z̄0)
+ 7: w̄0 ← Aq0

8: for i = 1, . . . ,m do
9: for j = 0, . . . , i− 2 do
•10: h̄j,i−1 ← 〈pj , z̄i−1〉
11: hj,j−1 ← h̄j,i−1

•12: h̄i−1,i−1 ← 〈pi−1, z̄i−1〉
13: hi−1,i−1 ← h̄i−1,i−1 + σi−1

•14: t← ||z̄i−1||22 −
∑i−1

k=0 h̄
2
k,i−1

15: if t < 0 then
16: BREAKDOWN
17: h̄i,i−1 ←

√
t

18: hi,i−1 ← h̄i,i−1

19: if i = m then break
–20: pi ← (z̄i−1 −

∑i−1

k=0 h̄k,i−1pk)/h̄i,i−1

–21: ũi ← (q̄i−1 −
∑i−1

k=0 ukh̄k,i−1)/h̄i,i−1

–22: z̄i ← (w̄i−1 −
∑i−1

k=0(z̄k + σkpk)h̄k,i−1)/h̄i,i−1 − σipi ⊲ see (11)
∗23: q̄i ← B(z̄i)
+24: w̄i ← Aq̄i
–25: y ← argmin||Hm+1,my − ||r0||2e0||2
–26: x← x0 + Ũy
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6 Numerical Experiments

6.1 Blocking and Non-Blocking Reductions

The MPI-3 standard [29] provides an API for asynchronous operations which may allow for overlap of
communication and computation, as required by the algorithms described in this paper. This is still an
active area of software development [5, 21, 41]. The latency involved in a global reduction on a given
massively parallel machine is difficult to characterize, particularly if only using a portion of the nodes, and
performance models are not always predictive [22]. It should be noted that the only reliably reproducible
quantity when testing message passing routines on complex machines is the minimum time required for an
operation, in the limit of a large number of tests, though of course users are more affected by typical or
average times [17].

Here and in the following tests, we report a variety of data and statistics to allow for interpretability [20]
of our experiments, even in the absence of access to the specific hardware and software environment available
to the authors at the time of this writing. Note that the performance model discussed in §7 can also provide
additional insight into the performance characteristics of the new solvers.

In order to assess the potential time savings and performance enhancements by using pipelined versus
non-pipelined preconditioned Krylov solvers, empirical data are presented, comparing the time to execute
MPI Allreduce and MPI Iallreduce [29]. The reductions are paired with identical computational work local
to each rank, consisting of arbitrary floating point operations on individual elements of a small local array.
In the former case we get the combined time of the sequence of local work and the blocking reduction while
in the latter case, we time the sequence of starting the reduction, doing the local work and finishing with
MPI Wait. The reduction size is 32 double values. Table 3 lists the timing results for Piz Daint, a Cray
XC30 cluster at the Swiss National Supercomputing Center (CSCS). The machine includes 5272 nodes, each
with an 8-core Intel Xeon E5-2670 CPU, 32 GiB DDR3-1600 RAM, and Aries routing and communications
ASIC. The cluster features the Dragonfly network topology [24]. As a reference we also include timings for
performing the reduction and the local work only. We used five warmup rounds and 50 trial runs. The
timings presented are the minimum and maximum times across ranks averaged over the trial runs.

It can be confirmed that MPI Iallreduce functionality is in place. While the time for performing the
local work and a blocking reduction just exceeds the cumulative time for the individual operations, the
reduction time is hidden when using non-blocking reductions. From the min/max values we also see that
usually timing is consistent across the communicator sizes we considered.

Table 3 is also instructive to understand when a performance gain can be expected by using a pipelined
solver as these methods require computing and updating of additional intermediate variables.

#Ranks 256 1024 2048 4096 8192 16384 24576 32768

Reduction only
0.188 0.577 0.613 0.670 0.787 0.843 0.918 0.894
0.198 0.588 0.622 0.689 0.821 0.876 0.956 0.929

Local work only
4.88 4.88 4.88 4.87 4.88 4.88 4.88 4.88
4.95 4.95 4.97 4.97 4.98 5.68 5.67 5.68

+ blocking red.
5.56 5.75 5.81 5.89 6.03 6.12 6.13 6.13
5.57 5.76 5.83 5.90 6.05 6.14 6.15 6.15

+ non-bl. red.
4.90 4.88 4.90 4.89 4.93 5.65 5.64 5.66
4.98 4.98 4.99 4.99 4.98 5.71 5.69 5.71

