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Abstract

Given two 3-uniform hypergraphs F and G, we say that G has an F -covering if we can cover
V (G) by copies of F . The minimum codegree of G is the largest integer d such that every pair of
vertices from V (G) is contained in at least d triples from E(G). Define c2(n, F ) to be the largest
minimum codegree among all n-vertex 3-graphs G that contain no F -covering. This is a natural
problem intermediate (but distinct) from the well-studied Turán problems and tiling problems.
In this paper, we determine c2(n,K4) (for n > 98) and the associated extremal configurations
(for n > 998), where K4 denotes the complete 3-graph on 4 vertices. We also obtain bounds on
c2(n, F ) which are apart by at most 2 in the cases where F is K−

4
(K4 with one edge removed),

K−

5
, and the tight cycle C5 on 5 vertices.

1 Introduction

1.1 Notation

Given a set A and a positive integer k, we write A(k) for the collection of k-element subsets of A.
We use [n] as a shorthand for the collection of the first n natural numbers, [n] = {1, 2, . . . , n}. We
shall often consider pairs or triples of vertices; when there is no risk of confusion, we write ab and
abc as a shorthand for {a, b} and {a, b, c} respectively. A k-uniform hypergraph, or k-graph, is a
pair G = (V,E), where V is a set of vertices, and E ⊆ V (k) is a collection of k-subsets of V , which
form the edges of G. A subgraph of G is a k-graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). The
degree of a vertex x ∈ V (G), which we denote by d(x), is the number of edges of G containing x.
The minimum degree δ1(G) of G is the minimum of d(x) over all vertices x ∈ V (G).

In this paper, we will focus on 3-graphs G = (V,E) and another degree-like quantity, and
its minimum: the codegree of a pair xy ∈ V (2), denoted by d(x, y), is the number of edges of
G containing the pair xy. We write Γ(y, z) for the neighbourhood of the pair xy, i.e. the set of
z ∈ V \ {x, y} such that xyz ∈ E(G). The minimum codegree of G is δ2(G) = minxy∈V (2) d(x, y).
The link graph of a vertex x ∈ V (G) is the collection Gx of all pairs uv such that xuv ∈ E(G). The
degree of u in Gx is the number of vertices v such that uv ∈ Gx; note this is exactly the codegree
of x and u. Finally we define the edit distance between two 3-graphs G and G′ on the same vertex
set to be the minimum number of changes required to make G isomorphic to G′, where a change
consists in replacing an edge by a non-edge and vice-versa.

∗Research partially supported by NSF Grant DMS-1400073.
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1.2 The problem

Let F be a fixed 3-graph on t vertices with at least one 3-edge. A 3-graph G has an F -covering if
we can cover V (G) with F -subgraphs (subgraphs that are isomorphic to F ). For n ≥ t and i = 1, 2,
we define

ci(n, F ) = max{δi(G) : |V (G)| = n and G does not have an F -covering}.

and call c1(n, F ) the covering degree-threshold and c2(n, F ) the covering codegree-threshold of F .
The covering threshold ci(n, F ) was introduced by Han, Zang and Zhao [14] when they studied

the minimum degree that guarantees the existence of a K-tiling, where K is a complete 3-partite
3-graph. It was shown implicitly in [14] that c1(n,K) = (6− 4

√
2 + o(1))

(

n
2

)

if K has at least two
vertices in each part (in contrast, it is easy to see that c1(n,K) = o(n2) if some part of K has only
one vertex). It was also noted that c1(n, F ) = (1 − 1/(χ(F ) − 1) + o(1))n for all graphs F , where
χ(F ) is the chromatic number of F .

Our objective in this paper is to study the behaviour of the function c2(n, F ) for various 3-graphs
F . In other words, we seek to determine what codegree condition is necessary to guarantee that all
vertices in a 3-graph G are contained in copies of F . When determining the exact value of c2(F, n)
is difficult, we may ask instead for its asymptotic behaviour. It can be shown (see Section ??) that
the limit

c2(F ) = lim
n→∞

c2(n, F )

n− 2

exists.1 We call c2(F ) the covering codegree-density of F .
Let us introduce the 3-graphs relevant to the present work. Let Kt = ([t], [t](3)) denote the

complete 3-graph on t vertices, and let K−
t denote the 3-graph obtained from Kt by removing one

3-edge. The strong or tight t-cycle is the 3-graph Ct on [t] with 3-edges {123, 234, 345, . . . , (t −
2)(t−1)t, (t−1)t1, t12}. We denote by F3,2 the 3-graph ([5], {123, 124, 125, 345}). Finally a Steiner
Triple System (STS) is a 3-graph in which every pair of vertices is contained in exactly one 3-edge;
it is a 168 years old result of Kirkman [19] that a STS on t vertices exists if and only if t ≡ 1, 3
mod 6. The Fano plane is the unique (up to isomorphism) STS on 7 vertices, which we denote by
Fano.

1.3 Motivation and related work in extremal hypergraph theory

Before we state our results, let us give some motivation and background for our problem. Let F be
a fixed 3-graph on t vertices with at least one 3-edge. A 3-graph G is F -free if it does not contain a
copy of F as a subgraph. Further G has an F -tiling, or F -factor, if we can cover V (G) with vertex-
disjoint F -subgraphs. There has been much research into the degree and/or codegree conditions
needed ensure the existence of an F -subgraph or of an F -factor in a 3-graph G. Determining
the degree/codegree condition necessary to guarantee an F -covering is intermediate between these
two well-studied problems. As we show in the next subsection, the existence, covering, and tiling
problems give rise to different thresholds in their codegree versions, so that our work is novel. It is
hoped that studying the properties of the covering codegree threshold function c2(n, F ) — such as

1This is a direct corollary of the proof of Proposition 6 from [7] on the existence of conditional codegree density
(with an uncovered vertex x used as the conditional subgraph H), or can be proved in the same way as the existence
of the usual codegree density γ(F ) in [27].
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supersaturation, discussed in Section 4, which could be useful for applying semi-random methods
to tiling problems — will lead to insights about both the existence and tiling problems.

The Turán number ex(n, F ) of F is the maximum number of 3-edges an F -free 3-graph on
n vertices can have. The codegree threshold ex2(n, F ) of F is the maximum of δ2(G) over all
F -free 3-graphs G on n vertices. It is well-known that ex(n, F )/

(

n
3

)

tends to a limit π(F ) as
n → ∞; this limit is known as the Turán density of F . Similarly, ex2(n, F )/(n − 2) tends to a
limit γ(F ) called the codegree density or 2-Turán density of F as n → ∞. The extremal theory
of 3-graphs and within it the study of Turán-type problems have received extensive attention from
the combinatorics community since the 1950s , with strenuous efforts devoted in particular to the
(in)famous and still-open conjecture of Turán [32] that π(K4) = 5/9. See the surveys of Füredi [10]
and Keevash [16] for an overview of results. There has been significant interest in other extremal
quantities, and in particular in codegree densities for 3-graphs. The first result on codegree density
was due to Mubayi [25], who showed γ(Fano) = 1

2 . Keevash and Zhao [18] determined the codegree
densities of some projective geometries, which included the Fano plane as a special case. The
codegree threshold for the Fano plane was determined by Keevash [15] via hypergraph regularity
and later by DeBiasio and Jiang [5] by direct combinatorial means. Mubayi and Zhao [27] studied
general properties of codegree density, while Falgas-Ravry [6] gave examples of non-isomorphic lower
bound constructions for γ(Kt). More recently Falgas–Ravry, Marchant, Pikhurko and Vaughan [7]
determined the codegree threshold of F3,2, and Falgas-Ravry, Pikhurko and Vaughan [8] showed
γ(K−

4 ) = 1
4 via a flag algebra computation, resolving a conjecture of Czygrinow and Nagle [29].

Another conjecture of Czygrinow and Nagle[4] remains open, namely that γ(K4) =
1
2 . Certainly

γ(F ) ≤ c2(F ) for any 3-graph F , and it may be hoped that giving good upper bounds for the latter
may also help bounding the former.

