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Abstract. We present the non-conforming Virtual Element Method (VEM) for the numerical approximation
of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise
polynomials, while each component of the velocity is approximated using the nonconforming virtual element space.
On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable
non-polynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson
problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of
the non-polynomial functions is not required. This approach makes it possible to construct nonconforming (virtual)
spaces for any polynomial degree regardless of the parity, for two-and three-dimensional problems, and for meshes
with very general polygonal and polyhedral elements. We show that the non-conforming VEM is inf-sup stable and
establish optimal a priori error estimates for the velocity and pressure approximations. Numerical examples confirm
the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.
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1. Introduction. We are concerned with the development of the non-conforming virtual
element method (VEM) for the Stokes problem in the unknown fields u and p satisfying

−∆u +∇p = f in Ω, (1.1)

div u = 0 in Ω, (1.2)

u = g on Γ, (1.3)

where Ω is a polygonal or polyhedral domain in Rd, d = 2, 3 with boundary Γ. We will refer to u
and p as velocity and pressure, respectively.

Historically, the first non-conforming finite element space dates back to the work of Crouzeix
and Raviart in [27]. Their method provides a low-order accurate approximation of the velocity
field of the Stokes equations on triangular meshes based on linear polynomials. Later on, higher-
order accurate methods were proposed by Fortin and Soulie [29], and Crouzeix and Falk [26],
respectively, by using finite element spaces based on polynomials of degree k = 2 and 3 on triangles.
The functions in these finite element spaces are continuous on a discrete set of points located at
the internal mesh edges. These points are the roots of the one-dimensional kth-order Legendre
polynomials defined over the edges and can be used as the nodes of the kth Gauss-Legendre
quadrature rule. This minimal continuity requirement ensures the optimal convergence rate; see,
for instance, [27]. The construction of the non-conforming elements for the Stokes problem has
been recently generalized on triangles in [6, 37] to consider polynomials of any degree k > 3, thus
resulting in the so-called family of Gauss-Legendre non-conforming methods. Robust a posteriori
estimates for such schemes can be found in [3]. A major drawback of the non-conforming Gauss-
Legendre elements is that the space construction for even k differs from that of odd k. This feature
also affects the classical low-order cases for k ≤ 3, i.e., the formulation of the non-conforming
spaces for k = 1 and k = 3 in [26, 27] is not the same as for k = 2 in [29].
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The generalization of the non-conforming formulation to elements other than triangles in two
and three dimensions is quite a hard task due to the difficulty of the construction of the shape
functions for such elements. For example, successful attempts in this direction are found for
quadrilaterals, tetrahedra and hexahedra in [22, 34, 35, 36]. Instead, the construction of the
non-conforming virtual element space for the Stokes equations that we present in this paper is
straightforward for any polynomial degree regardless of its parity, and is the same for elements
with very general geometric shape in two and three space dimensions.

The VEM was first introduced as a C0-conforming formulation for the Poisson equation with
constant coefficients in [7]. The non-conforming formulation for the same problem was developed
later in [5, 23]. In both formulations, the trial and test functions are defined implicitly on each mesh
element as the solution of a boundary value problem and never explicitly constructed in practice,
hence the name “virtual”. In view of obtaining a computable and accurate virtual formulation,
two essential ingredients are sought for the virtual element space: (i) it must contain a space
of polynomials up to a given degree; (ii) orthogonal L2 and H1 projections of virtual functions
onto the polynomial sub-space must be computable just using the degrees of freedom. Properties
(i)-(ii) make possible to avoid the explicit construction of the shape functions and allows us to
formulate and implement the method on very general polygonal and polyhedral meshes. These
features are inherited from the Mimetic Finite Difference (MFD) method [12, 33], which can be
seen as a precursor. A conforming low order MFD method for the steady Stokes problem on general
polygonal and polyhedral meshes is found in [9, 10], and a higher order MFD method equivalent
to the non-conforming VEM in [5] is found in [32].

The objective of this paper is to develop the non-conforming VEM for the weak form of (1.1)-
(1.3) (see (2.1)-(2.2) in the next section) that is suitable for very general mesh partitioning of Ω
in polygons and polyhedra. As is standard in the finite element setting, the VEM approximation
of (1.1)-(1.3) proposed in this work is based on the construction of a pair of finite element spaces
satisfying the inf-sup condition, see [16]. The major features of this VEM are: (i) each component
of the velocity is locally approximated by the non-conforming virtual element space of order k
that contains the subspace of polynomials of degree at most k and is globally non-conforming
in the sense specified in Section 3, see also [5, 23]. The pressure is locally approximated by
polynomials of degree at most k − 1, and is globally discontinuous; (ii) gradient and divergence
are approximated by their projection onto polynomials of degree k − 1. Both projections are
computable exactly using only the degrees of freedom of the VEM. Therefore, the divergence-free
nature of the Stokes velocity is reproduced in the virtual framework by enforcing the divergence-free
condition on the velocity approximation in a weak sense on each element. Moreover, the degree of
the polynomials determines the accuracy (convergence rate) of the VEM; (iii) the well-posedness
of the VEM is ensured through an additional stabilization term in the discrete weak formulation,
which is computable using only the degrees of freedom of the VEM and is zero when applied to
polynomials; (iv) the VEM allows for the use of mesh partitionings of Ω with polygonal elements
in 2D or polyhedral elements in 3D of arbitrary shape provided that a few typical shape regularity
conditions are satisfied. The formulation of the method is the same in 2D and 3D and for any
cell shape. It is worth mentioning that this feature follows from the nonconforming nature of the
formulation, since the virtual conforming formulation, which also holds for general meshes, has to
be constructed hierarchically in the space dimensions.

A number of relevant numerical approaches for the Stokes problem have been proposed in
recent years. The VEM framework has already been applied to the streamline formulation of the
Stokes equation in [4], a pseudo-stress velocity formulation can be found in [21], and a divergence
free virtual approach can be found in [13]. Among the recent developments in discontinuous
Galerkin methods, it is worth mentioning [20], the Hybridized Discontinuous Galerkin [24, 25],
and, concerning polygonal meshes, the Hybrid High Order method [1] and the Weak Galerkin
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method [38]. A comparison between these different approaches is surely worth of investigation and
will be the subject of further investigations.

The paper is organized as follows. In Section 2 we state the steady Stokes problem in weak
form and introduce the VEM as a Galerkin method. In Section 3 we review the non-conforming
virtual element framework used to approximate the velocity field, while implementation details
can be found in Section 5. In Section 4 we prove the well-posedness and convergence of the VEM
and we derive the error estimates for the velocity and pressure approximation. In Section 6 we
numerically assess the performance of the VEM by solving a set of representative problems. In
Section 7 we offer our final remarks and conclusions.

2. Continuous Stokes problem and discrete formulation. The primary velocity-pressure
formulation of the Stokes problem (1.1)-(1.3) takes the variational form:

Find u ∈
[
H1(Ω)

]d
with u = g ∈

[
H

1
2 (Γ)

]d
on Γ and p ∈ L2(Ω)/R such that for f ∈

[
L2(Ω)

]d
it holds:

a(u,v) + b(v, p) = (f ,v) ∀v ∈
[
H1

0 (Ω)
]d
, (2.1)

b(u, q) = 0 ∀q ∈ L2(Ω)/R, (2.2)

where Γ is the boundary of Ω and the bilinear forms a and b are defined by:

a(u,v) =

∫
Ω

∇v : ∇u dx, b(v, q) = −
∫

Ω

q div v dx. (2.3)

The well-posedness of (2.1)-(2.2) follows from the coercivity of the form a on the kernel of the form
b and the inf-sup condition [16].

In (2.1)-(2.2) and throughout the paper we use the standard definitions and notation of Sobolev
spaces, inner products, seminorms and norms. In particular, if D is an open bounded domain with
Lipschitz boundary in Rd for d = 2, 3 and m a non-negative integer, Hm(D) denotes the standard
Sobolev space of order m; (·, ·)m,D is the associated inner product; ‖ · ‖m,D and | · |m,D are the
induced norm and seminorm, respectively. When D = Ω as in (2.1)-(2.2) we drop the subscripted
symbol.

