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ON A CONJECTURE OF GODSIL CONCERNING

CONTROLLABLE RANDOM GRAPHS

SEAN O’ROURKE AND BEHROUZ TOURI

Abstract. It is conjectured by Godsil [4] that the relative number of con-
trollable graphs compared to the total number of simple graphs on n vertices

approaches one as n tends to infinity. We prove that this conjecture is true.
More generally, our methods show that the linear system formed from the pair
(W, b) is controllable for a large class of Wigner random matrices W and deter-
ministic vectors b. The proof relies on recent advances in Littlewood–Offord
theory developed by Rudelson and Vershynin [24, 26, 31].

1. Introduction

This paper is devoted to the study of controllability properties of linear systems
and graphs. Although controllability of linear systems is a well-developed subject,
the topic has regained a great deal of attention in recent years due to its application
in networked systems and distributed control [5, 13]. In particular, many researchers
have provided conditions on controllability of specific linear systems with a given
set of parameters. These works include [1, 2, 3, 4, 14, 15, 16, 19, 21, 23, 27, 33]
where controllability properties—including controllability, minimal controllability,
and minimum energy control—of linear and bilinear systems were studied.

Motivated by these works, we study controllability properties of random systems
and random graphs. Specifically, we consider linear systems whose parameters (as
far as controllability is concerned) are random. We confirm a common belief that
“most systems are highly controllable” even when one deals with systems of a very
discrete nature. For the purposes of this note, we define controllability in terms of
Kalman’s rank condition [8, 9, 10, 11].

Definition 1.1 (Controllable). Let A be an n× n matrix, and let b be a vector in
R

n. We say the pair (A, b) is controllable if the n× n matrix
(
b Ab · · · An−1b

)
(1)

has full rank (that is, rank n). Here, the matrix in (1) is the matrix with columns
b, Ab, . . . , An−1b. We say the pair (A, b) is uncontrollable if it is not controllable.

Of particular importance is the case when A is the adjacency matrix of a graph.
Recall that G(n, p) is the Erdös–Rényi random graph on n vertices with edge density
p. That is, G(n, p) is a simple graph on n vertices (which we shall label as 1, . . . , n)
such that each edge {i, j} is in G(n, p) with probability p, independent of other
edges. In the special case when p = 1/2, one can view G(n, 1/2) as random graph

selected uniformly among all 2(
n
2) simple graphs on n vertices. We let An be the

zero-one adjacency matrix of G(n, p).
In this note, we verify the following conjecture due to Godsil [4].
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Conjecture 1.2 (Godsil [4]). As n → ∞, the probability that (An,1n) is control-
lable approaches one, where An is the adjacency matrix of G(n, 1/2) and 1n is the
all-ones vector in R

n.

Remark 1.3. Following Godsil [4], one can define a simple graph G on n vertices to
be controllable if the pair (A,1n) is controllable, where A is the adjacency matrix
of G and 1n is the all-ones vector. In this language, Conjecture 1.2 states that
the relative number of controllable graphs compared to the total number of simple
graphs on n vertices approaches one as n tends to infinity.

We will prove the following slightly-stronger version of Conjecture 1.2.

Theorem 1.4. Let An be the adjacency matrix of G(n, 1/2). Then, for any α >
0, there exists C > 0 such that (An,1n) is controllable with probability at least
1− Cn−α.

More generally, we also consider random graphs with loops. We define the ran-
dom graph G(n, p, q) as follows. Begin with the simple Erdös–Rényi random graph
G(n, p). A loop is then added at each vertex with probability q, independent of all
other choices. Hence, G(n, p, 0) is the simple graph G(n, p). We prove the following
result for G(n, 1/2, q).

Theorem 1.5. Let An be the adjacency matrix of G(n, 1/2, q) for some 0 ≤ q ≤ 1.
Then, for any α > 0, there exists C > 0 such that (An,1n) is controllable with
probability at least 1− Cn−α.

1.1. Overview and outline. Theorems 1.4 and 1.5 are related to a large body
of work on controllability and structural controllability of network control systems.
One of the primary focal points of previous works has been controllability criteria
involving the topology and symmetry of the network. We refer the interested reader
to [1, 2, 3, 4, 13, 14, 15, 16, 23, 27] and references therein.

Unlike many of the previous works on the subject, the approach taken in this
note utilizes mostly stochastic methods. Specifically, we will exploit advances in
Littlewood–Offord theory recently developed by Rudelson and Vershynin [24, 26,
31]. The authors’ previous work [20] also used a stochastic approach to study con-
trollability properties of random systems and was based on recent advances by Tao
and Vu [28] and Nguyen, Tao, and Vu [18] concerning gaps between eigenvalues
of random matrices. There it is shown that the controllability and minimal con-
trollability of systems is a generic property, even for systems of a very discrete
nature.

Clearly, Theorem 1.4 (and hence Conjecture 1.2) follows from Theorem 1.5 (by
taking q = 0). Theorem 1.5 will turn out to be a corollary of a more general result
for Wigner random matrices. In Section 2 we define the class of Wigner random
matrices we will study. In Section 3, we state our main results for these Wigner
matrices as well as a number of corollaries. We then use these results to prove
Theorem 1.5 in Section 4. The rest of the paper is devoted to the proof of our
results for Wigner matrices.

1.2. Notation. We collect here a list of notation that will be used in the sequel.
For a vector u, ‖u‖ denotes the Euclidean norm. 1n is the all-ones vector in R

n.
We let u · v = uTv denote the dot product of u, v ∈ R

n.
For a matrix A, ‖A‖ denotes the spectral norm of A. AT is the transpose of A,

and A∗ denotes the conjugate transpose of A.
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We let [n] denote the discrete interval {1, . . . , n}. Sn−1 is the unit sphere in R
n.

For a set S, |S| denotes the cardinality of S, and Sc is the complement of S.
Similarly, Ec is the complement of the event E .

Given a non-negative real number z, ⌊z⌋ is the largest integer not greater than
z and ⌈z⌉ is the smallest integer not less than z.

We use asymptotic notation under the assumption that n → ∞. We write o(1)
to denote a term which tends to zero as n→ ∞.

2. Wigner random matrices

We consider the following class of random symmetric matrices originally intro-
duced by Wigner [32].

Definition 2.1 (Wigner matrix). Let ξ and ζ be real random variables. We say
W = (wij)

n
i,j=1 is an n × n Wigner matrix with atom variables ξ and ζ if W is a

real symmetric matrix whose entries satisfy the following:

• the entries {wij : 1 ≤ i ≤ j ≤ n} are independent random variables,
• the upper triangular entries {wij : 1 ≤ i < j ≤ n} are independent and
identically distributed (iid) copies of ξ,

• the diagonal entries {wii : 1 ≤ i ≤ n} are iid copies of ζ.

Remark 2.2. One can similarly define complex Hermitian Wigner matrices where
the upper-triangular entries are iid complex-valued random variables. However, for
the purposes of this note, we will only focus on real symmetric matrices.

Throughout the paper, we will consider various assumptions on the atom vari-
ables ξ and ζ. The most general assumption will be the following.

Assumption 2.3. We say a real random variable ξ satisfies Assumption 2.3 if

P(|ξ − ξ′| ≤ ε0) ≤ 1− p0, P(|ξ| > K0) ≤ p0/4 (2)

for some ε0, p0,K0 > 0, where ξ′ is an independent copy of ξ.

The first bound in (2) is an anti-concentration inequality, which guarantees that
ξ is non-degenerate. In particular,

sup
u∈R

P(|ξ − u| ≤ ε0) ≤ 1− p0 =⇒ P(|ξ − ξ′| ≤ ε0) ≤ 1− p0

by conditioning on ξ′. The second bound in (2) controls the tail behavior of ξ.
Recall that a random variable ξ is called degenerate if ξ is equal to a constant,

c, almost surely; otherwise, we say ξ is non-degenerate. It turns out that all non-
degenerate random variables satisfy Assumption 2.3.

Proposition 2.4. If ξ is a non-degenerate random variable, then there exist con-
stants ε0, p0,K0 > 0 such that ξ satisfies (2).

Proof. Let ξ be a non-degenerate random variable. We first show that there exist
ε0, p0 > 0 such that P(|ξ− ξ′| ≤ ε0) ≤ 1− p0, where ξ

′ is an independent copy of ξ.
Suppose to the contrary. Then, for every ε, p > 0, we have P(|ξ − ξ′| ≤ ε) ≥ 1− p.
Taking the limits ε ց 0 and pց 0, we conclude that P(|ξ − ξ′| = 0) = 1. In other
words, ξ − ξ′ = 0 almost surely, and thus the characteristic function of ξ satisfies

∣∣E[ei2πθξ]
∣∣2 = E[ei2πθ(ξ−ξ′)] = 1
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for every θ ∈ R. This implies that ξ is degenerate (see, for instance, Theorem 1.7 in
Chapter 4 of [6] or [22, Lemma 1.5]), a contradiction. Hence, there exist ε0, p0 > 0
such that the first bound in (2) holds.

For the second bound, we observe that

lim
K→∞

P(|ξ| > K) = 0.

Thus, there exists K0 > 0 such that P(|ξ| > K0) ≤ p0/4, as desired. �

Clearly, every degenerate random variable has zero variance. We will often make
use of this fact in its contrapositive form: every random variable with non-zero
variance is non-degenerate.

While all non-degenerate random variables satisfy Assumption 2.3, the impor-
tance of this assumption will be the values of ε0, p0,K0. Indeed, many of the
constants appearing in our main results will depend on these values. Let us men-
tion a few explicit examples. If ξ is a Bernoulli random variable, which takes values
±1 with probability 1/2, then ξ satisfies (2) with ε0 = 1/2, p0 = 1/2, and K0 = 1.
On the other hand, if ξ is a standard normal random variable, then ξ satisfies (2)

with ε0 = 1/2, p0 = 1/2, and K0 =
√
8.

Besides Assumption 2.3, we will often assume that the random variable ξ is
symmetric. Recall that ξ is a symmetric random variable if ξ and −ξ have the
same distribution.

Our strongest results will also require that the atom variables ξ and ζ be sub-
gaussian.

Definition 2.5 (Sub-gaussian). We say the random variable ξ is sub-gaussian with
sub-gaussian moment κ > 0 if

P(|ξ| ≥ t) ≤ κ−1 exp(−κt2)
for all t > 0. We simply say that a random variable ξ is sub-gaussian if there exists
κ > 0 such that ξ is sub-gaussian with sub-gaussian moment κ.