In addition to these Turán-type problems, there has been much research activity on the problem
of determining thresholds for the existence of F -factors. The situation for ordinary (2-)graphs is now
well-understood: the celebrated Hajnal–Szemerédi theorem [12] gives the exact minimum degree
condition guaranteeing the existence of F -factors in an n-vertex graph when F is a clique, while
Kühn and Osthus [21] determined the minimum degree condition for general graphs F up to an
additive constant. On the other hand, until recently not much was known about tiling for k-graphs
when k ≥ 3. While there has been a spate of results in the last few years, see [2, 3, 11, 13, 17, 20,
22, 23, 28, 31], many more open problems remain. We refer to the surveys of Rödl and Ruciński [30]
and Zhao [33] for a more detailed discussion of the area, and briefly mention below four results
relevant to the present work. For i ∈ {1, 2} and n ≡ 0 mod |V (F )|, let

ti(n, F ) = max{δi(G) : |V (G)| = n and G does not have an F -factor}.

Trivially ci(n, F ) ≤ ti(n, F ) for any 3-graph F with at least one edge. Lo and Markström [23, 22]
determined t2(n, F ) asymptotically when F = K4 and F = K−

4 . Independently Keevash and
Mycroft [17] determined t2(n,K4) exactly, and recently Han, Lo, Treglown and Zhao [13] determined
t2(n,K

−
4 ) exactly as well, in both cases for n sufficiently large. Finally in [14] Han, Zang and

Zhao asymptotically determined t1(n,K) for all complete 3-partite 3-graphs K. In particular, they
showed that t1(n,K) = c1(n,K) = (6−4

√
2+o(1))

(

n
2

)

for certain K. This gives further motivation
for the present paper: by determining c2(n, F ) for 3-graphs F , we may hope likewise to shed light
on t2(n, F ) and facilitate its (asymptotic) computation.
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1.4 Results

In this paper, we determine the codegree covering threshold for K4 for sufficiently large n.

Theorem 1.1. For every n ∈ N,
⌊

2n−5
3

⌋

≤ c2(K4, n) ≤
⌊

2n−3
3

⌋

. Furthermore, for every n > 98,

c2(n,K4) =

⌊

2n− 5

3

⌋

.

In addition, we determine c2(F ) when F is K−
4 , the strong 5-cycle C5, and K−

5 — in fact in
each case we give upper and lower bounds on c2(n, F ) differing by at most 2.

Theorem 1.2. Suppose n = 6m+ r for some r ∈ {0, 1, 2, 3, 4, 5} and m ∈ N, with n ≥ 7. Then

c2(n,K
−
4 ) =















2m− 1 or 2m if r = 0
2m if r ∈ {1, 2}
2m or 2m+ 1 if r ∈ {3, 4}
2m+ 1 if r = 5.

In particular, c2(K
−
4 ) = 1

3 .

Theorem 1.3. ⌊n−3
2 ⌋ ≤ c2(n,C5) ≤ ⌊n2 ⌋. In particular, c2(C5) =

1
2 .

Interestingly, there is no unique stable near-extremal configuration for Theorem 1.3: at least
two configurations at edit distance Ω(n3) of each other exist, see Remark 3.4.

Theorem 1.4.
⌊

2n−5
3

⌋

≤ c2(n,K
−
5 ) ≤

⌊

2n−2
3

⌋

. In particular, c2(K
−
5 ) = 2

3 .

Let us compare the Turán density π, the (existence) codegree density γ, the covering codegree
density c2, and the tiling codegree density t2 of K4, K

−
4 , and C5 in the following table (for a 3-graph

F of order f , define t2(F ) = limn=mf→∞ t2(n, F )/(n− 2) if this limit exists). In the table question
marks indicate conjectures, except for t2(C5), for which we are not aware of any conjecture.

γ π c2 t2

K4
1
2? [4] 5

9? [32] 2
3

3
4 [17, 23]

K−
4

1
4 [8] 2

7? [9] 1
3

1
2 [22]

C5
1
3? [24] 2

√
3− 3? [26] 1

2 ?

Finally we give bounds on c2(Fano), c2(F3,2) and c2(Kt) for t ≥ 5, and pose a number of questions.
Our paper is structured as follows. In Section 2, we determine the codegree covering threshold

for K4 and characterize the extremal configurations. In Section 3, we prove our bounds on c2(n, F )
for the other 3-graphs F mentioned above. We end in Section 4 with some discussion and questions.

2 The covering codegree threshold for K4

In this section we determine the codegree threshold c2(n,K4). We give a lower bound construction
in Section 2.1 and prove the upper bound in Section 2.2. Finally, in Section 2.3 we provide other
extremal constructions, and state a stability theorem that helps to show that these constructions
are all possible extremal configurations; as the proofs of these latter results are similar to the proof
of Theorem 1.1 we defer them to the appendix.
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Figure 1: The complement of F1(n). The red pairs and the blue triples are absent from the link
graph of x in F1 and from E(F1) respectively.

2.1 Lower bound

Proof of the lower bound in Theorem 1.1. We construct a 3-graph F1(n) on V = [n]. Select a
special vertex x. Split the remainder of the vertices into three parts V1 ⊔ V2 ⊔ V3 = V \ {x} with
sizes as equal as possible,

|V3| − 1 ≤ |V1| ≤ |V2| ≤ |V3|.
Put in as the link graph of x all pairs between distinct parts, i.e. add in all triples of the form
xViVj for i 6= j. Further, add in all triples not containing x and meeting at most two of the three
parts (Vi)

3
i=1. Denote the resulting 3-graph by F1 = F1(n). The complement of F1(n) is shown in

Figure 1.
Observe that x is contained in no copy of K4 in F1: the only triangles in the link graph of x are

tripartite, and thus are not covered by any triple of the 3-graph. Let us now compute the minimum
codegree of F1. For vi, v

′
i ∈ Vi and vi+1 ∈ Vi+1, we have d(vi, x) = n − 1 − |Vi|, d(vi, v′i) = n − 3

and d(vi, vi+1) = n− 2− |Vi+2|. The minimum codegree δ2(F1) is thus n− 2− ⌈n−1
3 ⌉, attained by

pairs (v1, v2) ∈ V1 × V2. Writing n = 3m+ r with r ∈ {0, 1, 2} and m ∈ N, we have shown that

c2(3m+ r,K4) ≥ δ2(F1) =

{

2m− 2 if r = 0
2m− 1 if r = 1 or 2.

This lower bound can be expressed more compactly as c2(n,K4) ≥ ⌊2n−5
3 ⌋.

2.2 Upper bound

Let us give a general upper bound for c2(n, F ), which turns out to be surprisingly close to the truth
in the case of F = K4.

Lemma 2.1. Given a 3-graph F with at least one 3-edge, let r be the maximum of δ1(F
′) among

all subgraphs F ′ of F . Then c2(n, F ) ≤ ⌊(1 − 1/r)n + (|V (F )| − 2r − 1)/r⌋.
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Proof. Assume that F contains f vertices. We order the vertices of F as x1, . . . , xf such that xi
is a vertex of minimum degree in the subgraph F − {xi+1, . . . , xf}. As r = max δ1(F

′) among all
subgraphs F ′ of F , we know that xi has at most r neighbours among x1, . . . , xi.

Let G be a 3-graph on n vertices such that

δ2 := δ2(G) >
r − 1

r
n+

f − 1

r
− 2.

Fix a vertex v1 of G. We will find a copy of F in G by first mapping x1 to v1, x2 to any other
vertex v2, and x3 to any v3 ∈ ΓG(v1, v2). Suppose that x1, . . . , xi have been embedded to v1, . . . , vi.
In order to embed xi+1, we consider the neighbours of xi+1 among x1, . . . , xi. There are t ≤ r such
neighbours and they are mapped to pairs p1, . . . pt of v1, . . . , vi. Each pj has at least δ2 neighbours
in G and thus at most n− 2− δ2 non-neighbours in V (G) \ {v1, . . . , vi}. By the definition of δ2 and
i ≤ f − 1, we have r(n − 2 − δ2) < n − i. Hence there exists a vertex vi+1 ∈ V (G) \ {v1, . . . , vi}
such that vi+1 is a common neighbour of p1, . . . pt. Continuing this process, we obtain a copy of F
as desired.

Remark 2.2. The proof of Lemma 2.1 actually shows that if δ2(G) > (1−1/r)n+(|V (F )|−2r−1)/r
then every triple of E(G) is covered by an F -subgraph.

Applying Lemma 2.1 with F = K4 and r = 3, we obtain that c2(n,K4) ≤ ⌊2n−3
3 ⌋. When n ≡ 1

mod 3, this implies that c2(n,K4) ≤ ⌊2n−5
3 ⌋. Together with the lower bound c2(n,K4) ≥ ⌊2n−5

3 ⌋,
we obtain c2(n,K4) = ⌊2n−5

3 ⌋ immediately.
When n ≡ 0 or 2 mod 3, more work is required to reduce the upper bound to ⌊2n−5

3 ⌋. In both
cases, we shall make use of the following simple observation.

