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A COMPLETE DICHOTOMY RISES FROM THE CAPTURE OF

VANISHING SIGNATURES∗

JIN-YI CAI† , HENG GUO‡ , AND TYSON WILLIAMS§

Abstract. We prove a complexity dichotomy theorem for Holant problems over an arbitrary
set of complex-valued symmetric constraint functions F on Boolean variables. This extends and
unifies all previous dichotomies for Holant problems on symmetric constraint functions (taking values
without a finite modulus). We define and characterize all symmetric vanishing signatures. They
turned out to be essential to the complete classification of Holant problems. The dichotomy theorem
has an explicit tractability criterion expressible in terms of holographic transformations. A Holant
problem defined by a set of constraint functions F is solvable in polynomial time if it satisfies this
tractability criterion, and is #P-hard otherwise. The tractability criterion can be intuitively stated as
follows: A set F is tractable if (1) every function in F has arity at most two, or (2) F is transformable
to an affine type, or (3) F is transformable to a product type, or (4) F is vanishing, combined with
the right type of binary functions, or (5) F belongs to a special category of vanishing type Fibonacci
gates. The proof of this theorem utilizes many previous dichotomy theorems on Holant problems and
Boolean #CSP. Holographic transformations play an indispensable role as both a proof technique
and in the statement of the tractability criterion.

Key words. Computational complexity, #P, Counting problems, Dichotomy theorem, Holo-
graphic algorithm
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1. Introduction. In the study of counting problems, several interesting frame-
works of increasing generality have been proposed. One is called H-coloring or Graph
Homomorphism [43, 33, 27, 2, 26, 5, 30, 8]. Another is called Constraint Satisfac-
tion Problems (#CSP) [4, 3, 2, 25, 1, 15, 7, 11, 28, 31, 12, 6]. Recently, inspired by
Valiant’s holographic algorithms [49, 48], a further refined framework called Holant
problems [21, 20, 15, 17] was proposed. They all describe classes of counting prob-
lems that can be expressed as a sum-of-product computation, specified by a set of
local constraint functions F , also called signatures. They differ mainly in what F can
be and what is assumed to be present in F by default. Such frameworks are inter-
esting because the language is expressive enough so that they contain many natural
counting problems, while specific enough so that it is possible to prove dichotomy
theorems. Such theorems completely classify every problem in a class to be either in
P or #P-hard [45, 22, 29, 23].

The goal is to understand which counting problems are computable in polyno-
mial time (called tractable) and which are not (called intractable). We aim for a
characterization in terms of F . An ideal outcome is to classify, within a broad class of
functions, every function set F according to whether it defines a tractable counting
problem or a #P-hard one. We note that, by an analogue of Ladner’s theorem [41],
such a dichotomy is false for the whole of #P, unless P = #P.

We give a brief description of the Holant framework here [21, 20, 15, 17]. A
signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is a graph, π labels each
v ∈ V with a function fv ∈ F , and fv maps {0, 1}deg(v) to C. We consider all 0-1 edge
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assignments. An assignment σ for every e ∈ E gives an evaluation
∏

v∈V fv(σ |E(v)),
where E(v) denotes the incident edges of v and σ |E(v) denotes the restriction of σ to
E(v). The counting problem on the instance Ω is to compute

(1) HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv
(
σ |E(v)

)
.

For example, consider the problem of counting Perfect Matching on G. This
problem corresponds to attaching the Exact-One function at every vertex of G.

The Holant framework can be defined for general domain [q]; in this paper we
restrict to the Boolean case q = 2. The #CSP problems are the special case of Holant
problems where all Equality functions (with any number of inputs) are assumed to
be included in F . Graph Homomorphism is the further special case of #CSP where F
consists of a single binary function (in addition to all Equality functions). Similar or
essentially the same notions as Holant have been studied as tensor networks [36, 44] in
physics as well as Forney graphs and sum-product algorithms of factor graphs [37, 42]
in artificial intelligence, coding theory, and signal processing.

Consider the following constraint function f : {0, 1}4 → C. Let the input
(x1, x2, x3, x4) have Hamming weight w, then f(x1, x2, x3, x4) = 3, 0, 1, 0, 3, if w =
0, 1, 2, 3, 4, respectively. We denote this function by f = [3, 0, 1, 0, 3]. What is the
counting problem defined by the Holant sum in (1) on 4-regular graphs G when
F = {f}? By definition, this is a sum over all 0-1 edge assignments of products of
local evaluations. We only sum over assignments which assign an even number of 1’s
to the incident edges of each vertex, since f = 0 for w = 1 and 3. Then each vertex
contributes a factor 3 if the 4 incident edges are assigned all 0 or all 1, and con-
tributes a factor 1 if exactly two incident edges are assigned 1. Before anyone thinks
that this problem is artificial, let us consider a holographic transformation. Consider
the edge-vertex incidence graph H = (E(G), V (G), {(e, v) | v is incident to e in G})
of G. This Holant problem can be expressed in the bipartite form Holant (=2 | f) on
H , where =2 is the binary Equality function. Thus, every e ∈ E(G) is assigned
=2, and every v ∈ V (G) is assigned f . We can write =2 by its truth table (1, 0, 0, 1)
indexed by {0, 1}2. If we apply the holographic transformation Z = 1√

2

[
1 1
i −i

]
, then

Valiant’s Holant Theorem [49] tells us that Holant (=2 | f) is exactly the same as
Holant

(
(=2)Z

⊗2 | (Z−1)⊗4f
)
. Here (=2)Z

⊗2 is a row vector indexed by {0, 1}2 de-
noting the transformed function under Z from (=2) = (1, 0, 0, 1), and (Z−1)⊗4f is the
column vector indexed by {0, 1}4 denoting the transformed function under Z−1 from

f . Let f̂ be the Exact-Two function on {0, 1}4. We can write its truth table as a
column vector indexed by {0, 1}4, which has a value 1 at entries of Hamming weight 2

and 0 elsewhere. In symmetric signature notation, f̂ = [0, 0, 1, 0, 0]. Then we have

Z⊗4f̂ = Z⊗4{[ 10 ]⊗ [ 10 ]⊗ [ 01 ]⊗ [ 01 ] + [ 10 ]⊗ [ 01 ]⊗ [ 10 ]⊗ [ 01 ] + [ 10 ]⊗ [ 01 ]⊗ [ 01 ]⊗ [ 10 ]

+ [ 01 ]⊗ [ 10 ]⊗ [ 10 ]⊗ [ 01 ] + [ 01 ]⊗ [ 10 ]⊗ [ 01 ]⊗ [ 10 ] + [ 01 ]⊗ [ 01 ]⊗ [ 10 ]⊗ [ 10 ]}
= 1

4{[ 1i ]⊗ [ 1i ]⊗
[

1
−i

]
⊗
[

1
−i

]
+ [ 1i ]⊗

[
1
−i

]
⊗ [ 1i ]⊗

[
1
−i

]
+ [ 1i ]⊗

[
1
−i

]
⊗
[

1
−i

]
⊗ [ 1i ]

+
[

1
−i

]
⊗ [ 1i ]⊗ [ 1i ]⊗

[
1
−i

]
+
[

1
−i

]
⊗ [ 1i ]⊗

[
1
−i

]
⊗ [ 1i ] +

[
1
−i

]
⊗
[

1
−i

]
⊗ [ 1i ]⊗ [ 1i ]}

= 1
2 [3, 0, 1, 0, 3] =

1
2f ;

hence (Z−1)⊗4f = 2f̂ . (Here we use the elementary fact that (A⊗B)(u⊗v) = Au⊗Bv
for tensor products of matrices and vectors.) Meanwhile, Z transforms =2 to the
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binary Disequality function 6=2:

(=2)Z
⊗2 = ( 1 0 0 1 )Z⊗2 =

{
( 1 0 )

⊗2
+ ( 0 1 )

⊗2
}
Z⊗2 = 1

2

{
( 1 1 )

⊗2
+ ( i −i )

⊗2
}

= [0, 1, 0] = (6=2).

Hence, up to a global constant factor of 2n on a graph with n vertices, the Holant
problem with [3, 0, 1, 0, 3] is exactly the same as Holant ( 6=2 | [0, 0, 1, 0, 0]). A moment’s
reflection shows that this latter problem is counting Eulerian orientations over 4-
regular graphs, an eminently natural problem! Thus holographic transformations can
reveal the fact that completely different-looking problems are really the same problem,
and there is no objective criterion on one problem being more “natural” than another.
Hence we would like to classify all Holant problems given by such signatures.

An interesting observation is that Holant (6=2 | [0, 0, 1, 0, 0]) has exactly the same
value as Holant ( 6=2 | [a, b, 1, 0, 0]) on any signature grid, for any a, b ∈ C. This is
because on a bipartite graph, 6=2 demands that exactly half of the edges are 0 and
the other half are 1, while on the other side, any use of the value a or b results in
strictly less than half of the edges being 1. This is related to a phenomenon we call
vanishing. Vanishing signatures are constraint functions, that when applied to any
signature grid, produce a zero Holant value. A simple example is a tensor product of(
1 i

)
, i.e., a constraint function of the form

(
1 i

)⊗k
on k variables. This function

on a vertex (of degree k) can be replaced by k copies of the unary function
(
1 i

)
on k

new vertices, each connected to an incident edge. Whenever two copies of
(
1 i

)
meet

in the evaluation of HolantΩ in (1), they annihilate each other since they give the value(
1 i

)
·
(
1 i

)
= 0. These ghostly constraint functions are like the elusive dark matter.

They do not actually contribute any value to the Holant sum. However in order to
give a complete dichotomy for Holant problems, it turns out to be essential that we
capture these vanishing signatures. There is another similarity with dark matter.
Their contribution to the Holant sum is not directly observed. Yet in terms of the
dimension of the algebraic variety they constitute, they make up the vast majority of
the tractable symmetric signatures. Furthermore, when combined with others, they
provide a large substrate to produce non-vanishing and tractable signatures. In #CSP,
they are invisible due to the presumed inclusion of all the Equality functions; and
they lurk beneath the surface when one only considers real-valued Holant problems.

The existence of vanishing signatures have influenced previous dichotomy results,
although this influence was not fully recognized at the time. In the dichotomy the-
orems in [15] and [11], almost all tractable signatures can be transformed into a
tractable #CSP problem, except for one special category. The tractability proof for
this category used the fact that they are a special case of generalized Fibonacci signa-
tures [21]. However, what went completely unnoticed is that for every input instance
using such signatures alone, the Holant value is always zero!

The most significant previous encounter with vanishing signatures was in the par-
ity setting [32]. The authors noticed that a large fraction of signatures always induce
an even Holant value, which is vanishing in Z2. However, the parity dichotomy was
achieved using an existential argument without obtaining a complete characterization
of the vanishing signatures. Consequently, the dichotomy criterion is non-constructive
and is currently not known to be decidable. Nevertheless, this work is important be-
cause it was the first to discover nontrivial vanishing signatures in the parity setting
and to obtain a dichotomy that was completed by vanishing signatures.

To complement our characterization of vanishing signatures, we also obtain a
characterization of signatures transformable to the #CSP tractable Affine type A
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or Product type P, after an orthogonal holographic transformation. An orthogonal
transformation is natural since the binary Equality =2 is unchanged under such
holographic transformations. With explicit characterizations of these tractable signa-
tures, a complete dichotomy theorem becomes possible.

We first prove a dichotomy for a single signature, and then we extend it to an
arbitrary set of signatures. The most difficult part is to prove a dichotomy for a
single signature of arity 4. The proof involves a demanding interpolation step and an
approximation argument, both of which use asymmetric signatures. We found that in
order to prove a dichotomy for symmetric signatures, we must go through asymmetric
signatures.

With this dichotomy, we come to a conclusion on a long series of dichotomies on
Holant problems [20, 15, 18, 39, 40, 13, 12, 11, 34], including the dichotomy theorems
for the Holantc and Holant∗ frameworks with symmetric signatures. They all become
special cases of this dichotomy. However, the proof of this theorem is logically depen-
dent on some of these previous dichotomies. In particular, this dichotomy extends
the dichotomy in [34] that covers all real-valued symmetric signatures. While we do
not rely on their real-valued dichotomy itself, we do make important use of two re-
sults in [34]. One is the #P-hardness of counting Eulerian orientations over 4-regular
graphs; the other is a dichotomy for #CSPd, where every variable appears a multiple
of d times.

Acknowledgements. We benefited greatly from the comments and suggestions of
the anonymous referees, to whom we are grateful. We thank Avi Wigderson for
the invitation to present this work at the IAS, and to Peter Bürgisser, Leslie Ann
Goldberg, Mark Jerrum, and Pascal Koiran for the invitation to present this work
at the Dagstuhl seminar on computational counting. We also thank all those at the
Dagstuhl seminar for their interest. We especially thank Mingji Xia and Les Valiant
for their insightful comments.

2. Preliminaries.

2.1. Problems and Definitions. The framework of Holant problems is defined
for functions mapping any [q]k → F for a finite q and some field F. In this paper,
we investigate complex-weighted Boolean Holant problems, that is, all functions are
[2]k → C. Strictly speaking, for consideration of models of computation, functions
take complex algebraic numbers.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E), where each vertex
is labeled by a function fv ∈ F , and π : V → F is the labeling. The Holant problem
on instance Ω is to evaluate HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all edge

assignments σ : E → {0, 1}.
A function fv can be represented by listing its values in lexicographical order as

in a truth table, which is a vector in C2deg(v) , or as a tensor in (C2)⊗ deg(v). We also
use fα to denote the value f(α), where α is a binary string. A function f ∈ F is also
called a signature. A symmetric signature f on k Boolean variables can be expressed
as [f0, f1, . . . , fk], where fw is the value of f on inputs of Hamming weight w. In this
paper, we consider symmetric signatures. Sometimes we represent a signature of arity
k by a labeled vertex with k ordered dangling edges corresponding to its input.

A Holant problem is parametrized by a set of signatures.

Definition 1. Given a set of signatures F , we define the counting problem Holant
(F) as:

Input: A signature grid Ω = (G,F , π);
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Output: HolantΩ.

The following family Holant∗ of Holant problems were investigated previously [15,
16]. This is the class of Holant problems in which all unary signatures are freely
available.

Definition 2. Given a set of signatures F , Holant∗(F) denotes Holant(F ∪ U),
where U is the set of all unary signatures.

The family Holantc of Holant problems (on Boolean variables) are defined analo-
gously. The c stands for constants and refers to the signatures that can fix a variable
to a constant of the domain.

Definition 3. Given a set of signatures F , Holantc(F) denotes Holant(F ∪
{[0, 1], [1, 0]}).

A signature f of arity n is degenerate if there exist unary signatures uj ∈ C2

(1 ≤ j ≤ n) such that f = u1 ⊗ · · · ⊗ un. A symmetric degenerate signature has
the form u⊗n. For such signatures, it is equivalent to replace it by n copies of the
corresponding unary signature. Replacing a signature f ∈ F by a constant multiple
cf , where c 6= 0, does not change the complexity of Holant(F). It introduces a global
nonzero factor to HolantΩ. Hence, for two signatures f, g of the same arity, we use
f 6= g to mean that these signatures are not equal in the projective space sense,
i.e. not equal up to any nonzero constant multiple.

We say a signature set F is tractable (resp. #P-hard) if the corresponding count-
ing problem Holant(F) is tractable (resp. #P-hard). Similarly for a signature f , we
say f is tractable (resp. #P-hard) if {f} is. We follow the usual conventions about
polynomial time Turing reduction ≤T and polynomial time Turing equivalence ≡T .

2.2. Holographic Reduction. To introduce the idea of holographic reductions,
it is convenient to consider bipartite graphs. For a general graph, we can always
transform it into a bipartite graph while preserving the Holant value, as follows. For
each edge in the graph, we replace it by a path of length two. (This operation is
called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each
new vertex is assigned the binary Equality signature (=2) = [1, 0, 1].

We use Holant (R | G) to denote the Holant problem over bipartite graphs H =
(U, V,E), where each vertex in U or V is assigned a signature in R or G, respectively.
An input instance for this bipartite Holant problem is a bipartite signature grid and
is denoted by Ω = (H ; R | G; π). Signatures in R are considered as row vectors (or
covariant tensors); signatures in G are considered as column vectors (or contravariant
tensors) [24].

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity
n, g = T⊗nf}, similarly for FT . Whenever we write T⊗nf or TF , we view the
signatures as column vectors; similarly for fT⊗n or FT as row vectors.

Let T be an invertible 2-by-2 matrix. The holographic transformation defined by
T is the following operation: given a signature grid Ω = (H ; R | G; π), for the same
bipartite graph H , we get a new grid Ω′ = (H ; RT | T−1G; π′) by replacing each
signature in R or G with the corresponding signature in RT or T−1G.

Theorem 4 (Valiant’s Holant Theorem [49]). If there is a holographic transfor-
mation mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

Therefore, an invertible holographic transformation does not change the com-
plexity of the Holant problem in the bipartite setting. Furthermore, there is a special
kind of holographic transformation, the orthogonal transformation, that preserves the
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Fig. 1: An F -gate with 5 dangling edges.

binary equality and thus can be used freely in the standard setting.

Theorem 5 (Theorem 2.2 in [15]). Suppose T is a 2-by-2 orthogonal matrix
(TT ⊺ = I2) and let Ω = (H,F , π) be a signature grid. Under a holographic transfor-
mation by T , we get a new grid Ω′ = (H,TF , π′) and HolantΩ = HolantΩ′ .

Since the complexity of a signature is equivalent up to a nonzero constant factor,
we also call a transformation T such that TT ⊺ = λI for some λ 6= 0 an orthogonal
transformation. Such transformations do not change the complexity of a problem.

2.3. Realization. One basic notion used throughout the paper is realization.
We say a signature f is realizable or constructible from a signature set F if there is a
gadget with some dangling edges such that each vertex is assigned a signature from
F , and the resulting graph, when viewed as a black-box signature with inputs on the
dangling edges, is exactly f . We will only construct polynomial-sized gadget in this
paper. Hence if f is realizable from a set F , then we can freely add f into F while
preserving the complexity.

Formally, such a notion is defined by an F -gate [15, 16]. An F -gate is similar to
a signature grid (H,F , π) except that H = (V,E,D) is a graph with some dangling
edges D. The dangling edges define external variables for the F -gate. (See Figure 1
for an example.) We denote the regular edges in E by 1, 2, . . . ,m and the dangling
edges in D by m+ 1, . . . ,m+ n. Then we can define a function Γ for this F -gate as

Γ(y1, . . . , yn) =
∑

x1,...,xm∈{0,1}
H(x1, . . . , xm, y1, . . . , yn),

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges andH(x1, . . . , xm,
y1, . . . , yn) is the value of the signature grid on an assignment of all edges, which is
the product of evaluations at all internal vertices. We also call this function Γ the
signature of the F -gate. An F -gate can be used in a signature grid as if it is just a
single vertex with the particular signature.

Using the idea of F -gates, we can reduce one Holant problem to another. Suppose
g is the signature of some F -gate. Then Holant(F∪{g}) ≤T Holant(F). The reduction
is simple. Given an instance of Holant(F ∪ {g}), by replacing every appearance of g
by the F -gate, we get an instance of Holant(F). Since the signature of the F -gate is
g, the Holant values for these two signature grids are identical.

Although our main result is about symmetric signatures, some of our proofs utilize
asymmetric signatures. When a gadget has an asymmetric signature, we place a
diamond on the edge corresponding to the most significant index bit. The remaining
index bits are in order of decreasing significance as one travels counterclockwise around
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the vertex. (See Figure 5 for an example.) Some of our gadget constructions are
bipartite graphs. To highlight this structure, we use vertices of different shapes. Any
time a gadget has a square vertex, it is assigned [0, 1, 0]. (See Figure 8 for an example.)

We note that even for a very simple signature set F , the signatures for all F -gates
can be quite complicated and expressive.

2.4. #CSP and Its Tractable Signatures. An instance of #CSP(F) has the
following bipartite view. Create a node for each variable and each constraint. Connect
a variable node to a constraint node if the variable appears in the constraint function.
This bipartite graph is also known as the constraint graph. Under this view, we can
see that

#CSP(F) ≡T Holant (F | EQ) ≡T Holant(F ∪ EQ),

where EQ = {=1,=2,=3, . . . } is the set of equality signatures of all arities.
For a positive integer d, the problem #CSPd(F) is similar to #CSP(F) except

that every variable has to appear a multiple of d times. Therefore, we have

#CSPd(F) ≡T Holant (F | EQd) ,

where EQd = {=d,=2d,=3d, . . . } is the set of equality signatures of arities that are a
multiple of d.

For the #CSP framework, the following two signature sets are tractable [15].

Definition 6. A k-ary function f(x1, . . . , xk) is affine if it has the form

λχAx=0 ·
√
−1

∑n
j=1〈αj ,x〉

,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)
⊺, A is a matrix over F2, αj is a vector over F2,

and χ is a 0-1 indicator function such that χAx=0 is 1 iff Ax = 0. Note that the dot
product 〈αj , x〉 is calculated over F2, while the summation

∑n
j=1 on the exponent of

i =
√
−1 is evaluated as a sum mod 4 of 0-1 terms. We use A to denote the set of

all affine functions.

Notice that there is no restriction on the number of rows in the matrix A. The
trivial case is when A is the zero matrix so that χAx=0 = 1 holds for all x.

Definition 7. A function is of product type if it can be expressed as a product of
unary functions, binary equality functions ([1, 0, 1]), and binary disequality functions
([0, 1, 0]). We use P to denote the set of product-type functions.

An alternate definition for P, implicit in [19], is the tensor closure of signatures
with support on two entries of complement indices.

