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Abstract

As a phase space language for quantum mechanics, the Wigner function
approach bears a close analogy to classical mechanics and has been drawing
growing attention, especially in simulating quantum many-body systems. How-
ever, deterministic numerical solutions have been almost exclusively confined
to one-dimensional one-body systems and few results are reported even for
one-dimensional two-body problems. This paper serves as the first attempt
to solve the time-dependent many-body Wigner equation through a grid-based
advective-spectral-mixed method. The main feature of the method is to re-
solve the linear advection in (x, t)-space by an explicit three-step characteristic
scheme coupled with the piecewise cubic spline interpolation, while the Cheby-
shev spectral element method in k-space is adopted for accurate calculation of
the nonlocal pseudo-differential term. Not only the time step of the resulting
method is not restricted by the usual CFL condition and thus a large time step
is allowed, but also the mass conservation can be maintained. In particular,
for the system consisting of identical particles, the advective-spectral-mixed
method can also rigorously preserve physical symmetry relations. The per-
formance is validated through several typical numerical experiments, like the
Gaussian barrier scattering, electron-electron interaction and a Helium-like sys-
tem, where the third-order accuracy against both grid spacing and time stepping
is observed.

Keywords: Many-body Wigner equation; semi-Lagrangian method; Pauli ex-
clusion principle; Chebyshev spectral method; Adams multistep scheme; quan-
tum transport

1 Introduction

Ever since its invention in 1932, the Wigner function (or (quasi) distribution)
has provided a convenient way to render quantum mechanics in phase space [1]. It
allows one to express macroscopically measurable quantities, such as currents and
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heat fluxes, in statistical forms as usually does in classical statistical mechanics [2–4],
thereby facilitating its applications in nanoelectronics [5,6], non-equilibrium statistical
mechanics [7] and quantum optics [8]. Actually, a whole branch of experimental
physics exists, known as quantum tomography, which purpose is reconstructing the
Wigner function from measurements [9,10]. The most appealing feature of the Wigner
equation is that, distinct from the Schrödinger wavefunction approach, it shares many
analogies to the classical mechanism and simply reduces to the classical counterpart
when the reduced Planck constant vanishes [11]. Besides, the intriguing mathematical
structure of the Wigner equation has also been employed in some advanced topics,
such as the deformation quantization [12].

Despite its great advantages, solving the Wigner equation has presented one of the
most mathematical challenging problems, since the partial integro-differential equa-
tion is defined over 2 × d × N -dimensional phase space, where d is the dimension of
space and N is the number of involved particles, making it even more complicated
than the many-body Schrödinger equation. For the one-dimensional one-body situa-
tion, the first try conducted by Frensely in simulating the resonant tunneling diode
uses the first-order upwind finite difference method (FDM) [13,14] and after that sev-
eral second-order FDMs were introduced [6, 15]. Later, a plane wave approximation
of the Wigner function [16] and an operator splitting scheme [17, 18] were proposed.
Recently, several high-order methods have been well designed to capture accurately
strong quantum effects, such as a cell average spectral element method (SEM) [19],
moment methods [20, 21], a WENO-solver [22], etc. Among all those solvers, the
cell average SEM has proven to be very reliable as it presents a simple but natural
(precise) way to discretize the pseudo-differential term and avoids tremendously the
artificial dissipation for the advection process [19]. It has to be noted that, to our
knowledge, all aforementioned deterministic methods have not yet been extended to
many-body Wigner simulations [23], even for the one-dimensional two-body case.

Very recently, a Monte Carlo method (MCM) based on signed particles for many-
body Winger simulations has attracted a lot of attention due to its simplicity as
well as the satisfactory scaling on parallel machines [23–25]. It has enabled a direct
simulation of many-body Wigner problems, such as the strongly correlated indistin-
guishable fermions [26], and its accuracy for the one-dimensional one-body problem
has been validated by comparing with the cell average SEM [27]. Despite the promis-
ing progress, it has also been mentioned that particle-based stochastic methods might
not be very suitable for the problems where phase space quantities vary over several
orders of magnitude [28]. Moreover, the highly oscillating structure of the Wigner
function due to the spatial coherence [10, 11] makes it a challenging task for both
deterministic and stochastic methods to capture precisely the quantum interference
and correlation. To give a better description of the quantum phenomena in a wider
dynamic range and, at least, to provide a reliable reference solution for stochastic
methods, high-order accurate deterministic methods for many-body Wigner simula-
tions are highly needed.

This work serves as the first attempt for accurate deterministic numerical solutions
of the many-body Wigner transport equation, instead of resorting to the Wigner paths
or many-body Schrödinger equations [29]. To resolve the nonlocal pseudo-differential
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term, we adopt the Chebyshev spectral element method [19] in k-space for it accu-
rately resolves the oscillations of the Wigner function, and avoids the artificial peri-
odization at the same time. Another major obstacle lies in the discretization of the
advection term, because time steps employed by explicit Runge-Kutta integrators are
strictly limited by the Courant-Friedrichs-Lewy (CFL) condition, thereby hampering
the efficiency. The first-order upwind FDM, although alleviating this restriction, fails
to provide satisfactory results due to the numerical dissipation [6,19]. In order to over-
come this obstacle, a semi-Lagrangian-type characteristic method, which tracks the
exact Lagrangian advection on the spatial space grid in x-space, will be introduced in
this work. The resulting advective-spectral-mixed method relaxes the CFL restriction
on the time step and ameliorates the numerical dissipation significantly. Moreover, it
maintains the mass conservation and shows the third-order accuracy against both grid
spacing and time stepping when an explicit Adams three-step method [30] coupled
with the piecewise cubic spline interpolation [31] is implemented.

The proposed advective-spectral-mixed method allows us to study the quantum
dynamics of two identical particles in phase space. We will illustrate how the physical
symmetry relation is naturally embedded in the Wigner equation and preserved by the
advective-spectral-mixed method. In fact, the effect of the Pauli exclusion principle
and the uncertainty principle can be shown directly in phase space by simulating the
electron-electron scattering and a Helium-like system.

The rest of the paper is organized as follows. In Section 2, we briefly review the
many-body Wigner formalism with a discussion on the physical symmetry relation
for a quantum system composed of identical particles. In Section 3, the advective-
spectral-mixed method is presented, while related numerical analysis is given in Sec-
tion 4. Section 5 conducts several typical numerical experiments to verify the accuracy
and convergence of the proposed method, and also shows the quantum dynamics of
two electrons under different potentials in phase space. Concluding remarks and fur-
ther discussions are delineated in Section 6.

2 The many-body Wigner formalism

In this section, we briefly review the Wigner representation of quantum mechanics,
and study physical symmetry relations for a system composed of identical particles.
For numerical purpose, the truncated Wigner equation is introduced by exploiting the
decay of the Wigner function for large wavenumbers, and then a sufficient and neces-
sary condition for such truncated Wigner equation to maintain the mass conservation
is derived.

2.1 The Wigner equation

The Wigner function f(x,k, t) living in the phase space (x,k) ∈ R2dN for the
position x and the wavevector k, introduced by Wigner in his pioneering work [1], is
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defined by the Weyl-Wigner transform of the density matrix ρ(r, s, t),

ρ (r, s, t) =
∑
i

piψi (r, t)ψ
†
i (s, t) ,

f (x,k, t) =

∫
RNd

dye−ik·yρ
(
x +

y

2
,x− y

2
, t
)
,

(1)

where pi gives the probability of occupying the i-th state, N is the number of involved
particles, and d denotes the dimension of space. Starting from the quantum Liouville
equation, we are able to evaluate the derivative of the Wigner function and then arrive
at the Wigner equation

∂

∂t
f (x,k, t) +

~k
m
· ∇xf (x,k, t) = ΘV [f ] (x,k, t) , (2)

where

ΘV [f ] (x,k, t) =

∫
dk′f (x,k′, t)Vw (x,k − k′, t) , (3)

Vw (x,k, t) =
1

i~ (2π)N ·d

∫
dye−ik·yDV (x,y, t) , (4)

DV (x,y, t) = V
(
x +

y

2
, t
)
− V

(
x− y

2
, t
)
. (5)

Here the nonlocal pseudo-differential term ΘV [f ](x,k, t) contains the quantum infor-
mation, DV (x,y, t) denotes a central difference of the potential function V (x, t), the
Wigner kernel Vw(x,k, t) is defined through the Fourier transform of DV (x,y, t), ~ is
the reduced Planck constant and m is the particle mass (for simplicity, we assume all
N particles have the same mass throughout this work).