Lemma 2.3. Let G be a 3-graph on n ≥ 4 vertices. Suppose that x ∈ V (G) is not covered by any
copy of K4 and there exists a, b, c ∈ V (G) such that abx, bcx, acx ∈ E(G) (thus abc 6∈ E(G)). Let
S = {a, b, c, x} and for each vertex y ∈ V (G) \ S, let Sy consist of all the pairs of S that make a
3-edge with y in G. Then Sy must be a subset of one of the following sets:

S1,c = {ax, bx, ac, bc}, S1,b = {ax, cx, ab, bc}, S1,a = {bx, cx, ab, ac},

S2,a = {ab, ac, bc, ax}, S2,b = {ab, ac, bc, bx}, S2,c = {ab, ac, bc, cx}, S3 = {ax, bx, cx}.
In particular, |Sy| ≤ 4.

Proof of c2(n,K4) ≤ ⌊(2n − 5)/3⌋ when 3 divides n. Suppose n = 3m for some integer m ≥ 2 (so
that ⌊(2n − 5)/3⌋ = 2n/3 − 2). Let G = (V,E) be a 3-graph on n vertices with δ2(G) ≥ 2n/3− 1.
We claim that all vertices of G are covered by copies of K4. Suppose instead, that some vertex
x ∈ V is not contained in a copy of K4. Since the minimum degree in the link graph Gx of x is at
least 2n/3− 1 > (n− 1)/2, there exists a triangle {ab, bc, ac} in Gx. This implies that abc /∈ E. Set
S = {a, b, c, x}. For each vertex y ∈ V \ S, by Lemma 2.3, at most four pairs of S form edges of G
with y. Thus, by the codegree assumption,

6

(

2n

3
− 1

)

≤ d(a, x) + d(b, x) + d(c, x) + d(a, b) + d(b, c) + d(c, a) ≤ 4(n− 4) + 9,

a contradiction.
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When n ≡ 2 mod 3, we start the proof in the same way. However, since we only have δ2(G) ≥
(2n− 4)/3, we will not obtain a contradiction until we prove that G has a similar structure as the
3-graph F1(n) given in Section 2.1.

Proof of c2(n,K4) ≤ ⌊2n−5
3 ⌋ when n ≡ 2 mod 3. Suppose n = 3m + 2 > 98. In order to show

that c2(n,K4) ≤ ⌊2n−5
3 ⌋ = (2n − 7)/3, consider a 3-graph G = (V,E) on n vertices satisfying

δ2(G) ≥ (2n − 4)/3.
Suppose that a vertex x of G is not contained in any copy of K4. As (2n − 4)/3 > (n − 1)/2,

the link graph Gx contains a triangle {ab, bc, ac}. Set S = {a, b, c, x} and for each y ∈ V \S, define
Sy as in Lemma 2.3. By Lemma 2.3, Sy is a subset of S1,c, S1,b, S1,a, S2,a, S2,b, S2,c or S3. For
i ∈ {1, 2} and j ∈ {a, b, c}, write si,j for the number of vertices y ∈ V \ S for which Sy = Si,j,
and write si for the sum si,a + si,b + si,c. Finally let s0 be the number of vertices y ∈ V \ S such
that Sy 6= Si,j for any i ∈ {1, 2} and j ∈ {a, b, c}. Note that |Sy| ≤ 3 for such y. We know that
s1 + s2 + s0 = n− 4. Furthermore, by the codegree assumption,

3
2n − 4

3
≤ d(a, x) + d(b, x) + d(c, x) ≤ 2s1 + s2 + 3s0 + 6, (1)

6
2n− 4

3
≤ d(a, x) + d(b, x) + d(c, x) + d(a, b) + d(b, c) + d(c, a) ≤ 4s1 + 4s2 + 3s0 + 9, (2)

Substituting s0 = n− 4− s1 − s2 into (1) and (2) yields that s1 +2s2 ≤ n− 2 and s1 + s2 ≥ n− 5,
respectively. Combining the two inequalities we have just obtained, we get

s2 ≤ 3 and s1 ≥ n− 8.

We now show that the weight of s1 splits almost equally between s1,a, s1,b, s1,c. Note that

2n− 4

3
≤ d(b, c) ≤ n− 3− s1,a,

from which it follows that s1,a ≤ n−5
3 . Similarly we derive that s1,b,s1,c ≤ (n− 5)/3. Consequently

s1,a = s1 − s1,b − s1,c ≥ n− 8− 2
n − 5

3
=

n− 14

3
.

Similarly s1,b and s1,c satisfy the same lower bound. Let A = {y ∈ V \ S : Sy = S1,a} ∪ {a},
B = {y ∈ V \S : Sy = S1,b}∪{b} and C = {y ∈ V \S : Sy = S1,c}∪{c}. Set V ′ = A∪B∪C∪{x}.
Then we have just shown the following lemma.

Lemma 2.4.

|V ′| = 1 + |A|+ |B|+ |C| ≥ n− 4, and
n− 11

3
≤ |A|, |B|, |C| ≤ n− 2

3
.

Let B be the collection of 3-edges of G of the form xAA, xBB, xCC (the ‘bad’ triples). Let M
be the collection of non-edges of G of the form xAB, xAC, xBC (the ‘missing’ triples). Viewing
B and M as 3-graphs on V ′, for two distinct vertices v1, v2 ∈ V ′, we let dB(v1, v2) denote their
codegree in B and dM(v1, v2) their codegree in M.

Claim 2.5. For every v ∈ V ′ \ {x}, dB(v, x) ≤ 4.

7



Proof. Suppose without loss of generality that v ∈ A. If v = a, then dB(v, x) = 0 because G
contains no 3-edges of the form xaA. We thus assume that v 6= a. The bad triples for the pair
(v, x) are triples of the form a′vx for a′ ∈ A \ {a, v}. Suppose a′vx ∈ B. Then since there is no K4

in G containing x, and since, by the definition of A, a′bx, vbx, a′cx and vcx are all in G, it must
be the case that both of a′vb and a′vc are missing from G. Further if c′ ∈ C ∩ Γ(v, x) then all of
c′vx, bvx, c′bx are in G, whence bc′v is absent from G. Similarly for any b′ ∈ B, at most one of b′cv,
b′xv is in G. Finally since bcv 6∈ E(G), b and c are contained in exactly one of Γ(b, v), Γ(c, v), and
Γ(x, v). To summarize, a vertex y in V ′ can lie in at most two of Γ(b, v), Γ(c, v) and Γ(x, v) unless
y is in ΓB(x, v) (and lies in exactly one of those joint neighbourhoods) or is in {b, c, v} (and lies in
at most one of those joint neighbourhoods). Together with our codegree assumption, this gives us

3
2n − 4

3
≤ d(b, v) + d(c, v) + d(x, v) ≤ 2|V ′| − dB(v, x) − 4 + 3(n − |V ′|)

= 3n− |V ′| − 4− dB(v, x) ≤ 2n− dB(v, x),

where we apply |V ′| ≥ n− 4 from Lemma 2.4 in the last inequality. It follows that dB(v, x) ≤ 4, as
claimed.

Claim 2.6. For every v ∈ V ′ \ {x}, dM(v, x) ≤ 8.

Proof. Suppose without loss of generality that v ∈ A. Then by the codegree assumption, Claim 2.5
and the bound on |A| from Lemma 2.4 we have

2n− 4

3
≤ d(v, x) ≤ n− 1− |A|+ dB(v, x) − dM(v, x) ≤ n− 1− n− 11

3
+ 4− dM(v, x),

which gives that dM(v, x) ≤ 8 as claimed.

Claim 2.7. For every y ∈ V (G) \ {x}, Γ(y, x) has a non-empty intersection with at most two of
the parts A, B and C.

Proof. Let y ∈ V (G) \ {x}. Set Ay = A∩Γ(x, y), By = B ∩Γ(x, y) and Cy = C ∩Γ(x, y). Suppose
none of Ay, By, Cy is empty. Fix a′ ∈ Ay. For b′ ∈ By, if b

′ ∈ Γ(a′, x), then a′b′y 6∈ E(G) –
otherwise {a′, b′, x, y} spans a copy of K4. Similarly, for c′ ∈ Cy ∩ Γ(a′, x), we have a′c′y 6∈ E(G).
Hence,

2n− 4

3
≤ d(a′, y) ≤ n− 2− |By ∩ Γ(a′, x)| − |Cy ∩ Γ(a′, x)|.