It is easy to see (cf. Lemma 2.2 in [35], the full version of [34]) that if f is a sym-
metric signature in P, then f is either degenerate, binary disequality, or generalized
equality (i.e. [a, 0, . . . , 0, b] for a, b ∈ C). It is known that the set of non-degenerate
symmetric signatures in A is precisely the nonzero signatures (λ 6= 0) in F1∪F2∪F3

with arity at least two, where F1, F2, and F3 are three families of signatures defined
as

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, and

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.
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Let F123 = F1∪F2∪F3 be the union of these three sets of signatures. We explicitly
list all the signatures in F123 up to an arbitrary constant multiple from C:

1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)];

(F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)];

(F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)];

(F3, r = 2)
10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)].

(F3, r = 3)
In the Holant framework, there are two corresponding signature sets that are

tractable. A signature f (resp. a signature set F) is A -transformable if there exists a
holographic transformation T such that f ∈ TA (resp. F ⊆ TA ) and [1, 0, 1]T⊗2 ∈
A . Similarly, a signature f (resp. a signature set F) is P-transformable if there
exists a holographic transformation T such that f ∈ TP (resp. F ⊆ TP) and
[1, 0, 1]T⊗2 ∈P. These two families are tractable because after a transformation by
T , it is a tractable #CSP instance.

2.5. Some Known Dichotomies. Here we list several known dichotomies. Our
main dichotomy theorem generalizes all of them. In order to clearly see this, we state
the previous dichotomies using the language of this paper. In particular, some previous
classifications are now presented differently using our new understanding.

The dichotomy for a single symmetric ternary signature is an important base case
of our proof.

Theorem 8 (Theorem 3 in [11]). If f = [f0, f1, f2, f3] is a non-degenerate,
complex-valued signature, then Holant(f) is #P-hard unless f satisfies one of the
following conditions, in which case the problem is computable in polynomial time:

1. f is A - or P-transformable;
2. For α ∈ {2i,−2i}, f2 = αf1 + f0 and f3 = αf2 + f1.

We also use the following theorem about edge-weighted signatures on k-regular
graphs.

Theorem 9 (Theorem 3 in [12]). Let k ≥ 3 be an integer and suppose f is a non-
degenerate, symmetric, complex-valued binary signature. Then Holant (f | =k) is #P-
hard unless there exists a holographic transformation T such that fT⊗2 = [1, 0, 1] and(
(T−1)⊗k(=k)

)
is A - or P-transformable, in which case the problem is computable

in polynomial time.

While Theorem 9 is conceptual, the original statement in Theorem 9′ is directly
applicable.

Theorem 3 in [12]. Let k ≥ 3 be an integer. Then Holant ([f0, f1, f2] | (=k))
is #P-hard unless one of the following conditions hold, in which case the problem is
computable in polynomial time:

1. f0f2 = f2
1 ;

2. f0 = f2 = 0;
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3. f1 = 0;
4. f0f2 = −f2

1 and f2k
0 = f2k

2 .

The next theorem is a generalization of the Boolean #CSP dichotomy (where
d = 1).

Theorem 10 (Theorem IV.1 in [34]). Let Td =
{
[ 1 0
0 ω ] ∈ C2×2 | ωd = 1

}
, d ≥ 1

be an integer, and F be any set of symmetric, complex-valued signatures in Boolean
variables. Then #CSPd(F) is #P-hard unless there exists a T ∈ T4d such that TF ⊆
P or TF ⊆ A , in which case the problem is computable in polynomial time.

The following three dichotomies are not directly used in this paper. We list
them for comparison. First is the real-valued Holant dichotomy. Our results have no
dependence on this dichotomy.

Theorem 11 (Theorem III.2 in [34]). Let F be any set of symmetric, real-valued
signatures in Boolean variables. Then Holant(F) is #P-hard unless F satisfies one of
the following conditions, in which case the problem is computable in polynomial time:

1. Any non-degenerate signature in F is of arity at most 2;
2. F is A - or P-transformable.

The other two dichotomy theorems are for complex-valued Holant∗ and Holantc.
We do not directly apply these two theorems, but our results depend on some inter-
mediate results such as Theorems 8, 9, and 10.

Theorem 12 (Theorem 3.1 in [15]). Let F be any set of non-degenerate, sym-
metric, complex-valued signatures in Boolean variables. Then Holant∗(F) is #P-hard
unless F satisfies one of the following conditions, in which case the problem is com-
putable in polynomial time:

1. Any signature in F is of arity at most 2;
2. F is P-transformable;
3. There exists α ∈ {2i,−2i}, such that for any signature f ∈ F of arity n, for

0 ≤ k ≤ n− 2, we have fk+2 = αfk+1 + fk.

Theorem 13 (Theorem 6 in [11]). Let F be any set of symmetric, complex-
valued signatures in Boolean variables. Then Holantc(F) is #P-hard unless F satisfies
one of the following conditions, in which case the problem is computable in polynomial
time:

1. Any non-degenerate signature in F is of arity at most 2;
2. F is P-transformable;
3. F ∪ {[1, 0], [0, 1]} is A -transformable;
4. There exists α ∈ {2i,−2i}, such that for any non-degenerate signature f ∈ F

of arity n, for 0 ≤ k ≤ n− 2, we have fk+2 = αfk+1 + fk.

3. A Sampling of Problems. We illustrate the scope of our dichotomy theo-
rem by several concrete problems. Some problems are naturally expressed with real
weights, but they are linked inextricably to other problems that use complex weights.
Sometimes the inherent link between two real-weighted problems is provided by a
transformation through C.

Problem: #VertexCover
Input: An undirected graph G.
Output: The number of vertex covers in G.

This classic problem is most naturally expressed as the real-weighted bipartite
Holant problem Holant ([0, 1, 1] | EQ). A vertex assigned an equality signature forces
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all its incident edges to be assigned the same value; this is equivalent to these vertices
being assigned a value themselves. The degree two vertices assigned the binary Or =
[0, 1, 1] should be thought of as an edge between its neighboring vertices. These
edge-like vertices force at least one of its neighbors to be selected. The number of
assignments satisfying these requirements is exactly the number of vertex covers.

To apply our dichotomy theorem, we perform a holographic transformation by
T =

[
0 −i
1 i

]
. To understand why we choose this particular T , let us express [0, 1, 1] as

[0, 1, 1] = (0 1 1 1) =
{
[1, 1]⊗2 + [i, 0]⊗2

}
=
{
[1, 0]⊗2 + [0, 1]⊗2

}[1 1
i 0

]⊗2

= (1 0 0 1)(T−1)⊗2 = (=2)(T
−1)⊗2.

Thus, a holographic transformation by T yields

Holant ([0, 1, 1] | EQ) ≡T Holant
(
[0, 1, 1]T⊗2 | T−1EQ

)

≡T Holant
(
=2 | T−1EQ

)

≡T Holant(T−1EQ).

The equality signature of arity k in EQ, a column vector denoted by =k, is transformed
by T−1 to

f(k) = (T−1)⊗k(=k) =

[
1 1
i 0

]⊗k
{[

1
0

]⊗k

+

[
0
1

]⊗k
}

=

[
1
i

]⊗k

+

[
1
0

]⊗k

= [2, i,−1,−i, 1, i,−1,−i, 1, i, . . . ]

of length k + 1. By our main dichotomy, Theorem 31, Holant(T−1EQ) is #P-hard.
Indeed, even Holant(f(k)), the restriction of this problem to k-regular graphs is #P-
hard for k ≥ 3 by our single signature dichotomy, Theorem 64.

Problem: #λ-VertexCover
Input: An undirected graph G.

Output:
∑

C∈C(G)

λe(C),

where C(G) denotes the set of all vertex covers of G, and e(C) is the number of edges
with both endpoints in the vertex cover C.

Our dichotomy also easily handles this edge-weighted vertex cover problem that
is denoted by Holant ([0, 1, λ] | EQ). Suppose λ 6= 0. On regular graphs, this prob-
lem is equivalent to the so-called hardcore gas model, which is the vertex-weighted
problem denoted by Holant ([1, 1, 0] | F), where F consists of signatures of the form
[1, 0, . . . , 0, µ]. By flipping 0 and 1, this is the same as Holant ([0, 1, 1] | F ′) with F ′

containing [µ, 0, . . . , 0, 1]. For k-regular graphs, we consider the diagonal transforma-

tion T =
[
1 0
0 1

λ

]
, where λ = 1/µ1/k;

Holant ([0, 1, λ] | =k) ≡T Holant
(
[0, 1, λ]T⊗2 | (T−1)⊗k(=k)

)

≡T Holant
(
1
λ [0, 1, 1] | [1, 0, · · · , 0, λ

k]
)

≡T Holant ([0, 1, 1] | [µ, 0, · · · , 0, 1]) .
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This problem, denoted by #k-λ-VertexCover, is also #P-hard for k ≥ 3. To see
this, apply the holographic transformation T =

[
0 −iλ
1 i

]
to the edge-weighted form

of the problem. Then [0, 1, λ] is transformed to λ(=2) and =k is transformed to
g(λ,k) =

1
λk [λ

k + 1, i,−1,−i, 1, . . . ]. Since Holant(g(λ,k)) is #P-hard by Theorem 64,
we conclude that #k-λ-VertexCover is also #P-hard.

If λ = 0, then the above problem is Holant ([0, 1, 0] | EQ), which is tractable.
However, the transformation T above is singular in this case. We can in fact apply

another transformation T ′ =

[
1−λ

2 −
(

1+
λ
2

)

i

1 i

]
such that it transforms the problem

Holant ([0, 1, λ] |=k) into Holant(h(λ,k)) for some h(λ,k) regardless of whether λ =
0 or not. Then by applying Theorem 64, we reach the same conclusion that #λ-
VertexCover is #P-hard on k-regular graphs when λ 6= 0. We note that when
λ = 0, T ′ =

[
1 −i
1 i

]
=
√
2Z−1, where Z = 1√

2

[
1 1
i −i

]
was used in Section 1.

We now consider some orientation problems.

Problem: #NoSinkOrientation
Input: An undirected graph G.
Output: The number of orientations of G such that each vertex has at least one

outgoing edge.

This problem is denoted by Holant ([0, 1, 0] | F), where F consists of f(k) =
[0, 1, . . . , 1, 1] for any arity k. Each degree two vertex on the left side of the bipartite
graph must have its incident edges assigned different values. We associate an oriented
edge between the neighbors of such vertices with the head on the side assigned 0 and
the tail on the side assigned 1. This problem is #P-hard even over k-regular graphs
provided k ≥ 3. Just as with the bipartite form of the vertex cover problem, we do
a holographic transformation to apply our dichotomy theorem. This time, we pick
T = 1

2

[
1 −i
1 i

]
= 1√

2
Z−1, with T−1 =

√
2Z =

[
1 1
i −i

]
and get

Holant
(
[0, 1, 0] | f(k)

)
≡T Holant

(
[0, 1, 0]T⊗2 | (T−1)⊗kf(k)

)

≡T Holant
(

1
2 [1, 0, 1] | f̂(k)

)

≡T Holant(f̂(k)),

where f̂(k) = [2k − 1,−i, 1, i,−1, . . . ]. This is actually a special case (consider −f̂(k))
of the #k-λ-VertexCover problem with λ = 2eπi/k. Therefore, this problem is #P-
hard. However, if we consider this problemmodulo 2k, f̂(k) becomes [−1,−i, 1, i,−1, . . . ],
and belongs to one of the tractable cases in our dichotomy. Thus, #NoSinkOrientation
is tractable modulo 2t, where t is the minimal degree of the input graph.

Problem: #NoSinkNoSourceOrientation
Input: An undirected graph G.
Output: The number of orientations of G such that each vertex has at least one

incoming and one outgoing edge.

This problem is denoted by Holant ([0, 1, 0] | F), where F consists of f(k) =
[0, 1, . . . , 1, 0] for any arity k. This problem is also #P-hard on k-regular graphs



12 J.-Y. CAI, H. GUO, AND T. WILLIAMS

for k ≥ 3. We pick the same T as in the previous problem and get

Holant
(
[0, 1, 0] | f(k)

)
≡T Holant

(
[0, 1, 0]T⊗2 | (T−1)⊗kf(k)

)

≡T Holant
(

1
2 [1, 0, 1] | f̂(k)

)

≡T Holant(f̂(k)),

where f̂(k) = [2k − 2, 0, 2, 0,−2, . . . ]. Here we transform from one real-weighted
Holant problem to another real-weighted Holant problem via a complex-weighted
transformation. The hardness follows from Theorem 64. Like the previous problem,
#NoSinkNoSourceOrientation is tractable modulo 2t, where t is the minimal
degree of the input graph.

Our dichotomy theorem also applies to a set of signatures, that is, different vertices
may have different constraints.

Problem: #1In-Or-1Out-Orientation
Input: An undirected graph G with each vertex labeled “1In” or “1Out”.
Output: The number of orientations of G such that each vertex has exactly 1

incoming or exactly 1 outgoing edge as specified by its label.

This problem is denoted by Holant ([0, 1, 0] | F), where the set F consists of signa-
tures of the form f = [0, 1, 0, . . . , 0] and g = [0, . . . , 0, 1, 0]. Once again, it is #P-hard
on k-regular graphs for k ≥ 3. We apply the same transformation as in the above two
orientation problems. The result is Holant({f̂ , ĝ}), where f̂ = [k, (k−2)i,−(k−4), . . . ]
and ĝ = [k,−(k − 2)i,−(k − 4), . . . ] of arity k. In fact, the entries of f̂ satisfy a sec-
ond order recurrence relation with characteristic polynomial (x− i)2 while the entries
of ĝ satisfy one with characteristic polynomial (x + i)2. The hardness follows from
Theorem 31. However, the restriction of this problem to planar graphs is tractable
by matchgates [14]. Alternatively, if we only consider one signature, then either

Holant(f̂) or Holant(ĝ) is tractable. The problem Holant(f̂) is equivalent to the
problem Holant ([0, 1, 0] | [0, 1, 0, . . . , 0]), which is always 0 provided k ≥ 3 by a simple
counting argument. Similarly for Holant(ĝ). Therefore, despite the complicated-

looking f̂ and ĝ, the Holant value for any input graph using only f̂ or ĝ is always 0.
These are what we call vanishing signatures. This is also an example where combining
two vanishing signatures induces #P-hardness.

One sufficient condition for a signature to be vanishing is that its entries satisfy a
second order recurrence relation with characteristic polynomial (x± i)2. If the entries
of a signature f satisfy a second order recurrence relation with characteristic polyno-
mial (x− a)2 for a 6= ±i, then there exists an orthogonal holographic transformation
such that f is transformed into a weighted matching signature.

Problem: #λ-WeightedMatching
Input: An undirected graph G.

Output:
∑

M∈M(G)

λv(M),

whereM(G) is the set of all matchings in G and v(M) is the number of unmatched
vertices in the matching M .

The Holant expression of this problem is Holant(F), where F consists of signa-
tures of the form [λ, 1, 0, . . . , 0]. When λ = 0, this problem counts perfect matchings,
which is #P-hard even for bipartite graphs [47] but tractable over planar graphs
by Kasteleyn’s algorithms [38]. When λ = 1, this problem counts general match-
ings. Vadhan [46] proved that counting general matchings is #P-hard over k-regular
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graphs for k ≥ 5, but left open the question for k = 4. Theorem 64 shows that
#λ-WeightedMatching is #P-hard, for any weight λ and on any k-regular graphs
for k ≥ 3. The power of our dichotomy theorem is such that it gives a sweeping
classification for all such problems; the open case for k = 4 from [46] is a single point
in the problem space.

4. Vanishing Signatures. Vanishing signatures were first introduced in [32] in
the parity setting to denote signatures for which the Holant value is always 0 modulo 2.

Definition 14. A set of signatures F is called vanishing if the value HolantΩ(F)
is 0 for every signature grid Ω. A signature f is called vanishing if the singleton set
{f} is vanishing.

In this section, we characterize all sets of symmetric vanishing signatures. First
we observe that a simple lemma (Lemma 6.2 in [32]) from the parity setting works over
any field F, with the same proof. It also works for general, not necessarily symmetric,
signatures. Let f + g denote the entry-wise addition of two signatures f and g with
the same arity, i.e. (f + g)ℓ = fℓ + gℓ for any index ℓ.

Lemma 15. Let F be a vanishing signature set. If a signature f can be realized
by a gadget using signatures in F , then F ∪ {f} is also vanishing. If f and g are two
signatures in F of the same arity, then F ∪ {f + g} is vanishing as well.

Obviously, the identically zero signature, in which all entries are 0, is vanishing.
This is trivial. However, we show that the concept of vanishing signatures is not
trivial. Notice that the unary signature [1, i] when connected to another [1, i] has
a Holant value 0. Consider a signature set F where every signature of arity n is
degenerate. That is, every signature of arity n is a tensor product of unary signatures.
Moreover, for each signature, suppose that more than half of the unary signatures in
the tensor product are [1, i]. For any signature grid Ω with signatures from F , it
can be decomposed into many pairs of unary signatures. The total Holant value is
the product of the Holant on each pair. Since more than half of the unaries in each
signature are [1, i], more than half of the unaries in Ω are [1, i]. Then two [1, i]’s must
be paired up and hence HolantΩ = 0. Thus, all such signatures form a vanishing set.
We also observe that this argument holds when [1, i] is replaced by [1,−i].

These signatures described above are generally not symmetric and our present
aim is to characterize symmetric vanishing signatures. To this end, we define the
following symmetrization operation.

Definition 16. Let Sn be the symmetric group of degree n. Then for positive
integers t and n with t ≤ n and unary signatures v, v1, . . . , vn−t, we define

Symt
n(v; v1, . . . , vn−t) =

∑

π∈Sn

n⊗

k=1

uπ(k),

where the ordered sequence (u1, u2, . . . , un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).

Note that we include redundant permutations of v in the definition. Equivalent
vi’s also induce redundant permutations. These redundant permutations simply in-
troduce a nonzero constant factor, which does not change the complexity. However,
the allowance of redundant permutations simplifies our calculations. An illustrative
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example of Definition 16 is

Sym2
3([1, i]; [a, b]) = 2[a, b]⊗ [1, i]⊗ [1, i] + 2[1, i]⊗ [a, b]⊗ [1, i] + 2[1, i]⊗ [1, i]⊗ [a, b]

= 2[3a, 2ia+ b,−a+ 2ib,−3b].

Definition 17. A nonzero symmetric signature f of arity n has positive vanish-
ing degree k ≥ 1, which is denoted by vd+(f) = k, if k ≤ n is the largest positive
integer such that there exists n− k unary signatures v1, . . . , vn−k satisfying

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define vd+(f) = 0. If f
is the all zero signature, define vd+(f) = n+ 1.

We define negative vanishing degree vd− similarly, using −i instead of i.

Notice that it is possible for a signature f to have both vd+(f) and vd−(f)
nonzero. For example, f = [1, 0, 1] has vd+(f) = vd−(f) = 1.

By the discussion above and Lemma 15, we know that for a signature f of arity
n, if vdσ(f) > n

2 for some σ ∈ {+,−}, then f is a vanishing signature. This argument
is easily generalized to a set of signatures.

Definition 18. For σ ∈ {+,−}, we define V σ = {f | 2 vdσ(f) > arity(f)}.
Lemma 19. Let F be a set of symmetric signatures. If F ⊆ V + or F ⊆ V −,

then F is vanishing.

In Theorem 26, we show that these two sets capture all symmetric vanishing
signature sets.

4.1. Characterizing Vanishing Signatures using Recurrence Relations.

Now we give an equivalent characterization of vanishing signatures.

Definition 20. A symmetric signature f = [f0, f1, . . . , fn] of arity n is in R
+
t

for a nonnegative integer t ≥ 0 if t > n or for any 0 ≤ k ≤ n− t, fk, . . . , fk+t satisfy
the recurrence relation

(
t

t

)
itfk+t +

(
t

t− 1

)
it−1fk+t−1 + · · ·+

(
t

0

)
i0fk = 0.(2)

We define R
−
t similarly but with −i in place of i in (2).

It is easy to see that R
+
0 = R

−
0 is the set of all zero signatures. Also, for

σ ∈ {+,−}, we have Rσ
t ⊆ Rσ

t′ when t ≤ t′. By definition, if arity(f) = n then
f ∈ Rσ

n+1.
Let f = [f0, f1, . . . , fn] ∈ R

+
t with 0 < t ≤ n. Then the characteristic polynomial

of its recurrence relation is (1+xi)t. Thus there exists a polynomial p(x) of degree at
most t−1 such that fk = ikp(k), for 0 ≤ k ≤ n. This statement extends to R

+
n+1 since

a polynomial of degree n can interpolate any set of n + 1 values. Furthermore, such
an expression is unique. If there are two polynomials p(x) and q(x), both of degree
at most n, such that fk = ikp(k) = ikq(k) for 0 ≤ k ≤ n, then p(x) and q(x) must be
the same polynomial. Now suppose fk = ikp(k) (0 ≤ k ≤ n) for some polynomial p
of degree at most t− 1, where 0 < t ≤ n. Then f satisfies the recurrence (2) of order
t. Hence f ∈ R

+
t .