The Wigner function f(x,k, t) can be used to calculate the particle density n(x, t)
and the current density j(x, t) by

n (x, t) =

∫
f (x,k, t) dk, (6)

j (x, t) =
~
m

∫
kf (x,k, t) dk. (7)

Since it is easy to verify that∫
dk

∫
dk′f (x,k′, t)Vw (x,k − k′, t) = 0, (8)

we can derive the continuity equation

∂

∂t
n (x, t) +∇x · j (x, t) = 0, (9)

which corresponds to the conservation of the first moment (i.e., total particle number
or mass)

d

dt

∫∫
f (x,k, t) dxdk = 0. (10)
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Furthermore, if the potential V (x, t) allows a Taylor expansion in x-space, then
DV (x,y, t) depends only on the odd derivatives, as shown in the following

DV (x,y, t) = i~
+∞∑
l=0

(i~/2)2l

(2l + 1)!
∇2l+1

x V (x, t) ·
(
−iy

~

)2l+1

. (11)

Substituting Eq. (11) into Eq. (4) and using the basic properties of Fourier transform,
we can readily obtain the Moyal expansion of the Wigner equation [5, 8]

∂

∂t
f +

p

m
· ∇xf =∇xV · ∇pf

+
+∞∑
l=1

(−1)l

(2l + 1)!

(
~
2

)2l

∇2l+1
x V · ∇2l+1

p f,
(12)

where p = ~k is the momentum. It can be easily observed there that, when ~ → 0,
the Wigner equation reduces immediately to the classical Vlasov equation [32], the
Liouville part of the Boltzmann equation; the quantum evolution governed by the
Wigner potential couples all odd derivatives of the potential, whereas the classical
evolution is determined only by the first derivative. That is, within the phase space
formalism of quantum mechanics, quantum dynamics can be naturally connected to
classical dynamics [11] and thus a unified treatment of both is possible [24].

2.2 Physical symmetry relation

As the simplest but most appealing many-body problem, the system composed of
identical particles has been extensively studied, where symmetry relations play a key
role. Next we will investigate those symmetry relations within the Wigner function
formalism. Hereafter the formulation will be mostly illustrated for the one-dimensional
two-body situation for simplicity, and generalization to arbitrary-sized phase space is
straightforward.

The one-dimensional two-body Wigner function for a pure state reads

f (x1, x2, k1, k2, t) =

∫∫
dy1dy2e

−ik1y1−ik2y2

× ψ
(
x1 +

y1

2
, x2 +

y2

2
, t
)
ψ†
(
x1 −

y1

2
, x2 −

y2

2
, t
)
,

(13)

where ψ (x1, x2, t) is the wave function describing a quantum system composed of
two identical particles, and the superscript † denotes the complex conjugate. When
the position coordinates of two identical particles are interchanged, the wavefunction
ψ (x1, x2, t) either remains unaffected for bosons or changes sign for fermions. In
contrast, the Wigner function f(x1, x2, k1, k2, t) satisfies the same symmetry relation
for both cases [33]

f (x1, x2, k1, k2, t) = f (x2, x1, k2, k1, t) , (14)

which can be also readily verified from Eq. (13). Actually, we will further show that
the Wigner equation holds the symmetry relation (14) when time evolves provided
that

V (x1, x2, t) = V (x2, x1, t) . (15)

5



Before that, for convenience, the Wigner equation (2) is reformulated into the following
evolution system of the initial value problem,{

∂tf − Af −B (t) f = 0, t ∈ [0, T ] ,

f (t = 0) = f0 ∈ L2
(
R4
)
,

(16)

where the operators A and B(t) are defined as follows

A : f ∈ D(A)→ Af = − ~
m
k · ∇xf ∈ L2

(
R4
)
, (17)

B(t) : f ∈ L2
(
R4
)
→ B (t) f = ΘV f ∈ L2

(
R4
)
, (18)

with D (A) = {f ∈ L2 (R4) : k · ∇xf ∈ L2 (R4)}. When V (x, t) is bounded, we have
the following estimate [18]

‖B (t)‖L2(R4) ≤ 2 ‖V (x, t)‖L∞(R2) , (19)

which ensures the boundness of B(t).

Proposition 1. Let σ : L2(R4)→ L2(R4) be an isomorphism, defined as

σf (x1, x2, k1, k2, t) = f (x2, x1, k2, k1, t) . (20)

Then σf = f for t ∈ [0, T ] if the following conditions are satisfied:
(H1) f ∈ C1 ([0, T ] : L2 (R4));
(H2) B (t) is bounded for t ∈ [0, T ];
(H3) V (x1, x2, t) satisfies Eq. (15);
(H4) σf0 = f0.

Proof. According to Theorem 2.3 in Chapter 5 [34], A + B(t) is a stable family of
infinitesimal generators in L2 (R4) for a hyperbolic system and B(t) is bounded (see
(H2)). Consequently, Theorem 5.3 in Chapter 5 [34] further guarantees the existence
and uniqueness of a classical solution f for the Wigner system (16) provided that (H1)
is satisfied.

Let A1 = σAσ−1 and D (A1) = {f ∈ L2 (R4) : σ−1f ∈ D (A)}. By the chain rule,
it can be easily verified that(

k1
∂

∂x1

+ k2
∂

∂x2

)
σf = σ

(
k1

∂

∂x1

+ k2
∂

∂x2

)
f, ∀f ∈ D (A1) . (21)

By the definition of B (t) in Eq. (18) and the condition (H3), direct algebraic calcu-
lations yield

σB (t) = B (t)σ. (22)

Hence, combining Eqs. (16), (20), (21) and (22) leads to

∂tσf = σ∂tf = σ (A+B (t)) f = (A+B (t)) (σf) , (23)

which implies that σf is also a classical solution of the system (16). In consequence,
we have σf = f for t ∈ [0, T ] due to the uniqueness and the condition (H4).
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Although Proposition 1 seems not very difficult, the physical implication is quite
important, because it tells us that the Pauli exclusion principle for fermions is nat-
urally embedded in the Wigner equation, provided that the initial data corresponds
to the antisymmetric wave functions. More importantly, we will show later that such
symmetry relation can be still inherited by the numerical solutions calculated from
the proposed advective-spectral-mixed method (see Section 4.2).

2.3 The truncated Wigner equation

As shown in the Wigner equation (2), the nonlocal pseudo-differential term poses
the first challenge in seeking approximations for the Wigner function. Considering
the decay of the Wigner distribution when |k| → +∞ due to the Riemann-Lebesgue
lemma, a simple nullification of the distribution outside a sufficiently large k-domain
is employed in this paper. It should be noted that truncating the infinite series in the
Moyal expansion (12) provides another way for numerical purpose [35], but we will not
use it in this work. Suppose the Wigner function f(x,k, t) is sought in a sufficiently
large k-domain, denoted by K1 × K2 with the size |Ki| = ki,max − ki,min (i = 1, 2).
Then the truncated Wigner equation reads

∂

∂t
f (x,k, t) +

~k
m
· ∇xf (x,k, t) = ΘT

V [f ] (x,k, t) , (24)

ΘT
V [f ] (x,k, t) =

∫∫
K1×K2

dk′f (x,k′, t)V T
w (x,k − k′) , (25)

where (and hereafter) we have only considered the time-independent potential. Since
the k-integration in Eq. (25) ranges in a finite region K1 × K2, we only need the
information of the Wigner kernel on a finite bandwidth, i.e., the truncated Wigner
kernel of the following form

V T
w (x1, x2, k1, k2) = Vw (x1, x2, k1, k2) rect

(
k1

2|K1|

)
rect

(
k2

2|K2|

)
, (26)

where rect(k) is the rectangular function

rect (k) =


1, |k| < 1

2
,

0, |k| ≥ 1

2
.

(27)

It can be readily verified that Proposition 1 still holds for the truncated Wigner
equation (24) provided K1 = K2. That is, the physical symmetry relation (14) is also
preserved by the truncated Wigner function.