Claim 2.6 gives that dM(a′, x) ≤ 8. Consequently,

|By ∩ Γ(a′, x)|+ |Cy ∩ Γ(a′, x)| = |By|+ |Cy| − dM(a′, x) ≥ |By|+ |Cy| − 8

This implies that
2n− 4

3
≤ n− 2− |By| − |Cy|+ 8,

which yields |By|+ |Cy| ≤ (n+ 22)/3. Similarly by considering any vertex b′ ∈ By and any vertex
c′ ∈ Cy we obtain that

|Ay|+ |Cy| ≤
n+ 22

3
and |Ay|+ |By| ≤

n+ 22

3
.
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Summing these three inequalities and dividing by 2, we obtain that

|Ay|+ |By|+ |Cy| ≤
n+ 22

2
.

Furthermore, by the codegree condition,

2n− 4

3
≤ d(x, y) ≤ |Ay|+ |By|+ |Cy|+

(

n− |V ′|
)

≤ n+ 22

2
+ 4,

where we apply |V ′| ≥ n− 4 from Lemma 2.4. Rearranging terms yields n
6 ≤ 49

3 , which contradicts
our assumption n > 98.

Set V1 = {y ∈ V \ {x} : Γ(x, y) ∩ A = ∅}, V2 = {y ∈ V \ {x} : Γ(x, y) ∩ B = ∅} and
V3 = {y ∈ V \ {x} : Γ(x, y) ∩ C = ∅}. Without loss of generality, assume that

|V1| ≤ |V2| ≤ |V3|. (3)

Claim 2.7 shows that V1 ∪ V2 ∪ V3 covers V (G) \ {x}. We now show that in fact V1, V2, V3 are
pairwise disjoint, and A ⊆ V1, B ⊆ V2, and C ⊆ V3. Suppose instead, that there exists y ∈ V1 ∩V2.
Then Γ(x, y) ∩ (A ∪B) = ∅. By the codegree condition and Lemma 2.4,

2n − 4

3
≤ d(x, y) ≤ |Cy|+

(

n− |V ′|
)

≤ n− 2

3
+ 4,

which implies that n ≤ 14, a contradiction.
Furthermore, consider a′ ∈ A. By Claim 2.6, a′xv ∈ E(G) for all but at most 8 vertices

v ∈ B ∪ C. By Lemma 2.4,

|B| − 8 ≥ n− 11

3
− 8 > 0

which is strictly positive as n > 35. Thus we have that Γ(a′, x) has a non-empty intersection with
B; similarly we have that Γ(a′, x) ∩ C 6= ∅, from which we can finally deduce by Claim 2.7 that
Γ(a′, x) ∩A = ∅ and that A ⊆ V1. Similarly we have B ⊆ V2 and C ⊆ V3.

Let c′ ∈ C. By the definition of V3, we have Γ(c′, x) ⊆ V1 ∪ V2. By the codegree assumption, it
follows that

2n− 4

3
≤ d(c′, x) ≤ |V1|+ |V2| = n− 1− |V3|, (4)

from which we get that |V3| ≤ (n+1)/3. Since n = 3m+2, by (3), we derive that |V3| = (n+1)/3 =
m+ 1 and |V1| ≤ |V2| ≤ (n+ 1)/3.

Claim 2.8. Let y ∈ Vi. Then Γ(y, x) contains all but at most 6 vertices from
⋃

j 6=i Vj and no vertex
from Vi.

Proof. Suppose without loss of generality that y ∈ V1. Then by Claim 2.7, A ∩ Γ(y, x) = ∅. Thus

2n− 4

3
≤ d(x, y) ≤ |Γ(x, y) ∩ (V2 ∪ V3) |+ |Γ(x, y) ∩ (V1 \ A) | ≤ |Γ(x, y) ∩ (V2 ∪ V3) |+ 4

9



because |V1 \ A| ≤ n − |V ′| ≤ 4 by Lemma 2.4. Hence |Γ(x, y) ∩ (V2 ∪ V3) | ≥ (2n − 16)/3. Since
|Vi| ≤ (n+ 1)/3 for all i,

| (V2 ∪ V3) \ Γ(x, y)| ≤ 2
n+ 1

3
− 2n− 16

3
= 6.

This establishes the first part of our claim.
For the second part of our claim (namely, Γ(y, x)∩V1 = ∅), suppose that yy′x ∈ E(G) for some

y′ ∈ V1. Then Γ(y, y′) ∩ Γ(y, x) ∩ Γ(y′, x) = ∅. Consequently,

2n− 4

3
≤ d(y, y′) ≤ 1 + |V1| − 2 +

∣

∣(V2 ∪ V3) \
(

Γ(y, x) ∩ Γ(y′, x)
)∣

∣ ≤ 1 +
n+ 1

3
− 2 + 2 · 6

where in the last inequality we apply |V1| ≤ (n+ 1)/3 and the first part of the claim. This implies
that n ≤ 38, a contradiction.

Claim 2.8 implies that Γ(v3, x) ⊆ V1 ∪ V2 for all v3 ∈ V3. Then d(v3, v) satisfies (4) with two
inequalities replaced by equalities. Consequently all triples of the form xvv3 with v3 ∈ V3 and
v ∈ V1 ∪ V2 are in E(G)

Claim 2.8 also implies that most v1 ∈ V1 and v2 ∈ V2 satisfy xv1v2 ∈ E(G). Fix such v1 and v2.
Then v1v2v3 6∈ E(G) for any v3 ∈ V3 otherwise xv1v2v3 induces a copy of K4. We thus have

2m ≤ d(v1, v2) ≤ |V1|+ |V2| − 1 = 2m− 1,

a contradiction. This completes the proof of Theorem 1.1 in the case n = 3m+ 2.

2.3 Other extremal constructions and stability

Recall the construction F1(n) described in Section 2.1. There are other extremal families of 3-graphs
for K4-covering that are not isomorphic to subgraphs of F1(n) .
Case 1: n = 3m. We partition [n] \ {x} into three parts V1, V2 and V3 with sizes |V1| = m − 1
and |V2| = |V3| = m. A collection E of pairs of vertices from different parts of [n] \ {x} is called
admissible if (i) every vertex v1 ∈ V1 is contained in at most two pairs from E , and (ii) every vertex
v ∈ V2 ⊔ V3 is contained in at most one pair from E . Now let F1(E , 3m) be the 3-graph obtained
from F1 by deleting all triples xuv and adding all tripartite triples uvw (namely, w ∈ V \{x} is from
the part different from the ones containing u or v) for all uv ∈ E . It is easy to see that F1(E , 3m)
contains no K4 covering x and δ2(F1(E , 3m)) = δ2(F1(3m)) = 2m− 2.
Case 2: n = 3m+1. We partition [n] \ {x} into three parts V1, V2 and V3 with sizes |V1| = |V2| =
|V3| = m. A collection E of pairs of vertices from different parts of [n] \ {x} is called admissible if
every vertex is contained in at most one pair from E . Now let F1(E , 3m+1) be the 3-graph obtained
from F1 by deleting all triples xuv and adding all tripartite triples uvw for all uv ∈ E . It is easy ti
see that F1(E , 3m+1) contains no K4 covering x and δ2(F1(E , 3m+1)) = δ2(F1(3m+1)) = 2m−1.
Case 3: n = 3m+2. We partition [n]\{x} into three parts V1, V2 and V3 with sizes |V1| = |V2| = m
and |V3| = m+1. A collection E of pairs of vertices from different parts of [n]\{x} is called admissible
if (i) every vertex v ∈ V1 ⊔ V2 is contained in at most 2 pairs from E and (ii) every vertex v3 ∈ V3

is contained in at most 1 pair from E . Now let F1(E , 3m + 2) be the 3-graph obtained from F1 by
deleting all triples xuv and adding all tripartite triples uvw for all uv ∈ E . It is easy to see that
F1(E , 3m+ 2) contains no K4 covering x and δ2(F1(E , 3m + 2)) = δ2(F1(3m+ 2)) = 2m− 1.
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There is yet another extremal construction. Partition [n] \ {x} into three parts V1, V2 and V3

with sizes |V1| = m− 1 and |V2| = |V3| = m+ 1. In this context, a collection E of pairs of vertices
from different parts of [n] \ {x} is called admissible if (i) every vertex v1 ∈ V1 is contained in at
most 3 pairs from E and (ii) every vertex v ∈ V2 ⊔ V3 is contained in at most 1 pair from E . Let
F ′
1 be the 3-graph on [n] consisting of all triples xuv, where u, v come from different parts, and all

triples of [n] \ {x} that are not tripartite. Now let F ′
1(E , 3m+ 2) be the 3-graph obtained from F ′

1

by deleting all triples xuv and adding all tripartite triples uvw for all uv ∈ E . It is easy to see that
F ′
1(E , 3m+ 2) contains no K4 covering x and δ2(F

′
1(E , 3m + 2)) = δ2(F1(3m+ 2)) = 2m− 1.