Let k ≥ 1 be a fixed integer. A Virtual Element Method of order k will be defined by two
finite dimensional functional spaces Vk

h and Φk−1
h of discrete trial velocity and pressure fields and

bilinear forms ah : Vk
h × Vk

h → R and bh : Vk
h × Φk−1

h → R discrete counterparts of a and b,
respectively. Precise definition of the functional spaces Vk

h and Φkh and the construction of the
bilinear forms ah and bh will be the focus of most of the remainder of this paper. For the moment,

we only anticipate that we shall not assume the inclusion Vk
h ⊂

[
H1(Ω)

]d
as our main goal is

the development of a non-conforming approximation. Moreover, let gh be a suitable piecewise
polynomial approximation of g on the mesh partitioning of Γ. The precise definition is given at
the end of section 3.4. The virtual element formulation for the approximate solution of (2.1)-(2.2)
reads as:

Find (uh, ph) ∈ Vk
h,g × Φk−1

h such that

ah(uh,vh) + bh(vh, ph) = (fh,vh) ∀vh ∈ Vk
h,0, (2.4)

bh(uh, qh) = 0 ∀qh ∈ Φk−1
h , (2.5)

with Vk
h,g = {vh ∈ Vk

h : vh|Γ = gh} and Vk
h,0 = {vh ∈ Vk

h : vh|Γ = 0}, respectively. The vector
field fh in the right-hand side integral of (2.4) is a suitable approximation of the vector field f . The
well-posedness of problem (2.4)-(2.5) will follow from a discrete inf-sup condition which shall be
established under suitable coercivity and stability properties introduced in the following section.



4 A. Cangiani, V. Gyrya, and G. Manzini

3. Virtual element framework.

3.1. Mesh regularity and polynomial approximation. To ease the exposition, we as-
sume that Ω is a polygonal domain for d = 2 and a polyhedral domain for d = 3. For any fixed
h > 0 we have a finite decomposition (the mesh) Th of the domain Ω into non-overlapping simple
polygonal/polyhedral elements with maximum size h. The adjective “simple” refers to the fact
that the boundary of each element in the decomposition must be non-intersecting. Moreover, the
boundary ∂E of element E is made of a uniformly bounded number of interfaces (edges/faces),
which are either part of the boundary of Ω, or shared with another element of the decomposition.
The definition of simple polygons and simple polyhedra is general enough to include, for instance,
elements with consecutive co-planar edges/faces, such as those typical of locally refined meshes
with hanging nodes and non-convex elements.

Below, we use s to denote a d − 1 dimensional mesh interface (either an edge when d = 2 or
a face when d = 3), |s| to denote its length, ns to denote its unit normal vector with orientation
fixed once and for all, and Eh to denote the set of all such mesh interfaces in Th. When referring
to the boundary of a specific element E (with νE edges/faces) we use the notation s ∈ ∂E and ns
will have the outward orientation.

Assumption 1 (Mesh regularity). We assume that there exists a constant ρ > 0 such that:
• for every element E of Th and every interface s ∈ E, it holds that hs ≥ ρhE;
• every element E of Th is star-shaped with respect to a ball of radius ρhE;
• for d = 3, every face s of the mesh is star-shaped with respect to a ball of radius ρhs.

If s is an internal edge/face of Th, then, there exist two elements E+ and E− such that s ⊂
∂E+ ∩ ∂E−. Consider a scalar function v defined on Ω. We denote by v± the trace of v|E± on

s from within E± and by n±s the unit vector orthogonal to s and pointing out of E±. Then, the
jump of the scalar function v across s is defined as [[v]] := v+n+

s + v−n−s . If, on the other hand, s
is on the domain boundary Γ, then [[v]] := vns, with v representing the trace of v from within the
element E having s as an interface and ns is the unit vector orthogonal to s and pointing out of
Ω. Similarly, the jump of the vector quantity vh at the internal interface s is given by

[[vh]] = (n+
s · v+

h + n−s · v−h ), (3.1)

and for the tensor quantity nvh we may consider the jump operator [̃[ · ]] that is such that

[̃[vh]] : τ =
(
n+
s · τ

)
· v+

h +
(
n−s · τ

)
· v−h (3.2)

for every properly sized tensor quantity τ .

We denote by ΠE
l : L2(E)→ Pl(E) for l ≥ 0 the L2(E)-orthogonal projection onto the polynomial

space Pl(E), defined for any function v ∈ L2(E) as the unique solution of the problem:

(ΠE
l (v), q)E = (v, q)E ∀q ∈ Pl(E). (3.3)

For vector fields, i.e., v ∈
[
L2(E)

]d
, definition (3.3) is applied component-wise, thus giving the

vector of polynomials ΠE
l (v) ∈

[
Pl(E)

]d
. The well known approximation property of L2(E)-

orthogonal projection are summarised in the following theorem.

Theorem 1 (Approximation using polynomials). Under Assumption 1, the two following
propositions hold true.
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(i) Let E ∈ Th and let ΠE
l : L2(E)→ Pl(E), for l ≥ 0, denote the L2(E)-orthogonal projection

onto the polynomial space Pl(E). Then, for any w ∈ Hm(E), with 1 ≤ m ≤ l+ 1, it holds
that ∥∥w −ΠE

l (w)
∥∥

0,E
+ hE

∣∣w −ΠE
l (w)

∣∣
1,E
≤ ChmE |w|m,E .

(ii) Let s be an interface shared by E+, E− ∈ Th and let ΠE
l : L2(s) → Pl(s), for l ≥ 0,

denote the L2(s)-orthogonal projector onto the polynomial space Pl(s). Then, for every
w ∈ Hm(E+ ∪ E−), with 1 ≤ m ≤ l + 1, it holds∣∣w −Πs

l (w)
∣∣
0,s

+ hs
∣∣w −Πs

l (w)
∣∣
1,s
≤ Chm−1/2

s ‖w‖m,E+∪E− .

In both instances (i) and (ii), the positive constant C depends only on the polynomial degree l and
the mesh regularity.
Proof. This theorem can be proven using the theory in [19] for star-shaped domains and its
extension to more general shaped elements presented in, e.g., [28].

3.2. Discrete pressure space. As discrete trial space for pressures we use the standard
space of piecewise polynomials of degree up to k − 1 with respect to the domain partition Th:

Φk−1
h :=

{
qh ∈ L2(Ω)/R | qh|E ∈ Pk−1(E)∀E ∈ Th

}
.

The local degrees of freedom of Φk−1
h for a pentagonal cell and the polynomial orders k = 1, . . . , 4

are illustrated by the right sub-panels in Fig. 3.1. Note that by definition all functions in Φk−1
h

are with global zero mean. Therefore, if NE
d,k−1 is the dimension of Pk−1(E), the total number of

degrees of freedom that are required for the pressure approximation is equal to
∑
E∈Th N

E
d,k−1− 1.

3.3. Scalar non-conforming virtual element space. The scalar non-conforming virtual
element space of order k ≥ 1 on the element E is defined for d = 2, 3 as [5, 23]

V kh (E) =
{
v ∈ H1(E) |∆v ∈ Pk−2(E), ns · ∇v ∈ Pk−1(s) ∀s ∈ ∂E

}
, (3.4)

with the usual convention that P−1(E) = {0}. The virtual element space V kE contains the space
Pk(E) of polynomials of degree up to k on E. The complement V kh (E)\Pk(E) is made up of
functions that are deemed expensive to evaluate, although they can be represented in a discrete
form through their degrees of freedom. The choice of the degrees of freedom is crucial to ensure that
it is possible to define the bilinear forms in (2.4)-(2.5) that are computable just using the degrees
of freedom and the polynomial component of space V kh (E). In practice, the discrete representation
is sufficient for the construction of the method. To characterize the degrees of freedom of the
functions in V kh (E), we first introduce an appropriately scaled basis for Pk(E). Denote byM?

l (E),
l ∈ N, the set of scaled monomials

M?
l (E) :=

{(x− xE
hE

)α
, |α| = l

}
,

where α is a multi-index and xE the center of gravity of E. Furthermore, we define Mk(E) :=⋃
l≤kM?

l (E) =: {mα}
Nd,k

α=1 , a basis of the polynomial space Pk(E) whose size is Nd,k. Bases for
polynomial spaces defined on an interface s can be similarly constructed; the same notation will
be used.

