arXiv:1511.08824v1 [math.AP] 27 Nov 2015

THE CAUCHY PROBLEM ON LARGE TIME FOR SURFACE
WAVES TYPE BOUSSINESQ SYSTEMS II

JEAN-CLAUDE SAUT, CHAO WANG, AND LI XU

ABsTRACT. This paper is a continuation of a previous work by two of the Au-
thors [36] on long time existence for Boussinesq systems modeling the propa-
gation of long, weakly nonlinear water waves. We provide proofs on examples
not considered in [36] in particular we prove a long time well-posedness result
for a delicate "strongly dispersive" Boussinesq system.

1. INTRODUCTION

One aim of this paper is to complete the results obtained in a previous paper
[36] on the Cauchy theory for some (a,b,c,d) Boussinesq systems for surface water
waves
(1.1) {nt-i-V-u—I—eV-(nu)—i—u[aV-Au—bAnt]:O

' up + Vn+ e3Viul? + p[eVAn — dAu,] = 0.

Here p and € are the small parameters (shallowness and nonlinearity parameters
respectively) defined as
h? «
= 7%
where « is a typical amplitude of the wave, h a typical depth and A\ a typical
horizontal wavelength.
In the Boussinesq regime, € and p are supposed to be of same order, € ~ p < 1,

and we will take for simplicity € = u, writing () as

(1.2) e+ V- u e[V - () +aV - Au—bAn,] =0
: ut+V77+e[%V|u|2 + VAR — dAw] =0,

The class of systems (1)), (I2) models water waves on a flat bottom propagating
in both directions in the aforementioned regime (see [0 [7, B]). We will focus here
on the strongly dispersive case, corresponding to particular choices of the modeling
parameters (a,b,c,d) (see below).

One could also derive similar systems with a non trivial bathymetry (non flat
bottom), see [13], and one has then to distinguish between the case when the bottom
varies slowly and the case where it is strongly varying. In the former case, (L2
has to be slightly modified and becomes

{ 4V ut e[V (= B)u) +aV - Au—bAg] =0

(1) i+ Y+ (5 VIul + VAR — dug] =

where 3 is a smooth function on R%, d = 1,2, bounded together with its derivatives.
In this case, the results in [36] and those of the present paper extend easily. In the
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second case one gets much more complicated systems [I3]. We refer to [32] for long
time existence results in this case.

Recall (see [0 15]) that the modeling parameters are constrained by the relation

1
a—i—b—i—c—i—d:g—T,

where 7 > 0 is the surface tension parameter (Bond number).
Recall also [6] that (L2) is linearly well-posed when

a<0,c<0,b>0,d>0,

and when
a=¢b>0,d>0.
An important step to justify rigorously (L2 as an asymptotic model for water
waves is to establish the well-posedness of the Cauchy problem on time scales of
order 1/e, with uniform bounds in suitable Sobolev spaces, the error estimate being

then (see [5] 29]).
||UBoussinesq - UEuler” = 0(62t)
in suitable Sobolev norms.

This step has been established in [36] (see also [34]) for most of Boussinesq
systems with and without surface tension. The idea in [36] is to find an appropriate
symmetrization of the system and this is not a straightforward task since one cannot
obviously use the classical symmetrizer of the underlying Saint-Venant (shallow
water) hyperbolic system. This will be reviewed in the first section of this paper. A
corﬁllplete proof of cases that were not fully developed in [36] will be given in Section
4.

Introducing surface tension enlarges the range of physically admissible parame-
ters (a,b,c,d) and so even a local theoryE for a few linearly well -posed systems is still
missing, for instance the cases b=d =0,a <0,c=0and b=d=0,a=0,c < 0).
Both cases will be considered here but the later leads to serious difficulties and the
long time existence for it is the main result of the present paper.

Note also that the (linearly well-posed) "exceptional KdV-KdV" case b = d =
0,a = ¢ > 0 which is studied in [30] leading to well-posedness on time scales of order
1/4/€ in Sobolev spaces H*(R?), s > 3/2 which are larger than the "hyperbolic" one
H*(R?),s > 2 is not covered neither iné_?ﬂ nor in the present paper so that a long
time existence is still open in this case [d.

An important mathematical issue concerning Boussinesq systems (L2) is that
despite they describe the same dynamics of water waves, their mathematical proper-
ties are rather different, due essentially to their different linear dispersion relations.
Of course those dispersion relations all coincide in the long wave limit but there are
quite different in the short wave limit. A convenient way to classify the system is
according to the order of the Fourier multiplier operator given by the eigenvalues
of the linearized operator (see [6]). The order can be —1,0,1,2 or 3. The two last
cases are referred to as the strongly dispersive ones.

Due to the large number of cases to be considered, we chosed in [36] to give complete proofs
for a limited number of cases.

2That is not taking care of the dependence of the lifespan of the solution with respect to e

3However, the case b =d = 0,a < 0,c < 0 that can only occur with a strong surface tension is
covered by the theory in [36].
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After a brief review of our previous results, we will consider in the third section
the ("local") Cauchy problem for two strongly dispersive Boussinesq systems of
Schridinger type, namely b = d = ¢ = 0,a < 0 and a = b = d = 0,¢c < 0,
two situations that are admissible in case of strong surface tension and that have
not been considered before. In the first case, it turns out that the local (that is
on time scales of order 1/4/€) Cauchy theory can be obtained by "elementary"
energy methods on the original formulation, as in the purely gravity waves cases
a<0,e<0,b=0,d>00ra<0,¢c<0,b>0,d=0 considered in [30]. On the
other hand, the second case a = b =d = 0,¢ < 0, leads to serious difficulties that
are explained in this section.

In the fourth section we provide detailed proofs (not given in [36]) for the long
time well-posedness of the strongly dispersive case b = d = ¢ = 0,a < 0 and for two
systems which can be viewed as weakly dispersive, namely b > 0,a = c¢=d =0 and
d > 0,a = b= c= 0. We conclude this section by establishing long time existence
for the difficult case a = b = d = 0,¢ < 0 by a quasilinearization method quite
different from the other cases. As was aforementioned this is the main result of the
present paper (see Theorems 4.6 and 4.7). We explain first how to get the needed
a priori estimates, the complete proof being given in the next section.

Finally we show in Section 6 that the symmetrization method can be used to
obtain long time existence results for a fifth order Boussinesq system and we briefly
allude to possible extensions to nonlocal Full dispersion Boussinesq type systems.

During the completion of the present paper we were informed of the very inter-
esting paper [II] where an alternative proof of long time existence for most of the
Boussinesq systems is provided (excluding the "strongly dispersive" ones b = d = 0,
thus the "difficult case" @ = b = d = 0,c¢ < 0). This proof also relaxes the non-
cavitation condition on the initial data 7.

We were also informed by Vincent Duchéne of the article [I8] which contains in
the one-dimensional case (see Appendix A) results related to ours in Subsection
4.4.

Notations. We will denote | - |, the norm in the Lebesgue space LP(R), 1 <
p < oo and || - ||s the norm in the Sobolev space H*(R?), s € R. (-|-)2 denotes
the scalar product in L?.We will denote f or F(f) the Fourier transform of a
tingered distribution f. For any s € R, we define |D|*f by its Fourier transform
[DI*£(€) = [§]°£(&). We also denote | D, |* f = F~H(|&1]f) and |Dy|*f = F~1(|&|f).
Finally we will denote A = (I — A)Y/2 and J. = (I — eA)'/2,

2. A REVIEW OF LONG TIME WELL-POSED BOUSSINESQ SYSTEMS

As recalled previously, in order to fully justify the Boussinesq systems, one needs
to prove the well-posedness of the Cauchy problem on time scales of order at least
O(1/€) (together with the relevant uniform bounds). This would be achieved of
course if one could obtain the global well-posedness (also with uniform bounds).
This is only known however for a very limited number of Boussinesq systems in one-
dimension. A first idea would be to use appropriate conservation laws, but contrary
to the one-directional or quasi one-directional equations such as the Korteweg- de
Vries or the Kadomtsev-Petviashvili equations which are derived in the same regime,
the Boussinesq systems do not possess the two invariants (L? norm and energy) that
provide useful a priori bounds.
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Nevertheless, when b = d, the Boussinesq systems are endowed with an Hamil-
tonian structure. More precisely, denoting by J the skew adjoint matrix operator

0 O (I —ebA)™1 9, (I — ebA)~!
J= 0,1 —ebr)? 0 0 ,
Oy (I — ebA)~1 0 0

and

"= (1)
the Boussinesq systems write in this case
U = —J(grad H.)(U),
where H.(U) is the Hamiltonian given by

H.(U)= % / (= ce|Vn)* — ae|Vul> + 0 + [ul* + enul*)dady,
R2

so that H.(U) is conserved by the flow. This can be used (see [7]) in the one dimen-
sional case where b =d > 0,a < 0,c < 0orb=d>0,a =0,c <0 to establish the
global well-posedness of the corresponding Boussinesq systems provided H (o, uo)
is small enough and the non cavitation condition inf, (1 + eng(z)) > 0 is satisfied.
The proof uses in a crucial way the fact that b = d > 0 and the Sobolev embedding
H'(R) C L*(R) thus it does not work in two dimensions.

Another one-dimensional situation leading to global well-posedneess is when
a =b=c¢=0,d> 0. Then Amick and Schonbeck [4, B8] use the underlying
hyperbolic structure of the shallow-water (Saint-Venant) system to get a priori
bounds stemming from an entropy functional. This allows to prove the global well-
posedness under the condition inf,cr(1 + eng(z)) > 0 but again the extension of
this result to the two-dimensional case is unclear We will prove in this case the
large time existence in Section 4.

As far as long time results are concerned, it has been claimed in [36] that the
Boussinesq systems ([[2]) are well-posed in a suitable Sobolev setting (with uniform
bounds) on time scales of order 1/e in the following cases:

d=0,a,c<0;
d=0,a=0,c<0;
d>0,a,c<0;

b,d>0,a,c<0orb=0,d>0,a=0,¢c<0;
b,d>0,a=0,c<0;
>0,a,c<0o0rb>0,d=0,a<0,c=0;
0,d=0,a=c=0o0rb=d>0,a=0,c<0;
>0,a<0,c=00rb=0,d>0,a=c=0;

0,
0,
0,
d
d
d

SHAVAR T 1N N VAN

(10
(11) b=d= O,a,c<0.

Note that the last case can occur only in case of a strong surface tension, as the
two following that were not considered in [36] :

(12) b=d=0,a=0,c < 0;

4Contrary to what was claimed in [36], the results in [4}[38] do not need a smallness assumption
on the initial data.
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(13) b=d=10,a<0,c=0.

Actually, the same scheme of proof (by symmetrization) is used in [36] but be-
cause of the many different cases to be dealt with (the technical details cannot be
treated in an unified way), we only provided a complete proof in [36] for cases (4)
("generic case"), (1) and (11), which are "strongly dispersive". The other cases
can be dealt with by similar symmetrization techniques but the proofs for some of
them need more explanations that we detail below.

3. SOME STRONGLY DISPERSIVE BOUSSINESQ SYSTEMS

We will study here the local well-posedness (that is on time scales of order 1/4/¢)
of the Cauchy problem for two strongly dispersive Boussinesq systems having an
order two dispersion. They occur only for capillary-gravity waves when the surface
tension parameter is greater than 1/3. Two (purely gravity waves ) systems having
also an order two dispersion corresponding respectively to a < 0,¢ < 0,b=0,d > 0
and a < 0,¢ < 0,d = 0,b > 0 have been studied in [30] under a curl free condition
in the later case. The local well-posedness on time scale of order 1/4/e was proven
there while well-posedness on time scales of order 1/¢ is established in [36] together
with the appropriate uniform bounds. As in [30] we will use somehow the dispersive
properties of the systems which allows to enlarge the space of resolution but will not
provide existence on the "long" time scale 1/e which will be considered in Section
4.

Those systems will be referred to as "Schrédinger type" since in space dimension
two their dispersion relations for large frequencies are reminiscent of the Schrodinger
one (in one dimension, the analogy is with the Benjamin-Ono equation). This will
be made clear when rewriting the systems in an equivalent form after diagonalizing
the linear part.

3.1. A first Schrodinger type system. We consider the Boussinesq systems
when a < 0,b = ¢ = d = 0, a case which occurs for capillary surface waves with
strong enough surface tension, 7 > 1/3 and which was not considered in [36]. One

can obviously restrict to the case where ¢ = —1 and we consider first the one-
dimensional system
(3.1) N+ Uz + €(un)y — €Ugzz =0,

’ U + Ny + euuy, = 0.

Note that this system has the hamiltonian structure

Oy <Z> + Jgrad He(n,u) =0

0 0,
(. %)

1
H.(n,u) = 5 /}R(eui + 1%+ u? + eu’n)de.

where

and

Unfortunately the formal conservation of the Hamiltonian cannot be used to get
a global L2 x H' bound.

As for other order two Boussinesq systems (see [7, [30]) one can solve the local
Cauchy problem for (BI) by "elementary" energy methods.

For U = (n,u)T we define
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1/2
10115z = ( [07 42+ D202 + D3 + D2 ) )
R

Theorem 3.1. Let s > 1/2 and (no,uo) € X?. There exists T. = O(1/+/€) and a
unique solution (n,u) € C([0,T:]); X5) of BI) with initial data (no,uo).

€

Proof. In order to restrict the technicalities, we consider only the case s = 1 and we
derive only the suitable a priori estimates. The complete proof would use various
Kato-Ponce type commutator estimates and an approximation argument.

We take successively the L? scalar product of the first equation in @) by 17—z
and of the second equation by (I —€d?)(u— ., ). After several integrations by parts
we obtain by adding the resulting equations :

1d
% (P +u + 02+ (1 + )2 + eu?,)dr
(3.2) B
1 9 3 9 1+e 5  5e 9
= —€ [ [zugn” + Sugn; + Mptgy + ——u, + —uzuy,|de.
2 2 2 2

We now use Holder inequality, the standard inequality |u|eo S |u|é/ 2|uz|;/ % and

that

|77|007 |T]|27 |77I|25 |u$|25 \/E|u1|007 \/E|UII|2 5 ||U||X€1

to obtain from ([B.2) that ||U]|x: < C on the maximal existence time interval [0, 7]
of the ODE

y < Cvey?

and one readily checks that T, = O(%)

This leads to the existence of a weak solution U € L*>°(0, T,; X!) (with an uniform
H'! bound).

To prove uniqueness, we set N =1 — 12, V = uy — ug where (n1,u1), (12, us2)
are two solutions in C([0,T]); X?). Thus

(3.3) N+ Ve +€e[(Vm)e + (uaN)z] — Vg = 0,
) Vi+ No + €[Vure +u2Vy] = 0.

One takes the L? product scalar of the first equation by N and successively the
L? scalar product of the second equation by V and —eV,,. Adding the resulting
equalities we obtain

1d
2dt Jp

= /R{—G[(an)wN + (uaN) e N — €[V2ur, + usVV;]

(N? + V2 + eV2)da

(3.4)

—+ 62(VV11’U/1;E + U2V1Vm;ﬂ)}dw7

5We will treat the general situation in the two-dimensional case.
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from which we deduce

1d
—— [ (N? +V? +€V2)dx
(3.5) < Cellm|oo| Vi 2INl2 + V1 [Val3 [N a|mel2

+ |u2w|OO|N|§ + |u11|OO|V|§ + |u2w|00|v|§

1/2 3/2
+ e((Jureloo + [uzeloo) Ve l3) + VIS 2 1Va 3 *[ursal2)],

so that

1d
(3.6) 5T R(N2 + V24 eV2)de < CO(INZ+ V2 + €|V, ]3)

and N =V = 0 by Gronwall’s lemma.

It remains to prove the strong continuity in time of the solution with value in X}
and the continuity of the flow, but this results from the Bona-Smith approximation
procedure [9]. O

The local well-posedness of the Cauchy problem (B1) for data of low regularity
weighted Sobolev spaces was proven in [25] by analogy with the DNLS equation.
We indicate now another possible method to obtain the local well-posedness of (3.1))
in a different functional setting by reducing it to a system of Benjamin-Ono type
equations. A natural idea is to transform B]) by diagonalizing the dispersive part.

We denote )
A —ie (] )

the Fourier transform of the dispersion matrix with eigenvalues +i&(1 + €|¢|?)
In what follows we will denote J. = (I — €d?)'/2.

Setting
u

_ C _ —1 —171 1 Je
W—(v =pu. Pl=o () )

the linear part of (BI)) is diagonalized as
Wi+ 0, DW =0,

Je 0
p=(5 %)

1 1
P—<J1 —J1>

one can therefore reduce (BI) to the equivalent form

G+ Jele + 5N1(C,v) = 0,
(3.7) { Ui — Jevg + %le(c,v) =0.