We can show that the above constructions are all extremal configurations for n sufficiently large
(n ≥ 999). This can be done by first proving the following stability theorem.

Theorem 2.9 (Stability). Suppose n ≥ 4 and 0 < δ ≤ 1
429 . Suppose that G is a 3-graph on

n vertices with minimum codegree δ2(G) ≥
(

2
3 − δ

)

n and that there is a vertex x ∈ V (G) not
contained in any copy of K4 in G. Then there exists a tripartition V1 ⊔ V2 ⊔ V3 of V (G) \ {x} such
that the following holds for all i ∈ [3] and j 6= i:

(i) there is no triple in G of the form xViVi;

(ii) all but at most 9δn2 triples of the form xViVj are in G;

(iii) there are at most 4δn3 triples in G of the form V1V2V3;

(iv) all but at most 6δn3 triples of the form ViViVj are in G;

(v)
∣

∣|Vi| − n−1
3

∣

∣ ≤ 2δn.

Theorem 2.10. • For n ≡ 0 mod 3 with n ≥ 858, the extremal configurations for c2(n,K4)
are isomorphic to a subgraph of F1(E , n) for some admissible E.

• For n ≡ 1 mod 3 with n ≥ 715, the extremal configurations for c2(n,K4) are isomorphic to
a subgraph of F1(E , n) for some admissible E.

• For n ≡ 2 mod 3 with n ≥ 1001, the extremal configurations for c2(n,K4) are isomorphic to
a subgraph of F1(E , n) or to a subgraph of F ′

1(E , n) for some admissible E.

The proof of Theorem 2.9 is very similar to that of the case n = 3m+ 2 of Theorem 1.1, while
the proof of Theorem 2.10 is a straightforward application of parts (i) and (ii) of Theorem 2.9. We
therefore defer these proofs to the appendix.

3 Covering thresholds for other 3-graphs

3.1 K
−
4

Proof of the lower bound in Theorem 1.2. We construct a 3-graph F2(n) on V = [n]. Select a
special vertex x. Split the remainder of the vertices into six parts ⊔6

i=1Vi = V \ {x} with sizes as
equal as possible, as follows:

|V1| − 1 ≤ |V6| ≤ |V5| ≤ |V4| ≤ |V3| ≤ |V2| ≤ |V1|.
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Put as the link of x the blow-up of a 6-cycle through the six parts, i.e. add all triples of the
form xViVi+1 for i ∈ [6], winding round modulo 6 as necessary (identifying V7 with V1, and so on).
Finally add those triples not involving x which are not of type ViViVi+1, ViVi+1Vi+1 or ViVi+1Vi+2

for i ∈ [6] (winding round modulo 6) to form the 3-graph F2(n).
Observe that the link graph of x in F2(n) is triangle-free (being the blow-up of a 6-cycle). Thus

a putative K−
4 containing x would have to be induced by a 4-set {a, b, c, x}, with abc, abx and

acx all being triples of F2(n). Since ab is in the link graph of x, we must have that a, b come
from different but adjacent parts Vi, Vi+1; by symmetry of F2(n), we may assume without loss of
generality that a ∈ V1 and b ∈ V2. Since acx ∈ E(F2(n)), it follows that c ∈ V2 or c ∈ V6. But
by construction of F2(n), there are no triples of type V6V1V2 or V1V2V2, so that we cannot have in
abc ∈ E(F2(n)). Thus there is no copy of K−

4 in F2(n) covering x.
Let us now compute the minimum codegree of F2(n). Consider vertices ai, a

′
i ∈ Vi, ai+1 ∈ Vi+1,

ai+2 ∈ Vi+2 and ai+3 ∈ Vi+3. We have that d(ai, a
′
i) = n − 3 − |Vi−1| − |Vi+1|, d(ai, ai+2) =

n− 3− |Vi+1|, d(ai, ai+3) = n− 3, and, lastly,

d(ai, x) = |Vi−1|+ |Vi+1| and d(ai, ai+1) = 1 + |Vi+3|+ |Vi+4|.

Up to the choice of i, this covers all possible pairs in F2(n). The first three quantities are at least
n − 3 − 2⌈n−1

6 ⌉ ≥ 2n
3 − 13

3 , which for n ≥ 12 is greater than ⌊n−1
3 ⌋. The last two quantities are

both of order n
3 + O(1), however, and we analyse them more closely. Set n = 6m + r for some

r ∈ {0, 1, 2, 3, 4, 5}. Then

d(ai, x) ≥ min
i

(

|Vi−1|+ |Vi+1|
)

= |V6|+ |V4| =







2m− 1 if r = 0
2m if 0 < r < 5
2m+ 1 if r = 5,

and

d(ai, ai+1) ≥ min
i

(

1 + |Vi+3|+ |Vi+4|
)

= 1 + |V5|+ |V6| =
{

2m if r = 0
2m+ 1 if 0 < r ≤ 5.

Thus

c2(n,K
−
4 ) ≥ δ2(F2(n)) =







2m− 1 if r = 0
2m if 0 < r < 5
2m+ 1 if r = 5.

Proof of the upper bound in Theorem 1.2. Let G be a 3-graph on n ≥ 4 vertices. Suppose δ2(G) >
n
3 . Pick an arbitrary vertex x ∈ V (G). Let abx be any 3-edge containing x. We have d(a, b) +
d(a, x) + d(b, x)− 3 > n− 3. So by the pigeonhole principle, there exists c ∈ V (G) \ {a, b, x} which
makes a 3-edge of G with at least two of ab, ax, bx. The 4-set abcx then contains a copy of K−

4 in
G covering x, as required. This shows that c2(n,K

−
4 ) ≤ ⌊n3 ⌋.

Remark 3.1. Again we actually proved something stronger here: our argument establishes that for
δ2(G) above ⌊n3 ⌋, every triple of E(G) can be extended to a copy of K−

4 .

Matching the upper and lower bounds obtained above, we obtain the set of possible values for
c2(n,K

−
4 ) claimed in Theorem 1.2.

12



x x

V1 V2

Figure 2: The 3-graph F3(n). The red pairs and the blue triples make up the link graph of x and
the remainder of E(F3) respectively.

Remark 3.2. We believe the gap between the upper and lower bounds for c2(n,K
−
4 ) could be closed

using similar (but more involved) stability arguments to those we used on to determine c2(n,K4).
However since such arguments would be non-trivial (the conjectured extremal configurations in this
case are 6-partite) and would greatly increase the length of this paper, we do not pursue them here
and leave open the determination of c2(n,K

−
4 ) in the case where n ≡ 0, 3, 4 mod 6.

3.2 C5

Proof of the lower bound in Theorem 1.3. We construct a 3-graph F3(n) on V = [n]. Select a
special vertex x. Split the remainder of the vertices into two parts V \ {x} = V1 ⊔ V2 with sizes as
equal as possible, |V2| − 1 ≤ |V1| ≤ |V2|. Form the link graph of x by adding in all pairs internal to
one of the parts, i.e. all pairs of the form xV1V1 or xV2V2. Next, add in all triples not containing
x and meeting both of the parts, i.e. all pairs of the form V1V1V2 or V1V2V2. This yields a 3-graph
F3(n) with minimum codegree δ2(F3(n)) = |V1| − 1 = ⌊n−3

2 ⌋, attained by x and any vertex a ∈ V1;
see Figure 2.

Now there is no copy of C5 covering x ∈ F3(n). Indeed, let S = {a1, a2, b1, b2} be a set of four
distinct vertices in V \ {x} such that all of a1a2x, a1b1x and b1b2x are triples of F3(n). Then by
construction these four vertices must all lie within the same part of F3(n). But by construction
again we have that S spans no triple of F3(n), whence S ∪ {x} does not contain a copy of C5.