The degrees of freedom for the scalar non-conforming space V kh (E) are [5, 23]:
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• for k ≥ 1, the moments of degree (k − 1) on each edge/face s ∈ ∂E:

µαs (vh) :=
1

|s|

∫
s

vhmα ds, mα ∈Mk−1(s); (3.5)

• for k ≥ 2, the moments of degree (k − 2) inside the element E:

µαE(vh) :=
1

|E|

∫
E

vhmα dx, mα ∈Mk−2(E). (3.6)

The degrees of freedom for a pentagonal cell and the polynomial orders k = 1, . . . , 4 are illustrated
by the left sub-panels in Fig. 3.1.

A counting argument shows that the cardinality of the above sets of degrees of freedom is
NE = νENd−1,k−1 +Nd,k−2, where we recall that νE denotes the number of edges/faces of element
E. Moreover, they are unisolvent in V kh (E) [5]. Indeed, if all the degrees of freedom of vh are zero
we find that

‖∇vh‖20,E = (∇vh,∇vh)E = −(vh,∆vh)E +
∑
s∈∂E

(vh,ns · ∇vh)s = 0. (3.7)

To prove (3.7), note that for k = 1 it holds that ∆vh = 0; for k > 1 we have that ∆vh ∈ Pk−2(E)
and the first term on the right of (3.7) is a linear combination of the internal degrees of freedom
of vh, which are zero by hypothesis. The second term on the right is also zero because it is a
linear combination of the edge/face degrees of freedom of vh, which are zero by hypothesis. From
‖∇vh‖0,E = 0 it follows that vh is constant on E and it must be zero since its value is equal to its
zero-th order moment, which is zero by hypothesis.

The definition of the Virtual Element Method relies on the availability of elemental projection
operators. The non-conforming VEM for elliptic problems introduced in [5] is based on the Ritz-
Galerkin projection operator Π∇k : H1(E)→ Pk(E) that for v ∈ H1(E) gives Π∇k v as the solution
of the problem

(∇(v −Π∇k v),∇mα)E = 0 ∀mα ∈Mk(E),

together with the condition∫
∂E

(v −Π∇k v)ds = 0 if k = 1,

∫
E

(v −Π∇k v)dx = 0 if k ≥ 2.

This is shown in [5] to be computable for any vh ∈ V kE using only the degrees of freedom (3.5)
and (3.6). Furthermore, we shall prove in the following section that the L2-projector ΠE

k−1 of
Theorem 1 is also computable when applied to first order derivatives of virtual functions. Together,
these projectors will permit us to define a virtual formulation for the Stokes problem.

Remark 1. Instead, we note that an L2-projection ΠE
k (vh) onto Pk(E) is not available. In

view of definition (3.3), to compute the L2-projection we would need the solution of the finite
dimensional variational problem: find ΠE

k vh ∈ Pk(E) such that

(ΠE
k (vh),mα)E = (vh,mα)E ∀mα ∈Mk(E), (3.8)

which needs the internal moments of vh up to order k. As the corresponding degrees of freedom are
available only up to k−2, we need to resort to the strategy originally devised in [2] for the conforming
virtual element spaces and extended to the non-conforming space by [23]. The availability of the
L2-projection becomes essential when low-order terms are present. Since in the present work we
do not need this projection, we will not consider this issue anymore.



The Non-conforming Virtual Element Method for the Stokes equations 7

Fig. 3.1. Illustration of the degrees of freedom for the velocity and pressure solving the two-dimensional Stokes
problem.

The global scalar non-conforming virtual element space is defined as a finite dimensional sub-
space of the non-conforming Sobolev space H1,nc

k (Th). The latter is a subspace of the broken
Sobolev space

H1(Th) :=
{
v ∈ L2(Ω) | v|E ∈ H1(E), ∀E ∈ Th

}
and, for k ≥ 1, is given by

H1,nc
k (Th) =

{
v ∈ H1(Th) |

∫
s

[[v]] · ns q ds = 0 ∀q ∈ Pk−1(s), ∀s ∈ Eh
}
,

where [[v]] is the jump of v across the mesh interface s ∈ Eh defined in subsection 3.1. The global
scalar non-conforming virtual element space of order k ≥ 1 is now given by

V kh :=
{
vh ∈ H1,nc

k (Th) | vh|E ∈ V kh (E) ∀E ∈ Th
}
.

The degrees of freedom of V kh are the edge/face moments (3.5) and the internal moments (3.6),
and the size of V kh is clearly given by NTh Nd,k−2 +Nd−1,k−1NEh , where NTh is the number of cells
in Th and NEh the number of edges/faces in Eh. Note that the edge/face moments are the same
for the two mesh cells sharing a given internal edge/face. Therefore, the weak continuity condition
on the jumps in the definition of H1,nc

k (Th) is automatically satisfied.

3.4. Discrete velocity space. The discrete velocity space is defined by using the scalar
non-conforming virtual element space of the previous subsection for each component. Hence,

Vk
h(E) = [V kh (E)

]d ∀E ∈ Th,

and, similarly, Vk
h = [V kh

]d
. The degrees of freedom of Vk

h are those inherited from each component,
and are illustrated by the left sub-panels in Fig. 3.1 for a pentagonal cell and the polynomial orders
k = 1, . . . , 4. This choice of degrees of freedom ensures that the discrete differential operators

ΠE
k−1 ◦ ∇ and ΠE

k−1 ◦ div, (3.9)
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when applied to a vector field vh in Vk
h(E) are computable using only the degrees of freedom of

vh on E. The projection ΠE
k−1∇vh is defined as

(ΠE
k−1(∇vh),mα)E = (∇vh,mα)E ∀mα ∈

[
Mk−1(E)

]d
.

Integration by parts yields:

(∇vh,mα)E = −(vh,∇mα)E +
∑
s∈∂E

(ns · vh,mα)s.

Likewise, the projection ΠE
k−1(div vh) is defined as

(ΠE
k−1(div vh),mα)E = (div vh,mα)E ∀mα ∈Mk−1(E).

Integration by parts yields:

(div vh,mα)E = −(vh,∇mα)E +
∑
s∈∂E

(ns · vh,mα)s.

The components of mα ∈
[
Mk−1(E)

]d
and mα ∈Mk−1(E) are polynomials of degree at most k−2

in E and, when restricted to each s ∈ ∂E, are polynomials of degree at most k− 1. Therefore, the
right-hand side of the last equation above is computable using only the internal and the edge/face
degrees of freedom of the (scalar) components vh.

Finally, in the virtual element formulation (2.4)-(2.5), we use the virtual element space Vk
h,g,

whose definition requires the boundary function gh. This function is such that gh|s on every

edge/face s ∈ Γ is the L2-orthogonal projection of g on the polynomial space Pk−1(s).

3.5. Approximation of the bilinear forms a(·, ·) and b(·, ·). In view of the following
analysis, it is useful to extend the definition of the continuous bilinear forms a and b, to the whole
of H1(Th) as a sum of the elemental contributions aE and bE ,

a(u,v) =
∑
E∈Th

aE(u,v) and b(u, q) =
∑
E∈Th

bE(u, q) ∀u,v ∈ H1(Th), q ∈ L2(R),

where aE and bE are defined by restricting the integrals in (2.3) to E.
We define the approximate bilinear forms ah and bh used in (2.4)-(2.5) by splitting them into

local contributions

ah(uh,vh) :=
∑
E∈Th

aEh (uh,vh) and bh(uh, qh) :=
∑
E∈Th

bEh (uh, qh),

for any uh,vh ∈ Vk
h and qh ∈ Φk−1

h , where aEh and bEh are bilinear forms on Vk
h(E)×Vk

h(E) and
Vk
h(E)× Pk−1(E), respectively.