/2.

and

where

Since U = PW, where

where
Ni(¢,0) = 0z [(C+0) I (¢ = 0)] + J[JTHC = 0) I (G — va)]
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and
Na(C,v) = 0:[(C + U)Je_l(C —v)] - JE[Je_l(C - U)Je_l@w — vg)]

Since

1
(1+€6?)/2 + el 2l

(14 €eg?)!/2 = e!2lg] =
B) writes

(3.8) { G+ P HG + R+ 5N (C0) = 0,

v — €Y2Hvyy — Rev + SN2(¢,v) = 0.
where R, is the (order zero) skew-adjoint operator with symbol Wﬂhl“\ﬂ

Note that the nonlinear term are similar but in a sense nicer than the quadratic
term uu, of the Benjamin-Ono equation and thus we should apply for instance
the method Ponce [35] used to solve the Cauchy problem for the Benjamin-Ono
equation, that is the dispersive estimates on the group e®%*  since this method
does not used the specific structure of the nonlinear term in the Benjamin-Ono
equation. This would imply local well-posedness for ((o,v9) € H*(R)2,s > 3/2,
which corresponds to (1o, ug) = (Co+vo, J. (o —vo)) € H*(R) x H¥~*(R). Note the
difference with the functional setting of Theorem B.Il Similarly, it is likely that the
method in [22] which leads to a local well-posedness theory in H*(R), s > 9/8 for the
Benjamin-Ono equation can be applied to () leading to a H*(R) x H*~}(R), s >
9/8 theory. Also the new method in [33] could lead to the resolution of the Cauchy
problem in the energy space H/2(R) in the (¢,v) variables. Those methods would
however not enlarge the O(1//€) lifespan[d

In the two-dimensional case, the system writes

(3.9) n+V-u+eV-(nu) —eV-Au =0,
' uy + Vn+ sViul? = 0.

This system has also the Hamiltonian structure

Oy (Z) + Jegrad He(n,u) =0

where
0 0r 0y
J=10, 0 0
dy 0 0
and

1
H(n,u) = 3 /R2 (e|Vul? +n? + |ul? + e|lu|?n)dzdy.

Under a curl free assumption on u (which is natural since the Boussinesq systems
are derived for potential flows), one can obtain the local well-posedness of ([B.9) by

60n the other hand, Tao’s method which leads to a H'(R) well-posedness theory for the
Benjamin-Ono equation uses a gauge transform which strongly relies on the specific structure of
the Benjamin-Ono equation and its generalization to (3 is problematic.
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"elementary" methods. Actually, when curl w = 0, (39) becomes

{(%77—!—V-u—|—eV-(nu)—eV-Au—O,

(3.10) Ou+ Vn+eu-Vu = 0.

Before going further, we present the following commutator estimates (see Theo-
rems 3 and 6 in [2§]).

Lemma 3.2. Let to > %, —to < r < to+ 1. Then for all s > 0, f € H*'n

Hs+T(R™) and u € H*T"~1(R™), there holds:

(3.11) [[A%, flular < OV flaeo [ulge+r—1 + [V flaser—1|ul o) s> to+1-1),
where a + (b)s~s, equals a if s < so while equals a + b if s > so.

Consequently, taking tp = s > 1 and r = 0 in (BII), we have the following
corollary.

Corollary 3.3. For s > 1, f € H"Y(R?), g € H*"}(R?), then
(3.12) A% flglz S [V flaelglme-

Going back to ([3.I0), similarly to the one-dimensional case, we denote by U =
(n,u)T, and then define

(3.13) 1U11x: = ([An[3 + |A*ul3 + e[A*Vul3)?,
and we obtain the following theorem.

Theorem 3.4. Let s > 1 and (no,uo) € XZ. Then there exists T, = O(1/+/e€)
and a unique solution (n,u) € C([0,T.]; X?) of BI0) with initial data (1o, uo).
Moreover,

sup [[(n(-, 1), u(-,t))|lx: < cll(n0, uo))llx:-
te[0,T¢]

Proof. As in the one-dimensional case we will only provide the suitable a priori
estimate.

Taking the L? inner product of the first equation in (BI0) by A*7 and of the
second equation by (1 — eA)A%*u, and then integrating by parts, it results

1 d S S S
iy 3 A A dAVu)

= —€(A°V - (nu) | A°n)2 — e(A°(w - Vu) | (1 — eA)A°u),,
Now, we deal with the r.h.s terms in (BI4). We first get that

(A*V - (nu) [A®n)2 = (A%(u - V) [A%n)2 + (A*(nV - u) | A®n)2

(3.15) 1
= ([A% u] - Vi) [A%)2 — 5 (V- uln [ A*n)2 + (A*(V - u) [ A7)z,

which together with (12]) implies that
[(A*V - (nu) | A®n)e|

(3.16) S A ] - Vi) 2| ARz + [V - ulo AR5 + [A* (Y - w) |2 A7
SVl [Volge-i|nlae + [Vulg:[nlF. S [Vulg:[nlF..
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For the second term on the r.h.s of (BI4]), we have
(A°(u-Vu) | (1 — eA)Au)e = ([A°,u] - Vu | A°u),

2
1
- §(V culu | Au)s + EZ(ASV(uiBiu) | A°Vu)g
i=1
1
= ([A%,u] - Vu|Au)y — =(V-ulu|Au
o1 (1A%, ] V| ) — 5 A",
2
1
+e Y (A w]Voiu|A*Vu), - €V udVu | A*Vu),
i=1
2
+e Z(AS (Vu;0;u) | A°Vu)s
i=1
which along with (3I2]) implies that
(3.18) [(A*(u - Vu) | (1 — eA)Au)s| S [Vulms (|ulfe + e Vulf.).
Denoting again U = (n,u)”, we deduce from ([BI4), (310) and (BI8) that
d
(3.19) ZIU@lx: < CVelU®)lIx:,

from which, we infer that the maximal existence time interval is [0, T¢] with T, =
O(1/Ve).

As in the one-dimensional case one justifies the a priori estimates by a suitable
approximation of the system (for instance by adding (—dAn,, —dAu)T, § > 0).
Uniqueness is obtained again by a Gronwall type argument and the strong con-
tinuity in time and the continuity of the flow map result from the Bona-Smith
trick. O

As in the one-dimensional case, one has a better insight on the system by diag-
onalizing the linear part. The dispersion matrix is in Fourier variables

0 &(1+e?) &0 +e?)
A, 6) =i | " 0 0

&2 0 0

The corresponding eigenvalues are zero and
Ax = Hilg](1+ efg]?) '/

with corresponding eigenvectors

0 1
Bo=| -0 +ee®)V2 | B = | FA+ee)? ]
G0+ g2 B0+ ele)2
-1

and Fy = %(1 +€|§|2)_1/2
S (14 efef?) 12
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Now we set J. = (I — eA)'/?2 and Ry, Ry the Fourier multiplier operator with
respective symbols & /|€], €2/ €.
We also denote
0 7 —1
P = —jogl R1J€_1 R1J€_1
lee_l R2J€_1 RgJe_l
and
0 2RyJ. —2RiJ.
—i —RiJ. —RoJe
i —RiJe —RalJ.
Setting U = (n,u)” and V = (¢,v)T = P~1U, B3) writes as
U+ AU +eN(U) =0,
which is transformed after diagonalizing the linear part,
Vi + DV 4+ ¢P !N(PV) =0,

or, setting PN (PV) = N(V),

P*lzl

(3.20) Vi+ DV +eN(V) =0,
where
0 0 0
D=0 i(-A)/2J, 0
0 0 —i(=A)/2],
We turn now to the nonlinear part. N is given as a function of U by
V- (nu) V- (nu)
NW) = {$0:(uf) | = -V |,
30y (|uf?) u - Vuy

where we used the condition curlw = 0 in the second equality.
On the other hand, P~'N(U) is given by

0
1
— = iV - (’I]U)+R1JE(’LL'VU1)+R2J€(U'V’U,2)
—1V - (’I]U) + leé(u . Vul) + R2J€(u . VUQ)

To obtain the expression of N(V'), we should express (1, uy,us) as
n=1i(vi —v2), wr=—RoJ "¢+ RiJ " (v1 +12),
Uy = R J7 ¢+ RoJ (01 + v2),
and the nonlinearity is of the same type as in the one-dimensional case.
Remark 3.1. As in the case of the "KdV-KdV" system (a = ¢ = 1/6,b=d = 0)

studied in [30], it follows from our analysis that ¢ = 0 if { is smooth enough, since
0¢ = 0. Moreover,

(=0 <= Rouy=nRius <= curlu=0.

We observe that this condition makes sense, since our system is derived from the
water waves equations in the irrotational case. Note that w is the horizontal velocity
at a certain height and it differs from the horizontal velocity at the free surface by
an O(e?) term. Also, since the equation for w writes dyu = VF, the condition
curl w = 0 is preserved by the evolution.
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Remark 3.2. The linear part in (8220) is "Schrodinger like" for large frequencies (the
symbol behaves as +ie'/2[¢|? as |¢| — 400), and "wave like" for small frequencies
(the symbol behaves as +i|¢| when || — 0).

The quadratic terms however involves order one operators and this one could a
priori think of applying the results on the Cauchy problem for quasilinear Schrédinger
type equations (see for instance [23]). Those methods however necessitate a high
regularity on the data and it is unlikely that they could improve our local result.

3.2. A second Schrédinger type system. We consider here the situation where

a=b=d=0,c<0,say ¢ =—1 which again may occur only in the case of strong

surface tension. It turns out that this system leads to serious difficulties, which are

not present in the other Boussinesq systems, and that we will describe below, even

to obtain the local well-posedness by "elementary" or more sophisticated methods

using dispersion. We refer to Section 4 and 5 for the long time existence issues.
We consider first the one-dimensional system

e+ ug + e(un)z =0,
(321) { Ut + N + EUUy — €lgza = 0.

The hamiltonian structure is now

Oy (Z) + Jegrad He(n,u) =0

0 0,
(0. %)

1
H.(n,u) = 3 /}R(e|77gc|2 + 1% +u? + eu’n)da.

where
and

Similarly to the case b=d > 0,a = 0,c = —1 considered in [7] and for a related
system in [I0] , one can use the formal conservation of H, to derive a global a priori
estimate when H. (1o, uo) is small enough and inf e (1+€no(x)) > 0. First we derive
as in [7, @] a L° bound on 7 for solutions (n,u) € C([0,T]; H*(R))x C([0,T]; L*(R))
satisfying the above non-cavitation condition. Actually, one writes

1 1
2 2 2
t) < z|dr = — zldr < —— |7 )d
@) < [ nllndde ==z [ Vlnlnlde < 522 [ 67 +elncf)as
(3.22) ; |
< —|H.(n,u)| = —|H.(no, te0,7).
< \/g| (1, w)| \/g| (0, uo)| ¢ € [0, 7]
Using [3.22)) and the conservation of H, imply a (formal ) H* x L? bound on
(n,u) provided H(no,up) is small enough, that is

(3.23) H. (10, u0) < e 3/2,

Unfortunately, and contrary to the case b = d > 0,a = 0,¢ < 0 (see [7]),
one cannot use the above bounds to get a global well-posedness result, say by a
compactness method applied to a regularization of the system. The obstruction is
that one cannot pass to the limit of the term %Bw (u?) in the second equation only
from a L? bound on u.
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To obtain an equivalent "diagonal" system, we proceed as in the other "Schrédinger
type system", setting now

/T(g) =1 (1 +2|§|2 (1)> :

with the same eigenvalues i€ (1 + ¢|¢|?)/2.
In the Notation of the previous section, one has still

Je 0
b (% 0).

and now

Setting again

and
W = <g> =P'T,
one can therefore reduce [B:2I)) to the equivalent form
+ J (e + £N1(C,v) =0,
(320 LR TR
where
N1(¢,v) = 0aJe[(C+ )T H(C = )] + (C+ ) (¢ + v)a
and

Na(G,v) = =02 Je[(C +v) I (¢ = v)] + (€ +v) (€ + V)
We can also write (3:24) as

{ G+ €V Hpw + ReC + £N1(¢v) = 0,

(3.25) v — €/?Hvyy — Rev + SN2(C,v) = 0.

where again R, is the order zero skew-adjoint operator with symbol WM

Note that the nonlinearity is worse than in the case a = —1 and even the local
theory does not seem to be straightforward using this formulation.

We turn now to the two-dimensional case that is

m+V-u+eV-(nu) =0,
uy + Vn+ sV|ul? — eVAn = 0.

The Hamiltonian structure is now

Oy (Z) + Jgrad He(n,u) =0

(3.26)

where
0 0r Oy
J=10, 0 0
g, 0 0
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and )
Hinw) = 5 [ (€907 07 + ful? + cluly)dedy.

As in the one-dimensional case, one can express ([B:2I]) on the equivalent form

(3.27) Vi+ DV + N(V) =0,
where again U = (n,u)?, V = (¢, v)T,
0 0 0
D=0 i(=A)2J, 0
0 0 —i(=A)2 ],

and N (V) is expressed as

0
1 .
5 —2J6[5I(u177) + 3y(u277)] - %[R1(91|u|2 + R23y|u|2]
iJe[aw(uln) + 3y(u277)] - %[R131|u|2 + R23y|u|2]
with
n:iJe_l(vl—vg), Uy = —R2<+R1(U1+U2), UQ:R1<+R2(1)1 —|—’UQ).

3.3. Comparison between the two Schrédinger type systems. The previous
considerations display the difficulties of the Cauchy problem in the case a = b =
d = 0,c < 0. We indicate here how to reduce it to the case b =d = ¢ = 0,a <0

modulo O(e?) terms.

Let us consider for instance the one-dimensional case
+ Uy + €(nu), =0,
uy + Nz + euuy, — ENzze = 0.

Setting
7= (1-ed7)n=Jén,
B28) can be rewritten as follows :
(3.29) e+ (1 — e@i)um + e(u)z = 52(277muz + 3Nptas + Nazs),
' Ut + My + euuy, =0,
that is
it + (1 — €02)ug + €(iju),
(3.30) = 52(2(Je_277xx)uz + 3(Je_2ﬁx)umc + (Je_2ﬁ)uzzz)a
Uy + 17 + euuy, = 0,
Discarding the O(€?) terms, ([3:29) reduces to
e + 1—685 Uy + €(Nu), =0,
(3.31) { Ug (~ ) (1u)
U + €Ny + euty = 0.
which is exactly the case b=c=d =0,a = —1.
Similarly, we can consider the two-dimensional case

e+ V-u+eV-(nu) =0,

3.32
(8:32) u; + Vn + %V(|u|2) —eVAn=0.
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Setting
B32) can be rewritten as follows :
i+ (1= eA)V - u+eV - (fju) = (AV - (nu) = V - (Aru)),

3.33
(353 ui + Vil + 5 V([uf?) =0,
that is
it + (1 — eA)V - u+ €V - (fju) = €(AV - (wJ%7) — V- (uAJ*7),
(3.34)

€
uy + Vﬁ + 5V(|u|2) = O,
Discarding the O(€?) terms, ([3:33) reduces to

e+ (1 —eA)V-u+eV- (qu) =0,
3.35
(3.35) ut+Vﬁ+§V(|u|2)=O
which is exactly the case b=c=d =0,a = —1.

The bad structure of the nonlinear terms in B30), B34) (or (Z0), B217))
explain why solving the Cauchy problem for systems B2I) or (B26) is so diffi-

cult, despite their apparent simplicity. One could notice that we always lose one
derivative for n or w. Thus, to solve the case a = b = d = 0,¢ < 0, we turn to
quasilinearize the system by applying 07 instead of the usual 9¢. We shall discuss
details in the following section.

4. LONG TIME EXISTENCE FOR SOME BOUSSINESQ SYSTEMS

We first give a complete proof for some systems considered in [30] (in particular
the two-dimensional version of the system considered in [4, [38]) and apply the
same symmetrization techniques to study the long time existence of solutions (in a
smaller Sobolev space) of one of the "Schrédinger type systems" described in the
previous section. We then consider the more delicate case a =b=d = 0,c < 0.

We associate to (I.2) the initial data
(4.1) =0 =10, ul=0 = wo.

4.1. The case a = ¢ = d = 0,b > 0 with condition curl u = 0. Before going
further, we state some technical lemmas and definitions.

Definition 4.1. For any s € R, k € N, ¢ € (0,1), the Banach space X3 (R") is
defined as H*T*(R") equipped with the norm:

e, =l + e¥lufZrs

Lemma 4.2. For anyi,k € N and0 < i < k, there holds the following interpolation
inequality:

i 1—+ , k 2
(1.2) & | flmess S 11k (4 7 lmon)* S 1flxe,.
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Theorem 4.3. Let b > 0,a = c =d =0. n =12, s > 1+ 5 . Assume
that o € X%(R™),up € XZ(R™) with curlug = 0 when n = 2, satisfy the (non-
cavitation) condition

(4.3) l4+en>H >0, He(0,1),

1—H
co([molxs, +luolxs)
exists T > 0 independent of €, such that (L2)-@I) has a unique solution (n,u)”
with n € C([0,T/e]; X%(R™)) and uw € C([0,T/€]; XZ(R™)). Moreover,

Then there exists a constant ¢y such that for any € < €y = , there

4.4 a. s+ lulxs) < c s+ |w s ).
(4.4) teI[I(},TX/e](mXe2 ulx:) < C(|770|X€2 [uolx:)
Here ¢ = C(H™') and ¢y = C(H™') are nondecreasing functions of their argument.
And in what follows, without confusion, we denote ¢ = C(H™') a nondecreasing
constant depending on H~1. Otherwise, we denote & (i=0,1,2,...) constants having
the same properties as C.