Table 3: Timing for blocking and non-blocking reductions in milliseconds. We report both the min (upper
rows) and max (lower rows) CPU time over all ranks within the MPI communicator. The times for the
non-blocking reductions with local work have to be compared to the maximum times of the local work only
as the reduction can terminate only once all ranks finish with the local work.
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6.2 3D Strong-Scaled Coarse Grid Solver Example

A key motivation for the development of pipelined Krylov methods for use on current supercomputers is the
scenario in which the amount of local work per iteration in a Krylov method is very low, hence requiring
time comparable to that consumed by reductions. This is the case when attempting to strong-scale past the
point of the current reduction bottleneck. The same situation arises when a Krylov method is employed as
a coarse-grid solver within a multigrid hierarchy.

In the Piz Daint environment described in §6.1, we use Cray CLE 5.2.40 and Cray-MPICH 7.2.2, a
PETSc development branch based on PETSc 3.6 maint5, and a pTatin3D [26] development branch. This
allows us to evaluate our solvers with real application software to solve the variable viscosity Stokes equations
using Q2 − Pdisc

1 mixed finite elements.
We examine a 3D “viscous sinker” scenario with a spherical inclusion of higher (1.2×) density and

viscosity (100×) in a cubic domain. This is a useful test case for challenging Stokes flow problems, as it
presents a tunable, non-grid-aligned viscosity contrast. Tests correspond to a highly-distributed coarse grid
solve, or an extreme strong-scaling. The former case is a particularly interesting potential application of
our methods, as it allows some adjustment of the grid size to balance communication and computation to
be overlapped. 4096 MPI ranks on 1024 nodes each hold a single Q2 finite element, for 163 elements and
107, 811 degrees of freedom. The resulting linear systems are solved with the new KSPFCG and KSPPIPEFCG

solvers to a relative tolerance of 10−8 in the natural residual norm. In each case, νmax = 30 and standard
truncation is employed. FCG and PIPEFCG are compared for two nonlinear preconditioners. 60 tests were
run for each of the two solves in each test, 10 at a time per batch job. The first run is considered warmup
and is reported separately. Sets of three batch jobs were submitted at a time.

6.2.1 Block Jacobi Preconditioner

A per-rank block Jacobi preconditioner is employed, performing 5 iterations of Jacobi-preconditioned CG on
each block. Figure 2 shows the residual norm convergence behavior as a function of the iteration count (left)
and CPU time (right) for a typical experiment. Despite the increase in iterations required for convergence
when using PIPEFCG, the time to solution is ∼ 2× faster compared to FCG. Table 4 collects statistical
variations obtained from multiple runs (indicated via the “Samples” column). The “First solve” column
indicates whether the solve was the first call to PETSc’s KSPSolve routine after defining the system;
successive solves were run with no intermediate calls apart from those used for timing. Note the relatively
large variability in timings. Interestingly, the maximum speedup per iteration can exceed 2×. While this
might initially seem impossible to accomplish with an algorithmwhich aims to overlap two processes, it should
be noted that there is also some benefit to be gained in relaxing the synchronization required, beneficial in
the presence of heavy-tailed distributions of local processing times. For more, see the recent work by Knepley
et al. [30].

Time / Krylov Iteration [s]
Solver First solve Samples Its. Mean (Std. Dev.) Min. Max.

FCG yes 6 454 6.38E-04 (1.38E-04) 4.48E-04 7.89E-04
PIPEFCG yes 6 540 4.21E-04 (7.20E-05) 3.31E-04 5.41E-04

FCG no 54 454 5.58E-04 (1.11E-04) 3.73E-04 9.13E-04
PIPEFCG no 54 540 2.45E-04 (3.15E-05) 1.94E-04 3.73E-04

Table 4: Statistics for multiple runs of the pTatin3D viscous sinker system with a block Jacobi precondi-
tioner.

5commit 2c5c660747c89d9a265191735ba48020b7a0dd72 at https://bitbucket.org/petsc/petsc
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Figure 2: Convergence behavior for the viscous sinker system using block Jacobi preconditioning.

6.2.2 RASM-1 Preconditioner

A rank-wise RASM-1 [7] preconditioner is used, with 5 iterations of Jacobi-preconditioned CG as a subdomain
solver. Figure 3 shows the residual norm convergence behavior as a function of the iteration count (left)
and mean CPU time (right) for a typical experiment. Note that, as expected, choosing a more faithful
preconditioner allows recovery of comparable convergence behavior between the pipelined and base method.
Here, the speedup is not as pronounced as in the previous example, as the problem size was tuned as an
example of a coarse grid solve with respect to the block Jacobi preconditioner. This example shows that
speedup is practically achievable even given nested MPI calls defining neighbor-wise communication patterns
in the preconditioner. Table 5 presents statistics of the multiple solves performed.

