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THE CAUCHY PROBLEM ON LARGE TIME FOR SURFACE

WAVES TYPE BOUSSINESQ SYSTEMS II

JEAN-CLAUDE SAUT, CHAO WANG, AND LI XU

Abstract. This paper is a continuation of a previous work by two of the Au-
thors [36] on long time existence for Boussinesq systems modeling the propa-
gation of long, weakly nonlinear water waves. We provide proofs on examples
not considered in [36] in particular we prove a long time well-posedness result
for a delicate "strongly dispersive" Boussinesq system.

1. Introduction

One aim of this paper is to complete the results obtained in a previous paper
[36] on the Cauchy theory for some (a,b,c,d) Boussinesq systems for surface water
waves

(1.1)

{
ηt +∇ · u+ ǫ∇ · (ηu) + µ[a∇ ·∆u− b∆ηt] = 0
ut +∇η + ǫ 12∇|u|2 + µ[c∇∆η − d∆ut] = 0.

Here µ and ǫ are the small parameters (shallowness and nonlinearity parameters
respectively) defined as

µ =
h2

λ2
, ǫ =

α

h
where α is a typical amplitude of the wave, h a typical depth and λ a typical
horizontal wavelength.

In the Boussinesq regime, ǫ and µ are supposed to be of same order, ǫ ∼ µ ≪ 1,
and we will take for simplicity ǫ = µ, writing (1.1) as

(1.2)

{
ηt +∇ · u+ ǫ[∇ · (ηu) + a∇ ·∆u− b∆ηt] = 0
ut +∇η + ǫ[ 12∇|u|2 + c∇∆η − d∆ut] = 0,

The class of systems (1.1), (1.2) models water waves on a flat bottom propagating
in both directions in the aforementioned regime (see [6, 7, 5]). We will focus here
on the strongly dispersive case, corresponding to particular choices of the modeling
parameters (a,b,c,d) (see below).

One could also derive similar systems with a non trivial bathymetry (non flat
bottom), see [13], and one has then to distinguish between the case when the bottom
varies slowly and the case where it is strongly varying. In the former case, (1.2)
has to be slightly modified and becomes

(1.3)

{
ηt +∇ · u+ ǫ[∇ · ((η − β)u) + a∇ ·∆u− b∆ηt] = 0
ut +∇η + ǫ[ 12∇|u|2 + c∇∆η − d∆ut] = 0,

where β is a smooth function on Rd, d = 1, 2, bounded together with its derivatives.
In this case, the results in [36] and those of the present paper extend easily. In the
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second case one gets much more complicated systems [13]. We refer to [32] for long
time existence results in this case.

Recall (see [6, 15]) that the modeling parameters are constrained by the relation

a+ b+ c+ d =
1

3
− τ,

where τ ≥ 0 is the surface tension parameter (Bond number).
Recall also [6] that (1.2) is linearly well-posed when

a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0,

and when

a = c, b ≥ 0, d ≥ 0.

An important step to justify rigorously (1.2) as an asymptotic model for water
waves is to establish the well-posedness of the Cauchy problem on time scales of
order 1/ǫ, with uniform bounds in suitable Sobolev spaces, the error estimate being
then (see [5, 29]).

||UBoussinesq − UEuler|| = O(ǫ2t)

in suitable Sobolev norms.
This step has been established in [36] (see also [34]) for most of Boussinesq

systems with and without surface tension. The idea in [36] is to find an appropriate
symmetrization of the system and this is not a straightforward task since one cannot
obviously use the classical symmetrizer of the underlying Saint-Venant (shallow
water) hyperbolic system. This will be reviewed in the first section of this paper. A
complete proof of cases that were not fully developed in [36] will be given in Section
4. 1

Introducing surface tension enlarges the range of physically admissible parame-
ters (a,b,c,d) and so even a local theory 2 for a few linearly well -posed systems is still
missing, for instance the cases b = d = 0, a < 0, c = 0 and b = d = 0, a = 0, c < 0).
Both cases will be considered here but the later leads to serious difficulties and the
long time existence for it is the main result of the present paper.

Note also that the (linearly well-posed) "exceptional KdV-KdV" case b = d =
0, a = c > 0 which is studied in [30] leading to well-posedness on time scales of order
1/

√
ǫ in Sobolev spaces Hs(R2), s > 3/2 which are larger than the "hyperbolic" one

Hs(R2), s > 2 is not covered neither in [36] nor in the present paper so that a long
time existence is still open in this case 3.

An important mathematical issue concerning Boussinesq systems (1.2) is that
despite they describe the same dynamics of water waves, their mathematical proper-
ties are rather different, due essentially to their different linear dispersion relations.
Of course those dispersion relations all coincide in the long wave limit but there are
quite different in the short wave limit. A convenient way to classify the system is
according to the order of the Fourier multiplier operator given by the eigenvalues
of the linearized operator (see [6]). The order can be −1, 0, 1, 2 or 3. The two last
cases are referred to as the strongly dispersive ones.

1Due to the large number of cases to be considered, we chosed in [36] to give complete proofs
for a limited number of cases.

2That is not taking care of the dependence of the lifespan of the solution with respect to ǫ
3However, the case b = d = 0, a < 0, c < 0 that can only occur with a strong surface tension is

covered by the theory in [36].



BOUSSINESQ SYSTEMS II 3

After a brief review of our previous results, we will consider in the third section
the ("local") Cauchy problem for two strongly dispersive Boussinesq systems of
Schrödinger type, namely b = d = c = 0, a < 0 and a = b = d = 0, c < 0,
two situations that are admissible in case of strong surface tension and that have
not been considered before. In the first case, it turns out that the local (that is
on time scales of order 1/

√
ǫ) Cauchy theory can be obtained by "elementary"

energy methods on the original formulation, as in the purely gravity waves cases
a < 0, c < 0, b = 0, d > 0 or a < 0, c < 0, b > 0, d = 0 considered in [30]. On the
other hand, the second case a = b = d = 0, c < 0, leads to serious difficulties that
are explained in this section.

In the fourth section we provide detailed proofs (not given in [36]) for the long
time well-posedness of the strongly dispersive case b = d = c = 0, a < 0 and for two
systems which can be viewed as weakly dispersive, namely b > 0, a = c = d = 0 and
d > 0, a = b = c = 0. We conclude this section by establishing long time existence
for the difficult case a = b = d = 0, c < 0 by a quasilinearization method quite
different from the other cases. As was aforementioned this is the main result of the
present paper (see Theorems 4.6 and 4.7). We explain first how to get the needed
a priori estimates, the complete proof being given in the next section.

Finally we show in Section 6 that the symmetrization method can be used to
obtain long time existence results for a fifth order Boussinesq system and we briefly
allude to possible extensions to nonlocal Full dispersion Boussinesq type systems.

During the completion of the present paper we were informed of the very inter-
esting paper [11] where an alternative proof of long time existence for most of the
Boussinesq systems is provided (excluding the "strongly dispersive" ones b = d = 0,
thus the "difficult case" a = b = d = 0, c < 0). This proof also relaxes the non-
cavitation condition on the initial data η0.

We were also informed by Vincent Duchêne of the article [18] which contains in
the one-dimensional case (see Appendix A) results related to ours in Subsection
4.4.

Notations. We will denote | · |p the norm in the Lebesgue space Lp(R), 1 ≤
p ≤ ∞ and ‖ · ‖s the norm in the Sobolev space Hs(Rd), s ∈ R. (·|·)2 denotes

the scalar product in L2.We will denote f̂ or F(f) the Fourier transform of a
tempered distribution f. For any s ∈ R, we define |D|sf by its Fourier transform

|̂D|sf(ξ) = |ξ|sf̂(ξ). We also denote |Dx|sf = F−1(|ξ1|f̂) and |Dy|sf = F−1(|ξ2|f̂).
Finally we will denote Λ = (I −∆)1/2 and Jǫ = (I − ǫ∆)1/2.

2. A review of long time well-posed Boussinesq systems

As recalled previously, in order to fully justify the Boussinesq systems, one needs
to prove the well-posedness of the Cauchy problem on time scales of order at least
O(1/ǫ) (together with the relevant uniform bounds). This would be achieved of
course if one could obtain the global well-posedness (also with uniform bounds).
This is only known however for a very limited number of Boussinesq systems in one-
dimension. A first idea would be to use appropriate conservation laws, but contrary
to the one-directional or quasi one-directional equations such as the Korteweg- de
Vries or the Kadomtsev-Petviashvili equations which are derived in the same regime,
the Boussinesq systems do not possess the two invariants (L2 norm and energy) that
provide useful a priori bounds.
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Nevertheless, when b = d, the Boussinesq systems are endowed with an Hamil-
tonian structure. More precisely, denoting by J the skew adjoint matrix operator

J =




0 ∂x(I − ǫb∆)−1 ∂y(I − ǫb∆)−1

∂x(I − ǫb∆)−1 0 0
∂y(I − ǫb∆)−1 0 0


 ,

and

U =

(
η
u

)
,

the Boussinesq systems write in this case

∂tU = −J(gradHǫ)(U),

where Hǫ(U) is the Hamiltonian given by

Hǫ(U) =
1

2

∫

R2

(
− cǫ|∇η|2 − aǫ|∇u|2 + η2 + |u|2 + ǫη|u|2

)
dxdy,

so that Hǫ(U) is conserved by the flow. This can be used (see [7]) in the one dimen-
sional case where b = d > 0, a ≤ 0, c ≤ 0 or b = d > 0, a = 0, c < 0 to establish the
global well-posedness of the corresponding Boussinesq systems provided Hǫ(η0, u0)
is small enough and the non cavitation condition infx(1 + ǫη0(x)) > 0 is satisfied.
The proof uses in a crucial way the fact that b = d > 0 and the Sobolev embedding
H1(R) ⊂ L∞(R) thus it does not work in two dimensions.

Another one-dimensional situation leading to global well-posedneess is when
a = b = c = 0, d > 0. Then Amick and Schonbeck [4, 38] use the underlying
hyperbolic structure of the shallow-water (Saint-Venant) system to get a priori
bounds stemming from an entropy functional. This allows to prove the global well-
posedness under the condition infx∈R(1 + ǫη0(x)) > 0 4 but again the extension of
this result to the two-dimensional case is unclear. We will prove in this case the
large time existence in Section 4.

As far as long time results are concerned, it has been claimed in [36] that the
Boussinesq systems (1.2) are well-posed in a suitable Sobolev setting (with uniform
bounds) on time scales of order 1/ǫ in the following cases:

(1) b > 0, d = 0, a, c < 0;
(2) b > 0, d = 0, a = 0, c < 0;
(3) b = 0, d > 0, a, c < 0;
(4) b 6= d, b, d > 0, a, c < 0 or b = 0, d > 0, a = 0, c < 0;
(5) b 6= d, b, d > 0, a = 0, c < 0;
(6) b = d > 0, a, c < 0 or b > 0, d = 0, a < 0, c = 0;
(7) b > 0, d = 0, a = c = 0 or b = d > 0, a = 0, c < 0;
(8) b, d > 0, a < 0, c = 0 or b = 0, d > 0, a = c = 0;
(9) b = 0, d > 0, a < 0, c = 0;

(10) b, d > 0, a = c = 0;
(11) b = d = 0, a, c < 0.

Note that the last case can occur only in case of a strong surface tension, as the
two following that were not considered in [36] :

(12) b = d = 0, a = 0, c < 0;

4Contrary to what was claimed in [36], the results in [4, 38] do not need a smallness assumption
on the initial data.
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(13) b = d = 0, a < 0, c = 0.

Actually, the same scheme of proof (by symmetrization) is used in [36] but be-
cause of the many different cases to be dealt with (the technical details cannot be
treated in an unified way), we only provided a complete proof in [36] for cases (4)
("generic case"), (1) and (11), which are "strongly dispersive". The other cases
can be dealt with by similar symmetrization techniques but the proofs for some of
them need more explanations that we detail below.

3. Some strongly dispersive Boussinesq systems

We will study here the local well-posedness (that is on time scales of order 1/
√
ǫ)

of the Cauchy problem for two strongly dispersive Boussinesq systems having an
order two dispersion. They occur only for capillary-gravity waves when the surface
tension parameter is greater than 1/3. Two (purely gravity waves ) systems having
also an order two dispersion corresponding respectively to a < 0, c < 0, b = 0, d > 0
and a < 0, c < 0, d = 0, b > 0 have been studied in [30] under a curl free condition
in the later case. The local well-posedness on time scale of order 1/

√
ǫ was proven

there while well-posedness on time scales of order 1/ǫ is established in [36] together
with the appropriate uniform bounds. As in [30] we will use somehow the dispersive
properties of the systems which allows to enlarge the space of resolution but will not
provide existence on the "long" time scale 1/ǫ which will be considered in Section
4.

Those systems will be referred to as "Schrödinger type" since in space dimension
two their dispersion relations for large frequencies are reminiscent of the Schrödinger
one (in one dimension, the analogy is with the Benjamin-Ono equation). This will
be made clear when rewriting the systems in an equivalent form after diagonalizing
the linear part.

3.1. A first Schrödinger type system. We consider the Boussinesq systems
when a < 0, b = c = d = 0, a case which occurs for capillary surface waves with
strong enough surface tension, τ > 1/3 and which was not considered in [36]. One
can obviously restrict to the case where a = −1 and we consider first the one-
dimensional system

(3.1)

{
ηt + ux + ǫ(uη)x − ǫuxxx = 0,
ut + ηx + ǫuux = 0.

Note that this system has the hamiltonian structure

∂t

(
η
u

)
+ Jgrad Hǫ(η, u) = 0

where

J =

(
0 ∂x
∂x 0

)

and

Hǫ(η, u) =
1

2

∫

R

(ǫu2
x + η2 + u2 + ǫu2η)dx.

Unfortunately the formal conservation of the Hamiltonian cannot be used to get
a global L2 ×H1 bound.

As for other order two Boussinesq systems (see [7, 30]) one can solve the local
Cauchy problem for (3.1) by "elementary" energy methods.

For U = (η, u)T we define
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||U ||Xs
ǫ
=

(∫

R

(η2 + u2 + |Ds
xη|2 + |Ds

xu|2 + ǫ|Ds+1
x u|2)dx

)1/2

.

Theorem 3.1. Let s > 1/2 and (η0, u0) ∈ Xs
ǫ . There exists Tǫ = O(1/

√
ǫ) and a

unique solution (η, u) ∈ C([0, Tǫ]);X
s
ǫ ) of (3.1) with initial data (η0, u0).

Proof. In order to restrict the technicalities, we consider only the case s = 1 and we
derive only the suitable a priori estimates. The complete proof would use various
Kato-Ponce type commutator estimates and an approximation argument. 5

We take successively the L2 scalar product of the first equation in (3.1) by η−ηxx
and of the second equation by (I−ǫ∂2

x)(u−uxx). After several integrations by parts
we obtain by adding the resulting equations :

1

2

d

dt

∫

R

(η2 + u2 + η2x + (1 + ǫ)u2
x + ǫu2

xx)dx

= −ǫ

∫

R

[
1

2
uxη

2 +
3

2
uxη

2
x + ηηxuxx +

1 + ǫ

2
u3
x +

5ǫ

2
uxu

2
xx]dx.

(3.2)

We now use Hölder inequality, the standard inequality |u|∞ . |u|1/22 |ux|1/22 and
that

|η|∞, |η|2, |ηx|2, |ux|2,
√
ǫ|ux|∞,

√
ǫ|uxx|2 . ||U ||X1

ǫ

to obtain from (3.2) that ||U ||X1
ǫ
≤ C on the maximal existence time interval [0, Tǫ]

of the ODE

y′ ≤ C
√
ǫ y2

and one readily checks that Tǫ = O( 1√
ǫ
).

This leads to the existence of a weak solution U ∈ L∞(0, Tǫ;X
1
ǫ ) (with an uniform

H1 bound).
To prove uniqueness, we set N = η1 − η2, V = u1 − u2 where (η1, u1), (η2, u2)

are two solutions in C([0, Tǫ]);X
s
ǫ ). Thus

(3.3)

{
Nt + Vx + ǫ[(V η1)x + (u2N)x]− ǫVxxx = 0,
Vt +Nx + ǫ[V u1x + u2Vx] = 0.

One takes the L2 product scalar of the first equation by N and successively the
L2 scalar product of the second equation by V and −ǫVxx. Adding the resulting
equalities we obtain

1

2

d

dt

∫

R

(N2 + V 2 + ǫV 2
x )dx

=

∫

R

{−ǫ[(V η1)xN + (u2N)xN ]− ǫ[V 2u1x + u2V Vx]

+ ǫ2(V Vxxu1x + u2VxVxx)}dx,

(3.4)

5We will treat the general situation in the two-dimensional case.
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from which we deduce
1

2

d

dt

∫

R

(N2 + V 2 + ǫV 2
x )dx

≤ Cǫ[|η1|∞|Vx|2|N |2 + |V |1/22 |Vx|1/22 |N |2|η1x|2
+ |u2x|∞|N |22 + |u1x|∞|V |22 + |u2x|∞|V |22
+ ǫ((|u1x|∞ + |u2x|∞)|Vx|22) + |V |1/22 |Vx|3/22 |u1xx|2)],

(3.5)

so that

(3.6)
1

2

d

dt

∫

R

(N2 + V 2 + ǫV 2
x )dx ≤ C(|N |22 + |V |22 + ǫ|Vx|22)

and N = V = 0 by Gronwall’s lemma.

It remains to prove the strong continuity in time of the solution with value in X1
ǫ

and the continuity of the flow, but this results from the Bona-Smith approximation
procedure [9]. �

The local well-posedness of the Cauchy problem (3.1) for data of low regularity
weighted Sobolev spaces was proven in [25] by analogy with the DNLS equation.
We indicate now another possible method to obtain the local well-posedness of (3.1)
in a different functional setting by reducing it to a system of Benjamin-Ono type
equations. A natural idea is to transform (3.1) by diagonalizing the dispersive part.
We denote

Â(ξ) = iξ

(
0 1 + ǫ|ξ|2
1 0

)
.

the Fourier transform of the dispersion matrix with eigenvalues ±iξ(1 + ǫ|ξ|2)1/2.
In what follows we will denote Jǫ = (I − ǫ∂2

x)
1/2.

Setting

U =

(
η
u

)

and

W =

(
ζ
v

)
= P−1U, P−1 =

1

2

(
1 Jǫ
1 −Jǫ

)
,

the linear part of (3.1) is diagonalized as

Wt + ∂xDW = 0,

where

D =

(
Jǫ 0
0 −Jǫ

)
.

Since U = PW , where

P =

(
1 1

J−1
ǫ −J−1

ǫ

)
.

one can therefore reduce (3.1) to the equivalent form

(3.7)

{
ζt + Jǫζx + ǫ

2N1(ζ, v) = 0,
vt − Jǫvx + ǫ

2N2(ζ, v) = 0.

where

N1(ζ, v) = ∂x[(ζ + v)J−1
ǫ (ζ − v)] + Jǫ[J

−1
ǫ (ζ − v)J−1

ǫ (ζx − vx)]
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and

N2(ζ, v) = ∂x[(ζ + v)J−1
ǫ (ζ − v)]− Jǫ[J

−1
ǫ (ζ − v)J−1

ǫ (ζx − vx)]

Since

(1 + ǫξ2)1/2 − ǫ1/2|ξ| = 1

(1 + ǫξ2)1/2 + ǫ1/2|ξ| ,

(3.7) writes

(3.8)

{
ζt + ǫ1/2Hζxx +Rǫζ +

ǫ
2N1(ζ, v) = 0,

vt − ǫ1/2Hvxx −Rǫv +
ǫ
2N2(ζ, v) = 0.

where Rǫ is the (order zero) skew-adjoint operator with symbol iξ
(1+ǫξ2)1/2+ǫ1/2|ξ| .

Note that the nonlinear term are similar but in a sense nicer than the quadratic
term uux of the Benjamin-Ono equation and thus we should apply for instance
the method Ponce [35] used to solve the Cauchy problem for the Benjamin-Ono
equation, that is the dispersive estimates on the group eit∂xH, since this method
does not used the specific structure of the nonlinear term in the Benjamin-Ono
equation. This would imply local well-posedness for (ζ0, v0) ∈ Hs(R)2, s ≥ 3/2,
which corresponds to (η0, u0) = (ζ0+v0, J

−1
ǫ (ζ0−v0)) ∈ Hs(R)×Hs−1(R). Note the

difference with the functional setting of Theorem 3.1. Similarly, it is likely that the
method in [22] which leads to a local well-posedness theory in Hs(R), s > 9/8 for the
Benjamin-Ono equation can be applied to (3.1) leading to a Hs(R)×Hs−1(R), s >
9/8 theory. Also the new method in [33] could lead to the resolution of the Cauchy
problem in the energy space H1/2(R) in the (ζ, v) variables. Those methods would
however not enlarge the O(1/

√
ǫ) lifespan.6

In the two-dimensional case, the system writes

(3.9)

{
ηt +∇ · u+ ǫ∇ · (ηu)− ǫ∇ ·∆u = 0,
ut +∇η + ǫ

2∇|u|2 = 0.

This system has also the Hamiltonian structure

∂t

(
η
u

)
+ Jgrad Hǫ(η,u) = 0

where

J =




0 ∂x ∂y
∂x 0 0
∂y 0 0


 .

and

H(η,u) =
1

2

∫

R2

(ǫ|∇u|2 + η2 + |u|2 + ǫ|u|2η)dxdy.

Under a curl free assumption on u (which is natural since the Boussinesq systems
are derived for potential flows), one can obtain the local well-posedness of (3.9) by

6On the other hand, Tao’s method [39] which leads to a H1(R) well-posedness theory for the
Benjamin-Ono equation uses a gauge transform which strongly relies on the specific structure of
the Benjamin-Ono equation and its generalization to (3.1) is problematic.
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"elementary" methods. Actually, when curl u = 0, (3.9) becomes

(3.10)

{
∂tη +∇ · u+ ǫ∇ · (ηu)− ǫ∇ ·∆u = 0,

∂tu+∇η + ǫu · ∇u = 0.

Before going further, we present the following commutator estimates (see Theo-
rems 3 and 6 in [28]).

Lemma 3.2. Let t0 > n
2 , −t0 < r ≤ t0 + 1. Then for all s ≥ 0, f ∈ Ht0+1 ∩

Hs+r(Rn) and u ∈ Hs+r−1(Rn), there holds:

(3.11) |[Λs, f ]u|Hr ≤ C(|∇f |Ht0 |u|Hs+r−1 + 〈|∇f |Hs+r−1 |u|Ht0 〉s>t0+1−r),

where a+ 〈b〉s>s0 equals a if s ≤ s0 while equals a+ b if s > s0.

Consequently, taking t0 = s > 1 and r = 0 in (3.11), we have the following
corollary.

Corollary 3.3. For s > 1, f ∈ Hs+1(R2), g ∈ Hs−1(R2), then

(3.12) |[Λs, f ]g|2 . |∇f |Hs |g|Hs−1 .

Going back to (3.10), similarly to the one-dimensional case, we denote by U =
(η,u)T , and then define

(3.13) ‖U‖Xs
ǫ
= (|Λsη|22 + |Λs

u|22 + ǫ|Λs∇u|22)
1
2 ,

and we obtain the following theorem.

Theorem 3.4. Let s > 1 and (η0,u0) ∈ Xs
ǫ . Then there exists Tǫ = O(1/

√
ǫ)

and a unique solution (η,u) ∈ C([0, Tǫ];X
s
ǫ ) of (3.10) with initial data (η0,u0).

Moreover,

sup
t∈[0,Tǫ]

‖(η(·, t),u(·, t))‖Xs
ǫ
< c‖(η0,u0))‖Xs

ǫ
.

Proof. As in the one-dimensional case we will only provide the suitable a priori
estimate.