Proof. The proof follows the same method used in [36], that is to obtain energy esti-
mates on a suitable symmetrized linearized system followed by an iterative scheme.
Here we only give the a priori estimates on the full nonlinear system and in the
two-dimensional case. Since ¢ = d = 0 and curl ug = 0, we deduce from the second
equation of (L2) that

(4.5) curlu =0, for ¢>0.
Then using (@A), (C2) becomes
L6 O+ V- -u+eV- (nu)—beAdm =0,
(4.6) ou+Vn+eu-Vu=0.
Denoting by U = (n,u), (£0) is rewritten in the condensed form as
(4.7) (1 —beA)O,U + M(U,D)U =0,
where
eu -V (L+en)oy (1+en)oo
MU,D)= | (1 =beA)dy (1 —beA)(eu V) 0
(1 — beA)Ds 0 (1 —beA)(eu - V)
The symmetrizer of M (U, D) is
1 —0beA 0 0
Sy(D) = 0  14e 0
0 0 1+4+en

We define the energy functional associated to (7)) as
Ey(U) = (1 - beA)A*U | Sy (D)A™D)
(48) = ((1 = beA)A’n [ (1 — beA)A®n)2 + ((1 — beA)Au | (1 + en)Au)s.
Assume that
(4.9) l+en>H>0, enwie <ryg for tel0,T)
with kg sufficiently small, and

(4.10) max_FEs(U) < Cp,
0<t<T
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for some constant Cy. The assumptions (£9) and (ZI0) hold provided that (L3)
holds and € < ey < 1 (one can refer to [36]).
Under the conditions (@3], it is easy to check that

(4.11) Ey(U) ~In

g(ég + |u|§(§

The proof of (£II) is similar to that in [36] and we omit it.
A standard energy estimate leads to

%ES(U) = 2((1 — beA)A*8,U | Sy (D)AU ),
+ (1 = beA)A*U | 0:Su (D)AU)2 — be([Su (D), AJAU | A*Uy),
(4.12) = —2(A*(M(U,D)U) | Su(D)A*U )2 + ((1 — beA)A*u | edpnAu),
— be?([n, A]JAu| Asatu)2
d:fI + 11+ 111.

Estimate for I. Firstly, one gets
I =-=2([A°, M(U,D)|U|Sy(D)A°U)2 —2(M (U, D)A°U | Sy (D)A°U)2 d:fIl + Is.

For I, one has
I = =2([A% eu] - Vn + [A%,en]V - w | (1 — beA)A®n)2
—2((1 — beA)([A®, eu] - Vu) | (1 + en)A®u),
= Ii1 + Lo

Thanks to Lemma [B.2] it is easy to get that for s > 2,
(1| < (A% eu] - Vila + [[A%, en]V - ul2) (1 — beA) A7)

(4.13)
S elulms|nlms (|nlas +€ln

He+2) S 6|U|X§|77|§(:‘2-

For I1-, integrating by parts, there holds

Ly = =2([A% eu] - Vu | (1 + en)A%w)z — 2be(V ([A®, eu] - Vu) | V((1 + en)A®u)),
which along with (@9]) and Lemma B2 implies that

[Tia] £ (1 elnloo)elutly. + [k (14 elnloo) VA" uls + ¢|Vn]oo|A%ul)

Then we get by (13) and (£I4) that
(4.15) L] < elu

(4.14)

x:( 77|§(§2 + [ul%e).

For I, due to the expressions of M (U, D) and Sy (D), we get that
Iy =—2(ew- VA’ | (1 —beA)A°n)a — 2((1 — beA)(ew - VA u) | (1 + en)A’u)s

—2{(1+en)V - Au | (1 = beA)A*n)2 + (1 — beA)VA*n | (1 4+ en)A*u)2}
=l + Iz + s
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Integrating by parts, one gets that

2
Iy = e(V - ul*n| A®n)g + be*(V - uVA* | VA*)a — 2be? Z(Biu - VA1 | 0;A%n)2
i=1

Iy = €(V - (1 + en)u) A*u | A*u)y + 26€° ((w - V)A u| Y 0;(0inA*u)),

i=1

2
— 2be? Z(@lu VA | (1+ en)diA*u)s + b2 (V- (1 + en)u) VA*u | VA*u),,
i=1
123 = 2€(V7’] -Au | (1 - bGA)AS’I])g.

Then thanks to (£9), (£10), (1) and (Z2]), there holds

(4.16) 12| < elulx; (Infx, + ulk:).
Thanks to (£I5) and (£I6), we obtain
(4.17) 115 el (e, + fulk,).

Estimate for I7. Integrating by parts, we have
IT = e(ASu | 9nAiu)g + be* (VA u | V(0mA*u))a
which along with ([£2]) implies that
(118) 1111 S el
Estimate for I/]. Thanks to Lemma [3.2] we get that
(4.19) 11| £ || ge s [l s [N Dyl S el [l [Dyul oo

Combining (I12), (@I7), @I8) and @I9), we obtain that

d
(420) 2 E(U) S e(lnlxs, + ulx:) (Infe, + uli; + [0ml s + [0ul.-).

Thanks to the equations of (L8], one gets by using [£9) and (EI0) that
Bt o + 1Ot i1 S (1 elloc)

xs + €lu|oo|n| s + |77|ij + |“|§<

(4.21)
S Inlxs, + lulxe,
which along with (@20) implies that
d
(422) SE(U) S ellalx, + ulx;) (ol + lule):
Then due to ([@II]), there holds
d 1
S (B0)* < CreBL(U),
which gives rise to
1
1 Es(Up))? 1
(4.23) (ES(U))5 < (E:(Lo) - < 2(E5(Uo))5,
1 — Clet(Es(Uo)) 2
for any t < ——L— L with T = ——L—. This completes the proof of

€

[N
[N

201 (B.(U0)) 201 (E. (Vo))
Theorem O
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4.2. Case d >0,a=b=c=0.

Theorem 4.4. Letd > 0,a =b=c=0. n=1,2, s > 1+ 5 . Assume that
no € XE(R™),ug € X% (R™) satisfy the (non-cavitation) condition

(4.24) l+en>H>0, He(0,1),

1-H
co([molxg +luolxs,)
exists T > 0 independent of €, such that (L2)-@I) has a unique solution (n,w)”
with n € C([0,T/€]; XZ(R™)) and w € C([0,T/€]; X% (R™)). Moreover,

4.25 . ) <é . 2).
(4.25) Jnax (Inlxz +lulx, ) < elmlxe + uolxz,)

Then there exists a constant ¢y such that for any e < ey = , there

Remark 4.1. As was previously mentioned, one gets global well-posedness in the
one-dimensional case ([4, 38]) in a different functional setting though but the
method of proof in [4, B8] does not seem to adapt to the two-dimensional case
since it relies strongly on properties of the one-dimensional hyperbolic Saint-Venant
(shallow water) system.

Proof. The proof also follows the same method used in [36]. Here we only give the
a priori estimates. For d > 0,a = b = ¢ = 0, we rewrite (L2)) in two-dimensional
space as follows:

on+V-u+eV-(nu) =0,

4.26
(4.26) Ou+ Vi + %V(|u|2) — deAdyu = 0,

Denoting by U = (n,u), (£20) is equivalent to the following condensed system

(4.27) (1 —deA)o,U +M(U,D)U =0,
where
e(1—deA)(u-V) (1 —deA)((1+en)dr) (1 —deA)((1+en)ds)
]\4(U7 D) = (91 eu181 6’(1,2(91
82 eu182 6’(1,2(92

The symmetrizer Sy (D) for M (U, D) is defined by

1 €Uy €U 0 0 0

eu; (14 en)(1 —deA) 0 + (0 duguA  dePuqusA

€Us 0 (14 en)(1 —deA) 0 déujua  dedususA

We define the energy functional associated to (21 as
(4.28) Es(U) = ((1 = deA)A°U | Sy(D)A°U)4
Assume that
(4.29) l+en>H>0, eulyre<kyg for tel0,T)
with kg sufficiently small, and
(4.30) max_FEs(U) < Cp,

0<t<T

for some constants Cy. The assumptions (£29) and (£30) also hold provided that
([E24) holds and € < ¢y < 1 (one can refer to [36]). Under the assumption (29,
it is not difficult to check that

(4.31) Eo(U) ~ Inlk; + lulk, -
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As usual, a standard computation shows that

L B(U) = (A (MU, DY) | (Su(D) + Su(D)*) A*D)s
(4.32) — de([Su(D)*, AJAU | A*8,U )3 + ((1 — deA)AU | 8,Sy (D)AU ),
=T+11+111,

where Sy (D)* is the adjoint matrix of Sy (D).
Estimate for /. One has that

I=— (A", M(U,D)U | (Su(D) + Su(D)")A*U)e
— (AU | (Su(D) + Sy (D)) (M(U, D)A*U))2
d:efll + 1>
Estimate for I . Using the expressions of M (U, D) and Sy (D), one gets that
([A%, M(U,D)]U | Sy (D)A°U)2 = ([A%, (1 — deA)(uw - V)|n | A°n + eu - Au)o
+ ([A%,e(1 — deA) (V)] - w| A°n + eu - A%u)s

2
+ (A% eudsuy | ewihn + (1 + en)(1 — deA)A*u; + de’uu - AN ),
i,j=1
= Iy + Iio + I13.

Integrating by parts, there hold

Ly = €([A%, u] - V| A+ eu - ASu)y + de(V([A%,u] - Vi) [ V(A%n + eu - A*u)),
Ly = €([A°, 0]V - w| A%y + ew- Au)y + de* (V([A%, 0]V - u) [ V(A + eu - A®u))s,
which along with ([@29), (£30), BII) and [@2]) imply that

\Ta| + o] S elulme[nlas (Inlme + elulf.)
(4.33) + 62(|V’U,|H371|V77 He + |vu|Hs|v77|Hs—1) (|77|Hs+1 + €lu

Thanks to (3110, (£2), (£30) and (E3T]), there holds

13| S €lu

Hs U|Hs+1)

< elulxs, (In

Hs—|—|u

2 (elulinsIn xo, + defullc,) S elule, (nlx: + ulxs,).
which along with ([@33]) shows that

|([A*, M(U, D)U | Sy(D)A*U)2| < elulxs, (In

g{g + |u|§<:2)

The same estimate holds for term ([A®, M (U, D)|U | Sy (D)*A®U)3. Then we obtain
that

(4.34) |I1] < €lu

X2, (Inlk: + |U|§<§2)-
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Estimate for Io. For I, we first calculate Sy (D)(M (U, D)) = A(U, D) = (a;j)
as follows

a1 = e(1 —deA)(u-V) +eu-V =2ecu-V —de*Au - V),

a1z = (1 — deA)((1 + en)0r) + Euu - V,

a1z = (1 — deA)((1 4 en)ds) + 2usu - V,

ag1 = (1 +en)(1 — deA)dy + Euru - —de uy [A,u] -V,

agy = eur (1 — deA)((1 4 en)dr) + e(1 + en)(1 — deA)(u101) + de*uyu - A(uy V),
agz = eur (1 — deA)((1 + en)da) + e(1 + en)(1 — deA)(u20:) + de*uyu - A(uaV),
az1 = (1 4+ en)(1 — deA)dy + 2ua(1 — deA)(u - V) + de’ugu - VA,

azy = euz(1 — deA)((1 + en)dr) + e(1 + en)(1 — deA)(u102) + de*ugnu - A(ur V),
azs = eua(1 — deA)((1 4 en)da) + €(1 + en)(1 — deA)(u202) + de*ugu - A(uaV).
Now , we calculate (Sy (D)(M (U, D)AU) | AU )2 = (A(U, D)ASU | A5U)s.

For a1, one has

(a11A°n [ An)2 = 2¢(u - VA* | A*n)2 — de*(A(u - VA*)) [ A*n)s
—€(V-ul’n|[A®n)s — %dez(v -uVA*n [ VA® ), + de? i(azu - VA®n | 0;An)2,

i=1

which shows that

(4.35) (@11 A% | A*n)a| < elulm|nf%..
For asa, one gets

(azoA%uy [ APur)z = e{(ur(1 — deA)((1 + en)OrA%ur) | A®uy),

+ ((1 + E’I])(l — deA)(ulﬁlAsul) | Asul)g} + d64(u1u . A(u1VA5u1) | Asul)g
= — ( Sy |€(917’](1 — deA)(ulASul) + (1 + 677)(1 — deA)(BlulASul))g

— de* Z (U1 VA uq) | 0;(uauh’uq))2

which along with ([@29)),([@30) and (£2) gives rise to
(436) |(CL22ASU1 |ASU1)2| 5 e|u|Hs|u|§(52.

The same estimate holds for term (agzASus | A%usz)s.
For a12 and a1, one calculates that

(a12A%ug [ A°n)2 + (a21 A%y | Afuy)o
= {((1 = deA) (1 + en)drA®uyr) [A*n)2 + (1 4 en)(1 — deA)d1 A | A*uq)a}
+{E(urw - VA uy | A*n)g + 2 (urw - VA | ASuy)o — de? (ur[A, u] - VA ) | ASup)e}
= —¢((1 — deA)(B1nA%uy) | A*n)2 — €2(V - (ugu)ASuy | A®n)o
+ (VA | [A, u)(ur ASuy))a,
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which along with (£29)), (£30) and 2] implies
[(@12A%u1 [A®n)2 + (a1 A°n | Atu)o|

elnlie lulxs, + €*lulke, In

(4.37) Xz

<
~Y €
< elulx;, (Inlk: + |U|§<;2)~

The same estimate holds for (ajzA®us | A®n)2 + (az1 A%y | ASug)s.
At last, for ags and aso, one estimates that

(ag3Nug | A%uy)a + (ase A uy | Aug):
= e{(u1(1 — deA) (1 + en)2A%us) [ A®ur)2 + (1 + en)(1 — deA)(u102A%ur) [ A®us)2}
+ e{((1+ en)(1 — deA)(uad1 A®uz) | A®ur)z + (uz2(1 — deA)((1 + en)0r1A%uqr) | APuz)s}
+de*{(urw - A(ua VA u2) | A%ur)s + (ugw - A(us VA ur) | ASug)a}
= —¢(edan(1 — deA)(u1 A’ur) + (1 + en) (1 — deA)(Daur A°uq) | A%ug)o
— e(edin(1 — deA)(uaAuz) 4+ (1 4 en)(1 — deA)(O1ugAuz) | Aup)2
— de*{(Vuz - A(urud®uy) + us A(V - (uru)A%ur) | A®ug)s
2
— (2uq Z 0w - 0;(ur VA uy) + us Aw - us VA uy | A%us)a},
i=1

which together with ([£29), (£30) and (£2) leads to
(a23ASu2 |AS’U,1)2 + (aggASul |AS’U,2)2|

Se(l+e€ln §(52 + 3lu

(4.38)

u

x:) g(ég S elu g{;-

Thanks to (439, ([£30), (£37) and (£38]), we obtain that
|(Su(D)(M (U, D)A*U) [A*U)a| < €(In

3
xe + lulxg)s

provided that there hold ([@29]) and ([@30). The same estimate holds for (Sy(D)* (M (U, D)A*U) | A*U )s.
Then we obtain that

(4.39) Ia| < €(In

3

X + |U|X:2) .
Due to ([@34) and (£39), we get that

(4.40) 171 < e(ln

3
Estimate for I1. Using the expression of Sy (D), one obtains that

I = —de(e([u, A] - ASw | A*9n)a + e([u, AJA*D | A*Bpu)s

+e((1— deA)([n, A]Asu) | A°Opu)2 + de? Z (A([uiuj, A]Asuj) | Asatui)g).

ij=1

Along the same line as previous work, by virtue of (&I1)), ([@2)), (£29), (@30) and
integrating by parts, we finally get that

(4.41) (1] S e(lnfxs + |ulxe,) (10m

xo1 + |8tu

).
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Estimate for I71. Using the expression of Sy (D) again, one gets that
ITT = e((1 — deA)A°n | Oy - Au)gy + e((1 — deA)A°w | Opul®n)
2
+e((1 — deA)ASu | 9n(1 — deA)Asu)s + de? Z((l — deA)Nu; | Op(uju) - AN u)s.
j=1
Note that
(1 = deA)A°n | du - Au)s = (A°n| Oyu - A°u)s + de(VA°n | V(0w - A°u))o
Then (£29), (E30) and [@2) leads to
(4.42) [ITI] S elnle: + [ulke, ) (19m] - + [0l coo0)

Combining (£32), (@40), @A) and ([E42]), we obtain that

443 LE) <e(n

xe +lulxs,) (Il + [ulke, +10m[% 0 + 105 ).

dt
Thanks to [@20]), we get by using [@29) and @30) that
(1.41) Ounl e+ Ol oo < Il + Julx,
which along with (£43]) implies
d
(4.45) CEU) S e(nlx +lulxe,) (il + fuli)
Then due to (@31, there holds
d 1
Z(E(U))* < CreB ().
Similarly as the proof to Theorem E3] there exists T = ——L— such that
20, (B.(U0)) 2
(#£23) holds. This completes the proof of Theorem .4 O

We now turn to the "Schrodinger like" Boussinesq systems.

4.3. The case b = d = ¢ = 0,a < 0. This case can be treated by following the
lines developed in [36]. For the sake of completeness we provide some details now.

Theorem 4.5. Letb=c=d =0,a=—-1,n=1,2, 5> 2+ 5 . Assume that
no € H*(R™),ug € XZ(R™) satisfy the (non-cavitation) condition

(4.46) l4+en>H >0, He(0,1),

Zo(lmol= Hwolx2)
exists T > 0 independent of €, such that (L2)-@I) has a unique solution (n,u)”
with n € C([0,T/¢e]; H*(R™)) and w € C([0,T/¢e]; X2(R™)). Moreover,

4.47
(4.47) teI[I(}%“X/e](m

Then there exists a constant ¢y such that for any € < ¢y = , there

He + |ulxs) < E(|nolms + |uolx: ).

Proof. We only sketch the proof of the two-dimensional case. For b = ¢ = d =
0,a = —1, we firstly rewrite the two-dimensional version of ([2)) in the following
condensed system

(4.48) 0,U + M(U,D)U = 0,
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where U = (,u)T, and

eu-V (14+en—eA)dr (1+en—eA)dy
M(U, D) = 61 eu161 6’(1,261
0o eu109 €us 0

The symmetrizer Sy (D) for M (U, D) is defined by

1 €U €Us
Su(D)=|eu; 14en—eA 0
€Us 0 14 en—eA.