On the other hand, starting from the Poisson summation formula for the Wigner
kernel Vw in the whole phase space (see Eq. (4))

+∞∑
n1=−∞

+∞∑
n2=−∞

Vw

(
x1, x2, k1 + n1

2π

∆y1

, k2 + n2
2π

∆y2

)

=
1

4i~π2

+∞∑
µ=−∞

+∞∑
ν=−∞

∆y1∆y2DV (x1, x2, yµ, yν) e
−ik1yµ−ik2yν ,

(28)
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where yµ = µ∆y1 and yν = ν∆y2 with ∆yi (i = 1, 2) being the spacing in y-space, we
can easily obtain

V T
w (x1, x2, k1, k2) =

∆y1∆y2

4i~π2

+∞∑
µ=−∞

+∞∑
ν=−∞

DV (x1, x2, yµ, yν) e
−ik1yµ−ik2yν , (29)

provided that the central period [−π/∆y1, π/∆y1] × [−π/∆y2, π/∆y2] contains the
computational domain K1 × K2. That is, Eq. (29) holds only under the Nyquist
condition

|Ki|∆yi ≤ 2π, i = 1, 2. (30)

Moreover, from Eq. (8), in order to maintain the mass conservation, for any yµ
and yν , it is required that ∫∫

K1×K2

e
−ik1yµ−ik2yνdk1dk2 = 0, (31)

which can be achieved by a sufficient condition [13,19]

|Ki|∆yi = 2π, i = 1, 2. (32)

In summary, combining Eqs. (30) and (32) implies that the above constraint on the
length of k-domain is not only sufficient but also necessary, which may be pointed
out for the first time in the literature.

3 Numerical scheme

This section is devoted into elaborating our advective-spectral-mixed method for
time-dependent many-body Wigner simulations in two aspects. The first lies that a
semi-Lagrange-type characteristic method [32, 36] in (x, t)-space will adopted. This
advective approximation of the Wigner equation fully exploits the integral formula-
tion based on the semigroup theory and exactly follows the spatial characteristic lines
backward in time. That is, it can be implemented in an explicit way with the help of
the Adams multistep solvers as well as piecewise spline interpolations. More impor-
tantly, it allows large time steps for it is not restricted by the usual CFL condition.
The second aspect is the spectral element method [37], a natural choice regarding to
the Fourier transform nature of the Wigner potential [19], will be employed to discrete
the nonlocal pseudo-differential term. This spectral discretization is able to give rise
to a close representation of the pseudo-differential term and provides a highly accu-
rate approximation because all integrals are analytically implemented in virtue of the
global spectral expansion in k-space.

Now we want to solve the truncated Wigner equation (24) in a finite domain
X1 ×X2 ×K1 ×K2. A uniform grid mesh with the spacing ∆xi (i = 1, 2) in x-space

X1 ×X2 =
⋃
q1,q2

Xq1,q2 , Xq1,q2 = [x1,q1−1, x1,q1 ]× [x2,q2−1, x2,q2 ] , (33)

xi,0 = xi,min, xi,qi = xi,min + (qi − 1)∆xi, i = 1, 2, (34)
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is used, while the k-domain is divided into M1M2 non-overlapping elements as follows

K1 ×K2 =

M1⋃
r1=1

M2⋃
r2=1

Kr1 ×Kr2 , (35)

with Kri = [dri , dri+1], and then the Gauss-Chebyshev collocation points [19] will be
chosen in each element.

3.1 The advective approach in (x, t)-space

The essential difference between the Wigner equation and the classical Vlasov
equation lies in the nonlocal nature of the Wigner kernel, making it entirely not
trivial to follow the characteristic lines in k-space. To this end, the integral form of
the truncated Wigner equation (24) using the semigroup theory [34] is the start point
now, instead of the operator splitting scheme [32]. For simplicity, let

g (x,k, t) = ΘT
V [f ] (x,k, t) . (36)

Applying the variation-of-constant formula [34] into the Wigner equation (16) leads
to the following equivalent integral formulation

f (x,k, t) = e
(t−t0)Af (x,k, t0) +

∫ t

t0

e
(t−τ)Ag (x,k, τ) dτ. (37)

The operator T (∆t) = e
∆tA is a C0-semigroup of isometries on L2(R4), describing

the Lagrangian advection in (x, t)-space

T (∆t) f (x,k, τ) = f (X (τ + ∆t;x, τ) ,k, τ) , (38)

where ∆t is the time increment, and X(t;x0, t0) is the spatial characteristic curve at
the end time t, starting from x0 and t0, and satisfies the following dynamic system

dX (t;x0, t0)

dt
= −v, X (t0;x0, t0) = x0, t ≥ t0, (39)

with the velocity v = ~k/m. Since the solution of Eq. (39) is explicitly given by

X (t;x0, t0) = x0 − v (t− t0) , (40)

Eq. (38) turns out to be

T (∆t) f (x,k, τ) = f (x (∆t) ,k, τ) = f (x− v∆t,k, τ) , (41)

where x(∆t) denotes the displacement occurring in the time interval ∆t. Let tn =
n∆t. Then combining Eqs. (37) and (41) yields

f
(
x,k, tn+1

)
=f
(
x
(
tn+1 − tn

)
,k, tn

)
+

∫ tn+1

tn
g
(
x
(
tn+1 − τ

)
,k, τ

)
dτ, (42)
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which constitutes the main object for numerical approximations.
The first approximation comes from replacing the integrand g (x (tn+1 − τ) ,k, τ)

in Eq. (42) with a Lagrangian polynomial in the spirit of the Adams multistep solvers.
The general p-step formula for approximating Eq. (42) usually reads

fn+1 (x,k) = fn (x− v∆t,k) + ∆t

p∑
s=0

γsg
n+1−s (x− sv∆t,k) , (43)

where f l(x,k) (l = n, n+ 1) denotes the numerical approximations of f(x,k, tl) (the
same convention is used for g), and the coefficients γs can be determined through the
root condition and certain algebraic relations (for details, one can refer to [30]). In
this work, we will use three typical solvers as shown below.

• Explicit Euler method

fn+1 (x,k) = fn (x− v∆t,k) + ∆tgn (x− v∆t,k) . (44)

• Implicit midpoint method

fn+1 (x,k) = fn (x− v∆t,k) +
1

2
∆tgn+1 (x,k) +

1

2
∆tgn (x− v∆t,k) . (45)

• Explicit three-step method

fn+1 (x,k) =fn (x− v∆t,k) +
23

12
∆tgn (x− v∆t,k)

− 16

12
∆tgn−1 (x− 2v∆t,k) +

5

12
∆tgn−2 (x− 3v∆t,k) .

(46)

Obviously, the above three methods are of the order O(∆t), O(∆t2), and O(∆t3),
respectively. In practice, low order methods can be used to provide the missing
starting points for high order ones. For example, at the initial stage, the missing two
points needed in the three-step method can be obtained using both Euler and midpoint
methods with a relatively smaller time step in a prediction-correction manner.

The second approximation lies in interpolating the function values, fn(x−v∆t,k)
and gn+1−s(x − sv∆t,k), (s = 0, 1, · · · , p), required by Eq. (43), because the shifted
points (x− sv∆t,k) might not be located exactly at the grids in Eq. (34). For this,
the piecewise cubic spline interpolation is adopted here since it appears to be a good
comprise between accuracy and cost [32, 36]. In general, the piecewise bicubic spline
S (x1, x2) is defined as

S (x1, x2) =
3∑

ν=0

3∑
κ=0

ηνκ (x1 − x1,i)
ν (x2 − x2,j)

κ , (47)

for (x1, x2) ∈ [x1,i, x1,i+1]× [x2,j, x2,j+1], which requires the evaluation of the coefficient
table (ηνκ). For the convenience of numerical analysis, we can equivalently evaluate
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S (x1, x2) by several one-dimensional cubic splines, that yields a more compact formu-
lation. For a fixed (k1, k2) in k-space, we first perform a one-dimensional cubic spline
Cj (x1) for each grid point x2,j in x2-direction,

Cj (x1) =
si+1,j

6∆x1

(x1 − x1,i)
3 +

(
fni+1,j

∆x1

− si+1,j∆x1

6

)
(x− x1,i)

+
si,j

6∆x1

(x1,i+1 − x1)3 +

(
fni,j
∆x1

− si,j∆x1

6

)
(x1,i+1 − x1)

(48)

for any x1 ∈ [x1,i, x1,i+1], and fni,j = f (x1,i, x2,j, k1, k2, t
n) (for brevity, we omit k1, k2).

Once the coefficient table (si,j) is determined, the bicubic splines can be expressed as:

S (x1, x2) =
σj+1 (x1)

6∆x2

(x2 − x2,j)
3 +

(
Cj (x1)

∆x2

− σj+1 (x1) ∆x2

6

)
(x2 − x2,j)

+
σj (x1)

6∆x2

(x2,j+1 − x2)3 +

(
Cj (x1)

∆x2

− σj (x1) ∆x2

6

)
(x2,j+1 − x2)

(49)

for x2 ∈ [x2,j, x2,j+1]. The coefficients (σj (x1)) depend on the interpolated values
Cj (x1) and satisfy

σj (x1) = 0 for x1 /∈ X1, (50)

because the cubic splines are only defined in X1.
The proposed advective approach makes full use of the exact Lagrangian advection

and the integration exactly follows the spatial characteristic lines backward in time.
The time step is not restricted by the usual CFL condition, and thus large time
steps are allowed. This may be the most notable feature of the method. However,
due to the Moyal expansion (12), the time step may be still influenced a little bit
by the deformational Courant number ‖∆t · ∇xV ‖ ≤ 1 as observed in the Vlasov
community [32]. A further remark will be given in numerical experiments (see Section
5.3).