Time / Krylov Iteration [s]
Solver First solve Samples Its. Mean (Std. Dev.) Min. Max.

FCG yes 6 191 1.28E-03 (1.28E-04) 1.11E-03 1.41E-03
PIPEFCG yes 6 195 1.21E-03 (1.18E-04) 1.10E-03 1.36E-03

FCG no 54 191 1.16E-03 (1.48E-04) 9.08E-04 1.55E-03
PIPEFCG no 54 195 8.85E-04 (9.89E-05) 6.99E-04 1.10E-03

Table 5: Statistics for multiple runs of the pTatin3D viscous sinker system with restricted ASM-1 precon-
ditioner.

6.3 2D Stokes Flow Test

As a relevant yet still comparatively simple test case of a full solve, we ran extensive tests using a PETSc

tutorial6, which solves the incompressible, variable viscosity Stokes equation in two spatial dimensions. The
discretization employs Q1 − Q1 elements, stabilized with Bochev’s polynomial projection method [9] and
free slip boundary conditions on all sides. The viscosity structure is a circular viscous sinker, with density
contrast giving a buoyant force and a viscosity contrast of 25×. All tests run on 4096 MPI ranks on 1024
nodes of Piz Daint. We experiment with all three new solvers as subsolvers within an upper-triangular block

6www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/ex43.c.html
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Figure 3: Convergence behavior for the viscous sinker system using RASM-1 preconditioning

preconditioner. The discrete Stokes problem is of the form

[
K G
D C

] [
u
p

]

=

[
f
0

]

which is right preconditioned with

B =

[
K̂ G

0 Ŝ

]
−1

,

where Ŝ is a Jacobi preconditioner derived from the pressure mass matrix scaled by the local (element-wise)
inverse of the viscosity and K̂ is an inexact flexible pipelined Krylov solve applied to the viscous block of
the Stokes system, preconditioned with a rank-wise block Jacobi preconditioner with 5 iterations of Jacobi-
preconditioned CG as subsolves. The convergence criterion is that the unpreconditioned norm of an outer
FGMRES method is reduced by a factor of 106. Inner solves are limited to 100 iterations. As they best
exploit the structure of the suboperator, we would expect FCG and PIPEFCG to be more performant. Table
6 shows the resulting timings. We see significant speedup in all cases as the reduction bottlenecks in the
base solvers are overcome. In the case where Conjugate Residuals are employed as inner solvers, we observe
variability in the number of iterations to convergence, due to the degradation in conditioning arising from
use of the AHA-inner product.

Solve Time [s]
Inner Solver Outer Its. Mean (Std. Dev.) Min. Max.

FCG 8 3.80 (0.29) 3.47 4.37
PIPEFCG 8 1.80 (0.18) 1.52 2.03

GCR 18–23 10.02 (1.51) 8.26 12.76
PIPEGCR 12–16 3.08 (0.46) 2.59 4.01

FGMRES 19 6.70 (0.53) 6.10 7.71
PIPEFGMRES 19 5.04 (0.27) 4.73 5.65

Table 6: Statistics for 9 runs of a 2D Stokes flow problem with an upper block triangular preconditioner
employing various inner solvers, as described in §6.3 .
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7 Performance Model and Extrapolation to Exascale

We describe performance models to predict the performance of our methods at exascale. For ease of com-
parison we consider the same hypothetical exaflop machine used to analyze pipelined GMRES [12], based
on a 2010 report [36]. The specifications of the hypothetical machine are listed in Table 7. Rank-local com-
putation times are obtained by counting flops and multiplying by tc. This makes the significant assumption
that any give computation can attain the peak flop rate of the machine, without being memory bandwidth
limited.

Property Symbol Value

Nodes Pn 220

Cores per node Cn 210

Compute cores Pc = PnCn 230

Word size w 32 B
Machine node interconnect bandwidth BW 100 GB/s
Tree radix r 8
Per word transfer time tw w/BW
Latency (startup) time ts 1 µs
Time per flop tc 230/1018

Table 7: Properties of a hypothesized exascale machine.