We define the energy functional associated to (£48) as
(4.49) E,(U) = (AU | Sy(D)A*U):
Assume that
(4.50) l4+en>H >0, €nwre+eulpre <ryg for tel0,T]
with kg sufficiently small, and

(4.51) max_FEs(U) < Co,
0<t<T

for some constants Cy. The assumptions (£50) and (£5I]) also hold provided that
([#48) holds and € < ¢y < 1 (one can refer to [36]). Under the assumption (50,
it is not difficult to check that

(4.52) Ey(U) ~ [nlFe + |uf%..

As usual, we get by a standard energy estimate that

%ES(U) — (AU | Sy (D)A T s + (AU | 9,5y (D)AT )
(4.53) = —2(A*(M(U,D)U) | Sy(D)A*U)s + (A*U | 8,Su(D)A*U)2
d:ef I+ 11.

Estimate for I1. Using the expression of Sy (D) yields that
IT =2¢(A°n| 0w - APu)z + e(A°u | OimAu)s,
which implies that for s > 3,
(4.54) 71| < €|Oru
Estimate for I. We first have that
I=-=2([A°, M(U,D)]U|Sy(D)A°U)2 —2(M (U, D)A°U | Sy (D)A°U)q ;f[l + Is.

U|lgs + €|6t’l7|Hsf2 |U|?{s

Hs—1 |77 Hs

Estimate for I. For I;, we get that

I = —2e([A% u] - Vi + [A°, 0]V - uw| A°n + eu - Au)s
2
—2¢ Z([AS, ul - Oju | u; Ay 4+ (1 + en — eA)Au;)o
j=1
=Tu+ho.
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Thanks to Lemma B2 and (£50), it is easy to get that for s > 2,
[T S e(l[A%,u] - Vila + [[A% 0]V - ul2) (JA*]2 + Jew - Auls)

(4.55) S elulgs ) ms (] s + €|ul?.)
< el (Infi + ulf).
For I2, integrating by parts, there holds
2
Lo = —2¢y ([N u]- 05w | euA*n + (1 + en)A®u)s
j=1

— 22 (V(IA% u] - yu) | VA, )2
j=1

which along with ([@50) and Lemma B2 implies that

|T12] S elulf (elulocnlms + (1 + €lnlo)[ulm) + € |ulm:ulfm
(4.56) \
S elufmsulx..
Thanks to [@53) and ([{50), we get that
(157 (11 S eluli (nfy. + fulk.):
Estimate for Iy. For I, using the expressions of M (U, D) and Sy (D), we obtain
that

Iy = —4e(u- VA D | A°n)a —2{((1 + en — eA)V - A®u | A°n)2
+ (VA n | (1 4 en — eA)A°u)q}

2
=28 {(u- VA |u- Au)y + Y (u- ;A u|uiAn)y}

i=1
(4.58) —2e{((1 4 en — eA)V - Au|w - Au),
2
+ > (w0 u| (1+ en— eA)A*uy)o}
i=1

= Ioy + log + Iz + lo4.
def
Integrating by parts, we get that
121 = 26(V . UASU | AS’I])Q, 122 = 26(V’I] - ANu | AST])Q,
Iz = 23(V - ul®n|u - ASu)s + 262 (ASu | (u - V)uA®n)q,

2
Iy =22 (Vn - ASu | w - ASu)q + 2¢ Z((l + en)A%u; | 0w - Au)s
i=1
2
+262 > (VA u; | V(9w - A*u))a,
i=1
which along with (@50) and (5] implies that
(4.59) 12| < elulns (InlZ + |ulk.).

Thanks to ([£.517) and ([£59), we obtain that
(4.60) 1] S elulns (Inlhe + lulk,).
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Due to (L2) with b = ¢ =d = 0,a = —1, we deduce by using [@50) and (LI
that

(461) |8t77|H572 + |8tu|H571 5 |’I7|Hs —+ |’U/|X€s

Combining (£53), (@5), (60) and 6T, we finally get that

d
(462) SEAU) S el + fulxe) (e + ule).

Due to ([@52), there holds

d 1
(4.63) —(B.(0)? < CreE,(U).

Then following the same line as the proofs of Theorems and 4] one obtains
that there exists 7' > 0 independent of € such that ([2)-(@I) has a unique solution
on time interval [0, T/¢e]. Moreover, ([@41) holds and Theorem [£H is proved. O

Remark 4.2. The modelling of internal waves at the interface of a two-fluid system
with different densities and in the presence of a rigid top leads, in an appropriate
regime, to Boussinesq systems that are similar to those studied in the previous
sections (see [8], section 3.1.3) and for which one can obtain the same results as
in [36] or in the present paper. The same regime for a two-fluid system but with
a free upper surface has been considered in [I6], section 2.3.2. One gets a system
of four equations for which the methods of [36] and of the present paper are likely
to work, including the case of a slowing varying bottom. We also refer to [I7] for
further investigations on those extended Boussinesq systems, in particular for a
construction of symmetrizable ones (modulo €2 terms).

4.4. The difficult case a = b = d = 0,¢ < 0. The method to solve the long
time existence for this case is quite different from the other cases we dealt in the
previous subsections and in the paper [36]. We will now quasilinearize the system
by applying time together with space derivatives. The key point here is that we
improve the regularity in space by improving the regularity in time (applying space
derivatives to the system would cause a loss of derivatives).

We first state the long time existence result in the one dimensional case :

Theorem 4.6. Let a =b=d =0,c= —1. Assume that no € X%(R),up € X%(R)
satisfy the (non-cavitation) condition

(4.64) l4+en>H >0, He(0,1),
there

' ~ _ 1
Then there exists a constant ¢y such that for any e < ¢y = 5o(|no|X§3+\UOIX22)’

exists T > 0 independent of €, such that B2I)-@I) has a unique solution (n,u)
with n € C([0,T/e]; X% (R)) and u € C([0,T/€]; X% (R)). Moreover,

sup (|77|§<2 + el 5 + meelxo + |ul3ez + |uelk: + |Utt|§)
@esy o T LT R TR
' 2 2
< C(Imol%2, + luolz))-

Remark 4.3. System ([B2I) can be viewed as the Saint-Venant (shallow water)
system with surface tension and corresponds to system (A.1) in [I8] with p =
0,6 = 1. Thus the previous theorem can be compared to Theorem A.3 in [I8].
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Remark 4.4. Tt will be clear in the following proof that the regularity we choose for
the initial data is the lowest possible one. One could also impose higher regularity
on the initial data such as g € ngt]fc (R),ug € 522—:]12 (R) for k € N. In that case,
one has to apply 9 to ([L2)) for k + 2 times. For simplicity, we only consider the
case k = 0.

Proof. We shall divide the proof into several steps. We first indicate how to obtain
the a priori energy estimates. We shall use the a priori estimates to prove the
existence of the solutions, in Section 5.

Step 1. Reduction of the system. Since a = b =d = 0,c = —1, we rewrite

([C2) in the form @B2ZI)). Setting

-1
v = (1+en)u,

the first equation of (B2I)) becomes
N + vy = 0.

Elementary calculations and the use of (B2I)) yield the evolution equation for v :

2

v+ (L + en)ne — e(1 + en)neas + 6(1 :)L En)z =0

Indeed, we have
v = (1 + en)uy + eun

=—(14+en)(Ny — eNpaz) — (1 + en)uuy, — euvy
2

v
—(1 x xxxr) ( )
(L+en)(nz — €Noaa) — € Trer)s

Then (B21)) is rewritten in terms of (1,v) as follows
Mt + vy = 07
(4.66) 1 n L€ ( v? )
v x — €llzzx PR
1+ent 1 1 1+ en\1+en

We shall derive energy estimates for this system.

x

Step 2. Quasilinearization of (£60). In this step, we shall quasilinearize
the system (ZG8) by applying to it 9; and 7. Applying 9; to the first equation of

([£50) leads to

2

Ot = =0, = ((1+ennr), = (14 enneas), + (5
2ev
= ((1 + 677)7790)1 - 6((1 + En)nmmm)m + 1+ Envmm

2 2
v 2e

2
2e — VUL —EQ(L)
L+en (14en)?2 7 (1+en)?/a

One notices that the last term 12;—:”1)” in the second line of the above equality is

the higher order term. Since by (£66) v, = —n;, we rewrite this term as

2ev 2ev
Vgg = —

1+4+en 1+4+en

8m77t .
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Then we obtain
2ev

—— 0 = f,
+1+67’] m=f

(4.67) Nt — ((1 + 677)771)1 + 5((1 + En)nxmm)m

with

v 2¢2 of  Mev?
= 2¢ — VUzNy — € (7) .
def  14+en (1+en)? (14 en)?/a

Applying 0; to the second equation of ([£GO) one obtains

(4.68) f

2
8?1) =—(1+en)0um +e(l+ en)@i’nt —ene(Ne — Naaa) — 6(1 _T_ 677>rt
= (1 =+ E'I])’l}zz — 6(1 + En)vzzzz - ent(nz - Enxxx)
on 2€v,0; 9 v277t
— 200, ) - ( ) .
v (l—l—en 1—|—e77+6 (I1+en)?/a
Then we get
1 2ev on
4.69 — Uzxg rrrT Uz —) =9,
(4.69) 1+€77vtt Vze + €V +1+€77 (1+€77 g
with
(4.70) S - S € ()
. = - e — €Nxax) — .
9 &t 1—|—e7777 1 (I+en)? 1+en\(1+en)?/s
Combining (£67) and [69), we obtain
2ev
e = ((L+en)ne ), + (L4 emnees ), + 77— 0t = [,
+en
(4.71)
1 n n 2ev ( on )
Vit — Vg EVgrax T Ux\7 ) =G,
1+4+en " 1+4+en 1+en g

with (f,g) being defined in (£6]) and ZT0).
We remark here that (7)) is a diagonalization of ([@60) and that the principal
linear part for both equations of (7T is the dispersive wave equation

(92 — 92 + ).

The source terms (f,g) are of lower order. One can then derive the L? energy
estimate for (AT).

However, if we want to derive higher order energy estimates, it is not successful
to apply 0, to the second equation of (£T7I]) since when 9, acts on the term ﬁvtt,
it will turn out an uncontrolled term _(1-?—;7)27}”' One has to apply instead 0; to

&TI). In other words, we shall improve the regularity of the unknowns by applying
OF (not 02) to (A60).

Denoting by ' = 9;n and v = 9, applying 0y to (LTI, it transpires that
(r/,v") satisfies the following system

2ev
e — (L enny) , +e((L+ en)ig,), + mamné =f,
(4.72) /
#’U/ -V +ea) + ﬂa ( i ) = g'
1+67’] tt xxT rTTrTT 1+67’] xT 1+€77 )
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where

o _ .2 _ v
f d_cf 8tf+€(77t77m)m € (ntnmmm)x 26(1 +67’])t77tx7
(4.73)

2620 o v on
LA (rem). >(ma)55).
I qet tg+(1+en)2vtt+1+e77 (14 en)?/a ¢ 14+en/t\1+en/a
The principal part of ([E72) is the same as that of (Z7I).

Step 3. Energy estimates for the quasilinear system (Z60)-(@7T)-([Z72]).
We shall derive energy estimates for (60), ({71)) and [@72) under the assumptions

(4.74) 14+en>H >0,
and
(475) |77('7t)|W1*°° + |’U('7t)|W1*°° + |77(7t)t|oo + |U('ut)t|oo S c, fort e [O,T],

where the constant c¢ is independent of € but depends on the initial data. We remark
that [@74) and [@7H) are consequences of the assumption ([@G4) and the a priori
estimate ([@I0T) for (n,v).

Step 3.1. Estimates for ([@66). We notice that the symmetrizer for the linear
part of ([@6H) is the matrix diag(1l — €d?,1). Then taking the L? inner product of

([ETE) by ((1—e€d2)n, ’U)T leads to

1d € MV v? v
4.76 SO Bt = —S (=), — ( ) :
(4.76) 2dt o(t) 2((1+e77)2|v)2 «( 1+en m|1+€77)2
where

— 2 2 v
Bolt) = 3+ el + (| 0

Thanks to ([£74) and (£ 70), we have
(4.77) Eo(t) ~ |nl3 + e|nal3 + [v[7
By (@T4), the first term on the r.h.s of ([@T0) is estimated as

€ v

|- §(m [0),] S elvloclnelzlvlz S €lvloo(nel3 + [v]3),

while by integration by parts and (@4, the second term on the r.h.s of [@70) is
estimated as

v? v € v
- e((l +67’])m| 1+€’I])2| - §|(% | |1 +677| )2|
< €|v]oo[vl2]va]2 S €lv]oo(Jv]3 + [v]3).
Then we obtain

1d
(478) S Eo(t) S elvloo (lml} + 03 + 0af3).

Step 3.2. Estimates for [@T1)). Taking the L? scalar product of the first equation
of @TI) by (1 — €d?)n;, we obtain

(e | (1 = €0)me)2 — ((L+ en)na) | (1 — €02)me)2

(1 M) | (1= B2+ (e | (L= 022 = (£ (1= 2.
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Integration by parts gives

d
(e | (1 — €02)my)2 = T (113 + €lmez3)

N =

(((1 +emna [ ne)2 + e((1+ €n)nee | 779696)2)

| =
Sl

— (A +enms), | (1 —edP)m)z =

2
€ €
- 5(77157796 | 72)2 — 5(77157711 [ M )2 — 52(81(779677:&) | )2,
€ d
6(((1 + 677)77969696)1 | (1 - 635)%)2 = 5%(((1 + 577)7711 |77M)2 + 6((1 + 577)77111 |77mz)2)
€2 €3 9
- E(thmm | 7711)2 - 5(77t77mmm | 771:61)2 +€ (nmnzz |77tx)2-
Then we obtain that
2L () + (| (1 - e02)m)
S dt 11 1+ e Tt €02 )Nt )2
€
(479) = 5(7715771 | 771)2 + 62(77t7711 | 77m;v)2 + 62(771177LE | ntm)2
€3 9
+ 5(7%77111 |nmmm)2 + (f | (1 - 6595)7716)2
where

By (t) [if |77t|§ + €|77tr|§ + (1 4+ en)ne [ n2)2 + 2e((1 4 €n)naz [ Naz )2

+ 62((1 + en)nmmm | 77111)2
By (@) and ([@T5), we have
(4.80) By (t) ~ |77t|§ + €|77tr|§ + |77m|§ + €|77mm|§ + €2|77mcr|§-

Now, we estimate the second term on the Lh.s of ([£T79). Integrating by parts,
we have
2ev

_(1+67’]

v
= () [l e
€(0: (g ) | el = elal)2

which along with (@74]) and ([{75) implies that

v
1+en

Oune | (1 — €07)me)2 = —e | 0w () = €0 (Inea]?))2

2ev
(4.81) (g, Qe 10— cO2)ne)2] S €(1neloo + [vzloo) (I1e]3 + elmal3)-
Due to (A79) and (LX), we get
1d

(4.82) §EE11(15) N €(|77t|oo + M| + |Um|00) (|77r|§ + €|77M|§

+ E[nuaals + i3 + €lnea ) + [ Flalnelz + €l fol2lnes2-
Taking the L? scalar product of the second equation of {ZI) by v; yields

(4.83) 1iElz(t) + (ﬂam(L) |ve)2 = —1(&( ! Jue|ve)2 + (9] ve)2

2.dt 1+en “\1+en 2" +en
where
(%7
En(t) = (1 o [ve)2 + [val3 + €|vaal3-
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Thanks to ([£74), we have
(4.84) Eqo(t) ~ |Ut|§ + |Uac|% + €|wa|§-

Similarly as for ([ALZT]), integration by parts on the second term on the Lh.s of ({3
leads to

2ev Vg Vg2 9
4.85 () [v)a] = el (@2 < el oolvr 3.
@85) (om0 ) [l = e@ev | el S elonlol
We can also bound the first term on the r.h.s of [@L83) as follows
1 1

| - 5(@(@)% |Ut)2| s €|77t|oo|11t|§7
which along with (£383]) and ([E385) gives rise to

1d
(4.86) P S €([vzloo + [ntloo) [vel3 + [gl2lvea-

Thanks to the expressions [@G8]) and [70), using the assumptions (L74) and
([@TH), we estimate the source terms |f|o + €2 | f,]2 and |g|s as follows

1
[fl2 + €2 falz + lgl2 S €(Ineloo + [V]oo + [02]00 + [7t]00)
X (|771|2 + 6% |nww|2 + 6|nwww|2 + |Ut|2 + |Uw|2 + 6|’Umw|2)'
Now, we define F (t) = Eq1(t) + E12(t). Then [@Z0) and (@) yields

(4.87)

(4.88) Eqy(t) ~ |77m|§(?2 + [mel50 + [val5o + oif3-
where |- 3, = |- s + €| [ ve.
Combining estimates (£82)), ([ALS6) and [@ZT), using ([LIY), we obtain
1d
(4.89) §EEl(t) S 6(|77t|oo + Meloo + [V]oo + |Um|OO)E1(t)v t€[0,77].