The former bilinear form is defined by:

aEh (uh,vh) :=

∫
E

ΠE
k−1(∇uh) : ΠE

k−1(∇vh) dx + SEh
(

(I −Π∇k )uh, (I −Π∇k )vh
)
, (3.10)

where Π∇k represents the Ritz-Galerkin projection operator introduced in Section 3.3 applied
component-wisely. The term SEh is the VEM stabilization term, cf. [7]. This can be any sym-
metric and coercive bilinear form satisfying

c∗a(vh,vh) ≤ SEh (vh,vh) ≤ c∗a(vh,vh) for all vh ∈ Vk
h(E)\

[
Pk(E)]d, (3.11)
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for two positive constants c∗ and c∗ independent of h and the mesh element E.
Following [5, 7], in all computations presented in Section 6 we used the choice

SEh
(

(I −Π∇k )uh, (I −Π∇k )vh
)

=

NE∑
i=1

χi
(
(I −Π∇k )uh

)
· χi

(
(I −Π∇k )vh

)
, (3.12)

where χi is the vector-valued linear operator that associates any virtual function φ with the vector
of its i-th local degrees of freedom χi(φ) ∈ Rd.

Remark 2. Again following [5, 7], we may have defined the consistency term on the right-
hand side of (3.10) as

∫
E
∇Π∇k uh : ∇Π∇k vh dx, but the approach used in (3.10) is more suitable

to generalisations to problems with non-constant coefficients, see, e.g., [23]. Furthermore, the
availability of the projection ΠE

k−1(∇vh) for all vh ∈ Vk
h proven in the previous section is of its

own interest.

The second bilinear form is defined by:

bEh (vh, qh) :=

∫
E

qhΠE
k−1(div vh) dx. (3.13)

Remark 3. We note that bEh (·, qh) = bE(·, qh) in H1,nc
k (Th) for any qh ∈ Φk−1

h .

Definition (3.10) with the VEM stabilisation term satisfying (3.11) guarantees that the follow-
ing polynomial consistency and stability properties are satisfied by the bilinear form aEh .

Lemma 1 (Consistency and Stability).

(i) Polynomial consistency: If uh or vh, or both, belong to
[
Pk(E)

]d
, the bilinear form aEh

satisfies

aEh (uh,vh) = aE(uh,vh). (3.14)

(ii) Stability: There exist two positive constants α∗ and α∗ independent of h and the mesh
element E such that, for all vh ∈ Vk

h(E), the bilinear form aEh satisfies

α∗a
E(vh,vh) ≤ aEh (vh,vh) ≤ α∗aE(vh,vh). (3.15)

Proof. Property (i) is a straightforward consequence of the fact that the stabilization term is zero
on polynomial vectors. To prove Property (ii) we first show that aEh (vh,vh) = 0 implies that vh

is a constant vector, i.e., aE and aEh have the same kernel. Indeed, consider vh ∈
[
V kh (E)

]d
such

that aEh (vh,vh) = 0. We find that

(a)

∫
E

∣∣ΠE
k−1(∇vh)

∣∣2 dx = 0 and (b) SEh
(

(I −ΠE
k )vh, (I −ΠE

k )vh
)

= 0.

The coercivity of SEh and property (b) imply that vh|E = ΠE
k (vh), i.e., vh|E ∈

[
Pk(E)

]d
, and, thus,

∇vh|E = ΠE
k−1(∇vh) ∈

[
Pk−1(E)

]d×d
. Property (a) implies that ΠE

k−1(∇vh) = 0. Therefore, it
holds that ∇vh|E = 0; hence, vh|E is a constant vector. Now, (3.15) follows from (3.11) as in the
scalar case, see [23] for details.

Remark 4. As is usual in the virtual element methodology, in order to satisfy conditions (3.14)
and (3.15), the bilinear form aEh (uh,vh) is built as the sum of a “consistency” and a “stabilising”
term, corresponding to the first and the second term in the right-hand side of (3.10), respectively.
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The consistency term is exactly computable using only the degrees of freedom of uh and vh and
satisfies the consistency condition (3.14). However, the consistency term alone does not satisfy the
stability condition (3.15) on the whole virtual element space due to a rank deficiency of the operator,
or equivalently, to the existence of a spurious kernel. Hence, a stabilization term must be added
to fix this issue and actually remove the spurious kernel. This latter term is designed to vanish on
the polynomial subspace not to affect the consistency property. As such, choice of the stabilization
term is not unique [23]. For example, for the closely related MFD method, a number of studies
investigated the optimal choice of the stabilization term with respect to a given criterion (reduction
of dispersion effects, existence of a discrete maximum/minimum principle), cf. [17, 30, 31]. By
exploiting the strict relation existing between the MFD method and the VEM, these alternative
constructions of the stabilization term could be optionally considered in the present context.

3.6. Mesh-dependent energy norms. Hereafter, we shall use the energy semi-norm on the

broken Sobolev space
[
H1(Th)

]d
:

|v|21,h :=
∑
E∈Th

|v|21,E with |v|21,E = aE(v,v).

A standard application of the results in [18] shows that a Poincaré inequality holds for the functions

in H1,nc
k (Th), k ≥ 1. Therefore, the semi-norm |·|1,h is a norm in

[
H1,nc
k (Th)

]d
, and for this reason

throughout the paper we prefer to use the notation ‖v‖1,h and ‖v‖1,E instead of |v|1,h and |v|1,E .

To prove the inf-sup stability, we use the mesh-dependent energy seminorm on Vk
h given by

|||vh|||2 :=
∑
E∈Th

|||vh|||2E , (3.16)

with

|||vh|||2E := aEh (vh,vh) =

∫
E

∣∣ΠE
k−1(∇vh)

∣∣2 dx + SEh
(

(I −ΠE
k )vh, (I −ΠE

k )vh
)
. (3.17)

Also, we will consider the affine subspace of vector-valued functions Vk
h,g =

[
V kh,g

]d
where V kh,g

contains the scalar functions of V kh whose trace on the boundary Γ is equal to g, i.e.,

V kh,g :=
{
vh ∈ V kh | vh|s = g for s ⊂ Γ

}
, (3.18)

and the linear subspace V kh,0 obtained for g = 0. On V kh,0 we have the following equivalence of
norms.

Lemma 2. The seminorm ||| · ||| defined by (3.16)-(3.17) is a norm on Vk
h,0 and

√
α∗‖vh‖1,h ≤ |||vh||| ≤

√
α∗‖vh‖1,h ∀vh ∈ Vk

h,0. (3.19)

Proof. As noted in the proof of the stability condition (3.15), |||vh|||E = 0 implies that vh|E is

a constant vector, and, from the definition of H1,nc
k (Th), it follows that vh = constant. Finally,

from vh ∈ Vk
h,0 it follows that vh = 0. The equivalence between the two norms in (3.19) is a

straightforward consequence of (3.15).
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3.7. Approximation of the right-hand side (f , ·). We approximate the right-hand side
term (f , · ) by the linear functional

(fh,vh) :=
∑
E∈Th

(fh,vh)E with fh|E := ΠE
max(k−2,0)(f). (3.20)

Since ΠE
max(k−2,0)(f) is a polynomial of degree at most k−2, each local linear functional is bounded

and, for k ≥ 2, it is computable by using the internal degrees of freedom of vh. However, it is not
computable for k = 1. Indeed, the computation of (fh,vh)E above requires the knowledge of the
average value of the components of vh on each element E and such information is only available
for k ≥ 2. Therefore, the case k = 1 deserves a special treatment. We follow Reference [5] and
approximate ΠE

0 (vh) by the average of the 0-th order moments of vh associated with the edge/face
of cell E. Namely we consider

vh|E =
1

νE

∑
s∈∂E

1

|s|

∫
s

vhds,

and note that vh|E is a first-order approximation to ΠE
0 (vh) = 1

|E|

∫
E

vhdx, i.e., we have that

∥∥vh|E −ΠE
0 (vh)

∥∥
0,E
≤ Ch|v|1,E .

Then, we use vh to compute (fh,vh) through the approximation:(
ΠE

0 (f),vh
)
E

=
(
ΠE

0 (f),ΠE
0 (vh)

)
E
≈
(
ΠE

0 (f),vh
)
E
.

Therefore, for k = 1 we take:

(fh,vh) :=
∑
E∈Th

(ΠE
0 (f),vh)E .

We collect the results for the approximation of the right-hand side functional (f , ·) for k = 1 and
k > 1 in the following lemma. The proof follows from a straightforward extension of the scalar
case, which is found in [5], to d-sized vector-valued forcing terms f and for this reason is omitted.