When running simulations in the computational domain X1 × X2 × K1 × K2, the
boundary conditions in x-space are required by the backward characteristic lines.
Usually, the inflow boundary conditions are used in the literature [14, 19, 38]. For
studying an isolated quantum system, this work sets the boundary condition of cubic
splines as not-a-knot type [31] and makes a simple nullification outside a sufficiently
large computational domain. In this way, the outgoing waves move outside the domain
transparently. How to effectively implement the inflow boundary conditions within
the advective approach is still a going-on project.

3.2 The spectral element method in k-space

The remaining task is to deal with the discretization in k-space. Regarding to the
Fourier transform nature of the nonlocal Wigner potential, the Chebyshev spectral
element method will be employed, for such spectral discretization provides a highly
accurate spectral approximation for the pseudo-differential term [19].
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Take the element Kr1 × Kr2 as an example. The spectral approximation of the
Wigner function reads

f (x, k1, k2, t) ≈
N1−1∑
l1=0

N2−1∑
l2=0

ar1r2,l1l2 (x, t)Cl1 (k1)Cl2 (k2) , (k1, k2) ∈ Kr1 ×Kr2 , (51)

where

Cli (k) = Tli (η) , k = d̂ri +
|Kri |η

2
, d̂ri = dri +

|Kri |
2

, i = 1, 2, (52)

and Tli(η) is the Chebyshev polynomial of the first kind. Substituting Eqs. (29), (36)
and (51) into Eq. (25), we arrive at the spectral approximation for the truncated
pseudo-differential term

g (x, k1, k2, t) ≈
∆y1∆y2

4i~π2

+∞∑
µ=−∞

+∞∑
ν=−∞

e
−ik1yµ−ik2yνDV (x, yµ, yν , t)

×
M1∑
r1=1

M2∑
r2=1

N1−1∑
l1=0

N2−1∑
l2=0

ar1r2,l1l2 (x, t)Or1r2,l1l2 (yµ, yν) ,

(53)

where the double integral Or1r2,l1l2(yµ, yν) reads

Or1r2,l1l2 (yµ, yν) =

∫∫
Kr1×Kr2

eik
′
1yµ+ik′2yνCl1 (k′1)Cl2 (k′2) dk′1dk′2. (54)

The next key step is how to calculate the above integrals. Using Eq. (52), a direct
calculation shows∫

Kri

e
ik′iyCli (k′i) dk′i =

|Kri|
2

e
iyd̂riOli

(
|Kri |y

2

)
, i = 1, 2, (55)

and thus the double integral (54) becomes

Or1r2,l1l2 (yµ, yν) =
|Kr1 ||Kr2|

4
e

iyµd̂r1+iyν d̂r2Ol1

(
|Kr1|yµ

2

)
Ol2

(
|Kr2|yν

2

)
. (56)

Here the oscillatory integral Ol (z) is given by

Ol (z) =

∫ 1

−1

eizηTl (η) dη, (57)

which can be represented as a linear combination of spherical Bessel functions of
the first kind and thus can be calculated analytically by exploiting the Legendre
polynomial expansion of eizη and Tl (η). For more details, one can refer to [19].

It remains to truncate the infinite summation with respect to µ and ν in Eq. (53).
If the potential function V (x1, x2) has a compact support, the matrixDV (x1, x2, yµ, yν)
is sparse and it is convenient to determine the truncation threshold by counting the
number of nonzero elements [19]. However, this approach is not appropriate for the
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long-range Coulomb potential, especially for the electron-electron interaction Vee. As
a matter of fact, for the many-body problem, the truncation of yν and yµ is a subtle
problem and so far we have not found a general way. This truncation should also
depend on how much quantum information one wants to involve in the simulations.
But fortunately, we have found in the numerical experiments that a satisfactory result
can be obtained for the Gaussian wave packet simulations by a finite sequence of
discrete samples. Redundant sampling only leads to a very slight correction, at the
cost of a dramatic decline in efficiency (see Fig. 7 and related explanations in Section
5.3).

Remark 1. A simple test is presented here to validate the accuracy of the approxi-
mation (53) for the pseudo-differential term as well as to calibrate the computer code.
Suppose the Wigner function is given by

f (x1, x2, k1, k2) = cos (αk1) cos (αk2) , (58)

then we have a close formula for the pseudo-differential term as

g (x1, x2, k1, k2) =
∆y1∆y2

4i~π2

+∞∑
µ=−∞

+∞∑
ν=−∞

DV (x1, x2, yµ, yν) e
−ik1yµ−ik2yνIµIν , (59)

where

Iµ,ν =
1

2 (α + yµ,ν)
sin [(α + yµ,ν) k1,max]− sin [(α + yµ,ν) k1,min]

+
1

2 (α− yµ,ν)
sin [(α− yµ,ν) k1,max]− sin [(α− yµ,ν) k1,min] .

(60)

To facilitate a comparison between the spectral approximation (53) and the exact
value given in Eq. (59), we choose

V (x1, x2) =
1

2π
exp

(
−x

2
1 + x2

2

2

)
, α = 0.25, (61)

and take the k-domain [−6π/5, 6π/5]2, which are divided into 4 × 4 elements and
each element contains 16 × 16 collocation points. The numerical results from our
implementation show that the difference is around 10−14 for the double precision
computation when yµ and yν are truncated in [−60, 60].

4 Numerical analysis

Suppose the Wigner function f(x,k, t) is smooth enough and a sufficiently fine
k-mesh is used, so that the Chebyshev spectral element method can achieve a highly
accurate spectral approximation in k-space. Accordingly, by the standard numerical
analysis on the equidistant mesh ∆x = ∆x1 = ∆x2, we have: When the time step ∆t
is fixed, the piecewise cubic spline interpolation (49) yields a global error of the order
O(∆x3) in x-space; When the spacing ∆x is fixed, the error in t-space is of the order
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O(∆tp) for an explicit p-step method and O(∆tp+1) for an implicit p-step method,
implying the order of O(∆t3) for the explicit three-step method (46) adopted in the
current implementation. The remaining of this section is to further illustrate that
the proposed third-order advective-spectral-mixed scheme for time-dependent many-
body Wigner equation is capable of preserving the total mass as well as the physical
symmetry relation as stated in Proposition 1.

4.1 Mass conservation

Consider first the one-body truncated Wigner equation

∂f (x, k, t)

∂t
+

~k
m

∂f (x, k, t)

∂x
+ g (x, k, t) = 0, (62)

in the domain X × K, and we set |K|∆y = 2π as requested by Eq. (32) with which
we have

G(x, t) :=

∫
K
g (x, k, t) dk ≡ 0. (63)

Suppose the x-space is divided into N non-overlapping equidistant cells with the
spacing ∆x plus two semi-bounded intervals:

X−1 = (−∞, x0], Xi = [xi, xi+1] , XN = [xN ,+∞), i = 0, 1, · · · , N − 1, (64)

then X =
⋃N−1
i=0 Xi. According to Eq. (43), the explicit p-step approximation for

Eq. (62) becomes

fn+1 (x, k) = fn (x− h, k) + ∆t

p∑
s=1

γsg
n+1−s (x− sh, k) , (65)

where h = ~k∆t/m denotes the shift occurring in ∆t for a given wavenumber k, and
integrating it with respect to x in the cell Xi leads to the conservative form:∫ xi+1

xi

fn+1 (x, k) dx =

∫ xi+1−h

xi−h
fn (x, k) dx+∆t

p∑
s=1

γs

∫ xi+1−sh

xi−sh
gn+1−s (x, k) dx. (66)

Let’s deal with the first term in the righthand side of Eq. (66) for i ∈ {0, 1, · · · , N}.
Without loss of generality, we assume the shift h ≥ 0 (i.e., k ≥ 0, the wave is traveling
from left to right) and let β = h/∆x− [h/∆x] (i.e., the remainder of h/∆x).
• If [xi − h, xi+1 − h] contains the first grid point x0, let i0 = i. That is, [xi0 −

h, xi0+1 − h] ⊂ (−∞, x1], then we have∫ xi0+1−h

xi0−h
fn(x, k)dx =

∫ xi0+1−h

x0

fn (x, k) dx+ Φn
in (k)−

∫ xi0−h

−∞
fn(x, k)dx

=
fn0
2

∆x+
fn1
2

∆x− s0

24
(∆x)3 − s1

24
(∆x)3 +

β∆x

2
[−βfn0

+ (β − 2)fn1 ] +
β2 (∆x)3

24
[−(β2 − 2)s0 + (β2 − 4β + 4)s1]