Thus f ∈ R
+
t+1 iff there exists a polynomials p(x) of degree at most t such that

fk = ikp(k) (0 ≤ k ≤ n), for all 0 ≤ t ≤ n. For R
−
t+1, just replace i by −i.
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Definition 21. For a nonzero symmetric signature f of arity n, it is of positive
(resp. negative) recurrence degree t ≤ n, denoted by rd+(f) = t (resp. rd−(f) = t),
if and only if f ∈ R

+
t+1 −R

+
t (resp. f ∈ R

−
t+1 −R

−
t ). If f is the all zero signature,

we define rd+(f) = rd−(f) = −1.
Note that although we call it the recurrence degree, it refers to a special kind

of recurrence relation. For any nonzero symmetric signature f , by the uniqueness
of the representing polynomial p(x), it follows that rdσ(f) = t iff deg(p) = t, where
0 ≤ t ≤ n. We remark that rdσ(f) is the maximum integer t such that f does not
belong to Rσ

t . Also, for an arity n signature f , rdσ(f) = n if and only if f does not
satisfy any such recurrence relation (2) of order t ≤ n for σ ∈ {+,−}.

Lemma 22. Let f = [f0, . . . , fn] be a symmetric signature of arity n, not identi-
cally 0. Then for any nonnegative integer 0 ≤ t < n and σ ∈ {+,−}, the following
are equivalent:

(i) There exist t unary signatures v1, . . . , vt, such that

(3) f = Symn−t
n ([1, σi]; v1, . . . , vt).

(ii) f ∈ Rσ
t+1.

Proof. We consider σ = + since the other case is similar, so let v = [1, i].
We start with (i) =⇒ (ii) and proceed via induction on both t and n. For the

first base case of t = 0, Symn
n(v) = [1, i]⊗n = [1, i,−1,−i, . . . , in], so fk+1 = ifk for

all 0 ≤ k ≤ n− 1 and f ∈ R
+
1 .

The other base case is that t = n−1. Let Sym1
n(v; v1, . . . , vt) = [f0, . . . , fn] where

vi = [ai, bi] for 1 ≤ i ≤ t, and S = infn+ · · ·+
(
n
1

)
if1+

(
n
0

)
i0f0. We need to show that

S = 0. First notice that any entry in f is a linear combination of terms of the form
ai1ai2 · · ·ain−1−k

bj1 · · · bjk , where 0 ≤ k ≤ n − 1, and {i1, . . . , in−1−k, j1, . . . , jk} =
{1, 2, . . . , n − 1}. Thus S is a linear combination of such terms as well. Now we
compute the coefficient of each of these terms in S.

Each term ai1ai2 · · · ain−1−k
bj1 · · · bjk appears twice in S, once in fk and the other

time in fk+1. In fk, the coefficient is k!(n−k)!, and in fk+1, it is i(k+1)!(n−k− 1)!.
Thus, its coefficient in S is

(
n

k + 1

)
ik+1i(k + 1)!(n− k − 1)! +

(
n

k

)
ikk!(n− k)! = 0.

The above computation works for any such term due to the symmetry of f , so all
coefficients in S are 0, which means that S = 0.

Now assume for any t′ < t or for the same t and any n′ < n, the statement holds.
For (n, t), where n > t + 1, assume that f = [f0, . . . , fn] = Symn−t

n (v; v1, . . . , vt),
g = Symn−t−1

n−1 (v; v1, . . . , vt) = [g0, . . . , gn−1], and for any 1 ≤ j ≤ t,

h(j) = Symn−t
n−1(v; v1, . . . , vj−1, vj+1, . . . , vt) = [h

(j)
0 , . . . , h

(j)
n−1].

By the induction hypothesis, g satisfies the recurrence relation of order t+1, namely
g ∈ R

+
t+1. Also for any j, h(j) satisfies the recurrence relation of order t, namely

h(j) ∈ R
+
t ⊆ R

+
t+1.

We have the recurrence relation

Symn−t
n (v; v1, . . . , vt) = (n− t)v⊗ Symn−t−1

n−1 (v; v1, . . . , vt)(4)

+

t∑

j=1

vj⊗ Symn−t
n−1(v; v1, . . . , vj−1, vj+1, . . . , vt).
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By (4), the entry of weight k in f for any k > 0 is

fk = (n− t)igk−1 +

t∑

j=1

bjh
(j)
k−1.

We know that {gi} and {h(j)i } satisfy the recurrence relation (2) of order t+1. Thus,
their linear combination {fi} also satisfies the recurrence relation (2) starting from
i = k > 0.

We also observe that by (4), the entry of weight k in f for any k < n is

fk = (n− t)gk +
t∑

j=1

ajh
(j)
k .

Since t < n− 1, by the same argument, the recurrence relation (2) holds for f when
k = 0 as well.

Now we show (ii) =⇒ (i). Notice that we only need to find unary signatures
{vi} for 1 ≤ i ≤ t such that Symn−t

n (v; v1, . . . , vt) matches the first t+ 1 entries of f .
The theorem follows from this since we have shown that Symn−t

n (v; v1, . . . , vt) satisfies
the recurrence relation of order t+1 and any such signature is determined by the first
t+ 1 entries.

We show that there exist vi = [ai, bi] (1 ≤ i ≤ t) satisfying the above requirement.
Since f is not identically 0, by (2), some nonzero term occurs among {f0, . . . , ft}. Let
fs 6= 0, for 0 ≤ s ≤ t, be the first nonzero term. By a nonzero constant multiplier, we
may normalize fs = s!(n− s)!, and set vj = [0, 1], for 1 ≤ j ≤ s (which is vacuous if
s = 0), and set vs+j = [1, bs+j], for 1 ≤ j ≤ t− s (which is vacuous if s = t). We will
set up a system of polynomial equations with bs+j ’s as variables. Solving it will give
us desired vs+j ’s.

Let F be the function defined in (3). Then Fk = fk = 0 for 0 ≤ k < s (which is
vacuous if s = 0). By expanding the symmetrization function, for s ≤ k ≤ t, we get

Fk = k!(n− k)!
k−s∑

j=0

(
n− t

k − s− j

)
∆ji

k−s−j ,

where ∆j is the elementary symmetric polynomial in {bs+1, . . . , bt} of degree j for 0 ≤
j ≤ t−s. By definition, ∆0 = 1 and Fs = fs. Setting Fk = fk for s+1 ≤ k ≤ t, this is
a linear equation system on ∆j (1 ≤ j ≤ t− s), with a triangular matrix and nonzero
diagonals. From this, we know that all ∆j ’s are uniquely determined by {fs+1, . . . , ft}.
Moreover, {bs+1, . . . , bt} are the roots of the equation

∑t−s
j=0(−1)j∆jx

t−s−j = 0. Thus
{bs+1, . . . , bt} are also uniquely determined by {fs+1, . . . , ft} up to a permutation.

Corollary 23. If f is a symmetric signature and σ ∈ {+,−}, then vdσ(f) +
rdσ(f) = arity(f).

Thus we have an equivalent form of V σ for σ ∈ {+,−}. Namely,

V
σ = {f | 2 rdσ(f) < arity(f)}.

4.2. Characterizing Vanishing Signature Sets. Now we show that V + and
V − capture all symmetric vanishing signature sets. To begin, we show that a vanishing
signature set cannot contain both types of nontrivial vanishing signatures.
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Fig. 2: Example of a gadget used to create a degenerate vanishing sig-
nature from some general vanishing signature. This example is for a
signature of arity 7 and recurrence degree 2, which is assigned to both
vertices.

Lemma 24. Let f+ ∈ V + and f− ∈ V −. If neither f+ nor f− is the all zero
signature, then the signature set {f+, f−} is not vanishing.

Proof. Let arity(f+) = n and rd+(f+) = t, so 2t < n. Consider the gadget with
two vertices and 2t edges between two copies of f+. (See Figure 2 for an example of
this gadget.) View f+ in the symmetrized form. Since vd+(f+) = n− t, in each term,
there are n − t many [1, i]’s and t many unary signatures not equal to (a multiple
of) [1, i]. This is a superposition of many degenerate signatures. Then the only non-
vanishing contributions come from the cases where the n− 2t dangling edges on both
sides are all assigned [1, i], while inside, the t copies of [1, i] pair up with t unary
signatures not equal to [1, i] from the other side perfectly. Notice that for any such
contribution, the Holant value of the inside part is always the same constant and
this constant is not 0 because [1, i] paired up with any unary signature other than
(a multiple of) [1, i] is not 0. Then the superposition of all of the permutations is a
degenerate signature [1, i]⊗2(n−2t) up to a nonzero constant factor.

Similarly, we can do this for f− of arity n′ and rd−(f−) = t′, where 2t′ < n′, and
get a degenerate signature [1,−i]⊗2(n′−2t′), up to a nonzero constant factor. Then
form a bipartite signature grid with (n′ − 2t′) vertices on one side, each assigned
[1, i]⊗2(n−2t), and (n − 2t) vertices on the other side, each assigned [1,−i]⊗2(n′−2t′).
Connect edges between the two sides arbitrarily as long as it is a 1-1 correspondence.
The resulting Holant is a power of 2, which is not vanishing.

Lemma 25. Every symmetric vanishing signature is in V + ∪ V −.

Proof. Let f be a symmetric vanishing signature. We prove this by induction on
n, the arity of f . For n = 1, by connecting f = [f0, f1] to itself, we have f2

0 + f2
1 = 0.

Then up to a constant factor, we have either f = [1, i] or f = [1,−i]. The lemma
holds.

For n = 2, first we do a self loop. The Holant is f0 + f2. Also, we can connect
two copies of f , in which case the Holant is f2

0 +2f2
1 + f2

2 . Since f is vanishing, both
f0 + f2 = 0 and f2

0 + 2f2
1 + f2

2 = 0. Solving them, we get f = [1, i,−1] = [1, i]⊗2 or
[1,−i,−1] = [1,−i]⊗2 up to a constant factor.

Now assume n > 2 and the lemma holds for any signature of arity k < n. Let f =
[f0, f1, . . . , fn] be a vanishing signature. A self loop on f gives f ′ = [f ′

0, f
′
1, . . . , f

′
n−2],

where f ′
j = fj + fj+2 for 0 ≤ j ≤ n− 2. Since f is vanishing, f ′ is vanishing as well.

By the induction hypothesis, f ′ ∈ V + ∪ V −.
If f ′ is an all zero signature, then we have fj + fj+2 = 0 for 0 ≤ j ≤ n − 2.

This means that the fj ’s satisfy a recurrence relation with characteristic polynomial
x2+1, so we have fj = aij + b(−i)j for some a and b. Then we perform a holographic
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transformation with Z = 1√
2

[
1 1
i −i

]
,

Holant (=2 | f) ≡T Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [a, 0, . . . , 0, b]. The problem Holant
(
[0, 1, 0] | f̂

)
is a weighted version of

testing if a graph is bipartite. Now consider a graph with only two vertices, both
assigned f , and n edges between them. The Holant of this graph is 2ab. However, we
know that it must be vanishing, so ab = 0. If a = 0, then f ∈ V −. Otherwise, b = 0
and f ∈ V +.

Now suppose that f ′ is in V + ∪V − but is not an all zero signature. We consider
f ′ ∈ V + since the other case is similar. Then rd+(f ′) = t, so 2t < n − 2. Consider
the gadget which has only two vertices, both assigned f ′, and has 2t edges between
them. (See Figure 2 for an example of this gadget.) It forms a signature of degree
d = 2(n− 2− 2t). This gadget is valid because n− 2 > 2t. By the combinatorial view
as in the proof of Lemma 24, this signature is [1, i]⊗d.

Moreover, rd+(f ′) = t implies that the entries of f ′ satisfy a recurrence of order
t + 1. Replacing f ′

j by fj + fj+2, we get a recurrence relation for the entries of f

with characteristic polynomial (x2 + 1)(x − i)t+1 = (x + i)(x − i)t+2. Thus, fj =
ijp(j) + c(−i)j for some polynomial p(x) of degree at most t+ 1 and some constant
c. It suffices to show that c = 0 since 2(t+ 1) < n as 2t < n− 2.

Consider the signature h = [h0, . . . , hn−1] created by connecting f with a single
unary signature [1, i]. For any (n − 1)-regular graph G = (V,E) with h assigned to
every vertex, we can define a duplicate graph of (d + 1)|V | vertices as follows. First
for each v ∈ V , define vertices v′, v1, . . . , vd. For each i, 1 ≤ i ≤ d, we make a copy of
G on {vi | v ∈ V }, i.e., for each edge (u, v) ∈ E, include the edge (ui, vi) in the new
graph. Next for each v ∈ V , we introduce edges between v′ and vi for all 1 ≤ i ≤ d.
For each v ∈ V , assign the degenerate signature [1, i]⊗d that we just constructed
to the vertices v′; assign f to all the vertices v1, . . . , vd. Assume the Holant of the
original graph G with h assigned to every vertex is H . Then for the new graph with
the given signature assignments, the Holant is Hd. By our assumption, f is vanishing,
so Hd = 0. Thus, H = 0. This holds for any graph G, so h is vanishing.

Notice that hk = fk + ifk+1 for any 0 ≤ k ≤ n− 1. If h is identically zero, then
fk+ ifk+1 = 0 for any 0 ≤ k ≤ n−1, which means f = [1, i]⊗n up to a constant factor
and we are done. Otherwise, suppose that h is not identically zero. By the inductive
hypothesis, h ∈ V +∪V −. We claim h cannot be from V −. This is because, although
we do not directly construct h from f , we can always realize it by the method depicted
in the previous paragraph. Therefore the set {f ′, h} is vanishing. As both f ′ and h
are nonzero, and f ′ ∈ V +, we have h 6∈ V −, by Lemma 24.

Hence h is in V +. Then there exists a polynomial q(x) of degree at most t′ =⌊
n−1
2

⌋
such that hk = ikq(k), for any 0 ≤ k ≤ n− 1. Since 2t < n− 2, we have t ≤ t′.

On the other hand, hk = fk + ifk+1 for any 0 ≤ k ≤ n− 1, so we have

hk = fk + ifk+1

= ikp(k) + c(−i)k + i
(
ik+1p(k + 1) + c(−i)k+1

)

= ik (p(k)− p(k + 1)) + 2c(−i)k

= ikr(k) + 2c(−i)k

= ikq(k),
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where r(x) = p(x)−p(x+1) is another polynomial of degree at most t. Then we have

q(k)− r(k) = 2c(−1)k,

which holds for all 0 ≤ k ≤ n − 1. Notice that the left hand side is a polynomial of
degree at most t′, call it s(x). However, for all even k ∈ {0, . . . , n − 1}, s(k) = 2c.
There are exactly

⌈
n
2

⌉
>
⌊
n−1
2

⌋
= t′ many even k within the range {0, . . . , n − 1}.

Thus s(x) = 2c for any x. Now we pick k = 1, so s(1) = −2c = 2c, which implies
c = 0. This completes the proof.

Combining Lemma 19, Lemma 24, and Lemma 25, we obtain the following theo-
rem that characterizes all symmetric vanishing signature sets.

Theorem 26. Let F be a set of symmetric signatures. Then F is vanishing if
and only if F ⊆ V + or F ⊆ V −.

We note that some particular categories of tractable cases in previous dichotomies
(case 2 of Theorem 8, case 3 of Theorem 12, and case 4 of Theorem 13) are in R

±
2 .

To finish this subsection, we prove some useful properties regarding vanishing and
recurrence degrees in the construction of signatures. For two symmetric signatures
f and g such that arity(f) ≥ arity(g), let 〈f, g〉 = 〈g, f〉 denote the signature that
results after connecting all edges of g to f . (If arity(f) = arity(g), then 〈f, g〉 is a
constant, which can be viewed as a signature of arity 0.)

Lemma 27. For σ ∈ {+,−}, suppose symmetric signatures f and g satisfy vdσ(g)
= 0 and arity(f)− arity(g) ≥ rdσ(f). Then rdσ(〈f, g〉) = rdσ(f).

Proof. We consider σ = + since the case σ = − is similar. Let arity(f) = n,
arity(g) = m, and rd+(f) = t. Denote the signature 〈f, g〉 by f ′.

If t = −1, then f is identically 0 and so is f ′. Hence rd+(f ′) = −1.
Suppose t ≥ 0. Then we have fk = ikp(k) where p(x) is a polynomial of degree

exactly t. Also arity(f ′) = n−m ≥ t. We have

f ′
k =

m∑

j=0

(
m

j

)
fk+jgj

= ik
m∑

j=0

(
m

j

)
p(k + j)ijgj

= ikq(k),

where q(k) =
∑m

j=0

(
m
j

)
p(k + j)ijgj is a polynomial in k. Notice that vd+(g) = 0.

Then rd+(g) = m and g 6∈ R+
m. Thus

∑m
j=0

(
m
j

)
ijgj 6= 0. Then the leading coefficient

of degree t in the polynomial q(k) is nonzero. However, arity(f ′) ≥ t. Thus rd+(f ′) =
t as well.

Lemma 28. For σ ∈ {+,−}, let f be a nonzero symmetric signature and suppose
that f ′ is obtained from f by a self loop. If vdσ(f) > 0, then vdσ(f) − vdσ(f ′) =
rdσ(f)− rdσ(f ′) = 1.

Proof. We may assume σ = +, arity(f) = n, and rd+(f) = t. Since f is not the
all zero signature, t ≥ 0. Also since vd+(f) > 0, t = n− vd+(f) < n. By assumption,
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we have fk = ikp(k), where p(x) is a polynomial of degree exactly t. Then we have

f ′
k = fk + fk+2

= ik(p(k)− p(k + 2))

= ikq(k),

where q(k) = p(k) − p(k + 2) is a polynomial in k. If t = 0, then p(x) is a constant
polynomial and q(x) is identically zero. Then rd+(f ′) = −1 by definition and rd+(f)−
rd+(f ′) = 1 holds. Suppose t > 0, then in q(k), the term of degree t has a zero
coefficient, but the term of degree t− 1 is nonzero. So q(x) has degree exactly t− 1 ≤
n − 2 = arity(f ′). Thus rd+(f ′) = t − 1. Notice that arity(f) − arity(f ′) = 2, then
vd+(f)− vd+(f ′) = 1 as well.

Moreover, the set of vanishing signatures is closed under orthogonal transforma-
tions. This is because under any orthogonal transformation, the unary signatures
[1, i] and [1,−i] are either invariant or transformed into each other. Then considering
the symmetrized form of any signature, we have the following lemma.

Lemma 29. For a symmetric signature f of arity n, σ ∈ {+,−}, and an orthog-
onal matrix T ∈ C2×2, either vdσ(f) = vdσ(T⊗nf) or vdσ(f) = vd−σ(T⊗nf).

4.3. Characterizing Vanishing Signatures via a Holographic Transfor-

mation. There is another explanation for the vanishing signatures. Given an f ∈ V +

with arity(f) = n and rd+(f) = d, we perform a holographic transformation with
Z = 1√

2

[
1 1
i −i

]
,

Holant (=2 | f) ≡T Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Holant
(
[0, 1, 0] | f̂

)
,

where f̂ is of the form [f̂0, f̂1, . . . , f̂d, 0, . . . , 0], and f̂d 6= 0. To see this, note that
Z−1 = 1√

2

[
1 −i
1 i

]
and Z−1 [ 1i ] =

√
2 [ 10 ]. We know that f has a symmetrized form,

such as Symn−d
n ([ 1i ] ; v1, . . . , vd). Then up to a factor of 2n/2, we have f̂ = (Z−1)⊗nf =

Symn−d
n ([ 10 ] ;u1, . . . , ud), where ui = Z−1vi for 1 ≤ i ≤ d and ui and vi are column

vectors in C2. From this expression for f̂ , it is clear that all entries of Hamming
weight greater than d in f̂ are 0. Moreover, if f̂d = 0, then one of the ui has to be
a multiple of [1, 0]. This contradicts the degree assumption of f , namely vd+(f) =
n− rd+(f) = n− d but not any higher. Formally we have the following.

Lemma 30. Suppose f is a symmetric signature of arity n. Let f̂ = (Z−1)⊗nf .

If rd+(f) = d, then f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0] and f̂d 6= 0. Also f ∈ R
+
d if and only

if all nonzero entries of f̂ are among the first d entries in its symmetric signature
notation.

Similarly, if rd−(f) = d, then f̂ = [0, . . . , 0, f̂n−d, . . . , f̂n] and f̂n−d 6= 0. Also

f ∈ R
−
d if and only if all nonzero entries of f̂ are among the last d entries in its

symmetric signature notation.

By linearity, Lemma 30 implies the following fact. If f = g+h is of arity n, where
rd+(g) = d, rd−(h) = d′, and d+d′ < n, then after a holographic transformation by Z,

f̂ = (Z−1)⊗nf takes the form [ĝ0, . . . , ĝd, 0, . . . , 0, ĥd′, . . . , ĥ0], with n− d− d′ − 1 ≥ 0
zeros in the middle of the signature.
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In any bipartite graph for Holant
(
[0, 1, 0] | f̂

)
, the binary Disequality (6=2) =

[0, 1, 0] on the left imposes the condition that half of the edges must take the value 0
and the other half must take the value 1. On the right side, by f ∈ V +, we have
d < n/2, thus f̂ requires that less than half of the edges are assigned the value 1.
Therefore the Holant is always 0. A similar conclusion was reached in [20] for certain
2-3 bipartite Holant problems with Boolean signatures. However, the importance was
not realized at that time.

Under this transformation, one can observe another interesting phenomenon. For
any a, b ∈ C,

Holant ([0, 1, 0] | [a, b, 1, 0, 0]) and Holant ([0, 1, 0] | [0, 0, 1, 0, 0])

take exactly the same value on every signature grid. This is because, to contribute
a nonzero term in the Holant, exactly half of the edges must be assigned 1. Then
for the first problem, the signature on the right can never contribute a nonzero value
involving a or b. Thus the Holant values of these two problems on any signature
grid are always the same. Nevertheless, there exist a, b ∈ C such that there is no
holographic transformation between these two problems. We note that this is the
first counterexample involving non-unary signatures in the Boolean domain to the
converse of the Holant theorem, which provides a negative answer to a conjecture
made by Xia in [50, Conjecture 4.1].