Taking the L2 inner product of the first equation in (3.10) by Λ2sη and of the
second equation by (1− ǫ∆)Λ2s

u, and then integrating by parts, it results

1

2

d

dt

(
|Λsη|22 + |Λs

u|22 + ǫ|Λs∇u|22
)

= −ǫ(Λs∇ · (ηu) |Λsη)2 − ǫ(Λs(u · ∇u) | (1− ǫ∆)Λs
u)2,

(3.14)

Now, we deal with the r.h.s terms in (3.14). We first get that

(3.15)

(Λs∇ · (ηu) |Λsη)2 = (Λs(u · ∇η) |Λsη)2 + (Λs(η∇ · u) |Λsη)2

= ([Λs,u] · ∇η) |Λsη)2 −
1

2
(∇ · uΛsη |Λsη)2 + (Λs(η∇ · u) |Λsη)2,

which together with (3.12) implies that

(3.16)

|(Λs∇ · (ηu) |Λsη)2|
. |[Λs,u] · ∇η)|2|Λsη|2 + |∇ · u|∞|Λsη|22 + |Λs(η∇ · u)|2|Λsη|2
. |∇u|Hs |∇η|Hs−1 |η|Hs + |∇u|Hs |η|2Hs . |∇u|Hs |η|2Hs .
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For the second term on the r.h.s of (3.14), we have

(3.17)

(Λs(u · ∇u) | (1− ǫ∆)Λs
u)2 = ([Λs,u] · ∇u |Λs

u)2

− 1

2
(∇ · uΛs

u |Λs
u)2 + ǫ

2∑

i=1

(Λs∇(ui∂iu) |Λs∇u)2

= ([Λs,u] · ∇u |Λs
u)2 −

1

2
(∇ · uΛs

u |Λs
u)2

+ ǫ

2∑

i=1

([Λs, ui]∇∂iu |Λs∇u)2 −
1

2
ǫ(∇ · uΛs∇u |Λs∇u)2

+ ǫ

2∑

i=1

(Λs(∇ui∂iu) |Λs∇u)2

which along with (3.12) implies that

(3.18) |(Λs(u · ∇u) | (1− ǫ∆)Λs
u)2| . |∇u|Hs

(
|u|2Hs + ǫ|∇u|2Hs

)
.

Denoting again U = (η,u)T , we deduce from (3.14), (3.16) and (3.18) that

(3.19)
d

dt
‖U(t)‖Xs

ǫ
≤ C

√
ǫ‖U(t)‖2Xs

ǫ
,

from which, we infer that the maximal existence time interval is [0, Tǫ] with Tǫ =
O(1/

√
ǫ).

As in the one-dimensional case one justifies the a priori estimates by a suitable
approximation of the system (for instance by adding (−δ∆ηt,−δ∆ut)

T , δ > 0).
Uniqueness is obtained again by a Gronwall type argument and the strong con-
tinuity in time and the continuity of the flow map result from the Bona-Smith
trick. �

As in the one-dimensional case, one has a better insight on the system by diag-
onalizing the linear part. The dispersion matrix is in Fourier variables

Â(ξ1, ξ2) = i




0 ξ1(1 + ǫ|ξ|2) ξ2(1 + ǫ|ξ|2)
ξ1 0 0

ξ2 0 0


 .

The corresponding eigenvalues are zero and

λ± = ±i|ξ|(1 + ǫ|ξ|2)1/2

with corresponding eigenvectors

E0 =




0

− ξ2
|ξ|(1 + ǫ|ξ|2)−1/2

ξ1
|ξ| (1 + ǫ|ξ|2)−1/2


 , E1 =




1
ξ1
|ξ|(1 + ǫ|ξ|2)−1/2

ξ2
|ξ|(1 + ǫ|ξ|2)−1/2


 ,

and E2 =




−1
ξ1
|ξ| (1 + ǫ|ξ|2)−1/2

ξ2
|ξ| (1 + ǫ|ξ|2)−1/2


 .
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Now we set Jǫ = (I − ǫ∆)1/2 and R1, R2 the Fourier multiplier operator with
respective symbols iξ1/|ξ|, iξ2/|ξ|.

We also denote

P =




0 i −i
−R2J

−1
ǫ R1J

−1
ǫ R1J

−1
ǫ

R1J
−1
ǫ R2J

−1
ǫ R2J

−1
ǫ




and

P−1 =
1

2




0 2R2Jǫ −2R1Jǫ
−i −R1Jǫ −R2Jǫ
i −R1Jǫ −R2Jǫ


 .

Setting U = (η,u)T and V = (ζ,v)T = P−1U, (3.9) writes as

Ut +AU + ǫN(U) = 0,

which is transformed after diagonalizing the linear part,

Vt +DV + ǫP−1N(PV ) = 0,

or, setting P−1N(PV ) = Ñ(V ),

(3.20) Vt +DV + ǫÑ(V ) = 0,

where

D =



0 0 0
0 i(−∆)1/2Jǫ 0

0 0 −i(−∆)1/2Jǫ




We turn now to the nonlinear part. N is given as a function of U by

N(U) =




∇ · (ηu)
1
2∂x(|u|2)
1
2∂y(|u|2)


 =



∇ · (ηu)
u · ∇u1

u · ∇u2


 ,

where we used the condition curlu = 0 in the second equality.
On the other hand, P−1N(U) is given by

−1

2




0
i∇ · (ηu) +R1Jǫ(u · ∇u1) +R2Jǫ(u · ∇u2)
−i∇ · (ηu) +R1Jǫ(u · ∇u1) +R2Jǫ(u · ∇u2)


 .

To obtain the expression of Ñ(V ), we should express (η, u1, u2) as

η = i(v1 − v2), u1 = −R2J
−1
ǫ ζ +R1J

−1
ǫ (v1 + v2),

u2 = R1J
−1
ǫ ζ +R2J

−1
ǫ (v1 + v2),

and the nonlinearity is of the same type as in the one-dimensional case.

Remark 3.1. As in the case of the "KdV-KdV" system (a = c = 1/6, b = d = 0)
studied in [30], it follows from our analysis that ζ = 0 if ζ0 is smooth enough, since
∂tζ = 0. Moreover,

ζ = 0 ⇐⇒ R2u1 = R1u2 ⇐⇒ curl u = 0.

We observe that this condition makes sense, since our system is derived from the
water waves equations in the irrotational case. Note that u is the horizontal velocity
at a certain height and it differs from the horizontal velocity at the free surface by
an O(ǫ2) term. Also, since the equation for u writes ∂tu = ∇F , the condition
curl u = 0 is preserved by the evolution.
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Remark 3.2. The linear part in (3.20) is "Schrödinger like" for large frequencies (the
symbol behaves as ±iǫ1/2|ξ|2 as |ξ| → +∞), and "wave like" for small frequencies
(the symbol behaves as ±i|ξ| when |ξ| → 0).

The quadratic terms however involves order one operators and this one could a
priori think of applying the results on the Cauchy problem for quasilinear Schrödinger
type equations (see for instance [23]). Those methods however necessitate a high
regularity on the data and it is unlikely that they could improve our local result.

3.2. A second Schrödinger type system. We consider here the situation where
a = b = d = 0, c < 0, say c = −1 which again may occur only in the case of strong
surface tension. It turns out that this system leads to serious difficulties, which are
not present in the other Boussinesq systems, and that we will describe below, even
to obtain the local well-posedness by "elementary" or more sophisticated methods
using dispersion. We refer to Section 4 and 5 for the long time existence issues.

We consider first the one-dimensional system

(3.21)

{
ηt + ux + ǫ(uη)x = 0,
ut + ηx + ǫuux − ǫηxxx = 0.

The hamiltonian structure is now

∂t

(
η
u

)
+ Jgrad Hǫ(η, u) = 0

where

J =

(
0 ∂x
∂x 0

)

and

Hǫ(η, u) =
1

2

∫

R

(ǫ|ηx|2 + η2 + u2 + ǫu2η)dx.

Similarly to the case b = d > 0, a = 0, c = −1 considered in [7] and for a related
system in [10] , one can use the formal conservation of Hǫ to derive a global a priori
estimate when Hǫ(η0, u0) is small enough and infx∈R(1+ǫη0(x)) > 0. First we derive
as in [7, 9] a L∞ bound on η for solutions (η, u) ∈ C([0, T ];H1(R))×C([0, T ];L2(R))
satisfying the above non-cavitation condition. Actually, one writes

η2(x, t) ≤
∫

R

|η||ηx|dx =
1√
ǫ

∫

R

√
ǫ|η||ηx|dx ≤ 1

2
√
ǫ

∫

R

(η2 + ǫ|ηx|2)dx

≤ 1√
ǫ
|Hǫ(η, u)| =

1√
ǫ
|Hǫ(η0, u0)| t ∈ [0, T ].

(3.22)

Using (3.22) and the conservation of Hǫ imply a (formal ) H1 × L2 bound on
(η, u) provided Hǫ(η0, u0) is small enough, that is

(3.23) Hǫ(η0, u0) < ǫ−3/2.

Unfortunately, and contrary to the case b = d > 0, a = 0, c < 0 (see [7]),
one cannot use the above bounds to get a global well-posedness result, say by a
compactness method applied to a regularization of the system. The obstruction is
that one cannot pass to the limit of the term 1

2∂x(u
2) in the second equation only

from a L2 bound on u.
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To obtain an equivalent "diagonal" system, we proceed as in the other "Schrödinger
type system", setting now

Â(ξ) = iξ

(
0 1

1 + ǫ|ξ|2 0

)
.

with the same eigenvalues ±iξ(1 + ǫ|ξ|2)1/2.
In the Notation of the previous section, one has still

D =

(
Jǫ 0
0 −Jǫ

)
.

and now

P =

(
J−1
ǫ −J−1

ǫ

1 1

)
,

P−1 =
1

2

(
Jǫ 1
−Jǫ 1

)
,

Setting again

U =

(
η
u

)

and

W =

(
ζ
v

)
= P−1U,

one can therefore reduce (3.21) to the equivalent form

(3.24)

{
ζt + Jǫζx + ǫ

2N1(ζ, v) = 0,
vt − Jǫvx + ǫ

2N2(ζ, v) = 0.

where

N1(ζ, v) = ∂xJǫ[(ζ + v)J−1
ǫ (ζ − v)] + (ζ + v)(ζ + v)x

and

N2(ζ, v) = −∂xJǫ[(ζ + v)J−1
ǫ (ζ − v)] + (ζ + v)(ζ + v)x.

We can also write (3.24) as

(3.25)

{
ζt + ǫ1/2Hζxx +Rǫζ +

ǫ
2N1(ζ, v) = 0,

vt − ǫ1/2Hvxx −Rǫv +
ǫ
2N2(ζ, v) = 0.

where again Rǫ is the order zero skew-adjoint operator with symbol iξ
(1+ǫξ2)1/2+ǫ1/2|ξ| .

Note that the nonlinearity is worse than in the case a = −1 and even the local
theory does not seem to be straightforward using this formulation.

We turn now to the two-dimensional case that is

(3.26)

{
ηt +∇ · u+ ǫ∇ · (ηu) = 0,
ut +∇η + ǫ

2∇|u|2 − ǫ∇∆η = 0.

The Hamiltonian structure is now

∂t

(
η
u

)
+ Jgrad Hǫ(η,u) = 0

where

J =




0 ∂x ∂y
∂x 0 0
∂y 0 0


 .
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and

H(η,u) =
1

2

∫

R2

(ǫ|∇η|2 + η2 + |u|2 + ǫ|u|2η)dxdy.

As in the one-dimensional case, one can express (3.21) on the equivalent form

(3.27) Vt +DV + Ñ(V ) = 0,

where again U = (η,u)T , V = (ζ,v)T ,

D =



0 0 0
0 i(−∆)1/2Jǫ 0

0 0 −i(−∆)1/2Jǫ




and Ñ(V ) is expressed as

1

2




0
−iJǫ[∂x(u1η) + ∂y(u2η)]− 1

2 [R1∂x|u|2 +R2∂y|u|2]
iJǫ[∂x(u1η) + ∂y(u2η)]− 1

2 [R1∂x|u|2 +R2∂y|u|2]




with

η = iJ−1
ǫ (v1 − v2), u1 = −R2ζ +R1(v1 + v2), u2 = R1ζ +R2(v1 + v2).

3.3. Comparison between the two Schrödinger type systems. The previous
considerations display the difficulties of the Cauchy problem in the case a = b =
d = 0, c < 0. We indicate here how to reduce it to the case b = d = c = 0, a < 0
modulo O(ǫ2) terms.

Let us consider for instance the one-dimensional case

(3.28)

{
ηt + ux + ǫ(ηu)x = 0,

ut + ηx + ǫuux − ǫηxxx = 0.

Setting

η̃ = (1− ǫ∂2
x)η = J2

ǫ η,

(3.28) can be rewritten as follows :

(3.29)

{
η̃t + (1 − ǫ∂2

x)ux + ǫ(η̃u)x = ǫ2(2ηxxux + 3ηxuxx + ηuxxx),

ut + η̃x + ǫuux = 0,

that is

(3.30)





η̃t + (1− ǫ∂2
x)ux + ǫ(η̃u)x

= ǫ2(2(J−2
ǫ η̃xx)ux + 3(J−2

ǫ η̃x)uxx + (J−2
ǫ η̃)uxxx),

ut + η̃ + ǫuux = 0,

Discarding the O(ǫ2) terms, (3.29) reduces to

(3.31)

{
η̃t + (1− ǫ∂2

x)ux + ǫ(η̃u)x = 0,

ut + ǫη̃x + ǫuux = 0.

which is exactly the case b = c = d = 0, a = −1.

Similarly, we can consider the two-dimensional case

(3.32)





ηt +∇ · u+ ǫ∇ · (ηu) = 0,

ut +∇η +
ǫ

2
∇(|u|2)− ǫ∇∆η = 0.
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Setting

η̃ = (1− ǫ∆)η = J2
ǫ η,

(3.32) can be rewritten as follows :

(3.33)





η̃t + (1− ǫ∆)∇ · u+ ǫ∇ · (η̃u) = ǫ2
(
∆∇ · (ηu)−∇ · (∆ηu)

)
,

ut +∇η̃ +
ǫ

2
∇(|u|2) = 0,

that is

(3.34)





η̃t + (1− ǫ∆)∇ · u+ ǫ∇ · (η̃u) = ǫ2
(
∆∇ · (uJ−2

ǫ η̃)−∇ · (u∆J−2
ǫ η̃

)
,

ut +∇η̃ +
ǫ

2
∇(|u|2) = 0,

Discarding the O(ǫ2) terms, (3.33) reduces to

(3.35)





η̃t + (1− ǫ∆)∇ · u+ ǫ∇ · (η̃u) = 0,

ut +∇η̃ +
ǫ

2
∇(|u|2) = 0

which is exactly the case b = c = d = 0, a = −1.

The bad structure of the nonlinear terms in (3.30), (3.34) (or (3.25), (3.27))
explain why solving the Cauchy problem for systems (3.21) or (3.26) is so diffi-
cult, despite their apparent simplicity. One could notice that we always lose one
derivative for η or u. Thus, to solve the case a = b = d = 0, c < 0, we turn to
quasilinearize the system by applying ∂k

t instead of the usual ∂α
x . We shall discuss

details in the following section.

4. Long time existence for some Boussinesq systems

We first give a complete proof for some systems considered in [36] (in particular
the two-dimensional version of the system considered in [4, 38]) and apply the
same symmetrization techniques to study the long time existence of solutions (in a
smaller Sobolev space) of one of the "Schrödinger type systems" described in the
previous section. We then consider the more delicate case a = b = d = 0, c < 0.

We associate to (1.2) the initial data

(4.1) η|t=0 = η0, u|t=0 = u0.

4.1. The case a = c = d = 0, b > 0 with condition curl u = 0. Before going
further, we state some technical lemmas and definitions.

Definition 4.1. For any s ∈ R, k ∈ N, ǫ ∈ (0, 1), the Banach space Xs
ǫk(R

n) is

defined as Hs+k(Rn) equipped with the norm:

|u|2Xs

ǫk
= |u|2Hs + ǫk|u|2Hs+k

Lemma 4.2. For any i, k ∈ N and 0 < i < k, there holds the following interpolation
inequality:

(4.2) ǫ
i
2 |f |Hs+i . |f |1−

i
k

Hs

(
ǫ

k
2 |f |Hs+k

) i
k . |f |Xs

ǫk
.
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Theorem 4.3. Let b > 0, a = c = d = 0. n = 1, 2, s > 1 + n
2 . Assume

that η0 ∈ Xs
ǫ2(R

n),u0 ∈ Xs
ǫ (R

n) with curlu0 = 0 when n = 2, satisfy the (non-
cavitation) condition

(4.3) 1 + ǫη0 ≥ H > 0, H ∈ (0, 1),

Then there exists a constant c̃0 such that for any ǫ ≤ ǫ0 = 1−H
c̃0(|η0|Xs

ǫ2
+|u0|Xs

ǫ
) , there

exists T > 0 independent of ǫ, such that (1.2)-(4.1) has a unique solution (η,u)T

with η ∈ C([0, T/ǫ];Xs
ǫ2(R

n)) and u ∈ C([0, T/ǫ];Xs
ǫ (R

n)). Moreover,

(4.4) max
t∈[0,T/ǫ]

(|η|Xs
ǫ2

+ |u|Xs
ǫ
) ≤ c̃(|η0|Xs

ǫ2
+ |u0|Xs

ǫ
).

Here c̃ = C(H−1) and c̃0 = C(H−1) are nondecreasing functions of their argument.
And in what follows, without confusion, we denote c̃ = C(H−1) a nondecreasing
constant depending on H−1. Otherwise, we denote c̃i (i=0,1,2,...) constants having
the same properties as c̃.

Proof. The proof follows the same method used in [36], that is to obtain energy esti-
mates on a suitable symmetrized linearized system followed by an iterative scheme.
Here we only give the a priori estimates on the full nonlinear system and in the
two-dimensional case. Since c = d = 0 and curlu0 = 0, we deduce from the second
equation of (1.2) that

(4.5) curlu = 0, for t > 0.

Then using (4.5), (1.2) becomes

(4.6)

{
∂tη +∇ · u+ ǫ∇ · (ηu)− bǫ∆∂tη = 0,

∂tu+∇η + ǫu · ∇u = 0.

Denoting by U = (η,u), (4.6) is rewritten in the condensed form as

(4.7) (1− bǫ∆)∂tU +M(U,D)U = 0,

where

M(U,D) =




ǫu · ∇ (1 + ǫη)∂1 (1 + ǫη)∂2
(1 − bǫ∆)∂1 (1− bǫ∆)(ǫu · ∇) 0
(1 − bǫ∆)∂2 0 (1− bǫ∆)(ǫu · ∇)


 .

The symmetrizer of M(U,D) is

SU (D) =



1− bǫ∆ 0 0

0 1 + ǫη 0
0 0 1 + ǫη


 .

We define the energy functional associated to (4.7) as

(4.8)
Es(U) = ((1 − bǫ∆)ΛsU |SU (D)ΛsU)2

= ((1 − bǫ∆)Λsη | (1− bǫ∆)Λsη)2 + ((1 − bǫ∆)Λs
u | (1 + ǫη)Λs

u)2.

Assume that

(4.9) 1 + ǫη ≥ H > 0, ǫ|η|W 1,∞ ≤ κH for t ∈ [0, T̄ ]

with κH sufficiently small, and

(4.10) max
0≤t≤T̄

Es(U) ≤ C0,
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for some constant C0. The assumptions (4.9) and (4.10) hold provided that (4.3)
holds and ǫ ≤ ǫ0 ≪ 1 (one can refer to [36]).

Under the conditions (4.9), it is easy to check that

(4.11) Es(U) ∼ |η|2Xs
ǫ2

+ |u|2Xs
ǫ
.

The proof of (4.11) is similar to that in [36] and we omit it.
A standard energy estimate leads to

(4.12)

d

dt
Es(U) = 2((1− bǫ∆)Λs∂tU |SU (D)ΛsU)2

+ ((1− bǫ∆)ΛsU | ∂tSU (D)ΛsU)2 − bǫ
(
[SU (D),∆]ΛsU |ΛsUt

)
2

= −2(Λs
(
M(U,D)U

)
|SU (D)ΛsU)2 + ((1− bǫ∆)Λs

u | ǫ∂tηΛs
u)2

− bǫ2
(
[η,∆]Λs

u |Λs∂tu
)
2

=
def

I + II + III.

Estimate for I. Firstly, one gets

I = −2([Λs,M(U,D)]U |SU (D)ΛsU)2 − 2(M(U,D)ΛsU |SU (D)ΛsU)2 =
def

I1 + I2.

For I1, one has

I1 = −2([Λs, ǫu] · ∇η + [Λs, ǫη]∇ · u | (1− bǫ∆)Λsη)2

− 2((1− bǫ∆)
(
[Λs, ǫu] · ∇u

)
| (1 + ǫη)Λs

u)2

=
def

I11 + I12.

Thanks to Lemma 3.2, it is easy to get that for s > 2,

(4.13)
|I11| .

(
|[Λs, ǫu] · ∇η|2 + |[Λs, ǫη]∇ · u|2

)
|(1 − bǫ∆)Λsη|2

. ǫ|u|Hs |η|Hs(|η|Hs + ǫ|η|Hs+2) . ǫ|u|Xs
ǫ
|η|2Xs

ǫ2
.

For I12, integrating by parts, there holds

I12 = −2([Λs, ǫu] · ∇u | (1 + ǫη)Λs
u)2 − 2bǫ(∇

(
[Λs, ǫu] · ∇u

)
| ∇

(
(1 + ǫη)Λs

u
)
)2

which along with (4.9) and Lemma 3.2 implies that

(4.14)
|I12| . (1 + ǫ|η|∞)ǫ|u|3Hs + ǫ2|u|2Xs

ǫ

(
(1 + ǫ|η|∞)|∇Λs

u|2 + ǫ|∇η|∞|Λs
u|2

)

. ǫ|u|3Xs
ǫ
.

Then we get by (4.13) and (4.14) that

(4.15) |I1| . ǫ|u|Xs
ǫ
(|η|2Xs

ǫ2
+ |u|2Xs

ǫ
).

For I2, due to the expressions of M(U,D) and SU (D), we get that

I2 =− 2(ǫu · ∇Λsη | (1− bǫ∆)Λsη)2 − 2((1− bǫ∆)(ǫu · ∇Λs
u) | (1 + ǫη)Λs

u)2

− 2{((1 + ǫη)∇ · Λs
u | (1− bǫ∆)Λsη)2 + ((1 − bǫ∆)∇Λsη | (1 + ǫη)Λs

u)2}
=
def

I21 + I22 + I23.
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Integrating by parts, one gets that

I21 = ǫ(∇ · uΛsη |Λsη)2 + bǫ2(∇ · u∇Λsη | ∇Λsη)2 − 2bǫ2
2∑

i=1

(∂iu · ∇Λsη | ∂iΛsη)2

I22 = ǫ(∇ ·
(
(1 + ǫη)u

)
Λs

u |Λs
u)2 + 2bǫ3((u · ∇)Λs

u |
2∑

i=1

∂i(∂iηΛ
s
u))2

− 2bǫ2
2∑

i=1

(∂iu · ∇Λs
u | (1 + ǫη)∂iΛ

s
u)2 + bǫ2(∇ ·

(
(1 + ǫη)u

)
∇Λs

u | ∇Λs
u)2,

I23 = 2ǫ(∇η · Λs
u | (1− bǫ∆)Λsη)2.

Then thanks to (4.9), (4.10), (4.11) and (4.2), there holds

(4.16) |I2| . ǫ|u|Xs
ǫ

(
|η|2Xs

ǫ2
+ |u|2Xs

ǫ

)
.

Thanks to (4.15) and (4.16), we obtain

(4.17) |I| . ǫ|u|Xs
ǫ

(
|η|2Xs

ǫ2
+ |u|2Xs

ǫ

)
.

Estimate for II. Integrating by parts, we have

II = ǫ(Λs
u | ∂tηΛs

u)2 + bǫ2(∇Λs
u | ∇(∂tηΛ

s
u))2

which along with (4.2) implies that

(4.18) |II| . ǫ|∂tη|Xs−1

ǫ2
|u|2Xs

ǫ
.

Estimate for III. Thanks to Lemma 3.2, we get that

(4.19) |III| . ǫ2|∇η|Hs−1 |u|Hs+1 |Λs∂tu|2 . ǫ|η|Xs
ǫ2
|u|Xs

ǫ
|∂tu|Xs−1

ǫ
.

Combining (4.12), (4.17), (4.18) and (4.19), we obtain that

(4.20)
d

dt
Es(U) . ǫ

(
|η|Xs

ǫ2
+ |u|Xs

ǫ

)(
|η|2Xs

ǫ2
+ |u|2Xs

ǫ
+ |∂tη|2Xs−1

ǫ2

+ |∂tu|2Xs−1
ǫ

)
.