+ Φn
in (k)−

∫ xi0−h

−∞
fn(x, k)dx,

(67)
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where we have used the one-dimensional piecewise cubic spline interpolation (48) in
[x0, x1] for fn(x, k) to calculate the second integral in the first line, and

Φn
in (k) :=

∫ x0

−∞
fn (x, k) dx (68)

denotes the total inflow from the left to x0 at t = tn.
• For i0 < i < N , there must exist a gird point xj ∈ [xi − h, xi+1 − h], and

then [xi−h, xi+1−h] ⊂ [xj−1, xj+1]. Using the one-dimensional piecewise cubic spline
interpolation (48) in [xj−1, xj+1] for fn(x, k) and integrating it directly in [xi−h, xi+1−
h] yields∫ xi+1−h

xi−h
fn(x, k)dx =

fnj
2

∆x+
fnj+1

2
∆x− sj

24
(∆x)3 − sj+1

24
(∆x)3

+
β∆x

2

[
βfnj−1 − (2β − 2) fnj + (β − 2) fnj+1

]
+
β2(∆x)3

24
× [(β2 − 2)sj−1 − (2β2 − 4β + 2)sj + (β2 − 4β + 4)sj+1].

(69)

• For i = N , we denote j0 = j when [xj−1, xj+1] ⊃ [xN−1 − h, xN − h]. A similar
calculation to Eq. (67) leads to∫ +∞

xN−h
fn(x, k)dx =

∫ xj0+1

xN−h
fn(x, k)dx+

∫ xN

xj0+1

fn(x, k)dx+

∫ +∞

xN

fn(x, k)dx

=

∫ xN−β∆x

xN−h
fn (x, k) dx+

∫ xN

xN−β∆x

fn (x, k) dx+

∫ +∞

xN

fn (x, k) dx

=

∫ xN−β∆x

xN−h
fn (x, k) dx+

fnN−1

2
∆x+

fnN
2

∆x− sN−1

24
(∆x)3

− sN
24

(∆x)3 +
β∆x

2

[
βfnN−1 − (β − 2) fnN

]
+ Φn

out (k)

+
β2 (∆x)3

24
[(β2 − 2)sN−1 − (β2 − 4β + 4)sN ],

(70)

where the first integral in the third line can be calculated in the same way as Eq. (69),
and

Φn
out (k) :=

∫ +∞

xN

fn (x, k) dx (71)

denotes the total outflow from the xN to right at t = tn.
For the nonlocal term g(x, k, t), we can also define a similar total “inflow” and

“outflow” contributed by the source term as

Ψn
in (k) =

∫ x0

−∞
g (x, k, tn) dk, Ψn

out (k) =

∫ ∞
xN

g (x, k, tn) dk, (72)

and thus derive similar expressions as shown in Eqs. (67), (69) and (70), for the second
term in the righthand side of Eq. (66) for i ∈ {0, 1, · · · , N}. For simplicity, we neglect
the details here.
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Now using Eqs. (67), (69) and (70), the summation of Eq. (66) with respect to i
from −1 to N yields∫

X
fn+1 (x, k) dx =

∫
X
fn (x, k) dx+ ∆t

p∑
s=1

γs

∫
X
gn+1−s (x, k) dx

− Φn+1
in (k) + Φn

in (k)− Φn+1
out (k) + Φn

out (k)

+ ∆t

p∑
s=1

γs
[
Ψn+1−s

in (k) + Ψn+1−s
out (k)

]
,

(73)

where we have used the following basic property of piecewise cubic spline(
fn0 + 2

N−1∑
i=1

fni + fnN

)
∆x

2
−

(
s0 + 2

N−1∑
i=1

si + sN

)
(∆x)3

24
=

∫
X
fn (x, k) dx. (74)

Finally, integrating Eq. (73) with respect to k in the domain K and using Eq. (63),
we can readily obtain∫∫

X×K
fn+1 (x, k) dxdk =

∫∫
X×K

fn (x, k) dxdk, (75)

provided that the total inflow and outflow are in balance, i.e., the total outflow cancels
the total inflow at any moment. While using the not-a-knot boundary condtions for
piecewise cubic splines [31], the Wigner function is able to cross the boundaries so
transparently that the total outflow often exceeds the total inflow in a small com-
putational domain. Conseqeuntly, in order to reach the flow balance and thus the
mass conservation, a relatively large domain, allowing the desired Wigner function far
away from the boundaries, must be used. More detailed discussion on this issue can
be found in Section 5.

The above approach to show mass conservation for the one-body situation can
be straightforwardly extended to the two-body situation by exploiting the fact that
the construction of two dimensional cubic splines can be performed through several
one-dimensional splines (see Section 3.1). The details are neglected for saving space.

4.2 Physical symmetry relation

Proposition 1 has shown that the physical symmetry relation (14) is naturally
embedded in the Wigner equation. This section will further show that such physical
symmetry relation is still preserved in the advective-spectral-mixed method. Actually,
let fn be the numerical Wigner function at t = n∆t calculated from Eqs. (43) and (47),
and σ be the isomorphism defined in Eq. (20). Then we are able to show σfn = fn

provided both V (x1, x2, t) = V (x2, x1, t) and σf0 = f0 hold. The verification can be
completed by induction on n = 0, 1, · · · as follows.

The initial data satisfying σf0 = f0 implies directly σf 0 = f 0 for n = 0. Suppose
σf l = f l holds for l = 0, 1, · · · , n. Then we are going to show σfn+1 = fn+1, which is
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reduced to verify

σf l (x1 − v1∆t, x2 − v2∆t, k1, k2) = f l (x1 − v1∆t, x2 − v2∆t, k1, k2) , (76)

σgl (x1 − v1∆t, x2 − v2∆t, k1, k2) = gl (x1 − v1∆t, x2 − v2∆t, k1, k2) , (77)

for l = n, n− 1, · · · , n+ 1− p by using the recursion approximation (43). Noting that
the nonlocal pseudo-differential operator ΘT

V acts linearly on f (see Eq. (25)), it is
sufficient to verify Eq. (76) by the definition of g in Eq. (36). For simplicity, we only
consider the case l = n and the others can be proved in the same way.

Both fn(x2−v2∆t, x1−v1∆t, k2, k1) = σfn(x1−v1∆t, x2−v2∆t, k1, k2) and fn(x1−
v1∆t, x2−v2∆t, k1, k2) are calculated through the piecewise cubic spline interpolation
(47) in the cell [x2,j, x2,j+1]× [x1,i, x1,i+1] and [x1,i, x1,i+1]× [x2,j, x2,j+1], respectively,
where x1 − v1∆t ∈ [x1,i, x1,i+1], x2 − v2∆t ∈ [x2,j, x2,j+1]. That is,

fn (x1 − v1∆t, x2 − v2∆t, k1, k2) =
3∑

ν=0

3∑
κ=0

ηνκβ
ν
1β

κ
2 , (78)

fn (x2 − v2∆t, x1 − v1∆t, k2, k1) =
3∑

κ=0

3∑
ν=0

η̃νκβ
ν
2β

κ
1 =

3∑
κ=0

3∑
ν=0

η̃κνβ
ν
1β

κ
2 , (79)

where β1 = x1 − v1∆t− x1,i, β2 = x2 − v2∆t− x2,j, and ηνκ, η̃κν are the interpolation
coefficients. Thanks to the uniqueness of bicubic splines, it can be easily obtained

ηνκ = η̃κν , ν, κ = 0, 1, 2, 3, (80)

because both interpolation points and not-a-knot boundary conditions are identical
as well as the function values on the interpolation points are the same due to the
induction assumption. Thus we obtain σfn = fn from Eqs. (78) and (79) and the
verification is finished.

5 Numerical experiments

We implemented the advective-spectral-mixed method for both one-body and two-
body situations in one-dimensional space. In k-space, we are able to take the full
advantage of fast Fourier transforms to improve the computational efficiency thanks
to the Gauss-Chebyshev collocation points adopted in each element by calling the re-
lated subroutines in FFTPACK [39], and use the subroutine BESSJY [40] to calculate
the spherical Bessel functions of the first kind requested by the oscillatory integral
(57). In x-space, the piecewise cubic splines (47) are referred to the PSPLINE im-
plementation — a library of spline and Hermite cubic interpolation routines for 1d,
2d, and 3d datasets on rectilinear grids [41]. Since the calculations in k- and x-space
are completely decoupled, a straightforward parallelization based on the multithread
technology provided by OpenMP is further adopted to accelerate the simulations.