Moreover, Holant ([0, 1, 0] | [0, 0, 1, 0, 0]) counts Eulerian orientations in a 4-regular
graph. This problem was proven #P-hard by Huang and Lu in Theorem V.10 of [34]
and plays an important role in our proof of hardness. Translating back to the stan-
dard setting, the problem of counting Eulerian orientations in a 4-regular graph is
Holant([3, 0, 1, 0, 3]). The problem Holant ([0, 1, 0] | [a, b, 1, 0, 0]) corresponds to a cer-
tain signature f = Z⊗4[a, b, 1, 0, 0] of arity 4 with recurrence degree 2. It has a
different appearance but induces exactly the same Holant value as the signature for
counting Eulerian orientations. Therefore, all such signatures are #P-hard as well.
We use this fact later.

5. Main Result, Tractability Proof, and Outline of Hardness Proof.

Using the definitions from the previous section, we can now formally state our main
result.

Theorem 31. Let F be any set of symmetric, complex-valued signatures in Boolean
variables. Then Holant(F) is #P-hard unless F satisfies one of the following condi-
tions, in which case the problem is computable in polynomial time:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is A -transformable;
3. F is P-transformable;
4. F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for σ ∈ {+,−};
5. All non-degenerate signatures in F are in Rσ

2 for σ ∈ {+,−}.
Note that any signature in Rσ

2 having arity at least 3 is a vanishing signature. Thus
all signatures of arity at least 3 in case 5 are vanishing. While both cases 4 and 5
are largely concerned with vanishing signatures, these two cases differ. In case 4, all
signatures in F , including unary signatures but excluding binary signatures, must be
vanishing of a single type σ; the binary signatures are only required to be in Rσ

2 . In
contrast, case 5 has no requirement placed on degenerate signatures which include
all unary signatures. Then all non-degenerate binary signatures are required to be in
Rσ

2 . Finally all non-degenerate signatures of arity at least 3 are also required to be
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in Rσ
2 , which is a strong form of vanishing; they must have a large vanishing degree

of type σ.
Case 5 is actually a known tractable case [21, 19]. Every signature (after replacing

all degenerate signatures with corresponding ones) is a generalized Fibonacci signature
with m = σ2i, which means that every signature [f0, f1, . . . , fn] ∈ F satisfies fk+2 =
mfk+1 + fk for 0 ≤ k ≤ n − 2. However, we present a unified proof of tractability
based on vanishing signatures.

5.1. Tractability Proof for Theorem 31. For any signature grid Ω, HolantΩ
is the product of the Holant on each connected component, so we only need to compute
over connected components.

For case 1, after decomposing all degenerate signatures into unary ones, a con-
nected component of the graph is either a path or a cycle and the Holant can be
computed using matrix product and trace. Cases 2 and 3 are tractable because, af-
ter a particular holographic transformation, their instances are tractable instances of
#CSP(F) (cf. [15]). For case 4, any binary signature g ∈ Rσ

2 has rdσ(g) ≤ 1, and
thus vdσ(g) ≥ 1 = arity(g)/2. Any signature f ∈ V σ has vdσ(f) > arity(f)/2. If
F contains a signature f of arity at least 3, then it must belong to V σ. Then by
the combinatorial view, more than half of the unary signatures are [1, σi], so HolantΩ
vanishes. On the other hand, if the arity of every signature in F is at most 2, then
we have reduced to case 1.

Now consider case 5. After decomposing all degenerate signatures into unary
ones, recursively absorb any unary signature into its neighboring signature. If it is
connected to another unary signature, then this produces a global constant factor.
If it is connected to a binary signature, then this creates another unary signature.
We observe that if f ∈ Rσ

2 has arity(f) ≥ 2, then for any unary signature u, after
connecting f to u, the signature 〈f, u〉 still belongs to Rσ

2 . Hence after recursively
absorbing all unary signatures in the above process, we still have a signature grid
where all signatures belong to Rσ

2 . Any remaining signature f that has arity at
least 3 belongs to V σ since rdσ(f) ≤ 1 and thus vdσ(f) ≥ arity(f)− 1 > arity(f)/2.
Thus we have reduced to case 4.

5.2. Outline of Hardness Proof for Theorem 31. The hardness proof of
our main dichotomy is more complicated. Our first goal is to prove a dichotomy for a
single signature, Theorem 64. The proof is by induction on the arity of the signature.
The induction is done by taking a self loop, which causes the arity to go down by 2.
Thus, we need two base cases, a dichotomy for an arity 3 signature and a dichotomy
for an arity 4 signature. The dichotomy for an arity 3 signature is known [11], while
the dichotomy for an arity 4 signature is a crucial ingredient in our proof of the full
dichotomy. It is not only a base case of the single signature dichotomy but also utilized
several times in the inductive step.

After obtaining the dichotomy for an arity 4 signature, the proof continues by
revisiting the vanishing signatures to determine what signatures combine with them
to give #P-hardness. When adding unary or binary signatures, the only possible com-
binations that maintain the tractability of the vanishing signatures are as described
in cases 4 and 5 in Theorem 31. Moreover, combining two vanishing signatures of the
opposite type of arity at least 3 implies #P-hardness. The proof of this last statement
uses techniques that are similar to those in the proof of the arity 4 dichotomy.

Another important piece of the proof is to understand the signatures that are
A -transformable or P-transformable. We obtain new explicit characterizations of
these signatures. We use these characterizations to prove dichotomy theorems for any
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Arity 3 Arity 4

Vanishing

Theorem 64

Theorem 31

A -transformable
and

P-transformable

Fig. 3: Dependency graph of key hardness results for our main di-
chotomy, Theorem 31. The dashed edge indicates a dependency in terms
of techniques rather than the result itself. “Arity 3(4)” stands for the
arity 3(4) single signature dichotomy. “Vanishing” (“A -transformable
and P-transformable”) stands for the lemmas regarding vanishing (A -
transformable and P-transformable) signatures. Dependencies on pre-
vious dichotomy theorems are not shown.

signature set containing an A - or P-transformable signature. Unless every signature
in the set is A - or P-transformable, the problem is #P-hard. The proofs of these
dichotomy theorems utilize the #CSPd dichotomy in [34].

The main dichotomy, Theorem 31, depends on Theorem 64 and the results re-
garding vanishing signatures as well as A - and P-transformable signatures. Figure 3
summarizes the dependencies among these results.

6. Dichotomy Theorem for an Arity 4 Signature.

Definition 32. A 4-by-4 matrix is redundant if its middle two rows and middle
two columns are the same. Denote the set of all redundant 4-by-4 matrices over a
field F by RM4(F).

Consider the function ϕ : C4×4 → C3×3 defined by

ϕ(M) = AMB,

where

A =



1 0 0 0
0 1

2
1
2 0

0 0 0 1


 and B =




1 0 0
0 1 0
0 1 0
0 0 1


 .

Intuitively, the operation ϕ replaces the middle two columns of M with their sum
and then the middle two rows of M with their average. (These two steps commute.)
Conversely, we have the following function ψ : C3×3 → RM4(C) defined by

ψ(N) = BNA.



24 J.-Y. CAI, H. GUO, AND T. WILLIAMS

Intuitively, the operation ψ duplicates the middle row of N and then splits the middle
column evenly into two columns. Notice that ϕ(ψ(N)) = N . When restricted to
RM4(C), ϕ is an isomorphism between the semi-group of 4-by-4 redundant matrices
and the semi-group of 3-by-3 matrices, under matrix multiplication, and ψ is its
inverse. To see this, just notice that

AB =



1 0 0
0 1 0
0 0 1


 and BA =




1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1




are the identity elements of their respective semi-groups.
An example of a redundant matrix is the signature matrix of a symmetric arity 4

signature.

Definition 33. The signature matrix of a symmetric arity 4 signature f =
[f0, f1, f2, f3, f4] is

Mf =




f0 f1 f1 f2
f1 f2 f2 f3
f1 f2 f2 f3
f2 f3 f3 f4


 .

This definition extends to an asymmetric signature g as

Mg =




g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111


 .

When we present g as an F-gate, we order the four external edges ABCD counter-
clockwise. In Mg, the row index bits are ordered AB and the column index bits are
ordered DC, in reverse order. This is for convenience so that the signature matrix of
the linking of two arity 4 F-gates is the matrix product of the signature matrices of
the two F-gates.

If Mg is redundant, we also define the compressed signature matrix of g as M̃g =
ϕ(Mg).

If all signatures in an F -gate have even arity, then the F -gate also has even arity.
Knowing that binary signatures alone do not produce #P-hardness, and with the
above constraint in mind, we would like to interpolate other arity 4 signatures using
the given arity 4 signature. We are particularly interested in the signature g with
signature matrix

(5) Mg =




1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1


 ,

the identity element in the semi-group of redundant matrices. Thus, M̃g = I3.
Lemma 37 shows that the Holant problem with this signature is #P-hard. In Lemma 35,
we consider when we can interpolate it.

There are three cases in Lemma 35 and one of them requires the following technical
lemma.
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Lemma 34. Let M = [B0 B1 · · · Bt] be an n-by-n block matrix such that there
exists a λ ∈ C, for all integers 0 ≤ k ≤ t, block Bk is an n-by-ck matrix for some
integer ck ≥ 0, and the entry of Bk at row r and column c is (Bk)rc = rc−1λkr, where
r, c ≥ 1. If λ is nonzero and is not a root of unity, then M is nonsingular.

Proof. We prove by induction on n. If n = 1, then the sole entry is λk for some
nonnegative integer k. This is nonzero since λ 6= 0. Assume n > 1 and let the
left-most nonempty block be Bj . We divide row r by λjr , which is allowed since
λ 6= 0. This effectively changes block Bℓ into a block of the form Bℓ−j . Thus, we have
another matrix of the same form as M but with a nonempty block B0. To simplify
notation, we also denote this matrix again by M . The first column of B0 is all 1’s.
We subtract row r−1 from row r, for r from n down to 2. This gives us a new matrix
M ′, and detM = detM ′. Then detM ′ is the determinant of the (n − 1)-by-(n− 1)
submatrix M ′′ obtained from M ′ by removing the first row and column. Now we do
column operations (on M ′′) to return the blocks to the proper form so that we can
invoke the induction hypothesis.

For any block B′
k different from B′

0, we prove by induction on the number of
columns in B′

k that B′
k can be repaired. In the base case, the rth element of the first

column is (B′
k)r1 = λkr − λk(r−1) = λk(r−1)(λk − 1) for r ≥ 2. We divide this column

by λk − 1 to obtain λk(r−1), which is allowed since λ is not a root of unity and k 6= 0.
This is now the correct form for the rth element of the first column of a block in M ′′.

Now for the inductive step, assume that the first d − 1 columns of block B′
k are

in the correct form to be a block in M ′′. That is, for row index r ≥ 2, which denotes
the (r − 1)-th row of M ′′, the rth element in the first d − 1 columns of B′

k have the
form (B′

k)rc = (r − 1)c−1λk(r−1). The rth element in column d of B′
k currently has

the form (B′
k)rd = rd−1λkr − (r − 1)d−1λk(r−1). Then we do column operations

(B′
k)rd −

d−1∑

c=1

(
d− 1

c− 1

)
(B′

k)rc =r
d−1λkr − (r − 1)d−1λk(r−1)

−
d−1∑

c=1

(
d− 1

c− 1

)
(r − 1)c−1λk(r−1)

=rd−1λkr − rd−1λk(r−1)

=rd−1λk(r−1)(λk − 1)

and divide by (λk − 1) to get rd−1λk(r−1). Once again, this is allowed since λ is not
a root of unity and k 6= 0. Then more (of the same) column operations yield

rd−1λk(r−1) −
d−1∑

c=1

(
d− 1

c− 1

)
(r − 1)c−1λk(r−1)

=λk(r−1)

(
rd−1 + (r − 1)d−1 −

d∑

c=1

(
d− 1

c− 1

)
(r − 1)c−1

)

and the term in parentheses is precisely (r − 1)d−1. This gives the correct form for
the rth element in column d of B′

k in M ′′.
Now we repair the columns in B′

0, also by induction on the number of columns.
In the base case, if B′

0 only has one column, then there is nothing to prove, since this
block has disappeared in M ′′. Otherwise, (B′

0)r2 = r − (r − 1) = 1, so the second
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N1 N2

Ns

Ns+1

Fig. 4: Recursive construction to interpolate g. Vertices are assigned f .

column is already in the correct form to be the first column in M ′′, and there is still
nothing to prove. For the inductive step, assume that columns 2 to d − 1 are in the
correct form to be the first block in M ′′ for d ≥ 3. That is, the entry at row r ≥ 2 and
column c from 2 through d− 1 has the form (B′

0)rc = (r− 1)c−2. The rth element in
column d currently has the form (B′

0)rd = rd−1− (r− 1)d−1. Then we do the column
operations

(B′
0)rd −

d−1∑

c=2

(
d− 1

c− 2

)
(B′

0)rc = rd−1 − (r − 1)d−1 −
d−1∑

c=2

(
d− 1

c− 2

)
(r − 1)c−2

= (d− 1)(r − 1)d−2

and divide by d− 1, which is nonzero, to get (r − 1)d−2. This is the correct form for
the rth element in column d of B′

0 in M ′′. Therefore, we invoke our original induction
hypothesis that the (n− 1)-by-(n− 1) matrix M ′′ has a nonzero determinant, which
completes the proof.

Lemma 35. Let g be the arity 4 signature with Mg given in (5) and let f be an

arity 4 signature with complex weights. If Mf is redundant and M̃f is nonsingular,
then for any set F containing f , we have

Holant(F ∪ {g}) ≤T Holant(F).

Proof. Consider an instance Ω of Holant(F ∪ {g}). Suppose that g appears n
times in Ω. We construct from Ω a sequence of instances Ωs of Holant(F) indexed by
s ≥ 1. We obtain Ωs from Ω by replacing each occurrence of g with the gadget Ns

in Figure 4 with f assigned to all vertices. In Ωs, the edge corresponding to the ith
significant index bit of Ns connects to the same location as the edge corresponding
to the ith significant index bit of g in Ω.

Now to determine the relationship between HolantΩ and HolantΩs , we use the
isomorphism between redundant 4-by-4 matrices and 3-by-3 matrices. To obtain Ωs

from Ω, we effectively replace Mg with MNs = (Mf )
s, the sth power of the signature

matrix Mf . By the Jordan normal form of M̃f , there exist T,Λ ∈ C3×3 such that

M̃f = TΛT−1 = T



λ1 b1 0
0 λ2 b2
0 0 λ3


T−1,
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where b1, b2 ∈ {0, 1}. Note that λ1λ2λ3 = det(M̃f ) 6= 0. Also since M̃g = ϕ(Mg) = I3,
and TI3T

−1 = I3, we have ψ(T )Mgψ(T
−1) = Mg. We can view our construction of

Ωs as first replacing each Mg by ψ(T )Mgψ(T
−1), which does not change the Holant

value, and then replacing each new Mg with ψ(Λs) = ψ(Λ)s to obtain Ωs. Observe
that

ϕ(ψ(T )ψ(Λs)ψ(T−1)) = TΛsT−1 = (M̃f )
s = (ϕ(Mf ))

s = ϕ((Mf )
s) = ϕ(MNs),

hence, ψ(T )ψ(Λs)ψ(T−1) = MNs . (Since Mg = ψ(T )Mgψ(T
−1) and MNs = ψ(T )

ψ(Λs)ψ(T−1), replacing each Mg, sandwiched between ψ(T ) and ψ(T−1), by ψ(Λs)
indeed transforms Ω to Ωs. We also note that, by the isomorphism, ψ(T−1) is the
multiplicative inverse of ψ(T ) within the semi-group of redundant 4-by-4 matrices;
but we prefer not to write it as ψ(T )−1 since it is not the usual matrix inverse as a
4-by-4 matrix. Indeed, ψ(T ) is not invertible as a 4-by-4 matrix.)

In the case analysis below, we stratify the assignments in Ωs based on the as-
signment to ψ(Λs). The inputs to ψ(Λs) are from {0, 1}2 × {0, 1}2. However, we
can combine the inputs 01 and 10, since ψ(Λs) is redundant. Thus we actually strat-
ify the assignments in Ωs based on the assignment to Λs, which takes inputs from
{0, 1, 2} × {0, 1, 2}. In this compressed form, the row and column assignments to Λs

are the Hamming weight of the two actual binary valued inputs to the uncompressed
form ψ(Λs).

Now we begin the case analysis on the values of b1 and b2.
1. Assume b1 = b2 = 0. In this case,

ψ(Λs) = ψ





λs1 0 0
0 λs2 0
0 0 λs3




 =




λs1 0 0 0
0 λs2/2 λs2/2 0
0 λs2/2 λs2/2 0
0 0 0 λs3


 .

We only need to consider the assignments to Λs that assign
• (0, 0) i many times,
• (1, 1) j many times, and
• (2, 2) k many times

since any other assignment contributes a factor of 0. In particular, the (1, 1)
case actually corresponds to the middle four entries in ψ(Λs). We collect
them together as they contribute the same factor. Let cijk be the sum over
all such assignments of the products of evaluations of all signatures in Ωs

except for Λs (including the contributions from T and T−1). Note that this
quantity is the same in Ω as in Ωs. In particular it does not depend on s.
Then

HolantΩ =
∑

i+j+k=n

cijk
2j

.

Note that the factor of 1
2j comes from (5), the definition of g. The value of

the Holant on Ωs, for s ≥ 1, is

HolantΩs =
∑

i+j+k=n

(
λi1λ

j
2λ

k
3

)s (cijk
2j

)
.

The coefficient matrix is Vandermonde, but it may not have full rank because

it might be that λi1λ
j
2λ

k
3 = λi

′

1 λ
j′

2 λ
k′

3 for some (i, j, k) 6= (i′, j′, k′), where
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i + j + k = i′ + j′ + k′ = n. However, this is not a problem since we are
only interested in the sum

∑ cijk
2j . If two coefficients are the same, we replace

their corresponding unknowns cijk/2
j and ci′j′k′/2j

′

with their sum as a new
variable. After all such combinations, we have a Vandermonde system of full
rank. In particular, none of the entries are 0 since λ1λ2λ3 = det(M̃f ) 6= 0.
Therefore, we can solve the linear system and obtain the value of HolantΩ.

2. Assume b1 6= b2. We can permute the Jordan blocks in Λ so that b1 = 1 and
b2 = 0, then λ1 = λ2, denoted by λ. In this case,

ψ(Λs) = ψ





λs sλs−1 0
0 λs 0
0 0 λs3




 =




λs sλs−1/2 sλs−1/2 0
0 λs/2 λs/2 0
0 λs/2 λs/2 0
0 0 0 λs3


 .

We only need to consider the assignments to Λs that assign
• (0, 0) i many times,
• (1, 1) j many times,
• (2, 2) k many times, and
• (0, 1) ℓ many times

since any other assignment contributes a factor of 0. Let cijkℓ be the sum
over all such assignments of the products of evaluations of all signatures in
Ωs except for Λs (including the contributions from T and T−1). Then

HolantΩ =
∑

i+j+k=n

cijk0
2j

and the value of the Holant on Ωs, for s ≥ 1, is

HolantΩs =
∑

i+j+k+ℓ=n

λ(i+j)sλks3
(
sλs−1

)ℓ (cijkℓ
2j+ℓ

)

= λns
∑

i+j+k+ℓ=n

(
λ3
λ

)ks

sℓ
( cijkℓ
λℓ2j+ℓ

)
.

If λ3/λ is a root of unity, then take a t such that (λ3/λ)
t = 1. Then

HolantΩst = λnst
∑

i+j+k+ℓ=n

sℓ
(
tℓcijkℓ
λℓ2j+ℓ

)
.

For s ≥ 1, this gives a coefficient matrix that is Vandermonde. Although
this system is not full rank, we can replace all the unknowns cijkℓ/2

j having
i+ j + k = n− ℓ by their sum to form new unknowns c′ℓ =

∑
i+j+k=n−ℓ

cijkℓ

2j ,
where 0 ≤ ℓ ≤ n. The new unknown c′0 is the Holant of Ω that we seek. The
resulting Vandermonde system

HolantΩst = λnst
n∑

ℓ=0

sℓ
(
tℓc′ℓ
λℓ2ℓ

)

has full rank, so we can solve for the new unknowns and obtain the value of
HolantΩ = c′0.
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If λ3/λ is not a root of unity, then we replace all the unknowns cijkℓ/(λ
ℓ2j+ℓ)

having i + j = m with their sum to form new unknowns c′mkℓ, for any
0 ≤ m, k, ℓ and m+ k + ℓ = n. The Holant of Ω is now

HolantΩ =
∑

m+k=n

c′mk0

and the value of the Holant on Ωs is

HolantΩs = λns
∑

i+j+k+ℓ=n

(
λ3
λ

)ks

sℓ
( cijkℓ
λℓ2j+ℓ

)

= λns
∑

m+k+ℓ=n

(
λ3
λ

)ks

sℓc′mkℓ.

After a suitable reordering of the columns, the matrix of coefficients satisfies
the hypothesis of Lemma 34. Therefore, the linear system has full rank. We
can solve for the unknowns and obtain the value of HolantΩ.

3. Assume b1 = b2 = 1, and therefore λ1 = λ2 = λ3, denoted by λ. In this case,

ψ(Λs) = ψ





λs sλs−1 s(s− 1)λs−2/2
0 λs sλs−1

0 0 λs






=




λs sλs−1/2 sλs−1/2 s(s− 1)λs−2/2
0 λs/2 λs/2 sλs−1

0 λs/2 λs/2 sλs−1

0 0 0 λs


 .