Thanks to the equations of (4.6), one gets by using (4.9) and (4.10) that

(4.21)
|∂tη|Xs−1

ǫ2
+ |∂tu|Xs−1

ǫ
. (1 + ǫ|η|∞)|u|Xs

ǫ
+ ǫ|u|∞|η|Hs + |η|Xs

ǫ2
+ |u|2Xs

ǫ

. |η|Xs
ǫ2

+ |u|Xs
ǫ
,

which along with (4.20) implies that

(4.22)
d

dt
Es(U) . ǫ

(
|η|Xs

ǫ2
+ |u|Xs

ǫ

)(
|η|2Xs

ǫ2
+ |u|2Xs

ǫ

)
.

Then due to (4.11), there holds

d

dt

(
Es(U)

) 1
2 ≤ C1ǫEs(U),

which gives rise to

(4.23)
(
Es(U)

) 1
2 ≤

(
Es(U0)

) 1
2

1− C1ǫt
(
Es(U0)

) 1
2

≤ 2
(
Es(U0)

) 1
2 ,

for any t ≤ 1

2C1

(
Es(U0)

) 1
2

T
ǫ with T = 1

2C1

(
Es(U0)

) 1
2

. This completes the proof of

Theorem 4.3. �
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4.2. Case d > 0, a = b = c = 0.

Theorem 4.4. Let d > 0, a = b = c = 0. n = 1, 2, s > 1 + n
2 . Assume that

η0 ∈ Xs
ǫ (R

n),u0 ∈ Xs
ǫ2(R

n) satisfy the (non-cavitation) condition

(4.24) 1 + ǫη0 ≥ H > 0, H ∈ (0, 1),

Then there exists a constant c̃0 such that for any ǫ ≤ ǫ0 = 1−H
c̃0(|η0|Xs

ǫ
+|u0|Xs

ǫ2
) , there

exists T > 0 independent of ǫ, such that (1.2)-(4.1) has a unique solution (η,u)T

with η ∈ C([0, T/ǫ];Xs
ǫ (R

n)) and u ∈ C([0, T/ǫ];Xs
ǫ2(R

n)). Moreover,

(4.25) max
t∈[0,T/ǫ]

(|η|Xs
ǫ
+ |u|Xs

ǫ2
) ≤ c̃(|η0|Xs

ǫ
+ |u0|Xs

ǫ2
).

Remark 4.1. As was previously mentioned, one gets global well-posedness in the
one-dimensional case ([4, 38]) in a different functional setting though but the
method of proof in [4, 38] does not seem to adapt to the two-dimensional case
since it relies strongly on properties of the one-dimensional hyperbolic Saint-Venant
(shallow water) system.

Proof. The proof also follows the same method used in [36]. Here we only give the
a priori estimates. For d > 0, a = b = c = 0, we rewrite (1.2) in two-dimensional
space as follows:

(4.26)





∂tη +∇ · u+ ǫ∇ · (ηu) = 0,

∂tu+∇η +
ǫ

2
∇(|u|2)− dǫ∆∂tu = 0,

Denoting by U = (η,u), (4.26) is equivalent to the following condensed system

(4.27) (1− dǫ∆)∂tU +M(U,D)U = 0,

where

M(U,D) =



ǫ(1− dǫ∆)(u · ∇) (1− dǫ∆)

(
(1 + ǫη)∂1

)
(1− dǫ∆)

(
(1 + ǫη)∂2

)

∂1 ǫu1∂1 ǫu2∂1
∂2 ǫu1∂2 ǫu2∂2


 .

The symmetrizer SU (D) for M(U,D) is defined by



1 ǫu1 ǫu2

ǫu1 (1 + ǫη)(1− dǫ∆) 0
ǫu2 0 (1 + ǫη)(1 − dǫ∆)


+



0 0 0
0 dǫ3u1u1∆ dǫ3u1u2∆
0 dǫ3u1u2∆ dǫ3u2u2∆


 .

We define the energy functional associated to (4.27) as

(4.28) Es(U) = ((1− dǫ∆)ΛsU |SU (D)ΛsU)2

Assume that

(4.29) 1 + ǫη ≥ H > 0, ǫ|u|W 1,∞ ≤ κH for t ∈ [0, T̄ ]

with κH sufficiently small, and

(4.30) max
0≤t≤T̄

Es(U) ≤ C0,

for some constants C0. The assumptions (4.29) and (4.30) also hold provided that
(4.24) holds and ǫ ≤ ǫ0 ≪ 1 (one can refer to [36]). Under the assumption (4.29),
it is not difficult to check that

(4.31) Es(U) ∼ |η|2Xs
ǫ
+ |u|2Xs

ǫ2
.
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As usual, a standard computation shows that

(4.32)

d

dt
Es(U) = −(Λs

(
M(U,D)U

)
|
(
SU (D) + SU (D)∗

)
ΛsU)2

− dǫ([SU (D)∗,∆]ΛsU |Λs∂tU)2 + ((1 − dǫ∆)ΛsU | ∂tSU (D)ΛsU)2

=
def

I + II + III,

where SU (D)∗ is the adjoint matrix of SU (D).
Estimate for I. One has that

I =− ([Λs,M(U,D)]U |
(
SU (D) + SU (D)∗

)
ΛsU)2

− (ΛsU |
(
SU (D) + SU (D)∗

)(
M(U,D)ΛsU

)
)2

=
def

I1 + I2

Estimate for I1. Using the expressions of M(U,D) and SU (D), one gets that

([Λs,M(U,D)]U |SU (D)ΛsU)2 = ([Λs, ǫ(1− dǫ∆)(u · ∇)]η |Λsη + ǫu · Λs
u)2

+ ([Λs, ǫ(1− dǫ∆)(η∇)] · u |Λsη + ǫu · Λs
u)2

+

2∑

i,j=1

([Λs, ǫuj]∂iuj | ǫuiΛ
sη + (1 + ǫη)(1− dǫ∆)Λsui + dǫ3uiu ·∆Λs

u)2

=
def

I11 + I12 + I13.

Integrating by parts, there hold

I11 = ǫ([Λs,u] · ∇η |Λsη + ǫu · Λs
u)2 + dǫ2(∇

(
[Λs,u] · ∇η

)
| ∇

(
Λsη + ǫu · Λs

u
)
)2

I12 = ǫ([Λs, η]∇ · u |Λsη + ǫu · Λs
u)2 + dǫ2(∇

(
[Λs, η]∇ · u

)
| ∇

(
Λsη + ǫu · Λs

u
)
)2,

which along with (4.29), (4.30), (3.11) and (4.2) imply that

(4.33)

|I11|+ |I12| . ǫ|u|Hs |η|Hs

(
|η|Hs + ǫ|u|2Hs

)

+ ǫ2
(
|∇u|Hs−1 |∇η|Hs + |∇u|Hs |∇η|Hs−1

)(
|η|Hs+1 + ǫ|u|Hs |u|Hs+1

)

. ǫ|u|Xs
ǫ2

(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)
.

Thanks to (3.11), (4.2), (4.30) and (4.31), there holds

|I13| . ǫ|u|2Hs

(
ǫ|u|Hs |η|Hs + |u|Xs

ǫ2
+ dǫ3|u|3Xs

ǫ2

)
. ǫ|u|2Xs

ǫ2

(
|η|Xs

ǫ
+ |u|Xs

ǫ2

)
,

which along with (4.33) shows that

|([Λs,M(U,D)]U |SU (D)ΛsU)2| . ǫ|u|Xs
ǫ2

(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)
.

The same estimate holds for term ([Λs,M(U,D)]U |SU (D)∗ΛsU)2. Then we obtain
that

(4.34) |I1| . ǫ|u|Xs
ǫ2

(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)
.
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Estimate for I2. For I2, we first calculate SU (D)(M(U,D)) = A(U,D) = (aij)
as follows

a11 = ǫ(1− dǫ∆)(u · ∇) + ǫu · ∇ = 2ǫu · ∇ − dǫ2∆(u · ∇),

a12 = (1 − dǫ∆)((1 + ǫη)∂1) + ǫ2u1u · ∇,

a13 = (1 − dǫ∆)((1 + ǫη)∂2) + ǫ2u2u · ∇,

a21 = (1 + ǫη)(1− dǫ∆)∂1 + ǫ2u1u · −dǫ3u1[∆,u] · ∇,

a22 = ǫu1(1− dǫ∆)((1 + ǫη)∂1) + ǫ(1 + ǫη)(1 − dǫ∆)(u1∂1) + dǫ4u1u ·∆(u1∇),

a23 = ǫu1(1− dǫ∆)((1 + ǫη)∂2) + ǫ(1 + ǫη)(1 − dǫ∆)(u2∂1) + dǫ4u1u ·∆(u2∇),

a31 = (1 + ǫη)(1− dǫ∆)∂2 + ǫ2u2(1− dǫ∆)(u · ∇) + dǫ3u2u · ∇∆,

a32 = ǫu2(1− dǫ∆)((1 + ǫη)∂1) + ǫ(1 + ǫη)(1 − dǫ∆)(u1∂2) + dǫ4u2u ·∆(u1∇),

a33 = ǫu2(1− dǫ∆)((1 + ǫη)∂2) + ǫ(1 + ǫη)(1 − dǫ∆)(u2∂2) + dǫ4u2u ·∆(u2∇).

Now , we calculate (SU (D)(M(U,D)ΛsU) |ΛsU)2 = (A(U,D)ΛsU |ΛsU)2.
For a11, one has

(a11Λ
sη |Λsη)2 = 2ǫ(u · ∇Λsη |Λsη)2 − dǫ2(∆(u · ∇Λsη) |Λsη)2

= −ǫ(∇ · uΛsη |Λsη)2 −
1

2
dǫ2(∇ · u∇Λsη | ∇Λsη)2 + dǫ2

2∑

i=1

(∂iu · ∇Λsη | ∂iΛsη)2,

which shows that

(4.35) |(a11Λsη |Λsη)2| . ǫ|u|Hs |η|2Xs
ǫ
.

For a22, one gets

(a22Λ
su1 |Λsu1)2 = ǫ{(u1(1− dǫ∆)

(
(1 + ǫη)∂1Λ

su1

)
|Λsu1)2

+ ((1 + ǫη)(1 − dǫ∆)(u1∂1Λ
su1) |Λsu1)2}+ dǫ4(u1u ·∆(u1∇Λsu1) |Λsu1)2

= −ǫ(Λsu1 | ǫ∂1η(1 − dǫ∆)(u1Λ
su1) + (1 + ǫη)(1 − dǫ∆)(∂1u1Λ

su1))2

− dǫ4
2∑

i=1

(∂i(u1∇Λsu1) | ∂i(u1uΛ
su1))2

which along with (4.29),(4.30) and (4.2) gives rise to

(4.36) |(a22Λsu1 |Λsu1)2| . ǫ|u|Hs |u|2Xs
ǫ2
.

The same estimate holds for term (a33Λ
su2 |Λsu2)2.

For a12 and a21, one calculates that

(a12Λ
su1 |Λsη)2 + (a21Λ

sη |Λsu1)2

= {((1− dǫ∆)
(
(1 + ǫη)∂1Λ

su1

)
|Λsη)2 + ((1 + ǫη)(1− dǫ∆)∂1Λ

sη |Λsu1)2}
+ {ǫ2(u1u · ∇Λsu1 |Λsη)2 + ǫ2(u1u · ∇Λsη |Λsu1)2 − dǫ3(u1[∆,u] · ∇Λsη |Λsu1)2}

= −ǫ((1− dǫ∆)(∂1ηΛ
su1) |Λsη)2 − ǫ2(∇ · (u1u)Λ

su1 |Λsη)2

+ ǫ3(∇Λsη | [∆,u](u1Λ
su1))2,
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which along with (4.29), (4.30) and (4.2) implies

(4.37)

|(a12Λsu1 |Λsη)2 + (a21Λ
sη |Λsu1)2|

. ǫ|η|2Xs
ǫ
|u|Xs

ǫ2
+ ǫ2|u|3Xs

ǫ2
|η|Xs

ǫ

. ǫ|u|Xs
ǫ2

(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)
.

The same estimate holds for (a13Λ
su2 |Λsη)2 + (a31Λ

sη |Λsu2)2.
At last, for a23 and a32, one estimates that

(a23Λ
su2 |Λsu1)2 + (a32Λ

su1 |Λsu2)2

= ǫ{(u1(1 − dǫ∆)
(
(1 + ǫη)∂2Λ

su2

)
|Λsu1)2 + ((1 + ǫη)(1− dǫ∆)(u1∂2Λ

su1) |Λsu2)2}
+ ǫ{((1 + ǫη)(1− dǫ∆)(u2∂1Λ

su2) |Λsu1)2 + (u2(1− dǫ∆)
(
(1 + ǫη)∂1Λ

su1

)
|Λsu2)2}

+ dǫ4{(u1u ·∆(u2∇Λsu2) |Λsu1)2 + (u2u ·∆(u1∇Λsu1) |Λsu2)2}
= −ǫ(ǫ∂2η(1− dǫ∆)(u1Λ

su1) + (1 + ǫη)(1− dǫ∆)(∂2u1Λ
su1) |Λsu2)2

− ǫ(ǫ∂1η(1− dǫ∆)(u2Λ
su2) + (1 + ǫη)(1− dǫ∆)(∂1u2Λ

su2) |Λsu1)2

− dǫ4{(∇u2 ·∆(u1uΛ
su1) + u2∆

(
∇ · (u1u)Λ

su1

)
|Λsu2)2

− (2u2

2∑

i=1

∂iu · ∂i(u1∇Λsu1) + u2∆u · u1∇Λsu1 |Λsu2)2},

which together with (4.29), (4.30) and (4.2) leads to

(4.38)
|(a23Λsu2 |Λsu1)2 + (a32Λ

su1 |Λsu2)2|
. ǫ(1 + ǫ|η|Xs

ǫ
)|u|3Xs

ǫ2
+ ǫ3|u|5Xs

ǫ2
. ǫ|u|3Xs

ǫ2
.

Thanks to (4.35), (4.36), (4.37) and (4.38), we obtain that

|(SU (D)(M(U,D)ΛsU) |ΛsU)2| . ǫ
(
|η|Xs

ǫ
+ |u|Xs

ǫ2

)3
,

provided that there hold (4.29) and (4.30). The same estimate holds for (SU (D)∗(M(U,D)ΛsU) |ΛsU)2.
Then we obtain that

(4.39) |I2| . ǫ
(
|η|Xs

ǫ
+ |u|Xs

ǫ2

)3
.

Due to (4.34) and (4.39), we get that

(4.40) |I| . ǫ
(
|η|Xs

ǫ
+ |u|Xs

ǫ2

)3
.

Estimate for II. Using the expression of SU (D), one obtains that

II = −dǫ
(
ǫ([u,∆] · Λs

u |Λs∂tη)2 + ǫ([u,∆]Λsη |Λs∂tu)2

+ ǫ((1− dǫ∆)
(
[η,∆]Λs

u
)
|Λs∂tu)2 + dǫ3

2∑

i,j=1

(∆
(
[uiuj ,∆]Λsuj

)
|Λs∂tui)2

)
.

Along the same line as previous work, by virtue of (3.11), (4.2), (4.29), (4.30) and
integrating by parts, we finally get that

(4.41) |II| . ǫ
(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)(
|∂tη|Xs−1

ǫ
+ |∂tu|Xs−1

ǫ2

)
.
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Estimate for III. Using the expression of SU (D) again, one gets that

III = ǫ((1− dǫ∆)Λsη | ∂tu · Λs
u)2 + ǫ((1 − dǫ∆)Λs

u | ∂tuΛsη)2

+ ǫ((1− dǫ∆)Λs
u | ∂tη(1 − dǫ∆)Λs

u)2 + dǫ3
2∑

j=1

((1− dǫ∆)Λsuj | ∂t(uju) ·∆Λs
u)2.

Note that

((1 − dǫ∆)Λsη | ∂tu · Λs
u)2 = (Λsη | ∂tu · Λs

u)2 + dǫ(∇Λsη | ∇(∂tu · Λs
u))2

Then (4.29), (4.30) and (4.2) leads to

(4.42) |III| . ǫ
(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)(
|∂tη|Xs−1

ǫ
+ |∂tu|Xs−1

ǫ2

)

Combining (4.32), (4.40), (4.41) and (4.42), we obtain that

(4.43)
d

dt
Es(U) . ǫ

(
|η|Xs

ǫ
+ |u|Xs

ǫ2

)(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2
+ |∂tη|2Xs−1

ǫ
+ |∂tu|2Xs−1

ǫ2

)
.

Thanks to (4.26), we get by using (4.29) and (4.30) that

(4.44) |∂tη|Xs−1
ǫ

+ |∂tu|Xs−1

ǫ2
. |η|Xs

ǫ
+ |u|Xs

ǫ2
,

which along with (4.43) implies

(4.45)
d

dt
Es(U) . ǫ

(
|η|Xs

ǫ
+ |u|Xs

ǫ2

)(
|η|2Xs

ǫ
+ |u|2Xs

ǫ2

)
.

Then due to (4.31), there holds

d

dt

(
Es(U)

) 1
2 ≤ C1ǫEs(U).

Similarly as the proof to Theorem 4.3, there exists T = 1

2C1

(
Es(U0)

) 1
2

such that

(4.25) holds. This completes the proof of Theorem 4.4. �

We now turn to the "Schrödinger like" Boussinesq systems.

4.3. The case b = d = c = 0, a < 0. This case can be treated by following the
lines developed in [36]. For the sake of completeness we provide some details now.

Theorem 4.5. Let b = c = d = 0, a = −1, n = 1, 2, s > 2 + n
2 . Assume that

η0 ∈ Hs(Rn),u0 ∈ Xs
ǫ (R

n) satisfy the (non-cavitation) condition

(4.46) 1 + ǫη0 ≥ H > 0, H ∈ (0, 1),

Then there exists a constant c̃0 such that for any ǫ ≤ ǫ0 = 1−H
c̃0(|η0|Hs+|u0|Xs

ǫ
) , there

exists T > 0 independent of ǫ, such that (1.2)-(4.1) has a unique solution (η,u)T

with η ∈ C([0, T/ǫ];Hs(Rn)) and u ∈ C([0, T/ǫ];Xs
ǫ (R

n)). Moreover,

(4.47) max
t∈[0,T/ǫ]

(|η|Hs + |u|Xs
ǫ
) ≤ c̃(|η0|Hs + |u0|Xs

ǫ
).

Proof. We only sketch the proof of the two-dimensional case. For b = c = d =
0, a = −1, we firstly rewrite the two-dimensional version of (1.2) in the following
condensed system

(4.48) ∂tU +M(U,D)U = 0,
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where U = (η,u)T , and

M(U,D) =



ǫu · ∇ (1 + ǫη − ǫ∆)∂1 (1 + ǫη − ǫ∆)∂2
∂1 ǫu1∂1 ǫu2∂1
∂2 ǫu1∂2 ǫu2∂2


 .

The symmetrizer SU (D) for M(U,D) is defined by

SU (D) =




1 ǫu1 ǫu2

ǫu1 1 + ǫη − ǫ∆ 0
ǫu2 0 1 + ǫη − ǫ∆.




We define the energy functional associated to (4.48) as

(4.49) Es(U) = (ΛsU |SU (D)ΛsU)2

Assume that

(4.50) 1 + ǫη ≥ H > 0, ǫ|η|W 1,∞ + ǫ|u|W 1,∞ ≤ κH for t ∈ [0, T̄ ]

with κH sufficiently small, and

(4.51) max
0≤t≤T̄

Es(U) ≤ C0,

for some constants C0. The assumptions (4.50) and (4.51) also hold provided that
(4.46) holds and ǫ ≤ ǫ0 ≪ 1 (one can refer to [36]). Under the assumption (4.50),
it is not difficult to check that

(4.52) Es(U) ∼ |η|2Hs + |u|2Xs
ǫ
.

As usual, we get by a standard energy estimate that

(4.53)

d

dt
Es(U) = 2(Λs∂tU |SU (D)ΛsU)2 + (ΛsU | ∂tSU (D)ΛsU)2

= −2(Λs
(
M(U,D)U

)
|SU (D)ΛsU)2 + (ΛsU | ∂tSU (D)ΛsU)2

=
def

I + II.

Estimate for II. Using the expression of SU (D) yields that

II = 2ǫ(Λsη | ∂tu · Λs
u)2 + ǫ(Λs

u | ∂tηΛs
u)2,

which implies that for s > 3,

(4.54) |II| . ǫ|∂tu|Hs−1 |η|Hs |u|Hs + ǫ|∂tη|Hs−2 |u|2Hs .

Estimate for I. We first have that

I = −2([Λs,M(U,D)]U |SU (D)ΛsU)2 − 2(M(U,D)ΛsU |SU (D)ΛsU)2 =
def

I1 + I2.

Estimate for I1. For I1, we get that

I1 = −2ǫ([Λs,u] · ∇η + [Λs, η]∇ · u |Λsη + ǫu · Λs
u)2

− 2ǫ

2∑

j=1

([Λs,u] · ∂ju |ujΛ
sη + (1 + ǫη − ǫ∆)Λsuj)2

=
def

I11 + I12.
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Thanks to Lemma 3.2 and (4.50), it is easy to get that for s > 2,

(4.55)

|I11| . ǫ
(
|[Λs,u] · ∇η|2 + |[Λs, η]∇ · u|2

)(
|Λsη|2 + |ǫu · Λs

u|2
)

. ǫ|u|Hs |η|Hs (|η|Hs + ǫ|u|2Hs)

. ǫ|u|Hs(|η|2Hs + |u|2Hs).

For I12, integrating by parts, there holds

I12 =− 2ǫ

2∑

j=1

([Λs,u] · ∂ju | ǫujΛ
sη + (1 + ǫη)Λsuj)2

− 2ǫ2
2∑

j=1

(∇
(
[Λs,u] · ∂ju

)
| ∇Λsuj)2

which along with (4.50) and Lemma 3.2 implies that

(4.56)
|I12| . ǫ|u|2Hs

(
ǫ|u|∞|η|Hs + (1 + ǫ|η|∞)|u|Hs

)
+ ǫ2|u|Hs |u|2Hs+1

. ǫ|u|Hs |u|2Xs
ǫ
.

Thanks to (4.55) and (4.56), we get that

(4.57) |I1| . ǫ|u|Hs

(
|η|2Hs + |u|2Xs

ǫ

)
.

Estimate for I2. For I2, using the expressions of M(U,D) and SU (D), we obtain
that

(4.58)

I2 =− 4ǫ(u · ∇Λsη |Λsη)2 − 2{((1 + ǫη − ǫ∆)∇ · Λs
u |Λsη)2

+ (∇Λsη | (1 + ǫη − ǫ∆)Λs
u)2}

− 2ǫ2{(u · ∇Λsη |u · Λs
u)2 +

2∑

i=1

(u · ∂iΛs
u |uiΛ

sη)2}

− 2ǫ{((1 + ǫη − ǫ∆)∇ · Λs
u |u · Λs

u)2

+

2∑

i=1

(u · ∂iΛs
u | (1 + ǫη − ǫ∆)Λsui)2}

=
def

I21 + I22 + I23 + I24.

Integrating by parts, we get that

I21 = 2ǫ(∇ · uΛsη |Λsη)2, I22 = 2ǫ(∇η · Λs
u |Λsη)2,

I23 = 2ǫ2(∇ · uΛsη |u · Λs
u)2 + 2ǫ2(Λs

u | (u · ∇)uΛsη)2,

I24 = 2ǫ2(∇η · Λs
u |u · Λs

u)2 + 2ǫ
2∑

i=1

((1 + ǫη)Λsui | ∂iu · Λs
u)2

+ 2ǫ2
2∑

i=1

(∇Λsui | ∇(∂iu · Λs
u))2,

which along with (4.50) and (4.51) implies that

(4.59) |I2| . ǫ|u|Hs

(
|η|2Hs + |u|2Xs

ǫ

)
.

Thanks to (4.57) and (4.59), we obtain that

(4.60) |I| . ǫ|u|Hs

(
|η|2Hs + |u|2Xs

ǫ

)
.
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Due to (1.2) with b = c = d = 0, a = −1, we deduce by using (4.50) and (4.51)
that

(4.61) |∂tη|Hs−2 + |∂tu|Hs−1 . |η|Hs + |u|Xs
ǫ
.

Combining (4.53), (4.54), (4.60) and (4.61), we finally get that

(4.62)
d

dt
Es(U) . ǫ

(
|η|Hs + |u|Xs

ǫ

)(
|η|2Hs + |u|2Xs

ǫ

)
.