Lemma 3 (Approximation of the right-hand side (f , ·)). Let m, k ≥ 1 be integer numbers and

consider f ∈
[
Hm−1(Ω)

]d
, r = min(k,m), and (fh, ·) ∈

[
(V kh )′

]d
defined as above. There exists a

constant C independent of h such that

sup
vh∈Vk

h

|(fh,vh)− (f ,vh)|
‖vh‖1,h

≤ Chr‖f‖r−1.

Proof. See [5].

4. Error analysis. The well-posedness of the discrete problem (2.4)-(2.5) is discussed in
Section 4.1. The non-conformity error is estimated in Section 4.2. The convergence analysis is
carried out in Sections 4.3 and 4.4, where error estimates for the approximation of the velocity and
pressure fields are respectively derived. For the convergence analysis, we assume that g = 0 on Γ
in (1.3) through the whole section.

Define the virtual interpolant of the vector field v ∈
[
H1,nc
k (Th)

]d
as the unique vector field

vI ∈ Vk
h whose degrees of freedom are the internal and edge/face moments of v. Formally,
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• for k ≥ 1, the degrees of freedom of vI associated with the edge/face s ∈ Eh are given by

µαs (vI) :=

∫
s

vmα ds, mα ∈Mk−1(s); (4.1)

• for k ≥ 2, the degrees of freedom of vI associated with the mesh element E are given by

µαE(vI) :=

∫
E

vmα dx, mα ∈Mk−2(E). (4.2)

The above relations must be interpreted component-wise. The unisolvence of the degrees of freedom

implies the uniqueness of vI. Moreover, if v ∈
[
H1

0 (Ω)
]d

all its moments on each edge/face s on
Γ are zero and, consequently, vI belongs to Vk

h,0. We also have the following result regarding the
approximation of sufficiently smooth functions by the virtual interpolant, which may be proven as
in [5].

Theorem 2 (Approximation using virtual element functions). Let Vk
h the non-conforming

virtual element space of Section 3.4 for any integer k ≥ 1, m a positive integer such that 2 ≤ m ≤
k + 1, and D a closed subset of Ω. Under Assumption 1 (mesh regularity), for any v ∈ Hm(D),
there exists an element vI ∈ Vk

h such that∥∥v − vI
∥∥

0,D
+ h
∣∣v − vI

∣∣
1,D
≤ Chm|v|m,D,

where C is a positive constant that depends only on the polynomial degree k and the mesh regularity
constant ρ.

4.1. Existence and uniqueness of the virtual element solution. The main result of
this section is the existence and uniqueness of the virtual element solution (uh, ph) ∈ Vk

h × Φk−1
h ,

which is stated in Theorem 3. The proof of this theorem is based on the inf-sup property that is
proven in the following lemma by adapting a classical argument.

Lemma 4 (Inf-sup). There exists a strictly positive constant β independent of h such that for
every qh in Φk−1

h there exists a vector vq in Vk
h,0 such that

bh(vq, qh)

|||vq|||
≥ β‖qh‖0.

Proof. From [16] we know that there exists a strictly positive constant β̃ independent of h such

that for every q in L2(Ω)/R there exists a vector v̂q in
[
H1

0 (Ω)
]d

such that

b(v̂q, q)

‖v̂q‖1
≥ β̃‖q‖0.

We can restrict this inequality to Φk−1
h ⊂ L2(Ω)/R and for any qh ∈ Φk−1

h consider the correspond-
ing vector v̂q. We will prove that

(i) bh(v̂I
q, qh) = b(v̂q, qh) ∀qh ∈ Φk−1

h and (ii) |||v̂I
q||| ≤ γ‖v̂q‖1,

where v̂I
q is the virtual interpolation of v̂q defined in the previous section and γ = α∗/

√
α∗. Such

properties easily imply that

bh(v̂I
q, qh)

|||v̂I
q|||

≥ b(v̂q, qh)

γ‖v̂q‖1
∀qh ∈ Φk−1

h ,
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from which the assertion of the lemma follows with vq = v̂I
q and β = β̃/γ.

To prove (i), consider the following development that starts from the definition of bEh :

bEh (v̂I
q, qh) =

∫
E

qh ΠE
k−1(div v̂I

q)dx [use the definition of ΠE
k−1]

=

∫
E

qh div v̂I
qdx [integrate by parts]

= −
∫
E

∇qh · v̂I
qdx +

∑
s∈∂E

∫
s

qhns · v̂I
qds [use the definition of v̂I

q]

= −
∫
E

∇qh · v̂qdx +
∑
s∈∂E

∫
s

qhns · v̂qds [integrate by parts back]

=

∫
E

qh div v̂qdx [use the definition of bE(·, ·)]

= bE(v̂q, qh)

Property (i) readily follows from the elemental decomposition of bh and b.
To prove (ii), first note that the stability condition of aEh implies that

α∗
∥∥v̂I

q

∥∥2

1,E
≤ |||v̂I

q|||2E ≤ α∗
∥∥v̂I

q

∥∥2

1,E
. (4.3)

Now, since v̂I
q ∈ V kh (E) it holds that ∆v̂I

q is a vector of polynomials of degree k − 2 inside E and
(ns · ∇)v̂I

q is a vector of polynomials of degree k − 1 along each edge s ∈ ∂E and we have that:

aE(v̂I
q, v̂

I
q) =

∫
E

∇v̂I
q : ∇v̂I

q dx [integrate by parts]

= −
∫
E

v̂I
q ·∆v̂I

q dx +
∑
s∈∂E

∫
s

v̂I
q · (ns · ∇)v̂I

q ds [use the definition of v̂I
q]

= −
∫
E

v̂q ·∆v̂I
q dx +

∑
s∈∂E

∫
s

v̂q · (ns · ∇)v̂I
q ds [integrate by parts back]

=

∫
E

∇v̂q : ∇v̂I
q dx [use the Cauchy-Schwarz inequality]

≤
(
aE(v̂q, v̂q)

) 1
2
(
aE(v̂I

q, v̂
I
q)
) 1

2 [use the left inequality of (4.3)]

≤ ‖v̂q‖1,E
1√
α∗
|||v̂I

q|||E .

Since
∥∥v̂I

q

∥∥2

1,E
= aE(v̂I

q, v̂
I
q), the last inequality and (4.3) implies that |||v̂I

q|||E ≤ α∗/
√
α∗‖v̂q‖1,E

and property (ii) follows from the continuity of v̂q in
[
H1

0 (Ω)
]d

by summing over all E ∈ Th and
setting γ = α∗/

√
α∗.

Theorem 3. The solution of the discrete problem (2.4)-(2.5) exists and is unique.

Proof. Remark 3 implies that ker(bh) = ker(b) in
[
H1,nc
k (Th)

]d × Φk−1
h , where

ker(bh) =
{
vh ∈

[
H1,nc
k (Th)

]d | bh(vh, qh) = 0 ∀qh ∈ Φk−1
h

}
.

In view of the stability condition (3.15), the coercivity of ah(·, ·) on ker(bh) follows from the
coercivity of a(·, ·) on ker(b). Therefore, existence and uniqueness of the solution follow from the
inf-sup property proved in Lemma 4, cf. [16].
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4.2. Estimate of the non-conformity error. The non-conformity error is controlled as in
Lemma 6. The proof of this lemma requires a bound on the jumps of vh and nvh (which, we recall,
are defined in (3.1) and (3.2)). This bound is provided by Lemma 5.

Lemma 5. Let k,m ≥ 1, r = min(k,m) be integer numbers. Consider u ∈
[
Hm+1(Ω)

]d
and

p ∈ L2(Ω)/R∩Hm(Ω). Then, under Assumption 1 (mesh regularity), for every vh ∈ Vk
h,0 it holds∣∣∣∣∣∑

s∈Eh

∫
s

∇u : [̃[vh]]ds

∣∣∣∣∣+

∣∣∣∣∣∑
s∈Eh

∫
s

p[[vh]]ds

∣∣∣∣∣ ≤ Chr(‖u‖r+1 + ‖p‖r
)
‖vh‖1.