Step 3.3. Estimates for (E12). Since [@LT72) has the same form as (LTI, we
have a similar estimate as (L80) for the second equation of ([L72), that is,

1d
(4.90) 2 Ban(t) S (fueleo + elo) 0113 + 19/ lof ],
where

Enalt) = (— )y + 2 + elefl2
(4.91) def "1 +e€n

~ g3 4 03+ elvga 5 ~ [vil5 + 10

Taking the L? scalar product of the first equation of ([T2) with (1 — ed?)n;, we
obtain (see the similar derivation of ([@79])) that

1d 2ev
S B () + ([ (1 — 02
57 21()+(1+€n n | (1 —€03)m;)2
€
(4.92) = 5 (mz | 12)2 + EMenys | Mow)2 + € (Maatlly) | 0122
3

€
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where
Ea(t) = [nil3 + elnfe [ + (1 + el [0,)2 + 26((1 + en)nl, [ 1))2
+ (1 + e nyan | Myaa)2-

Thanks to [@64) and ([{LT5), we have
(4.93) B (t) ~ |nil3 + el |3 + 1013 + €l |3 + € nial5 ~ |0}

2 2
xo + [ X9,
Similarly to the derivation of (L.82), we obtain that

1d 1
— B (t) Se(|neloo + Meloo + €2 nua]oo + [v]oo) B2 (1)

(4.94) 2 dt
+ 1 l2ntl2 + €l fl21ms |2-

In order to get the final estimate on system (L72), we have to estimate the
source terms |f'|s + €2 |f1]2 and |¢'|o. Thanks to the expressions of f/ and ¢’ in

(#13) and the expressions of f and ¢ in ([@68) and [@.10), using ([@74) and [{@TH),

after tedious but elementary calculations, we obtain that
'l €21 fal2 +19'l2 S €(lmeloo + €2 nzloc + elonsloc + 1]
(4.95) + €3 [z oo + o + € vssloo + [vt]s0) (1neal2 + € Moala
+ €Mezazl2 + €2 Mezzzxl2 + Mel2 + Mexl2 + €2 [Meaz |2
+ €lizaal2 + [vaalo + [vils + [vial2 + € [vraals + [vurl2),
where we used ' = 1; and v/ = v;.

Now, we define Fs(t) = E51(t) + E22(t). Then (@I and ([EI3) yields
(4.96) Ba(t) ~ |njl50 + |77;|§(g2 +otl3 + o5 o

Thanks to (L90), (@II94) and [@I5), using the interpolation inequality [@2)), we
obtain that

1d 1
5@[@’2(15) < €(|77m|oo + €2 |7711|oo + €|77mcac|oo + |77t|00
(4.97) + €2 [Nz ]oo + V2] oo + €2 |Vaz]oo + [02]00)

X (|77|§(23 + |77t|§(12 + |77tt|§<g + [vl3e + |Ut|§<€1 + |vuel3),

where we replaced 1/, v’ by n;, v; respectively in the bound.
Step 4. The final estimate on (LG0). Before closing the a priori estimates,
we first define the energy functional associated to the quasilinear system (ZGGl)-

ETD-ET2) as

(4.98) E(t) de Ey (t) + Fr (t) + Es(t).

e
Notice that ' = n; and v' = v;. Then (@TT), [ELS8) and [I6]) yield that
(4.99) E(t) ~ |77|§(12 + |77t|§(12 + |ntt|§(g + |U|§(3 + |Ut|§(€1 + [vee]3-

In order to close the energy estimate, we also need to define the total energy
functional for ([@G60) as follows:

(4.100) () i |77|§(23 + |77t|§(12 + [neel50 + |U|§(22 + Joe3a + g3
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With the definitions (@398)) and (£I00), using the interpolation inequality (Z2)
and the Sobolev inequality |- | ®) S |- [#1(r), the energy estimates ([A18), [£.89)
and [@97) give rise to

1d

- ¢ < 3
(4.101) 5 th(t) < e€(t)z.
To finish the proof, we have to show that
(4.102) E(t) ~ E(t).

Indeed, thanks to (A99) and ([EI00), we have
2 2
£() ~ B(t) + lnfe, + ol
Then we only need to show that
Il + ol S B().

That is to say, we shall recover the regularity in space through the regularity in
time. More precisely, ([@66]) yields

2

4.103 .= — 1— ey = ——t € (“ )
( ) v M, ( 6:6)77 1+67’] 1+€77 1+€’I]m

The first equation of ([EI03) shows
(4.104) [0k, = [l + E[olfze Slolhn + wl3 + €l S B(),
where we used ([@70). While the second equation of (I03), (Z70) and (I04)
imply
ke, ~ IlEn +1(1 = €07)maal5 + €(1 = €07 )naaal3
S Ik, + ok, + lwlx: S B,

which achieves the proof of (I02). Due to [@LI02) and [@I0TI), we have
1d 3
4.105 ——FE(t) Seb(t)z.
(1.105) S ZE(0) S <)
Step 5. Initial data for the quasilinear system and final estimate. In
this step, we have to derive the regularity of the initial data to the quasilinear
system through the system (L66) and the regularity of the initial data (ng,vo).

The first equation of ([66) shows that
7 li=0lx1, = Imeli=0lx2, = 102v0lx2, S lvolxz,,

while the second equation of (£66]) shows that

Xl = |Ut|t:O|X€1

,U2
10+ em)(1 = )0l +el (-

[v']¢=0

< |770|st + |UO|X€227

where we assume that [1o|xz + [vo|x2, < C and € < ¢g with €o small enough.
Thanks to [@T2), we can also infer that

|771/5|t:0

S Imolxz, + lvolxz,

xo + [vi]e=ol2 = [Met]e=0lx0 + [vet] =02
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provided that [no|x2, + [vo|x2, < C and € < € with €g small enough.
Thus, we have ’ ’

(4.106) E(0) ~ £(0) S Imoliz, + lvolxs,

Step 6. Existence and uniqueness. The estimates [LI05) and ([@I0G) are
crucial to prove the existence of T' > 0 independent of € such that (LGG) has a
unique solution (1, v) on a time interval [0, T'/€] with initial data (1, vo) € X% x X2
satisfying moreover by (£I05) and (@I02) the estimate

(4.107) sup  E(t) < [molke, + [volxe -
te[0,T/¢] 3 €2

We shall precise the existence proof in the following Section 5.

Notice that v = (1 + en)u. Then we have obtained the long time estimate of
solutions to the original Boussinesq system ([2)-I) with a =b=d=0,c=—1
together to the energy estimate (ZLGH). O

Now we state the long time existence result for the two-dimensional case.

Theorem 4.7. Let a = b = d = 0,c = —1. Assume that no € X2 (R?),uy €
X3 (R?) satisfy the curl free condition curlug = 0 and the (non-cavitation) condi-
tion

(4.108) 1+en>H >0, He(0,1).
there

‘ ~ _ 1
Then there exists a constant ¢y such that for any e < ¢y = Eo(lnole4+\w|x33)’

exists T > 0 independent of €, such that (L2)-@I) has a unique solution (n,w)”
with n € C([0,T/e]; X2 (R?)) and w € C([0,T/€]; X3 (R?)). Moreover,

S]]p (|77|X3 |’)’]t|X2 | }tt|X —|— |’)’] t|X20 - |u|X23
(4109) tel0,1 /E € 3 2 tt 2
2 Uttt 2 2 2

Remark 4.5. By simplicity, we assume that curlug = 0. Actually, the equation
of u shows that J; curlu(t,-) = 0 so that curlw is preserved as time evolves. In
fact, as pointed out to us by Vincent Duchéne, considering the term V(|u|?) is not
physically relevant outside the irrotational case. When curlu # 0, one should use
instead the term u - Vu, but then the corresponding system is to our knowledge
not rigorously justified (see [12] for Green-Naghdi type systems).

Proof. Since the proof is similar to that of Theorem [£.6] we only sketch it. We also
divide the proof into several steps. Again we only indicate how to obtain the a
priori estimates. The existence proof which is similar to the one-dimensional case
is postponed to the following Section 5.

Step 1. Reduction of the system. Since a = b =d = 0,c = —1, we first
rewrite (L2)) in the form [B20]). Setting

= (1
v = (L+enu,

the first equation of (8:26) becomes
m+V-v=0.
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To get the evolution equation for v, we first get from the second equation of (3.26))
that

Oy curlu = 0,

which along with the assumption that curl ug = 0 implies that curle = 0. Then
V(|u|?) = 2u - Vu and the second equation of ([3.28) becomes to

du+ Vn—eVAn+eu-Vu = 0.

Similarly as one-dimensional case, elementary calculations and the use of the above
equation yield the evolution equation for v :

v+ (L+en)Vn—e(l+en)VAn+ €V - (1:—677 ® v) =0,
where (V (u® v))l = dj(u'v?). Then [B20) is rewritten in terms of (n,v) as
follows
Tt +V.v= Oa
(4.110)

€ v
Vi — VA v-( ):o.
1+envt+ e 77+1—i—en 1+en®v

We shall derive energy estimates for this system.

Step 2. Quasilinearization of ([LII0). In this step, we shall quasilinearize
the system (ELI10) by applying to it 9;, 92 and 97. Applying d; to the first equation

of ([EII0) leads to
#n=-V v, =V- (1 +en)Vn) —eV - ((1+en)VAR) + €V - {V . (L ® v)}

1+en
—V (L +enVi) — eV - (1 +enVAan) + 22 v(v- PRAAL
N AR ‘ € n 1+en v 1+en
1 1 Vi .
. - . . . - . .mJ
+ 2ev V(l—i—en)(v v)+ev- Vv v(1+6n)}+ > aj(lﬂn)&v.

i,j=1,2

One notices that the third term 12%277 - V(V - v) in the second line of the above

equality is the higher order term. Since by @II0) V - v = —n, we rewrite this
term as

2ev 2ev
1+ en V(V-v) __1+e77.vm'
Then we obtain
2ev
(LI11) =V (@) Vi) + eV - (L en)VAR) + 7 V= /.
with
V- v|?
:u—i—%v-V( )V -v)
def 14 €n 1+en
(4.112) 1 vt )
+ev- V[’U . V(l +€77)} +€ Z @(m)&v].

i,j=1,2

Applying 0; to the second equation of (LII0) one obtains

D2v = —(1+en)Vn + e(1 + en)VAn — eny(Vn — eVARD) — €V - ( ® v) )
1+en t
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Notice that n, = —V - v, we obtain the reduced equation for v

v = V(V-0) + VAV ) + (5= V) (1)

(4.113) 1+en 1+€’I]' 1+en
+ LQ(V ‘) =g,
(1+en)
with
2
ent v v,
= — Vn —eVAR) + -V
(4.114) 7 1+€77( n - evan) (1+677 )((1+677)2)
€ v
B 1+enat(1+en)(v.v)'
Combining (£IT1) and {II3), we obtain
2ev
Mt — V- ((1 + en)Vn) +€eV - ((1 + en)VAn) + m -Vn = f,
(4115) m’vtt — V(V . ’U) + EVA(V . ’U)
€v vy €v B
+(1—|—e77 .v)(l—l—en) + (1+en)2(v.’vt) -9

with (f,g) being defined in (I112) and (L£I14).

We also remark here that ([IIIH) is a diagonalization of (AII0) and that the
principal linear part for both equations of (LIIH)) is the dispersive wave

(02 — A + A% U,

The source terms (f,g) are of lower order. One can then derive the L? energy

estimate for (LI15).

Denoting by ' = 0y and v’ = d;v, applying 9; to ([EIIH), it transpires that
(n/,v') satisfies the following system

2ev

e — V- (L+en)Vy') +eV- ((1+en)VAY) + T en n=f,
1
v vi cv oy o
+(1+€77 v)(l—i-en) * (1+e77)2(v v =9,
where

;o ) 29, _ v .
fr=0uf + eV (nVn) =V - (n,VAn) 26(1+677)t Vi

; Mo (=2 . Ut
(4.117) g £fatg+(1+en)2vt 6(6t(1+e77) v)(l—i-en)

2 v T]t'Ut v
) (@rap) ~ 2 (aap) 0
te (1—|—677 (14 en)? o (14 en)? (Vo)
The principal part of ([II) is the same as that of (£I15]).
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Similarly, denoting by n” = d?n = 9’ and v" = 9?v = 9;v', applying J; to
([@II4)), it transpires that (n”,v") satisfies the following system

2
My =V (4 ) Tn") + eV (4 ) TA") + g Vi = )
1
(4.118) m”ﬁe —V(V-v") +eVA(V - v")
v 'U;f/ €V ny 1
telira v>(1+6n)+(1+6m2<v v))=g",
where
- / . / _ 2 . / _ . /
Fr =0 eV V) = €V - (VA 26(1+€n)t Vi,

4119 " = 0g + vl — (D (L)-V)( & )
(4.119) def ! (1+en)2 "\1+en 14+ en
v v} v ,
ST P S T )
1+en (14 en)? N1+ en)? ( )
The principal part of {11 is also the same as that of (ZI15).
Step 3. Energy estimates for the quasilinear system (@I10)-I15)-

(f116)-(EI1]). We shall derive energy estimates for (II110), (@I13), @II6),
(#118) under the assumptions

(4.120) 1+en>H >0,
and for all t € [0, 77,
(4.121)  [n(s O)lwree + [o( Dlwree + 00 Etloo + [0(5 Dtloo + [0 1) x3, < e

where | - |‘2)(k = |- |3« + €| - [3.+x and the constant ¢ independent of ¢ depends

on the initial data. We remark that (@AI20) and (@IZI]) are consequence of the
assumption [I08) and the a priori estimate (ZI50) for (n,v).
Step 8.1. Estimates for [EII0). Similarly as ([@66]), taking the L? inner product
of [@IINO) by ((1 — eA)n,v)T leads to
€

1d _ v v Y
(4.122)  S—Eo(t) = —g(m [v), —e(V (1 +en ®v) | 1+en)2’

where

v
Bo(t) = [nf3 + el Vnl} + (;—— |v)2.

1+4+en
Thanks to (£I120) and (£I21)), we have

(4.123) Eo(t) ~ [nl3 + e[Vnl3 + [v|7-.
By (EI20)), the first term on the r.h.s of (II22) is estimated as
€ ntv
| — g(m |’U)2| S €|vleclnil2|v]2 S 6|’U|oo(|77t|§ + |’U|§)v

while by integration by parts and ([@I20), the second term on the r.h.s of (£I122)
is estimated as

_ (P _Y = fyv. v 2
| E(V (1—|—en®v> 1—|—e77)2| 2|(V v||1+€n|)2|

< elvlso|v]2| Vol S €lvloo (|vf5 + [VoL3).
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Then we obtain

1d
(4.124) S Folt) 5 elvloo (1l + [0 + Vo).

Step 3.2. Estimates for [@IIX). Taking the L? scalar product of the first equa-
tion of ([IIY) with (1 — eA)n), we obtain

(1 | (1= €A))2 = (V- (1 +en) V") [ (1 = eA)ny)2
eV (1 )T AG") | (L= A+ (s - Vi | (1= e )
= (f"1 (A = eA)n)e.

Similar to the derivation of ([£79), using integration by parts, we obtain

1d 2ev ” ”
5%E31(t) + (1 g SV (1 —eA)n))2
€
(4.125) =SV | V") + EmeAn” | A"z + E(V(Vn - V") | Vi) )2

— (A Vs + ST AT [V Ao + (77| (1= Ao
where
B () = [n/15 + e[ Vi[5 + (1L + en) V" [ V)2 + 2¢((1+ en) A" | A"
+ (1L +en) VA" | VAR )s.
By (#I20) and (IZ21)), we have
(4.126) Ea1(t) ~ |0} [5 + e[V} [5 + V0[5 + e[ V20"|5 + €[ V205,

Now, we estimate the second term on the Lh.s of ([EIZH). Integrating by parts,
we have

2ev 7 . AV ) v "y, n
(1 e Vi | (1= eA)n;)2 = —€(V (1 n 577>nt )2
(4.127) . §
2 /" m o2 i " /"
F22(V V) (15 ) 102 = AV (55 ) Vol | 9

which along with (Z120), (EI21) and (@I25) implies that

1d .
(a128) 2ai W= e([tlos + Ve + [V0los + €2 [V2nloc) (IV]5 + € V20" [3

+ VI 3+ e Vi [3) + 1 200 |2 + €[V 712 V)2
Taking the L? inner product of the second of [@II8) with v/ yields

1d vy vy €v
——E t 'V ( t ) t v' /i 1
(4129) 2 dt 32()—|—6((’l} ) 1+67’] |1+€n)2+((1+€n)2( vt)|vt)2
' 1
= 5O [o0)a + ([0
where
vg " "2 1\ |2
(1) = (o |02+ [V 0"+ V(70"
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Since curl(li—m) =0, we have
1 2, 1 €0 — v am)
lv” = (1 nl _ %0 _
curlv ( +677)(U 2(—1+€77) v 1(1‘|‘€77)) e ,

which along with (£I120) and [@IZI]) shows that

|curlv”|y < e|v”]a,
[V(curlv”)]2 S e(|v”]2 + [V |2)[nlgs S e([v”]2 + [Vo"2),

where for the second inequality, we used the fact that |Vnle < |Vn|y2 and the
following estimate

(4.130)

Vo /) 9 Sobolev . 5 interpolation g y 5
WVl S 0 4 VEnls S 0 VIl S (T V) IVl
Then by virtue of div-curl lemma, we obtain

(4.131) Ega(t) ~ [0} [5 + [V0"[5 + [ V20" [3 + O [3).