There are many examples of sub-gaussian random variables. Clearly, a Gaussian
random variable is sub-gaussian. Moreover, every bounded random variable is sub-
gaussian.

3. Main results for Wigner matrices

We now state our main results for Wigner matrices. In particular, for a large class
of Wigner matrices W and vectors b, we show that the pair (W, b) is controllable
with high probability. From this, we will deduce Theorem 1.5.

For our most general results, it will be useful to work on the event that the
spectral norm ‖W‖ of the n × n Wigner matrix W is bounded; recall that the
spectral norm ‖W‖ is the largest singular value of W . To this end, we fix M ≥ 1
and define the event

BW,M := {‖W‖ ≤M
√
n}. (3)

As we will see, for many Wigner matrices W , the event BW,M holds with high
probability.

We now state our main results. To do so, we consider two distinct cases: when
b is deterministic and when b is a random vector.
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3.1. Results for deterministic vectors. We consider deterministic vectors b ∈
R

n which satisfy the following property.

Definition 3.1 (Delocalized). Let b = (b1, . . . , bn) be a vector in R
n, and assume

K ≥ 1 and δ ∈ (0, 1) are given parameters. We say b is (K, δ)-delocalized if at least
n− ⌊δn⌋ coordinates bk satisfy the following properties:

• bk = pk

qk
, where pk, qk ∈ Z,

• |pk|, |qk| ≤ K,
• pk, qk 6= 0.

Definition 3.1 ensures that all but ⌊δn⌋ of the entires of b are comparable, non-
zero rational numbers. In particular, 1n is (K, δ)-delocalized for all K ≥ 1 and
every δ ∈ (0, 1).

Theorem 3.2 (Main result: deterministic vectors). Let ξ and ζ be real random
variables. Assume ξ is a symmetric random variable which satisfies (2) for some
ε0, p0,K0 > 0. Let W be an n × n Wigner matrix with atom variables ξ and ζ.
Let M ≥ 1, and suppose the event BW,M holds with probability at least 1/2. Fix
K ≥ 1 and α > 0. Then, there exist constants C > 0 and δ ∈ (0, 1) (depending
on ε0, p0,K0,M,K and α) such that the following holds. Let b be a deterministic
vector in R

n which is (K, δ)-delocalized. Then, conditionally on BW,M , (W, b) is
controllable with probability at least 1− Cn−α.

The statement of Theorem 3.2 is rather technical. However, the result is ex-
tremely general and applies to a large class of atom variables ξ and ζ. Specifically,
no assumptions are made on ζ, and ξ is only assumed to satisfy (2). We now
specialize Theorem 3.2 in the following corollaries.

Corollary 3.3 (Finite fourth moment). Let ξ be a symmetric real random variable
with unit variance and finite fourth moment. Assume ζ is a real random variable
with finite variance. Let W be an n × n Wigner matrix with atom variable ξ and
ζ. Fix K ≥ 1. Then there exists a constant δ ∈ (0, 1) such that the following holds.
Let b be a vector in R

n which is (K, δ)-delocalized. Then (W, b) is controllable with
probability 1 − o(1). (Here the rate of convergence implicit in o(1) depends on K,
ξ, and the mean and variance of ζ.)

Corollary 3.4 (Sub-gaussian). Let ξ be a symmetric, sub-gaussian real random
variable with unit variance. Assume ζ is a real sub-gaussian random variable. Let
W be an n× n Wigner matrix with atom variable ξ and ζ. Fix K ≥ 1 and α > 0.
Then there exist constants C > 0 and δ ∈ (0, 1) (depending on K,α, ξ, and ζ) such
that the following holds. Let b be a vector in R

n which is (K, δ)-delocalized. Then
(W, b) is controllable with probability at least 1− Cn−α.

Theorem 1.5 does not follow from Corollary 3.4 directly because the off-diagonal
entries of the adjacency matrix An are not symmetric. However, by shifting An by
a deterministic rank one matrix, we will be able to give an equivalent reformulation
of Theorem 1.5 for which Corollary 3.4 is applicable; we do so in Section 4.

3.2. Results for random vectors. We now consider the case when the vector
b ∈ R

n is random. In particular, for this case, we do not need to assume that the
atom variable ξ is symmetric. We will consider random vectors b which satisfy the
following assumption.
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Assumption 3.5. We assume b = (b1, . . . , bn) is a random vector in R
n whose

coordinates are iid copies of a random variable ψ which satisfies

P (|ψ − ψ′| ≤ ε1) ≤ p1, P(|ψ| > K1) ≤ p1/4

for some ε1, p1,K1 > 0, where ψ′ is an independent copy of ψ.

Remark 3.6. The assumptions on ψ are equivalent to the bounds in (2).

Theorem 3.7 (Main result: random vectors). Let ξ and ζ be real random variables.
Assume ξ satisfies (2) for some ε0, p0,K0 > 0. Let W be an n× n Wigner matrix
with atom variables ξ and ζ. Let M ≥ 1, and suppose the event BW,M holds
with probability at least 1/2. Let α > 0, and assume b is a random vector in R

n,
independent of W , which satisfies Assumption 3.5. Then, there exists a constant
C > 0 (depending on ε0, p0,K0,M, ε1, p1,K1, and α) such that, conditionally on
BW,M , (W, b) is controllable with probability at least 1− Cn−α.

As before, we specialize Theorem 3.7 in the following corollaries.

Corollary 3.8 (Finite fourth moment). Let ξ be a real random variable with mean
zero, unit variance, and finite fourth moment. Assume ζ is a real random variable
with finite variance. Let W be an n × n Wigner matrix with atom variable ξ
and ζ. Assume b is a random vector in R

n, independent of W , which satisfies
Assumption 3.5. Then (W, b) is controllable with probability 1 − o(1). (Here the
rate of convergence implicit in o(1) depends on ε1, p1,K1, ξ, and the mean and
variance of ζ.)

Corollary 3.9 (Sub-gaussian). Let ξ and ζ be real sub-gaussian random variables,
and assume ξ has mean zero and unit variance. Let W be an n× n Wigner matrix
with atom variable ξ and ζ. Assume b is a random vector in R

n, independent
of W , which satisfies Assumption 3.5. Then, for every α > 0, there exists C > 0
(depending on ε1, p1,K1, α, ξ, and ζ) such that (W, b) is controllable with probability
at least 1− Cn−α.

4. Proof of Theorem 1.5 and the corollaries from Section 3

This section is devoted to the proof of Theorem 1.5 as well as the various corol-
laries appearing in Section 3. We prove these results assuming Theorems 3.2 and
3.7. We begin with the corollaries.

4.1. Proof of Corollaries 3.3 and 3.8. We will need the following bound on the
spectral norm of a Wigner random matrix whose off-diagonal entries have finite
fourth moment.

Lemma 4.1 (Spectral norm: finite fourth moment). Let ξ be a real random variable
with mean zero, unit variance, and finite fourth moment. Assume ζ is a real random
variable with finite variance. Let W be an n×n Wigner matrix with atom variable
ξ and ζ. Then, for every ε > 0, there exists M ≥ 1 (depending only on ε, the
fourth moment of ξ, and the mean and variance of ζ) such that BW,M holds with
probability at least 1− ε.

Proof. Let µ and σ2 be the mean and variance of ζ. We decompose the matrix W
as

W := U + L+D,
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where D is a diagonal matrix (whose entries are iid copies of ζ), U is a strictly
upper-triangular matrix (whose strictly upper-triangular entries are iid copies of
ξ), and L = UT. Since ‖W‖ ≤ ‖U‖+ ‖L‖+ ‖D‖, we have

P(‖W‖ ≥ 3M
√
n) ≤ 2P(‖U‖ ≥M

√
n) + P(‖D‖ ≥M

√
n) (4)

because ‖U‖ = ‖L‖.
Since D is diagonal, it follows that ‖D‖ = max1≤i≤n |wii|. As the diagonal

entries of W are iid copies of ζ, we have

P(‖D‖ ≥M
√
n) ≤ nP(|ζ| ≥M

√
n) ≤ E|ζ|2

M2
≤ 2

σ2 + |µ|2
M2

.

From [12, Theorem 2], it follows that

E‖U‖ ≤ C
√
n,

where C > 0 depends only on the fourth moment of ξ. Here the results of [12] are
applicable since the entries of U are independent and have mean zero. Thus, by
Markov’s inequality, we conclude that

P(‖U‖ ≥M
√
n) ≤ C

M
.

Combining the bounds above with (4), we obtain

P(‖W‖ ≥ 3M
√
n) ≤ 2

C

M
+ 2

σ2 + |µ|2
M2

≤ ε

by taking M sufficiently large. �

We now prove Corollaries 3.3 and 3.8 assuming Theorems 3.2 and 3.7.

Proof of Corollary 3.3. By Proposition 2.4, it follows that ξ satisfies (2) for some
ε0, p0,K0 > 0. In addition, since ξ is symmetric, ξ must have mean zero. Let
0 < ε < 1/4. In view of Lemma 4.1, there exists M ≥ 1 such that BW,M holds
with probability at least 1 − ε. Fix K ≥ 1. Since W satisfies the assumptions of
Theorem 3.2, there exists C > 0 and δ ∈ (0, 1) such that, if b is a (K, δ)-delocalized
vector in R

n, then, conditionally on BW,M , (W, b) is controllable with probability
at least 1− Cn−1.

Let b be a (K, δ)-delocalized vector in R
n. Define the event

E := {(W, b) is controllable}.
Then

P(Ec) = P (Ec | BW,M )P(BW,M ) + P
(
Ec
∣∣ Bc

W,M

)
P(Bc

W,M )

≤ P (Ec | BM,W ) + P(Bc
W,M )

≤ C

n
+ ε

≤ 2ε

for n sufficiently large. Since ε was arbitrary, the proof is complete. �

The proof of Corollary 3.8 is nearly identical to the proof of Corollary 3.3 except
one applies Theorem 3.7 instead of Theorem 3.2; we omit the details.



8 SEAN O’ROURKE AND BEHROUZ TOURI

4.2. Proof of Corollaries 3.4 and 3.9. We will need the following bound on the
spectral norm of a Wigner matrix with sub-gaussian entries.