Global Reductions Dot products are typically computed with a reduction tree of height ⌈logr(Pn)⌉ with
r the tree radix. Present day networks make use of a hierarchy of interconnects where more closely located
nodes, e.g. in a cabinet, are connected through a tree with a high effective radix. A job scheduler typically
assigns compute nodes, giving the user limited influence on the specific compute nodes used. Our performance
model makes the simplifying assumption of a tree radix r = 8 for the entire machine [12, 36].

In order to obtain an expression for the global reduction communication time Tred,comm we assume
the model ts +mtw consisting of a constant latency or startup time ts and a message size dependent part
involving the number of wordsm and the time tw required to exchange a word. We neglect time for intranode
communication leading to the cost of 2⌈logr(Pn)⌉(ts+mtw) for a reduction and subsequent broadcast across
the entire machine. In the context of pipelined methods global reduction costs include only the excess time
(if any) which is not overlapped by other work.

Global reductions also involve floating point operations, accounted for in the computation time Tred,calc.
Adding up the partial reduction results across the reduction tree leads to ⌈logr(Pn)⌉ flops along the longest
path. While this is the maximum number of flops performed by one process only, all other processes wait for
this summation to finish. This might appear to be an insignificant contribution to the overall computational
cost but can become non-negligible in the strong scaling limit.

Sparse Matrix-Vector Products (SpMV) The cost of a sparse matrix-vector multiplication also in-
cludes both communication and computation. The system matrix is assumed to represent a stencil based
approximation of the underlying partial differential equations, with nnz non-zero entries per row. For a
standard second order finite difference discretization in three dimensional space, e.g., nnz = 7. Denoting by
N = NxNyNz the total problem size and by nloc = N/Pc the portion local to a process we obtain the compute
costs TSpMV,calc = 2nnznloctc. Neighbor communication costs are TSpMV,comm = 6(ts+(N/Pn)

2/3tw) and can
mostly be overlapped. Consequently, the SpMV cost function is TSpMV = max(TSpMV,calc, TSpMV,comm).

Preconditioner Application We augment the model with the application of a preconditioner. We
model the performance of the RASM preconditioner used in §6, defining TPC to account for 5 CG-Jacobi
iterations on subdomains overlapping by one degree of freedom, and an internode communication step with
the same pattern as a SpMV. We note that scalable multigrid preconditioners may also be designed which
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Method Operation Communication time cost function

RED for k = 1..w : βk ← 〈p, uk〉 Tred,comm(w) = 2⌈logr(Pn)⌉
(

ts + wtw
)

SpMV s← Ap TSpMV,comm = 6(ts + (N/Pn)
2/3tw)

Table 8: Communication time cost functions for fundamental operations with nloc as defined above, nnz the
number of nonzero entries per row, and w the number of values (words) to be broadcast.

do not involve any reductions [27] and thus could be attractive for extreme scale solves. Nested pipelined
Krylov methods could be used as coarse grid solvers within these preconditioners.

Total Cost per Iteration The total cost of one iteration comprises the time for performing flops, Tcalc,
involving the cost of sparse matrix-vector products, TSpMV, the time for applying the preconditioner, TPC,
and fundamental operations listed in Table 9 as well as the (excess of the) reduction communication time
Tred,comm. We do not take into account fused operations and vector units to establish an easier comparison
with previous work [12].

The cost per iteration for flexible methods depends on the number of previous directions to orthogo-
nalize against and hence on the truncation strategy and the iteration count. In our model we use a factor
representing an average number of previous directions being used in the Gram-Schmidt orthogonalization
as νavg = kavg · νmax. Operations involving scalar values only are not taken into account. This leads to the
models for the single iteration cost functions listed in Table 10.

Method Operation Compute time cost function

AXPY x← x+ αp TAXPY = t(nloc(mlt) + nloc(add)) = 2nloctc

MAXPY p← u+
∑

m βmpm
TMAXPY(m) = t(mnloc(mlt) + (m − 1)nloc(add)

+ nloc(add)) = 2mnloctc

RED 〈r, u〉
Tred,calc = t(nloc(mlt) + (nloc − 1)(add)

+ ⌈logr(Pn)⌉(add)) ≈ (2nloc + ⌈logr(Pn)⌉)tc

Table 9: Compute time cost functions for fundamental operations with nloc = N/Pc denoting the vector size
local to the process.

Problem and Solver Specifications For evaluating the cost functions, we consider a strong scaling
experiment (cf. [12]) with a total problem size N = 20003, nnz = 7 non-zero entries per row and evaluate
for a varying number of node counts. For PIPEFCG and PIPEGCR we assume νmax = 30 and kavg = 0.8;
for PIPEFGMRES we assume a restart parameter of 30.