We only need to consider the assignments to Λs that assign
• (0, 0) or (2, 2) i many times,
• (1, 1) j many times,
• (0, 1) k many times,
• (1, 2) ℓ many times, and
• (0, 2) m many times

since any other assignment contributes a factor of 0. Let cijkℓm be the sum
over all such assignments of the products of evaluations of all signatures in
Ωs except for Λs (including the contributions from T and T−1). Then

HolantΩ =
∑

i+j=n

cij000
2j

and the value of the Holant on Ωs, for s ≥ 1, is

HolantΩs =
∑

i+j+k+ℓ+m=n

λ(i+j)s
(
sλs−1

)k+ℓ (
s(s− 1)λs−2

)m ( cijkℓm
2j+k+m

)

= λns
∑

i+j+k+ℓ+m=n

sk+ℓ+m(s− 1)m
( cijkℓm
λk+ℓ+2m2j+k+m

)
.

We replace all the unknowns cijkℓm/(λ
k+ℓ+2m2j+k+m) having i + j = p and

k+ ℓ = q with their sum to form new unknowns c′pqm, for any 0 ≤ p, q,m and
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p+ q +m = n. The Holant of Ω is now c′n00. This new linear system is

HolantΩs = λns
∑

p+q+m=n

sq+m(s− 1)mc′pqm

but is still rank deficient. We now index the columns by (q,m), where q ≥ 0,
m ≥ 0, and q +m ≤ n. Correspondingly, we rename the variables xq,m =
c′pqm. Note that p = n − q − m is determined by (q,m). Observe that the
column indexed by (q,m) is the sum of the columns indexed by (q − 1,m)
and (q − 2,m+ 1) provided q − 2 ≥ 0. Namely, sq+m(s− 1)m = sq−1+m(s−
1)m+ sq−2+m+1(s− 1)m+1. Of course this is only meaningful if q ≥ 2, m ≥ 0
and q +m ≤ n. We write the linear system as

∑

q≥0, m≥0, q+m≤n

αq,mxq,m =
HolantΩs

λns
,

where αq,m = sq+m(s−1)m are the coefficients. Hence αq,mxq,m = αq−1,mxq,m+
αq−2,m+1xq,m, and we define new variables

xq−1,m ← xq,m + xq−1,m

xq−2,m+1 ← xq,m + xq−2,m+1

from q = n−m down to 2 for every 0 ≤ m ≤ n− 2.
Observe that in each update, the newly defined variables have a decreased

index value for q. A more crucial observation is that the column indexed by
(0, 0) is never updated. This is because, in order to be an updated entry,
there must be some q ≥ 2 and m ≥ 0 such that (q − 1,m) = (0, 0) or
(q − 2,m+ 1) = (0, 0), which is clearly impossible. Hence x0,0 = c′n00 is still
the Holant value on Ω. The 2n+ 1 unknowns that remain are

x0,0, x1,0, x0,1, x1,1, x0,2, x1,2, . . . , x0,n−1, x1,n−1, x0,n

and their coefficients in row s are

1, s, s(s−1), s2(s−1), s2(s−1)2, . . . , sn−1(s−1)n−1, sn(s−1)n−1, sn(s−1)n.

It is clear that the κ-th entry in this row is a monic polynomial in s of degree κ,
where 0 ≤ κ ≤ 2n, and thus sκ is a linear combination of the first κ entries. It
follows that the coefficient matrix is a product of the standard Vandermonde
matrix multiplied to its right by an upper triangular matrix with all 1’s on
the diagonal. Therefore, the linear system has full rank. We can solve for
these final unknowns and obtain the value of HolantΩ = x0,0 = c′n00.

For an asymmetric signature, we often want to reorder the input bits under a
circular permutation. For a single counterclockwise rotation by 90◦, the effect on the
entries of the signature matrix of an arity 4 signature is given in Figure 5.

We ultimately derive most of our #P-hardness results through Lemma 37. This
is done by a reduction from the problem of counting Eulerian orientations on 4-
regular graphs, which is the Holant problem Holant ([0, 1, 0] | [0, 0, 1, 0, 0]). Recall
(from Section 1) that under a holographic transformation by

[
1 1
i −i

]
, this bipartite

Holant problem becomes the Holant problem Holant([1, 0, 13 , 0, 1]) up to a nonzero
constant factor.
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Theorem 36 (Theorem V.10 in [34]). Counting-Eulerian-Orientations is
#P-hard for 4-regular graphs.

Lemma 37. Let g be the arity 4 signature with Mg given in (5) so that M̃g = I3.
Then Holant(g) is #P-hard.

Proof. We reduce from the Eulerian orientation problem Holant(O), where O =
[1, 0, 13 , 0, 1], which is #P-hard by Theorem 36. We achieve this via an arbitrarily
close approximation using the recursive construction in Figure 6 with g assigned to
every vertex.

We claim that the signature matrix MNk
of Gadget Nk is

MNk
=




1 0 0 ak
0 ak+1 ak+1 0
0 ak+1 ak+1 0
ak 0 0 1


 ,

where ak = 1
3 − 1

3

(
− 1

2

)k
. This is true for N0. Inductively assume MNk

has this form.
Then the rotated form of the signature matrix for Nk, as described in Figure 5, is

(6)




1 0 0 ak+1

0 ak ak+1 0
0 ak+1 ak 0

ak+1 0 0 1


 .

The action of g on the far right side ofNk+1 is to replace each of the middle two entries
in the middle two rows of the matrix in (6) with their average, (ak + ak+1)/2 = ak+2.
This gives MNk+1

.

(a) A counterclockwise rotation

(b) Movement of signature matrix entries

Fig. 5: The movement of the entries in the signature matrix of an arity 4
signature under a counterclockwise rotation of the input edges. Entires of
Hamming weight 1 are in the dotted cycle, entires of Hamming weight 2
are in the two solid cycles (one has length 4 and the other one is a swap),
and entries of Hamming weight 3 are in the dashed cycle.
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N0 N1

N
k

Nk+1

Fig. 6: Recursive construction to approximate [1, 0, 13 , 0, 1]. Vertices are
assigned g.

Let G be a graph with n vertices and HO (resp. HNk
) be the Holant value on

G with all vertices assigned O (resp. Nk). Since each signature entry in O can be
expressed as a rational number with denominator 3, each term in the sum of HO can
be expressed as a rational number with denominator 3n, and HO itself is a sum of 22n

such terms, where 2n is the number of edges in G. If the error |HNk
−HO | is at most

1/3n+1, then we can recover HO from HNk
by selecting the nearest rational number

to HNk
with denominator 3n.

For each signature entry x in MO , its corresponding entry x̃ in MNk
satisfies

|x̃ − x| ≤ x/2k. Then for each term t in the Holant sum HO , its corresponding
term t̃ in the sum HNk

satisfies t(1 − 1/2k)n ≤ t̃ ≤ t(1 + 1/2k)n, thus −t(1 − (1 −
1/2k)n) ≤ t̃− t ≤ t((1 + 1/2k)n − 1). Since 1− (1− 1/2k)n ≤ (1 + 1/2k)n − 1, we get
|t̃− t| ≤ t((1 + 1/2k)n − 1). Also each term t ≤ 1. Hence

|HNk
−HO | ≤ 22n((1 + 1/2k)n − 1) < 1/3n+1,

if we take k = 4n.

We summarize our progress with the following corollary, which combines Lem-
mas 35 and 37.

Corollary 38. Let f be an arity 4 signature with complex weights. If Mf is

redundant and M̃f is nonsingular, then Holant(f) is #P-hard.

In order to make Corollary 38 more applicable, we show that for an arity 4
signature f , the redundancy of Mf and the nonsingularity of M̃f are invariant under
an invertible holographic transformation.

Lemma 39. Let f be an arity 4 signature with complex weights, T ∈ C2×2 a ma-
trix, and f̂ = T⊗4f . IfMf is redundant, thenMf̂ is also redundant and det(ϕ(Mf̂ )) =

det(ϕ(Mf )) det(T )
6.

Proof. Since f̂ = T⊗4f , we can express Mf̂ in terms of Mf and T as

(7) Mf̂ = T⊗2Mf (T
⊺)

⊗2
.
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This can be directly checked. Alternatively, this relation is known (and can also be
directly checked) had we not introduced the flip of the middle two columns, i.e., if

the columns were ordered 00, 01, 10, 11 by the last two bits in f and f̂ . Instead, the
columns are ordered by 00, 10, 01, 11 in Mf and Mf̂ . Let T = (tij), where row index

i and column index j range from {0, 1}. Then T⊗2 = (tijt
i′

j′), with row index ii′ and
column index jj′. Let

E =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

then ET⊗2E = T⊗2, i.e., a simultaneous row flip ii′ ↔ i′i and column flip jj′ ↔
j′j keep T⊗2 unchanged. Then the known relations Mf̂E = T⊗2MfE (T ⊺)⊗2 and

E (T ⊺)⊗2 E = (T ⊺)⊗2 imply (7).
Now X ∈ RM4(C) iff EX = X = XE . Then it follows that Mf̂ ∈ RM4(C) if

Mf ∈ RM4(C). For the two matrices A and B in the definition of ϕ, we note that
BA =Mg, where Mg given in (5) is the identity element of the semi-group RM4(C).
Since Mf ∈ RM4(C), we have BAMf =Mf =MfBA. Then we have

ϕ(Mf̂ ) = AMf̂B = A
(
T⊗2Mf (T

⊺)
⊗2
)
B

= (AT⊗2B)(AMfB)(A (T ⊺)
⊗2
B)(8)

= ϕ(T⊗2)ϕ(Mf )ϕ((T
⊺)⊗2).

Another direct calculation shows that

det(ϕ(T⊗2)) = det(T )3 = det(ϕ((T ⊺)
⊗2

)).

Thus, by applying determinant to both sides of (8), we have

det(ϕ(Mf̂ )) = det(ϕ(Mf )) det(T )
6

as claimed.

In particular, for a nonsingular matrix T ∈ C2×2, Mf is redundant and M̃f

is nonsingular iff Mf̂ is redundant and M̃f̂ is nonsingular. From Corollary 38 and
Lemma 39, we have the following corollary.

Corollary 40. Let f be an arity 4 signature with complex weights. If there
exists a nonsingular matrix T ∈ C2×2 such that f̂ = T⊗4f , where Mf̂ is redundant

and M̃f̂ is nonsingular, then Holant(f) is #P-hard.

The next lemma applies Corollary 38.

Lemma 41. Let fk = ckαk−1 + dαk, where c 6= 0 and 0 ≤ k ≤ 4. Then the
problem Holant([f0, f1, f2, f3, f4]) is #P-hard unless α = ±i, in which case the Holant
vanishes.

Proof. If α = ±i, then rd±(f) = 1, vd±(f) = 3, and so f = [f0, f1, f2, f3, f4] is
vanishing by Theorem 26. Otherwise, a holographic transformation with orthogonal
basis T = 1√

1+α2

[
1 α
α −1

]
transforms f to f̂ = [t, 1, 0, 0, 0] for some t ∈ C after normal-

izing the second entry. (See Appendix B for details.) Using the tetrahedron gadget

in Figure 7 with f̂ assigned to each vertex, we have a gadget with signature

h = [t4 + 6t2 + 3, t3 + 3t, t2 + 1, t, 1].
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Fig. 7: The tetrahedron gadget. Each vertex is assigned f̂ = [t, 1, 0, 0, 0].

Since the determinant of M̃h is 4, the compressed signature matrix of this gadget is
nonsingular, so we are done by Corollary 38.

Now we are ready to prove a dichotomy for a single arity 4 signature.

Theorem 42. If f is a non-degenerate, symmetric, complex-valued signature of
arity 4 in Boolean variables, then Holant(f) is #P-hard unless f is A -transformable,
P-transformable, or vanishing, in which case the problem is computable in polynomial
time.

Proof. Let f = [f0, f1, f2, f3, f4]. If the compressed signature matrix M̃f is non-

singular, then Holant(f) is #P-hard by Corollary 38, so assume that the rank of M̃f is

at most 2. Hence the rows of M̃f are linearly dependent. There exist some a, b, c ∈ C

that are not all 0 such that

a



f0
f1
f2


+ 2b



f1
f2
f3


+ c



f2
f3
f4


 =



0
0
0


 .

If a = c = 0, then b 6= 0, so f1 = f2 = f3 = 0. In this case, f ∈ P is a generalized
equality signature, so f is P-transformable. Now suppose a and c are not both 0. If
b2 − 4ac 6= 0, then fk = α4−k

1 αk
2 + β4−k

1 βk
2 , where α1β2 − α2β1 6= 0. A holographic

transformation by
[
α1 β1

α2 β2

]
transforms f to =4 and we can use Theorem 9′ to show

that f is either A - or P-transformable unless Holant(f) is #P-hard. Otherwise,
b2−4ac = 0 and there are two cases. In the first, for any 0 ≤ k ≤ 4, fk = ckαk−1+dαk,
where c 6= 0. In the second, for any 0 ≤ k ≤ 4, fk = c(4 − k)α3−k + dα4−k, where
c 6= 0. These cases map between each other under a holographic transformation by
[ 0 1
1 0 ], so assume that we are in the first case. Then we are done by Lemma 41.

The next lemma is related to vanishing signatures. It appears here because its
proof uses similar techniques to those in this section.

Lemma 43. If f = [0, 1, 0, . . . , 0] and g = [0, . . . , 0, 1, 0] are both of arity d ≥ 3,
then the problem Holant ([0, 1, 0] | {f, g}) is #P-hard.

Proof. Our goal is to obtain a signature that satisfies the hypothesis of Corol-
lary 40.

The gadget in Figure 8a, with f assigned to the circle vertex, g assigned to the
triangle vertex, and 6=2 assigned to the square vertices, has signature h with signature
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.

.

.

(a) The circle is assigned f , the triangle is assigned g,
and the squares are assigned 6=2.

(b) The circle is assigned h′, the triangle is assigned
h′′, and the squares are assigned 6=2.

Fig. 8: Gadget constructions used to obtain a hard and redundant arity 4
signature.

matrix

Mh =




0 0 0 v
0 1 1 0
0 1 1 0
0 0 0 0


 ,

where v = d − 2 is positive since d ≥ 3. Although this signature matrix is redun-
dant, its compressed form is singular. Rotating this gadget 90◦ clockwise and 90◦

counterclockwise yield signatures h′ and h′′ respectively, with signature matrices

Mh′ =




0 0 0 1
0 v 1 0
0 1 0 0
1 0 0 0


 and Mh′′ =




0 0 0 1
0 0 1 0
0 1 v 0
1 0 0 0


 .

The gadget in Figure 8b, with h′ assigned to the circle vertex, h′′ assigned to the
triangle vertex, and 6=2 assigned to the square vertices, has a signature r with signature
matrix

Mr =Mh′




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


Mh′′ =




0 0 0 1
0 v v2 + 1 0
0 1 v 0
1 0 0 0


 .

Note that the effect of the 6=2 signatures is to reverse all four rows of Mh′′ before
multiplying it to the right of Mh′ . Although this signature matrix is not redundant,
every entry of Hamming weight 2 is nonzero since v is positive.

Now we claim that we can use r to interpolate the following signature r′, for any
nonzero value t ∈ C, via the construction in Figure 9. Define p± = (v ±

√
v2 + 4)/2,

P =
[

1 1
p+ p−

]
, and T = P

[
t 0
0 t−1

]
P−1 where t ∈ C is any nonzero value. The signature
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N1 N2

Ns

Ns+1

Fig. 9: Recursive construction to interpolate a signature r′ that is only
a rotation away from having a redundant signature matrix and nonsin-
gular compressed matrix. The circles are assigned r and the squares are
assigned 6=2.

matrix of the target signature r′ is

(9) Mr′ =




0 0 0 1
0

T
0

0 0
1 0 0 0


 .

Consider an instance Ω of Holant ( 6=2 | F ∪ {r′}) with r ∈ F . Suppose that r′ ap-
pears n times in Ω. We construct from Ω a sequence of instances Ωs of Holant (6=2 | F)
indexed by s ≥ 1. We obtain Ωs from Ω by replacing each occurrence of r′ with the
gadget Ns in Figure 9 with r assigned to the circle vertices and 6=2 assigned to the
square vertices. In Ωs, the edge corresponding to the ith significant index bit of Ns

connects to the same location as the edge corresponding to the ith significant index
bit of r′ in Ω.

The signature matrix of Ns is the sth power of the matrix obtained fromMr after
reversing all rows, and then switching the first and last rows of the final product,
namely




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0







1 0 0 0
0 1 v 0
0 v v2 + 1 0
0 0 0 1




s

=




0 0 0 1
0 1 v 0
0 v v2 + 1 0
1 0 0 0







1 0 0 0
0 1 v 0
0 v v2 + 1 0
0 0 0 1




s−1

.

The twist of the two input edges on the left side for the first copy of Mr switches
the middle two rows, which is equivalent to a total reversal of all rows, followed by
the switching of the first and last rows. The total reversals of rows for all subsequent
s− 1 copies of Mr are due to the presence of 6=2 signatures.

After such reversals of rows, it is clear that the matrix is a direct sum of block
matrices indexed by {00, 11} × {00, 11} and {01, 10} × {10, 01}. Furthermore, in
the final product, the block indexed by {00, 11} × {00, 11} is [ 0 1

1 0 ]. Thus in the
gadget Ns, the only entries of MNs that vary with s are the four entries in the

middle. These middle four entries of MNs form the 2-by-2 matrix
[ 1 v
v v2+1

]s
. Since

[
1 v
v v2+1

]
= P

[
λ+ 0
0 λ−

]
P−1, where λ± = (v2 + 2 ± v

√
v2 + 4)/2 are the eigenvalues,
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we have [
1 v
v v2 + 1

]s
= P

[
λs+ 0
0 λs−

]
P−1.

The determinant is λ+λ− = 1, so the eigenvalues are nonzero. Since v is positive, the
ratio of the eigenvalues λ+/λ− is not a root of unity, so neither λ+ nor λ− is a root
of unity.

Now we determine the relationship between HolantΩ and HolantΩs . We can view
our construction of Ωs as first replacing Mr′ with




1 0 0 0
0

P
0

0 0
0 0 0 1







0 0 0 1
0 t 0 0
0 0 t−1 0
1 0 0 0







1 0 0 0
0

P−1 0
0 0
0 0 0 1


 ,

which does not change the Holant value, and then replacing the new signature matrix
in the middle with the signature matrix




0 0 0 1
0 λs+ 0 0
0 0 λs− 0
1 0 0 0


 .

We stratify the assignments in Ωs based on the assignments to the n occurrences
of the signature matrix

(10)




0 0 0 1
0 t 0 0
0 0 t−1 0
1 0 0 0


 .

The inputs to this matrix are from {0, 1}2 × {0, 1}2, which correspond to the four
input bits. Recall the way rows and columns of a signature matrix are ordered from
Definition 33. Thus, e.g., the entry t corresponds to the cyclic input bit pattern 0110
in counterclockwise order. We only need to consider the assignments that assign

• i many times the bit pattern 0110,
• j many times the bit pattern 1001, and
• k many times the bit patterns 0011 or 1100,

since any other assignment contributes a factor of 0. Let cijk be the sum over all
such assignments of the products of evaluations of all signatures in Ωs except for (10).
Then

HolantΩ =
∑

i+j+k=n

ti−jcijk

and the value of the Holant on Ωs, for s ≥ 1, is

HolantΩs =
∑

i+j+k=n

λsi+λ
sj
− cijk =

∑

i+j+k=n

λ
s(i−j)
+ cijk.

This Vandermonde system does not have full rank. However, we can define for −n ≤
ℓ ≤ n,

c′ℓ =
∑

i−j=ℓ
i+j+k=n

cijk.
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Then the Holant of Ω is
HolantΩ =

∑

−n≤ℓ≤n

tℓc′ℓ

and the Holant of Ωs is

HolantΩs =
∑

−n≤ℓ≤n

λsℓ+ c
′
ℓ.

Now this Vandermonde has full rank because λ+ is neither 0 nor a root of unity.
Therefore, we can solve for the unknowns c′ℓ and obtain the value of HolantΩ. This
completes our claim that we can interpolate the signature r′ in (9), for any nonzero
t ∈ C.

Let t = (
√
v2 + 8 +

√
v2 + 4)/2 so t−1 = (

√
v2 + 8 −

√
v2 + 4)/2. Let a =

(
√
v2 + 8− v)/2 and b = (

√
v2 + 8 + v)/2, so ab = 2 6= 0. One can verify that

P

[
t 0
0 t−1

]
P−1 =

[
a 1
1 b

]
.

Thus, the signature matrix for r′ is

Mr′ =




0 0 0 1
0 a 1 0
0 1 b 0
1 0 0 0


 .

After a counterclockwise rotation of 90◦ on the edges of r′, we have a signature r′′

with a redundant signature matrix

Mr′′ =




0 0 0 a
0 1 1 0
0 1 1 0
b 0 0 0


 .

Its compressed signature matrix

M̃r′′ =



0 0 a
0 2 0
b 0 0




is nonsingular. After a holographic transformation by Z−1, where Z = 1√
2

[
1 1
i −i

]
, the

binary disequality (6=2) = [0, 1, 0] is transformed to the binary equality (=2) = [1, 0, 1].
Thus the problem Holant ([0, 1, 0] | r′′) is transformed to Holant

(
=2 | Z⊗4r′′

)
, which

is the same as Holant(Z⊗4r′′). We conclude that this Holant problem is #P-hard by
Corollary 40.