Proof. Since vh ∈ Vk
h ⊂

[
H1,nc
k (Th)

]d
, the jump of the components of vh on every interface s is

orthogonal to the polynomial functions of degree k − 1 defined along s. Thus, it holds that∑
s∈Eh

∫
s

p[[vh]] ds =
∑
s∈Eh

∫
s

(
p−Πs

k−1(p)
) (

[[vh]]−Πs
k−1[[vh]]

)
ds,

for the pressure and∑
s∈Eh

∫
s

∇u : [̃[vh]]ds =
∑
s∈Eh

∫
s

(
∇u−Πs

k−1(∇u)
)

:
(
[̃[vh]]−Πs

0 [̃[vh]]
)
ds,

for the velocity. Using the Cauchy-Schwartz inequality and then applying component-wise the
approximation estimates of Theorem 1 to bound each of the resulting terms, we obtain, cf. [5]
or [27],∣∣∣∣∣∑
s∈Eh

∫
s

∇u : [̃[vh]]ds

∣∣∣∣∣+

∣∣∣∣∣∑
s∈Eh

∫
s

p[[vh]]ds

∣∣∣∣∣ ≤ Chr ∑
s∈Eh

(
‖u‖r+1,E+∪E− + ‖p‖r,E+∪E−

)
|vh|1,E+∪E− ,

where for each side s the symbols E+ and E− denote the two elements sharing that side. As
the number of edges/faces is assumed to be uniformly bounded, the required result follows with a
positive constant C independent of h and u.

Lemma 6 (non-conformity error). Let k,m ≥ 1, r = min(k,m) be integer numbers. Let

u ∈
[
H1

0 (Ω) ∩ Hm+1(Ω)
]d

and p ∈ L2(Ω)/R ∩ Hm(Ω) be the velocity and pressure solution of

problem (2.1)-(2.2), with source term f ∈
[
L2(Ω)

]d
and homogeneous boundary condition g = 0 on

Γ. Then, for every vh ∈ Vk
h,0, it holds that

|a(u,vh)− (f ,vh)| ≤ Chr
(
‖u‖r+1 + ‖p‖r

)
‖vh‖1 + |b(vh, p)|.

Proof. Test (1.1) against vh ∈ Vk
h,0. For m ≥ 1 we have at least u ∈

[
H2(Ω)

]2
and p ∈ H1(Ω)

and we can apply the Green’s identity. By rearranging the summation on the internal sides and
using the definition of the jump operators given in section 3.1, we obtain:

a(u,vh)− (f ,vh) = a(u,vh)− (−∆u +∇p,vh) = b(vh, p) +
∑
s∈Eh

∫
s

(
∇u : [̃[vh]] + p[[vh]]

)
ds.

(4.4)

The assertion of the lemma follows by applying the result of Lemma 5.
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4.3. Error estimate for the velocity. Let

W :=
{

w ∈
[
H1

0 (Ω)
]d | div w = 0

}
and Wk

h :=
{

wh ∈ Vk
h,0 |ΠE

k−1 ◦ div wh = 0
}
. (4.5)

Using these definitions, problem (2.1)-(2.2) is equivalent to [27]:

Find u ∈W such that a(u,v) = (f ,v) ∀v ∈W, (4.6)

and problem (2.4)-(2.5) is equivalent to [27]:

Find uh ∈Wk
h such that ah(uh,vh) = (fh,vh) ∀vh ∈Wk

h. (4.7)

Theorem 4 (H1 abstract a priori error bound for the velocity). Let u ∈W be the solution
of problem (4.6), and uh ∈Wk

h the solution of problem (4.7) with k ≥ 1. Then, it holds that:

‖u− uh‖1,h ≤
1

α∗

[
(1 + α∗) inf

vh∈Wk
h

‖u− vh‖1,h + (1 + α∗) inf
q∈[Φk

h]d
‖u− q‖1,h

+ sup
wh∈Wk

h
wh 6=0

|(fh,wh)− (f ,wh)|
‖wh‖1,h

+ sup
wh∈Wk

h
wh 6=0

|a(u,wh)− (f ,wh)|
‖wh‖1,h

]
. (4.8)

The last term in the right-hand side of the above error estimate measures the non-conformity error,
i.e. it is non-zero because Wk

h is a non-conforming space.
Proof. Let vh be an arbitrary element of Wk

h and let wh = uh − vh. From the stability property
of the virtual bilinear form (3.15) and equation (4.7) it follows that

α∗‖uh − vh‖21,h ≤ ah(uh − vh,wh) = (fh,wh)− ah(vh,wh).

Then, we add and subtract (f ,wh) and a(u,wh) and we obtain:

α∗‖uh − vh‖21,h ≤
[
(fh,wh)− (f ,wh)

]
+
[
(f ,wh)− a(u,wh)

]
+
[
a(u,wh)− ah(vh,wh)

]
. (4.9)

The first term on the right-hand side characterizes the approximation of the source term f by fh; the
second term is the conformity error determined by choosing the test function wh in Wk

h instead of
W; the third term simultaneously characterizes the approximation of u by vh and a(·, ·) by ah(·, ·)
in Wk

h. To separate this linked dependence, we reformulate the last term as the summation of local
contributions; then, we add and subtract aE(q,wh) and aEh (q,wh) to each summation argument,

where q is a generic vector-valued function in
[
Φkh
]d

, and we obtain:

a(u,wh)− ah(vh,wh) =
∑
E∈Th

[
aE(u,wh)− aEh (vh,wh)

]
=
∑
E∈Th

[
aE(u− q,wh) +

(
aE(q,wh)− aEh (q,wh)

)
+ aEh (q− vh,wh)

]
.

Since q|E is a polynomial vector of degree k, the intermediate term above is zero due to the
polynomial consistency relation (3.14). Furthermore, we transform the last term above by using
the continuity and stability of the virtual bilinear form:

aEh (q− vh,wh) ≤
(
aEh (q− vh,q− vh)

) 1
2
(
aEh (wh,wh)

) 1
2 ≤ α∗

(
aE(q− vh,q− vh)

) 1
2
(
aE(wh,wh)

) 1
2

= α∗‖q− vh‖1,E‖wh‖1,E .
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Hence, for all vh,wh ∈Wk
h with wh 6= 0 and q ∈

[
Φkh
]d

, using the last inequality and the continuity
of aE(·, ·), multiplying and dividing by ‖wh‖1,h, and using the triangle inequality ‖q− vh‖1,h ≤
‖q− u‖1,h + ‖u− vh‖1,h, we find that

α∗‖uh − vh‖1,h ≤
|(fh,wh)− (f ,wh)|

‖wh‖1,h
+
|(f ,wh)− a(u,wh)|

‖wh‖1,h
+ α∗‖u− vh‖1,h +

(
1 + α∗

)
‖u− q‖1,h.

The result now follows by applying the estimates above to the triangle inequality

‖u− uh‖1,h ≤ ‖u− vh‖1,h + ‖vh − uh‖1,h,

properly taking the supremum upper bound of the terms with wh and the infimum over the
arbitrary vector functions q and vh.

Theorem 5 (H1 error bound for the velocity). Let k,m ≥ 1, r = min(k,m) be integer

numbers. Assuming that f ∈
[
Hm−1(Ω)

]d
, let u ∈

[
H1

0 (Ω)∩Hm+1(Ω)
]d

and p ∈ L2(Ω)/R∩Hm(Ω)
be the exact velocity and pressure solution to problem (2.1)-(2.2) (with g = 0 on Γ). Let (fh,vh) :=∑
E∈Th(fh,vh)E, with fh|E defined as in section 3.7. Denote by uh ∈ Wk

h the virtual element

solution to problem (4.7) under Assumption 1 (mesh regularity), where Wk
h is the divergence-free

non-conforming virtual element space of vector-valued functions defined in (4.5). Then, there exists
a constant C independent of h such that

‖u− uh‖1,h ≤ Ch
r(‖u‖r+1 + ‖p‖r + ‖f‖r−1).

Proof. Since u is also solution of problem (4.6), we start the proof of the theorem by separately
bounding the terms of the abstract bound of Theorem 4. The first term on the right-hand side
of (4.8), i.e. infvh∈Wk

h
‖u− vh‖1,h, is easily bounded by introducing the virtual interpolant uI ∈

Vk
h of u as in Theorem 2 and noting that uI belongs to Wk

h. Indeed, for any element E, we have
ΠE
k−1(div uI) ∈ Pk−1(E) and for any polynomial q ∈ Pk−1(E) we have that:∫

E

qΠE
k−1(div uI) dx =

∫
E

q div uIdx = −
∫
E

∇q · uIdx +
∑
s∈∂E

∫
s

qns · uIds

= −
∫
E

∇q · udx +
∑
s∈∂E

∫
s

qns · uds =

∫
E

q div u dx = 0.