Evaluation In Figure 4 we show a comparison of the anticipated performance of all solvers for this problem.
Eventually all methods are limited by latency time but the graphs indicate that the pipelined methods scale
up to the 106 nodes of the assumed exascale machine while their standard counterparts level off about one
order of magnitude earlier. The performance crossover regarding pipelined vs. non-pipelined methods for this
particular example occurs around 8 · 104 nodes. The example of PIPEGCR vs. PIPEGCR w clearly shows
the effect of trading local work load for better overlapping. Note how PIPEGCR (explicit computation of w,
overlapping by preconditioner application) performs slightly better at lower node counts while PIPEGCR w
(recurrence of w, additional AXPY and MAXPY, overlapping by preconditioner and SpMV) shows a more
significant gain in efficiency for larger numbers of nodes.

Figure 5 shows a breakdown of the anticipated total iteration time for FCG and PIPEFCG. For the test
case considered here the model predicts that global reductions will be entirely overlapped up to approximately
5 · 105 nodes.
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Krylov method Total cost

FCG
Tcalc = 2TAXPY + TMAXPY(νavg) + (νavg + 2)Tred,calc + TSpMV + TPC

Tred = Tred,comm(νavg + 1) + Tred,comm(1)

PIPEFCG

Tcalc = 4TAXPY + 4TMAXPY(νavg) + (νavg + 2)Tred,calc + TSpMV

+ TPC + 2ntc

Tred = max
(

0, Tred,comm(νavg + 2) − [TSpMV + TPC + 2ntc]
)

GCR
Tcalc = 2TAXPY + TMAXPY(νavg) + (νavg + 2)Tred,calc + TSpMV + TPC

Tred = Tred,comm(νavg) + Tred,comm(2)

PIPEGCR

Tcalc = 3TAXPY + 3TMAXPY(νavg) + (νavg + 2)Tred,calc + TSpMV

+ TPC + 2ntc

Tred = max
(

0, Tred,comm(νavg + 2) − [TPC + 2ntc]
)

PIPEGCR w

Tcalc = 4TAXPY + 4TMAXPY(νavg) + (νavg + 2)Tred,calc + TSpMV

+ TPC + 2ntc

Tred = max
(

0, Tred,comm(νavg + 2) − [TSpMV + TPC + 2ntc]
)

FGMRES
Tcalc = TMAXPY(νavg) + tcn+ (νavg + 1)Tred,calc + TSpMV + TPC

Tred = Tred,comm(νavg) + Tred,comm(1)

PIPEFGMRES

Tcalc = νavgTAXPY + 3TMAXPY(νavg) + (νavg + 5)tcn+ (νavg + 2)Tred,calc

+ TSpMV + TPC

Tred = max
(

0, Tred,comm(νavg + 2) − [TSpMV + TPC]
)

Table 10: Performance models for standard and pipelined methods for the truncation strategy. Again,
n = N/Pc, νavg = kavg · νmax, where kavg corresponds to a factor accounting for the average number of
previous search directions being used. If the number of iterations required is ≫ νmax, this factor approaches
one for a standard truncation strategy. Communication time for multiple reductions is fused whenever
possible. GMRES-type models do not include the time for manipulating the Hessenberg matrix.

26



100 101 102 103 104 105 106 107

Nodes

10-5

10-4

10-3

10-2

10-1

100

T
im

e
 /

 i
t 

/ 
s

SpMV
GMRES
FCG
PIPEFCG
GCR
PIPEGCR
PIPEGCR_w

FGMRES
PIPEFGMRES

100 101 102 103 104 105 106 107

Nodes

10-5

10-4

10-3

10-2

10-1

100

T
im

e
 /

 i
t 

/ 
s

SpMV
FCG
PIPEFCG

100 101 102 103 104 105 106 107

Nodes

10-5

10-4

10-3

10-2

10-1

100

T
im

e
 /

 i
t 

/ 
s

SpMV
GCR
PIPEGCR
PIPEGCR_w

100 101 102 103 104 105 106 107

Nodes

10-5

10-4

10-3

10-2

10-1

100

T
im

e
 /

 i
t 

/ 
s

SpMV
GMRES
FGMRES
PIPEFGMRES

Figure 4: Evaluation of the performance models of Table 10 for predicting iteration times on the hypothesized
exascale machine of Table 7. The top left panel includes all methods and the others compare FCG-, GCR-
and GMRES-type methods. All graphs include the time for performing a SpMV operation as a reference. The
number of nodes scales beyond the 1M nodes of the assumed machine to better visualize the leveling at high
node counts. While all methods are eventually limited by latency time the pipelined methods outperform
their standard counterparts on high node counts.
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Figure 5: Breakdown of the total iteration time into computation and reduction time for FCG and PIPEFCG.
For the test case considered it is anticipated that the reductions will be entirely overlapped up to approxi-
mately 5 · 105 nodes for the pipelined method.