To visualize conveniently the two-body Wigner function in the computational do-
main

Ω = X ×K, X = X1 ×X2, K = K1 ×K2, (81)
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we plot the reduced one-body Wigner function [29]

F (x, k, t) :=

∫∫
X2×K2

f(x, x2, k, k2, t)dx2dk2 +

∫∫
X1×K1

f(x1, x, k1, k, t)dx1dk1, (82)

which projects the two-body Wigner function onto the one-dimensional phase space.
The numerical performance is evaluated by the L2-error ε2(t), the L∞-error ε∞(t),
the error for the physical symmetry relation εsym(t), and the variation of total mass
εmass(t), defined respectively as follows

ε2(t) =

[∫∫
Ω

(
f ref (x,k, t)− fnum (x,k, t)

)2
dxdk

] 1
2

, (83)

ε∞(t) = max
(x,k)∈Ω

{
|f ref (x,k, t)− fnum (x,k, t) |

}
, (84)

εsym(t) = max
(x,k)∈Ω

{|fnum (x1, x2, k1, k2, t)− fnum (x2, x1, k2, k1, t)|} , (85)

εmass(t) =

∫∫
Ω

fnum (x,k, t) dxdk −
∫∫

Ω

f ref (x,k, t = 0) dxdk, (86)

where f ref and fnum denote the reference and numerical solution, respectively. Ac-
cording to the numerical analysis shown in Section 4, both ε2 and ε∞, depending
on the mesh size and the truncation order, should reflect the third-order convergence
against the spatial spacing and the time step when a high spectral accuracy is reached
in k-space; εsym must around the matching resolution provided both initial data and
external potential are symmetric; the vanishing of εmass relies on both Eq. (63) and
boundary conditions. Actually, in order to maintain an almost constant mass, on
one hand, we should make sure the simulated quantum system be far away from the
boundaries to guarantee the total outflow cancels the total inflow, due to the not-a-
knot boundary conditions adopted in the current implementation. On the other hand,
Eq. (63) holds only in the sense of spectral approximation and can be measured by
εG(t) as follows

εG(t) = max
x∈X
{|Gnum (x, t)|} , (87)

where Gnum(x, t) is corresponding numerical approximation for G(x, t) defined in
Eq. (63), because the spectral element method is employed in k-direction and all
related k-integrals in Eq. (63) are done analytically with the help of the spectral
expansion (51). Hence, we expect a very tiny εmass once enough collocation points in
k-space are placed in a sufficiently large computational domain as we will do in the
following numerical simulations.

Throughout the simulations, the atomic units ~ = m = e = 1 are adopted if not
specified. The initial data are constructed from Gaussian wave packets in quantum
mechanics the wavefunction of which reads

ψi (xi) =
1√
ai
√

2π
exp

[
−(xi − x0

i )
2

4a2
i

+ ik0
i (xi − x0

i )

]
, i = 1, 2, (88)

where x0
i is the center of the wave at t = 0, ai is the minimum position spread, and

k0
i is the initial constant wavenumber. The Wigner function for such Gaussian wave
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(a) Fermions.
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(b) Bosons.

Figure 1: The reduced Wigner function for two fermions and two bosons.

packet still has the Gaussian profile and its formulation is [6, 19,27]

f 1D
i,0 (xi, ki) =

1

π
exp

[
−(xi − x0

i )
2

2a2
i

− 2a2
i

(
ki − k0

i

)2

]
, i = 1, 2. (89)

When two particles are uncorrelated, the wave function satisfies ψ (x1, x2) = ψ1 (x1)ψ2 (x2),
and then the Wigner function is a simple product of two Gaussian wave packets, too.
Namely, f0 (x1, x2, k1, k2) = f 1D

1,0 (x1, k1) f 1D
2,0 (x2, k2). However, in order to treat a sys-

tem composed of two indistinguishable fermions, we need to take into account the
antisymmetric nature of the wave function ψ (x1, x2). Such antisymmetric relation is
usually fulfilled via the Slater determinant as follows

ψ (x1, x2) =
1√
2

∣∣∣∣ψ1 (x1) ψ2 (x1)
ψ1 (x2) ψ2 (x2)

∣∣∣∣ =
1√
2
ψ1 (x1)ψ2 (x2)− 1√

2
ψ2 (x1)ψ1 (x2) , (90)

and then the corresponding Wigner function reads

f fermion
0 (x1, x2, k1, k2)

=
1

2π2
exp

[
−(x1 − x0

1)
2

2a2
− (x2 − x0

2)
2

2a2
− 2a2

(
k1 − k0

1

)2 − 2a2
(
k2 − k0

2

)2

]

+
1

2π2
exp

[
−(x1 − x0

2)
2

2a2
− (x2 − x0

1)
2

2a2
− 2a2 (k1 − k0)2 − 2a2 (k2 − k0)2

]

− 1

π2
exp

[
−(x1 − x0

1)
2

+ (x1 − x0
2)

2
+ (x2 − x0

1)
2

+ (x2 − x0
2)

2
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]
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]
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(91)
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where a := a1 ≡ a2. Similarly, we can construct the wave function for a system
composed of two indistinguishable bosons

ψ (x1, x2) =
1√
2
ψ1 (x1)ψ2 (x2) +

1√
2
ψ2 (x1)ψ1 (x2) , (92)

and obtain the corresponding Wigner function by replacing the factor −1/π2 in the
fourth line of Eq. (91) with 1/π2. Fig. 1 plots the reduced Wigner function F (x, k, t)
(see Eq. (82)) for two fermions and two bosons by setting x0

1 = −2, x0
2 = 2, k0

1 = 0.5,
k0

2 = −0.5, and a = 2. The exchange-correlation hole (or called the Fermi hole) at
the centre ((x0

1 + x0
2)/2, (k0

1 + k0
2)/2) due to the Pauli exclusion principle, preventing

the fermions from occupying the same quantum state (position and momentum), is
clearly shown there for the Fermi system. On the contrary, such hole structure is not
visible for the Boson system.

In the subsequent numerical simulations, except for the first simulation in Section
5.2, we will adopt the symmetric domains with respect to the origin point

X1 ≡ X2 = [−Lx, Lx], K1 ≡ K2 = [−Lk, Lk], (93)

as well as the same mesh for each particle with the spatial spacing ∆x. According to
the constraint (32), we can easily obtain the y-spacing

∆y := ∆y1 ≡ ∆y2 = π/Lk, (94)

and then the truncated Wigner potential (29) is calculated by further restricting both
yν and yµ in a symmetric domain

Y1 ≡ Y2 = [−Ly, Ly]. (95)

5.1 Free advection of two fermions

To verify the accuracy of the piecewise cubic spline interpolations (47), the first
experiment conducts the advection of two correlated fermions in the free space, i.e.,
the external potential V (x) ≡ 0. In this situation, the Wigner equation (2) has an
analytical solution as follows

f (x1, x2, k1, k2, t) = f fermion
0 (x1 − ~k1t/m, x2 − ~k2t/m, k1, k2) , (96)

the reduced Wigner functions of which are shown in Fig. 2, and Eqs. (44)-(46) all
reduce to the “upwind” scheme. It can be clearly shown there that the exchange-
correlation hole does exist around the central area during the evolution, but it becomes
more and more narrow due to the dispersion when two Gaussian waves move away.

We set Lx = 15, Lk = 5π/6, ∆t = 0.1, ∆x = 0.6, 0.3, 0.15, 0.075, and the end
time T = 8. The k-domain is divided into 4× 4 cells and each cell contained 24× 24
Gauss-Chebyshev collocation points, and the initial data is shown in Fig. 1(a). Fig. 3
plots both L2- and L∞-errors at the final time. The error growth with time shows
perfectly a linear dependence, for example, see the L2-error history in Fig. 3(a), and
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Figure 2: The free advection of two fermions: The reduced Wigner function at different
time instants.

the error curves (in the logarithm scale) against the spatial spacing in Fig. 3(b) attains
the theoretical convergence order of 3 as we expected.