7. Vanishing Signatures Revisited. With Corollary 38, Corollary 40, and
Lemma 43 in hand, we revisit the vanishing signatures to determine what signatures
combine with them to give #P-hardness. We begin with unary signatures and their
tensor powers.

Lemma 44. Let f ∈ V σ be a symmetric signature of arity n with rdσ(f) = d ≥ 2
where σ ∈ {+,−}. Suppose v = u⊗m is a symmetric degenerate signature for some
unary signature u and some integer m ≥ 1. If u is not a multiple of [1, σi], then
Holant(f, v) is #P-hard.
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Proof. We consider σ = + since the other case is similar. Since f ∈ V +, we have
n > 2d ≥ 4. Under a holographic transformation by Z, we have

Holant(f, v) ≡ Holant
(
6=2 | f̂ , [a, b]⊗m

)
,

where f̂ =
(
Z−1

)⊗n
f and [a, b]⊗m =

(
Z−1

)⊗m
v with b 6= 0 since u is not a multiple

of [1, i]. Moreover, f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0] with f̂d 6= 0 by Lemma 30.

We get f̂ ′ = [f̂d−2, f̂d−1, f̂d, 0, . . . , 0] of arity n− 2d+4 by d− 2 self-loops via 6=2

on f̂ . This is a signature on the right side in Holant (· | ·) notation. With two more
self-loops, we get [1, 0]⊗n−2d, also on the right.

We claim that we can use [1, 0]⊗n−2d and [a, b]⊗m to create [a, b]⊗n−2d. Let
t = gcd(m,n− 2d). If n− 2d > m, then we connect [a, b]⊗m to [1, 0]⊗n−2d via 6=2 to
get [1, 0]⊗n−2d−m up to a nonzero factor b 6= 0. We repeat this process until we get a
tensor power [1, 0]⊗ℓ for some ℓ ≤ m. We can do a similar construction if m > n− 2d.
Repeat this process, which is a subtractive Euclidean algorithm. Halt upon getting
both [1, 0]⊗t and [a, b]⊗t. Then we combine n−2d

t copies of [a, b]⊗t to get [a, b]⊗n−2d.

Now connecting [a, b]⊗n−2d back to f̂ ′ via 6=2, gives f̂ ′′ = [f̂ ′′
0, f̂

′′
1, f̂

′′
2, 0, 0] of

arity 4. Moreover, f̂ ′′
2 = bn−2df̂d 6= 0. Notice that Holant(6=2 | [f̂ ′′

0, f̂
′′
1, f̂

′′
2, 0, 0]) ≡

Holant(6=2 | [0, 0, 1, 0, 0]), the Eulerian Orientation problem over planar 4-regular
graphs, (see Section 4.3) which is #P-hard by Theorem 36. Thus, Holant(f, v) is
#P-hard.

Next we consider binary signatures.

Lemma 45. Let f ∈ V σ be a symmetric non-degenerate signature where σ ∈
{+,−}. Suppose g is a non-degenerate binary signature. If g 6∈ Rσ

2 , then Holant(f, g)
is #P-hard.

Proof. We consider σ = + since the other case is similar. A unary signature
is degenerate. If f is binary, then vd+(f) > 1. Hence vd+(f) ≥ 2, and so f is
degenerate. Since f is non-degenerate, arity(f) ≥ 3. Under a Z transformation,

Holant(f, g) ≡ Holant
(
6=2 | f̂ , ĝ

)
,

where f̂ =
(
Z−1

)⊗n
f and ĝ =

(
Z−1

)⊗2
g. Since g 6∈ R

+
2 , we may assume that

ĝ = [a, b, 1] by Lemma 30 with a nonzero ĝ2 entry. Moreover since g is non-degenerate,
so is ĝ, and b2 6= a.

We prove the lemma by induction on the arity of f . There are two base cases,
arity(f) = 3 and arity(f) = 4. However, the arity 3 case is easily reduced to the
arity 4 case. We show this first, and then show that the lemma holds in the arity 4
case.

Assume arity(f) = 3. Since f ∈ V +, we have rd+(f) < 3/2, thus f ∈ R
+
2 .

However f is non-degenerate, rd+(f) > 0, and so rd+(f) = 1 and vd+(f) = 2. By

Lemma 30, f̂ = [t, 1, 0, 0] for some t.
We connect two copies of f together by one edge to get an arity 4 signature f ′. By

construction, it may not appear that f ′ is a symmetric signature. However, we show
that f ′ is in fact symmetric, non-degenerate, and vanishing. It is clearly a vanishing
signature, since f is vanishing. Equivalently this is to connect two f̂ = [t, 1, 0, 0]
together via a 6=2. It is the gadget in Figure 10. One can verify that the resulting
signature is f̂ ′ = [2t, 1, 0, 0, 0]. The crucial observation is that it takes the same value
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Fig. 10: The circles are assigned [t, 1, 0, 0] and the square is assigned 6=2.

Fig. 11: A sequence of binary gadgets that forms another binary gadget.
The circles are assigned [v, 1, 0], the squares are assigned 6=2, and the
triangle is assigned [a, b, 1].

0 on inputs 1010 and 1100, where the left two bits are input to one copy of f and the
right two bits are for another. The corresponding signature f ′ is non-degenerate with
rd+(f ′) = 1 and vanishing. Thus we reduce to the arity 4 case.

Next we consider the base case of arity(f) = 4. Since f ∈ V +, we have vd+(f) > 2
and rd+(f) < 2. Since f is non-degenerate, we have rd+(f) 6= −1, 0. Hence rd+(f) =
1 and vd+(f) = 3. By Lemma 30, f̂ = [t, 1, 0, 0, 0] for some t. We will work in the Z
basis henceforth.

Our next goal is to show that we can realize a signature of the form [c, 0, 1] with
c 6= 0. If b = 0, then ĝ is what we want since in this case a = a− b2 6= 0.

Now we assume b 6= 0. By connecting ĝ to f̂ via 6=2, we get [t + 2b, 1, 0]. If
t 6= −2b, then by Lemma 65, we can interpolate any binary signature of the form
[v, 1, 0]. Otherwise t = −2b. Then we connect two copies of ĝ via 6=2, and get

ĝ′ = [2ab, a + b2, 2b]. By connecting this ĝ′ to f̂ via 6=2, we get [2(a − b2), 2b, 0],
using t = −2b. Since a 6= b2 and b 6= 0, we can once again interpolate any [v, 1, 0] by
Lemma 65.

Hence, we have the signature [v, 1, 0], where v ∈ C is for us to choose. We
construct the gadget in Figure 11 with the circles assigned [v, 1, 0], the squares assigned
6=2, and the triangle assigned [a, b, 1]. The resulting gadget has signature [a + 2bv +
v2, b+ v, 1], which can be verified by the matrix product

[
v 1
1 0

] [
0 1
1 0

] [
a b
b 1

] [
0 1
1 0

] [
v 1
1 0

]
=

[
a+ 2bv + v2 b+ v

b+ v 1

]
.

By setting v = −b, we get [c, 0, 1], where c = a− b2 6= 0.
With this signature [c, 0, 1], we construct the gadget in Figure 12, where [c, 0, 1]

is assigned to the circle vertex of arity two in Figure 12b and f̂ is assigned to the four
circle vertices of arity four in Figure 12a. We get a signature

ĥ = [3c2 + 6ct2 + t4, 3ct+ t3, c+ t2, t, 1].

We note that this computation is reminiscent of matchgate signatures. The internal
edge function [1, 0, c] (which is a flip from [c, 0, 1] since both sides are connected to

6=2) is a generalized equality signature, and the signature f̂ on the four circle vertices
is a weighted version of the matching function At-Most-One. Also note that this
computation generalizes a very similar one in Lemma 41, in which c = 1.
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(a) The tetrahedron gadget with edge
signatures given in (b).

(b) The gadget representing an edge
labeled by a triangle in (a).

Fig. 12: The tetrahedron gadget with each triangle replaced by the edge
in (b), where the circle is assigned [c, 0, 1] and the squares are assigned
6=2. The four circles in (a) are assigned [t, 1, 0, 0, 0].

The compressed signature matrix of ĥ is

M̃ĥ =



3c2 + 6ct2 + t4 2(3ct+ t3) c+ t2

3ct+ t3 2(c+ t2) t
c+ t2 2t 1




and its determinant is 4c3 6= 0. Thus M̃ĥ is nonsingular. After a holographic trans-
formation by Z−1, where Z = 1√

2

[
1 1
i −i

]
, the binary disequality (6=2) = [0, 1, 0] is

transformed to the binary equality (=2) = [1, 0, 1]. Thus Holant([0, 1, 0] | ĥ) is trans-
formed to Holant(=2 | Z⊗4ĥ), which is the same as Holant(Z⊗4ĥ). Then we are done
by Corollary 40.

Now we do the induction step. Assume f is of arity n ≥ 5. Since f is non-
degenerate, rd+(f) ≥ 1. If rd+(f) = 1, then we connect the binary g to f to get
f ′ = 〈f, g〉. We have noted that rd+(g) = 2, so vd+(g) = 0. By Lemma 27, we have
rd+(f ′) = 1 and arity(f ′) = n−2 ≥ 3. Thus f ′ is vanishing. Also f ′ is non-degenerate,
for otherwise let f ′ = [a, b]⊗(n−2). If [a, b] is a multiple of [1, i], then rd+(f ′) ≤ 0,
which is false. If [a, b] is not a multiple of [1, i], then it can be directly checked that
f ′ 6∈ R

+
n−2, and rd+(f ′) = n− 2 > 1, which is also false. Hence f ′ is a non-degenerate

vanishing signature of arity n− 2, so we are done by induction hypothesis.
Now suppose rd+(f) = t ≥ 2. Since f is non-degenerate, it is certainly nonzero.

Since it is vanishing, certainly vd+(f) > 0. Hence we can apply Lemma 28. Let f ′

be obtained from f by a self loop. Then rd+(f ′) = t − 1 ≥ 1 and arity(f ′) = n − 2.
Clearly f ′ is still vanishing. We claim that f ′ is non-degenerate. This follows using
the same argument as above. If f ′ were degenerate, then either rd+(f ′) ≤ 0 or
rd+(f ′) = arity(f ′), which would contradict f ′ being a vanishing signature. Therefore,
we can apply the induction hypothesis.

Finally, we consider a pair of vanishing signatures of opposite type, both of arity
at least 3. We show that opposite types of vanishing signatures cannot mix. In
other words, vanishing signatures of opposite types, when put together, lead to #P-
hardness.
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Lemma 46. If f ∈ V + and g ∈ V − be two symmetric non-degenerate signatures
of arities ≥ 3, then Holant(f, g) is #P-hard.

Proof. Suppose rd+(f) = d, rd−(g) = d′, arity(f) = n and arity(g) = n′, then
2d < n and 2d′ < n′. Under a holographic transformation by Z =

[
1 1
i −i

]
, we have

that

Holant (=2 | f, g) ≡T Holant
(
6=2 | f̂ , ĝ

)
,

where f̂ := (Z−1)⊗nf = [f̂0, . . . , f̂d, 0, . . . , 0] and ĝ := (Z−1)⊗n′

g = [0, . . . , 0, ĝd′ , . . . , ĝ0]

due to Lemma 30. Moreover f̂d 6= 0 and ĝd′ 6= 0.
If d ≥ 2, we can do d′ many self-loops of 6=2 on ĝ, getting ĝ′ := [0, . . . , 0, ĝd′]

of arity n′ − 2d′ ≥ 1. Thus g′ := Z⊗(n′−2d′)ĝ′ = [1,−i]⊗(n′−2d′) up to a nonzero
constant. We apply Lemma 44 to derive that Holant(f, g) is #P-hard. If d′ ≥ 2,
we can similarly get [1, i]⊗(n−2d) and apply Lemma 44. Thus we can assume that
d = d′ = 1.

So up to nonzero constants, we have f̂ = [a, 1, 0, . . . , 0] and ĝ = [0, . . . , 0, 1, b] for
some a, b ∈ C. If a = b = 0, then we apply Lemma 43 to conclude #P-hardness.

We may thus assume that a 6= 0. The case of b 6= 0 is similar. We show that it
is always possible to get two such signatures of the same arity min{n, n′}. Suppose

n > n′. We will construct [0, 1]⊗(n−n′). Connecting it back to f̂ via 6=2, we get a

symmetric signature of arity n′ consisting of the first n′ + 1 entries of f̂ . A similar
proof works when n′ > n.

We form a loop from f̂ via 6=2. It is easy to see that this signature is the degenerate
signature 2[1, 0]⊗(n−2). Similarly, we can form a loop from ĝ and can get 2[0, 1]⊗(n′−2).
Thus we have both [1, 0]⊗(n−2) and [0, 1]⊗(n′−2). We can connect all n′ − 2 edges of
the second to the first, connected by 6=2. This gives us [1, 0]⊗(n−n′). Similarly to
this connection, connect (n − n′) many [0, 1]⊗(n′−2) to n′ − 3 many [1, 0]⊗(n−n′). As
(n− n′)(n′ − 2)− (n− n′)(n′ − 3) = n− n′, the resulting signature is [0, 1]⊗(n−n′).

Thus we may assume n = n′. Connecting [0, 1]⊗(n−2) to f̂ = [a, 1, 0, . . . , 0] via 6=2

we get ĥ = [a, 1, 0]. Recall that a 6= 0. Translating this back by Z, we have a binary
signature h /∈ R

−
2 . Since g ∈ V −, by Lemma 45, Holant(g, h) is #P-hard. Hence

Holant(f, g) is also #P-hard.

8. A - and P-transformable Signatures. In this section, we investigate the
properties of A - and P-transformable signatures. Throughout, we define α = 1+i√

2
=

√
i = e

πi
4 and use O2(C) to denote the group of 2-by-2 orthogonal matrices over

C. Recall that F123 = F1 ∪ F2 ∪ F3, where F1, F2, and F3 are defined in Sec-
tion 2.4. While the main results in this section assume that the signatures involved
are symmetric, we note that some of the lemmas also hold without this assumption.

8.1. Characterization of A - and P-transformable Signatures. Recall
that by definition, if a set of signatures F is A -transformable (resp. P-transformable),
then the binary equality =2 must be simultaneously transformed into A (resp. P)
along with F . We first characterize the possible matrices of such a transformation
by just considering the transformation of the binary equality. While there are many
binary signatures in A ∪P, it turns out that it is sufficient to consider only three
signatures.

Proposition 47. Let T ∈ C2×2 be a matrix. Then the following hold:
1. [1, 0, 1]T⊗2 = [1, 0, 1] iff T ∈ O2(C);
2. [1, 0, 1]T⊗2 = [1, 0, i] iff there exists an H ∈ O2(C) such that T = H [ 1 0

0 α ];
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3. [1, 0, 1]T⊗2 = [0, 1, 0] iff there exists an H ∈ O2(C) such that T = 1√
2
H
[
1 1
i −i

]
.

Proof. Case 1 is clear since

[1, 0, 1]T⊗2 = [1, 0, 1] ⇐⇒ T ⊺I2T = I2 ⇐⇒ T ⊺T = I2,

the definition of a (2-by-2) orthogonal matrix. Now we use this case to prove the
others.

For M2 = [ 1 0
0 α ] and M3 = Z = 1√

2

[
1 1
i −i

]
, let Tj = HMj (for j = 2, 3), where

H ∈ O2(C). Then

[1, 0, 1]T⊗2
j = [1, 0, 1](HMj)

⊗2 = [1, 0, 1]M⊗2
j = fj ,

where fj is the binary signature in case j.
On the other hand, suppose that [1, 0, 1](Tj)

⊗2 = fj . Then we have

[1, 0, 1](TjM
−1
j )⊗2 = fj(M

−1
j )⊗2 = [1, 0, 1],

so H = TjM
−1
j ∈ O2(C) by case 1. Thus Tj = HMj as desired.

We also need the following lemma; the proof is direct.

Lemma 48. If a symmetric signature f = [f0, f1, . . . , fn] can be expressed in the
form f = a[1, λ]⊗n + b[1, µ]⊗n, for some a, b, λ, µ ∈ C, then the fk’s satisfy the
recurrence relation fk+2 = (λ+ µ)fk+1 − λµfk for 0 ≤ k ≤ n− 2.

To simplify the proof of the characterization of the A -transformable signatures,
we introduce the left and right stabilizer groups of A :

LStab(A ) = {T ∈ GL2(C) | TA ⊆ A };
RStab(A ) = {T ∈ GL2(C) | A T ⊆ A }.

In fact, these two groups are equal and coincide with the group of nonsingular sig-
nature matrices of binary affine signatures. More precisely, for a binary signature
f = (f00, f01, f10, f11), we define its signature matrix Mf to be

Mf =

[
f00 f01

f10 f11

]
.

Let
A

2×2 = {Mf | f ∈ A , arity(f) = 2, and det(Mf ) 6= 0}
be the set of nonsingular signature matrices of the binary affine signatures. It is
straightforward to verify that A 2×2 is closed under multiplication and inverses. There-
fore A 2×2 forms a group.

Let D = [ 1 0
0 i ] and H2 = 1√

2

[
1 1
1 −1

]
. Also let X = [ 0 1

1 0 ] and Z = 1√
2

[
1 1
i −i

]
. Note

that Z = DH2 and that D2Z = 1√
2

[
1 1
−i i

]
= ZX , hence X = Z−1D2Z. Furthermore,

D,H2, X, Z ∈ LStab(A ) ∩RStab(A ) ∩A 2×2, as well as all nonzero scalar multiples
of these matrices.

Not only are the groups LStab(A ), RStab(A ), and A 2×2 equal, they are gener-
ated by D and H2 with a nonzero scalar multiple.

Lemma 49. LStab(A ) = RStab(A ) = A 2×2 = C∗ · 〈D,H2〉.
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Proof. Let

S := {S ∈ GL2(C) | F123S ⊆ F123}

be the right stabilizer group of F123. Since F123 ⊂ A , and symmetric signatures are
still symmetric under any transformation, we have that RStab(A ) ⊆ S. Moreover,
as A is closed under gadget construction, A 2×2 ⊆ RStab(A ). Hence, A 2×2 ⊆
RStab(A ) ⊆ S. Together with the fact that D,H2 ∈ A 2×2, we have C∗ · 〈D,H2〉 ⊆
A 2×2 ⊆ RStab(A ) ⊆ S. To finish the proof, we show that S ⊆ C

∗ · 〈D,H2〉. For
LStab(A ), the proof is similar.

Consider some T ∈ S. For f = (=3), we have fT⊗3 ∈ F123. Then by the form
of F123, for some M ∈ 〈D,H2〉, chosen to be either I, or H⊺

2 = H2, or Z
⊺ = H2D,

we have f(TM−1)⊗3 ∈ F1, which is a generalized equality signature. Then either
TM−1 or TM−1X is a diagonal matrix T ′ = λ [ 1 0

0 d ]. Furthermore, by applying T ′ to
=4, we conclude that (=4)T

′⊗4 ∈ F1, since it is in F123 but not in F2 ∪F3 because
T ′ is diagonal. It follows that d is a power of i, and hence [ 1 0

0 d ] is a power of D. Thus
T ∈ C

∗ · 〈D,H2〉.
Since LStab(A ) = RStab(A ), we simply write Stab(A ) for this group. Of course

each T under which F is A -transformable is just a particular solution that can be
extended by any element in Stab(A ).

Lemma 50. Let F be a set of signatures. Then F is A -transformable under T
iff F is A -transformable under any T ′ ∈ T Stab(A ).

Proof. Sufficiency is trivial since I2 ∈ Stab(A ). If F is A -transformable under
T , then by definition, we have (=2)T

⊗2 ∈ A and F ′ = T−1F ⊆ A . Let T ′ = TM ∈
T Stab(A ) for any M ∈ Stab(A ). It then follows that (=2)T

′⊗2 = (=2)T
⊗2M⊗2 ∈

AM = A and T ′−1F = M−1F ′ ⊆ M−1A = A . Therefore F is A -transformable
under any T ′ ∈ T Stab(A ).

After restricting by Proposition 47 and normalizing by Lemma 50, one only needs
to check a small subset of GL2(C) to determine if F is A -transformable.

Lemma 51. Let F be a set of signatures. Then F is A -transformable iff there
exists an H ∈ O2(C) such that F ⊆ HA or F ⊆ H [ 1 0

0 α ]A .

Proof. Sufficiency is easily verified by checking that =2 is transformed into A in
both cases. In particular, H leaves =2 unchanged.

If F is A -transformable, then by definition, there exists a matrix T such that
(=2)T

⊗2 ∈ A and T−1F ⊆ A . Since =2 is non-degenerate and symmetric, (=2

)T⊗2 ∈ A is equivalent to (=2)T
⊗2 ∈ F123.

Any signature in F123 is expressible as c(v⊗n
1 + itv⊗n

2 ), where t ∈ {0, 1, 2, 3} and
(v1, v2) is a pair of vectors in the set

{([
1
0

]
,

[
0
1

])
,

([
1
1

]
,

[
1
−1

])
,

([
1
i

]
,

[
1
−i

])}
.

We use Stab(A ) to further normalize these three sets by Lemma 50. In particular,
F1 = H2F2 and F1 = (DH2)

−1F3. Furthermore, the binary signatures in F1 are
just the four signatures [1, 0, 1], [1, 0, i], [1, 0,−1], and [1, 0,−i] up to a scalar. We also
normalize these four as [1, 0, 1] = [1, 0,−1]D⊗2 and [1, 0, i] = [1, 0,−i]D⊗2. Hence F
being A -transformable implies that there exists a matrix T such that (=2)T

⊗2 ∈
{[1, 0, 1], [1, 0, i]} and T−1F ⊆ A . Now we apply Proposition 47.
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1. If (=2)T
⊗2 = [1, 0, 1], then by case 1 of Proposition 47, we have T ∈ O2(C).