Lemma 4.2 (Spectral norm: sub-gaussian). Let ξ and ζ be real sub-gaussian ran-
dom variables, and assume ξ has mean zero and unit variance. Let W be an n× n
Wigner matrix with atom variable ξ and ζ. Then there exists C, c > 0 and M ≥ 1
(depending only on the sub-gaussian moments of ξ and ζ) such that BW,M holds
with probability at least 1− C exp(−cn).
Proof. Let µ be the mean of ζ. It follows that |µ| can be bounded in terms of
the sub-gaussian moment of ζ. Thus, by increasing the constant C if necessary, it
suffices to assume that |µ| ≤ √

n.
We first consider the spectral norm of the matrixW −µI, where I is the identity

matrix. In particular, the entries ofW −µI are sub-gaussian random variables with
mean zero. Thus, by [20, Lemma 5], there exists C, c > 0 and M ≥ 1 such that

‖W − µI‖ ≤M
√
n

with probability at least 1− C exp(−cn). Hence,
‖W‖ ≤ ‖W − µI‖+ ‖µI‖ = ‖W − µI‖+ |µ| ≤ (M + 1)

√
n

on the same event. �

We now prove Corollaries 3.4 and 3.9.

Proof of Corollary 3.4. By Proposition 2.4, it follows that ξ satisfies (2) for some
ε0, p0,K0 > 0. In addition, since ξ is symmetric, ξ must have mean zero. In view of
Lemma 4.2, there exist constants C0, c0 > 0 and M ≥ 1 such that BW,M holds with
probability at least 1−C0 exp(−c0n). Fix K ≥ 1 and α > 0. Since W satisfies the
assumptions of Theorem 3.2, there exists C > 0 and δ ∈ (0, 1) such that, if b is a
(K, δ)-delocalized vector in R

n, then, conditionally on BW,M , (W, b) is controllable
with probability at least 1− Cn−α.

Let b be a (K, δ)-delocalized vector in R
n. Define the event

E := {(W, b) is controllable}.
Then

P(Ec) = P (Ec | BW,M )P(BW,M ) + P
(
Ec
∣∣ Bc

W,M

)
P(Bc

W,M )

≤ P (Ec | BM,W ) + P(Bc
W,M )

≤ Cn−α + C0 exp(−c0n)
≤ C′n−α

for some constant C′ > 0. �

The proof of Corollary 3.9 is similar and relies on Theorem 3.7; we omit the
details.

4.3. Proof of Theorem 1.5. We now turn our attention to proving Theorem 1.5
using Corollary 3.4. Unfortunately, one cannot apply Corollary 3.4 directly to the
adjacency matrix An because the off-diagonal entries are not symmetric random
variables. We can overcome this obstacle by writing An as a rank one perturbation
of a Wigner matrix W whose off-diagonal entries are symmetric. We then show
that controllability of (W,1n) is equivalent to controllability of (An,1n).
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We begin with a version of the Popov–Belevitch–Hautus (PBH) test for control-
lability, which we prove for completeness. We refer the reader to [7, Section 12.2]
for further details.

Lemma 4.3 (PBH criterion). Let A be an n×n real symmetric matrix, and assume
b ∈ R

n. Then (A, b) is uncontrollable if and only if there exists an eigenvector v of
A such that vTb = 0.

Remark 4.4. In its most general form, the PBH criterion also applies to non-
symmetric matrices. We state the PBH criterion in this form because we will
only apply it to real symmetric matrices in this note.

Proof of Lemma 4.3. Let Q denote the n×n controllability matrix in (1). To begin,
assume v is an eigenvector of A with corresponding eigenvalue λ and vTb = 0. Then
vTA = λvT. Thus, for any k = 0, . . . , n− 1,

vTAkb = λkvTb = 0,

where we use the convention that A0 is the identity matrix. Therefore, vTQ = 0,
and hence (A, b) is uncontrollable.

Conversely, suppose vTb 6= 0 for every eigenvector v of A. Clearly, b 6= 0.
In addition, this condition implies that each eigenspace of A has dimension one.
Indeed, if A has an eigenspace of dimension at least two, then that eigenspace
would have a non-trivial intersection with the orthogonal complement of the space
spanned by b. This would contradict the fact that vTb 6= 0 for every eigenvector v.

Since A is real symmetric and each eigenspace has dimension one, it follows that
A must have n distinct eigenvalues (i.e. the spectrum of A is simple). Thus, (A, b)
is controllable by the criterion test given in [20, Lemma 1]. �

Using the PBH criterion, we obtain the following equivalence.

Lemma 4.5. Let A be an n × n real symmetric matrix. Let b ∈ R
n and γ ∈ R.

Then (A, b) is controllable if and only if (A+ γbbT, b) is controllable.

Proof. Applying the PBH criterion (Lemma 4.3) twice, we obtain

(A, b) is uncontrollable ⇐⇒ ∃λ, v such that v 6= 0, Av = λv, and bTv = 0

⇐⇒ ∃λ, v such that v 6= 0, (A+ γbbT)v = λv, and bTv = 0

⇐⇒ (A+ γbbT, b) is uncontrollable,

as required. �

We now prove Theorem 1.5. Let An be the adjacency matrix of G(n, 1/2, q). Let
ξ be a Bernoulli random variable, which takes values ±1 with probability 1/2, and
let ζ be the random variable

ζ :=

{
1, with probability q,

−1, with probability 1− q.

Let W be the n × n Wigner matrix with atom variables ξ and ζ. Since 1n1
T
n is

the all-ones matrix, it follows that An has the same distribution as 1
2 (W + 1n1

T
n ).

Thus, it suffices to bound the probability that
(
1
2 (W + 1n1

T
n ),1n

)
is controllable.

By invariance of scaling, this is equivalent to the probability that (W + 1n1
T
n ,1n)

is controllable. By Lemma 4.5, this is the same as the probability that (W,1n)
is controllable. The claim now follows from Corollary 3.4. Here, Corollary 3.4 is
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applicable because ξ and ζ are sub-gaussian random variables and ξ is symmetric
with unit variance. In addition, 1n is (K, δ)-delocalized for all K ≥ 1 and every
δ ∈ (0, 1).

5. Reduction to a small ball probability involving eigenvectors

It remains to verify Theorems 3.2 and 3.7. In this section, we begin with a
few reductions, which will reduce the proofs of these two theorems to a problem
involving the structure of the eigenvectors of the Wigner matrix W .

5.1. Wigner matrices have simple spectrum. Recall that the spectrum of a
real symmetric matrix is real. We say the spectrum is simple if all eigenvalues have
multiplicity one. Recently Tao and Vu [28] verified that Wigner random matrices
have simple spectrum with high probability.

Theorem 5.1 (Tao-Vu). Let ξ and ζ be real random variables. Assume ξ satisfies
(2) for some ε0, p0,K0 > 0. Let W be an n× n Wigner matrix with atom variables
ξ and ζ. Then, for every α > 0, there exists C > 0 (depending on ε0, p0,K0, and
α) such that the spectrum of W is simple with probability at least 1− Cn−α.

Theorem 5.1 follows almost immediately from [28, Theorem 1.3]. Indeed, [28,
Theorem 1.3] only requires that ξ satisfy a weak non-degeneracy condition. The
proposition below shows that Assumption 2.3 implies this non-degeneracy condi-
tion.

Proposition 5.2. Let ξ be a real random variable which satisfies (2) for some
ε0, p0,K0 > 0. Then there exists η > 0 (depending on p0) such that

sup
u∈R

P(ξ = u) ≤ 1− η.

Proof. Set η := 1 −
√
1− p0/2, and assume there exists u ∈ R such that P(ξ =

u) > 1− η. Then, from the first bound in (2) and the independence of ξ and ξ′, we
have

1− p0 ≥ P(ξ = ξ′) ≥ P(ξ = u, ξ′ = u) = [P(ξ = u)]
2 ≥ 1− p0/2,

a contradiction. We conclude that P(ξ = u) ≤ 1− η for all u ∈ R. �

Theorem 5.1 now follows from [28, Theorem 1.3] and Proposition 5.2.

5.2. Reduction to a small ball probability. Using Theorem 5.1, we reduce the
proof of Theorems 3.2 and 3.7 to a problem involving the eigenvectors of W .

Theorem 5.3. Let ξ and ζ be real random variables. Assume ξ satisfies (2) for
some ε0, p0,K0 > 0. Let W be an n× n Wigner matrix with atom variables ξ and
ζ. Let M ≥ 1, and suppose the event BW,M (defined in (3)) holds with probability
at least 1/2. Let b be a vector in R

n, independent of W . Assume there exists p
such that every unit eigenvector v of W satisfies

P
(
vTb = 0

∣∣ BW,M

)
≤ p. (5)

Then, for every α > 0, there exists C > 0 (depending on ε0, p0,K0, and α) such
that, conditionally on BW,M , (W, b) is controllable with probability at least

1− np− Cn−α.
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Proof. Let α > 0. By Theorem 5.1, there exists C > 0 (depending on ε0, p0,K0, and
α) such that the spectrum ofW is simple with probability at least 1−Cn−α. We will
utilize the PBH test (Lemma 4.3) to show that (W, b) is controllable. In particular,
when the spectrum of W is simple, the unit eigenvectors of W are determined
uniquely up to sign. Observe that the choice of sign for each eigenvector v does not
effect whether the dot product vTb is zero or not. Thus, when the spectrum of W
is simple, the PBH test only requires testing the n orthonormal eigenvectors of W
(where the choice of sign for each vector is arbitrary). Thus, by the union bound
over the n orthonormal eigenvectors, we obtain

P ((W, b) is uncontrollable | BW,M )

≤ P ((W, b) is uncontrollable and the spectrum of W is simple | BW,M )

+
P (spectrum of W is not simple)

P(BW,M )

≤ np+ 2Cn−α.

Here, in the last inequality, we used the assumption that BW,M holds with proba-
bility at least 1/2. �

In view of Theorem 5.3, the proof of Theorems 3.2 and 3.7 reduces to computing
p such that (5) holds for all unit eigenvectors v. In particular, Theorems 3.2 and
3.7 will follow from the following two results.

Theorem 5.4. Let ξ and ζ be real random variables. Assume ξ is a symmetric
random variable which satisfies (2) for some ε0, p0,K0 > 0. Let W be an n × n
Wigner matrix with atom variables ξ and ζ. Let M ≥ 1, and suppose the event
BW,M holds with probability at least 1/2. Fix K ≥ 1 and α > 0. Then, there exist
constants C > 0 and δ ∈ (0, 1) (depending on ε0, p0,K0,M,K and α) such that the
following holds. Let b be a deterministic vector in R

n which is (K, δ)-delocalized.
Then, for any unit eigenvector v of W ,

P
(
vTb = 0

∣∣ BW,M

)
≤ Cn−α.