During the whole simulation, for above four spatial spacings, the errors for the
physical symmetry relation εsym are always around the machine epsilon, and the vari-
ations of total particle number |εmass| are no more than 5.0990× 10−6, both of which
agree well with the theoretical results presented in Section 4. Actually, εmass is still
effected by the boundaries since Eq. (63) holds trivially in the free space. As predicted
by the numerical analysis in Section 4.1, enlarging the computational domain to cut
down the boundary effect will further reduce εmass to the machine epsilon, for exam-
ple, |εmass| becomes no more than 1.9984 × 10−15 even for ∆x = 0.6 when resetting
Lx = 45.

5.2 Gaussian barrier scattering

To further validate the overall performance of the advective-spectral-mixed method,
a comparison study with the cell average SEM for the one-body situation [19] is
now conducted in simulating the Gaussian barrier scattering for a Gaussian wave
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Figure 3: The free advection of two fermions: Numerical errors for different spatial spacing.
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Figure 4: The Gaussian barrier scattering for one particle: The convergence order with
respect to the spatial spacing ∆x (fs) and the time step ∆t (nm).

packet [19, 27]. The numerical solution calculated by the cell average SEM will be
regarded as the reference solution in Eqs. (83)-(86). A similar idea has also been
recently used to study the accuracy of the signed particle MCM [27], and the same
settings are adopted in this work. Namely, the initial wave is given by Eq. (89) and
the Gaussian barrier reads

V (x) = H exp

[
−(x− xB)2

2ω2

]
. (97)

The parameters are: Ω = [0 nm, 60 nm] × [−5π/3 nm−1, 5π/3 nm−1], x0 = −15 nm,
k0 = 0.7 nm−1, a = 2.825 nm, H = 0.3 eV, xB = −15 nm, ω = 1 nm, the reduced
Planck constant ~ = 0.658211899 eV · fs, the effective mass m = 0.0665me, the
stationary electron mass me = 5.68562966 eV · fs2 ·nm−2, and the final time T = 20 fs.

In the comparison study, the same k- and y- discretizations will be adopted, i.e., K
is divided into 20 elements and each element contains 30 Gauss-Chebyshev points, and
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Ly = 78 nm which is determined by exploiting the sparse structure of DV (x, y) defined
in Eq. (5) (more details can be found in [19]). For the SEM reference solution, the
x-domain is divided into 10 elements and each element contained 30 Gauss-Lobatto
points with the time step ∆t = 0.002 fs. The convergence of SEM has been thoroughly
studied in [19] and the interaction dynamics is clearly shown in [27]. Here we only
focus on evaluating the convergence of the advective-spectral-mixed method against
the grid spacing as well as the time stepping. Table 1 lists both L∞-error ε∞(t) and
L2-error ε2(t) at the final time for different spatial spacing ∆x and time step ∆t. In
contrast to the strict CFL restriction in high-order Runge-Kutta time evolutions [19],
we can see there that larger time steps are now allowed, for example, ∆t = 0.2 fs
coupled with ∆x = 0.0375 nm leads to errors no more than 6.0455 × 10−4. Fig. 4
further plots the errors with respect to ∆x and ∆t in logarithm scale. We find there
that the convergence order with respect to both spatial spacing and time step coincides
very well with the theoretical prediction, i.e., the third-order accuracy, as mentioned
in Section 4.

Table 1: The Gaussian barrier scattering for one particle: The L∞-error ε∞(t) and L2-error
ε2(t) at t = 20 fs for different spatial spacing ∆x (nm) and time step ∆t (fs).

∆t ∆x ε∞(20) ε2(20)

0.0125 0.0375 5.8027× 10−7 5.8365× 10−7

0.0125 0.075 4.6083× 10−6 4.5847× 10−6

0.0125 0.15 2.2467× 10−5 2.2741× 10−5

0.0125 0.3 1.7022× 10−4 1.5876× 10−4

0.025 0.0375 1.2782× 10−6 1.6885× 10−6

0.025 0.075 4.6083× 10−6 4.5847× 10−6

0.025 0.15 2.2467× 10−5 2.2741× 10−5

0.025 0.3 1.8849× 10−4 1.7686× 10−4

0.05 0.0375 9.5379× 10−6 1.1187× 10−5

0.05 0.075 1.0055× 10−5 1.1368× 10−5

0.05 0.15 3.7482× 10−5 3.7395× 10−5

0.05 0.3 2.2980× 10−4 2.2344× 10−4

0.1 0.0375 7.0873× 10−5 8.5382× 10−5

0.1 0.075 7.1275× 10−5 8.6693× 10−5

0.1 0.15 7.8537× 10−5 1.0461× 10−4

0.1 0.3 2.9207× 10−5 3.2452× 10−4

0.2 0.0375 4.7348× 10−4 6.0455× 10−4

0.2 0.075 4.7370× 10−4 6.0516× 10−4

0.2 0.15 4.7806× 10−4 6.1537× 10−4

0.2 0.3 6.2856× 10−4 7.7465× 10−4

Such Gaussian barrier scattering can be readily extended to the two-body situa-
tion. For instance, we consider two uncorrelated Gaussian particles interacting with
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a Gaussian barrier,

V (x1, x2) = H1 exp

[
−(x1 − x1B)2

2

]
+H2 exp

[
−(x2 − x2B)2

2

]
. (98)

Now we shift to the atomic units. The initial Gaussian wave is f0(x1, x2, k1, k2) =
f 1D

1,0 (x1, k1) f 1D
2,0 (x2, k2) with x0

1 = −12, x0
2 = −4, k0

1 = k0
2 = 0.5, a1 = a2 =

√
2.

That is, initially, those two wave packets have the same kinetic energy and moved
independently at the same direction. The heights of two barriers are chosen as H1 = 0
and H2 = 1 with x1B = 0 and x2B = 0. The averaged kinetic energy of each particle is
about E0 = (~k0

i )
2/2m = 0.125 and much lower than the barrier height. However, the

barrier is set only to forbid the second particle to get through and has no influence
on the first particle. Other parameters are set to be: Lx = 20, Lk = 5π/6, Ly = 90,
∆t = 0.05, ∆x = 0.2, T = 15. The k-domain is divided into 4 × 4 elements and
each element contains 16 × 16 Gauss-Chebyshev collocation points. The interaction
dynamics is shown in Fig. 5. We can observe there that, the second wave packet is
almost completely reflected back, while the first one travels transparently through
the barrier located at the central area. This observation coincides exactly with our
expectation and demonstrates clearly the accuracy of the method in some sense.

Finally, let us see the performance in keeping the mass. For above one-body case,
during the time marching until the final time T = 20 for ∆x = 0.2 and ∆t = 0.05,
εG(t) is no more than 2.5778 × 10−9, but εmass(20) is about −8.6782 × 10−4 at the
final time T = 20. That is, the total outflow exceeds the total inflow due to the not-
a-knot boundary conditions, and it can be improved by enlarging the computational
domain. We redo the same simulation in an enlarged x-domain [−100 nm, 200 nm]
while leaving all other parameters unchanged, and find that both εmass and εG are
on the same magnitude: |εmass(t)| ≤ 1.4015 × 10−10, εG(t) ≤ 2.1739 × 10−10, which
agrees very well with the theoretical prediction in Section 4.1. The same story also
happens in the two-body situation. For Lx = 20, εmass(15) = −4.9515 × 10−3 and
εG(15) = 1.7389 × 10−7 at the end time T = 15, and they can be improved for
Lx = 60 to εmass(15) = 1.0315× 10−11 and εG(15) = 9.1085× 10−12.

5.3 Electron-electron scattering

Now we turn to discuss a more challenging problem. Consider that two electrons
are interacting through the repulsive Coulomb force. In this case, the two electrons
are expected to decelerate, scatter and move away from each other. In general, the
two-body interaction is given by the bare Coulomb potential

Vee (x1, x2) =
1

|x1 − x2|
, (99)

which has a singularity at x1 = x2. Thus we replace it with the soft-Coulomb potential
[42]

Vee (x1, x2) =
1√

|x1 − x2|2 + εee

, (100)
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Figure 5: The Gaussian barrier scattering for two uncorrelated particles: The reduced
Wigner functions at different instants. Since the barrier is set to block only the second
particle with the initial position x0

2 = −4, i.e., H1 = 0 and H2 = 1 in Eq. (98), the first
particle initially located at x0

1 = −12 shows the free advection, while the second one is
completely reflected back.
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Figure 6: Electron-electron scattering: The convergence order with respect to the spatial
spacing ∆x and the time step ∆t.

where εee is termed the soft parameter.
The first run is devoted to check the numerical convergence of the proposed method

by setting Lx = 10, Lk = 5π/6, Ly = 30, the end time T = 4, and εee = 1. The
k-domain is divided into 4 × 4 elements and each element contains 16 × 16 Gauss-
Chebyshev collocation points. The initial data is shown in Fig. 1(a), and the numerical
solution obtained on a relatively fine mesh with ∆t = 0.0125 and ∆x = 0.125 is chosen
to be the reference. Table 2 presents both L∞- and L2-errors at the final time and
Fig. 6 plots the convergence order with respect to the spatial spacing ∆x and the time
step ∆t. It is easily observed there that the measured convergence rate is around the
theoretical value of 3. The slight deviation may come from that fact that the reference
solution is not really a analytical one. However, even this reference solution takes
almost eight hours with 16 threads parallel running on our computing platform: Dell
Poweredge R820 with 4× Intel Xeon processor E5-4620 (2.2 GHz, 16 MB Cache, 7.2
GT/s QPI Speed, 8 Cores, 16 Threads) and 256GB memory.