Due to (4.52), there holds

(4.63)
d

dt

(
Es(U)

) 1
2 ≤ C1ǫEs(U).

Then following the same line as the proofs of Theorems 4.3 and 4.4, one obtains
that there exists T > 0 independent of ǫ such that (1.2)-(4.1) has a unique solution
on time interval [0, T/ǫ]. Moreover, (4.47) holds and Theorem 4.5 is proved. �

Remark 4.2. The modelling of internal waves at the interface of a two-fluid system
with different densities and in the presence of a rigid top leads, in an appropriate
regime, to Boussinesq systems that are similar to those studied in the previous
sections (see [8], section 3.1.3) and for which one can obtain the same results as
in [36] or in the present paper. The same regime for a two-fluid system but with
a free upper surface has been considered in [16], section 2.3.2. One gets a system
of four equations for which the methods of [36] and of the present paper are likely
to work, including the case of a slowing varying bottom. We also refer to [17] for
further investigations on those extended Boussinesq systems, in particular for a
construction of symmetrizable ones (modulo ǫ2 terms).

4.4. The difficult case a = b = d = 0, c < 0. The method to solve the long
time existence for this case is quite different from the other cases we dealt in the
previous subsections and in the paper [36]. We will now quasilinearize the system
by applying time together with space derivatives. The key point here is that we
improve the regularity in space by improving the regularity in time (applying space
derivatives to the system would cause a loss of derivatives).

We first state the long time existence result in the one dimensional case :

Theorem 4.6. Let a = b = d = 0, c = −1. Assume that η0 ∈ X2
ǫ3(R), u0 ∈ X2

ǫ2(R)
satisfy the (non-cavitation) condition

(4.64) 1 + ǫη0 ≥ H > 0, H ∈ (0, 1),

Then there exists a constant c̃0 such that for any ǫ ≤ ǫ0 = 1
c̃0(|η0|X2

ǫ3
+|u0|X2

ǫ2
) , there

exists T > 0 independent of ǫ, such that (3.21)-(4.1) has a unique solution (η, u)
with η ∈ C([0, T/ǫ];X2

ǫ3(R)) and u ∈ C([0, T/ǫ];X2
ǫ2(R)). Moreover,

(4.65)

sup
t∈[0,T/ǫ]

(
|η|2X2

ǫ3
+ |ηt|2X1

ǫ2
+ |ηtt|2X0

ǫ
+ |u|2X2

ǫ2
+ |ut|2X1

ǫ
+ |utt|22

)

≤ C
(
|η0|2X2

ǫ3
+ |u0|2X2

ǫ2

)
.

Remark 4.3. System (3.21) can be viewed as the Saint-Venant (shallow water)
system with surface tension and corresponds to system (A.1) in [18] with µ =
0, δ = 1. Thus the previous theorem can be compared to Theorem A.3 in [18].
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Remark 4.4. It will be clear in the following proof that the regularity we choose for
the initial data is the lowest possible one. One could also impose higher regularity
on the initial data such as η0 ∈ X2+k

ǫ3+k(R), u0 ∈ X2+k
ǫ2+k(R) for k ∈ N. In that case,

one has to apply ∂t to (1.2) for k + 2 times. For simplicity, we only consider the
case k = 0.

Proof. We shall divide the proof into several steps. We first indicate how to obtain
the a priori energy estimates. We shall use the a priori estimates to prove the
existence of the solutions, in Section 5.

Step 1. Reduction of the system. Since a = b = d = 0, c = −1, we rewrite
(1.2) in the form (3.21). Setting

v =
def

(1 + ǫη)u,

the first equation of (3.21) becomes

ηt + vx = 0.

Elementary calculations and the use of (3.21) yield the evolution equation for v :

vt + (1 + ǫη)ηx − ǫ(1 + ǫη)ηxxx + ǫ
( v2

1 + ǫη

)
x
= 0.

Indeed, we have

∂tv = (1 + ǫη)ut + ǫuηt

= −(1 + ǫη)(ηx − ǫηxxx)− ǫ(1 + ǫη)uux − ǫuvx

= −(1 + ǫη)(ηx − ǫηxxx)− ǫ
( v2

1 + ǫη

)
x
.

Then (3.21) is rewritten in terms of (η, v) as follows

(4.66)





ηt + vx = 0,

1

1 + ǫη
vt + ηx − ǫηxxx +

ǫ

1 + ǫη

( v2

1 + ǫη

)
x
= 0.

We shall derive energy estimates for this system.

Step 2. Quasilinearization of (4.66). In this step, we shall quasilinearize
the system (4.66) by applying to it ∂t and ∂2

t . Applying ∂t to the first equation of
(4.66) leads to

∂2
t η = −∂xvt =

(
(1 + ǫη)ηx

)
x
− ǫ

(
(1 + ǫη)ηxxx

)
x
+ ǫ

( v2

1 + ǫη

)
xx

=
(
(1 + ǫη)ηx

)
x
− ǫ

(
(1 + ǫη)ηxxx

)
x
+

2ǫv

1 + ǫη
vxx

+ 2ǫ
v2x

1 + ǫη
− 2ǫ2

(1 + ǫη)2
vvxηx − ǫ2

( ηxv
2

(1 + ǫη)2

)
x
.

One notices that the last term 2ǫv
1+ǫηvxx in the second line of the above equality is

the higher order term. Since by (4.66) vx = −ηt, we rewrite this term as

2ǫv

1 + ǫη
vxx = − 2ǫv

1 + ǫη
∂xηt.
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Then we obtain

(4.67) ηtt −
(
(1 + ǫη)ηx

)
x
+ ǫ

(
(1 + ǫη)ηxxx

)
x
+

2ǫv

1 + ǫη
∂xηt = f,

with

(4.68) f =
def

2ǫ
v2x

1 + ǫη
− 2ǫ2

(1 + ǫη)2
vvxηx − ǫ2

( ηxv
2

(1 + ǫη)2

)
x
.

Applying ∂t to the second equation of (4.66) one obtains

∂2
t v = −(1 + ǫη)∂xηt + ǫ(1 + ǫη)∂3

xηt − ǫηt(ηx − ǫηxxx)− ǫ
( v2

1 + ǫη

)
xt

= (1 + ǫη)vxx − ǫ(1 + ǫη)vxxxx − ǫηt(ηx − ǫηxxx)

− 2ǫv∂x
( vt
1 + ǫη

)
− 2ǫvxvt

1 + ǫη
+ ǫ2

( v2ηt
(1 + ǫη)2

)
x
.

Then we get

(4.69)
1

1 + ǫη
vtt − vxx + ǫvxxxx +

2ǫv

1 + ǫη
∂x

( vt
1 + ǫη

)
= g,

with

(4.70) g =
def

− ǫηt
1 + ǫη

(ηx − ǫηxxx)−
2ǫvxvt

(1 + ǫη)2
+

ǫ2

1 + ǫη

( v2ηt
(1 + ǫη)2

)
x
.

Combining (4.67) and (4.69), we obtain

(4.71)





ηtt −
(
(1 + ǫη)ηx

)
x
+ ǫ

(
(1 + ǫη)ηxxx

)
x
+

2ǫv

1 + ǫη
∂xηt = f,

1

1 + ǫη
vtt − vxx + ǫvxxxx +

2ǫv

1 + ǫη
∂x

( vt
1 + ǫη

)
= g,

with (f, g) being defined in (4.68) and (4.70).

We remark here that (4.71) is a diagonalization of (4.66) and that the principal
linear part for both equations of (4.71) is the dispersive wave equation

(∂2
t − ∂2

x + ǫ∂4
x)Ψ.

The source terms (f, g) are of lower order. One can then derive the L2 energy
estimate for (4.71).

However, if we want to derive higher order energy estimates, it is not successful
to apply ∂x to the second equation of (4.71) since when ∂x acts on the term 1

1+ǫηvtt,

it will turn out an uncontrolled term − ǫηx

(1+ǫη)2 vtt. One has to apply instead ∂t to

(4.71). In other words, we shall improve the regularity of the unknowns by applying
∂k
t (not ∂α

x ) to (4.66).

Denoting by η′ = ∂tη and v′ = ∂tv, applying ∂t to (4.71), it transpires that
(η′, v′) satisfies the following system

(4.72)





η′tt −
(
(1 + ǫη)η′x

)
x
+ ǫ

(
(1 + ǫη)η′xxx

)
x
+

2ǫv

1 + ǫη
∂xη

′
t = f ′,

1

1 + ǫη
v′tt − v′xx + ǫv′xxxx +

2ǫv

1 + ǫη
∂x

( v′t
1 + ǫη

)
= g′,
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where

(4.73)

f ′ =
def

∂tf + ǫ(ηtηx)x − ǫ2(ηtηxxx)x − 2ǫ
( v

1 + ǫη

)
t
ηtx,

g′ =
def

∂tg +
ǫηt

(1 + ǫη)2
vtt +

2ǫ2v

1 + ǫη

( ηtvt
(1 + ǫη)2

)
x
− 2ǫ

( v

1 + ǫη

)
t

( vt
1 + ǫη

)
x
.

The principal part of (4.72) is the same as that of (4.71).

Step 3. Energy estimates for the quasilinear system (4.66)-(4.71)-(4.72).
We shall derive energy estimates for (4.66), (4.71) and (4.72) under the assumptions

(4.74) 1 + ǫη ≥ H > 0,

and

(4.75) |η(·, t)|W 1,∞ + |v(·, t)|W 1,∞ + |η(·, t)t|∞ + |v(·, t)t|∞ ≤ c, for t ∈ [0, T ],

where the constant c is independent of ǫ but depends on the initial data. We remark
that (4.74) and (4.75) are consequences of the assumption (4.64) and the a priori
estimate (4.107) for (η, v).

Step 3.1. Estimates for (4.66). We notice that the symmetrizer for the linear
part of (4.66) is the matrix diag(1 − ǫ∂2

x, 1). Then taking the L2 inner product of

(4.66) by
(
(1− ǫ∂2

x)η, v
)T

leads to

(4.76)
1

2

d

dt
E0(t) = − ǫ

2

( ηtv

(1 + ǫη)2
| v
)
2
− ǫ

(( v2

1 + ǫη

)
x
| v

1 + ǫη

)
2
,

where

E0(t) =
def

|η|22 + ǫ|ηx|22 + (
v

1 + ǫη
| v)2.

Thanks to (4.74) and (4.75), we have

(4.77) E0(t) ∼ |η|22 + ǫ|ηx|22 + |v|2L2

By (4.74), the first term on the r.h.s of (4.76) is estimated as

| − ǫ

2

( ηtv

(1 + ǫη)2
| v
)
2
| . ǫ|v|∞|ηt|2|v|2 . ǫ|v|∞(|ηt|22 + |v|22),

while by integration by parts and (4.74), the second term on the r.h.s of (4.76) is
estimated as

| − ǫ
(( v2

1 + ǫη

)
x
| v

1 + ǫη

)
2
| = ǫ

2
|
(
vx | |

v

1 + ǫη
|2
)
2
|

. ǫ|v|∞|v|2|vx|2 . ǫ|v|∞(|v|22 + |vx|22).
Then we obtain

(4.78)
1

2

d

dt
E0(t) . ǫ|v|∞

(
|ηt|22 + |v|22 + |vx|22

)
.

Step 3.2. Estimates for (4.71). Taking the L2 scalar product of the first equation
of (4.71) by (1− ǫ∂2

x)ηt, we obtain

(ηtt | (1− ǫ∂2
x)ηt)2 − (

(
(1 + ǫη)ηx

)
x
| (1− ǫ∂2

x)ηt)2

+ ǫ(
(
(1 + ǫη)ηxxx

)
x
| (1 − ǫ∂2

x)ηt)2 + (
2ǫv

1 + ǫη
∂xηt | (1− ǫ∂2

x)ηt)2 = (f | (1− ǫ∂2
x)ηt)2.
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Integration by parts gives

(ηtt | (1− ǫ∂2
x)ηt)2 =

1

2

d

dt

(
|ηt|22 + ǫ|ηtx|22

)
,

− (
(
(1 + ǫη)ηx

)
x
| (1 − ǫ∂2

x)ηt)2 =
1

2

d

dt

(
((1 + ǫη)ηx | ηx)2 + ǫ((1 + ǫη)ηxx | ηxx)2

)

− ǫ

2
(ηtηx | ηx)2 −

ǫ2

2
(ηtηxx | ηxx)2 − ǫ2(∂x(ηxηx) | ηtx)2,

ǫ(
(
(1 + ǫη)ηxxx

)
x
| (1− ǫ∂2

x)ηt)2 =
ǫ

2

d

dt

(
((1 + ǫη)ηxx | ηxx)2 + ǫ((1 + ǫη)ηxxx | ηxxx)2

)

− ǫ2

2
(ηtηxx | ηxx)2 −

ǫ3

2
(ηtηxxx | ηxxx)2 + ǫ2(ηxηxx | ηtx)2.

Then we obtain that

(4.79)

1

2

d

dt
E11(t) + (

2ǫv

1 + ǫη
∂xηt | (1− ǫ∂2

x)ηt)2

=
ǫ

2
(ηtηx | ηx)2 + ǫ2(ηtηxx | ηxx)2 + ǫ2(ηxxηx | ηtx)2

+
ǫ3

2
(ηtηxxx | ηxxx)2 + (f | (1− ǫ∂2

x)ηt)2

where

E11(t) =
def

|ηt|22 + ǫ|ηtx|22 + ((1 + ǫη)ηx | ηx)2 + 2ǫ((1 + ǫη)ηxx | ηxx)2

+ ǫ2((1 + ǫη)ηxxx | ηxxx)2.
By (4.74) and (4.75), we have

(4.80) E11(t) ∼ |ηt|22 + ǫ|ηtx|22 + |ηx|22 + ǫ|ηxx|22 + ǫ2|ηxxx|22.
Now, we estimate the second term on the l.h.s of (4.79). Integrating by parts,

we have

− (
2ǫv

1 + ǫη
∂xηt | (1 − ǫ∂2

x)ηt)2 = −ǫ(
v

1 + ǫη
| ∂x(|ηt|2)− ǫ∂x(|ηtx|2))2

= ǫ(∂x

( v

1 + ǫη

)
| |ηt|2 − ǫ|ηtx|2)2,

which along with (4.74) and (4.75) implies that

(4.81) |( 2ǫv

1 + ǫη
∂xηt | (1− ǫ∂2

x)ηt)2| . ǫ
(
|ηx|∞ + |vx|∞

)(
|ηt|22 + ǫ|ηtx|22

)
.

Due to (4.79) and (4.81), we get

(4.82)

1

2

d

dt
E11(t) . ǫ

(
|ηt|∞ + |ηx|∞ + |vx|∞

)(
|ηx|22 + ǫ|ηxx|22

+ ǫ2|ηxxx|22 + |ηt|22 + ǫ|ηtx|22
)
+ |f |2|ηt|2 + ǫ|fx|2|ηtx|2.

Taking the L2 scalar product of the second equation of (4.71) by vt yields

(4.83)
1

2

d

dt
E12(t) + (

2ǫv

1 + ǫη
∂x

( vt
1 + ǫη

)
| vt)2 = −1

2
(∂t

( 1

1 + ǫη

)
vt | vt)2 + (g | vt)2

where

E12(t) =
def

(
vt

1 + ǫη
| vt)2 + |vx|22 + ǫ|vxx|22.
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Thanks to (4.74), we have

(4.84) E12(t) ∼ |vt|22 + |vx|22 + ǫ|vxx|22.
Similarly as for (4.81), integration by parts on the second term on the l.h.s of (4.83)
leads to

(4.85) |( 2ǫv

1 + ǫη
∂x

( vt
1 + ǫη

)
| vt)2| = ǫ|(∂xv |

∣∣ vt
1 + ǫη

∣∣2)2| . ǫ|vx|∞|vt|22.

We can also bound the first term on the r.h.s of (4.83) as follows

| − 1

2
(∂t

( 1

1 + ǫη

)
vt | vt)2| . ǫ|ηt|∞|vt|22,

which along with (4.83) and (4.85) gives rise to

(4.86)
1

2

d

dt
E12(t) . ǫ

(
|vx|∞ + |ηt|∞

)
|vt|22 + |g|2|vt|2.

Thanks to the expressions (4.68) and (4.70), using the assumptions (4.74) and

(4.75), we estimate the source terms |f |2 + ǫ
1
2 |fx|2 and |g|2 as follows

(4.87)
|f |2 + ǫ

1
2 |fx|2 + |g|2 . ǫ

(
|ηx|∞ + |v|∞ + |vx|∞ + |ηt|∞

)

×
(
|ηx|2 + ǫ

1
2 |ηxx|2 + ǫ|ηxxx|2 + |vt|2 + |vx|2 + ǫ|vxx|2

)
.

Now, we define E1(t) =
def

E11(t) + E12(t). Then (4.80) and (4.84) yields

(4.88) E1(t) ∼ |ηx|2X0

ǫ2
+ |ηt|2X0

ǫ
+ |vx|2X0

ǫ
+ |vt|22.

where | · |2Xs

ǫk
= | · |2Hs + ǫk| · |2Hs+k .

Combining estimates (4.82), (4.86) and (4.87), using (4.88), we obtain

(4.89)
1

2

d

dt
E1(t) . ǫ

(
|ηt|∞ + |ηx|∞ + |v|∞ + |vx|∞

)
E1(t), t ∈ [0, T ].

Step 3.3. Estimates for (4.72). Since (4.72) has the same form as (4.71), we
have a similar estimate as (4.86) for the second equation of (4.72), that is,

(4.90)
1

2

d

dt
E22(t) . ǫ

(
|vx|∞ + |ηt|∞

)
|v′t|22 + |g′|2|v′t|2,

where

(4.91)
E22(t) =

def
(

v′t
1 + ǫη

| v′t)2 + |v′x|22 + ǫ|v′xx|22

∼ |v′t|22 + |v′x|22 + ǫ|v′xx|22 ∼ |v′t|22 + |v′x|2X0
ǫ
.

Taking the L2 scalar product of the first equation of (4.72) with (1− ǫ∂2
x)η

′
t, we

obtain (see the similar derivation of (4.79)) that

(4.92)

1

2

d

dt
E21(t) + (

2ǫv

1 + ǫη
∂xη

′
t | (1− ǫ∂2

x)η
′
t)2

=
ǫ

2
(ηtη

′
x | η′x)2 + ǫ2(ηtη

′
xx | η′xx)2 + ǫ2(ηxxη

′
x) | η′tx)2

+
ǫ3

2
(ηtη

′
xxx | η′xxx)2 + (f ′ | (1− ǫ∂2

x)η
′
t)2
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where

E21(t) =
def

|η′t|22 + ǫ|η′tx|22 + ((1 + ǫη)η′x | η′x)2 + 2ǫ((1 + ǫη)η′xx | η′xx)2
+ ǫ2((1 + ǫη)η′xxx | η′xxx)2.

Thanks to (4.64) and (4.75), we have

(4.93) E21(t) ∼ |η′t|22 + ǫ|η′tx|22 + |η′x|22 + ǫ|η′xx|22 + ǫ2|η′xxx|22 ∼ |η′t|2X0
ǫ
+ |η′x|2X0

ǫ2
.

Similarly to the derivation of (4.82), we obtain that

(4.94)

1

2

d

dt
E21(t) .ǫ

(
|ηt|∞ + |ηx|∞ + ǫ

1
2 |ηxx|∞ + |vx|∞

)
E21(t)

+ |f ′|2|η′t|2 + ǫ|f ′
x|2|η′tx|2.

In order to get the final estimate on system (4.72), we have to estimate the

source terms |f ′|2 + ǫ
1
2 |f ′

x|2 and |g′|2. Thanks to the expressions of f ′ and g′ in
(4.73) and the expressions of f and g in (4.68) and (4.70), using (4.74) and (4.75),
after tedious but elementary calculations, we obtain that

(4.95)

|f ′|2 + ǫ
1
2 |f ′

x|2 + |g′|2 . ǫ
(
|ηx|∞ + ǫ

1
2 |ηxx|∞ + ǫ|ηxxx|∞ + |ηt|∞

+ ǫ
1
2 |ηtx|∞ + |vx|∞ + ǫ

1
2 |vxx|∞ + |vt|∞

)(
|ηxx|2 + ǫ

1
2 |ηxxx|2

+ ǫ|ηxxxx|2 + ǫ
3
2 |ηxxxxx|2 + |ηt|2 + |ηtx|2 + ǫ

1
2 |ηtxx|2

+ ǫ|ηtxxx|2 + |vxx|2 + |vt|2 + |vtx|2 + ǫ
1
2 |vtxx|2 + |vtt|2

)
,

where we used η′ = ηt and v′ = vt.
Now, we define E2(t) =

def
E21(t) + E22(t). Then (4.91) and (4.93) yields

(4.96) E2(t) ∼ |η′t|2X0
ǫ
+ |η′x|2X0

ǫ2
+ |v′t|22 + |v′x|2X0

ǫ
.

Thanks to (4.90), (4.94) and (4.95), using the interpolation inequality (4.2), we
obtain that

(4.97)

1

2

d

dt
E2(t) . ǫ

(
|ηx|∞ + ǫ

1
2 |ηxx|∞ + ǫ|ηxxx|∞ + |ηt|∞

+ ǫ
1
2 |ηtx|∞ + |vx|∞ + ǫ

1
2 |vxx|∞ + |vt|∞

)

×
(
|η|2X2

ǫ3
+ |ηt|2X1

ǫ2
+ |ηtt|2X0

ǫ
+ |v|2H2 + |vt|2X1

ǫ
+ |vtt|22

)
,

where we replaced η′, v′ by ηt, vt respectively in the bound.
Step 4. The final estimate on (4.66). Before closing the a priori estimates,

we first define the energy functional associated to the quasilinear system (4.66)-
(4.71)-(4.72) as

(4.98) E(t) =
def

E0(t) + E1(t) + E2(t).

Notice that η′ = ηt and v′ = vt. Then (4.77), (4.88) and (4.96) yield that

(4.99) E(t) ∼ |η|2X1

ǫ2
+ |ηt|2X1

ǫ2
+ |ηtt|2X0

ǫ
+ |v|2X1

ǫ
+ |vt|2X1

ǫ
+ |vtt|22.

In order to close the energy estimate, we also need to define the total energy
functional for (4.66) as follows:

(4.100) E(t) =
def

|η|2X2

ǫ3
+ |ηt|2X1

ǫ2
+ |ηtt|2X0

ǫ
+ |v|2X2

ǫ2
+ |vt|2X1

ǫ
+ |vtt|22.
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With the definitions (4.98) and (4.100), using the interpolation inequality (4.2)
and the Sobolev inequality | · |L∞(R) . | · |H1(R), the energy estimates (4.78), (4.89)
and (4.97) give rise to

(4.101)
1

2

d

dt
E(t) . ǫE(t) 3

2 .

To finish the proof, we have to show that

(4.102) E(t) ∼ E(t).

Indeed, thanks to (4.99) and (4.100), we have

E(t) ∼ E(t) + |η|2X2

ǫ3
+ |v|2X2

ǫ2
.

Then we only need to show that

|η|2X2

ǫ3
+ |v|2X2

ǫ2
. E(t).

That is to say, we shall recover the regularity in space through the regularity in
time. More precisely, (4.66) yields

(4.103) vx = −ηt, (1− ǫ∂2
x)ηx = − vt

1 + ǫη
− ǫ

1 + ǫη

( v2

1 + ǫη

)
x
.

The first equation of (4.103) shows

(4.104) |v|2X2

ǫ2
= |v|2H2 + ǫ2|v|2H2+2 . |v|2H1 + |ηtx|22 + ǫ2|ηtxxx|22 . E(t),

where we used (4.75). While the second equation of (4.103), (4.75) and (4.104)
imply

|η|2X2

ǫ3
∼ |η|2H1 + |(1− ǫ∂2

x)ηxx|22 + ǫ|(1− ǫ∂2
x)ηxxx|22

. |η|2X1

ǫ2
+ |v|2X1

ǫ2
+ |vt|2X1

ǫ
. E(t),

which achieves the proof of (4.102). Due to (4.102) and (4.101), we have

(4.105)
1

2

d

dt
E(t) . ǫE(t)

3
2 .