Theorem 5.5. Let ξ and ζ be real random variables. Assume ξ satisfies (2) for
some ε0, p0,K0 > 0. Let W be an n × n Wigner matrix with atom variables ξ
and ζ. Let M ≥ 1, and suppose the event BW,M holds with probability at least
1/2. Let α > 0, and assume b is a random vector in R

n, independent of W ,
which satisfies Assumption 3.5. Then, there exists a constant C > 0 (depending on
ε0, p0,K0,M, ε1, p1,K1, and α) such that, for any unit eigenvector v of W ,

P
(
vTb = 0

∣∣ BW,M

)
≤ Cn−α. (6)

Remark 5.6. In fact, as the proofs will show, our methods yields bounds on the
small ball probability

P
(
|vTb| ≤ t

∣∣ BW,M

)

for all unit eigenvectors v and every value of t ≥ 0.

5.3. Outline of the argument. The rest of the paper is devoted to the proof of
Theorems 5.4 and 5.5. Let us now outline the main idea of the proof. For simplicity,
we will consider Theorem 5.5 first.
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In order to bound the probability in (6), we will need to consider the random
sum

S :=

n∑

k=1

vkbk, (7)

where v = (v1, . . . , vn) is an eigenvector of W and b = (b1, . . . , bn) is a random
vector, independent of v, with iid entries. As we shall see, estimating P(S = 0) is a
type of Littlewood–Offord problem (discussed more below). In recent years, many
authors have studied Littlewood–Offord and inverse Littlewood–Offord problems;
we refer the reader to [17, 24, 25, 26, 28, 29, 31] and references therein. We will
apply some of this theory to estimate P(S = 0).

In particular, it has been observed that if P(S = 0) > n−α, then the vector v
must have a rich additive structure. Intuitively, this follows since the sum in (7)
can only concentrate near zero when most of the coefficients vk are arithmetically
well comparable. On the other hand, if we take v to be an eigenvector of a Wigner
matrix, one expects the vector v to look random and not have any rigid structure.

In order to make this intuition rigorous, we proceed in two steps.

(1) We will first show that a bound for P(S = 0) depends on the additive
structure of the eigenvector v. In particular, we utilize the least common
denominator (LCD) concept from [24, 25, 26, 31] to measure the additive
structure of any vector v.

(2) We will then show that, with high probability, any eigenvector of W has
very little additive structure. Specifically, we will show that the LCD of
any eigenvector is quite large.

Finally, we will combine the steps above to complete the proof of Theorem 5.5.
The proof of Theorem 5.4 is similar, but we do not have the randomness of the

vector b. In this case, we will use the symmetry of the atom variable ξ in order to
introduce additional randomness.

6. Small ball probabilities via the least common denominator

In this section, we introduce small ball probabilities and the least common de-
nominator (LCD) concept from [24, 25, 26, 31]. At first, these concepts may appear
completely unrelated to Theorems 5.4 and 5.5. In the subsequent sections, the con-
nection between these ideas and the theorems will become more apparent.

We begin this section with the following definition.

Definition 6.1 (Small ball probabilities). Let Z be a random vector in R
n. The

Lévy concentration function of Z is defined as

L(Z, t) := sup
u∈Rn

P(‖Z − u‖ ≤ t)

for all t ≥ 0.

The Lévy concentration function bounds the small ball probabilities for Z, which
are the probabilities that Z falls in a Euclidean ball of radius t. We begin with a
few simple properties.

Lemma 6.2 (Restriction). Let ξ1, . . . , ξn be independent random variables and
x1, . . . , xn real numbers. Then, for every subset of indices J ⊆ [n] and every t ≥ 0,
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we have

L




n∑

j=1

xjξj , t


 ≤ L



∑

j∈J

xjξj , t


 .

Proof. This bound follows by conditioning on the random variables ξj with j 6∈ J
and absorbing their contribution into the vector u in the definition of the concen-
tration function. �

Lemma 6.3 (Tensorization; Lemma 3.3 from [24]). Let Z = (Z1, . . . , Zn) be a ran-
dom vector in R

n with independent coordinates. Assume that there exists numbers
t0,M ≥ 0 such that

L(Zj , t) ≤M(t+ t0)

for all j and t ≥ 0. Then

L(Z, t√n) ≤ [CM(t+ t0)]
n

for some absolute constant C > 0 and all t ≥ 0.

6.1. Littlewood–Offord theory and the LCD. Littlewood–Offord theory is
concerned with the small ball probabilities for sums of the form

∑n
j=1 xjξj , where

ξj are iid random variables and x = (x1, . . . , xn) ∈ Sn−1 is a given coefficient vec-
tor. In order to bound the small ball probabilities, it has been observed that one
must take into account the additive structure of the coefficient vector x.

The amount of additive structure in x ∈ Sn−1 is captured by the least common
denominator (LCD) of x. If the coordinates xk = pk/qk are rational numbers, then
a suitable measure of additive structure in x is the least common denominator of
these ratios. That is, the smallest number θ > 0 such that θx ∈ Z

n. We now work
with an extension of this concept developed in [24, 25, 26, 31].

Definition 6.4 (LCD). Let L ≥ 1. We define the least common denominator
(LCD) of x ∈ Sn−1 as

DL(x) := inf
{
θ > 0 : dist(θx,Zn) < L

√
log+(θ/L)

}
,

where dist(v, T ) := infu∈T ‖v − u‖ is the distance from a vector v ∈ R
n to a set

T ⊆ R
n.

Clearly, one always has DL(x) ≥ L. Another simple bound is the following.

Lemma 6.5 (Simple lower bound for LCD; Proposition 7.4 from [24]). For every
x ∈ Sn−1 and every L ≥ 1, one has

DL(x) ≥
1

2‖x‖∞
,

where ‖x‖∞ is the ℓ∞-norm of the vector x.

6.2. Small ball probabilities via LCD. We now obtain a bound for the small
ball probabilities of the sum

∑
xkξk in terms of the LCD DL(x). The bound

below is similar to [24, Lemma 7.5] and [31, Theorem 6.3]. However, for technical
reasons, we will actually need to consider the more general sum

∑
akxkξk, where

x = (x1, . . . , xn) ∈ Sn−1 and a1, . . . , an are rational coefficients. Because of these
rational coefficients, we cannot apply the results from [24, 31] directly.
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Theorem 6.6 (Small ball probabilities via LCD). Let ξ1, . . . , ξn be iid copies of a
real random variable ξ which satisfies (2) for some ε0, p0,K0 > 0. Let K > 0. Then
there exists C > 0 (depending only on ε0, p0,K0 and K) such that the following
holds. Let x = (x1, . . . , xn) ∈ Sn−1 and consider the sum S :=

∑n
k=1 akxkξk,

where the coefficients (ak)
n
k=1 satisfy

a−1
k ∈ Z, |ak| ≥ K−1 for k = 1, . . . , n.

Then, for every L ≥ p
−1/2
0 K and t ≥ 0, one has

L(S, t) ≤ CL

(
t+

1

DL(x)

)
. (8)

Remark 6.7. We emphasis that the right-hand side of (8) does not depend on the
values of the coefficients ak. In particular, the LCD DL(x) only depends on the
coefficient vector x.

When all of the coefficients ak = 1, we obtain [31, Theorem 6.3], which we now
state as a corollary.

Corollary 6.8. Let ξ1, . . . , ξn be iid copies of a real random variable ξ which satis-
fies (2) for some ε0, p0,K0 > 0. Then there exists C > 0 (depending only on ε0, p0,
and K0) such that the following holds. Let x = (x1, . . . , xn) ∈ Sn−1 and consider

the sum S :=
∑n

k=1 xkξk. Then, for every L ≥ p
−1/2
0 and t ≥ 0, one has

L(S, t) ≤ CL

(
t+

1

DL(x)

)
.

The proof of Theorem 6.6 is based on Esseen’s Lemma; see, for instance, [22,
Lemma 1.16] or [30, Section 7.3].

Lemma 6.9 (Esseen; Lemma 1.16 from [22]). Let Y be a real random variable.
Then

L(Y, 1) ≤ C

∫ 1

−1

|φY (θ)|dθ,

where φY (θ) := E[e2πiθY ] is the characteristic function of Y , and C > 0 is an
absolute constant.

Proof of Theorem 6.6. The proof is based on the arguments given in [31]. By scal-
ing ξ by ε0, we can without loss of generality assume that ε0 = 1. Applying Esseen’s
Lemma (Lemma 6.9) to S/t, we obtain

L(S, t) ≤ C

∫ 1

−1

n∏

k=1

∣∣∣∣φ
(
θxkak
t

)∣∣∣∣ dθ, (9)

by independence of ξ1, . . . , ξn, where

φ(s) := E
[
e2πisξ

]

is the characteristic function of ξ.
Let ξ′ be independent copy of ξ, and let ξ̄ := ξ − ξ′. Clearly, ξ̄ is a symmetry

random variable. By symmetry,

|φ(s)|2 = E cos(2πsξ̄).
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Using the bound |x| ≤ exp(−1/2(1− x2)), which is valid for all x ∈ R, we obtain

|φ(s)| ≤ exp

(
−1

2

(
1− E cos(2πsξ̄)

))
. (10)

The assumptions on ξ imply that the event E := {1 ≤ |ξ̄| ≤ 2K0} holds with
probability at least p0/2. So

1− E cos(2πsξ̄) ≥ P(E)E
[
1− cos(2πsξ̄)

∣∣ E
]

≥ p0
2
E

[
4

π2
min
q∈Z

|2πsξ̄ − 2πq|2
∣∣∣∣ E
]

≥ 8p0E

[
min
q∈Z

|sξ̄ − q|2
∣∣∣∣ E
]
.

Thus,

1− E cos(2πsakξ̄) ≥ 8p0E

[
min
q∈Z

|sak ξ̄ − q|2
∣∣∣∣ E
]

≥ 8p0|ak|2E
[
min
q∈Z

|sξ̄ − q

ak
|2
∣∣∣∣ E
]

≥ 8
p0
K2

E

[
min
q∈Z

|sξ̄ − q|2
∣∣∣∣ E
]

since a−1
k ∈ Z. Thus, subsituting the bound above into (10) yields

|φ(aks)| ≤ exp

(
−4p0K

−2
E

[
min
q∈Z

|sξ̄ − q|2|E
])

.

Therefore, returning to (9), we conclude that

L(S, t) ≤ C

∫ 1

−1

exp

(
−4p0K

−2
n∑

k=1

E

[
min
qk∈Z

∣∣∣∣
θxk ξ̄

t
− qk

∣∣∣∣
2
∣∣∣∣∣ E
])

dθ

≤ CE

[∫ 1

−1

exp

(
−4p0K

−2 dist

(
ξ̄θ

t
x,Zn

)2
)
dθ

∣∣∣∣∣ E
]

by Jensen’s inequality. Thus, by definition of the event E ,

L(S, t) ≤ 2C sup
1≤z≤2K0

∫ 1

0

exp
(
−4p0K

−2f2
z (θ)

)
dθ,

where

fz(θ) := dist

(
zθ

t
x,Zn

)
.