Therefore F ⊆ HA where H = T ∈ O2(C).
2. If (=2)T

⊗2 = [1, 0, i], then by case 2 of Proposition 47, there exists an H ∈
O2(C) such that T = H [ 1 0

0 α ]. Therefore F ⊆ TA = H [ 1 0
0 α ]A where

H ∈ O2(C).
This completes the proof.

Using these two lemmas, we can characterize all A -transformable signatures. We
first define the three sets A1, A2, and A3.

Definition 52. A symmetric signature f of arity n is in A1 if there exists an

H ∈ O2(C) and a nonzero constant c ∈ C such that f = cH⊗n
(
[ 11 ]

⊗n
+ β

[
1
−1

]⊗n
)
,

where β = αtn+2r for some r ∈ {0, 1, 2, 3} and t ∈ {0, 1}.

When such an H exists, we say that f ∈ A1 with transformation H . If f ∈ A1

with I2, then we say f is in the canonical form of A1. If f is in the canonical form
of A1, then by Lemma 48, for any 0 ≤ k ≤ n− 2, we have fk+2 = fk and one of the
following holds:

• f0 = 0, or
• f1 = 0, or
• f1 = ±if0 6= 0, or
• n is odd and f1 = ±(1±

√
2)if0 6= 0 (all four sign choices are permissible).

Notice that when n is odd and t = 1 in Definition 52, it has some complication as
described by the factor αtn+2r .

Definition 53. A symmetric signature f of arity n is in A2 if there exists an

H ∈ O2(C) and a nonzero constant c ∈ C such that f = cH⊗n
(
[ 1i ]

⊗n
+
[

1
−i

]⊗n
)
.

Similarly, when such an H exists, we say that f ∈ A2 with transformation H . If
f ∈ A2 with I2, then we say f is in the canonical form of A2. If f is in the canonical
form of A2, then by Lemma 48, for any 0 ≤ k ≤ n− 2, we have fk+2 = −fk. Since f
is non-degenerate, f1 6= ±if0 is implied.

It is worth noting that {[ 1i ] ,
[

1
−i

]
} is setwise invariant up to scale under any trans-

formation in O2(C) up to nonzero constants. That is, these vectors are the eigenvec-

tors of orthogonal matrices. Thus for anyH ∈ O2(C), we can write
[
1 1
i −i

]−1
H
[
1 1
i −i

]
=

D, where D is either a diagonal or anti-diagonal matrix. It is also helpful to view this
equation as H

[
1 1
i −i

]
=
[
1 1
i −i

]
D.

Using this fact, the following lemma gives a characterization of A2. It says that
any signature in A2 is essentially in canonical form.

Lemma 54. Let f be a symmetric signature of arity n. Then f ∈ A2 iff f =

c
(
[ 1i ]

⊗n
+ β

[
1
−i

]⊗n
)
for some nonzero constants c, β ∈ C.

Proof. Assume that f = c
(
[ 1i ]

⊗n
+ β

[
1
−i

]⊗n
)

for some c, β 6= 0. Consider

the orthogonal transformation H =
[
a b
b −a

]
, where a = 1

2

(
β

1
2n + β− 1

2n

)
and b =

1
2i

(
β

1
2n − β− 1

2n

)
. We pick a and b in this way so that a+ bi = β

1
2n , a− bi = β− 1

2n ,
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and (a+ bi)(a− bi) = a2 + b2 = 1. Also
(

a+bi
a−bi

)n
= β. Then

H⊗nf = c

([
a+ bi
−ai+ b

]⊗n

+ β

[
a− bi
ai+ b

]⊗n
)

= c

(
(a+ bi)n

[
1
−i

]⊗n

+ (a− bi)nβ
[
1
i

]⊗n
)

= c
√
β

([
1
−i

]⊗n

+

[
1
i

]⊗n
)
,

so f can be written as

f = c
√
β(H−1)⊗n

([
1
i

]⊗n

+

[
1
−i

]⊗n
)
.

Therefore f ∈ A2.

On the other hand, the desired form f = c([ 1i ]
⊗n

+β
[

1
−i

]⊗n
) follows from the fact

that {[ 1i ] ,
[

1
−i

]
} is fixed setwise under any orthogonal transformation up to nonzero

constants.

Definition 55. A symmetric signature f of arity n is in A3 if there exists an

H ∈ O2(C) and a nonzero constant c ∈ C such that f = cH⊗n
(
[ 1α ]

⊗n
+ ir

[
1

−α

]⊗n
)

for some r ∈ {0, 1, 2, 3}.
Again, when such an H exists, we say that f ∈ A3 with transformation H . If

f ∈ A3 with I2, then we say f is in the canonical form of A3. If f is in the canonical
form of A3, then by Lemma 48, for any 0 ≤ k ≤ n− 2, we have fk+2 = ifk and one
of the following holds:

• f0 = 0, or
• f1 = 0, or
• f1 = ±αif0 6= 0.

Now we characterize the A -transformable signatures.

Lemma 56. Let f be a non-degenerate symmetric signature. Then f is A -trans-
formable iff f ∈ A1 ∪A2 ∪A3.

Proof. Assume that f is A -transformable of arity n. By applying Lemma 51
to {f}, there exists an H ∈ O2(C) such that f ∈ HA or f ∈ H [ 1 0

0 α ]A . This is
equivalent to (H−1)⊗nf ∈ A or (H−1)⊗nf ∈ [ 1 0

0 α ]A . Since f is non-degenerate and
symmetric, we can replace A in the previous expressions with F123. Now we consider
all possible cases. Let f̂ = (H−1)⊗nf .

1. If f̂ ∈ F1, then T
⊗nf̂ is in the canonical form of A1, where T = 1√

2

[
1 1
1 −1

]
∈

O2(C).

2. If f̂ ∈ F2, then f̂ is already in the canonical form of A1. Let T = I2 in this
case.

3. If f̂ ∈ F3, then f̂ already has the equivalent form of A2 given by Lemma 54.
Let T = I2 in this case.

4. If f̂ ∈ [ 1 0
0 α ]F1, then T⊗nf̂ is in the canonical form of A1, where T =

1√
2

[
1 1
1 −1

]
∈ O2(C).
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5. If f̂ ∈ [ 1 0
0 α ]F2, then f̂ is already in the canonical form of A3. Let T = I2 in

this case.
6. If f̂ ∈ [ 1 0

0 α ]F3, then f̂ has the form
[

1
α3

]⊗n
+ ir

[
1

−α3

]⊗n
, and T⊗nf̂ is in

the canonical form of A3, where T =
[
0 −1
1 0

]
∈ O2(C). To see this,

[
0 −1
1 0

]⊗n
([

1
α3

]⊗n

+ ir
[

1
−α3

]⊗n
)

=

[
−α3

1

]⊗n

+ ir
[
α3

1

]⊗n

=
(
−α3

)n
([

1
− 1

α3

]⊗n

+ (−1)nir
[
1
1
α3

]⊗n
)

=
(
−α3

)n
([

1
α

]⊗n

+ i2n+r

[
1
−α

]⊗n
)
.

Let f̂ ′ = T⊗nf̂ , where T ∈ O2(C) is given in each case. Then f̂ ′ is f after an

orthogonal transformation TH−1. As shown above, f̂ ′ is in the canonical form of A1

or A3, or is in the equivalent form of A2 by Lemma 54. Hence f ∈ A1 ∪A2 ∪A3.
Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of

the canonical forms of A1, A2, or A3, then one can directly check that f is A -
transformable. In fact, transformations we applied above are all invertible.

We also have a similar characterization for P-transformable signatures. We define
the stabilizer group of P similar to Stab(A ). It is easy to see the left and right
stabilizers coincide, which we denote by Stab(P). Furthermore, Stab(P) is generated
by nonzero scalar multiples of matrices of the form [ 1 0

0 ν ] for any nonzero ν ∈ C and
X = [ 0 1

1 0 ].

Lemma 57. Let F be a set of signatures. Then F is P-transformable iff there
exists an H ∈ O2(C) such that F ⊆ HP or F ⊆ H

[
1 1
i −i

]
P.

Proof. Sufficiency is easily verified by checking that =2 is transformed into P in
both cases. In particular, H leaves =2 unchanged.

If F is P-transformable, then by definition, there exists a matrix T such that
(=2)T

⊗2 ∈ P and T−1F ⊆ P. The non-degenerate binary signatures in P are
either [0, 1, 0] or of the form [1, 0, ν], up to a scalar. However, notice that [1, 0, 1] =

[1, 0, ν]
[
1 0

0 ν−
1
2

]⊗2

and
[
1 0

0 ν−
1
2

]
∈ Stab(P). Thus, we only need to consider [1, 0, 1]

and [0, 1, 0]. Now we apply Proposition 47.
1. If (=2)T

⊗2 = [1, 0, 1], then by case 1 of Proposition 47, we have T ∈ O2(C).
Therefore F ⊆ HP where H = T ∈ O(C).

2. If (=2)T
⊗2 = [0, 1, 0], then by case 3 of Proposition 47, there exists an H ∈

O2(C) such that T = 1√
2
H
[
1 1
i −i

]
. Therefore F ⊆ H

[
1 1
i −i

]
P where H ∈

O2(C).

We also have similar definitions of the sets P1 and P2.

Definition 58. A symmetric signature f of arity n is in P1 if there exists H ∈
O2(C) and a nonzero constant c ∈ C such that f = cH⊗n

(
[ 11 ]

⊗n
+ β

[
1
−1

]⊗n
)
, where

β 6= 0.

When such an H exists, we say that f ∈ P1 with transformation H . If f ∈ P1

with I2, then we say f is in the canonical form of P1. If f is in the canonical form
of P1, then by Lemma 48, for any 0 ≤ k ≤ n − 2, we have fk+2 = fk. Since f is
non-degenerate, f1 6= ±f0 is implied.
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It is easy to check that A1 ⊂P1. The corresponding definition for P2 coincides
with Definition 53 for A2. In other words, we define P2 = A2.

Now we characterize the P-transformable signatures as we did for the A -trans-
formable signatures in Lemma 56.

Lemma 59. Let f be a non-degenerate symmetric signature. Then f is P-trans-
formable iff f ∈P1 ∪P2.

Proof. Assume that f is P-transformable of arity n. By applying Lemma 57 to
{f}, there exists an H ∈ O2(C) such that f ∈ HP or f ∈ H

[
1 1
i −i

]
P. This is

equivalent to (H−1)⊗nf ∈ P or (H−1)⊗nf ∈
[
1 1
i −i

]
P. Let f̂ = (H−1)⊗nf . It is

sufficient to show that f̂ ∈P1 or P2.
The symmetric signatures in P take the form [0, 1, 0], or [a, 0, . . . , 0, b] = a[1, 0]⊗n+

b[0, 1]⊗n, where ab 6= 0 since f is non-degenerate. Now we consider all possible cases.

1. If f̂ = [0, 1, 0], then f̂ = 1
2i

(
[ 1i ]

⊗2 −
[

1
−i

]⊗2
)
, which is the equivalent form

of P2 = A2 given by Lemma 54.
2. If f̂ = a [ 10 ]

⊗n
+b [ 01 ]

⊗n
, then a further transformation by 1√

2

[
1 1
1 −1

]
∈ O2(C)

puts f̂ into the canonical form of P1.

3. If f̂ =
[
1 1
i −i

]⊗2
[0, 1, 0]T = 2[1, 0, 1] = [ 11 ]

⊗2
+
[

1
−1

]⊗2
, then f̂ is already in

the canonical form of P1.

4. If f̂ =
[
1 1
i −i

]⊗n
(
a [ 10 ]

⊗n
+ b [ 01 ]

⊗n
)
, then f̂ is already of the equivalent form

of P2 = A2 given by Lemma 54.
Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of the

canonical forms of P1 or P2, then one can directly check that f is P-transformable.
In fact, the transformations that we applied above are all invertible.

Combining Lemma 56 and Lemma 59, we have a necessary and sufficient condition
for a single non-degenerate signature to be A - or P-transformable.

Corollary 60. Let f be a non-degenerate signature. Then f is A - or P-
transformable iff f ∈P1 ∪P2 ∪A3.

Notice that our definitions of P1, P2, and A3 each involve an orthogonal transfor-
mation. For any single signature f ∈P1∪P2∪A3, Holant(f) is tractable. However,
this does not imply that Holant(P1), Holant(P2), or Holant(A3) is tractable. One
can check, using Theorem 31, that Holant(P2) is tractable while Holant(P1) and
Holant(A3) are #P-hard.

8.2. Dichotomies when A - or P-transformable Signatures Appear. Our
characterizations of A -transformable signatures in Lemma 56 and P-transformable
signatures in Lemma 59 are up to transformations in O2(C). Since an orthogonal
transformation never changes the complexity of the problem, in the proofs of following
lemmas, we assume any signature in Ai for i = 1, 2, 3, or Pj for j = 1, 2, is already
in the canonical form.

Lemma 61. Let F be a set of symmetric signatures. Suppose F contains a non-
degenerate signature f ∈P1 of arity n ≥ 3. Then Holant(F) is #P-hard unless F is
P-transformable or A -transformable.

Proof. By assumption, for any 0 ≤ k ≤ n− 2, fk+2 = fk and f1 6= ±f0 since f is
not degenerate. We can express f as

f = a0

[
1
1

]⊗n

+ a1

[
1
−1

]⊗n

,
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where a0 = (f0 + f1)/2 and a1 = (f0 − f1)/2. For this f , we can further perform
an orthogonal transformation by H2 = 1√

2

[
1 1
1 −1

]
so that f is transformed into the

generalized equality signature 2n/2[a0, 0, . . . , 0, a1] of arity n, where a0a1 6= 0. By
Lemma 66, we can obtain =4, the arity 4 equality signature. With this signature, we
can realize any equality signature of even arity. Thus, #CSP2(H2F) ≤T Holant(F).

Now we apply Theorem 10, the #CSPd dichotomy, to the set H2F . If this
problem is #P-hard, then Holant(F) is #P-hard as well. Otherwise, this problem
is #CSP2 tractable. Therefore, there exists some T of the form

[
1 0
0 αk

]
, where the

integer k ∈ {0, 1, . . . , 7}, such that TH2F is a subset of A or P.
If TH2F ⊆ P, then we have H2F ⊆ T−1P. Notice that T ∈ Stab(P), so

T−1P = P. Thus, F is P-transformable under this H2 transformation. Otherwise,
TH2F ⊆ A . It is easy to verify that (=2)((TH2)

−1)⊗2 is [1, 0, i−k] ∈ A . Thus, F is
A -transformable under this TH2 transformation.

Lemma 62. Let F be a set of symmetric signatures. Suppose F contains a non-
degenerate signature f ∈P2 of arity n ≥ 3. Then Holant(F) is #P-hard unless F is
P-transformable or A -transformable.

Proof. By assumption, for any 0 ≤ k ≤ n− 2, fk+2 = −fk and f1 6= ±if0 since f
is not degenerate. We can express f as

f = a0

[
1
i

]⊗n

+ a1

[
1
−i

]⊗n

,

where a0 = (f0 + if1)/2 and a1 = (f0 − if1)/2, and a0a1 6= 0. Then under the

holographic transformation Z ′ =

[
a
1/n
0 a

1/n
1

a
1/n
0 i −a

1/n
1 i

]−1

, we have

Z ′⊗nf = (=n) =

[
1
0

]⊗n

+

[
0
1

]⊗n

and

Holant (=2 | F ∪ {f}) ≡T Holant
(
[1, 0, 1](Z ′−1)⊗2 | Z ′F ∪ {Z ′⊗nf}

)

≡T Holant
(
(1− i)a1/n0 a

1/n
1 [0, 1, 0] | Z ′F ∪ {=n}

)
.

Thus, we have a bipartite graph with =n on the right and (6=2) = [0, 1, 0] on the left
up to a nonzero scalar, so all equality signatures of arity a multiple of n are realizable
on the right side. To see this, first notice that we can move equality signatures
from the right side to the left side using the binary disequality because the binary
disequality just reverses signatures (i.e. exchanges the 0 and 1 input bits), which
leaves the equality signatures unchanged. Now we do an induction. Suppose we can
realize the equality =(k−1)n on the right side for some integer k > 1. We create a
new signature on the right using one =(k−1)n and two =n on the right and one =n

on the left. Since n ≥ 3, we can connect one wire of the left =n to each of the three
equality signatures on the right. The remaining wires of the left =n can be connected
arbitrarily to the signatures on the right. The resulting signature is an equality of
arity (k− 1)n+2n− n = kn. Since we have =kn on both sides for any integer k ≥ 1,
#CSPn(Z ′F) ≤T Holant(F).

Now we apply Theorem 10, the #CSPd dichotomy, to the set Z ′F . If this problem
is #P-hard, then Holant(F) is #P-hard as well. Otherwise, this problem is #CSPn
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(a) Vertices assigned [1, αi, i,−α].

(b) Vertices assigned [1, αi, i,−α,−1].

Fig. 13: Constructions to realize [1, 0, i].

tractable. Let ω be a primitive 4n-th root of unity. Then under the holographic
transformation T =

[
1 0
0 ωk

]
for some integer k, TZ ′F is a subset of A or P. If

TZ ′F ⊆P, then we have Z ′F ⊆ T−1P. Notice that T ∈ Stab(P), so T−1P = P.
Thus, F is P-transformable under this Z ′ transformation.

Otherwise, TZ ′F ⊆ A . It is easy to verify that (=2)((TZ
′)−1)⊗2 is [0, 1, 0] ∈ A

up to a scalar. Thus, F is A -transformable under this TZ ′ transformation.

Lemma 63. Let F be a set of symmetric signatures. Suppose F contains a non-
degenerate signature f ∈ A3 of arity n ≥ 3. Then Holant(F) is #P-hard unless F is
A -transformable.

Proof. By assumption, for any 0 ≤ k ≤ n − 2, we have fk+2 = ifk. We can
express f as

f = λ

([
1
α

]⊗n

+ ir
[
1
−α

]⊗n
)
,

for some integer r.
A self loop on f yields f ′, where f ′

k = fk + fk+2 = (1 + i)fk. Thus up to the
constant (1 + i), f ′ is just the first n − 2 entries of f . By doing more self loops, we
eventually obtain a quaternary signature when n is even or a ternary one when n is
odd. There are eight cases depending on the first two entries of f and the parity of n.
However, for any case, we can realize the signature [1, 0, i]. We list them here. (In the
calculations below, we omit certain nonzero constant factors without explanation.)

• [0, 1, 0, i]: Another self loop gives [0, 1]. Connect it back to the ternary to get
[1, 0, i].

• [1, 0, i, 0]: Another self loop gives [1, 0]. Connect it back to the ternary to get
[1, 0, i].

• [1, αi, i,−α]: Another self loop gives [1, αi]. Connect two copies of it to the
ternary to get [1,−α]. Then connect this back to the ternary to finally get
[1, 0, i]. See Figure 13a.

• [1,−αi, i, α]: Same construction as the previous case.
• [0, 1, 0, i, 0]: Another self loop gives [0, 1, 0]. Connect it back to the quaternary

to get [1, 0, i].
• [1, 0, i, 0,−1]: Another self loop gives [1, 0, i] directly.
• [1, αi, i,−α,−1]: Another self loop gives [1, αi, i]. Connect two copies of it

together to get [1,−α,−i]. Connect this back to the quaternary to get [1, 0, i].
See Figure 13b.
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• [1,−αi, i, α,−1]: Same construction as the previous case.
With [1, 0, i] in hand, we can connect three copies to get [1, 0,−i] and four copies

to get [1, 0, 1]. Now we construct a bipartite graph, with F ∪ {=2} on the right side
and [1, 0,−i] on the left, and do a holographic transformation by Z =

[
α 1
−α 1

]
to get

Holant ([1, 0,−i] | F ∪ {f,=2})
≡T Holant

(
[1, 0,−i](Z−1)⊗2 | ZF ∪ {Z⊗nf, Z⊗2(=2)}

)

≡T Holant
(

1
2i [1, 0, 1] | ZF ∪ {[1, 0, . . . , 0, i

k], [1,−i, 1]}
)

≡T Holant
(
ZF ∪ {[1, 0, . . . , 0, ik], [1,−i, 1]}

)
.

Notice that f becomes [1, 0, . . . , 0, ik] where k = r + 2n (after normalizing the first
entry) and =2 becomes [1,−i, 1]. On the other side, [1, 0,−i] becomes [1, 0, 1]. There-
fore, we can construct all equality signatures of even arity using the powers of the
transformed f (by using 4 copies of the transformed f , and connecting pairs of input
wires by =2). Thus, #CSP2(ZF ∪ {[1,−i, 1]}) ≤T Holant(F).

Now we apply Theorem 10, the #CSPd dichotomy, to the set ZF ∪{[1,−i, 1]}. If
this problem is #P-hard, then Holant(F) is #P-hard as well. Otherwise, this problem
is #CSP2 tractable. Therefore, there exists some T of the form

[
1 0
0 αd

]
, where the

integer d ∈ {0, 1, . . . , 7}, such that TZF ∪ {T⊗2[1,−i, 1]} is a subset of A or P.
However, T⊗2[1,−i, 1] can never be in P. Thus TZF ∪ {T⊗2[1,−i, 1]} ⊆ A .