Sensitivity to Parameters The performance models are insensitive to the specific value of most of the
parameters when chosen within reasonable bounds. Among the insensitive parameters are the interconnect
bandwidth, word size, the tree radix and assumptions such as ignoring fused AXPY operations. It may
appear unintuitive that the interconnect bandwidth is not a sensitive parameter, but latency is dominant in
the communication time model.

The models are most obviously sensitive to the latency time but also to the number of cores per node as
more or less cores per node implies a different number of nodes for obtaining exaflop performance. Another
sensitive parameter is the total problem size N . A mild dependency of the average fill factor kavg and
the maximum number of previous direction νmax as well as the number of non-zero entries nnz per row is
observed. Varying any of these values does not cause a change of the general shape of the curves but rather
induces a shift of the crossover point.

For the hypothesized exascale machine a latency time of 1µs is assumed, significantly lower than times
observed on current systems including Piz Daint as in Table 3. Consequently, pipelined Krylov methods
can lead to significant performance improvements for much smaller numbers of nodes on current systems, as
confirmed by the tests in §6.

8 Conclusions and Outlook

Bottlenecks related to global communication and synchronization are increasingly common in high per-
formance computing, as parallelism and hybridism are used to increase peak performance. Traditional
algorithms can often be improved with this consideration in mind. Given the increasing relative impact of
latency and synchronization required with global all-to-all communication patterns, it becomes increasingly
attractive to tailor algorithms to mitigate these costs. This requires introducing additional costs in terms of
memory footprint, local computational work, memory traffic, numerical stability, and allowing asynchronous
operations.

We introduce variants of the FCG, GCR and FGMRES flexible Krylov methods, allowing overlap of
global reductions with other work through operation pipelining. The base methods are amongst the most
commonly used flexible Krylov methods for Hermitian positive definite, Hermitian, and general operators,
respectively. Future work includes extending and implementing the approaches here for other useful Krylov
methods. A crucial consideration in this process, as demonstrated here, is the effect of allowing algorithmic
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rearrangements which modify the effective preconditioner. Naive rearrangement is not always effective, and
effective rearrangements may impose conditions on the class of useful preconditioners beyond those common
in previous Krylov methods. We propose and analyze an approach to provide methods which are increasingly
effective for stronger preconditioners.

The proposed methods are shown to be effective on a current leadership supercomputing platform with
a fast network, where speedups could exceed 2×, challenging common assumptions that pipelined Krylov
methods are only effective at future machine scales, and that the speedup of single-stage pipelining is limited
to 2×. Additionally, we develop analytic models for anticipating performance on future exascale systems.

All methods have been implemented in the PETSc package and are available open-source.

Deeper Pipelining The same rearrangements used in the single-stage
pipelined methods described here could be pursued to allow a reduction to overlap more than one iteration’s
worth of other work. This has been explored for the GMRES method [12]. Our focus has been on the “faith-
ful” preconditioners discussed above, which require a substantial amount of work to apply and thus would
likely not benefit from further pipelining. Additionally, numerical instability becomes more of a concern with
deeper pipelining –in the case of GMRES, norm breakdown becomes more common–and we anticipate that
the required stabilization for nonlinear preconditioners would also be non-trivial. Investigation of deeper
pipelining is of course of interest from a mathematical point of view, but it is unclear whether exascale
systems will be developed exhibiting the extreme reduction latency required to justify overlapping inner
products with multiple nonlinear preconditioner applications. From a practical point of view, current MPI
implementations do not prioritize operations like multiple overlapping reductions, which makes the testing
of these methods problematic.

Outlook The methods described in this paper are expected to become more and more relevant as non-
deterministic, randomized, nested, highly-distributed, and nonlinear preconditioning techniques come into
greater usage. These trends are encouraged by an increasing level of parallelism, hybridism, and hierar-
chy in computational machinery, as well as intense research into randomized, finely-grained parallel, and
asynchronous techniques for approximate and exact solvers.
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