Suppose that t > t0 := 2K0

DL(x) . Then, for every, 1 ≤ z ≤ 2K0 and every θ ∈ [0, 1],

we have zθ
t < DL(x). By definition, this means that

fz(θ) ≥ L

√
log+

(
zθ

tL

)
.

Thus,

L(S, t) ≤ 2C sup
z≥1

∫ 1

0

exp

(
−4p0K

−2L2 log+

(
zθ

tL

))
dθ.
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By the change of variables u = zθ
tL , we find that

L(S, t) ≤ 2CtL

∫ ∞

0

exp
(
−4p0K

−2L2 log+(u)
)
du

≤ 2CtL

(
1 +

∫ ∞

1

u−4p0K
−2L2

du

)
.

Since p0K
2L2 ≥ 1 by assumption, the integral on the right-hand side is bounded

above by an absolute constant. Thus,

L(S, t) ≤ C1tL

for an absolute constant C1 > 0.
Finally, suppose t ≤ t0. Then, from the previous estimates applied to 2t0, we

obtain

L(S, t) ≤ L(S, 2t0) ≤ 2C1Lt0 =
4C1K0L

DL(x)
.

The proof of the theorem is complete. �

Theorem 6.6 and Corollary 6.8 are most useful in the case when the coefficient
vector x is sufficiently unstructured i.e. when DL(x) is large. In the situation
where no information is known about the structure of x, the following bound can
be useful.

Lemma 6.10 (Small ball probabilities: simple bound). Let ξ1, . . . , ξn be iid copies
of a real random variable ξ which satisfies (2) for some ε0, p0,K0 > 0. Assume
x = (x1, . . . , xn) ∈ Sn−1. Then

L
(

n∑

k=1

xkξk, c

)
≤ 1− c′,

where c and c′ are positive constants that may depend only on ε0, p0, and K0.

Proof. The proof presented here is based on the arguments given in [24, Section
7.3]. We consider two separate cases: when x has a large coordinate and when x
does not. Recall that ‖x‖∞ is the ℓ∞-norm of x. Assume first that

‖x‖∞ ≥ 1

4CL(2 + ε0)
=: η,

where C is the constant from Corollary 6.8 and L ≥ p
−1/2
0 . Choose a coordinate k0

such that |xk0
| = ‖x‖∞. Then, by Lemma 6.2, we have

L
(

n∑

k=1

xkξk,
ε0η

2

)
≤ L

(
xk0

ξk0
,
ε0η

2

)
≤ L

(
ξk0
,
ε0
2

)
≤ 1−

(
1−

√
1− p0/2

)
,

where the last inequality follows from Proposition 6.11 below.
If ‖x‖∞ < η, then Lemma 6.5 implies that

DL(x) ≥
1

2‖x‖∞
>

1

2η
.

So, by Corollary 6.8, we conclude that

L
(

n∑

k=1

xkξk,
ε0η

2

)
≤ CL

(ε0η
2

+ 2η
)
≤ CLη(ε0 + 2) ≤ 1

4
.

Here the last inequality follows from the definition of η. �
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Proposition 6.11. Let ξ be a real random variable which satisfies (2) for some
ε0, p0,K0 > 0. Then

L (ξ, ε0/2) ≤
√
1− p0/2.

Proof. In order to reach a contradiction, assume there exists u ∈ R such that

P (|ξ − u| ≤ ε0/2) >
√
1− p0/2.

Let ξ′ denote an independent copy of ξ. Then

1− p0 ≥ P(|ξ − ξ′| ≤ ε0) ≥ P(|ξ − u| ≤ ε0/2, |ξ′ − u| ≤ ε0/2) > 1− p0/2

by independence. Since this is a contradiction, we conclude that

sup
u∈R

P(|ξ − u| ≤ ε0/2) ≤
√
1− p0,

as required. �

7. Eigenvectors are incompressible

Before we can show that the eigenvectors are arithmetically unstructured, we
first prove a much simpler result. In particular, we now show that the eigenvectors
of a Wigner matrix are incompressible. An incompressible vector is one whose mass
is not concentrated on a small number of coordinates. The partition of the unit
sphere into compressible and incompressible vectors has been useful in studying the
invertibility of random matrices; see, for example, [25, 26, 31].

Definition 7.1 (Compressible and incompressible vectors). Let c0, c1 ∈ (0, 1) be
two given parameters. A vector x ∈ R

n is called sparse if its support satisfies
| supp(x)| ≤ c0n. A vector x ∈ Sn−1 is called compressible if x is within Euclidean
distance c1 from the set of all sparse vectors. A vector x ∈ Sn−1 is called in-
compressible if it is not compressible. The sets of compressible and incompressible
vectors in Sn−1 will be denote by Comp(c0, c1) and Incomp(c0, c1) respectively.

The definition above depends on the choice of the constants c0, c1. These con-
stants will be chosen in Lemma 7.3 below.

The sets of compressible and incompressible vectors each have their own advan-
tages. The set of compressible vectors has small covering numbers, which are expo-
nential in c0n rather than n; see Lemma 7.7 below for details. On the other hand,
the class of incompressible vectors has a different advantage. Each incompressible
vector x has a set of coordinates of size proportional to n, whose magnitudes are
all of order n−1/2:

Lemma 7.2 (Incompressible vectors are spread; Lemma 3.4 from [26]). For every
x ∈ Incomp(c0, c1), one has

c1√
2n

≤ |xk| ≤
1√
c0n

(11)

for at least 1
2c0c

2
1n coordinates xk of x.

We shall now show that a Wigner matrix W has no compressible unit eigen-
vectors. As before we work on the event BW,M defined in (3). In particular, on
this event, all the eigenvalues of W are at most M

√
n is magnitude. Thus, we will

show that1, with high probability, ‖(W − λ)x‖ > 0 for all compressible vectors x

1For convenience of notation we skip the identity symbol and write W − λ for W − λI
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and all choices of λ ∈ R with |λ| ≤ M
√
n. From this we can easily deduce that,

conditionally on BW,M , the unit eigenvectors of W are incompressible.

Lemma 7.3 (Lower bound on the set of compressible vectors). Let ξ and ζ be real
random variables. Assume ξ satisfies (2) for some ε0, p0,K0 > 0. Let W be an
n× n Wigner matrix with atom variables ξ and ζ. Let M ≥ 1, and recall the event
BW,M defined in (3). Then there exist constants c0, c1 ∈ (0, 1) from Definition 7.1
and constants C, c > 0 such that

P

(
inf

x∈Comp(c0,c1)
inf

|λ|≤M
√
n
‖(W − λ)x‖ ≤ c

√
n and BW,M

)
≤ C exp(−cn). (12)

Here the constants C, c, c0, c1 depend only on ε0, p0,K0, and M .

Remark 7.4. Lemma 7.3 implies that, with high probability, the kernel of W − λ
consists of incompressible vectors:

ker(W − λ) ∩ Sn−1 ⊆ Incomp(c0, c1) for all λ ∈ [−M√
n,M

√
n].

The rest of this section is devoted to the proof of Lemma 7.3. The argument
presented here is based on the arguments given in [24, Section 9.3]. We shall first
consider the case of a fixed compressible vector x and real number λ. We will then
use a union bound argument to obtain Lemma 7.3.

To begin, we introduce the following notation. Given an n × n matrix A =
(aij)

n
i,j=1 and index sets I, J ⊆ [n], by AI×J we denote the |I| × |J | matrix

(aij)i∈I,j∈J obtained by including entries whose rows are indexed by I and whose
columns are indexed by J . Similarly, for a vector x ∈ R

n, by xJ we denote the
vector in R

J which consists of the coefficients indexed by J . In this case, the
complement Jc of the index set J is given by [n] \ J .

We now present a general bound for a fixed vector x and real number λ.

Lemma 7.5 (Wigner matrix acting on a fixed vector). Let ξ and ζ be real random
variables. Assume ξ satisfies (2) for some ε0, p0,K0 > 0. LetW be an n×nWigner
matrix with atom variables ξ and ζ. Then there exist constants C, c > 0 (depending
only on ε0, p0,K0) such that the following holds. Let λ ∈ R, and assume x ∈ R

n is
a unit vector. Then

P
(
‖(W − λ)x‖ ≤ c

√
n
)
≤ C exp(−cn).

Proof. By increasing the constant C if necessary, it suffices to assume that n ≥ 16.
Fix a unit vector x ∈ R

n. Let J ⊆ [n] be the set of indices of the ⌈n/4⌉ largest
coordinates. Since x is a unit vector, it follows that ‖xJ‖2 ≥ 1/4. We decompose
W − λ into the sub-matrices WJ×J − λ, WJ×Jc , WJc×J , and WJc×Jc − λ. Thus,

‖(W − λ)x‖2 ≥ ‖WJc×JxJ + (WJc×Jc − λ)xJc‖2 = ‖WJc×JxJ + a‖2,
where a := (WJc×Jc − λ)xJc . Observe that WJc×Jc is independent of WJc×J .
Thus, we condition on WJc×Jc and now treat a = (ai)i∈Jc as a constant vector.
Therefore, we have

‖(W − λ)x‖2 ≥
∑

i∈[n]\J
V 2
i , (13)

where

Vi :=
∑

j∈J

wijxj + ai.
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By assumption, the entries of WJc×J are iid copies of ξ. Applying Lemma 6.10,
there exist constants c, c′ > 0, which depend only on ε0, p0, and K0, such that

P(|Vi| ≤ c) ≤ 1− c′

for all i ∈ [n] \ J .
Assume that ‖(W −λ)x‖2 ≤ αc2n, where α ∈ (0, 1/8) is a constant to be chosen

later. In view of (13), this assumption implies that
∑

i∈[n]\J
V 2
i ≤ αc2n,

which in turn implies that |Vi| ≤ c for at least |[n] \ J | − ⌈αn⌉ of the random
variables Vi in the sum. As the random variables {Vi : i ∈ [n] \J} are independent,
we obtain

P
(
‖(W − λ)x‖2 ≤ αc2n

)
≤
(|[n] \ J |

⌈αn⌉

)
(1− c′)|[n]\J|−⌈αn⌉

≤
( |[n] \ J |e

⌈αn⌉

)⌈αn⌉
(1− c′)|[n]\J|−⌈αn⌉

≤
(
3e

4α

)αn+1

exp

(
1

2
n log(1− c′)

)

≤
(
3e

4α

)
exp

(
αn log

(
3e

4α

))
exp

(
1

2
n log(1 − c′)

)
.