Similar to [@I27), integration by parts on the second term on the Lh.s of ([@I29)
leads to

,U/I ,v// € ,v// ,U/I
4,132 V() ), = =5 (Vv L),
( ) (v V) 1+en |1—|—e77)2 2( v1+€77|1+677)2
For the third term on the Lh.s of (£129), by integration by parts, we have

(m(vvé’) o)), =¢ > (m(ajvgﬂ)wgﬂ)z

ij=12
= —¢ Z (8»(U7i)vllj |v//i) e Z (Uiiv//j |(9<U”i) .
i,j=1,2 Dtept 2 i,j=1,2 (I+ep2t 170072

To estimate the second term on the right hand side of the above equality, we first

obtain by using curl( 1i’€/n) = 0 that
) 115 6U//i n . ,U//z'a”7 _ U//ja?7
90" — (@ YTy J ) — 00" (;) _
it (1+€77) (1+em) + 14+en /¢ v e 1+4+en t
By integration by parts, we have
’Ui 7 i
(et 120,
€ v ; ; K " 0m — 0" 0
. 81 "y 3N 2 "3 ( J ? ) .
2( ((1+e77)2)vt | vi )2 € ((1+€n)2vt 1+ en t)z
Then we obtain
€v v’ i i
v . 1" " — (_ a 17 "t
((1_|_€77)2( vt)l'vt)z i)j;ﬁ 6( J((17+ En)z)vt |Ut )2
€ v ; ; o0 — 0" 0
- ai "y, 13 _ 2 "3 ( J 2 ) )
+2( ((1+en)2)vt |Ut )2 € ((1_|_€77)2Ut 1+en t)2 ’

which along with (L.I20), @.I21), @.I129) and (£I132) implies

1d ,

= Z Eao(t) <e(Iniloe + €2 N N
(4.133) 5 g P2 () Selliloo + €2 [Vinla +[Voloo + [Vr]oc)

x ([0} 3 + e[ Vo5 + 0" [3) + |g”|2|v] |2-
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Now, we define F3(t) = E51(t) + E32(t). Then ([@I20) and (@I31) yields
Es(t) ~ V"5 + €[V 5+ V20" |3 + [0} 15 + €[ Vi[5
+ V"5 + €| V20" [3 + [0} [5 + O(e[v"3).

Combining estimates (LI128) and (I33), using ([{I34]), we obtain
1d 1
~—Fs(t) < o +€2|V Ve + V2 Voo ) Bs(t

(4.135) 5 dt 3(1) S €(Intloo + €2 [Vnela + [Viloo + [Vn]3 + [Vl ) E3(t)
+ 1 2l 12 + eV 7120V 2 + g 2] |2

Step 3.53. Estimates for (I11H) and(ZI116). Since [@IIH) and (II6) have the
same form as (LI1])), we have similar estimates as [@I33) only with (", v”) being

replaced by (n,v) and (1, v’) respectively.

In order to get the total estimate for system [@ITH), (EII6) and [@IIY), we
have to estimate the source terms | f|s + €2 |V fl2 + |gla, | /|2 + €2 |V f' |2+ |g’|2 and
|f")2+€2|Vf"]2+]|g"]2. Thanks to the expressions of f, g, f’, g’ and f”, g", using
(EI120) and (EI20)), after tedious but elementary calculations, we obtain

1 1
[fla 4+ €2Vl +lgla + [f'l2+ €2 [V f'l2 + 9|2

(4.134)

(4.136) 1
+ [ f2 + €2V 72+ 1g"]2 S €(2),
where
£(t) :|77|§<34 + |77t|§(23 + |ntt|§(12 + [mett 50 + |v|§(33
(4.137) : : : :

+ il Xe, + lvelXo + [veel3.

In the process of derivation of ([@I30), we used the fact that n' = n, n” =
N, v = vy, v = vy and used the Holder inequalities, Sobolev inequalities and
interpolation inequalities frequently. We shall not show the details here.

Step 4. The final estimate on ([LII0). Before closing the a priori estimates,
we first define the energy functional associated to the quasilinear system (EIT0)-

(4.138) E(t) = Eo(t) + Bu(t) + Ea(t) + Ba (),

and F1(t), E2(t) are defined in the same way as Fs3(t) with (", v") being replaced
by (n,v) and (1, v’) respectively. Notice that ' = n:, n”/ = ny and v/ = v, v” =
vg. Then [@I23) and [@I34) yield
(4.139) E(t) N|77|§(12 + |77t|§(12 + |77tt|§(12 + [neee 3o + o5
+ |”t|§(g + |”tt|§(g + |vesel3-
With the definitions (£1I38) and [@I37), using the interpolation inequality (42)
L 1
and the inequalities that |U|L00(R2) ,S |u|H2(R2) and |U|L4(R2) 5 |U|ZQ(R2)|V’UJ|22(R2),
the energy estimates ({I124), (£I35) and (£I36]) give rise to
1d 3

4.140 ——E(t) S e€(t)2
( ) 2 dt ( ) ~ € ( )27
where £(t) is the total energy functional to (ZI110) which is defined in (AI37).

To finish the proof, we have to show that

(4.141) E(t) ~ E(t).
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Indeed, thanks to (£I39) and [@I31), we have
£(1) ~ B+ s, + Imle, + 0ls, + forla,
Then we only need to show that
|77|§<34 + |77t|§<33 + |v|§(633 + |vt|§(f2 S E(1).

That is to say, we shall recover the regularity in space through the regularity in
time. More precisely, [I10) yields

(4.142) V-ov=-n, (1-€eA)Vn=-—

Ut € ( v ® )
— . ’l) .
1+en 1+en 1+en
To control |v¢|xz2 , we first have
|vt|§<22 = w3z + €|l F2se
S lilin +[V(V 0[5 + [V(ewlog) 3 + €[ VAV - 0[5 + VP (curl v 3.

Since curl( 1_’;;}) = 0, similar derivation as [@I30) leads to

e(v7 01 — v} Ban)
1+en

curlv; =
and
[V(curlvy)|2 < €(|vef2 + [Voel2)In]as S €lvelmr,
1
(V3 (curlv)|a S €2 (vgla + [VZ04l2) |0
Then we have

il S Joelin +1V(V 03+ €VHV v + €z,

1
X3 S €2 |vi| e,

which along with the fact that € is small enough implies

oilXz, S foulin + V(Y- 0[5+ €[V - 05,
Now using the first equation of (£I42), we obtain that
(4.143) wil%e, S lveltn + [Vinel3 + €[V0nmel3 < E(2).
Similarly, we obtain
(4.144) W%, S vlf + [Vl + €[ Vo3 S E(1).

While the second equation of (£142), (@I21), (EI43) and EIZ4) imply
|77t|§{23 ~ el + V(1= eA)Vi] 5 + €| V2[(1 — eA) Vi |3
(4.145) - “y ) ) ) 2 <
S el + lvulxs + e, +[0l5e, +Inlx, S E().

To bound |v|X33, we first have
W[5, ~ [vlF + V203 + € vl
Solie + VAV -0)[5 + [V (curlw) 5 + €[V (V - 0)[5 4 €[ V° (curl w)[3.
Similar derivation as (ZI30) yields
|V2(curl v)|z < €|v|ge,

1
e [V (curl w)f3 5 [ol s Inlxs, (1 + Inlxs) S [olxs,.
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Then we obtain
olxs, < vlie + VAV - 0)5+EV(V - 0) 3 + vl
which gives rise to

[vl%s, < [vlie + VAV - 0) [ + V(Y - ).

Then using the first equation of (I41l), (@EI45) and ([@I39), we obtain
(4.146) w5 S E().

For |77|§(34, similar to the derivation of ([@I4H), by using the second equation of

(@141, m, (@143), (@I145) and (@I46]), we finally obtain that
(4.147)  |nf5s, ~ Inlfn +[V2[(1 = eA) V][5 + V(1 - eA)Vn] 3 < E(1).

Due to (AI41)) and [@I40), we have
1d
2dt

Step 5. Initial data for the quasilinear system and final estimate. In
this step, we have to derive the regularity for the initial data to the quasilinear
system through the system (LI10) and the regularity for initial data (19, vo). The
first equation of (LII0) shows that

(4.148) E(t) S eB(t)?.

Inli=olx2, = Imeli=olxz, = [V - volx2, S Jvolxs,,
while the second equation of ([AII0) shows that
|v/|t:0|x22 = |vt|t:0|x22
€ €

v
S 11+ em)(1 = eA) Vo, + €V - (2

14 eng

® vo) |X€22
S Imolxs, + |volxs,,
where we assume that [no|ys + |vo|xs, < C and e < e with €o small enough.
Similarly, thanks to ([@II6), we can obtain the upper bound of |n;|:=o| x1, +
[vile=olx1 (or [Net|e=o|x1, + |[vit]e=o|x2). While by [@.IIS), we can also derive the

upper bound for |1} [t=o|x0 +[v} |t=0|2 (or |Ns¢|t=0
obtain that

(4.149) E(0) ~ £(0) S Inolxs, + [vols, -

x0 + |[vitt]t=0]2). Then we finally

Step 6. Existence and uniqueness. The estimates ([{I48) and (£I49) are
crucial to prove the existence of T > 0 independent of € such that ([@II0) has a
unique solution (7, v) on a time interval [0, T'/€] with initial data (no, vo) € X2 x X3,
satisfying moreover, by (I48) and (£IZI]) the estimate

(4.150) sup  E() S nol%s, + [volks -
te[0,T/¢] et 3
The proof of the existence and uniqueness is postponed to Section 5.

Notice that v = (1 4+ en)u. Then we have obtained the long time estimate of
solutions to the original Boussinesq system ([2)-I) with a =b=d=0,c = —1
together to the energy estimate (ZI09). O
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5. EXISTENCE PROOF OF THEOREMS AND 271

In this section, we shall complete the proof of existence and uniqueness of solu-
tions to the transformed systems (£.66) and (£I10) so that we could complete the
proofs to Theorems and [£71 In order to construct the approximate solutions
to (L60) and (ZII0), we introduce the mollifier operator Js as follows (see [27]):

TsJ(€) = p(06)f(€), VEER?, Vfe LARY),

where ¢ € C§°(R?) and (0) = 1. Then using Fourier transform, we obtain the
following properties for Js:

Lemma 5.1. For any s,s' € R and 1 < p < oo, there hold:

(1) |Tsf g < Csor5lflms;

(1i)\Ts flp < Clflps

(iti) |Ts f — fla=—1 < C6|fl|nm=;

(i) |Tsf — flas = 0 as 6§ — 0;

(v) [Ts,alf|ue < Clalgro1|fle—1, for any to > % and —tg < s < tg+1;
where C' is an universal constant independent of § and Cs g 5 is a constant depend-
ing on s,8',4.

Proof. The statements (i), (iii) and (iv) are verified directly by Fourier analysis.
For (ii), denoting by ¢(-) is the inverse Fourier transform of ¢. Then we have

Jof =84p(5) * I

Notice that 6~%(5)|1 < C. Then (ii) follows by Young inequality.
The statement (v) is a consequence of Theorems 3 and 6 in [28]. Indeed, since
Js is a zeroth order Fourier multiplier, by [28], we have

(T, alflms S Cle(0-)]al o+ |flms,

where
C(p(8) = sup  sup ()18 0(6)] + sup [(5¢)| < C.
|B1<2+d+(4] 161> 1 lgl<1
Thus, the lemma is proved. (I

We only give the details of the existence proof to Theorem The existence
proof of Theorem (7] follows a similar line.

Now, we divide the proof into several steps.

Step 1. Construction of the approximate solutions to (£G6). We con-
struct an approximate solution sequence {(n°, v?)}s-0 satisfying the following reg-
ularizing system

0 + Jsvg =0
(5.1) 172002 )
1 + EJ5775 x
associated with the initial data 77‘5|t:0 = 1o and ’U6|t:0 = 2.
Denoting by V° = (n°, v°), then (51 can be reduced to the following ODE in
the Banach space H™ ! x H™ with m > 0:
d

(5.2) EV‘E(f) =Fs(V°), V°(0) = V5 = (mo,vo),

of + (L + eJom”)(1 = e02) To, + T2 =0,
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where F5(V?°) = (F}(V?), F2(V?)) with
F (V) = =Tsus,
| T208 |2 )
L+ eTsn/a
For any Vl‘s, V25, by virtue of the properties of 75 in Lemma [B.I], we have
[F3 (V) = F (V3) | amss = |T500 (0] = 03) [ mss < Com o] — v3am.
Similarly, by Lemma [5.1] and the product estimate, we have
[FZ (V) = FE(V3) i < Csm(|T5m3 | 1 | Tsm5 | 11 | T508 | o | T505 | )
x (In§ = m8lem + 10} — v3|mm)
< Com (VP12 VS )V = V3 g cim
where Cjs (A1, A2, -+ ) is a constant depending on §,m and Aj, Ag,---. Then we
have
s (V) = Es (V) amsrscrm < Com (VD |2 (VS [2)IVE = VE [ st
so that Fs(-) is locally Lipschitz continuous on any open set
On ={V e H™ x H™(R) | |V|gmi1xgm < M}.

Thus, Picard (Cauchy-Lipschitz) existence theorem implies that, given any initial
data Vo € H™*! x H™(R), there exists a unique solution V? € C*([0,Ts); Op N
(H™*! x H™)) for some Ts > 0, with any integer m > 0.

Going back to the regularizing system (5.1)), since V° = (n°,v%) € C1([0, Ts); H™ 1 x
H™), by virtue of the properties to [Js, we have

oV € CH[0,Ts); H™ ! x H™),

F2(V®) = —(1 + eJsn®)(1 — ed?) Tsn’ — ejf(

which implies
V% e C%([0,Ts); H™ L x H™).
Moreover, we could obtain that
V% e Ck([0,T5); H™ ! x H™), for any ke N.
Thus, we could apply 0; many times to (&I).

Step 2. Uniform energy estimates on the approximate solutions on
some time interval [0,7/e). In this step, we shall prove that there exists a
uniform existence time interval [0, 7 /¢) with T being independent of § and e. To do
so, we have to derive the uniform energy estimates for the approximate solutions
Ve,

Step 2.1. The reduction equations. Motivated by the a priori energy estimates
for (L60), we apply 0; to (&I)). Similar derivation as (L71l), we obtain

e — JT50z (1 + eT5m°)0:T5m°) + eT50: (1 + eTs51° )02 Tsn’)
«762”6 2 5\ _ 6
1+ eJsn0 O 5nt> =/

) 2725 472 5
vy — 02 T5v° + €0, J5 v

+2eJ3 (
(5.3) 1
1+ eJsnd
+ 2¢
1+ eTsn?

2( 72,8 5 72 Uf 6
ja(jav : mja(m))—Q,
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where
T2002 2.6
P e (TPg) .~ Tregp 0]
— 275 ([Ts, HLW](? NZUE
96 gor —%(1 - 535)5%«76776 - T;W;jézaxojé%éﬁ(ﬁ)t)
2.6

_ 1+i}sn5j52(1fi2n5 LT — TR0 - TR (ﬁ) )

+ ﬁ% («7521)5 (0.3, H%M]Uf)

Similarly, applying 0; to (53)), denoting by 7% =om, v'® = du°, we obtain
my — J505 ((1+ ejgné)amjml‘s) + €T30, (1 + eJsn) 02 T5m")

J5v 2 15\ _ 416
+26'-76( +€j6776 aw 677t)_f )
(5.4) 1

T 6j6n5 tt 82j2 16 + 66;1._762’1/5

2¢ 2.6 ”1/55 I
1+ jn ‘7(5(‘7(5 8j5(1+6j6n5))_ga

where
[ = 0f° + eJ50:(Ton; - 0aT5n°) — € T505 (Tsmi - 02T511°)

Jgv

-2 (0

) 0 «757715)

5o a6 ! Y (g2 5 g2 U
g cgfatg at(l—i—ejgn )Utt 266t(1+ejgn5)j6 (J5v amj‘s(l—i-ejéﬁé))

2¢
14 e 1+a75ﬁ ))

2 (s g gr TV
P R (T 0T ()

Step 2.2. Definitions of the energy functionals. In this step, we always assume
that

(5.5) 14+ eJsm° > H > 0.

-T2 (7301 - 0. T3

This assumption is a consequence of the initial assumption 14€ny > H > 0 together
with the smallness of € and the following uniform energy estimates.
In order to derive the uniform energy estimates for approximate solutions, similar

to the a priori energy estimates, we first introduce the energy functionals E°(t) and
E%(t) in the similar way as E(t) and £(¢) in (EI8) and (@I00). We define

E°(t) = E(t) + EJ (1) + E3(1)
=E)(t) + (Efl (t) + Ef2(t)) + (Egl (t) + Eg2(t))
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2 2

ES(t) =" Bl = >~ (105713 + ok nll3 + ( 0 |0"0f)s ).

1+ eTsn?