Proof of the upper bound in Theorem 1.3. Let G = (V,E) be a 3-graph on n vertices with minimum
codegree δ2(G) > n

2 . Let x be any vertex. Fix an edge ab in the link graph Gx. Since δ1(Gx) > n/2,
a and b each has at least n

2 −1 neighbours in V \{x, u, v}. Hence a and b have a common neighbour
c in Gx. We shall use the triangle {a, b, c} to find a copy of C5 covering x. For this purpose, it is
convenient to introduce the following notation. Given a 4-set of vertices {y1, y2, z1, z2} from V \{x},
write y1y1|z1z2 as a shorthand for the statement that all of y1z1x, y1y2x, y2z2x, y2z1z2 and y1z1z2
are in E(G) (and in particular that {x, y1, z1, z2, y2} contains a copy of C5 covering x).

Lemma 3.3. There is either a copy of C5 or a copy of K4 covering x in G.

Proof. If abc ∈ E(G) then the claim is immediate since S = {a, b, c, x} induces a complete 3-graph.
Assume therefore that abc /∈ E(G). By our codegree assumption,

d(a, b) + d(a, c) + d(b, c) + d(a, x) + d(b, x) + d(c, x) − 9 ≥ 6δ2(G)− 9 > 3(n− 4).
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Thus there exists y ∈ V \ S which makes a 3-edge with at least four of the pairs ab, ac, bc, ax,
bx, cx. It is now easy to check that S ∪ {y} contains either a K4 or a C5 covering x. Indeed by
symmetry we may reduce the case-checking to the following three possibilities:

• if y makes a 3-edge with ab, bc, ac and ax, then ab|cy;

• if y makes a 3-edge with ab, ac and at least one of bx or cx, then bc|ay;

• if y makes a 3-edge with ab and with both of ax and bx, then {a, b, x, y} induces a copy of
K4.

With a view towards proving Theorem 1.3, we may thus assume that there is a copy of K4

covering x. Let S = {a, b, c, x} be a 4-set of vertices inducing such a K4. By the codegree
assumption,

d(a, b) + d(a, c) + d(b, c) + d(a, x) + d(b, x) + d(c, x) − 12 ≥ 6δ2(G)− 12 > 3(n − 4).

Thus there exists y ∈ V \ S which makes a 3-edge with at least four of the pairs ab, ac, bc, ax, bx,
cx. It is now easy to check that S ∪ {y} contains a copy of C5 covering x. Indeed by symmetry we
may reduce the case-checking to the following three possibilities:

• if y makes a 3-edge with ab, ac, bc and ax, then ab|cy;

• if y makes a 3-edge with ab, ac and at least one of bx and cx, then bc|ay;

• if y makes a 3-edge with ab and with all of ax, bx and cx, then cy|ab.
In all three cases we cover x with a copy of C5. The claimed upper bound on c2(n,C5) follows.

Remark 3.4. Interestingly, as pointed out to us by Jie Han and Allan Lo, another very different
construction attains the lower bound in Theorem 1.3. Take a balanced bipartition of [n] into two
sets V1 and V2, with |V1| ≤ |V2|. Now take all triples meeting V1 in an even number of vertices to
form a 3-graph F4(n). Note that δ2(F4(n)) = min (|V1| − 1, |V2| − 2) (attained by pairs from A×B
and B(2) respectively), which is exactly equal to ⌊n−3

2 ⌋ . Now, it is an easy exercise to check that
every vertex x ∈ V1 fails to be covered by a C5, giving us a second proof that c2(n,C5) ≥ ⌊n−3

2 ⌋.
In particular, we do not have stability for this problem: we have two near-extremal constructions
which are easily seen to lie at edit distance Ω(n3) from each other. Also we have that just below
the codegree threshold for covering by C5, we could have as many as ⌊n2 ⌋ uncovered vertices. This
stands in sharp contrast with the situation for K4 (see the discussion in Section 4).

3.3 K
−
5

Proof of Theorem 1.4. For the lower bound, note that

c2(n,K
−
5 ) ≥ c2(n,K4) ≥ δ2(F1(n)) =

⌊

2n − 5

3

⌋

.

For the upper bound, let G be a 3-graph on n vertices with δ2(G) > 2n−2
3 . By Theorem 1.1, for

any vertex x ∈ V (G) there is a triple a1, a2, a3 such that S = {x, a1, a2, a3} induces a copy of K4

in G. Now

d(x, a1) + d(x, a2) + d(x, a3) + d(a1, a2) + d(a1, a3) + d(a2, a3)− 12 > 4(n − 4),
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whence there exist a4 ∈ V \ S which makes a 3-edge with at least 5 of the pairs from S(2). Thus
S ∪ {a4} contains a copy of K−

5 covering x. This shows that c2(n,K
−
5 ) ≤ ⌊2n−2

3 ⌋.

3.4 The Fano plane

Proposition 3.5. ⌊n2 ⌋ ≤ c2(n,Fano) ≤ ⌊2n3 ⌋.

Proof. The lower bound is from the codegree threshold of the Fano plane: consider a bipartition of
[n] into two sets V1 ⊔ V2 with |V1| = ⌊n2 ⌋ and |V2| = ⌈n2 ⌉, and adding all triples meeting both parts.
The resulting 3-graph is easily seen to be Fano-free (it is 2-colourable, whereas the Fano plane is
not) and has codegree ⌊n2 ⌋. For the upper bound, apply Lemma 2.1 with F = Fano and r = 3.

3.5 F3,2

Theorem 3.6. 1/3 ≤ c2(F3,2) ≤ 3/7.

Proof. The lower bound is from the codegree density of F3,2. An F3,2-free construction on n vertices
with codegree ⌊n3 ⌋ − 1 is obtained by considering a tripartition of [n] into three parts with sizes as
equal as possible, |V3| − 1 ≤ |V1| ≤ |V2| ≤ |V3| and adding all triples of the form ViViVi+1 (this is
not actually best possible — see [7] for a determination of the precise codegree threshold and the
extremal constructions attaining it).

For the upper bound, let G be a 3-graph on n vertices with δ2(G) = cn. Suppose there exists
x ∈ V (G) such that there is no copy of F3,2 in G covering x. This means that for every vertex
v ∈ V \ {x}, Γ(x, v) is an independent (3-edge–free) set in G, and moreover that for every 4-set
{a, b, c, d} ⊆ V (G), at least one of the triples {xab, xcd, abc, abd} is not in E(G). For convenience,
we shall write ab|cde as a short-hand for the statement that {abc, abd, abe, cde} all are 3-edges of
G.

We use the following technical lemma to deduce c ≤ 3/7 + o(1).

Lemma 3.7. If there exist sets A,B ⊆ V such that

1. A is a subset of Γ(x, y) of size cn for some y ∈ V \ {x}, and B is a subset of V \ (A+∪{x})
of size cn, and

2. B is independent in G and the link graph Gx,

then c ≤ 3/7 + o(1).

Proof of Lemma 3.7. Let C = V \ (A ∪B). We have |C| = n(1 − 2c). By our assumption, A
is independent in G. By the codegree assumption, at least

(

|A|
2

)

(cn− |C|) triples of G have two

vertices in A and one vertex in B. Consequently, at most
(|A|

2

)

|C| =
(

cn
2

)

(1 − 2c)n triples of the
form AAB are missing from G.

On the other hand, let b, b′ ∈ B. Since B is independent in G and Gx, we have Γ(b, b′) ⊆ A∪C
and Γ(b, x) ⊆ A ∪ C. Consequently |Γ(b′, x) ∩A| ≥ cn− |C| ≥ (3c − 1)n and

|Γ(b, b′) ∩ Γ(b, x) ∩A| ≥ 2(cn − |C|)− |A| ≥ (5c − 2)n.

For any a ∈ Γ(b, b′) ∩ Γ(b, x) ∩A and any a′ ∈ Γ(b′, x) ∩ A, the triple aa′b must be absent from G
– otherwise ab|a′bx. There are at least

(

(3c−1)n
2

)

−
(

(1−2c)n
2

)

such pairs (a, a′) because, in general,
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there are at least
(|A1|

2

)

−
(|A1|−|A2|

2

)

pairs (a1, a2) with a ∈ A1 and a2 ∈ A2 for arbitrary sets A1, A2

satisfying |A1| ≥ |A2|.
There are thus at least

((3c−1)n
2

)

−
((1−2c)n

2

)

distinct pairs (a, a′) for which aa′b /∈ E(G). Summing

over all b ∈ B, this gives us a total of at least
(

((3c−1)n
2

)

−
((1−2c)n

2

)

)

cn AAB triples missing from

E(G). Combining this together with our upper bound on the number of missing AAB triples yields
the inequality

((

(3c − 1)n

2

)

−
(

(1− 2c)n

2

))

cn ≤
(

cn

2

)

(n(1− 2c) − 1),

which implies that

(

(3c− 1)2 − (1− 2c)2
) n2

2
cn ≤ c2n2

2
(1− 2c) n+O(n2).