Further notice that if d ∈ {1, 3, 5, 7} in the expression of T , then T⊗2[1,−i, 1] is not in
A . Hence, T must be of the form

[
1 0
0 id

]
, where the integer d ∈ {0, 1, 2, 3}. For such T ,

T⊗2[1,−i, 1] ∈ A , and T−1A = A as T ∈ Stab(A ). Thus, TZF ∪ {T⊗2[1,−i, 1]} ⊆
A simply becomes ZF ⊆ A . Moreover, (=2)(Z

−1)⊗2 is [1, i, 1] ∈ A . Therefore, F
is A -transformable under this Z transformation.

9. The Main Dichotomy. In this section, we prove our main dichotomy theo-
rem. We begin with a dichotomy for a single signature, which we prove by induction
on its arity.

Theorem 64. If f is a non-degenerate symmetric signature of arity at least 3
with complex weights in Boolean variables, then Holant(f) is #P-hard unless f ∈
P1∪P2∪A3 or f is vanishing, in which case the problem is computable in polynomial
time.

Recall that A1 ⊂P1 and A2 = P2, and f ∈P1∪P2∪A3 iff f is A -transformable
or P-transformable by Corollary 60.

Proof. Let the arity of f be n. The base cases of n = 3 and n = 4 are proved in
Theorem 8 and Theorem 42 respectively. Now assume n ≥ 5.

With the signature f , we form a self loop to get a signature f ′ of arity at least 3.
We consider the cases separately whether f ′ is degenerate or not.

• Suppose f ′ = [a, b]⊗(n−2) is degenerate. There are three cases to consider.
1. If a = b = 0, then f ′ is the all zero signature. For f , this means
fk+2 = −fk for 0 ≤ k ≤ n− 2, so f ∈ P2 by Lemma 54, and therefore
Holant(f) is tractable.

2. If a2 + b2 6= 0, then f ′ is nonzero and [a, b] is not a constant multiple of
either [1, i] or [1,−i]. We may normalize so that a2 + b2 = 1. Then the
orthogonal transformation

[
a b
−b a

]
transforms the column vector [a, b] to

[1, 0]. Let f̂ be the transformed signature from f , and f̂ ′ = [1, 0]⊗(n−2)

the transformed signature from f ′.
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Since an orthogonal transformation keeps =2 invariant, this transfor-
mation commutes with the operation of taking a self loop, i.e., f̂ ′ = (f̂)′.
Here (f̂)′ is the function obtained from f̂ by taking a self loop. So

f̂0 + f̂2 = 1 and for every integer 1 ≤ k ≤ n − 2, we have f̂k = −f̂k+2.
With one or more self loops, we eventually obtain either [1, 0] when n
is odd or [1, 0, 0] when n is even. In either case, we connect an appro-

priate number of copies of this signature to f̂ to get a arity 4 signature
ĝ = [f̂0, f̂1, f̂2,−f̂1,−f̂2]. We show that Holant(ĝ) is #P-hard. To see

this, we first compute det(M̃g) = −2(f̂0 + f̂2)(f̂
2
1 + f̂2

2 ) = −2(f̂2
1 + f̂2

2 ),

since f̂0 + f̂2 = 1. Therefore if f̂2
1 + f̂2

2 6= 0, Holant(ĝ) is #P-hard by

Corollary 38. Otherwise f̂2
1 + f̂2

2 = 0, and we consider f̂2 = if̂1 since

the other case is similar. Since f is non-degenerate, f̂ is non-degenerate,
which implies f̂2 6= 0. We can express ĝ as [1, 0]⊗4 − f̂2[1, i]⊗4. Under

the holographic transformation by T =
[
1 (−f̂2)

1/4

0 i(−f̂2)
1/4

]
, we have

Holant (=2 | ĝ) ≡T Holant
(
[1, 0, 1]T⊗2 | (T−1)⊗4ĝ

)

≡T Holant
(
ĥ | =4

)
,

where
ĥ = [1, 0, 1]T⊗2 = [1, (−f̂2)1/4, 0]

and ĝ is transformed by T−1 into the arity 4 equality =4, since

T⊗4

([
1
0

]⊗4

+

[
0
1

]⊗4
)

=

[
1
0

]⊗4

− f̂2
[
1
i

]⊗4

= ĝ.

By Theorem 9′, Holant
(
ĥ | =4

)
is #P-hard as f̂2 6= 0.

3. If a2+b2 = 0 but (a, b) 6= (0, 0), then [a, b] is a nonzero multiple of [1,±i].
Ignoring the constant multiple, we have f ′ = [1, i]⊗(n−2) or [1,−i]⊗(n−2).
We consider the first case since the other case is similar.

In the first case, the characteristic polynomial of the recurrence re-
lation of f ′ is x − i, so that of f is (x − i)(x2 + 1) = (x − i)2(x + i).
Hence there exist a0, a1, and c such that

fk = (a0 + a1k)i
k + c(−i)k

for every integer 0 ≤ k ≤ n. Let f+ and f− be two signatures of arity
n such that f+

k = (a0 + a1k)i
k and f−

k = c(−i)k for every 0 ≤ k ≤ n.
Hence fk = f+

k +f−
k and we write f = f++f−. If a1 = 0, then f ′ is the

all zero signature, a contradiction. If c = 0, then f is vanishing, one of
the tractable cases. Now we assume a1c 6= 0 and show that Holant(f) is
#P-hard. Hence rd+(f+) = 1 and rd−(f−) = 0. Under the holographic
transformation Z = 1√

2

[
1 1
i −i

]
, we have

Holant (=2 | f) ≡T Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Holant
(
[0, 1, 0] | f̂

)
,

where f̂ takes the form [f̂0, f̂1, 0, . . . , 0, c
′] with c′ = 2n/2c 6= 0 and

f̂1 6= 0, since f̂ is the Z−1-transformation of the sum of f+ and f−,
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.

.

.

(a) The circles are assigned f̂ and the
squares are assigned 6=2.

.

.

.

(b) The circles are assigned f .

Fig. 14: Two gadgets used when f ′ = [1,±i]⊗(n−2).

with rd+(f+) = 1 and rd−(f−) = 0 respectively. On the other side,
(=2) = [1, 0, 1] is transformed into (6=2) = [0, 1, 0]. Now consider the

gadget in Figure 14a with f̂ assigned to both vertices. This gadget has
the binary signature [0, cf̂0, 2cf̂1], which is equivalent to [0, f̂0, 2f̂1] since
c 6= 0. Translating back by Z to the original setting, this signature is
g = [f̂0 + f̂1,−if̂1, f̂0 − f̂1]. This can be verified as

[
1 1
i −i

] [
0 f̂0
f̂0 2f̂1

] [
1 1
i −i

]⊺
= 2

[
f̂0 + f̂1 −if̂1
−if̂1 f̂0 − f̂1

]
.

Since f̂1 6= 0, it can be directly checked that g 6∈ R
+
2 .

If f̂0 6= 0, then g is non-degenerate. In this case we construct some
function in V +. We connect f ′ back to f , getting a binary signature
p = Z⊗2[0, 0, c′]. Then we connect p to f , the resulting signature is

p′ = Z⊗n−2[f̂0, f̂1, 0, . . . , 0] of arity n − 2 ≥ 3 up to the constant factor
of c′ 6= 0. Notice that p′ is non-degenerate and p′ ∈ V +. By Lemma 45,
Holant({p′, g}) is #P-hard, hence Holant(f) is also #P-hard.

Otherwise suppose f̂0 = 0. Then we have g = [1,−i]⊗2 after ignoring

the nonzero factor f̂1. Connecting this degenerate signature to f , we get
a signature h = 〈f, g〉. We note that g annihilates the signature f− =
c[1,−i]⊗n, and thus h = 〈f+, g〉. Then rd+(f+) = 1, vd+(g) = 0, and
we can apply Lemma 27. It follows that rd+(h) = 1 and arity(h) ≥ 3.
This implies that h is non-degenerate and h ∈ V +.

Moreover, assigning f to both vertices in the gadget of Figure 14b,
we get a non-degenerate signature h′ ∈ V − of arity 4. To see this,
consider this gadget after a holographic transformation by Z. In this
bipartite setting, it is the same as assigning f̂ = [0, f̂1, 0, . . . , 0, c] (or

equivalently [0, 1, 0, . . . , 0, c′′], where c′′ = c/f̂1 6= 0) to both the circle
and triangle vertices in the gadget of Figure 8a. The square vertices
there are still assigned (6=2) = [0, 1, 0]. While it is not apparent from the
gadget’s geometry, this signature is in fact symmetric. In particular, its
values on inputs 1010 and 1100 are both 0. The resulting signature is
ĥ′ = (Z−1)⊗4h′ = [0, 0, 0, c′′, 0]. Hence rd−(h′) = 1, and therefore h′ is
non-degenerate and h′ ∈ V −.

By Lemma 46, Holant({h, h′}) is #P-hard, hence Holant(f) is also
#P-hard.

• Suppose f ′ is non-degenerate. If f ′ is not in one of the tractable cases, then
Holant(f ′) is #P-hard and so is Holant(f). We now assume Holant(f ′) is
not #P-hard. Then, by inductive hypothesis, f ′ ∈ P1 ∪P2 ∪ A3 or f ′ is
vanishing. If f ′ ∈ P1 ∪P2 ∪ A3, then applying Lemma 61, Lemma 62, or
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Lemma 63 to f ′ and the set {f, f ′}, we either have that Holant({f, f ′}) is #P-
hard, so Holant(f) is #P-hard as well, or that f is A - or P-transformable,
so by Corollary 60, f ∈P1 ∪P2 ∪A3.

Otherwise, f ′ is vanishing, so f ′ ∈ V σ for σ ∈ {+,−} by Theorem 26.
For simplicity, assume that f ′ ∈ V +. The other case is similar. Let rd+(f ′) =
d − 1, where 2d < n and d ≥ 2 since f ′ is non-degenerate. Then the entries
of f ′ can be expressed as

f ′
k = ikq(k),

where q(x) is a polynomial of degree exactly d− 1. However, notice that if f ′

satisfies some recurrence relation with characteristic polynomial t(x), then f
satisfies a recurrence relation with characteristic polynomial (x2 + 1)t(x). In
this case, t(x) = (x − i)d. Then the corresponding characteristic polynomial
of f is (x− i)d+1(x+ i), and thus the entries of f are

fk = ikp(k) + c(−i)k

for some constant c and a polynomial p(x) of degree at most d. However, the
degree of p(x) is exactly d, otherwise the polynomial q(x) for f ′ would have
degree less than d− 1. If c = 0, then f ∈ V + is vanishing, a tractable case.
Now assume c 6= 0, and we want to show the problem is #P-hard.

Thus, under the transformation Z = 1√
2

[
1 1
i −i

]
, we have

Holant (=2 | f) ≡T Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0, c], with f̂d 6= 0. Taking a self loop in the
original setting is equivalent to connecting [0, 1, 0] to a signature after this

transformation. Thus, doing this once on f̂ , we can get f̂ ′ = [f̂1, . . . , f̂d, 0, . . . , 0]

corresponding to f ′, and doing this d − 2 times on f̂ , we get a signature
ĥ = [f̂d−2, f̂d−1, f̂d, 0, . . . , 0, 0/c] of arity n− 2(d− 2) = n− 2d+ 4. The last
entry is c when d = 2 and is 0 when d > 2.

As n > 2d, we may do two more self loops and get [f̂d, 0, . . . , 0] of arity

k = n−2d. Now connect this signature back to f̂ via [0, 1, 0]. It is the same as

getting the last n− k+1 = 2d+1 signature entries of f̂ . We may repeat this
operation zero or more times until the arity k′ of the resulting signature is less
than or equal to k. We claim that this signature has the form ĝ = [0, . . . , 0, c].
In other words, the k′ +1 entries of ĝ consist of the last c and k′ many 0’s in
the signature f̂ , all appearing after f̂d. This is because there are n − d − 1
many 0 entries in the signature f̂ after f̂d, and n− d− 1 ≥ k ≥ k′.

Translating back by the Z transformation, having both [f̂d, 0, . . . , 0] of
arity k and ĝ = [0, . . . , 0, c] of arity k′ is equivalent to, in the original setting,
having both [1, i]⊗k and [1,−i]⊗k′

. If k > k′, then we can connect [1,−i]⊗k′

to [1, i]⊗k and get [1, i]⊗(k−k′). Replacing k by k − k′, we can repeat this
process until the new k ≤ k′. If the new k < k′, then we can continue as in
the subtractive Euclid algorithm. We continue this procedure and eventually
we get [1, i]⊗t and [1,−i]⊗t, where t = gcd(k, k′), where k = n − 2d and
k′ ≤ k, as defined in the previous paragraph. Now putting k/t many copies
of [1,−i]⊗t together, we get [1,−i]⊗k.
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In the transformed setting, [1,−i]⊗k is [0, . . . , 0, 1] of arity k. Then we

connect this back to ĥ via [0, 1, 0]. Doing this is the same as forcing k con-

nected edges of ĥ to be assigned 0, because [0, 1, 0] flips the assigned value 1 in
[0, . . . , 0, 1] to 0. Thus we get a signature of arity n− 2d+4− k = 4, which is

[f̂d−2, f̂d−1, f̂d, 0, 0]. Note that the last entry is 0 (and not c), because k ≥ 1.

However, Holant([0, 1, 0]|[f̂d−2, f̂d−1, f̂d, 0, 0]) is equivalent to Holant([0, 1,

0] | [0, 0, 1, 0, 0]) when f̂d 6= 0, which is transformed back by Z to Holant([3, 0,
1, 0, 3]). This is the Eulerian Orientation problem on 4-regular graphs and is
#P-hard by Theorem 36.

Now we are ready to prove of our main theorem.

Proof of hardness for Theorem 31. Assume that Holant(F) is not #P-hard. If
all of the non-degenerate signatures in F are of arity at most 2, then the problem is
tractable case 1. Otherwise we have some non-degenerate signatures of arity at least
3. For any such f , by Theorem 64, f ∈ P1 ∪P2 ∪ A3 or f is vanishing. If any of
them is in P1 ∪P2 ∪A3, then by Lemma 61, Lemma 62, or Lemma 63, we have that
F is A - or P-transformable, which are tractable cases 2 and 3.

Now we assume that all non-degenerate signatures of arity at least 3 in F are
vanishing, and there is a nonempty set of such signatures in F . By Lemma 46, they
must all be in V σ with the same σ ∈ {+,−}. By Lemma 45, we know that any
non-degenerate binary signature in F has to be in Rσ

2 . Furthermore, if F contains an
f ∈ V σ such that rdσ(f) ≥ 2, then by Lemma 44, the only unary signatures allowed
in F are some multiple of [1, σi], and all degenerate signatures in F are a tensor
product of some multiple of [1, σi]. Thus, all non-degenerate signatures of arity at
least 3 as well as all degenerate signatures belong to V σ, and all non-degenerate
binary signatures belong to Rσ

2 . This is tractable case 4.
Finally, we have the following: (i) all non-degenerate signatures of arity at least

3 in F belong to V σ; (ii) all signatures f ∈ F ∩ V σ have rdσ(f) ≤ 1, which implies
that f ∈ Rσ

2 ; and (iii) all non-degenerate binary signatures in F belong to Rσ
2 . Hence

all non-degenerate signatures in F belong to Rσ
2 . All unary signatures also belong to

Rσ
2 by definition. This is indeed tractable case 5. The proof is complete.

Furthermore, given a finite signature set F , the criterion of Theorem 31 is decid-
able in polynomial time. This is reported in [10].
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Appendix A. Simple Interpolations. In addition to the two arity 4 inter-
polations in Section 6, we also use interpolation in the proofs of two other lemmas.
Compared to our arity 4 interpolations, these binary interpolations are much simpler.

Lemma 65. Let x ∈ C. If x 6= 0, then for any set F containing [x, 1, 0], we have

Holant (6=2 | F ∪ {[v, 1, 0]}) ≤T Holant (6=2 | F)

for any v ∈ C.

Proof. Consider an instance Ω of Holant (6=2 | F ∪ {[v, 1, 0]}). Suppose that [v, 1, 0]
appears n times in Ω. We stratify the assignments in Ω based on the assignments to
[v, 1, 0]. We only need to consider assignments of Hamming weight 0 and 1 since an
assignment of Hamming weight 2 contributes a factor of 0. Let i be the number of
Hamming weight 0 assignments to [v, 1, 0] in Ω. Then there are n− i assignments of
Hamming weight 1 and the Holant on Ω is

HolantΩ =
n∑

i=0

vici,

where ci is the sum over all such assignments of the product of evaluations of all other
signatures on Ω.

We construct from Ω a sequence of instances Ωs of Holant(F) indexed by s ≥ 1.
We obtain Ωs from Ω by replacing each occurrence of [v, 1, 0] with a gadget gs created
from s copies of [x, 1, 0], connected sequentially but with (6=2) = [0, 1, 0] between each
sequential pair. The signature of gs is [sx, 1, 0], which can be verified by the matrix
product

([
x 1
1 0

] [
0 1
1 0

])s−1 [
x 1
1 0

]
=

[
1 x
0 1

]s−1 [
x 1
1 0

]
=

[
1 (s− 1)x
0 1

] [
x 1
1 0

]
=

[
sx 1
1 0

]
.
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The Holant on Ωs is

HolantΩs =

n∑

i=0

(sx)ici.

For s ≥ 1, this gives a coefficient matrix that is Vandermonde. Since x is nonzero,
sx is distinct for each s. Therefore, the Vandermonde system has full rank. We can
solve for the unknowns ci and obtain the value of HolantΩ.

Lemma 66. Let a, b ∈ C. If ab 6= 0, then for any set F of complex-weighted
signatures containing [a, 0, . . . , 0, b] of arity r ≥ 3,

Holant(F ∪ {=4}) ≤T Holant(F).

Proof. Since a 6= 0, we can normalize the first entry to get [1, 0, . . . , 0, x], where
x 6= 0. First, we show how to obtain an arity 4 generalized equality signature. If r = 3,
then we connect two copies together by a single edge to get an arity 4 signature. For
larger arities, we form self-loops until realizing a signature of arity 3 or 4. By this
process, we have a signature g = [1, 0, 0, 0, y], where y 6= 0. If y is a pth root of unity,
then we can directly realize =4 by connecting p copies of g together, two edges at a
time as in Figure 4. Otherwise, y is not a root of unity and we can interpolate =4 as
follows.

Consider an instance Ω of Holant(F ∪{=4}). Suppose that =4 appears n times in
Ω. We stratify the assignments in Ω based on the assignments to =4. We only need to
consider the all-zero and all-one assignments since any other assignment contributes
a factor of 0. Let i be the number of all-one assignments to =4 in Ω. Then there are
n− i all-zero assignments and the Holant on Ω is

HolantΩ =

n∑

i=0

ci,

where ci is the sum over all such assignments of the product of evaluations of all other
signatures on Ω.

We construct from Ω a sequence of instances Ωs of Holant(F) indexed by s ≥ 1.
We obtain Ωs from Ω by replacing each occurrence of =4 with a gadget gs created
from s copies of [1, 0, 0, 0, y], connecting two edges together at a time as in Figure 4.
The Holant on Ωs is

HolantΩs =

n∑

i=0

(ys)ici.

For s ≥ 1, this gives a coefficient matrix that is Vandermonde. Since y is neither 0
nor a root of unity, ys is distinct for each s. Therefore, the Vandermonde system has
full rank. We can solve for the unknowns ci and obtain the value of HolantΩ.

Since the gadget constructions are planar, this lemma holds when restricted to
planar graphs.

Appendix B. An Orthogonal Transformation. Here we give the details of
the orthogonal transformation used in the proof of Lemma 41. We state the general
case for symmetric signatures of arity n ≥ 1. Appendix D of [11] has the case n = 3.

We are given a symmetric signature f = [f0, . . . , fn] such that fk = ckαk−1+dαk,

where c 6= 0, and α 6= ±i. Let S =
[
1 d−1

n

α c+ d−1
n α

]
. Note that detS = c 6= 0. Then f can

be expressed as
f = S⊗n[1, 1, 0, . . . , 0],
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where [1, 1, 0, . . . , 0] should be understood as a dimension 2n column vector, which
has a 1 in entries with index weight at most one and 0 elsewhere. This identity can
be verified by observing that

[1, 1, 0, . . . , 0] = [1, 0]⊗n +
1

(n− 1)!
Symn−1

n ([1, 0]; [0, 1])

and we apply S⊗n using properties of tensor product, S⊗n[1, 0]⊗n = (S[1, 0])
⊗n

, etc.
We consider the value at index 0n−k1k, which is the same as the value at any entry
of weight k. By considering where the tensor product factor [0, 1] is located among
the n possible locations, we get

αk + k

(
c+

d− 1

n
α

)
αk−1 + (n− k)d− 1

n
αk = ckαk−1 + dαk.

Let T = 1√
1+α2

[
1 α
α −1

]
, then T = T ⊺ = T−1 ∈ O2(C) is orthogonal, and R =

TS = [ u w
0 v ] is upper triangular, where v, w ∈ C and u =

√
1 + α2 6= 0. However,

detR = detT detS = (−1)c 6= 0, so we also have v 6= 0. It follows that

T⊗nf = (TS)⊗n[1, 1, 0, . . . , 0]

= R⊗n[1, 1, 0, . . . , 0]

= R⊗n

(
[1, 0]⊗n +

1

(n− 1)!
Symn−1

n ([1, 0]; [0, 1])

)

= [u, 0]⊗n +
1

(n− 1)!
Symn−1

n ([u, 0]; [w, v])

= [un + nun−1w, un−1v, 0, . . . , 0].

Since un−1v 6= 0, we can normalize to 1 the entry of Hamming weight 1 by a scalar
multiplication. Thus, we have [z, 1, 0, . . . , 0] for some z ∈ C.
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