EY () = 0013 + €13 + (1 + eTsn’) Tsnl | Tond)e
+2e((1 4 €75m°) Tsnle | Tsmile)2 + (1 4 €T50°) Tsone | Tsnlan)2,

5 _ Uf
Epy(t) = (

5 5 5
T+ e |00)2 + | Tsv2 3 + €| T505. 13,

ES\ () = Infil3 + elnfials + (1 + €T5m°) Toniy | Tsniy )2
+2¢((1+ eT5n°) Tsniea | Tsnina)2 + € (1 + €T50°) TsMinas | ToNipwa)2,

5
5 v 5 5 5
Eg(t) = (1 T €t\t76776 | vge)2 + |\75’Utm|§ + €|j5vtmm|§'

We remark that we used (n?, v?) to replace (1’° v") when we defined E3;(t) and
E$,(t). Using (5.5) and the properties of J5 in Lemma Bl we have

8 e 5 5 5 5
E°(t) ~ B2(t) = In X2 + ¢ 5o + |«7677m|§(€12 + |5 5o
+ 03 + 013 + | T5v8 5o + 03113
We also define the full energy functional as follows
E0(t) = BO(t) + [nfu 3 + |00 3 + €T naan 3 + €1 T3 0000al3

10 F A+ [0f [+ [ T50u 0 + (083 + €1T5 00 00al3-

We remark that the mollifier for the highest order derivatives of n° and v9 is J?

not Js.
Now, we prove

(5.7) E9(t) ~ B3(t) ~ E5(t).

by EI(t).
In what follows, we always assume that on the existence time interval

(5:8) E°(t) < C(£°(0)€°(0),

where C(£°(0)) is a constant depending on £9(0) and in what follows, we shall use
C(A1, A2, -+) to denote constants depending on A1, Ag, - - -.
Firstly, thanks to (51I), we have

5 5 §
|77tz|2 = |\75vmm|2 < |vzz|27
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and

2,012
5 < ) - 8 2 M
EHPRS |((1 +eJsn°)(1 @)Jtmw)wlz +elJs (1 T eJ5n5)ww|

< ClTsn% |2 + CelTs1 0z l2 + CelTsn’ oo (IT5m |2 + €l T5m) 00 ]2)

+ C(T50 lwre | T5m2 o) (1T 052 + [ TS 0502 + [ T5112 2 + | Tsna 2)
< (T30 wrse, |Tsm’ lwree ) (10 1x2 + 10° |52 + €l T5m) 0 ]2)
< O a2, In Lar2) (10 I xc2 + [0° 12 + €| T5m0anl2)-

For the last term €| 757, |2 in the above inequality, we infer by Plancherel theorem
that

5 5 |z 5 3 15 3 5
(59) €|\75nmmmm|2 5 6|77mmm|22 |j5277mmmmm|22 5 €2 |nzzz|2 +e2 |\752nzzzzz|2'

Then we obtain
(5.10) 0i,l2 < C(1V°] 12, 10| 2) (In°

Thus, we only need to control €3|J2n°,....13 and €2|T2vl,..|3 by E(t).
By virtue of (B1l), we have

3
X2 + |’U(5|H2 +e2 |j62ngmmmm|2)

TS = —nd, (1 —ed)Tsnl = — o - ‘ J2( /il )
’ v e T+edsn®  1+edom® O \1+eTsn® /e
Then we have
~ 1
(511) €|‘762ng11|2 = €|j577?mmm|2 < O(Eé(t)) 25
and
N T nnal2 < 4 T0l2 + Ced |75 u )
€ € € —_—
§ Nzzgaxl2 = 5 Nzzal2 5 1+ 6L75776 . 2
2512
(5.12) +ng( 1 jz( | T5 v’ ))
¢ | J 1—|—6j§7’]5 0 1+€j5775 x wm|2
= 2| T2 + C(AL+ A2).
For A, we obtain
1 E) 1 2 1 5
A1 S €2 Ts0ipgl2 + €2 [[0;Ts, m]vt |2
Since
03 T5,a)f = [Ts,al0z f + Ts (02af + 0zadsf),
using Lemma [5.0] and Holder inequality, we obtain
Tsn°
92 5. < O € §
[ mj571+€j6n5]vt|2 = |1+€L76776|H2|vtm|2
1 5 1 5
g )l o+ 1 ()l

< C(1T5m° [0 el Tom’ L2 (|07 |2 + |07y |2)-
Then we have

(5.13) 41| < CUTsn 12) (1T508u o + [0f ]2 + €2 0], |2).
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By virtue of (EI0) and ([&I3]), we have
(514) || < O a2, 10 [12) BO (1) + €2 C(0° gz, [0 1r2) - €2 T3 02
For As, by the product estimates and interpolation estimates (£2), we have
[Az| < €%C(|«752U6|lema |«76775|le°°)(€|«7677§|H2 + |~762U2|H2)
< C(|’U6|H27 |776|H2)(|776 X2 + |/Ué|H2 + €|'-762’Ugwww 2)7
which along with (BI1]) implies that
(5.15) |[Ao| < C(10°| 2, [ | 2 ) B2 (2).
Thanks to (.12), (514) and (BIH), we obtain
6% |j52ngxxxx|2 < C(|’U6|H27 |776|H2)E6(t) + 6%C'(lvts'HQ? |776|H2) : €%|j52nimmmm|2'
By virtue of (58), for € sufficiently small (depending on £%(0)), we have
(5.16) TN el < CETO)EP (1),
Thus, combining (B.I1) and (&I, we obtain the equivalence (&.71).

Step 2.8. Uniform energy estimates for VO = (n°, v?).
Motivated by the a priori energy estimates ([@I0T]) for (EGG), we obtain

(5.17) %Eé(t) < C(E (1))’ (1)},
where C(£%(t)) is a constant only depending on £°(t). The derivation of (517 is

a little different from (EI0T).

(i) Estimates for E3(t). We first derive the estimates for ES(t). As usual, we
have

1d
5 g7 Pow = (0" 10°0")2 + (0"l [ 07 )
1 1
k5| ok, 8 1 k65| ok,
+(1+6j6n58 vy | 0%v°%)2 + 2((1+6J5n5)ta v° | 0%0°)a.

Using the equations in (5.II), we obtain

1d 1 1 | T2v°|?
Y s (1oF 51 9F%Y), — e(OF 2 5 9% 0°
5 dqr ok ([ 71+€j5n5]vt| v%)2 — €( (1+€J5n5j5 (1+€j5775>m)| v%)2
1 # k, o k, o _ k k k
+ 2((1+ej5n5)t8 v |0"0%) = By + B; + By

For B¥, we have BY = 0 and

1
"1+ eTsn®

< Ce(L+ |Tsngloe) (ITsma oo 07 it + 1T5112 1 |07 | o) [0° | 2

< C(n°[m2)eln’ |z 0] [ 1 [0° | 2.

2
|Bi| +Bf| <) |[0* Jof |210%0° |5
k=1

For B%, we have
2

> IBE| < CelTont |oclv® 32 < Celn 11 [0°| .
k=0

For BY, we have
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E_ k 1 2 j6205|2 )
B = 0, 1R (e ), | 00

2,,8|2 ey,
- E(ak(%)m | «762(%;5”5))2 o Bj, + BS,
Similar to Bf, we have BY; = 0 and

T30
1+ eT5m°
< CUn L, [0 | 2)e (10 |2 + 100372 [0° 2.

B |+ B3] < C(1n° [=)eln® 12|73 )l e

For BE,, we have

k _ ok |«752Ué|2 2 1 k, 5
Baz =e(9 (1 + ej5n5) |0 ([‘7‘S "1+ ej5n5]6 v ))2

+€2(8k(|\752’06|2j577g) | jgakvé )2
(1+eTsm®)?/) " 1+ eTsn’
jZ,Ué j2akv6
— 2¢(15" s 2.5 s
E([a ) 1—|—ej5776]jé vx| 1 —|—6._7§776)2
jszvé 20k, 6 «7523%6
2y TR | e

Notice that the last term of the above equality equals

N 2ok 5 J50%0°
(O (i) TR0 | )

49

Then, proceeding as for the previous terms, using Lemmafb.Iland product estimates,

we have
2
D 1B < CUIn |z, [0 |2 )e (In° [z + |02 ) [0° =
k=0
Combining all the above estimates, we obtain

(515) DB (1) < Oz 1€ )

3
2

(ii) Estimates for E3(t). Now, we derive the energy estimates for (5.4). For the

second equation of (54, taking L? inner product with v/° yields

1 d S 2 45 2 Uéa 2 Uéa
§EE22 + 2e(j5v NN (m) | T5 (m))z

1 1

= 30 zp)

By integration by parts, we have

v [or)2 + (9 [0)°)2

15 15

(720 T2 (P 2%
1= el T e V9 (e g
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Then we obtain

d V'
(519) a5 < OcllTomtloo +15051e0) (W +173 (17 5) B) + 167 1eloi o

< Ce(Ind | + [0 |a2) [0 13 + 19 2|v) |2

For the first equation of (5.4)), taking L? inner product by (1 — €d?)n}° results

1d \7 / /
2 th21 (W 8 ‘76277,55 | (1 — 682)j2 5)
II
= %(%m Tsnl | Tsn'2)2 + € (Ton) Tonloy | Tsnily)2 + € (Tsnln Tsnl | Tsmia)2

6
5(»7577?%771” | Tsmlse)2 + (0| (1 — €02)m)0)2.

By integration by parts, we have

I = —6(81-( j621)5 ) j2 16 (1 _ 682)‘7277/6)
1+ eTsm® ot
+ €2 ((9 ( j52U6 ) «7277/6 (1 - 682)j2n/6)
T 1+ \7775 tx tx
< Ce(|TF0) o0 + €l T30 ool T o) (1750215 + €l TEmi215) -
Then we get
d 1
SEs < C 5 17500 | 5| 4t 5|
(520) A2 e(1T5 vz o0 + €l T30 ool Tsma oo + | Ts1 oo + €2[T5my |o)

(|«75277§5|x0 + |«7577 |Xo + €| Tsndel3) + £ 2ln |2 + €l £2121m15 |2

Due to (5.I9) and (5:20), noticing that 1 = 7?9, we obtain

d
thz < C(n |2 )e(|0° |z + 117 | + |\7577?m|X0 )
(5.21) X (157 o + 195 o, + | T5m2 5o, + (07 13)
120 |2 + | £ 12l 2 + 1" lfvf o
Noticing that 7" =7 and v’® = v?. Then ([B2I]) implies that
d E]
(5:22) By <C(E°(1))e(E°(1)* + [ alnisle + el 2lmteal2 + |9 2 vislo-
(iii) Estimates for E{. Similarly as EJ, we also obtain

d
(5.23) EEf < CE®)(E 1) + Ll + el £laindlz + o |2[of2

(iv) Estimates for the source terms. To achieve (I, it remains to derive the
bound on f9, ¢°, £ and ¢’°. Similarly as in the derivation of ([@95), using the
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properties of 75 in Lemma [5.1] we obtain

1Fla+ €2 |f2l2 + 192 + £l + € |f2 ]2 + 19"

S C(gé(t))€(|776|x2 + [0 g2+ ] | + 0 [+ |«7677?I|X§2 + |«752U?m|xg
+6|\75nmmmm|2+62| www| )(
+ Pl + 1Ty

3 )
|2 + e |\7627711111|2

6|H2 + |Ut|H1 + 17, Um

2).

To verify ([E.24]), we first need to check the estimates on the terms involving the
commutators in f0 and ¢°. Using (v) of LemmaB I with ¢y = 1, for the commutator
term in f°, we have

Y/ |
1+ eJsn® + ey
< O(|77 |r2, |U5|H2) (|77 |2 + |v5|H2)|77t|H1-

Jgv

€T3 ([Ts, 10:T5m7 )| xo0 < C€| 2| Tsmf | xo

(5.25)

For the commutator term in f°, we have

Jgv
leT5 00 ([T, ﬁ]amjtinf) | xo
JEv J¢v
_€|[j678t(1+ ._7 5)]8 j577t)|X0+6|[\755 1+ ._7 5]8$‘7577?t)|X2

= Il +111s.
def Lt 2

For I11;, by using the product estimates, we have
1
1L < C(|IT5m3 o0 | T30 |0 ) (175 oo + 1T 08 oo + €2 5110y oo
1
+ €2 |j52Ufw|OO)
For I115, by similar derivation as (B.25]), we have

IITy < C(In° |2, [0 | 2 )e(1n° | 2 + V0 |ar2)

Then by Sobolev inequality, we have

j2
Tjg]a j577t)|X0 < C(E(t))e (|776|H2 + 0| g2

+ 00 L+ o) [+ | Tsniel xo + 17508 | x0) (1T5m0s | x0 + | Tsni|x0).-

(5.26) |€j§ at([jéa

Similarly, for the commutator terms in ¢° and ¢°, noticing that

[6mj§27a]f = awjé([j5ua]f) + aw([j6ua]j§f) + 6Iat762f7
we have

- 1
2 o,
1+ eJsn® L+edsmd’ )7

1
(527) —+ |at (les (j62v5 . [8mj5 ) W] )) |2
< 0(55( t))e (|77 |2 + |77t |+ |Ut|H1)(|~7677tz|2 + |Ut|H1 + |Utt| )

Jé (%205 (0.5,



52 J.-C. SAUT, C. WANG, AND L. XU

Another delicate term we have to check is the third terms of f’0. Applying €20,
to the third term, we have

2 J50% (Tom; - 03T5n°) = €2 Tsul) - 92T’
+ 3 [Ts, Tsm)] - 5T’ + €2 s (02T5m) - O3 Tsm’ + 20, Tsm)) - 02 Tsn°).
Then by virtue of the properties of J5 in Lemma [5.1] we have

€2|750 (Tm; - 03T5m° )2 < Ce(|T5m] oo + € Tstraloo + €21 T5m] | 112)
S 5 3 5
X (62 |j57719m|2 + 6|L7577;E;Em;v|2 +e2 |j62nmwmwm|2)
3
< C€(|77?|H1 + |j5ngz|X?2)(|776|X§ + 6|j5ngzzz|2 +e€2 |j52nimmmm|2)

(v) Derivation of the energy estimates (BIT). Similar to (9], by interpolation
inequality, we have

1 1 1 1
(528) €2 |'~762vgzz|2 S €2 |'~752ng|22 |j52vimmm 22 S |Ugm|2 + €|j52vgzzz|2'

With (53) and (5:28), we bound the righthand side terms in (524) by C(£%)e&0(t).

Thus, by virtue of (&I8), (£22), (523) and (E24), we achieve the proof of (BIT).
Thanks to (&), under the assumptions (5.5) and (5.8]), we have

(5.29) %E“(t) < C(E(1)eE%(£)3 < C(E2(0))eE’ ()2,

(vi) Bound of the initial energy £°(0). Proceeding as in the derivation of (ZI00)
in Step 5 of the proof to Theorem [A.6] we obtain

(5.30) £°(0) < C(|775|t:0|§<§3 + |U5|t:0|§<§2) = C(|770|§<€23 + |U0|§<§2)'

With (£.29) and (5.30), there exists 7' > 0 which depends on [1o[xz, + [volx2,,
such that

(5.31) sup  E°(t) < C(|molk=, + [volkz,)-
0<t<T/c e <

Step 3. The family of approximate solutions forms a Cauchy sequence
in the lower order space C([0,7T/¢), X°(R) x L?(R)). For any 8,8 € (0,¢), we
shall derive estimates on (7% —7° ,v% —v%) in C([0, T/€), X°(R) x L2(R)). Denoting
by
BP0 = 107 =¥ B+l =)o+ (G 8 — o)

’ dor 1T RN T e AT g 1T T
~ I’ =0 Ro + [v° =0 3.

By (B1), we deduce that

1d s
gaEé () = e
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where
I = —{((Js0® — T )a | (1 = ed?)(n® — ),
+ (1= ed2)(Tsn° — T ) |0° —0),}

1 1 / /
I, = _((1+€«75775 - 1+6«76’775/)vf |v5_v5 )2
1 1 / /
13:—5(8t(m)('06—'06)|1}6—'06 )2
_ 2 |«752/U6,|2 72 |«752U5|2 58
I4_€(j5’(1+€j6/776’)z j6(1+6j5775)z|v v )2'

For Iy, integrating by parts, we obtain
= =((1 =)0’ =) [(Ts = To )l )y = ((Ts = Toryng | (1= edp) (0" = o)),
which along with (iii) in Lemma 1] implies
L] < Cmaxfd,8} (In” =" |2 02 |rzr + [ [z 0° = 0" | 1z2)
< C(E°(t) + & (t)) max{8,6'} < OM max{s,d'},
where M = C(|770|§(€23 + |vo|§(€22) the uniform bound for £%(¢) in (531).

For I, we have

Ts — T )0 + Tsr (n° — 776,)1)5' o0 — Ua’)
(1+eTsn)(1 +eTsm®) F

< Ce(I(Ts = To )0’ |2 + | Tor (0 =0 )2) 0] |oo|v® — 072

< Ce(max{0,8"}n’ [ + [’ =1 2)|of [ [0° — 0" 2,

L] = ¢ (¢ )

which implies
|| < CM* max{6,8'} + CeM 2 ES) (1),
Similarly, for I35, we have
|Is| < CeM3ES (1),
while for 14, we have
Iy < C(M)max{6,8'} + C(M)eES) (t).

Thus, we have

d / ’
(5.32) EESM J(t) < C(M)max{s,8'} + C(M)EL)(t).
Noticing that E(()(s’él)(O) = 0, applying Gronwall inequality to (£.32) yields
(5.33) EP(t) < CeCODt max{s,5'},

which implies that the approximate solutions {V? = (n°,v%)}s>o form a Cauchy
sequence in C([0,T/¢), X2(R) x L*(R)).

Step 4. The limit of the approximate solutions solves (LGO). On the
one hand, (533) shows that there exists a unique V = (n,v) € C([0,T/¢), X°(R) x
L?(R)) such that when ¢ — 0,

(5.34) VO 5V oin C([0,T/e), X0 x L?),
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and

(5.35) sup |V — Vixoxrz < Omr.ed,
0<t<T/e

where Cy 7 is a constant depending on M, T, e.

On the other hand, by Banach-Alaoglu theorem, the uniform estimate (.31]) and
(iv) of Lemma [5.0]imply that there exists a subsequence {V% } ey such that when
J = 00,

(5.36) V9% —~V, weakly,
and the energy £(t) for V has the same bound as in ([@.31]). Moreover,
(537 Ve L([0,T/e); X% x X2%) N Lip([0,T/e); X x X})
' Vi € L2([0,T/e); Xo x X2) N Lip([0,T/e); X x L?).

Thanks to the interpolation inequality (Z2]), we have for any s € (0, 2],

é § 2 5 1—2
SUp |V N Vle:;Ss XXf;js =C sup |V - V|§(2><L2 |V - V|X232><X22
(5.38) 0<t<T/e 0<t<T/e . .