Step 5. Initial data for the quasilinear system and final estimate. In
this step, we have to derive the regularity of the initial data to the quasilinear
system through the system (4.66) and the regularity of the initial data (η0, v0).
The first equation of (4.66) shows that

|η′|t=0|X1

ǫ2
= |ηt|t=0|X1

ǫ2
= |∂xv0|X1

ǫ2
. |v0|X2

ǫ2
,

while the second equation of (4.66) shows that

|v′|t=0|X1
ǫ
= |vt|t=0|X1

ǫ

. |(1 + ǫη0)(1− ǫ∂2
x)∂xη0|X1

ǫ
+ ǫ|

( v20
1 + ǫη0

)
x
|X1

ǫ

. |η0|X2

ǫ3
+ |v0|X2

ǫ2
,

where we assume that |η0|X2

ǫ3
+ |v0|X2

ǫ2
≤ C and ǫ ≤ ǫ0 with ǫ0 small enough.

Thanks to (4.72), we can also infer that

|η′t|t=0|X0
ǫ
+ |v′t|t=0|2 = |ηtt|t=0|X0

ǫ
+ |vtt|t=0|2

. |η0|X2

ǫ3
+ |v0|X2

ǫ2
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provided that |η0|X2

ǫ3
+ |v0|X2

ǫ2
≤ C and ǫ ≤ ǫ0 with ǫ0 small enough.

Thus, we have

(4.106) E(0) ∼ E(0) . |η0|2X2

ǫ3
+ |v0|2X2

ǫ2
.

Step 6. Existence and uniqueness. The estimates (4.105) and (4.106) are
crucial to prove the existence of T > 0 independent of ǫ such that (4.66) has a
unique solution (η, v) on a time interval [0, T/ǫ] with initial data (η0, v0) ∈ X2

ǫ3×X2
ǫ2

satisfying moreover by (4.105) and (4.102) the estimate

(4.107) sup
t∈[0,T/ǫ]

E(t) . |η0|2X2

ǫ3
+ |v0|2X2

ǫ2
.

We shall precise the existence proof in the following Section 5.

Notice that v = (1 + ǫη)u. Then we have obtained the long time estimate of
solutions to the original Boussinesq system (1.2)-(4.1) with a = b = d = 0, c = −1
together to the energy estimate (4.65). �

Now we state the long time existence result for the two-dimensional case.

Theorem 4.7. Let a = b = d = 0, c = −1. Assume that η0 ∈ X3
ǫ4(R

2),u0 ∈
X3

ǫ3(R
2) satisfy the curl free condition curlu0 = 0 and the (non-cavitation) condi-

tion

(4.108) 1 + ǫη0 ≥ H > 0, H ∈ (0, 1).

Then there exists a constant c̃0 such that for any ǫ ≤ ǫ0 = 1
c̃0(|η0|X3

ǫ4
+|u0|X3

ǫ3
) , there

exists T > 0 independent of ǫ, such that (1.2)-(4.1) has a unique solution (η,u)T

with η ∈ C([0, T/ǫ];X3
ǫ4(R

2)) and u ∈ C([0, T/ǫ];X3
ǫ3(R

2)). Moreover,

(4.109)

sup
t∈[0,T/ǫ]

(
|η|2X3

ǫ4
+ |ηt|2X2

ǫ3
+ |ηtt|2X1

ǫ2
+ |ηttt|2X0

ǫ
+ |u|2X3

ǫ3

+ |ut|2X2

ǫ2
+ |utt|2X1

ǫ
+ |uttt|22

)
≤ C

(
|η0|2X3

ǫ4
+ |u0|2X3

ǫ3

)
.

Remark 4.5. By simplicity, we assume that curlu0 = 0. Actually, the equation
of u shows that ∂t curlu(t, ·) = 0 so that curlu is preserved as time evolves. In
fact, as pointed out to us by Vincent Duchêne, considering the term ∇(|u|2) is not
physically relevant outside the irrotational case. When curlu 6= 0, one should use
instead the term u · ∇u, but then the corresponding system is to our knowledge
not rigorously justified (see [12] for Green-Naghdi type systems).

Proof. Since the proof is similar to that of Theorem 4.6, we only sketch it. We also
divide the proof into several steps. Again we only indicate how to obtain the a
priori estimates. The existence proof which is similar to the one-dimensional case
is postponed to the following Section 5.

Step 1. Reduction of the system. Since a = b = d = 0, c = −1, we first
rewrite (1.2) in the form (3.26). Setting

v =
def

(1 + ǫη)u,

the first equation of (3.26) becomes

ηt +∇ · v = 0.
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To get the evolution equation for v, we first get from the second equation of (3.26)
that

∂t curlu = 0,

which along with the assumption that curlu0 = 0 implies that curlu = 0. Then
∇(|u|2) = 2u · ∇u and the second equation of (3.26) becomes to

∂tu+∇η − ǫ∇∆η + ǫu · ∇u = 0.

Similarly as one-dimensional case, elementary calculations and the use of the above
equation yield the evolution equation for v :

vt + (1 + ǫη)∇η − ǫ(1 + ǫη)∇∆η + ǫ∇ ·
(

v

1 + ǫη
⊗ v

)
= 0,

where
(
∇ · (u ⊗ v)

)i

=
def

∂j(u
ivj). Then (3.26) is rewritten in terms of (η,v) as

follows

(4.110)





ηt +∇ · v = 0,

1

1 + ǫη
vt +∇η − ǫ∇∆η +

ǫ

1 + ǫη
∇ ·

(
v

1 + ǫη
⊗ v

)
= 0.

We shall derive energy estimates for this system.

Step 2. Quasilinearization of (4.110). In this step, we shall quasilinearize
the system (4.110) by applying to it ∂t, ∂

2
t and ∂3

t . Applying ∂t to the first equation
of (4.110) leads to

∂2
t η = −∇ · vt = ∇ ·

(
(1 + ǫη)∇η

)
− ǫ∇ ·

(
(1 + ǫη)∇∆η

)
+ ǫ∇ ·

[
∇ ·

(
v

1 + ǫη
⊗ v

)]

= ∇ ·
(
(1 + ǫη)∇η

)
− ǫ∇ ·

(
(1 + ǫη)∇∆η

)
+

2ǫv

1 + ǫη
· ∇(∇ · v) + ǫ|∇ · v|2

1 + ǫη

+ 2ǫv · ∇
( 1

1 + ǫη

)
(∇ · v) + ǫv · ∇

[
v · ∇

( 1

1 + ǫη

)]
+

∑

i,j=1,2

∂j
( vi

1 + ǫη

)
∂iv

j .

One notices that the third term 2ǫv
1+ǫη · ∇(∇ · v) in the second line of the above

equality is the higher order term. Since by (4.110) ∇ · v = −ηt, we rewrite this
term as

2ǫv

1 + ǫη
· ∇(∇ · v) = − 2ǫv

1 + ǫη
· ∇ηt.

Then we obtain

(4.111) ηtt −∇ ·
(
(1 + ǫη)∇η

)
+ ǫ∇ ·

(
(1 + ǫη)∇∆η

)
+

2ǫv

1 + ǫη
· ∇ηt = f,

with

(4.112)

f =
def

ǫ|∇ · v|2
1 + ǫη

+ 2ǫv · ∇
( 1

1 + ǫη

)
(∇ · v)

+ ǫv · ∇
[
v · ∇

( 1

1 + ǫη

)]
+ ǫ

∑

i,j=1,2

∂j
( vi

1 + ǫη

)
∂iv

j .

Applying ∂t to the second equation of (4.110) one obtains

∂2
t v = −(1 + ǫη)∇ηt + ǫ(1 + ǫη)∇∆ηt − ǫηt(∇η − ǫ∇∆η)− ǫ∇ ·

(
v

1 + ǫη
⊗ v

)
t
.
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Notice that ηt = −∇ · v, we obtain the reduced equation for v

(4.113)

1

1 + ǫη
vtt −∇(∇ · v) + ǫ∇∆(∇ · v) + (

ǫv

1 + ǫη
· ∇)

(
vt

1 + ǫη

)

+
ǫv

(1 + ǫη)2
(∇ · vt) = g,

with

(4.114)
g =

def
− ǫηt

1 + ǫη
(∇η − ǫ∇∆η) + (

ǫ2v

1 + ǫη
· ∇)

(
vηt

(1 + ǫη)2

)

− ǫ

1 + ǫη
∂t

(
v

1 + ǫη

)
(∇ · v).

Combining (4.111) and (4.113), we obtain

(4.115)





ηtt −∇ ·
(
(1 + ǫη)∇η

)
+ ǫ∇ ·

(
(1 + ǫη)∇∆η

)
+

2ǫv

1 + ǫη
· ∇ηt = f,

1

1 + ǫη
vtt −∇(∇ · v) + ǫ∇∆(∇ · v)

+ (
ǫv

1 + ǫη
· ∇)

(
vt

1 + ǫη

)
+

ǫv

(1 + ǫη)2
(∇ · vt) = g,

with (f, g) being defined in (4.112) and (4.114).

We also remark here that (4.115) is a diagonalization of (4.110) and that the
principal linear part for both equations of (4.115) is the dispersive wave

(∂2
t −∆+ ǫ∆2)Ψ.

The source terms (f, g) are of lower order. One can then derive the L2 energy
estimate for (4.115).

Denoting by η′ = ∂tη and v
′ = ∂tv, applying ∂t to (4.115), it transpires that

(η′,v′) satisfies the following system

(4.116)





η′tt −∇ ·
(
(1 + ǫη)∇η′

)
+ ǫ∇ ·

(
(1 + ǫη)∇∆η′

)
+

2ǫv

1 + ǫη
· ∇η′t = f ′,

1

1 + ǫη
v
′
tt −∇(∇ · v′) + ǫ∇∆(∇ · v′)

+ (
ǫv

1 + ǫη
· ∇)

(
v
′
t

1 + ǫη

)
+

ǫv

(1 + ǫη)2
(∇ · v′

t) = g
′,

where

(4.117)

f ′ =
def

∂tf + ǫ∇ · (ηt∇η) − ǫ2∇ · (ηt∇∆η) − 2ǫ
(

v

1 + ǫη

)
t
· ∇ηt

g
′ =

def
∂tg +

ǫηt
(1 + ǫη)2

v
′
t − ǫ(∂t

(
v

1 + ǫη

)
· ∇)

(
vt

1 + ǫη

)

+ ǫ2
(

v

1 + ǫη
· ∇

)( ηtvt

(1 + ǫη)2

)
− ǫ∂t

(
v

(1 + ǫη)2

)
(∇ · vt).

The principal part of (4.116) is the same as that of (4.115).
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Similarly, denoting by η′′ = ∂2
t η = ∂tη

′ and v
′′ = ∂2

t v = ∂tv
′, applying ∂t to

(4.116), it transpires that (η′′,v′′) satisfies the following system

(4.118)





η′′tt −∇ ·
(
(1 + ǫη)∇η′′

)
+ ǫ∇ ·

(
(1 + ǫη)∇∆η′′

)
+

2ǫv

1 + ǫη
· ∇η′′t = f ′′,

1

1 + ǫη
v
′′
tt −∇(∇ · v′′) + ǫ∇∆(∇ · v′′)

+ ǫ(
v

1 + ǫη
· ∇)

(
v
′′
t

1 + ǫη

)
+

ǫv

(1 + ǫη)2
(∇ · v′′

t ) = g
′′,

where

(4.119)

f ′′ =
def

∂tf
′ + ǫ∇ · (ηt∇η′)− ǫ2∇ · (ηt∇∆η′)− 2ǫ

(
v

1 + ǫη

)
t
· ∇η′t

g
′′ =

def
∂tg

′ +
ǫηt

(1 + ǫη)2
v
′
tt − ǫ(∂t

(
v

1 + ǫη

)
· ∇)

(
v
′
t

1 + ǫη

)

+ ǫ2
(

v

1 + ǫη
· ∇

)( ηtv
′
t

(1 + ǫη)2

)
− ǫ∂t

(
v

(1 + ǫη)2

)
(∇ · v′

t).

The principal part of (4.118) is also the same as that of (4.115).

Step 3. Energy estimates for the quasilinear system (4.110)-(4.115)-
(4.116)-(4.118). We shall derive energy estimates for (4.110), (4.115), (4.116),
(4.118) under the assumptions

(4.120) 1 + ǫη ≥ H > 0,

and for all t ∈ [0, T ],

(4.121) |η(·, t)|W 1,∞ + |v(·, t)|W 1,∞ + |η(·, t)t|∞ + |v(·, t)t|∞ + |η(·, t)|X3

ǫ4
≤ c.

where | · |2Xs

ǫk
= | · |2Hs + ǫk| · |2Hs+k and the constant c independent of ǫ depends

on the initial data. We remark that (4.120) and (4.121) are consequence of the
assumption (4.108) and the a priori estimate (4.150) for (η,v).

Step 3.1. Estimates for (4.110). Similarly as (4.66), taking the L2 inner product

of (4.110) by
(
(1− ǫ∆)η,v

)T
leads to

(4.122)
1

2

d

dt
E0(t) = − ǫ

2

( ηtv

(1 + ǫη)2
|v

)
2
− ǫ

(
∇ ·

(
v

1 + ǫη
⊗ v

)
| v

1 + ǫη

)
2
,

where

E0(t) =
def

|η|22 + ǫ|∇η|22 + (
v

1 + ǫη
|v)2.

Thanks to (4.120) and (4.121), we have

(4.123) E0(t) ∼ |η|22 + ǫ|∇η|22 + |v|2L2 .

By (4.120), the first term on the r.h.s of (4.122) is estimated as

| − ǫ

2

( ηtv

(1 + ǫη)2
|v

)
2
| . ǫ|v|∞|ηt|2|v|2 . ǫ|v|∞(|ηt|22 + |v|22),

while by integration by parts and (4.120), the second term on the r.h.s of (4.122)
is estimated as

| − ǫ
(
∇ ·

(
v

1 + ǫη
⊗ v

)
| v

1 + ǫη

)
2
| = ǫ

2
|
(
∇ · v | | v

1 + ǫη
|2
)
2
|

. ǫ|v|∞|v|2|∇v|2 . ǫ|v|∞(|v|22 + |∇v|22).
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Then we obtain

(4.124)
1

2

d

dt
E0(t) . ǫ|v|∞

(
|ηt|22 + |v|22 + |∇v|22

)
.

Step 3.2. Estimates for (4.118). Taking the L2 scalar product of the first equa-
tion of (4.118) with (1− ǫ∆)η′′t , we obtain

(η′′tt | (1− ǫ∆)η′′t )2 − (∇ ·
(
(1 + ǫη)∇η′′

)
| (1− ǫ∆)η′′t )2

+ ǫ(∇ ·
(
(1 + ǫη)∇∆η′′

)
| (1− ǫ∆)η′′t )2 + (

2ǫv

1 + ǫη
· ∇η′′t | (1− ǫ∆)η′′t )2

= (f ′′ | (1− ǫ∆)η′′t )2.

Similar to the derivation of (4.79), using integration by parts, we obtain

(4.125)

1

2

d

dt
E31(t) + (

2ǫv

1 + ǫη
· ∇η′′t | (1− ǫ∆)η′′t )2

=
ǫ

2
(ηt∇η′′ | ∇η′′)2 + ǫ2(ηt∆η′′ |∆η′′)2 + ǫ2(∇(∇η · ∇η′′) | ∇η′′t )2

− ǫ2(∇η∆η′′ | ∇η′′t )2 +
ǫ3

2
(ηt∇∆η′′ | ∇∆η′′)2 + (f ′′ | (1− ǫ∆)η′′t )2

where

E31(t) =
def

|η′′t |22 + ǫ|∇η′′t |22 + ((1 + ǫη)∇η′′ | ∇η′′)2 + 2ǫ((1 + ǫη)∆η′′ |∆η′′)2

+ ǫ2((1 + ǫη)∇∆η′′ | ∇∆η′′)2.

By (4.120) and (4.121), we have

(4.126) E31(t) ∼ |η′′t |22 + ǫ|∇η′′t |22 + |∇η′′|22 + ǫ|∇2η′′|22 + ǫ2|∇3η′′|22.

Now, we estimate the second term on the l.h.s of (4.125). Integrating by parts,
we have

(4.127)

(
2ǫv

1 + ǫη
· ∇η′′t | (1− ǫ∆)η′′t )2 = −ǫ(∇ ·

(
v

1 + ǫη

)
η′′t | η′′t )2

+ 2ǫ2(
(
∇η′′t · ∇

)( v

1 + ǫη

)
| ∇η′′t )2 − ǫ2(∇ ·

(
v

1 + ǫη

)
∇η′′t | ∇η′′t )2,

which along with (4.120), (4.121) and (4.125) implies that

(4.128)

1

2

d

dt
E31(t) . ǫ

(
|ηt|∞ + |∇η|∞ + |∇v|∞ + ǫ

1
2 |∇2η|∞

)(
|∇η′′|22 + ǫ|∇2η′′|22

+ ǫ2|∇3η′′|22 + |η′′t |22 + ǫ|∇η′′t |22
)
+ |f ′′|2|η′′t |2 + ǫ|∇f ′′|2|∇η′′t |2.

Taking the L2 inner product of the second of (4.118) with v
′′
t yields

(4.129)

1

2

d

dt
E32(t) + ǫ

(
(v · ∇)

(
v
′′
t

1 + ǫη

)
| v

′′
t

1 + ǫη

)
2
+
( ǫv

(1 + ǫη)2
(∇ · v′′

t ) |v′′
t

)
2

= −1

2
(∂t

( 1

1 + ǫη

)
v
′′
t |v′′

t )2 + (g′′ |v′′
t )2,

where

E32(t) =
def

(
v
′′
t

1 + ǫη
|v′′

t )2 + |∇ · v′′|22 + ǫ|∇(∇ · v′′)|22.
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Since curl( v
′′

1+ǫη ) = 0, we have

curlv′′ = (1 + ǫη)
(
v′′

1
∂2(

1

1 + ǫη
)− v′′

2
∂1(

1

1 + ǫη
)
)
=

ǫ(v′′2∂1η − v′′1∂2η)

1 + ǫη
,

which along with (4.120) and (4.121) shows that

(4.130)
| curlv′′|2 . ǫ|v′′|2,
|∇(curlv′′)|2 . ǫ(|v′′|2 + |∇v

′′|2)|η|H3 . ǫ(|v′′|2 + |∇v
′′|2),

where for the second inequality, we used the fact that |∇η|∞ . |∇η|H2 and the
following estimate

|v′′∇2η|2 . |v′′|4|∇2η|4
Sobolev

. |v′′|
Ḣ

1
2
|∇2η|

Ḣ
1
2

interpolation

. (|v′′|2 + |∇v
′′|2)|∇2η|H1 .

Then by virtue of div-curl lemma, we obtain

(4.131) E32(t) ∼ |v′′
t |22 + |∇v

′′|22 + ǫ|∇2
v
′′|22 +O(ǫ|v′′|22).

Similar to (4.127), integration by parts on the second term on the l.h.s of (4.129)
leads to

(4.132) ǫ
(
(v · ∇)

(
v
′′
t

1 + ǫη

)
| v

′′
t

1 + ǫη

)
2
= − ǫ

2

(
∇ · v v

′′
t

1 + ǫη
| v

′′
t

1 + ǫη

)
2
.

For the third term on the l.h.s of (4.129), by integration by parts, we have

( ǫv

(1 + ǫη)2
(∇ · v′′

t ) |v′′
t

)
2
= ǫ

∑

i,j=1,2

( vi

(1 + ǫη)2
(∂jv

′′
t
j
) | v′′t

i)
2

= −ǫ
∑

i,j=1,2

(
∂j
( vi

(1 + ǫη)2
)
v′′t

j | v′′t
i)

2
− ǫ

∑

i,j=1,2

( vi

(1 + ǫη)2
v′′t

j | ∂jv′′t
i)

2
.

To estimate the second term on the right hand side of the above equality, we first

obtain by using curl( v
′′

1+ǫη ) = 0 that

∂jv
′′i
t =

(
∂i
( v′′j

1 + ǫη

)
· (1 + ǫη) +

ǫv′′i∂jη

1 + ǫη

)
t
= ∂iv

′′j
t + ǫ

(v′′i∂jη − v′′j∂iη

1 + ǫη

)
t
.

By integration by parts, we have

− ǫ
( vi

(1 + ǫη)2
v′′t

j | ∂jv′′t
i)

2

=
ǫ

2

(
∂i
( vi

(1 + ǫη)2
)
v′′t

j | v′′t
j)

2
− ǫ2

( vi

(1 + ǫη)2
v′′t

j |
(v′′i∂jη − v′′j∂iη

1 + ǫη

)
t

)
2
.

Then we obtain

( ǫv

(1 + ǫη)2
(∇ · v′′

t ) |v′′
t

)
2
=

∑

i,j=1,2

(
−ǫ

(
∂j
( vi

(1 + ǫη)2
)
v′′t

j | v′′t
i)

2

+
ǫ

2

(
∂i
( vi

(1 + ǫη)2
)
v′′t

j | v′′t
j)

2
− ǫ2

( vi

(1 + ǫη)2
v′′t

j |
(v′′i∂jη − v′′j∂iη

1 + ǫη

)
t

)
2

)
,

which along with (4.120), (4.121), (4.129) and (4.132) implies

(4.133)

1

2

d

dt
E32(t) .ǫ

(
|ηt|∞ + ǫ

1
2 |∇ηt|4 + |∇v|∞ + |∇η|∞

)

×
(
|v′′

t |22 + ǫ|∇v
′′|22 + ǫ2|v′′|22

)
+ |g′′|2|v′′

t |2.
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Now, we define E3(t) =
def

E31(t) + E32(t). Then (4.126) and (4.131) yields

(4.134)
E3(t) ∼ |∇η′′|22 + ǫ|∇2η′′|22 + ǫ2|∇3η′′|22 + |η′′t |22 + ǫ|∇η′′t |22

+ |∇v
′′|22 + ǫ|∇2

v
′′|22 + |v′′

t |22 +O(ǫ|v′′|22).
Combining estimates (4.128) and (4.133), using (4.134), we obtain

(4.135)

1

2

d

dt
E3(t) . ǫ

(
|ηt|∞ + ǫ

1
2 |∇ηt|4 + |∇η|∞ + |∇2η|3 + |∇v|∞

)
E3(t)

+ |f ′′|2|η′′t |2 + ǫ|∇f ′′|2|∇η′′t |2 + |g′′|2|v′′
t |2.

Step 3.3. Estimates for (4.115) and(4.116). Since (4.115) and (4.116) have the
same form as (4.118), we have similar estimates as (4.135) only with (η′′,v′′) being
replaced by (η,v) and (η′,v′) respectively.

In order to get the total estimate for system (4.115), (4.116) and (4.118), we

have to estimate the source terms |f |2+ ǫ
1
2 |∇f |2 + |g|2, |f ′|2 + ǫ

1
2 |∇f ′|2+ |g′|2 and

|f ′′|2+ ǫ
1
2 |∇f ′′|2+ |g′′|2. Thanks to the expressions of f , g, f ′, g′ and f ′′, g′′, using

(4.120) and (4.121), after tedious but elementary calculations, we obtain

(4.136)
|f |2 + ǫ

1
2 |∇f |2 + |g|2 + |f ′|2 + ǫ

1
2 |∇f ′|2 + |g′|2

+ |f ′′|2 + ǫ
1
2 |∇f ′′|2 + |g′′|2 . ǫE(t),

where

(4.137)
E(t) =|η|2X3

ǫ4
+ |ηt|2X2

ǫ3
+ |ηtt|2X1

ǫ2
+ |ηttt|2X0

ǫ
+ |v|2X3

ǫ3

+ |vt|2X2

ǫ2
+ |vtt|2X1

ǫ
+ |vttt|22.

In the process of derivation of (4.136), we used the fact that η′ = ηt, η
′′ =

ηtt, v
′ = vt, v

′′ = vtt and used the Hölder inequalities, Sobolev inequalities and
interpolation inequalities frequently. We shall not show the details here.

Step 4. The final estimate on (4.110). Before closing the a priori estimates,
we first define the energy functional associated to the quasilinear system (4.110)-
(4.115)-(4.116)-(4.118) as

(4.138) E(t) =
def

E0(t) + E1(t) + E2(t) + E3(t),

and E1(t), E2(t) are defined in the same way as E3(t) with (η′′,v′′) being replaced
by (η,v) and (η′,v′) respectively. Notice that η′ = ηt, η

′′ = ηtt and v
′ = vt, v

′′ =
vtt. Then (4.123) and (4.134) yield

(4.139)
E(t) ∼|η|2X1

ǫ2
+ |ηt|2X1

ǫ2
+ |ηtt|2X1

ǫ2
+ |ηttt|2X0

ǫ
+ |v|2X1

ǫ

+ |vt|2X1
ǫ
+ |vtt|2X1

ǫ
+ |vttt|22.