Here, we used the bound

|[n] \ J | − ⌈αn⌉ ≥ n− n

4
− 1− n

8
− 1 ≥ 5

8
n− 2 ≥ n

2
,

which holds true for n ≥ 16. Choosing α sufficiently small so that

exp

(
αn log

(
3e

4α

))
≤ exp

(
−1

4
n log(1− c′)

)

completes the proof. �

Our plan is to apply Lemma 7.5 and a union bound to obtain Lemma 7.3.
However, the set Comp(c0, c1) is uncountable, and so we cannot apply the union
bound directly. In order to overcome this issue, we introduce nets as a convenient
way to discretize a compact set.

Definition 7.6 (Nets). Let X ⊆ R
d, and let ε > 0. A subset N of X is called an

ε-net of X if, for every x ∈ X , there exists y ∈ N such that ‖x− y‖ ≤ ε.

The following estimate for the maximum size of an ε-net of a sphere is well-
known.

Lemma 7.7. A unit sphere in d dimensions admits an ε-net of size at most
(
1 +

2

ε

)d

.

Proof. Let S be the unit sphere in question. Let N be a maximal ε-separated
subset of S. That is, ‖x − y‖ ≥ ε for all distinct x, y ∈ N and no subset of S
containing N has this property. Such a set can always be constructed by starting
with an arbitrary point in S and at each step selecting a point that is at least ε
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distance away from those already selected. Since S is compact, this procedure will
terminate after a finite number of steps.

We now claim that N is an ε-net. Suppose to the contrary. Then there would
exist x ∈ S that is at least ε from all points in N . In other words, N ∪ {x} would
still be an ε-separated subset of S. This contradicts the maximal assumption above.

We now proceed by a volume argument. At each point of N we place a ball of
radius ε/2. By the triangle inequality, it is easy to verify that all such balls are
disjoint and lie in the ball of radius 1 + ε/2 centered at the origin. Comparing the
volumes give

|N | ≤ (1 + ε/2)d

(ε/2)d
=

(
1 +

2

ε

)d

.

�

As alluded to above, the set of compressible vectors has small covering number.
That is, we can find a net for Comp(c0, c1) which is exponential in c0n rather than
n.

Lemma 7.8 (Net for compressible vectors). There exists a (3c1)-net for the set
Comp(c0, c1) of cardinality at most

(
18

c0c1

)c0n

,

provided n ≥ 2/c0.

Proof. We first construct a c1-net for the set S of sparse unit vectors. Set d := ⌊c0n⌋.
By Lemma 7.7, the unit sphere Sd−1 of Rd can be covered with at most (3/c1)

d

Euclidean balls of radii c1. Therefore, the set S can be covered with at most
(
n

d

)(
3

c1

)d

≤
(ne
d

)c0n( 3

c1

)c0n

≤
(

6e

c1c0

)c0n

Euclidean balls of radii c1. Here the last inequality uses the bound d ≥ 1
2c0n, which

is a consequence of the assumption n ≥ 2/c0. Let N be such a c1-net of S. We now
claim that N is a (3c1)-net of Comp(c0, c1).

Indeed, let x ∈ Comp(c0, c1). By definition, there exists a sparse vector y ∈ R
n

such that
‖x− y‖ ≤ c1. (14)

Among other things, (14) implies that

|1− ‖y‖| = |‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ c1. (15)

Observe that y/‖y‖ is a sparse unit vector. Thus, there exists z ∈ N such that
∥∥∥∥z −

y

‖y‖

∥∥∥∥ ≤ c1. (16)

Hence, by (14), (15), (16), and the triangle inequality,

‖x− z‖ ≤ ‖x− y‖+
∥∥∥∥y −

y

‖y‖

∥∥∥∥+
∥∥∥∥
y

‖y‖ − z

∥∥∥∥
≤ c1 + |‖y‖ − 1|+ c1

≤ 3c1.

We conclude that N is a (3c1)-net of Comp(c0, c1), and the proof is complete. �
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We now complete the proof of Lemma 7.3.

Proof of Lemma 7.3. By Lemma 7.5, there exist constants C, c > 0 such that, for
any fixed unit vector x ∈ R

n and λ ∈ R,

P
(
‖(W − λ)x‖ ≤ 3c

√
n
)
≤ C exp(−3cn). (17)

Set

c1 :=
c

6M
, (18)

and take c0 > 0 sufficiently small so that

c0 log

(
18

c0c1

)
≤ c. (19)

It suffices to assume that n ≥ 2/c0 (by increasing the constant C in (12) if neces-
sary).

Let N0 be the (3c1)-net of Comp(c0, c1) given in Lemma 7.8. In particular,

|N0| ≤
(

18

c0c1

)c0n

. (20)

Let NM be a (c
√
n)-net of [−M√

n,M
√
n]. NM can be chosen so that

|NM | ≤ K, (21)

where K is a constant depending only on M and c.
Assume the bad event in (12) occurs. Then there exists λ ∈ [−M√

n,M
√
n] and

x ∈ Comp(c0, c1) such that

‖(W − λ)x‖ ≤ c
√
n and ‖W − λ‖ ≤ 2M

√
n.

Hence, there exists λ′ ∈ NM and x′ ∈ N0 such that

‖x− x′‖ ≤ 3c1 and |λ− λ′| ≤ c
√
n.

So, we obtain

‖(W − λ′)x′‖ ≤ ‖(W − λ)x′‖+ |λ− λ′|
≤ ‖(W − λ)x‖ + 2M

√
n‖x− x′‖+ |λ− λ′|

≤ c
√
n+ 6M

√
nc1 + c

√
n

≤ 3c
√
n

by our choice of c1 in (18). Thus, it suffices to prove that

P

(
inf

x′∈N0

inf
λ′∈NM

‖(W − λ′)x′‖ ≤ 3c
√
n

)
≤ C′ exp(−c′n)

for some constants C′, c′ > 0. To do so, we now apply the union bound. Indeed,
by (17), (20), and (21), we obtain

P

(
inf

x′∈N0

inf
λ′∈NM

‖(W − λ′)x′‖ ≤ 3c
√
n

)
≤
∑

x′∈N0

∑

λ′∈NM

P
(
‖(W − λ′)x′‖ ≤ 3c

√
n
)

≤
(

18

c0c1

)c0n

KC exp (−3cn)

≤ KC exp (−2cn) ,

where the last inequality follows from our choice of c0 in (19). �
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8. Small ball probabilities via regularized LCD

We now begin the proof of Theorems 5.4 and 5.5. Let ξ and ζ be real random
variables. Assume ξ satisfies (2) for some ε0, p0,K0 > 0. LetW be an n×nWigner
matrix with atom variables ξ and ζ. (Notice that no symmetry assumption is made
on the atom variable ξ.)

In view of Lemma 7.3, we fix the values of c0 and c1. These values will remain
fixed for the rest of the paper. Let x ∈ Incomp(c0, c1). By Lemma 7.2, at least
1
2c0c

2
1n coordinates xk of x satisfy (11). Following [31], we define the constant

c2 :=
1

4
c0c

2
1.

For any vector x ∈ Incomp(c0, c1), we assign a subset called Spread(x) ⊆ [n]
with

| Spread(x)| = ⌈c2n⌉
such that (11) holds for all k ∈ Spread(x). At this point, we consider an arbitrary
valid assignment of Spread(x) to x. The particular choice of assignment will be
determined later. In fact, for the proof of Theorem 5.5, any choice will do; the
proof of Theorem 5.4 will require a more intelligent choice.

We now define a regularized version of the LCD which allows us to consider only
those coordinates in Spread(x). This new version of the LCD is designed to capture
the amount of structure in the least structured part of the coefficients of x.

Definition 8.1 (Regularized LCD). Let γ ∈ (0, c2) and L ≥ 1. Define the regular-
ized LCD of a vector x ∈ Incomp(c0, c1) as

D̂L(x, γ) := max {DL(xI/‖xI‖) : I ⊆ Spread(x), |I| = ⌈γn⌉} .
We let I(x) denote the maximizing set I in this definition.

Remark 8.2. Since the sets I in this definition are subsets of Spread(x), the bounds
in (11) imply that

√
γc1√
2

≤ ‖xI‖ ≤
√

⌈γn⌉
c0n

. (22)

Lemma 8.3. For every x ∈ Incomp(c0, c1) and every γ ∈ (0, c2) and L ≥ 1, one
has

D̂L(x, γ) ≥ c
√
γn.

Here c ∈ (0, 1) depends only on c0 and c1.

Proof. Let I be a subset as in the definition of D̂L(x, γ). Consider the coordinates
of xI/‖xI‖. From (11) and (22), we find

sup
i∈I

|xi|
‖xI‖

≤ C√
γn
,

where C > 0 depends only on c0 and c1. Thus, by Lemma 6.5, we conclude that

DL(xI/‖xI‖) ≥
√
γn

2C
.

The conclusion now follows from the definition of D̂L(x, γ). �
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8.1. Small ball probabilities via regularized LCD. We now state a version of
Corollary 6.8 for the regularized LCD.

Theorem 8.4 (Small ball probabilities via regularized LCD). Let ξ1, . . . , ξn be
iid copies of a real random variable ξ which satisfies (2) for some ε0, p0,K0 > 0.
Then there exists C > 0 (depending only on c0, c1, c2, ε0, p0, and K0) such that the
following holds. Let x = (x1, . . . , xn) ∈ Incomp(c0, c1). Consider a subset J ⊆ [n]
such that I(x) ⊆ J . Consider also the sum SJ =

∑
k∈J xkξk. Then, for every

γ ∈ (0, c2), L ≥ p
−1/2
0 , and t ≥ 0, one has

L(SJ , t) ≤ CL

(
t√
γ
+

1

D̂L(x, γ)

)
.

Proof. Let I := I(x). By Lemma 6.2,

L(SJ , t) ≤ L(SI , t).

Thus, by Corollary 6.8, we obtain

L(SJ , t) ≤ L(SI , t) ≤ CL

(
t

‖xI‖
+

1

DL(xI/‖xI‖)

)
= CL

(
t

‖xI‖
+

1

D̂L(x, γ)

)
.