As we have pointed out in the end of Section 3, there is no general way to de-
termine Ly except for potentials of compact supports or of exponential decays such
as the Gaussian barriers in Eqs. (97) and (98). Here we propose another simple way
to determine Ly roughly and initially by exploiting the exponential decays of the
Gaussian Wigner function (91) (see Fig. 1(a)). Let

εg(Ly) = max
(x,k)∈Ω

{∣∣gT (x,k, 0;Ly)− gT
(
x,k, 0;Lref

y

)∣∣} , (101)

where gT (x,k, t;Ly) denotes the numerical approximation of g(x,k, t) defined in
Eq. (36), which is obtained by truncating the infinite series (29) with the domain
given in (95), and Lref

y is the reference length of the y-domain and usually takes a
large value. Fig. 7 displays above εg(Ly) for the initial data presented in Fig. 1(a)
and the soft-Coulomb potential with εee = 1, where we have set Lref

y = 240. It can
be easily observed there that εg is around 10−8 for Ly = 30, which has been used in
the convergence test. We will adopt Ly = 60 below for longer simulations. Fig. 8
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Table 2: Electron-electron scattering: The L∞-error ε∞(t) and L2-error ε2(t) at t = 4 for
different spatial spacing ∆x and time step ∆t. The numerical solution calculated from the
finest mesh with ∆t = 0.0125 and ∆x = 0.125 is regarded as the reference.

∆t ∆x ε∞(4) ε2(4)

0.0125 0.125 - -
0.0125 0.25 2.5563× 10−5 4.2093× 10−5

0.0125 0.5 3.9108× 10−4 5.8120× 10−4

0.025 0.125 6.2753× 10−6 9.9228× 10−6

0.025 0.25 3.2506× 10−5 4.7147× 10−5

0.025 0.5 3.2845× 10−4 4.1265× 10−4

0.05 0.125 3.2668× 10−5 5.0519× 10−5

0.05 0.25 4.7014× 10−5 6.5645× 10−5

0.05 0.5 3.4393× 10−4 4.2734× 10−4

0.1 0.125 1.5192× 10−4 2.2787× 10−4

0.1 0.25 1.4283× 10−4 2.1455× 10−4

0.1 0.5 4.1791× 10−4 5.0209× 10−4

shows the reduced Wigner functions until the final time T = 6 with ∆x = 0.125 and
∆t = 0.05. By comparing with the free advection displayed in Fig. (2), we find that,
before t = 4, the reduced Wigner function for two electrons, moving initially towards
each other, is suppressed in the region |k| ≤ 1 and possesses a wider expansion in
x-direction because of the Coulomb deceleration; after that, two electrons tend to
scatter out due to the repulsive interaction as well as the dispersion. It must be noted
that the Fermi hole between two electrons exists all the time since they are strongly
correlated. During the interaction dynamics, εsym in Eq. (85) is always around the
machine resolution for double precision, and the variations of mass at the end time
reads: εmass(6) = −2.7403 × 10−3 with εG(6) = 4.0420 × 10−9. When redoing the
same simulation for Lx = 45, the variations of mass can be drastically reduced to
εmass(6) = −2.5435× 10−13 with εG(6) = 2.2190× 10−12.

We have also tried a smaller soft parameter, say εee = 0.01, implying a stronger
repulsive interaction between two fermions. The interaction dynamics is very similar
to those shown in Fig. 8 corresponding to εee = 1 and thus skipped. The possible rea-
son may be, the fermions feel the stronger repulsion only when they get close enough,
while the long-range interaction between them is just slightly affected. However, a
relatively smaller time step, for example ∆t = 0.0125, must be adopted instead, oth-
erwise the numerical instability may happen. This is possibly related to the stiff
gradient of V (x), because the high-order derivatives of V (x) may have a significant
influence on the quantum dynamics in view of the Moyal expansion (12). That is, the
time step may be still influenced a little bit by the deformational Courant number
‖∆t · ∇xV ‖ ≤ 1 as already shown for the Vlasov simulations [32], though it is not
restricted by the usual CFL condition.
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Figure 7: Electron-electron scattering: Maximum errors of gT (x,k, 0;Ly) (see Eq. (101))
against the truncation length Ly in y-space. The reference length is set to be Lref

y = 240.

5.4 A Helium-like system

As the final example, we consider a Helium-like system composed of two electrons.
Besides the repulsive Coulomb force (100) with εee = 1, they are both attracted by a
Helium atom at a fixed position x = 0. To describe the nucleon-electron interaction,
we still adopt the attractive soft-Coulomb potential [42]

Vne (x1, x2) = − Z√
|x1|2 + εne

− Z√
|x2|2 + εne

, (102)

with the atomic number Z = 2 (for the Helium atom) and the soft parameter εne = 1
to remove the singularity at x = 0. To strike a balance between the accuracy and
the efficiency, we set: Lx = 15, Lk = 5π/3, Ly = 60, ∆x = 0.2, ∆t = 0.05 and
T = 15. The k-domain is divided into 6 × 6 elements and each element contains
20×20 Gauss-Chebyshev collocation points. The same initial data shown in Fig. 1(a)
are adopted.

To demonstrate the dynamics of electrons more clearly, we take snapshots of the
reduced Wigner function F (x, k, t) defined in Eq. (82) from t = 1 to t = 15, as shown
in Fig. 9. At the early stage before t = 5, the reduced Wigner function is forced to be
localized in the central area due to the nucleon-electron interaction. Afterwards, both
dispersion and correlation show up clearly and lead to a highly oscillating structure in
the phase space, in which each peak of positive value is followed by a valley of negative
value. Furthermore, we find that the Wigner function rotates around the Helium atom
periodically with the approximate period of 6. This periodic behavior may reflect a
kind of simple harmonic vibration of the one-dimensional electrons. We could always
observe there a concentration of the negative Wigner function in the central area,
accounting for the electron-electron interaction, because the negative distribution is
related to the regions that are experimentally forbidden by the uncertainty principle.
We should point out that the Fermi hole structure does be always there though it
shows two branches, for example, at t = 7, 15, in contrast to the numerical results
by the signed particle MCM [26]. This may cast doubts on the accuracy of the
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Figure 8: Electron-electron scattering: The reduced Wigner functions at different instants.
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Figure 9: The Helium-like system: The reduced Wigner functions at different instants.
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signed particle MCM, as its numerical resolution might be too poor to catch the
quantum interference and coherence precisely. Although a recent study showed the
accuracy of the signed particle MCM for one-dimension one-body situation [27], a
more comprehensive study to validate the accuracy of the many-body Wigner MCM
is highly desired in this regard.

6 Conclusion and outlook

An efficient and accurate deterministic method is proposed in this work for a
direct simulation of the many-body Wigner equation. It resolves the Lagrangian
advection on the spatial space by an explicit multistep characteristic method, and
the shifted grid points are interpolated through piecewise cubic splines. The nonlocal
Wigner interaction term is tackled by a highly accurate Chebyshev spectral element
method, and the resulted advective-spectral-mixed method relaxes the usual CFL
restriction on the time step and achieves the third-order convergence. Moreover, it
is able to maintain the mass conservation and the physical symmetry relation for
identical particle systems. Several typical numerical experiments for one-body and
two-body quantum systems in one-dimensional spatial space show the appearance
of both Pauli exclusion principle and uncertainty principle in the phase space. The
proposed method can be straightforwardly employed in the high dimensional one-body
problem, thereby making it possible to perform time-dependent Wigner simulations in
the two or three dimensional semiconductor device. In principle, it can also resolve the
nonlinear Wigner quantum models, such as the Wigner-Poisson system. We would like
to discuss this topic as well as a more appropriate formulation of quantum boundary
conditions in subsequent papers.
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