This inequality in turn gives c ≤ 3/7 + o(n−1).

We now show that we can find A,B ⊆ V satisfying the properties in Lemma 3.7.
Suppose first of all that Gx is not triangle-free. Let ya1a2 vertices spanning a triangle in Gx.

Let A be a subset of Γ(x, y) of size cn. Then A must be an independent set in G. Let B be a
subset of Γ(a1, a2) in V \ {x} of size cn. Then B is disjoint from A and is an independent set in
Gx — indeed if b1b2 ∈ Gx for some b1, b2 ∈ B then a1a2|xb1b2, a contradiction. We now show that
B is an independent set in G. Indeed, for every b ∈ B, Γ(b, x) is a subset of V \ B of size at least
cn. Consider an arbitrary triple {b1, b2, b3} of distinct vertices from B. Since

d(b1, x) + d(b2, x) + d(b3, x)− 2 (n− |B|) ≥ (3c− 2(1 − c))n = (5c− 2)n > 0,

by the pigeon-hole principle there exists a ∈ A∪C with xab1, xab2, xab3 all in E(G). In particular
b1b2b3 /∈ E(G), as otherwise we would have ax|b1b2b3. It follows that B must be an independent
set in G. Thus A,B satisfy the two properties in Lemma 3.7, and thus c ≤ 3/7 + o(1)

On the other hand, suppose Gx was triangle-free. Let y ∈ V \ {x}, and let A be a subset of
Γ(x, y) of size cn. Since Gx is triangle-free and x is not covered by an F3,2-subgraph, A forms an
independent set in both Gx and G. Let a ∈ A be arbitrary, and let B be a subset of Γ(a, x) of size
cn. Then B is disjoint from A and independent in Gx (since Gx is triangle-free). Thus A,B satisfy
the two properties in Lemma 3.7, and c ≤ 3/7 + o(1). Thus c2(F3,2) ≤ 3/7 as claimed.

3.6 Kt, t ≥ 5

Proposition 3.8. For all t ≥ 5, c2(Kt) ≤ 1− 1/
(

t−1
2

)

.

Proof. Applying Lemma 2.1 with F = Kt and r =
(

t−1
2

)

, we get

c2(n,Kt) ≤
⌊(

1− 1

(t−1
2 )

)

n− 2t−6
t−2

⌋

.

We now derive a lower bound for the covering codegree density of Kt by using (small) lower-
bound constructions for the codegree threshold of Kt−1

Proposition 3.9. Suppose there exists a Kt−1-free 3-graph H on [m] with minimum codegree δ.
Then c2(Kt) ≥ (δ + 2)/m.
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Proof. We build a 3-graph G on n = Nm+1 vertices as follows. Set V = [n] and set aside a special
vertex x. Partition V \ {x} into m sets V1, . . . , Vm, each of size N . Set as the link graph of x all
pairs of vertices from distinct parts. For every triple ijk ∈ E(H), add to G all 3-edges of the form
ViVjVk. Finally, add all triples of V \ {x} that contain at least two vertices from one part. The
minimum codegree of G is

δ2(G) = (δ + 2)N − 1 ≥ δ + 2

m
n− 2.

Now consider a (t−1)-set S ⊂ V \{x} that induce a t-clique in the link graph of x. By construction,
these vertices must come from t different parts of V \{x}. Since H is Kt−1-free, by our construction,
some triple of S is absent from G. Thus S ∪ {x} does not induce a copy of Kt in G. Taking the
limit as n → ∞, the result follows.

Corollary 3.10. Let t ≥ 4.

1. c2(Kt) ≥ t−2
t−1 , and

2. c2(Kt) ≥ 2t−6
2t−5 if t ≡ 0, 1 mod 3.

Proof. For Part 1, we apply Proposition 3.9 with H = K−
t−1 (thus m = t − 1 and δ = t − 4) and

obtain c2(Kt) ≥ t−2
t−1 .

For Part 2, since t ≡ 0, 1 mod 3, we have 2t − 5 ≡ 1, 3 mod 6, whence there exists a Steiner
triple system S on the vertex set [2t−5]. It is easy to see that every set T ⊂ [2t−5] of t−1 vertices
spans at least one triple from S. Indeed, fix a vertex a ∈ T : all the pairs of T containing a must
have distinct neighbours under S in [2t− 5] \ T . Since t− 2 > (2t− 5)− (t− 1), this is impossible.
Therefore the complement 3-graph S is Kt−1-free. Applying Proposition 3.9 with H = S (thus
m = 2t− 5 and δ = 2t− 8), we obtain that c2(Kt) ≥ 2t−6

2t−5 .

Remark 3.11. 1. Combining Proposition 3.8 and Corollary 3.10 gives that 3
4 ≤ c2(K5) ≤ 5

6
and 6

7 ≤ c2(K6) ≤ 9
10 .

2. Theorem 1.1 shows that the lower bound in Proposition 3.10 is tight in the case t = 4. The
bound is also tight in the trivial case t = 3, since c2(n,K3) = 1 = o(n). If this bound is tight
in general, then we do not have stability for the covering codegree-threshold problem: while the
3-edge K3 and the Fano plane are the unique (up to isomorphism) Steiner triple systems on
3 and 7 vertices respectively, there are for example 11, 084, 874, 829 non-isomorphic Steiner
triple systems on 19 vertices (see [1, Section 4.5]).

4 Concluding remarks

There are many questions arising from our work. To begin with, we may ask which of the fun-
damental properties of Turán density and codegree density does the covering codegree density c2
share. Explicitly:

1. do we have supersaturation? That is, if δ2(G) ≥ c2(n, F )+ εn for some fixed ε > 0, is it the case
that every vertex in G is contained in Ω(n|V (F )|−1) copies of F?
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2. do we have blow-up invariance? Given a 3-graph F , we define the blow-up F (t) to be the 3-graph
on V (F )× [t] with 3-edges {(u, i)(v, j)(w, k) : uvw ∈ E(F ), i, j, k ∈ [t]}. Is it the case that for
every F and every fixed t we have c2(F ) = c2(F (t))?

3. is the set of covering codegree densities {c2(F ) : F a 3-graph} dense in [0, 1], or does it have
jumps?

The first two of these questions are addressed in a forthcoming work of the authors. In addition
there are some natural variants of the covering codegree threshold c2(n, F ) which may be interesting.
What if instead of covering every vertex by a copy of F we wanted to cover every pair? What if
we wanted instead to be able to extend every 3-edge to a copy of F? It is not immediately clear
whether the corresponding codegree-extremal functions behave similarly to c2(n, F ) or not.

In a different direction, what if we asked for the threshold for covering all but at most k vertices,
for some k ≥ 1? On the one hand, in the case of C5 we observed in Remark 3.4 that this does not
affect the value of the covering threshold very much. On the other hand, Theorem 2.9 implies that
the threshold for covering all but at most 1 vertex with a copy of K4 is at most (2/3− c)n for some
c > 0 (therefore the problem is genuinely different from c2(n,K4)). Let us sketch a proof. Let G
be a 3-graph with δ2(G) ≥ (2/3 − c)n for some c > 0 sufficiently small. Suppose that x ∈ V (G) is
not covered by any copy of K4. By Theorem 2.9, there is a partition V1 ⊔ V2 ⊔ V3 of V (G) \ {x}
satisfying (i)–(v). If another vertex y is not covered by any copy of K4, then there is a partition
V ′
1 ⊔ V ′

2 ⊔ V ′
3 of V (G) \ {y} satisfying (i)-(v) as well. Because of (iii) and (iv), these two partitions

essentially coincide. Now consider Γ(x, y), which has size at least (2/3 − c)n. There are about
(2/3− c)(1/3− 3c)n2/2 pairs u, v ∈ Γ(x, y) coming from different parts of V1 ∩ V ′

1 , V2 ∩ V ′
2 , V3 ∩ V ′

3 .
Since (2/3 − c)(1/3 − 3c)n2/2 > 2 · 10cn2 (for c sufficiently small), by (ii), there exists a pair
u, v ∈ Γ(x, y) such that both uvx and uvy are edges of G. This implies that {u, v, x, y} spans a
copy of K4, a contradiction. The authors note that the bound on c given by this argument can be
significantly improved; this is the subject of future work.