Hence, ΠE
k−1(div uI) = 0. Likewise, the second term is bounded by using in each cell E the results

of Theorem 1 since

inf
q∈[Φk

h]d
‖u− q‖1,h ≤

∥∥u−ΠE
k (u)

∥∥
1,h
.

The bound on the third term is given by Lemma 3 since wh ∈ Wk
h ⊂ Vk

h. The bound on the
fourth term is given by Lemma 6 and noting that b(wh, p) = 0 for every wh ∈ Wk

h. Finally,
the assertion of the theorem follows by combining the bounds derived above and noting that
the inequality constant C may depend only on the stability constants α∗ and α∗, and the mesh
regularity constant ρ.Remark 5. Optimal order error estimates for the velocity approximation in the L2-norm can
be derived by duality arguments, see always [27]. However, a more accurate approximation of the
forcing terms than that provided by (3.20) would be needed for the case k = 1, 2. This can be
obtained by following the approach in [8].
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4.4. Error estimate for the pressure. Let pI denote the piecewise polynomial function
that is defined on each elements E of mesh Th by the orthogonal projection of p on the space
of polynomials of degree k − 1; formally, (pI)|E = ΠE

k−1(p) ∈ Pk−1(E). The accuracy of this
approximation is characterized by Theorem 1. To ease the notation we will also use the symbol
pIE to denote the restriction (pI)|E .

Theorem 6 (Abstract L2 a priori error bound for the pressure). Let k ≥ 1 be an integer

number. Let u ∈
[
H1

0 (Ω) ∩H2(Ω)
]d

and p ∈ L2(Ω)/R ∩H1(Ω) be the exact velocity and pressure
solution to problem (2.1)-(2.2) with the homogeneous boundary condition g = 0 on Γ. Denote the
projection of p in Φk−1

h by pI. Let (fh,vh) :=
∑
E∈Th(fh,vh)E, with fh|E defined as in section 3.7.

Let uh ∈ Vk
h,0 and ph ∈ Φk−1

h be the virtual element velocity and pressure solution to problem (2.4)-
(2.5) under Assumption 1. Then, it holds that

∥∥ph − pI∥∥0
≤ α∗
√
α∗β

α∗‖u− uh‖1,h + (1 + α∗) inf
q∈[Φk

h]d
‖u− q‖1,h

+ sup
vh∈Vk

h,0

vh 6=0

∣∣(fh,vh)− (f ,vh)
∣∣+
∣∣b(vh, p− pI)∣∣+

∣∣∣ ∑
s∈Eh

∫
s

∇u : [̃[vh]]ds
∣∣∣+
∣∣∣ ∑
s∈Eh

∫
s

p[[vh]]ds
∣∣∣

‖vh‖1,h

 .

(4.10)

Proof. Take q = ph− pI ∈ Φk−1
h . From Lemma 4, we know that there exists a vector vh such that

β‖ph − pI‖0 |||vh||| ≤ bh(vh, ph − pI), and, in view of the norm equivalence (3.19), it holds that

β
∥∥ph − pI∥∥0

≤ bh(vh, ph − pI)√
α∗‖vh‖1,h

≤ sup
vh∈Vk

h,0

vh 6=0

bh(vh, ph − pI)√
α∗‖vh‖1,h

. (4.11)

We use (2.4), and add and subtract (f ,vh) and a(u,vh) to obtain:

bh(vh, ph − pI) = (fh,vh)− ah(uh,vh)− bh(vh, p
I)

=
[
(fh,vh)− (f ,vh)

]
+
[
(f ,vh)− a(u,vh)

]
+
[
a(u,vh)− ah(uh,vh)

]
− bh(vh, p

I).

(4.12)

We test (1.1) against vh ∈ Vk
h,0, apply the Green’s identity, rearrange the summation on edges/faces

in E , and introduce the jump notation (cf. section 3.1) to obtain:

(f ,vh)− a(u,vh) = (−∆u +∇p,vh)− a(u,vh)

= b(vh, p)−

(∑
E∈Th

∫
∂E

(n · ∇)u · vhds−
∑
E∈Th

∫
∂E

pn · vhds

)

= b(vh, p)−
∑
s∈Eh

∫
s

(
(n+
s · ∇)u · v+

h + (n−s · ∇)u · v−h
)
ds+

∑
s∈Eh

∫
s

p(n+
s · v+

h + n−s · v−h ) ds

= b(vh, p)−
∑
s∈Eh

∫
s

(
∇u : [̃[vh]]− p[[vh]]

)
ds. (4.13)
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Also, from Remark 3 we know that bh(vh, p
I) = b(vh, p

I), and using this relation and (4.13)
in (4.12) we obtain:

bh(vh, ph − pI) =
[
(fh,vh)− (f ,vh)

]
+
[
a(u,vh)− ah(uh,vh)

]
+ b(vh, p− pI)

−
∑
s∈Eh

∫
s

(
∇u : [̃[vh]]− p[[vh]]

)
ds. (4.14)

The second term on the right-hand side can be further bounded by introducing a generic vector
q ∈ [Φkh]d and reasoning as in the proof of Theorem 4, thus yielding∣∣a(u,vh)− ah(uh,vh)

∣∣ ≤ (α∗‖u− uh‖1,h +
(
1 + α∗

)
‖u− q‖1,h

)
‖vh‖1,h. (4.15)

The assertion of the theorem follows from (4.11) by taking the absolute value of (4.14) with (4.15)
‖vh‖1,h and the supremum on vh and q.

Theorem 7 (L2 a priori error bound for the pressure). Under the assumptions and notations
of Theorem 5, let uh ∈ Vk

h,0 and ph ∈ Φk−1
h be the virtual element velocity and solution to prob-

lem (2.4)-(2.5). Then, there exists a constant C > 0 depending only on the stability constants α∗
and α∗, the inf-sup constant β and the mesh regularity constant ρ such that

‖p− ph‖ ≤ Chr
(
‖u‖r+1 + ‖p‖r + ‖f‖r−1

)
. (4.16)

Proof. The proof is just a matter of bounding the terms of the abstract bound of Theorem 6.
Bounds for the first, second, and third term are already given in Theorem 5. The bound for the
term containing b(vh, p − pI) follows from the polynomial approximation results of Theorem 1.
The last two terms are bounded by using Lemma 5.

5. Implementation details. According to section 3.4, the key component of the VEM im-
plementation is the construction of the projection operators ΠE

k−1 ◦ ∇, ΠE
k−1 ◦ div, and Π∇k . Once

these projection operators are constructed, all terms in the local bilinear forms can be computed as
integrals of polynomials just as in the standard FEM with the only exception of the stabilization
term in aEh . This latter term does not require any integration but is directly defined through the
action of the projector operator Π∇k on the degrees of freedom.

The matrix representation of ΠE
k−1 ◦∇ and ΠE

k−1 ◦ div can be derived from the corresponding

representation of the scalar projection operator ΠE
k−1 ◦ ∂

∂xi
, i = 1, . . . , d, which has already been

worked out in [23]. Similarly, we refer to [2] for the details on the computation of Π∇k . In the rest
of this section we show how to compute the two terms of the bilinear form aEh , i.e., the consistency
and stability term, cf. Remark 4, assuming a matrix representation of the projectors is given. The
implementation formulas for the bilinear form bEh and the right-hand side linear functional (fh, ·)E
can be derived similarly and are not shown here.