With the definitions (4.138) and (4.137), using the interpolation inequality (4.2)

and the inequalities that |u|L∞(R2) . |u|H2(R2) and |u|L4(R2) . |u|
1
2

L2(R2)|∇u|
1
2

L2(R2),

the energy estimates (4.124), (4.135) and (4.136) give rise to

(4.140)
1

2

d

dt
E(t) . ǫE(t) 3

2 ,

where E(t) is the total energy functional to (4.110) which is defined in (4.137).
To finish the proof, we have to show that

(4.141) E(t) ∼ E(t).
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Indeed, thanks to (4.139) and (4.137), we have

E(t) ∼ E(t) + |η|2X3

ǫ4
+ |ηt|2X2

ǫ3
+ |v|2X3

ǫ3
+ |vt|2X2

ǫ2
.

Then we only need to show that

|η|2X3

ǫ4
+ |ηt|2X2

ǫ3
+ |v|2X3

ǫ3
+ |vt|2X2

ǫ2
. E(t).

That is to say, we shall recover the regularity in space through the regularity in
time. More precisely, (4.110) yields

(4.142) ∇ · v = −ηt, (1 − ǫ∆)∇η = − vt

1 + ǫη
− ǫ

1 + ǫη
∇ ·

(
v

1 + ǫη
⊗ v

)
.

To control |vt|X2

ǫ2
, we first have

|vt|2X2

ǫ2
= |vt|2H2 + ǫ2|vt|2H2+2

. |vt|2H1 + |∇(∇ · vt)|22 + |∇(curlvt)|22 + ǫ2|∇3(∇ · vt)|22 + ǫ2|∇3(curlvt)|22.
Since curl

(
vt

1+ǫη

)
= 0, similar derivation as (4.130) leads to

curlvt =
ǫ(v2t ∂1η − v1t ∂2η)

1 + ǫη
,

and

|∇(curlvt)|2 . ǫ(|vt|2 + |∇vt|2)|η|H3 . ǫ|vt|H1 ,

|∇3(curlvt)|2 . ǫ
1
2 (|vt|2 + |∇2

vt|2)|η|X3
ǫ
. ǫ

1
2 |vt|H2 ,

Then we have

|vt|2X2

ǫ2
. |vt|2H1 + |∇(∇ · vt)|22 + ǫ2|∇3(∇ · vt)|22 + ǫ3|vt|2H2 ,

which along with the fact that ǫ is small enough implies

|vt|2X2

ǫ2
. |vt|2H1 + |∇(∇ · vt)|22 + ǫ2|∇3(∇ · vt)|22.

Now using the first equation of (4.142), we obtain that

(4.143) |vt|2X2

ǫ2
. |vt|2H1 + |∇ηtt|22 + ǫ2|∇3ηtt|22 . E(t).

Similarly, we obtain

(4.144) |v|2X2

ǫ2
. |v|2H1 + |∇ηt|22 + ǫ2|∇3ηt|22 . E(t).

While the second equation of (4.142), (4.121), (4.143) and (4.144) imply

(4.145)
|ηt|2X2

ǫ3
∼ |ηt|2H1 + |∇

[
(1− ǫ∆)∇ηt

]
|22 + ǫ|∇2

[
(1 − ǫ∆)∇ηt

]
|22

. |ηt|2X1

ǫ2
+ |vtt|2X1

ǫ
+ |vt|2X2

ǫ2
+ |v|2X2

ǫ2
+ |η|2X1

ǫ2
. E(t).

To bound |v|X3

ǫ3
, we first have

|v|2X3

ǫ3
∼ |v|2H2 + |∇3

v|22 + ǫ3|v|2H3+3

. |v|2H2 + |∇2(∇ · v)|22 + |∇2(curlv)|22 + ǫ3|∇5(∇ · v)|22 + ǫ3|∇5(curlv)|22.
Similar derivation as (4.130) yields

|∇2(curlv)|2 . ǫ|v|H2 ,

ǫ
1
2 |∇5(curlvt)|22 . |v|X3

ǫ2
|η|X3

ǫ3
(1 + |η|X3

ǫ
) . |v|X3

ǫ2
.
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Then we obtain

|v|2X3

ǫ3
. |v|2H2 + |∇2(∇ · v)|22 + ǫ3|∇5(∇ · v)|22 + ǫ2|v|X3

ǫ2
,

which gives rise to

|v|2X3

ǫ3
. |v|2H2 + |∇2(∇ · v)|22 + ǫ3|∇5(∇ · v)|22.

Then using the first equation of (4.141), (4.145) and (4.139), we obtain

(4.146) |v|2X3

ǫ3
. E(t).

For |η|2
X3

ǫ4
, similar to the derivation of (4.145), by using the second equation of

(4.141), (4.139), (4.143), (4.145) and (4.146), we finally obtain that

(4.147) |η|2X3

ǫ4
∼ |η|2H1 + |∇2

[
(1 − ǫ∆)∇η

]
|22 + ǫ2|∇4

[
(1− ǫ∆)∇η

]
|22 . E(t).

Due to (4.141) and (4.140), we have

(4.148)
1

2

d

dt
E(t) . ǫE(t)

3
2 .

Step 5. Initial data for the quasilinear system and final estimate. In
this step, we have to derive the regularity for the initial data to the quasilinear
system through the system (4.110) and the regularity for initial data (η0,v0). The
first equation of (4.110) shows that

|η′|t=0|X2

ǫ3
= |ηt|t=0|X2

ǫ3
= |∇ · v0|X2

ǫ3
. |v0|X3

ǫ3
,

while the second equation of (4.110) shows that

|v′|t=0|X2

ǫ2
= |vt|t=0|X2

ǫ2

. |(1 + ǫη0)(1 − ǫ∆)∇η0|X2

ǫ2
+ ǫ|∇ ·

(
v0

1 + ǫη0
⊗ v0

)
|X2

ǫ2

. |η0|X3

ǫ4
+ |v0|X3

ǫ3
,

where we assume that |η0|X3

ǫ4
+ |v0|X3

ǫ3
≤ C and ǫ ≤ ǫ0 with ǫ0 small enough.

Similarly, thanks to (4.116), we can obtain the upper bound of |η′t|t=0|X1

ǫ2
+

|v′
t|t=0|X1

ǫ
( or |ηtt|t=0|X1

ǫ2
+ |vtt|t=0|X1

ǫ
). While by (4.118), we can also derive the

upper bound for |η′′t |t=0|X0
ǫ
+ |v′′

t |t=0|2 (or |ηttt|t=0|X0
ǫ
+ |vttt|t=0|2). Then we finally

obtain that

(4.149) E(0) ∼ E(0) . |η0|2X3

ǫ4
+ |v0|2X3

ǫ3
.

Step 6. Existence and uniqueness. The estimates (4.148) and (4.149) are
crucial to prove the existence of T > 0 independent of ǫ such that (4.110) has a
unique solution (η,v) on a time interval [0, T/ǫ]with initial data (η0,v0) ∈ X3

ǫ4×X3
ǫ3

satisfying moreover, by (4.148) and (4.141) the estimate

(4.150) sup
t∈[0,T/ǫ]

E(t) . |η0|2X3

ǫ4
+ |v0|2X3

ǫ3
.

The proof of the existence and uniqueness is postponed to Section 5.

Notice that v = (1 + ǫη)u. Then we have obtained the long time estimate of
solutions to the original Boussinesq system (1.2)-(4.1) with a = b = d = 0, c = −1
together to the energy estimate (4.109). �
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5. Existence proof of Theorems 4.6 and 4.7

In this section, we shall complete the proof of existence and uniqueness of solu-
tions to the transformed systems (4.66) and (4.110) so that we could complete the
proofs to Theorems 4.6 and 4.7. In order to construct the approximate solutions
to (4.66) and (4.110), we introduce the mollifier operator Jδ as follows (see [27]):

Ĵδf(ξ) = ϕ(δξ)f̂ (ξ), ∀ξ ∈ R
d, ∀f ∈ L2(Rd),

where ϕ ∈ C∞
0 (Rd) and ϕ(0) = 1. Then using Fourier transform, we obtain the

following properties for Jδ:

Lemma 5.1. For any s, s′ ∈ R and 1 ≤ p ≤ ∞, there hold:
(i) |Jδf |Hs′ ≤ Cs,s′,δ|f |Hs ;
(ii)|Jδf |p ≤ C|f |p;
(iii) |Jδf − f |Hs−1 ≤ Cδ|f |Hs ;
(iv) |Jδf − f |Hs → 0 as δ → 0;
(v) [Jδ, a]f |Hs ≤ C|a|Ht0+1 |f |Hs−1 , for any t0 ≥ d

2 and −t0 < s ≤ t0 + 1;
where C is an universal constant independent of δ and Cs,s′,δ is a constant depend-
ing on s, s′, δ.

Proof. The statements (i), (iii) and (iv) are verified directly by Fourier analysis.
For (ii), denoting by ϕ̆(·) is the inverse Fourier transform of ϕ. Then we have

Jδf = δ−dϕ̆(
·
d
) ∗ f.

Notice that δ−d|ϕ̆( ·
d )|1 ≤ C. Then (ii) follows by Young inequality.

The statement (v) is a consequence of Theorems 3 and 6 in [28]. Indeed, since
Jδ is a zeroth order Fourier multiplier, by [28], we have

[Jδ, a]f |Hs . C(ϕ(δ·))|a|Ht0+1 |f |Hs ,

where

C(ϕ(δ·)) = sup
|β|≤2+d+[d

2
]

sup
|ξ|≥ 1

4

〈ξ〉|β||∂β
ξ ϕ(δξ)|+ sup

|ξ|≤1

|ϕ(δξ)| ≤ C.

Thus, the lemma is proved. �

We only give the details of the existence proof to Theorem 4.6. The existence
proof of Theorem 4.7 follows a similar line.

Now, we divide the proof into several steps.
Step 1. Construction of the approximate solutions to (4.66). We con-

struct an approximate solution sequence {(ηδ, vδ)}δ>0 satisfying the following reg-
ularizing system

(5.1)





ηδt + Jδv
δ
x = 0

vδt + (1 + ǫJδη
δ)(1− ǫ∂2

x)Jδη
δ
x + ǫJ 2

δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x
= 0,

associated with the initial data ηδ|t=0 = η0 and vδ|t=0 = v0.
Denoting by V δ = (ηδ, vδ), then (5.1) can be reduced to the following ODE in

the Banach space Hm+1 ×Hm with m ≥ 0:

(5.2)
d

dt
V δ(t) = Fδ(V

δ), V δ(0) = V δ
0 =

def
(η0, v0),
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where Fδ(V
δ) = (F 1

δ (V
δ), F 2

δ (V
δ)) with

F 1
δ (V

δ) = −Jδv
δ
x,

F 2
δ (V

δ) = −(1 + ǫJδη
δ)(1 − ǫ∂2

x)Jδη
δ
x − ǫJ 2

δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x
.

For any V δ
1 , V δ

2 , by virtue of the properties of Jδ in Lemma 5.1, we have

|F 1
δ (V

δ
1 )− F 1

δ (V
δ
2 )|Hm+1 = |Jδ∂x(v

δ
1 − vδ2)|Hm+1 ≤ Cδ,m|vδ1 − vδ2 |Hm .

Similarly, by Lemma 5.1 and the product estimate, we have

|F 2
δ (V

δ
1 )− F 2

δ (V
δ
2 )|Hm ≤ Cδ,m(|Jδη

δ
1|Hm , |Jδη

δ
2 |Hm , |Jδv

δ
1|Hm , |Jδv

δ
2 |Hm)

×
(
|ηδ1 − ηδ2 |Hm + |vδ1 − vδ2|Hm

)

≤ Cδ,m(|V δ
1 |2, |V δ

2 |2)|V δ
1 − V δ

2 |Hm+1×Hm ,

where Cδ,m(λ1, λ2, · · · ) is a constant depending on δ,m and λ1, λ2, · · · . Then we
have

|Fδ(V
δ
1 )− Fδ(V

δ
2 )|Hm+1×Hm ≤ Cδ,m(|V δ

1 |2, |V δ
2 |2)|V δ

1 − V δ
2 |Hm+1×Hm

so that Fδ(·) is locally Lipschitz continuous on any open set

OM = {V ∈ Hm+1 ×Hm(R) | |V |Hm+1×Hm ≤ M}.
Thus, Picard (Cauchy-Lipschitz) existence theorem implies that, given any initial
data V0 ∈ Hm+1 × Hm(R), there exists a unique solution V δ ∈ C1([0, Tδ);OM ∩
(Hm+1 ×Hm)) for some Tδ > 0, with any integer m ≥ 0.

Going back to the regularizing system (5.1), since V δ = (ηδ, vδ) ∈ C1([0, Tδ);H
m+1×

Hm), by virtue of the properties to Jδ, we have

∂tV
δ ∈ C1([0, Tδ);H

m+1 ×Hm),

which implies

V δ ∈ C2([0, Tδ);H
m+1 ×Hm).

Moreover, we could obtain that

V δ ∈ Ck([0, Tδ);H
m+1 ×Hm), for any k ∈ N.

Thus, we could apply ∂t many times to (5.1).

Step 2. Uniform energy estimates on the approximate solutions on

some time interval [0, T/ǫ). In this step, we shall prove that there exists a
uniform existence time interval [0, T/ǫ) with T being independent of δ and ǫ. To do
so, we have to derive the uniform energy estimates for the approximate solutions
V δ.

Step 2.1. The reduction equations. Motivated by the a priori energy estimates
for (4.66), we apply ∂t to (5.1). Similar derivation as (4.71), we obtain

(5.3)





ηδtt − Jδ∂x
(
(1 + ǫJδη

δ)∂xJδη
δ
)
+ ǫJδ∂x

(
(1 + ǫJδη

δ)∂3
xJδη

δ
)

+ 2ǫJ 2
δ

( J 2
δ v

δ

1 + ǫJδηδ
· ∂xJ 2

δ η
δ
t

)
= f δ,

1

1 + ǫJδηδ
vδtt − ∂2

xJ 2
δ v

δ + ǫ∂4
xJ 2

δ v
δ

+
2ǫ

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ · ∂xJ 2
δ

( vδt
1 + ǫJδηδ

))
= gδ,
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where

f δ =
def

ǫJ 3
δ

[( |J 2
δ v

δ|2
1 + ǫJδηδ

)
xx

− 2J 2
δ v

δ

1 + ǫJδηδ
· J 2

δ v
δ
xx

]

− 2ǫJ 2
δ

(
[Jδ,

J 2
δ v

δ

1 + ǫJδηδ
]∂xJδη

δ
t

)
,

gδ =
def

− ǫJδη
δ
t

1 + ǫJδηδ
(1− ǫ∂2

x)∂xJδη
δ − ǫ

1 + ǫJδηδ
J 2
δ ∂x

(
|J 2

δ v
δ|2

( 1

1 + ǫJδηδ
)
t

)

− 2ǫ

1 + ǫJδηδ
J 2
δ

( J 2
δ v

δ
x

1 + ǫJδηδ
· J 2

δ v
δ
t − J 2

δ v
δ · J 2

δ v
δ
t

( 1

1 + ǫJδηδ
)
x

)

+
2ǫ

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ · [∂xJ 2
δ ,

1

1 + ǫJδηδ
]vδt

)
.

Similarly, applying ∂t to (5.3), denoting by η
′δ = ∂tη

δ, v
′δ = ∂tv

δ, we obtain

(5.4)





η′δtt − Jδ∂x
(
(1 + ǫJδη

δ)∂xJδη
′δ)+ ǫJδ∂x

(
(1 + ǫJδη

δ)∂3
xJδη

′δ)

+ 2ǫJ 2
δ

( J 2
δ v

δ

1 + ǫJδηδ
· ∂xJ 2

δ η
′δ
t

)
= f ′δ,

1

1 + ǫJδηδ
v′δtt − ∂2

xJ 2
δ v

′δ + ǫ∂4
xJ 2

δ v
′δ

+
2ǫ

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ · ∂xJ 2
δ

( v′δt
1 + ǫJδηδ

))
= g′δ,

where

f ′δ =
def

∂tf
δ + ǫJδ∂x

(
Jδη

δ
t · ∂xJδη

δ
)
− ǫ2Jδ∂x

(
Jδη

δ
t · ∂3

xJδη
δ
)

− 2ǫJ 2
δ

(
∂t
( J 2

δ v
δ

1 + ǫJδηδ
)
· ∂xJ 2

δ η
δ
t

)
,

g′δ =
def

∂tg
δ − ∂t

( 1

1 + ǫJδηδ
)
vδtt − 2ǫ∂t

( 1

1 + ǫJδηδ
)
J 2
δ

(
J 2
δ v

δ · ∂xJ 2
δ

( vδt
1 + ǫJδηδ

))

− 2ǫ

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ
t · ∂xJ 2

δ

( vδt
1 + ǫJδηδ

))

+
2ǫ2

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ · ∂xJ 2
δ

( Jδη
δ
t v

δ
t

(1 + ǫJδηδ)2
))

.

Step 2.2. Definitions of the energy functionals. In this step, we always assume
that

(5.5) 1 + ǫJδη
δ > H > 0.

This assumption is a consequence of the initial assumption 1+ǫη0 > H > 0 together
with the smallness of ǫ and the following uniform energy estimates.

In order to derive the uniform energy estimates for approximate solutions, similar
to the a priori energy estimates, we first introduce the energy functionals Eδ(t) and
Eδ(t) in the similar way as E(t) and E(t) in (4.98) and (4.100). We define

Eδ(t) = Eδ
0(t) + Eδ

1(t) + Eδ
2(t)

= Eδ
0(t) +

(
Eδ

11(t) + Eδ
12(t)

)
+
(
Eδ

21(t) + Eδ
22(t)

)
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with

Eδ
0(t) =

2∑

k=0

Eδ
0k =

def

2∑

k=0

(
|∂kηδ|22 + ǫ|∂kηδx|22 + (

1

1 + ǫJδηδ
∂kvδ | ∂kvδ)2

)
,

Eδ
11(t) = |ηδt |22 + ǫ|ηδtx|22 + ((1 + ǫJδη

δ)Jδη
δ
x | Jδη

δ
x)2

+ 2ǫ((1 + ǫJδη
δ)Jδη

δ
xx | Jδη

δ
xx)2 + ǫ2((1 + ǫJδη

δ)Jδη
δ
xxx | Jδη

δ
xxx)2,

Eδ
12(t) = (

vδt
1 + ǫJδηδ

| vδt )2 + |Jδv
δ
x|22 + ǫ|Jδv

δ
xx|22,

Eδ
21(t) = |ηδtt|22 + ǫ|ηδttx|22 + ((1 + ǫJδη

δ)Jδη
δ
tx | Jδη

δ
tx)2

+ 2ǫ((1 + ǫJδη
δ)Jδη

δ
txx | Jδη

δ
txx)2 + ǫ2((1 + ǫJδη

δ)Jδη
δ
txxx | Jδη

δ
txxx)2,

Eδ
22(t) = (

vδtt
1 + ǫJδηδ

| vδtt)2 + |Jδv
δ
tx|22 + ǫ|Jδv

δ
txx|22.

We remark that we used (ηδt , v
δ
t ) to replace (η′δ v′δ) when we defined Eδ

21(t) and
Eδ

22(t). Using (5.5) and the properties of Jδ in Lemma 5.1, we have

Eδ(t) ∼ Ẽδ(t) =
def

|ηδ|2X2
ǫ
+ |ηδt |2X0

ǫ
+ |Jδη

δ
tx|2X1

ǫ2
+ |ηδtt|2X0

ǫ

+ |vδ|2H2 + |vδt |22 + |Jδv
δ
tx|2X0

ǫ
+ |vδtt|22.

We also define the full energy functional as follows

(5.6)

Eδ(t) = Ẽδ(t) + |ηδtx|22 + |vδtx|22 + ǫ3|J 2
δ η

δ
xxxxx|22 + ǫ2|J 2

δ v
δ
xxxx|22,

∼ |ηδ|2X2
ǫ
+ |ηδt |2H1 + |Jδη

δ
tx|2X0

ǫ2
+ |ηδtt|2X0

ǫ
+ ǫ3|J 2

δ η
δ
xxxxx|22

+ |vδ|2H2 + |vδt |2H1 + |Jδv
δ
tx|2X0

ǫ
+ |vδtt|22 + ǫ2|J 2

δ v
δ
xxxx|22.

We remark that the mollifier for the highest order derivatives of ηδ and vδ is J 2
δ

not Jδ.
Now, we prove

(5.7) Eδ(t) ∼ Ẽδ(t) ∼ Eδ(t).

To obtain (5.7), we only need to control |ηδtx|22, |vδtx|22, ǫ3|J 2
δ η

δ
xxxxx|22, ǫ2|J 2

δ v
δ
xxxx|22

by Ẽδ(t).
In what follows, we always assume that on the existence time interval

(5.8) Eδ(t) ≤ C(Eδ(0))Eδ(0),

where C(Eδ(0)) is a constant depending on Eδ(0) and in what follows, we shall use
C(λ1, λ2, · · · ) to denote constants depending on λ1, λ2, · · · .

Firstly, thanks to (5.1), we have

|ηδtx|2 = |Jδv
δ
xx|2 ≤ |vδxx|2,
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and

|vδtx|2 . |
(
(1 + ǫJδη

δ)(1− ǫ∂2
x)Jδη

δ
x

)
x
|2 + ǫ|J 2

δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
xx
|2

≤ C|Jδη
δ
xx|2 + Cǫ|Jδη

δ
xxxx|2 + Cǫ|Jδη

δ|∞
(
|Jδη

δ
x|2 + ǫ|Jδη

δ
xxxx|2

)

+ C(|J 2
δ v

δ|W 1,∞ , |Jδη
δ
x|∞)

(
|J 2

δ v
δ
x|2 + |J 2

δ v
δ
xx|2 + |Jδη

δ
x|2 + |Jδη

δ
xx|2

)

≤ C(|J 2
δ v

δ|W 1,∞ , |Jδη
δ|W 1,∞)

(
|ηδ|X2

ǫ
+ |vδ|H2 + ǫ|Jδη

δ
xxxx|2

)

≤ C(|vδ|H2 , |ηδ|H2 )
(
|ηδ|X2

ǫ
+ |vδ|H2 + ǫ|Jδη

δ
xxxx|2

)
.

For the last term ǫ|Jδη
δ
xxxx|2 in the above inequality, we infer by Plancherel theorem

that

(5.9) ǫ|Jδη
δ
xxxx|2 . ǫ|ηδxxx|

1
2

2 |J 2
δ η

δ
xxxxx|

1
2

2 . ǫ
1
2 |ηδxxx|2 + ǫ

3
2 |J 2

δ η
δ
xxxxx|2.

Then we obtain

(5.10) |vδtx|2 ≤ C(|vδ|H2 , |ηδ|H2 )
(
|ηδ|X2

ǫ
+ |vδ|H2 + ǫ

3
2 |J 2

δ η
δ
xxxxx|2

)
.

Thus, we only need to control ǫ3|J 2
δ η

δ
xxxxx|22 and ǫ2|J 2

δ v
δ
xxxx|22 by Ẽδ(t).

By virtue of (5.1), we have

Jδv
δ
x = −ηδt , (1− ǫ∂2

x)Jδη
δ
x = − vδt

1 + ǫJδηδ
− ǫ

1 + ǫJδηδ
J 2
δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x
.

Then we have

(5.11) ǫ|J 2
δ v

δ
xxxx|2 = ǫ|Jδη

δ
txxx|2 ≤ C

(
Ẽδ(t)

) 1
2 ,

and

(5.12)

ǫ
3
2 |J 2

δ η
δ
xxxxx|2 ≤ ǫ

1
2 |J 2

δ η
δ
xxx|2 + Cǫ

1
2 |Jδ

( vδt
1 + ǫJδηδ

)
xx
|2

+ Cǫ
3
2 |Jδ

( 1

1 + ǫJδηδ
J 2
δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x

)
xx
|2

=
def

ǫ
1
2 |J 2

δ η
δ
xxx|2 + C(A1 +A2).