< COupredt,

where we used (£.33)), (B31) and the obtained result supg<;<y/ £(t) < CM. By
(E39), we obtain that when 6§ — 0,

(5.39) VOV, in C([0,T/e); X575 x X57%).
If s € (0, 1), the embedding theorem shows that
C([0,T/e); X275 x XZ7%) < C([0,T/e); C*(R) x C*(R)).
Then as § — 0,
VS5V, in C(0,T/e); C*R) x C3(R)).
Similarly, we could verify that as 6 — 0,
V2 =V, in C([0,T/e); C*(R) x C*(R)).
Thus, taking § — 0 in (&I, we obtain that V' = (n,v) satisfies ([@60]) in the

classic sense.

Step 5. Continuity in time of the solutions. Firstly, by virtue of (B.39),
we have

(5.40) n° —n in C([0,T/e); L=(R)).
Thanks to (5.29) and (5.31]), we obtain that
d

EE‘s(lt) < C(M),

which implies that
E(t) — E°(0) < C(M)t.
Taking § — 0 yields
B(t) ~ B < limsup(E(t) - E°(0)) < C(M)t
—

where E° = E%(0)|s=o is determined only by (19, v). Then we have
(5.41) limsup E(t) < E°.

t—0
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On the other hand, thanks to (B31)) and (54]), we have
Vi € L=(0,T/e); H ! x HY),
which along with (B.37)) implies
Ve Cu([0,T/e); X% x X3), Vi€ Cu(l0,T/e); X2 x X[,
Vit € Cu([0,T/€); X2 x L?).
Due to (&40) and (542), we have

EY <liminf E(t),
t—0

(5.42)

which along with (41 implies that
(5.43) lim E(t) = E°.

t—0
Then by (5A40), (5-42)), the definition of E(¢) and the arguments in Step 2.2 for the
higher order derivatives in x, we have V are strongly continuous in time ¢ = 0 in
the corresponding functional spaces.
Consider Ty € (0,7/€) and the solution V (-,Ty) = (n(-,To),v(-, Tp)). For fixed
time Ty, V7o = V(,To) € X% x X% and by (E29) and (E31), there exists a

constant ¢o which depends on M = |no|52 + |vo|3= such that
def €3 €2

1

EO 2

(5.44) (E(Ty) < #
1 — coelyM 2
Now we use V70 as an initial data and construct a forward and backward in time
solutions as in the above steps by solving the approximates system (&.1]). We obtain
the approximate solutions V) (-,¢) which also satisfy (5.29) and the limit V' of
Vi, (-, t) also solves (ELGE) on some time interval [Ty —T", To+1"]. By the uniqueness
of the solutions, V must coincide with V on the time interval [Ty — T", Ty + T].
Similar to ([.44), by using (5.31I)), there exists a constant ¢ which depends on
M = 10152+ |vol%= such that for any t € [Ty — 1", To + 1"],
e e3 €2

P L)) (=) .
T 1—che(t —To)Mz ~ (1 —che(t — To)M2)(1 — coeToM =)

Then we obtain the following restriction for T”

0<T < .
2c{ M=

Following the same argument as the continuity in time ¢ = 0, we obtain that the
solution is continuous in time ¢t = Tj in corresponding functional spaces.
Thus, we obtain that

VeC(0,T/e); X% x X2), V,eC([0,T/e); X2 x X1,

(5.45) Vie € C([0,T/¢); X0 x L?).

Combining Steps 1 to 5, the existence proof of Theorem .6 is completed.
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6. POSSIBLE EXTENSIONS

6.1. A fifth order Boussinesq system. When the expansion with respect to € is
performed to the next order, one obtains a class of fifth order Boussinesq systems
(see [6]). Those models should lead to an error estimate of order O(e*t) instead
of O(€?t) for the usual Boussinesq systems. A rigorous proof of this fact requires
in particular to establish that the fifth order Boussinesq systems are well-posed
on "long" time scales and thus come the issue of long time existence for those
systems. One expects of course a lifespan of at least order 1/e, the question, (as
for the usual Boussinesq systems), being to see whether or not the dispersive terms
allow to enlarge this lifespan. Due to the large number of equivalent (to the sense
of consistency) systems, we will focus on a particular case (BBM-type) which is
shown to be locally well-posed in [7].

We first recall the fifth order Boussinesq system under study (one could obtain
the following system from that stated in [6] by scaling):

(1 — bed? + bi 202 + (1 + aed? + a1 uy + €(1 — bed?) (u) .

1
+(a+b— g)GQ(num)m =0,

(1 — ded? + d1€°03)ur + (1 + c€d2 + c1€203)n, + €(1 + ced?) (uuy)
+ 62(7777mm)m - (C+ d - 1)62uzumm - (C + d)€2uuzzz - 0

(6.1)

As an example we shall deal with the "BBM-type" case:
b>0, b1>0, a<0, a3 =0,
d>0, dp >0, ¢<0, ¢ =0.

We now state the existence result in the BBM-type case.

Theorem 6.1. Let s > 3 . Assume that (no,uo) € X%(R) satisfy the (non-
cavitation) condition

(6.2) l+en>H>0, He(0,1),

1—H
col[molx s, Hluolxsy)”’
there exists T > 0 independent of €, such that (61]) (the BBM-type case) with the
initial data (1o, uo) has a unique solution (n,u) with (n,u) € C([0,T/¢€]; X5(R)).
Moreover,

Then there exists a constant ¢y such that for any e < € =

(6.3) teI[I(}%E](Wng + [ulxs,) < &(lnmolxs, + |uolxs,)-

Proof. The proof of the theorem is similar to that in the previous subsection and we
only sketch it. Denoting by U = (n,u)”, @I (the BBM-type case) is equivalent
to the following condensed system

(6.4) My (0.)Uy + M (U, 0,,)U = 0,
where

Mo(9,) = diag(1 — bed? + b1€*0;, 1 — ded + d1€°0y),

M(U,0z) = (mij)ij=1,2 with
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mi1 = e(1 — bed?)(udy) + (a + b — %)62’11/116;3,

1z = (1-+ aed2), + (1~ bed2)(n) + (a+ b — 3)endl,
mo; = (1+ ce@i)az + 6281(7735),
mas = €(1 + ce02)(udy) — (¢ + d — 1)€uy20; — (¢ + d)e*ud?.
We could search the symmetrizer of both My and M as follows:
S = diag(1 + ceds + ¢*nd2, 1 + en + aeds + (a — %)627785).
We define the energy functional associated to (64) as
E,(U) = (MoA°U | SA°U)s.
It is easy to check that under the assumption (6.2) and the assumption that

(6-5) E|77|00 =+ E|8ac77|00 <1,
there holds
(6.6) Es(U) ~ [nl%:, + lulk, -

As usual, we get by a standard energy estimate that

d
L EJU) = (MoA*Uy | (S + S )AU)y + (AU | [Mo, SJA*Uy )2

dt
+ (MoA*U | 8,SA*U ),

(6.7) = —(M(U,8,)A°U | (S + S*)A°U)y — ([A*, M(U,9,)]U | (S + S*)A°U ),

+ (AU | [Mo, S]A*Ut)2 + (MoA°U | 0,SA®U )2
dzefl—i—II—FIII—f—IV.
Estimate for I. We first compute
— (M(U,0,)AN°U | SA°U),
= —(mA*n| (1 + ced? + €2n0?)A*n),
—{(maaA\*u| (1 + ced? + e2nd2)A*n)a

1
+ (mar A°n| (14 en+ ae@i + (a— 5)62778%)A5u)2}

1
— (moaA®u| (14 en + aed? + (a — g)eznai)Asu)g
= L+ I+ Is.

For I, integrating by parts yields

€

1
Il = —((91 (’LL + (a + b— g)eum)ASn | Asn)2
2

1
+ 5(81 (u+(a+b— g)eum)(c +€n))0uA*n | 0, An)a

b62 s s b63 278 278
— 5 (00u0, A | 0:A"n)2 — == (9a (¢ + en)u) oA [ A7)

+ be*(02ud A0 | (¢ + en)D2A*n)s + 20€ (0, ud? A*n| (¢ + en)O2A*n)o

"o

57
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which along with the interpolation inequality (2) and the assumption (€3] implies
that

(6.8) 1]  elulxs, Infc,

For I, integrating by parts gives rise to
I = (e0ynANu+ (a — %)628m778§A5u | (1 + ced2 + 2n02)A*n)s
+ beX(02nDp Nou + 20,02 N*u | (1 + ced? + €1d2)A*n)a,
which along with ([@2]) and (G.5]) implies that
(6.9) L] S elulx,

W|§(§3-

For I5, we could derive as for I that
(6.10) 12| < elul,.

Thanks to (@), ([69) and (6I0), we obtain

(MU, 0)A°U | SA D) | S elulxs, (nfe, + lulke, )

The same estimate holds for term (M (U, 0,)A°U | S*A*U)z. Then we obtain
(6.11) 111 < elulxs, (nle, + k).

Estimate for I1. We first calculate that

[I] S |[A% M(U, 82)U 2| (S + S*)A°U 2
< IIA%, MU, )]0l (nlxe, + ulx,)
provided that
(6.12) e|17|X€s3 <1
Thanks to the expression of M (U, d,.), (2) and Lemma B2 we get that
A%, M(U, 02)]Ul2 S €l(1 = bed?) ([A*, uldan) |2 + €¥[[A”, o] O]z
+ €205 ([A°, 0]02n) |2 + €l (1 = bed) ([A*, n]Osu) |2 + €*][A°, n]0ul2
+ €|(1 + ced2) (A%, u]Opu) |2 + €2[[A%, upe]Opulz + €| [A®, u]O3ul
< ellnfe, + uls,).

Then we obtain that
(6.13) 1] S ellnlies, + Julk:,)?.

Estimate for I7]. Using the expressions of My and S, we have
IIT = (A% (1 - bed? + b9 02N n) — nO2(1 — bed? + b 204 A" )

+e(Asu| (1 — ded? + dr202) (nA*uy) — (1 — ded? + d1€*0F)Auy)2

+(a— %)62(/&% | (1= ded? + dre0;) (N7 A ur) — 07 (1 — dedy + di€*0;) Ay )o
Oi{[]ll + 11 +1113.
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Now we rewrite 11y, 115, I1I5 as follows:
115 = —([—bed? + bi€205, n]A*n| 92N ),

IITy = e(A*u|[~ded? + d1€202, NN uy)s

I3 = —(a — %)62([—dea§ +d1 202, nASu| D2Auys)o
which along with ([A2]) and Lemma B2, we obtain
(6.14) 111 S ellnls, + b, ) (Il crrs + el o)

Estimate for I'V. Using the expressions of My and S, we get that
IV = €((1 — bed? + b1 20 A | i 02 A*n)2

1
+ (1 — ded? + di 20N u | ens Au + (a — 5)6217,58%/&511)2,
which along with (2] implies that

1
V] < elmleo + e umloe) (e, + ke,
(6.15) < , L :
> €|Wt|xS;1(|77|X§3 + |U|X:3)'

Thanks to (1), (€11), (613), (614) and (6.13]), we get that
d

EES(U) S 6(|77|ng + |U|Xj3 + |77t|X:;1 + |Ut|xj;1)(|77|§(jg + |U|§(3)

Go back to (6]), we get that

mlgec el S (b, b, )3+ elnls, +elulxs,) S b, + Julxc,

provided that

(616) 6|77|X€S3 < 1.

Then we get that

d
T EsU) S ellnlxe, + lubxe ) (Il + Julke,)-

which along with (G.6]) implies that

d :
(6.17) T E(0) < B (U)3.

Thus, using similar arguments as in the previous subsections, we can deduce from
(617) that there exists T' > 0 independent of € such that ([G.I) (the BBM-type case)
has a unique solution on time interval [0, T/€] with initial data (1o, u). Moreover

holds . Theorem [6.1]is proved. O
©3) P

6.2. A Boussinesq-Full dispersion system for internal waves. A systematic
derivation of asymptotic internal waves models describing waves at the interface
of a two-fluids system with a rigid top is given in [8]. We will consider here a
specific regime leading to a Boussinesq-Full dispersion system for which the long
time existence result is still open. We recall first the relevant parameters. The
index 1 stands for the upper layer and 2 for the lower one.

v = Z—; < 1 is the ratio of densities, § = Z—; the ratio of typical heights of the
layers, A a typical waveleng2th, a a typical amplitude of the wave.

_ a _ 4 _ a _ _d _ p
Wedenotee—d—l,u_T,eg—dz—eé,ug—F—é—g.
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We consider here the regime where p ~ ¢ < 1, (g = ¢ < 1 from now on) and
p2 ~ 1.

It is shown in [§] that in this regime (for which one also has 6 ~ ¢ and thus
€~ & 1), and in absence of surface tension, the two-layers system is consistent
with the three-parameter family of Boussinesq/FD systems
(6.18)

(1= pubA)DC+ 2V - ((1 = €C)vg)

— Y| D| coth(y/7=| D))V - vs + g(a -4 cothz(,/_u2|D|))AV Vg =0
(1 = pdD)dyvs + (1 =) V¢ — 5= V|v|* + pe(l — 7)AV( = 0,
where vg = (1 — uBA)~1v and the constants a, b, ¢ and d are defined as

1 1
a:§(1—a1—3ﬂ), bzgaly C:ﬂQQ; d:ﬂ(l—OéQ),

with iy >0, 8> 0 and ap < 1. Note that a +b+c+d = 1.
It is easily checked that (6I8) is linearly well posed when

a<0,c<0,b>0,d>0.

The local well-posedness of the Cauchy problem for (6.I8)) was considered in [14]
in the following cases

(1) b>0,d >0,a <0,¢<0;
(2) b>0,d>0,a<0,¢c=0;
(3) b=0,d > 0,a <0,¢c=0;
(4) b=0,d > 0,a<0,¢<0;
(5) b>0,d=0,a <0,¢c=0.
On the other hand, we do not know of any long time existence results for (GI8])
that is existence on time scales of order 1/e. This issue will be considered in a
subsequent paper [37].

6.3. A full dispersion Boussinesq system. One obtains a full dispersion system
when in the Boussinesq regime by keeping the original dispersion of the water
waves system (see [29], [19], and [2] where interesting numerical simulations of the
propagation of solitary waves are performed). [

They read, setting 7. = M, D = —iV:

Vel Dl
N + Teuz + e(nu)e =0
(6.19) { g+ 1y + ety = 0,

when d = 1 and
N+ TV-u+eV-(nu)=0
when d = 2.
Taking the limit \/€|¢| — 0 in 7¢, ([6I9) reduces formally to

(6.21) { wp 4 1, + ettty = 0,

7As noticed in [2] the use of nonlocal models for shallow water waves is also suggested in [41].



BOUSSINESQ SYSTEMS II 61

while in the two-dimensional case, (6220) reduces in the same limit to

ne+V-u+ SAV-u+eV-(nu) =0
(6:22) { wy + Vi + SV[ul? =0,

that is to the (linearly ill-posed) system one gets first by expanding to first order
the Dirichlet to Neumann operator with respect to € in the full water wave system
(see [29]).

System ([6.21)) is also known in the Inverse Scattering community as the Kaup
system (see [21], 26]). Tt is completely integrable though linearly ill-posed since the
eigenvalues of the dispersion matrix are +i£(1 — §§2)1/ 2. The Boussinesq system
(EI9) can therefore be seen as a (well-posed) regularization of the Kaup system.
Whether or not it is completely integrable is an open question.

The full dispersion Boussinesq systems have the following Hamiltonian structure

O (Z) + Jgrad He(n,u) =0

where
0 0, 0y
J=(d, 0 0],
dy 0 0

HA(U) =5 [ (T2 +of + eafuf)dedy,
R
U= ("
u )

Oy (Z) + Jegrad He(n,u) =0

when d = 2 and

where
0 9,
=(5. %)
and )
He(n,u) = 5 / (TM2ul® + n* + eu’n)da,
R
when d = 1.

Note that the full dispersion Boussinesq system (G.I9) can be viewed as the
two-way propagation counterpart of the Whitham equation (see [40] and [29] for a
rigorous derivation):

(6.23) M+ (7;)1/2 Uy + €Uty =0

which displays a very rich dynamics (see [20, 25] and the references therein).
When surface tension is taken into account, one should replace the operator 7.

by P. = (I + Be|D|?)'/? (%) where the parameter 8 > 0 measures surface

el
tension (see [29]), yielding a more dispersive full dispersion Boussinesq system.
When g > %, this full dispersion Boussinesq system yields, taking the limit \/e|¢| —
0 in P, Boussinesq systems of the class a < 0,b = ¢ = d = 0 for which long time
well-posedness is established in Theorem 4.5.
Again we refer to a future work [37] for the study of the Cauchy problem asso-

ciated to (619]), (G20).



62 J.-C. SAUT, C. WANG, AND L. XU

7. CONCLUDING REMARKS

1. So far we have encounter only two possibilities for the lifespan T, of solutions
to Boussinesq systems. Either T, = +oo, for a few one-dimensional systems, or
T. = O(1/e) for essentially all the admissible (linearly well-posed) systems. One
may ask whether another possibility might occur. In view of what happens in the
scalar case (the fractionary KdV equation, see [31]) one could conjecture that there
is no other possibility, at least in the one-dimensional case and when the natural
no cavitation condition is imposed on the initial data. Note that no general criteria
preventing blow-up in finite time seem to be known for Boussinesq systems except
in the one-dimensional "BBM/BBM" system (a = ¢ = 0,b > 0,d > 0) for which it
is proven in [I] that a uniform control on |14 €n(+, )| prevents finite time blow-up.

2. Coming back to (II]), we remark that all long time existence results in the
present paper hold true for (L)) if one fixes p > 0 and let € tends to 0.
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