Applying (22), we conclude that

L(SJ , t) ≤ CL

(
t
√
2

c1
√
γ
+

1

D̂L(x, γ)

)
,

and the proof is complete. �

We will use Theorem 8.4 to verify the following bound on the small ball proba-
bilities of (W − λ)x.

Theorem 8.5 (Small ball probabilities for (W − λ)x via regularized LCD). Let ξ
and ζ be real random variables. Assume ξ satisfies (2) for some ε0, p0,K0 > 0. Let
W be an n×n Wigner matrix with atom variables ξ and ζ. Let x ∈ Incomp(c0, c1)

and λ ∈ R. Then, for every γ ∈ (0, c2), L ≥ p
−1/2
0 , and t ≥ 0, one has

L((W − λ)x, t
√
n) ≤

[
CLt√
γ

+
CL

D̂L(x, γ)

]n−⌈γn⌉

,

where the constant C only depends on c0, c1, c2, ε0, p0, and K0.

Proof. The proof presented here is based on the arguments given in [31, Section
6.3]. Assume without loss of generality that n ≥ 2, as the conclusion is trivial in
the case when n = 1. Our goal is to bound above the probability

P
(
‖(W − λ)x− u‖ ≤ t

√
n
)

for any arbitrary vector u ∈ R
n.

Let I := I(x) be the maximizing set from the definition of D̂L(x, γ). Following
the proof of Lemma 7.5, we decompose the matrix W − λ into the sub-matrices
WI×I − λ, WI×Ic , WIc×I , and WIc×Ic − λ; we similarly decompose the vectors x
and u. Thus,

‖(W − λ)x − u‖2 ≥ ‖WIc×IxI + (WIc×Ic − λ)xIc − uIc‖2 = ‖WIc×IxI + a‖,
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where

a := (WIc×Ic − λ)xIc − uIc .

Observe that WIc×Ic is independent of WIc×I . Thus, we condition on WIc×Ic and
now treat a = (aj)j∈Ic as a constant vector. Therefore, we have

‖(W − λ)x− u‖2 ≥
∑

j∈[n]\I
V 2
j , (23)

where

Vj :=
∑

i∈I

wjixi + aj , j ∈ Ic.

By assumption, the entries of WIc×I are iid copies of ξ. From Theorem 8.4
(taking J = I), we obtain

L(Vj , t) ≤ CL

(
t√
γ
+

1

D̂L(x, γ)

)
, j ∈ Ic.

Since {Vj : j ∈ Ic} is an independent collection of random variables, we apply
Lemma 6.3 to obtain

P



√ ∑

j∈[n]\I
V 2
j ≤ t

√
|Ic|


 ≤

[
C′L

(
t√
γ
+

1

D̂L(x, γ)

)]|Ic|

,

where C′ depends only on C. In view of (23), we conclude that

P

(
‖(W − λ)x − u‖ ≤ t

√
|Ic|
)
≤
[
C′L

(
t√
γ
+

1

D̂L(x, γ)

)]|Ic|

.

The proof is now complete since |Ic| = n− ⌈γn⌉ ≥ 1/4n. �

8.2. Additive structure. With Theorem 8.5 in hand, we can now estimate the
additive structure of the eigenvectors of a Wigner matrix.

Theorem 8.6 (Eigenvector structure). Let ξ and ζ be real random variables. As-
sume ξ satisfies (2) for some ε0, p0,K0 > 0. Let W be an n × n Wigner matrix
with atom variables ξ and ζ. Let M ≥ 1, and recall the event BW,M defined in (3).
Let α > 0. Then there exist constants C, c, c′ > 0 and γ ∈ (0, c2) (depending on

c0, c1, c2, ε0, p0,K0, α, and M) such that, for every p
−1/2
0 ≤ L ≤ nc, one has

P

(
∃ eigenvector v of W : v ∈ Incomp(c0, c1), D̂L(v, γ) ≤ nα and BW,M

)
≤ Cn−c′n.

In order to prove Theorem 8.6, we will need a net for the set of vectors with
small LCD. We begin with a definition.

Definition 8.7 (Sub-level sets of LCD). Fix γ ∈ (0, c2). For every value D ≥ 1,
we define the set

SD :=
{
x ∈ Incomp(c0, c1) : D̂L(x, γ) ≤ D

}
.

We will make use of the following bound for the covering number of SD \ SD/2,
which follows directly from [31, Proposition 7.4].
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Lemma 8.8 (Covering sub-level sets of regularized LCD). There exist C̃, c̃ > 0

which depend only on c0, c1, and such that the following holds. Let γ ∈ (C̃/n, c2/3)
and L ≥ 1. For every D ≥ 2, the set SD \ SD/2 has a (2β)-net N such that

β :=
L
√
log(3D)√
γD

, |N | ≤
[
C̃D

(γn)c̃

]n
D1/γ . (24)

The main advantage of Lemma 8.8 is that it offers a substantially better bound
than Lemma 7.7 due to the presence of the term (λn)c̃. Indeed, Lemma 7.7 only
offers the trivial bound (3/β)n.

We are now ready to prove Theorem 8.6.

Proof of Theorem 8.6. The proof presented here is based on the arguments from
[31, Section 7.2]. Let γ ∈ (0, c2/3) and c ∈ (0, α) be small parameters to be
chosen later. Without loss of generality, we shall assume n is sufficiently large in
terms of the parameters c0, c1, c2, ε0, p0,K0, α, and M . This assumption is justified
by simply increasing the constant C appearing in the conclusion of the theorem.
For instance, we will assume that n is sufficiently large so that γ satisfies the
assumptions of Lemma 8.8 (i.e. γ > C̃/n).

We first observe that it suffices to bound above the probability

P

(
inf

x∈Snα

inf
λ∈[−M

√
n,M

√
n]
‖(W − λ)x‖ = 0 and BW,M

)
,

where Snα is defined in Definition 8.7. We begin by bounding the probability of a
simpler event. Let 2 ≤ D ≤ nα. We will first obtain a bound for

P

(
inf

x∈SD\SD/2

inf
λ∈[−M

√
n,M

√
n]
‖(W − λ)x‖ = 0 and BW,M

)
. (25)

Indeed, choose a (2β)-net N of SD \SD/2 according to Lemma 8.8. By the assump-
tions on L and D, we find

n−α

√
γ

≤ |β| ≤ nα+1

√
γ

for n sufficiently large. Let NM be a (Mβ
√
n)-net of [−M√

n,M
√
n]; NM can be

chosen so that

|NM | ≤ K

β
≤ Knα, (26)

where K is an absolute constant.
Assume the bad event in (25) occurs. Then there exist x ∈ SD \ SD/2 and

λ ∈ [−M√
n,M

√
n] such that

(W − λ)x = 0, ‖W − λ‖ ≤ 2M
√
n.

Thus, there exist x′ ∈ N and λ′ ∈ NM such that

‖x− x′‖ ≤ 2β, |λ− λ′| ≤Mβ
√
n.

Hence, we obtain

‖(W − λ′)x′‖ ≤ ‖(W − λ)x‖ + 2M
√
n‖x− x′‖+ |λ− λ′| ≤ 5Mβ

√
n.

Therefore, it will suffice to bound above the probability

P

(
inf

x′∈N
inf

λ′∈NM

‖(W − λ′)x′‖ ≤ 5Mβ
√
n

)
.
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By Theorem 8.5, for any x′ ∈ N and λ′ ∈ R,

P
(
‖(W − λ′)x′‖ ≤ 5Mβ

√
n
)
≤
[
CLβ√
γ

+
CL

D

]n−⌈γn⌉
,

where we absorbed the factor 5M into the constant C. Since the term β/
√
γ

dominates the term 1/D, we conclude that

P
(
‖(W − λ′)x′‖ ≤ 5Mβ

√
n
)
≤
[
C′n2c

√
log(3nα)√
γD

]n−⌈γn⌉

.

Thus, applying (24), (26), and the union bound, we obtain

P

(
inf

x′∈N
inf

λ′∈NM

‖(W − λ′)x′‖ ≤ 5Mβ
√
n

)

≤ |N ||NM |
[
C′n2c

√
log(3nα)√
γD

]n−⌈γn⌉

≤ Knα

[
C̃C′n2c

√
log(3nα)

(γn)c̃
√
γ

]n
nα/γ

[
nα

C′n2c
√
log(3nα)

]⌈γn⌉
.

Therefore, by taking c and γ sufficiently small and making simplifications, we obtain

P

(
inf

x′∈N
inf

λ′∈NM

‖(W − λ′)x′‖ ≤ 5Mβ
√
n

)
≤ n−c′n

for n sufficiently large, where c′ depends only on c0, c1, c2, ε0, p0,K0, α, and M .
Primarily, we note that c′ does not depend on D. Returning to (25), we conclude
that

P

(
inf

x∈SD\SD/2

inf
λ∈[−M

√
n,M

√
n]
‖(W − λ)x‖ = 0 and BW,M

)
≤ n−c′n.

It remains to get rid of SD/2 in the bound above. Since β decreases in D, we
can apply the previous bound to D/2 instead of D provided that D/2 ≥ 2. Hence,
we have

P

(
inf

x∈SD/2\SD/4

inf
λ∈[−M

√
n,M

√
n]
‖(W − λ)x‖ = 0 and BW,M

)
≤ n−c′n.

We shall continue in this manner for SD/4 \ SD/8, etc. That is, we decompose

Snα =

k0⋃

k=0

S2−knα \ S2−k−1nα ,

where k0 is the largest integer such that 2−k0nα ≥ c′′
√
γn and c′′ is the constant

from Lemma 8.3. (Recall from Lemma 8.3 that SD is empty wheneverD < c′′
√
γn.)

This implies that

k0 ≤ log2

(
nα

c′′
√
γn

)
.

Therefore, the union bound yields

P

(
inf

x∈Snα

inf
λ∈[−M

√
n,M

√
n]
‖(W − λ)x‖ = 0 and BW,M

)
≤ k0n

−c′n ≤ n−c′′′n

for c′′′ chosen sufficiently small. This completes the proof. �
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9. Proof of Theorem 5.5

We now complete the proof of Theorem 5.5. The proof of Theorem 5.4 is deferred
until the next section.

Recall that c0, c1, c2 were fixed in Section 8. Let b be a random vector in R
n,

independent of W , which satisfies Assumption 3.5. Our goal is to bound above

P
(
vTb = 0

∣∣ BW,M

)
,

where v is a unit eigenvector of W . In fact, since BW,M is assumed to hold with
probability at least 1/2, it suffices to bound above

P(vTb = 0 and BW,M ).