For A1, we obtain

A1 . ǫ
1
2 |Jδv

δ
txx|2 + ǫ

1
2 |[∂2

xJδ,
1

1 + ǫJδηδ
]vδt |2.

Since

[∂2
xJδ, a]f = [Jδ, a]∂

2
xf + Jδ

(
∂2
xaf + ∂xa∂xf

)
,

using Lemma 5.1 and Hölder inequality, we obtain

[∂2
xJδ,

1

1 + ǫJδηδ
]vδt |2 ≤ C| ǫJδη

δ

1 + ǫJδηδ
|H2 |vδtx|2

+ |
( 1

1 + ǫJδηδ
)
xx
|2|vδt |∞ + |

( 1

1 + ǫJδηδ
)
x
|∞|vδtx|2

≤ C(|Jδη
δ|∞)ǫ|Jδη

δ|H2 (|vδt |2 + |vδtx|2).
Then we have

(5.13) |A1| ≤ C(|Jδη
δ|H2)(|Jδv

δ
tx|X0

ǫ
+ |vδt |2 + ǫ

3
2 |vδtx|2).
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By virtue of (5.10) and (5.13), we have

(5.14) |A1| ≤ C(|vδ |H2 , |ηδ|H2)Ẽδ(t) + ǫ
3
2C(|vδ|H2 , |ηδ|H2 ) · ǫ 3

2 |J 2
δ η

δ
xxxxx|2.

For A2, by the product estimates and interpolation estimates (4.2), we have

|A2| ≤ ǫ
3
2C(|J 2

δ v
δ|W 1,∞ , |Jδη

δ|W 1,∞)
(
ǫ|Jδη

δ
x|H2 + |J 2

δ v
δ
x|H2

)

≤ C(|vδ|H2 , |ηδ|H2)
(
|ηδ|X2

ǫ
+ |vδ|H2 + ǫ|J 2

δ v
δ
xxxx|2

)
,

which along with (5.11) implies that

(5.15) |A2| ≤ C(|vδ|H2 , |ηδ|H2 )Ẽδ(t).

Thanks to (5.12), (5.14) and (5.15), we obtain

ǫ
3
2 |J 2

δ η
δ
xxxxx|2 ≤ C(|vδ|H2 , |ηδ|H2)Ẽδ(t) + ǫ

3
2C(|vδ|H2 , |ηδ|H2 ) · ǫ 3

2 |J 2
δ η

δ
xxxxx|2.

By virtue of (5.8), for ǫ sufficiently small (depending on Eδ(0)), we have

(5.16) ǫ
3
2 |J 2

δ η
δ
xxxxx|2 ≤ C(Eδ(0))Ẽδ(t).

Thus, combining (5.11) and (5.16), we obtain the equivalence (5.7).

Step 2.3. Uniform energy estimates for V δ = (ηδ, vδ).
Motivated by the a priori energy estimates (4.101) for (4.66), we obtain

(5.17)
d

dt
Eδ(t) ≤ C(Eδ(t))ǫEδ(t)

3
2 ,

where C(Eδ(t)) is a constant only depending on Eδ(t). The derivation of (5.17) is
a little different from (4.101).

(i) Estimates for Eδ
0(t). We first derive the estimates for Eδ

0(t). As usual, we
have

1

2

d

dt
Eδ

0k = (∂kηδt | ∂kηδ)2 + ǫ(∂k+1ηδt | ∂k+1ηδ)2

+ (
1

1 + ǫJδηδ
∂kvδt | ∂kvδ)2 +

1

2
(
( 1

1 + ǫJδηδ
)
t
∂kvδ | ∂kvδ)2.

Using the equations in (5.1), we obtain

1

2

d

dt
Eδ

0k = ([∂k,
1

1 + ǫJδηδ
]vδt | ∂kvδ)2 − ǫ(∂k

( 1

1 + ǫJδηδ
J 2
δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x

)
| ∂kvδ)2

+
1

2
(
( 1

1 + ǫJδηδ
)
t
∂kvδ | ∂kvδ)2 =

def
Bk

1 +Bk
2 +Bk

3 .

For Bk
1 , we have B0

1 = 0 and

|B1
1 |+ |B2

1 | ≤
2∑

k=1

|[∂k,
1

1 + ǫJδηδ
]vδt |2|∂kvδ|2

≤ Cǫ(1 + |Jδη
δ
x|∞)

(
|Jδη

δ
x|∞|vδt |H1 + |Jδη

δ
x|H1 |vδt |∞

)
|vδ|H2

≤ C(|ηδ|H2 )ǫ|ηδ|H2 |vδt |H1 |vδ|H2 .

For Bk
3 , we have

2∑

k=0

|Bk
3 | ≤ Cǫ|Jδη

δ
t |∞|vδ|2H2 ≤ Cǫ|ηδt |H1 |vδ|2H2 .

For Bk
2 , we have
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Bk
2 = −ǫ([∂k,

1

1 + ǫJδηδ
]J 2

δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x
| ∂kvδ)2

− ǫ(∂k
( |J 2

δ v
δ|2

1 + ǫJδηδ

)
x
| J 2

δ

( ∂kvδ

1 + ǫJδηδ

)
)2 =

def
Bk

21 +Bk
22

Similar to Bk
1 , we have B0

21 = 0 and

|B1
21|+ |B2

21| ≤ C(|ηδ |H2)ǫ|ηδ|H2 |J 2
δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x
|H1 |vδ|H2

≤ C(|ηδ |H2 , |vδ|H2)ǫ
(
|ηδ|2H2 + |vδ|2H2

)
|vδ|H2 .

For Bk
22, we have

Bk
22 =ǫ(∂k

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
| ∂x

(
[J 2

δ ,
1

1 + ǫJδηδ
]∂kvδ

)
)2

+ ǫ2(∂k
( |J 2

δ v
δ|2Jδη

δ
x

(1 + ǫJδηδ)2

)
| J 2

δ ∂
kvδ

1 + ǫJδηδ
)2

− 2ǫ([∂k,
J 2
δ v

δ

1 + ǫJδηδ
]J 2

δ v
δ
x |

J 2
δ ∂

kvδ

1 + ǫJδηδ
)2

− 2ǫ(
J 2
δ v

δ

1 + ǫJδηδ
· ∂xJ 2

δ ∂
kvδ | J 2

δ ∂
kvδ

1 + ǫJδηδ
)2.

Notice that the last term of the above equality equals

ǫ(∂x

( J 2
δ v

δ

1 + ǫJδηδ

)
· J 2

δ ∂
kvδ | J 2

δ ∂
kvδ

1 + ǫJδηδ
)2

Then, proceeding as for the previous terms, using Lemma 5.1 and product estimates,
we have

2∑

k=0

|Bk
22| ≤ C(|ηδ|X2

ǫ
, |vδ|H2)ǫ

(
|ηδ|2H2 + |vδ|2H2

)
|vδ|H2 .

Combining all the above estimates, we obtain

(5.18)
d

dt
Eδ

0(t) ≤ C(|ηδ|X2
ǫ
, |vδ|H2 )ǫ

(
Eδ(t)

) 3
2 .

(ii) Estimates for Eδ
2(t). Now, we derive the energy estimates for (5.4). For the

second equation of (5.4), taking L2 inner product with v′δt yields

1

2

d

dt
Eδ

22 + 2ǫ
(
J 2
δ v

δ · ∂xJ 2
δ

( v′δt
1 + ǫJδηδ

)
| J 2

δ

( v′δt
1 + ǫJδηδ

))
2

︸ ︷︷ ︸
I

=
1

2
(∂t

( 1

1 + ǫJδηδ
)
v′δt | v′δt )2 + (g′δ | v′δt )2

By integration by parts, we have

I = −ǫ
(
J 2
δ v

δ
x · J 2

δ

( v′δt
1 + ǫJδηδ

)
| J 2

δ

( v′δt
1 + ǫJδηδ

))
2
.
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Then we obtain

(5.19)

d

dt
Eδ

22 ≤ Cǫ
(
|Jδη

δ
t |∞ + |J 2

δ v
δ
x|∞

)(
|v′δt |22 + |J 2

δ

( v′δt
1 + ǫJδηδ

)
|22
)
+ |g′δ|2|v′δt |2

≤ Cǫ
(
|ηδt |H1 + |vδ|H2

)
|v′δt |22 + |g′δ|2|v′δt |2.

For the first equation of (5.4), taking L2 inner product by (1− ǫ∂2
x)η

′δ
t results

1

2

d

dt
Eδ

21 + 2ǫ
( J 2

δ v
δ

1 + ǫJδηδ
· ∂xJ 2

δ η
′δ
t | (1− ǫ∂2

x)J 2
δ η

′δ
t

)
2

︸ ︷︷ ︸
II

=
ǫ

2
(Jδη

δ
tJδη

′δ
x | Jδη

′δ
x )2 + ǫ2(Jδη

δ
tJδη

′δ
xx | Jδη

′δ
xx)2 + ǫ2(Jδη

δ
xxJδη

′δ
x | Jδη

′δ
tx)2

+
ǫ3

2
(Jδη

δ
tJδη

′δ
xxx | Jδη

′δ
xxx)2 + (f ′δ | (1 − ǫ∂2

x)η
′δ
t )2.

By integration by parts, we have

II = −ǫ
(
∂x

( J 2
δ v

δ

1 + ǫJδηδ
)
· J 2

δ η
′δ
t | (1− ǫ∂2

x)J 2
δ η

′δ
t

)
2

+ ǫ2
(
∂x

( J 2
δ v

δ

1 + ǫJδηδ
)
· J 2

δ η
′δ
tx | (1− ǫ∂2

x)J 2
δ η

′δ
tx

)
2

≤ Cǫ
(
|J 2

δ v
δ
x|∞ + ǫ|J 2

δ v
δ|∞|Jδη

δ
x|∞

)(
|J 2

δ η
′δ
t |22 + ǫ|J 2

δ η
′δ
tx|22

)
.

Then we get

(5.20)

d

dt
Eδ

21 ≤ Cǫ
(
|J 2

δ v
δ
x|∞ + ǫ|J 2

δ v
δ|∞|Jδη

δ
x|∞ + |Jδη

δ
t |∞ + ǫ

1
2 |Jδη

′δ
x |∞

)

×
(
|J 2

δ η
′δ
t |2X0

ǫ
+ |Jδη

′δ
x |2X0

ǫ2
+ ǫ|Jδη

δ
xx|22

)
+ |f ′δ|2|η′δt |2 + ǫ|f ′δ

x |2|η′δtx|2.

Due to (5.19) and (5.20), noticing that η′δ = ηδt , we obtain

(5.21)

d

dt
Eδ

2 ≤ C(|ηδ|H2 )ǫ
(
|vδ|H2 + |ηδt |H1 + |Jδη

δ
tx|X0

ǫ2

)

×
(
|J 2

δ η
′δ
t |2X0

ǫ
+ |Jδη

′δ
x |2X0

ǫ2
+ |Jδη

δ
x|2X0

ǫ2
+ |v′δt |22

)

+ |f ′δ|2|η′δt |2 + ǫ|f ′δ
x |2|η′δtx|2 + |g′δ|2|v′δt |2.

Noticing that η′δ = ηδt and v′δ = vδt . Then (5.21) implies that

(5.22)
d

dt
Eδ

2 ≤ C(Eδ(t))ǫ
(
Eδ(t)

) 3
2 + |f ′δ|2|ηδtt|2 + ǫ|f ′δ

x |2|ηδttx|2 + |g′δ|2|vδtt|2.

(iii) Estimates for Eδ
1 . Similarly as Eδ

2 , we also obtain

(5.23)
d

dt
Eδ

1 ≤ C(Eδ(t))ǫ
(
Eδ(t)

) 3
2 + |f δ|2|ηδt |2 + ǫ|f δ

x |2|ηδtx|2 + |gδ|2|vδt |2.

(iv) Estimates for the source terms. To achieve (5.17), it remains to derive the
bound on f δ, gδ, f ′δ and g′δ. Similarly as in the derivation of (4.95), using the
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properties of Jδ in Lemma 5.1, we obtain

(5.24)

|f δ|2 + ǫ
1
2 |f δ

x |2 + |gδ|2 + |f ′δ|2 + ǫ
1
2 |f ′δ

x |2 + |g′δ|2
. C(Eδ(t))ǫ

(
|ηδ|X2

ǫ
+ |vδ|H2 + |ηδt |H1 + |vδt |H1 + |Jδη

δ
tx|X0

ǫ2
+ |J 2

δ v
δ
tx|X0

ǫ

+ ǫ|Jδη
δ
xxxx|2 + ǫ

1
2 |J 2

δ v
δ
xxx|2

)(
|ηδ|X2

ǫ
+ ǫ|Jδη

δ
xxxx|2 + ǫ

3
2 |J 2

δ η
δ
xxxxx|2

+ |ηδt |H1 + |Jδη
δ
tx|X0

ǫ2
+ |ηδtt|X0

ǫ
+ |vδ|H2 + |vδt |H1 + |J 2

δ v
δ
tx|X0

ǫ
+ |vδtt|2

)
.

To verify (5.24), we first need to check the estimates on the terms involving the
commutators in f δ and gδ. Using (v) of Lemma 5.1 with t0 = 1, for the commutator
term in f δ, we have

(5.25)
|ǫJ 2

δ

(
[Jδ,

J 2
δ v

δ

1 + ǫJδηδ
]∂xJδη

δ
t

)
|X0

ǫ
≤ Cǫ| J 2

δ v
δ

1 + ǫJδηδ
|H2 |Jδη

δ
t |X0

ǫ

≤ C(|ηδ|H2 , |vδ|H2 )ǫ
(
|ηδ|H2 + |vδ|H2

)
|ηδt |H1 .

For the commutator term in f ′δ, we have

|ǫJ 2
δ ∂t

(
[Jδ,

J 2
δ v

δ

1 + ǫJδηδ
]∂xJδη

δ
t

)
|X0

ǫ

≤ ǫ|[Jδ, ∂t
( J 2

δ v
δ

1 + ǫJδηδ
)
]∂xJδη

δ
t

)
|X0

ǫ
+ ǫ|[Jδ,

J 2
δ v

δ

1 + ǫJδηδ
]∂xJδη

δ
tt

)
|X0

ǫ

=
def

III1 + III2.

For III1, by using the product estimates, we have

III1 ≤ C(|Jδη
δ
x|∞, |J 2

δ v
δ|∞)ǫ

(
|Jδη

δ
t |∞ + |J 2

δ v
δ
t |∞ + ǫ

1
2 |Jδη

δ
tx|∞

+ ǫ
1
2 |J 2

δ v
δ
tx|∞

)
|Jδη

δ
tx|X0

ǫ
.

For III2, by similar derivation as (5.25), we have

III2 ≤ C(|ηδ |H2 , |vδ|H2)ǫ
(
|ηδ|H2 + |vδ|H2

)
|Jδη

δ
tt|X0

ǫ
.

Then by Sobolev inequality, we have

(5.26)
|ǫJ 2

δ ∂t
(
[Jδ,

J 2
δ v

δ

1 + ǫJδηδ
]∂xJδη

δ
t

)
|X0

ǫ
≤ C(Eδ(t))ǫ

(
|ηδ|H2 + |vδ|H2

+ |ηδt |H1 + |vδt |H1 + |Jδη
δ
tx|X0

ǫ
+ |J 2

δ v
δ
tx|X0

ǫ

)(
|Jδη

δ
tx|X0

ǫ
+ |Jδη

δ
tt|X0

ǫ

)
.

Similarly, for the commutator terms in gδ and g′δ, noticing that

[∂xJ 2
δ , a]f = ∂xJδ

(
[Jδ, a]f

)
+ ∂x

(
[Jδ, a]Jδf

)
+ ∂xaJ 2

δ f,

we have

(5.27)

| 2ǫ

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ · [∂xJ 2
δ ,

1

1 + ǫJδηδ
]vδt

)
|2

+ |∂t
( 2ǫ

1 + ǫJδηδ
J 2
δ

(
J 2
δ v

δ · [∂xJ 2
δ ,

1

1 + ǫJδηδ
]vδt

))
|2

≤ C(Eδ(t))ǫ
(
|ηδ|H2 + |ηδt |H1 + |vδt |H1

)(
|Jδη

δ
tx|2 + |vδt |H1 + |vδtt|2

)
.
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Another delicate term we have to check is the third terms of f ′δ. Applying ǫ
1
2 ∂x

to the third term, we have

ǫ
5
2Jδ∂

2
x

(
Jδη

δ
t · ∂3

xJδη
δ
)
= ǫ

5
2Jδη

δ
t · ∂5

xJ 2
δ η

δ

+ ǫ
5
2 [Jδ,Jδη

δ
t ] · ∂5

xJδη
δ + ǫ

5
2Jδ

(
∂2
xJδη

δ
t · ∂3

xJδη
δ + 2∂xJδη

δ
t · ∂4

xJδη
δ
)
.

Then by virtue of the properties of Jδ in Lemma 5.1, we have

ǫ
5
2 |Jδ∂

2
x

(
Jδη

δ
t · ∂3

xJδη
δ
)
|2 ≤ Cǫ

(
|Jδη

δ
t |∞ + ǫ|Jδη

δ
txx|∞ + ǫ

1
2 |Jδη

δ
t |H2

)

×
(
ǫ

1
2 |Jδη

δ
xxx|2 + ǫ|Jδη

δ
xxxx|2 + ǫ

3
2 |J 2

δ η
δ
xxxxx|2

)

≤ Cǫ
(
|ηδt |H1 + |Jδη

δ
tx|X0

ǫ2

)(
|ηδ|X2

ǫ
+ ǫ|Jδη

δ
xxxx|2 + ǫ

3
2 |J 2

δ η
δ
xxxxx|2

)
.

(v) Derivation of the energy estimates (5.17). Similar to (5.9), by interpolation
inequality, we have

(5.28) ǫ
1
2 |J 2

δ v
δ
xxx|2 . ǫ

1
2 |J 2

δ v
δ
xx|

1
2

2 |J 2
δ v

δ
xxxx|

1
2

2 . |vδxx|2 + ǫ|J 2
δ v

δ
xxxx|2.

With (5.9) and (5.28), we bound the righthand side terms in (5.24) by C(Eδ)ǫEδ(t).
Thus, by virtue of (5.18), (5.22), (5.23) and (5.24), we achieve the proof of (5.17).
Thanks to (5.7), under the assumptions (5.5) and (5.8), we have

(5.29)
d

dt
Eδ(t) ≤ C(Eδ(t))ǫEδ(t)

3
2 ≤ C(Eδ(0))ǫEδ(t)

3
2 .

(vi) Bound of the initial energy Eδ(0). Proceeding as in the derivation of (4.106)
in Step 5 of the proof to Theorem 4.6, we obtain

(5.30) Eδ(0) ≤ C
(
|ηδ|t=0|2X2

ǫ3
+ |vδ|t=0|2X2

ǫ2

)
≤ C

(
|η0|2X2

ǫ3
+ |v0|2X2

ǫ2

)
.

With (5.29) and (5.30), there exists T > 0 which depends on |η0|X2

ǫ3
+ |v0|X2

ǫ2
,

such that

(5.31) sup
0≤t≤T/ǫ

Eδ(t) ≤ C
(
|η0|2X2

ǫ3
+ |v0|2X2

ǫ2

)
.

Step 3. The family of approximate solutions forms a Cauchy sequence

in the lower order space C([0, T/ǫ), X0
ǫ (R) × L2(R)). For any δ, δ′ ∈ (0, ǫ), we

shall derive estimates on (ηδ−ηδ
′

, vδ−vδ
′

) in C([0, T/ǫ), X0
ǫ (R)×L2(R)). Denoting

by

E
(δ,δ′)
0 (t) =

def
|ηδ − ηδ

′ |22 + ǫ|(ηδ − ηδ
′

)x|22 + (
vδ − vδ

′

1 + ǫJδηδ
| vδ − vδ

′

)2,

∼ |ηδ − ηδ
′ |2X0

ǫ
+ |vδ − vδ

′ |22.

By (5.1), we deduce that

1

2

d

dt
E

(δ,δ′)
0 (t) =

4∑

i=1

Ii,
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where

I1 = −{
(
(Jδv

δ − Jδ′v
δ′ )x | (1 − ǫ∂2

x)(η
δ − ηδ

′

)
)
2

+
(
(1− ǫ∂2

x)(Jδη
δ − Jδ′η

δ′)x | vδ − vδ
′)

2
}

I2 = −
(
(

1

1 + ǫJδηδ
− 1

1 + ǫJδ′ηδ
′
)vδ

′

t | vδ − vδ
′)

2

I3 = −1

2

(
∂t
( 1

1 + ǫJδηδ
)
(vδ − vδ

′

) | vδ − vδ
′)

2

I4 = ǫ
(
J 2
δ′
( |J 2

δ′v
δ′ |2

1 + ǫJδ′ηδ
′

)
x
− J 2

δ

( |J 2
δ v

δ|2
1 + ǫJδηδ

)
x
| vδ − vδ

′)
2
.

For I1, integrating by parts, we obtain

I1 = −
(
(1− ǫ∂2

x)(η
δ − ηδ

′

) | (Jδ − Jδ′)v
δ′

x

)
2
−
(
(Jδ − Jδ′)η

δ′

x | (1− ǫ∂2
x)(v

δ − vδ
′

)
)
2
,

which along with (iii) in Lemma 5.1 implies

|I1| ≤ Cmax{δ, δ′}
(
|ηδ − ηδ

′ |H2 |vδ′x |H1 + |ηδ′x |H1 |vδ − vδ
′ |H2

)

≤ C
(
Eδ(t) + Eδ′ (t)

)
max{δ, δ′} ≤ CM max{δ, δ′},

where M =
def

C
(
|η0|2X2

ǫ3
+ |v0|2X2

ǫ2

)
the uniform bound for Eδ(t) in (5.31).

For I2, we have

|I2| = ǫ|
( (Jδ − Jδ′ )η

δ + Jδ′(η
δ − ηδ

′

)

(1 + ǫJδηδ)(1 + ǫJδ′ηδ
′)

vδ
′

t | vδ − vδ
′)

2
|

≤ Cǫ
(
|(Jδ − Jδ′)η

δ|2 + |Jδ′(η
δ − ηδ

′

)|2
)
|vδ′t |∞|vδ − vδ

′ |2
≤ Cǫ

(
max{δ, δ′}|ηδ|H1 + |ηδ − ηδ

′ |2
)
|vδ′t |H1 |vδ − vδ

′ |2,
which implies

|I2| ≤ CM
3
2 max{δ, δ′}+ CǫM

1
2E

(δ,δ′)
0 (t).

Similarly, for I3, we have

|I3| ≤ CǫM
1
2E

(δ,δ′)
0 (t),

while for I4, we have

|I4| ≤ C(M)max{δ, δ′}+ C(M)ǫE
(δ,δ′)
0 (t).

Thus, we have

(5.32)
d

dt
E

(δ,δ′)
0 (t) ≤ C(M)max{δ, δ′}+ C(M)E

(δ,δ′)
0 (t).

Noticing that E
(δ,δ′)
0 (0) = 0, applying Gronwall inequality to (5.32) yields

(5.33) E
(δ,δ′)
0 (t) ≤ CeC(M)t max{δ, δ′},

which implies that the approximate solutions {V δ = (ηδ, vδ)}δ>0 form a Cauchy
sequence in C([0, T/ǫ), X0

ǫ (R)× L2(R)).

Step 4. The limit of the approximate solutions solves (4.66). On the
one hand, (5.33) shows that there exists a unique V = (η, v) ∈ C([0, T/ǫ), X0

ǫ (R)×
L2(R)) such that when δ → 0,

(5.34) V δ → V in C([0, T/ǫ), X0
ǫ × L2),
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and

(5.35) sup
0≤t≤T/ǫ

|V δ − V |X0
ǫ×L2 ≤ CM,T,ǫδ,

where CM,T,ǫ is a constant depending on M, T, ǫ.
On the other hand, by Banach-Alaoglu theorem, the uniform estimate (5.31) and

(iv) of Lemma 5.1 imply that there exists a subsequence {V δj}j∈N such that when
j → ∞,

(5.36) V δj ⇀ V, weakly,

and the energy E(t) for V has the same bound as in (5.31). Moreover,

(5.37)
V ∈ L∞([0, T/ǫ);X2

ǫ3 ×X2
ǫ2) ∩ Lip([0, T/ǫ);X1

ǫ2 ×X1
ǫ )

Vt ∈ L∞([0, T/ǫ);X1
ǫ2 ×X1

ǫ ) ∩ Lip([0, T/ǫ);X0
ǫ × L2).