Consider the Lagrangian basis {φi} for the scalar virtual element space V kh (E) associated with
the degrees of freedom introduced in Section 3.3. We collect the coefficients of the expansion of
each monomials mα on the basis

{
φi
}

for α = 1, . . . , Nd,k on the columns of matrix D, so that

mα =
∑NE

j=1 φjDj,α. Similarly, we collect the coefficients of the expansions of the polynomials

Π∇k φi and ΠE
k−1

(
∂φi/∂xi

)
with respect to the monomial basis

{
mα

}
on the columns of matrices

Π∇k and ΠE,xl

k−1 , respectively. Hence, these projections can be expressed by the formulas

ΠE
k−1

(
∂φi
∂xl

)
=

Nd,k∑
α=1

mα

(
ΠE,xl

k−1

)
α,i

and Π∇k φi =

Nd,k∑
α=1

mα

(
Π∇k

)
α,i

=

NE∑
j=1

φj
(
DΠ∇k

)
j,i
, (5.1)
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where (?)i,j denotes the i, j-th element of a given matrix argument ?. Then, for the local discrete
velocity space Vk

h(E), we consider the set of basis functions {φli} that are such that (φli)l′ = φi if
l′ = l and (φli)l′ = 0 otherwise. The generic entry of the consistency term of aEh in (3.10) is given
by ∫

E

ΠE
k−1(∇φli) : ΠE

k−1(∇φlj) dx =

d∑
l′=1

∫
E

ΠE
k−1

(
∂φi
∂xl′

)
ΠE
k−1

(
∂φj
∂xl′

)
dx

=

d∑
l′=1

Nd,k−1∑
α,β=1

(
Π
E,xl′
k−1

)
α,i

(
Π
E,xl′
k−1

)
β,j

∫
E

mαmβ dx =

d∑
l′=1

((
Π
E,xl′
k−1

)TH(ΠE,xl′
k−1

))
i,j
, (5.2)

where H is the matrix with coefficients
(
H
)
α,β

=
∫
E
mαmβ dx for α, β = 1, . . . , Nd,k−1. These

coefficients may be computed exactly in special cases or by applying a sufficiently accurate inte-
gration rule in general. Similarly, the generic entry of the stabilisation term of aEh , which is defined
in (3.12), is given by

SEh
(

(I −Π∇k )φli, (I −Π∇k )φl
j

)
=

NE∑
r=1

χr
(
(I −Π∇k )φi

)
· χr

(
(I −Π∇k )φj

)
=
((

I− DΠ∇k
)T (I− DΠ∇k

))
i,j

(5.3)

since, trivially, χr(I −Π∇k )φi =
(
I− DΠ∇k

)
i,r

.

6. Numerical Results. The numerical experiments that we present in this section are aimed
at confirming the a priori analysis developed in the previous sections. In a preliminary stage,
the consistency of non-conforming VEM, i.e. the exactness for polynomial solutions, has been
tested numerically by solving the Stokes equation with boundary and source data determined by
u(x, y) = (ym, xm) and p = xm + ym on different set of polygonal meshes and for m = 1 to 4.
In all the cases, we measure an error whose magnitude is of the order of the arithmetic precision,
thus confirming this property.

To study the accuracy of the method we solve the problem with the following solution on the
domain Ω =]0, 1[×]0, 1[:

u(x, y) =

(
2π f(x) sin(2πy)
f ′(x) cos(2πy)

)
, p(x, y) = sin(2πx) sin(2πy), (6.1)

with f(x) = x5 e−x. The forcing term and the Dirichlet boundary condition are set in accordance
with (6.1).

The performance of the VEM for k = 1, 2, 3, 4 is investigated by evaluating the rate of conver-
gence on three different sequences of five meshes, labeled by M1, M2 and M3, respectively. The
top panels of Fig. 6.1 show the first mesh of each sequence and the bottom panels show the mesh
of the first refinement. The meshes inM1 are built by partitioning the domain Ω into square cells
and relocating each interior node to a random position inside a square box centered at that node.
The sides of this square box are aligned with the coordinate axis and their length is equal to 0.8
times the minimum distance between two adjacent nodes of the initial square mesh. The meshes
in M2 are built as follows. First, we determine a primal mesh by remapping the position (x̂, ŷ) of
the nodes of a uniform square partition of Ω by the smooth coordinate transformation:

x = x̂+ (1/10) sin(2πx̂) sin(2πŷ),

y = ŷ + (1/10) sin(2πx̂) sin(2πŷ).
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Fig. 6.1. First (top) and second (bottom) mesh of the three mesh families M1 (left), M2 (middle) and M3

(right).

Randomised quadrilaterals Remapped hexagons Non-convex octagons
n NE Ne Nv h NE Ne Nv h NE Ne Nv h
1 25 60 36 0.331 36 125 90 0.328 25 120 96 0.291
2 100 220 121 0.186 121 400 280 0.185 100 440 341 0.146
3 400 840 441 0.094 441 1400 960 0.097 400 1680 1281 0.073
4 1600 3280 1681 0.047 1681 5200 3520 0.049 1600 6560 4961 0.036
5 6400 12960 6561 0.024 6561 20000 13440 0.025 6400 25920 19521 0.018

Table 6.1
Mesh data for the meshes in M1, M2, and M3; NE , Ne and Nv are the numbers of mesh elements, interfaces

and vertices, respectively, and h is the mesh size parameter.

The corresponding mesh of M2 is built from the primal mesh by splitting each quadrilateral
cell into two triangles and connecting the barycenters of adjacent triangular cells by a straight
segment. The mesh construction is completed at the boundary by connecting the barycenters of
the triangular cells close to the boundary to the midpoints of the boundary edges and these latters
to the boundary vertices of the primal mesh. The meshes in M3 are obtained by filling the unit
square with a suitably scaled non-convex octagonal reference cell.

All the meshes are parametrised by the number of partitions in each direction. The starting
mesh of every sequence is built from a 5 × 5 regular grid, and the refined meshes are obtained
by doubling this resolution. Mesh data for each refinement level, i.e., numbers of mesh elements,
number of edges, number of vertices, are reported in Table 6.1. More details on these mesh
constructions can be found in [11, 14]. The mesh data structures are created and managed using
the C++ mesh manager tool described in [15].

For the approximation of the velocity, we compare the polynomial quantities ΠE
k (uh) and

ΠE
k−1(∇uh) with the exact velocity u and the gradient ∇u. We recall that we can compute these



The Non-conforming Virtual Element Method for the Stokes equations 21

Mesh size h

P
re

ss
u

re
L

2
e
rr

o
rs

- quadrilaterals
- hexagons
- octagons

1
1

2

1

3

1

Mesh size h

P
re

ss
u

re
H

1
e
rr

o
rs

Fig. 6.2. Relative error curves for the non-conforming VEM approximation of the pressure (left) and its
gradient (right) on the three mesh families M1-M3 with k from 1 to 4. The expected slopes are indicated by
triangles and labels on the plots.
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Fig. 6.3. Relative error curves for the non-conforming VEM approximation of the velocity (left) and its
gradient (right) on the three mesh families M1-M3 with k from 1 to 4. The expected slopes are indicated by
triangles and labels on the plots.

projections exactly using only the degrees of freedom of the vector and scalar field uh although we
do not know this field. For the approximation of the pressure, we compare the piecewise polynomial
fields ph and ∇ph with the exact pressure p and gradient ∇p.

The relative error curves for pressure and velocity versus the mesh size h are shown respectively
in the log-log plots of Figures 6.2 and 6.3 for the three mesh sequences as indicated therein. The
plots on the left show the relative errors for the approximation of the velocity or pressure field,
while the plots on the right show the relative errors for the approximation of the field’s gradient.
The expected slopes are shown for each error curve directly on the plots and indicated by numerical
labels.

These results are in very good agreement with the convergence rates that are predicted by the
analysis of the previous sections.

7. Conclusions. We presented the non-conforming formulation of the virtual element method
for the steady Stokes problem. We have been able to construct approximations of any order in
two and three space dimensions in a unified fashion, a feat which is still out of reach for standard
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non-conforming finite elements. Moreover, the method is naturally defined on general polygonal
and polyhedral meshes. In particular non-convex polygons and polyhedra with parallel adjacent
interfaces are allowed. The formulation of the method relies on the element-wise construction of
virtual approximation spaces for velocity and pressure, which are characterized by a positive integer
order k. The local approximation space for the velocity contains vectors of polynomials of order
k plus other functions that are not computed explicitly and dealt only in terms of their degrees
of freedom. The local approximation space for the pressure consists of all polynomials of order
k−1. We proved that the velocity-pressure pair of global approximation spaces satisfies the inf-sup
condition, from which the stability and well-posedness of the scheme follow. We also proved the
optimal convergence of the numerical approximation to the velocity and pressure solution fields.
The accuracy of the approximation is determined by the degree k of the polynomials and optimal
a priori error estimates was derived for the velocity and pressure.
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