Fix γ as in Theorem 8.6, and take L := max{p−1/2
0 , p

−1/2
1 }. Define E to be the

event in which every unit eigenvector v satisfies

v ∈ Incomp(c0, c1), DL(v, γ) > nα. (27)

By Lemma 7.3 and Theorem 8.6, it follows that

P(Ec ∩ BW,M ) ≤ C exp(−cn).
Thus, for any unit eigenvector v, we have

P(vTb = 0 and BW,M ) ≤ P
(
vTb = 0

∣∣ Ec ∩ BW,M

)
P(Ec ∩ BW,M )

+ P
(
vTb = 0

∣∣ E ∩ BW,M

)
P(E ∩ BW,M )

≤ C exp(−cn) + P
(
vTb = 0

∣∣ E ∩ BW,M

)
.

Therefore, it remains to bound above

P
(
vTb = 0

∣∣ E ∩ BW,M

)
.

Fix a realization of W in which E ∩ BW,M holds. This implies that the unit eigen-
vector v satisfies (27). Since a realization of W (and hence v) is fixed, the only
remaining randomness comes from the random vector b. Also, since b is indepen-
dent of W , the fixed realization of W does not effect b. Hence, for this fixed unit
vector v, we apply Theorem 8.4 (with J = [n], t = 0, and x = v) to obtain

L(vTb, 0) ≤ C′Ln−α.

Since this is true for any realization of W in which E ∩ BW,M holds, we conclude
that

P
(
vTb = 0

∣∣ E ∩ BW,M

)
≤ C′Ln−α,

and the proof is complete.

10. Proof of Theorem 5.4

This section is devoted to the proof of Theorem 5.4. Recall that c0, c1, c2 were
fixed in Section 8. Define

δ :=
1

8
c0c

2
1.

Recall that, for a deterministic vector b, which is (K, δ)-delocalized, at least
n − ⌊δn⌋ coordinates of b satisfy the properties listed in Definition 3.1. Thus, we
let Qb ⊆ [n] be the coordinates of b that do not satisfy the properties listed in
Definition 3.1. Clearly, |Qb| ≤ ⌈δn⌉.
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We now specify a choice of Spread(x) for each x ∈ Incomp(c0, c1). Indeed, given
a deterministic vector b, which is is (K, δ)-delocalized, we take Spread(x) to be a
subset of Qc

b with

Spread(x) = ⌈c2n⌉
and so that (11) holds for all k ∈ Spread(x). Observe that such a choice is always
possible by our choice of δ. Additionally, all of our previous results hold for any
choice of Spread(x), and hence hold for this choice as well.

The choice of Spread(x) here depends on the vector b. This will not be an issue
because there will only be a single vector b, which is (K, δ)-delocalized, in the proof
below.

Using our choice of Spread(x), we now verify the following version of Theorem
8.4.

Theorem 10.1 (Small ball probabilities via regularized LCD). Let ξ1, . . . , ξn be iid
copies of a real random variable ξ which satisfies (2) for some ε0, p0,K0 > 0. Let
K > 0. Then there exist constants C,L0 > 0 (depending only on c0, c1, c2, ε0, p0,K0

and K) such that the following holds. Let x = (x1, . . . , xn) ∈ Incomp(c0, c1)
and consider the sum S :=

∑n
k=1 bkxkξk, where b = (b1, . . . , bn) ∈ R

n is (K, δ)-
delocalized. Then, for every γ ∈ (0, c2), L ≥ L0, and t ≥ 0, one has

L(S, t) ≤ CL

(
t√
γ
+

1

D̂L(x, γ)

)
.

Proof. Let I := I(x). By Lemma 6.2, it follows that

L(S, t) ≤ L(SI , t),

where SI :=
∑

k∈I bkxkξk. Since I ⊆ Spread(x) ⊆ Qc
b, it follows that the coordi-

nates of bI satisfy the properties listed in Definition 3.1. In particular, there exist
constants C′, c′ > 0, which only depend on K, such that

(
bi
C′

)−1

∈ Z,

∣∣∣∣
bi
C′

∣∣∣∣ ≥ c′, i ∈ I.

So by Theorem 6.6 (taking the coefficients ai := bi/C
′), we obtain

L(SI , t) ≤ CL

(
t

C′‖xI‖
+

1

DL(xI/‖xI‖)

)

≤ CL

(
t
√
2

C′c1
√
γ
+

1

D̂L(x, γ)

)
,

where the last inequality follows from (22) and the definition of the regularized
LCD. The proof is complete. �

We will also require the following observation.

Lemma 10.2. Let ξ and ζ be real random variables. Assume ξ is a symmetric
random variable which satisfies (2) for some ε0, p0,K0 > 0. Let W be an n × n
Wigner matrix with atom variables ξ and ζ. Let v = (vi)

n
i=1 be a unit eigenvector

of W , and define

v′ := (ψ1v1, . . . , ψnvn)
T
, (28)
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where ψ1, . . . , ψn are iid Bernoulli random variables, which take values ±1 with
equal probability, independent of W . Then, for every α > 0, there exists C > 0
(depending on ε0, p0,K0, and α) such that

P(v · b = 0 and BW,M ) ≤ P(v′ · b = 0 and BW,M ) + Cn−α.

Proof. Let v = (vi)
n
i=1 be a unit eigenvector of W . Consider the matrix W ′ :=

(ψiψjwij)
n
i,j=1, and let v′ be the unit vector given in (28). Since ξ is symmetric, it

follows that W ′ is equal in distribution to W . A simple calculation reveals that

Wv = λv ⇐⇒ W ′v′ = λv′. (29)

In other words, the eigenvalues of W and W ′ are the same. In particular, W has
simple spectrum if and only if W ′ has simple spectrum.

Define AW,M to be the event where BW,M holds and the spectrum ofW is simple.
We can similarly define AW ′,M to be the event where BW ′,M holds and the spectrum
of W ′ is simple. In view of (29), however, it follows that AW,M = AW ′,M . Hence,
in what follows, we will write AW,M to refer to both events.

For a common eigenvalue λ of W and W ′, let Pλ denote the orthogonal projec-
tion onto the eigenspace of W corresponding to λ, and let P ′

λ be the orthogonal
projection onto the eigenspace ofW ′ corresponding to λ. SinceW andW ′ have the
same distribution, Pλ and P ′

λ have the same distribution. Suppose v is a unit eigen-
vector forW corresponding to the eigenvalue λ. From (29), it follows thatWv = λv

and W ′v′ = λv′. Moreover, on the event AW,M , Pλ = vvT and P ′
λ = v′v′T. Thus,

we have

P (v · b = 0 | AW,M ) = P (Pλb = 0 | AW,M )

= P (P ′
λb = 0 | AW,M )

= P (v′ · b = 0 | AW,M ) .

Rewriting this equality yields

P (v · b = 0 and AW,M ) = P (v′ · b = 0 and AW,M ) . (30)

Hence, by Theorem 5.1 and (30), we conclude that

P (v · b = 0 and BW,M ) ≤ P (v · b = 0 and AW,M ) + P(spectrum of W is not simple)

≤ P (v′ · b = 0 and AW,M ) + Cn−α

≤ P (v′ · b = 0 and BW,M ) + Cn−α,

as desired. �

We now complete the proof of Theorem 5.4. Let b be (K, δ)-delocalized. As
discussed above, this fixes our assignment of Spread(x) for each x ∈ Incomp(c0, c1).
Our goal is to bound above

P
(
vTb = 0

∣∣ BW,M

)
,

where v = (vi)
n
i=1 is a unit eigenvector of W . In fact, since BW,M is assumed to

hold with probability at least 1/2, it suffices to bound above

P(vTb = 0 and BW,M ).

By Lemma 10.2, it suffices to bound above

P

(
n∑

k=1

vkψkbk = 0 and BW,M

)
,
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where ψ1, . . . , ψn are iid Bernoulli random variables, which take values ±1 with
equal probability, independent of W .

Fix γ as in Theorem 8.6. We will apply Theorem 10.1 to the sum
∑n

k=1 vkψkbk
(taking xk = vk and ξk = ψk). Let L0 be the constant from Theorem 10.1, and set

L := max{p−1/2
0 , L0, 2}. Define E to be the event in which every unit eigenvector v

satisfies (27). By Lemma 7.3 and Theorem 8.6, it follows that

P(Ec ∩ BW,M ) ≤ C exp(−cn).
Thus, for any unit eigenvector v = (vi)

n
i=1, we have

P

(
n∑

k=1

vkψkbk = 0 and BW,M

)
≤ P

(
n∑

k=1

vkψkbk = 0

∣∣∣∣∣ E
c ∩ BW,M

)
P(Ec ∩ BW,M )

+ P

(
n∑

k=1

vkψkbk = 0

∣∣∣∣∣ E ∩ BW,M

)
P(E ∩ BW,M )

≤ C exp(−cn) + P

(
n∑

k=1

vkψkbk = 0

∣∣∣∣∣ E ∩ BW,M

)
.

Therefore, it remains to bound above

P

(
n∑

k=1

vkψkbk = 0

∣∣∣∣∣ E ∩ BW,M

)
.

Fix a realization of W in which E ∩ BW,M holds. This implies that the unit eigen-
vector v satisfies (27). Since a realization of W (and hence v) is fixed, the only
remaining randomness comes from the random variables ψ1, . . . , ψn. Moreover, the
fixed realization of W does not effect ψ1, . . . , ψn since these random variables are
independent ofW . Hence, for this fixed unit vector v, we apply Theorem 10.1 (with
xk = vk and ξk = ψk) to obtain

L
(

n∑

k=1

vkψkbk, 0

)
≤ C′Ln−α.

Since this is true for any realization of W in which E ∩ BW,M holds, we conclude
that

P

(
n∑

k=1

vkψkbk = 0

∣∣∣∣∣ E ∩ BW,M

)
≤ C′Ln−α,

and the proof is complete.

11. Conclusion

In the previous sections, we proved some results on controllability of random
systems with delocalized input vectors. In particular, we confirmed a conjecture of
Godsil [4] concerning controllability of graphs and showed that the relative number
of controllable graphs compared to the total number of simple graphs on n vertices
approaches one as n tends to infinity.

Along the way, we proved some controllability results for Wigner matrices with
non-degenerate symmetric entries. This involved studying the additive structure of
the eigenvectors and applying Littlewood–Offord theory.
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Many research directions are left open for future investigations including the
study of controllability properties of random systems with non-localized input vec-
tors and a version of Conjecture 1.2 for dependent structures (such as Laplacian
matrices). Another direction of future research involves the study of random sys-
tems formed from Wigner matrices whose entries are not symmetric.
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