Thanks to the interpolation inequality (4.2), we have for any s ∈ (0, 2],

(5.38)
sup

0≤t≤T/ǫ

|V δ − V |X2−s

ǫ3−s×X2−s

ǫ2−s
≤ C sup

0≤t≤T/ǫ

|V δ − V |
s
2

X0
ǫ×L2 |V δ − V |1−

s
2

X2

ǫ3
×X2

ǫ2

≤ CM,T,ǫδ
s
2 ,

where we used (5.35), (5.31) and the obtained result sup0≤t≤T/ǫ E(t) ≤ CM . By

(5.38), we obtain that when δ → 0,

(5.39) V δ → V, in C([0, T/ǫ);X2−s
ǫ3−s ×X2−s

ǫ2−s).

If s ∈ (0, 1
4 ), the embedding theorem shows that

C([0, T/ǫ);X2−s
ǫ3−s ×X2−s

ǫ2−s) →֒ C([0, T/ǫ);C4(R)× C3(R)).

Then as δ → 0,

V δ → V, in C([0, T/ǫ);C4(R)× C3(R)).

Similarly, we could verify that as δ → 0,

V δ
t → Vt, in C([0, T/ǫ);C2(R)× C1(R)).

Thus, taking δ → 0 in (5.1), we obtain that V = (η, v) satisfies (4.66) in the
classic sense.

Step 5. Continuity in time of the solutions. Firstly, by virtue of (5.39),
we have

(5.40) ηδ → η in C([0, T/ǫ);L∞(R)).

Thanks to (5.29) and (5.31), we obtain that

d

dt
Eδ(t) ≤ C(M),

which implies that

Eδ(t)− Eδ(0) ≤ C(M)t.

Taking δ → 0 yields

E(t)− E0 ≤ lim sup
δ→0

(Eδ(t)− Eδ(0)) ≤ C(M)t,

where E0 = Eδ(0)|δ=0 is determined only by (η0, v0). Then we have

(5.41) lim sup
t→0

E(t) ≤ E0.
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On the other hand, thanks to (5.31) and (5.4), we have

V δ
ttt ∈ L∞([0, T/ǫ); Ḣ−1 × Ḣ−1),

which along with (5.37) implies

(5.42)
V ∈ Cw([0, T/ǫ);X

2
ǫ3 ×X2

ǫ2), Vt ∈ Cw([0, T/ǫ);X
1
ǫ2 ×X1

ǫ ),

Vtt ∈ Cw([0, T/ǫ);X
0
ǫ × L2).

Due to (5.40) and (5.42), we have

E0 ≤ lim inf
t→0

E(t),

which along with (5.41) implies that

(5.43) lim
t→0

E(t) = E0.

Then by (5.40), (5.42), the definition of E(t) and the arguments in Step 2.2 for the
higher order derivatives in x, we have V are strongly continuous in time t = 0 in
the corresponding functional spaces.

Consider T0 ∈ (0, T/ǫ) and the solution V (·, T0) = (η(·, T0), v(·, T0)). For fixed
time T0, V T0 =

def
V (·, T0) ∈ X2

ǫ3 × X2
ǫ2 and by (5.29) and (5.31), there exists a

constant c0 which depends on M =
def

|η0|2X2

ǫ3
+ |v0|2X2

ǫ2
such that

(5.44)
(
E(T0)

)
≤

(
E0

) 1
2

1− c0ǫT0M
1
2

.

Now we use V T0 as an initial data and construct a forward and backward in time
solutions as in the above steps by solving the approximates system (5.1). We obtain

the approximate solutions V δ
T0
(·, t) which also satisfy (5.29) and the limit Ṽ of

V δ
T0
(·, t) also solves (4.66) on some time interval [T0−T ′, T0+T ′]. By the uniqueness

of the solutions, Ṽ must coincide with V on the time interval [T0 − T ′, T0 + T ′].
Similar to (5.44), by using (5.31), there exists a constant c′0 which depends on
M =

def
|η0|2X2

ǫ3
+ |v0|2X2

ǫ2
such that for any t ∈ [T0 − T ′, T0 + T ′],

(
E(t)

) 1
2 ≤

(
E(T0)

) 1
2

1− c′0ǫ(t− T0)M
1
2

≤
(
E0

) 1
2

(1 − c′0ǫ(t− T0)M
1
2 )(1 − c0ǫT0M

1
2 )

.

Then we obtain the following restriction for T ′

0 < T ′ ≤ 1

2c′0M
1
2

.

Following the same argument as the continuity in time t = 0, we obtain that the
solution is continuous in time t = T0 in corresponding functional spaces.

Thus, we obtain that

(5.45)
V ∈ C([0, T/ǫ);X2

ǫ3 ×X2
ǫ2), Vt ∈ C([0, T/ǫ);X1

ǫ2 ×X1
ǫ ),

Vtt ∈ C([0, T/ǫ);X0
ǫ × L2).

Combining Steps 1 to 5, the existence proof of Theorem 4.6 is completed.
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6. Possible extensions

6.1. A fifth order Boussinesq system. When the expansion with respect to ǫ is
performed to the next order, one obtains a class of fifth order Boussinesq systems
(see [6]). Those models should lead to an error estimate of order O(ǫ3t) instead
of O(ǫ2t) for the usual Boussinesq systems. A rigorous proof of this fact requires
in particular to establish that the fifth order Boussinesq systems are well-posed
on "long" time scales and thus come the issue of long time existence for those
systems. One expects of course a lifespan of at least order 1/ǫ, the question, (as
for the usual Boussinesq systems), being to see whether or not the dispersive terms
allow to enlarge this lifespan. Due to the large number of equivalent (to the sense
of consistency) systems, we will focus on a particular case (BBM-type) which is
shown to be locally well-posed in [7].

We first recall the fifth order Boussinesq system under study (one could obtain
the following system from that stated in [6] by scaling):

(6.1)





(1− bǫ∂2
x + b1ǫ

2∂4
x)ηt + (1 + aǫ∂2

x + a1ǫ
2∂4

x)ux + ǫ(1− bǫ∂2
x)(ηu)x

+ (a+ b− 1

3
)ǫ2(ηuxx)x = 0,

(1− dǫ∂2
x + d1ǫ

2∂4
x)ut + (1 + cǫ∂2

x + c1ǫ
2∂4

x)ηx + ǫ(1 + cǫ∂2
x)(uux)

+ ǫ2(ηηxx)x − (c+ d− 1)ǫ2uxuxx − (c+ d)ǫ2uuxxx = 0.

As an example we shall deal with the "BBM-type" case:

b ≥ 0, b1 > 0, a < 0, a1 = 0,

d ≥ 0, d1 > 0, c < 0, c1 = 0.

We now state the existence result in the BBM-type case.

Theorem 6.1. Let s > 3
2 . Assume that (η0, u0) ∈ Xs

ǫ3(R) satisfy the (non-
cavitation) condition

(6.2) 1 + ǫη0 ≥ H > 0, H ∈ (0, 1),

Then there exists a constant c̃0 such that for any ǫ ≤ ǫ0 = 1−H
c̃0(|η0|Xs

ǫ3
+|u0|Xs

ǫ3
) ,

there exists T > 0 independent of ǫ, such that (6.1)(the BBM-type case) with the
initial data (η0, u0) has a unique solution (η, u) with (η, u) ∈ C([0, T/ǫ];Xs

ǫ3(R)).
Moreover,

(6.3) max
t∈[0,T/ǫ]

(|η|Xs
ǫ3

+ |u|Xs
ǫ3
) ≤ c̃(|η0|Xs

ǫ3
+ |u0|Xs

ǫ3
).

Proof. The proof of the theorem is similar to that in the previous subsection and we
only sketch it. Denoting by U = (η, u)T , (6.1) (the BBM-type case) is equivalent
to the following condensed system

(6.4) M0(∂x)Ut +M(U, ∂x)U = 0,

where

M0(∂x) = diag
(
1− bǫ∂2

x + b1ǫ
2∂4

x, 1− dǫ∂2
x + d1ǫ

2∂4
x

)
,

M(U, ∂x) = (mij)i,j=1,2 with



BOUSSINESQ SYSTEMS II 57

m11 = ǫ(1− bǫ∂2
x)(u∂x) + (a+ b− 1

3
)ǫ2uxx∂x,

m12 = (1 + aǫ∂2
x)∂x + ǫ(1− bǫ∂2

x)(η∂x) + (a+ b− 1

3
)ǫ2η∂3

x,

m21 = (1 + cǫ∂2
x)∂x + ǫ2∂x(η∂

2
x),

m22 = ǫ(1 + cǫ∂2
x)(u∂x)− (c+ d− 1)ǫ2uxx∂x − (c+ d)ǫ2u∂3

x.

We could search the symmetrizer of both M0 and M as follows:

S = diag
(
1 + cǫ∂2

x + ǫ2η∂2
x, 1 + ǫη + aǫ∂2

x + (a− 1

3
)ǫ2η∂2

x

)
.

We define the energy functional associated to (6.4) as

Es(U) = (M0Λ
sU |SΛsU)2.

It is easy to check that under the assumption (6.2) and the assumption that

(6.5) ǫ|η|∞ + ǫ|∂xη|∞ ≪ 1,

there holds

(6.6) Es(U) ∼ |η|2Xs
ǫ3

+ |u|2Xs
ǫ3
.

As usual, we get by a standard energy estimate that

(6.7)

d

dt
Es(U) = (M0Λ

sUt | (S + S∗)ΛsU)2 + (ΛsU | [M0, S]Λ
sUt)2

+ (M0Λ
sU | ∂tSΛsU)2

= −(M(U, ∂x)Λ
sU | (S + S∗)ΛsU)2 − ([Λs,M(U, ∂x)]U | (S + S∗)ΛsU)2

+ (ΛsU | [M0, S]Λ
sUt)2 + (M0Λ

sU | ∂tSΛsU)2

=
def

I + II + III + IV.

Estimate for I. We first compute

− (M(U, ∂x)Λ
sU |SΛsU)2

= −(m11Λ
sη | (1 + cǫ∂2

x + ǫ2η∂2
x)Λ

sη)2

− {(m12Λ
su | (1 + cǫ∂2

x + ǫ2η∂2
x)Λ

sη)2

+ (m21Λ
sη | (1 + ǫη + aǫ∂2

x + (a− 1

3
)ǫ2η∂2

x)Λ
su)2}

− (m22Λ
su | (1 + ǫη + aǫ∂2

x + (a− 1

3
)ǫ2η∂2

x)Λ
su)2

=
def

I1 + I2 + I3.

For I1, integrating by parts yields

I1 =
ǫ

2
(∂x

(
u+ (a+ b− 1

3
)ǫuxx

)
Λsη |Λsη)2

+
ǫ2

2
(∂x

(
(u+ (a+ b− 1

3
)ǫuxx)(c+ ǫη)

)
∂xΛ

sη | ∂xΛsη)2

− bǫ2

2
(∂xu∂xΛ

sη | ∂xΛsη)2 −
bǫ3

2
(∂x

(
(c+ ǫη)u

)
∂2
xΛ

sη | ∂2
xΛ

sη)2

+ bǫ3(∂2
xu∂xΛ

sη | (c+ ǫη)∂2
xΛ

sη)2 + 2bǫ3(∂xu∂
2
xΛ

sη | (c+ ǫη)∂2
xΛ

sη)2
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which along with the interpolation inequality (4.2) and the assumption (6.5) implies
that

(6.8) |I1| . ǫ|u|Xs
ǫ3
|η|2Xs

ǫ3
.

For I2, integrating by parts gives rise to

I2 = (ǫ∂xηΛ
su+ (a− 1

3
)ǫ2∂xη∂

2
xΛ

su | (1 + cǫ∂2
x + ǫ2η∂2

x)Λ
sη)2

+ bǫ2(∂2
xη∂xΛ

su+ 2∂xη∂
2
xΛ

su | (1 + cǫ∂2
x + ǫ2η∂2

x)Λ
sη)2,

which along with (4.2) and (6.5) implies that

(6.9) |I2| . ǫ|u|Xs
ǫ3
|η|2Xs

ǫ3
.

For I3, we could derive as for I1 that

(6.10) |I3| . ǫ|u|3Xs
ǫ3
.

Thanks to (6.8), (6.9) and (6.10), we obtain

|(M(U, ∂x)Λ
sU |SΛsU)2| . ǫ|u|Xs

ǫ3
(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
).

The same estimate holds for term (M(U, ∂x)Λ
sU |S∗ΛsU)2. Then we obtain

(6.11) |I| . ǫ|u|Xs
ǫ3
(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
).

Estimate for II. We first calculate that

|II| . |[Λs,M(U, ∂x)]U |2|(S + S∗)ΛsU |2
. |[Λs,M(U, ∂x)]U |2(|η|Xs

ǫ3
+ |u|Xs

ǫ3
)

provided that

(6.12) ǫ|η|Xs
ǫ3

< 1.

Thanks to the expression of M(U, ∂x), (4.2) and Lemma 3.2, we get that

|[Λs,M(U, ∂x)]U |2 . ǫ|(1− bǫ∂2
x)
(
[Λs, u]∂xη

)
|2 + ǫ2|[Λs, uxx]∂xη|2

+ ǫ2|∂x
(
[Λs, η]∂2

xη
)
|2 + ǫ|(1− bǫ∂2

x)
(
[Λs, η]∂xu

)
|2 + ǫ2|[Λs, η]∂3

xu|2
+ ǫ|(1 + cǫ∂2

x)
(
[Λs, u]∂xu

)
|2 + ǫ2|[Λs, uxx]∂xu|2 + ǫ2|[Λs, u]∂3

xu|2
. ǫ(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
).

Then we obtain that

(6.13) |II| . ǫ(|η|2Xs
ǫ3

+ |u|2Xs
ǫ3
)

3
2 .

Estimate for III. Using the expressions of M0 and S, we have

III = ǫ2(Λsη | (1− bǫ∂2
x + b1ǫ

2∂4
x)(η∂

2
xΛ

sηt)− η∂2
x(1 − bǫ∂2

x + b1ǫ
2∂4

x)Λ
sηt)2

+ ǫ(Λsu | (1− dǫ∂2
x + d1ǫ

2∂4
x)(ηΛ

sut)− η(1− dǫ∂2
x + d1ǫ

2∂4
x)Λ

sut)2

+ (a− 1

3
)ǫ2(Λsu | (1− dǫ∂2

x + d1ǫ
2∂4

x)(η∂
2
xΛ

sut)− η∂2
x(1 − dǫ∂2

x + d1ǫ
2∂4

x)Λ
sut)2

=
def

III1 + III2 + III3.
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Now we rewrite III1, III2, III3 as follows:

III1 = −ǫ2([−bǫ∂2
x + b1ǫ

2∂4
x, η]Λsη | ∂2

xΛ
sηt)2

III2 = ǫ(Λsu | [−dǫ∂2
x + d1ǫ

2∂4
x, η]Λsut)2

III3 = −(a− 1

3
)ǫ2([−dǫ∂2

x + d1ǫ
2∂4

x, η]Λsu | ∂2
xΛ

sut)2

which along with (4.2) and Lemma 3.2, we obtain

(6.14) |III| . ǫ(|η|2Xs
ǫ3

+ |u|2Xs
ǫ3
)(|ηt|Xs−1

ǫ4
+ |ut|Xs−1

ǫ4
).

Estimate for IV . Using the expressions of M0 and S, we get that

IV = ǫ2((1 − bǫ∂2
x + b1ǫ

2∂4
x)Λ

sη | ηt∂2
xΛ

sη)2

+ ((1 − dǫ∂2
x + d1ǫ

2∂4
x)Λ

su | ǫηtΛsu+ (a− 1

3
)ǫ2ηt∂

2
xΛ

su)2,

which along with (4.2) implies that

(6.15)
|IV | . ǫ(|ηt|∞ + ǫ

1
2 |∂xηt|∞)(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
),

. ǫ|ηt|Xs−1

ǫ4
(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
).

Thanks to (6.7), (6.11), (6.13), (6.14) and (6.15), we get that

d

dt
Es(U) . ǫ(|η|Xs

ǫ3
+ |u|Xs

ǫ3
+ |ηt|Xs−1

ǫ4
+ |ut|Xs−1

ǫ4
)(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
).

Go back to (6.1), we get that

|ηt|Xs−1

ǫ4
+ |ut|Xs−1

ǫ4
. (|η|Xs

ǫ3
+ |u|Xs

ǫ3
)(1 + ǫ|η|Xs

ǫ3
+ ǫ|u|Xs

ǫ3
) . |η|Xs

ǫ3
+ |u|Xs

ǫ3
,

provided that

(6.16) ǫ|η|Xs
ǫ3

< 1.

Then we get that

d

dt
Es(U) . ǫ(|η|Xs

ǫ3
+ |u|Xs

ǫ3
)(|η|2Xs

ǫ3
+ |u|2Xs

ǫ3
).

which along with (6.6) implies that

(6.17)
d

dt
Es(U) . ǫEs(U)

3
2 .

Thus, using similar arguments as in the previous subsections, we can deduce from
(6.17) that there exists T > 0 independent of ǫ such that (6.1)(the BBM-type case)
has a unique solution on time interval [0, T/ǫ] with initial data (η0, u0). Moreover
(6.3) holds . Theorem 6.1 is proved. �

6.2. A Boussinesq-Full dispersion system for internal waves. A systematic
derivation of asymptotic internal waves models describing waves at the interface
of a two-fluids system with a rigid top is given in [8]. We will consider here a
specific regime leading to a Boussinesq-Full dispersion system for which the long
time existence result is still open. We recall first the relevant parameters. The
index 1 stands for the upper layer and 2 for the lower one.

γ = ρ1

ρ2
< 1 is the ratio of densities, δ = d1

d2
the ratio of typical heights of the

layers, λ a typical wavelength, a a typical amplitude of the wave.

We denote ǫ = a
d1
, µ =

d2
1

λ , ǫ2 = a
d2

= ǫδ, µ2 =
d2
2

λ2 = µ
δ2 .
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We consider here the regime where µ ∼ ǫ ≪ 1, (µ = ǫ ≪ 1 from now on) and
µ2 ∼ 1.

It is shown in [8] that in this regime (for which one also has δ2 ∼ ǫ and thus
ǫ2 ∼ ǫ3/2 ≪ 1), and in absence of surface tension, the two-layers system is consistent
with the three-parameter family of Boussinesq/FD systems
(6.18)




(1 − µb∆)∂tζ +
1
γ∇ ·

(
(1 − ǫζ)vβ

)

−
√
µ

γ2 |D| coth(√µ2|D|)∇ · vβ + µ
γ

(
a− 1

γ2 coth
2(
√
µ2|D|)

)
∆∇ · vβ = 0

(1 − µd∆)∂tvβ + (1− γ)∇ζ − ǫ
2γ∇|vβ |2 + µc(1− γ)∆∇ζ = 0,

where vβ = (1 − µβ∆)−1
v and the constants a, b, c and d are defined as

a =
1

3
(1− α1 − 3β), b =

1

3
α1, c = βα2, d = β(1 − α2),

with α1 ≥ 0, β ≥ 0 and α2 ≤ 1. Note that a+ b+ c+ d = 1
3 .

It is easily checked that (6.18) is linearly well posed when

a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0.

The local well-posedness of the Cauchy problem for (6.18) was considered in [14]
in the following cases

(1) b > 0, d > 0, a ≤ 0, c < 0;
(2) b > 0, d > 0, a ≤ 0, c = 0;
(3) b = 0, d > 0, a ≤ 0, c = 0;
(4) b = 0, d > 0, a ≤ 0, c < 0;
(5) b > 0, d = 0, a ≤ 0, c = 0.

On the other hand, we do not know of any long time existence results for (6.18)
that is existence on time scales of order 1/ǫ. This issue will be considered in a
subsequent paper [37].

6.3. A full dispersion Boussinesq system. One obtains a full dispersion system
when in the Boussinesq regime by keeping the original dispersion of the water
waves system (see [29], [19], and [2] where interesting numerical simulations of the
propagation of solitary waves are performed). 7

They read, setting Tǫ = tanh
√
ǫ|D|√

ǫ|D| , D = −i∇ :

(6.19)

{
ηt + Tǫux + ǫ(ηu)x = 0
ut + ηx + ǫuux = 0,

when d = 1 and

(6.20)

{
ηt + Tǫ∇ · u+ ǫ∇ · (ηu) = 0
ut +∇η + ǫ

2∇|u|2 = 0,

when d = 2.
Taking the limit

√
ǫ|ξ| → 0 in Tǫ, (6.19) reduces formally to

(6.21)

{
ηt + ux + ǫ

3uxxx + ǫ(ηu)x = 0
ut + ηx + ǫuux = 0,

7As noticed in [2] the use of nonlocal models for shallow water waves is also suggested in [41].
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while in the two-dimensional case, (6.20) reduces in the same limit to

(6.22)

{
ηt +∇ · u+ ǫ

3∆∇ · u+ ǫ∇ · (ηu) = 0
ut +∇η + ǫ

2∇|u|2 = 0,

that is to the (linearly ill-posed) system one gets first by expanding to first order
the Dirichlet to Neumann operator with respect to ǫ in the full water wave system
(see [29]).

System (6.21) is also known in the Inverse Scattering community as the Kaup
system (see [21, 26]). It is completely integrable though linearly ill-posed since the
eigenvalues of the dispersion matrix are ±iξ(1 − ǫ

3ξ
2)1/2. The Boussinesq system

(6.19) can therefore be seen as a (well-posed) regularization of the Kaup system.
Whether or not it is completely integrable is an open question.

The full dispersion Boussinesq systems have the following Hamiltonian structure

∂t

(
η
u

)
+ Jgrad Hǫ(η,u) = 0

where

J =




0 ∂x ∂y
∂x 0 0
∂y 0 0


 ,

Hǫ(U) =
1

2

∫

R2

(
|T 1/2

ǫ u|2 + η2 + ǫη|u|2
)
dxdy,

U =

(
η
u

)
,

when d = 2 and

∂t

(
η
u

)
+ Jgrad Hǫ(η, u) = 0

where

J =

(
0 ∂x
∂x 0

)

and

Hǫ(η, u) =
1

2

∫

R

(|T 1/2
ǫ u|2 + η2 + ǫu2η)dx,

when d = 1.
Note that the full dispersion Boussinesq system (6.19) can be viewed as the

two-way propagation counterpart of the Whitham equation (see [40] and [29] for a
rigorous derivation):

(6.23) ηt + (Tǫ)1/2 ux + ǫuux = 0

which displays a very rich dynamics (see [20, 25] and the references therein).
When surface tension is taken into account, one should replace the operator Tǫ

by Pǫ = (I + βǫ|D|2)1/2
(

tanh(
√
ǫ|D|)√

ǫ|D|

)
where the parameter β > 0 measures surface

tension (see [29]), yielding a more dispersive full dispersion Boussinesq system.
When β > 1

3 , this full dispersion Boussinesq system yields, taking the limit
√
ǫ|ξ| →

0 in Pǫ, Boussinesq systems of the class a < 0, b = c = d = 0 for which long time
well-posedness is established in Theorem 4.5.

Again we refer to a future work [37] for the study of the Cauchy problem asso-
ciated to (6.19), (6.20).
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7. Concluding remarks

1. So far we have encounter only two possibilities for the lifespan Tǫ of solutions
to Boussinesq systems. Either Tǫ = +∞, for a few one-dimensional systems, or
Tǫ = O(1/ǫ) for essentially all the admissible (linearly well-posed) systems. One
may ask whether another possibility might occur. In view of what happens in the
scalar case (the fractionary KdV equation, see [31]) one could conjecture that there
is no other possibility, at least in the one-dimensional case and when the natural
no cavitation condition is imposed on the initial data. Note that no general criteria
preventing blow-up in finite time seem to be known for Boussinesq systems except
in the one-dimensional "BBM/BBM" system (a = c = 0, b > 0, d > 0) for which it
is proven in [1] that a uniform control on |1+ǫη(·, t)|∞ prevents finite time blow-up.

2. Coming back to (1.1), we remark that all long time existence results in the
present paper hold true for (1.1) if one fixes µ > 0 and let ǫ tends to 0.
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