Finally, it would be interesting to determine the value of c2(F ) when F is the Fano plane or
F3,2, and to have if not a tight result then at least a reasonable guess as to the value of c2(Kt) for
t ≥ 5. An investigation of c1(n, F ) when F = K−

4 and F = K4 would also be desirable.
We should note here that for such small 3-graphs F the problem of proving upper bounds for c1

or c2 should be amenable to flag algebra computations by following the approach of [7] to encode
the minimum degree/codegree constraint. Note however that one will need to do computation with
non-uniform hypergraphs, containing a mixture of 2-edges (from the link graph of an uncovered
vertex x) and 3-edges.
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6 Appendix: proof of Theorem 2.9 and Theorem 2.10

Proof of Theorem 2.9. We run through the proof of the case n = 3m+2 of Theorem 2.9, replacing
the codegree assumption δ2(G) = 2m − 2 by the assumption δ2(G) ≥ 2n

3 − δn. This gives us
new versions of our claims and lemmas with error terms involving δn, and conditions on n being
sufficiently large replaced by conditions on δ being sufficiently small. For the sake of completeness,
we derive them below.

Let G be a 3-graph on n vertices with δ2(G) ≥
(

2
3 − δ

)

n, for some δ: 0 < δ ≤ 1/429. Suppose
there is a vertex x of G not contained in any copy of K4. As 2/3 − δ > 1/2, the link graph
Gx contains a triangle {ab, bc, ac}. Set S = {a, b, c, x} and for each y ∈ V \ S, define Sy as in
Lemma 2.3. By Lemma 2.3, Sy is a subset of S1,c, S1,b, S1,a, S2,a, S2,b, S2,c or S3. For i ∈ {1, 2}
and j ∈ {a, b, c}, write si,j for the number of vertices y ∈ V \S for which Sy = Si,j, and write si for
the sum si,a + si,b + si,c. Finally let s0 be the number of vertices y ∈ V \ S such that Sy 6= Si,j for
any i ∈ {1, 2} and j ∈ {a, b, c}. Note that |Sy| ≤ 3 for such y. We know that s1 + s2 + s0 = n− 4.
Furthermore, by the codegree assumption,

3

(

2n

3
− δn

)

≤ d(a, x) + d(b, x) + d(c, x) ≤ 2s1 + s2 + 3s0 + 6, (5)

6

(

2n

3
− δn

)

≤ d(a, x) + d(b, x) + d(c, x) + d(a, b) + d(b, c) + d(c, a) ≤ 4s1 + 4s2 + 3s0 + 9, (6)

Substituting s0 = n − 4 − s1 − s2 into (5) and (6) yields that s1 + 2s2 ≤ n + 3δn − 6 and
s1 + s2 ≥ n− 6δn + 3, respectively. Combining the two inequalities we have just obtained, we get

s2 ≤ 9δn − 9 and s1 ≥ n− 15δn + 12.
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We now show as before that the weight of s1 splits almost equally between s1,a, s1,b, s1,c. Note that

2n

3
− δn ≤ d(b, c) ≤ n− 3− s1,a,

from which it follows that s1,a ≤ n
3 + δn − 3. Similarly we derive that s1,b,s1,c ≤ n

3 + δn − 3.
Consequently

s1,a = s1 − s1,b − s1,c ≥ n− 15δn + 12 − 2
(n

3
+ δn − 3

)

=
n

3
− 17δn + 18.

Similarly s1,b and s1,c satisfy the same lower bound. Set A = {y ∈ V \ S : Sy = S1,a} ∪ {a},
B = {y ∈ V \S : Sy = S1,b}∪{b} and C = {y ∈ V \S : Sy = S1,c}∪{c}. Set V ′ = A∪B∪C∪{x}.
The calculations above have established the following lemma.

Lemma 6.1 (New version of Lemma 2.4).

|V ′| ≥ n− 15δn + 16, and
n

3
− 17δn + 19 ≤ |A|, |B|, |C| ≤ n

3
+ δn − 2.

Let B be the collection of 3-edges of G of the form xAA, xBB, xCC (the ‘bad’ triples). Let M
be the collection of non-edges of G of the form xAB, xAC, xBC (the ‘missing’ triples). Viewing
B and M as 3-graphs on V ′, for two distinct vertices v1, v2 ∈ V ′, we let dB(v1, v2) denote their
codegree in B and dM(v1, v2) their codegree in M.

Claim 6.2 (New version of Claim 2.5). For every v ∈ V ′ \ {x}, dB(v, x) ≤ 18δn − 20.

Proof. Suppose without loss of generality that v ∈ A. If v = a, then dB(v, x) = 0 because G
contains no 3-edges of the form xaA. We thus assume that v 6= a. The bad triples for the pair
(v, x) are triples of the form a′vx for a′ ∈ A \ {a, v}. Suppose a′vx ∈ B. Then since there is no K4

in G containing x, and since, by the definition of A, a′bx, vbx, a′cx and vcx are all in G, it must
be the case that both of a′vb and a′vc are missing from G. Further if c′ ∈ C ∩ Γ(v, x) then all of
c′vx, bvx, c′bx are in G, whence bc′v is absent from G. Similarly for any b′ ∈ B, at most one of b′cv,
b′xv is in G. Finally since bcv 6∈ E(G), b and c are contained in exactly one of Γ(b, v), Γ(c, v), and
Γ(x, v). To summarize, a vertex y in V ′ can lie in at most two of Γ(b, v), Γ(c, v) and Γ(x, v) unless
y is in ΓB(x, v) (and lies in exactly one of those joint neighbourhoods) or is in {b, c, v} (and lies in
at most one of those joint neighbourhoods). Together with our codegree assumption, this gives us

3

(

2n

3
− δn

)

≤ d(b, v) + d(c, v) + d(x, v) ≤ 2|V ′| − dB(v, x)− 4 + 3(n− |V ′|)

= 3n− |V ′| − 4− dB(v, x) ≤ 2n+ 15δn − 20− dB(v, x),

where we apply |V ′| ≥ n − 15δn + 16 from Lemma 6.1 in the last inequality. It follows that
dB(v, x) ≤ 18δn − 20, as claimed.

Claim 6.3 (New version of claim 2.6). For every v ∈ V ′ \ {x}, dM(v, x) ≤ 36δn − 40.
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Proof. Suppose without loss of generality that v ∈ A. Then by the codegree assumption, Claim 6.2
and the bound on |A| from Lemma 6.1 we have

2n

3
− δn ≤ d(v, x) ≤ n− 1− |A|+ dB(v, x) − dM(v, x)

≤ n− 1− n

3
+ 17δn − 19 + 18δn − 20− dM(v, x),

which gives that dM(v, x) ≤ 36δn − 40 as claimed.

Claim 6.4 (New version of Claim 2.7). Provided δ ≤ 1
429 , for every y ∈ V (G) \ {x}, Γ(y, x) has a

non-empty intersection with at most two of the parts A, B and C.

Proof. Let y ∈ V (G) \ {x}. Set Ay = A∩Γ(x, y), By = B ∩Γ(x, y) and Cy = C ∩Γ(x, y). Suppose
none of Ay, By, Cy is empty. Fix a′ ∈ Ay. For b′ ∈ By, if b

′ ∈ Γ(a′, x), then a′b′y 6∈ E(G) –
otherwise {a′, b′, x, y} spans a copy of K4. Similarly, for c′ ∈ Cy ∩ Γ(a′, x), we have a′c′y 6∈ E(G).
Hence,

2n

3
− δn ≤ d(a′, y) ≤ n− 2− |By ∩ Γ(a′, x)| − |Cy ∩ Γ(a′, x)|.

Claim 6.3 gives that dM(a′, x) ≤ 36δn − 40. Consequently,

|By ∩ Γ(a′, x)|+ |Cy ∩ Γ(a′, x)| = |By|+ |Cy| − dM(a′, x) ≥ |By|+ |Cy| − 36δn + 40

This implies that
2n

3
− δn ≤ n− 2− |By| − |Cy|+ 36δn − 40,

which yields |By| + |Cy| ≤ n
3 + 37δn − 42. Similarly by considering any vertex b′ ∈ By and any

vertex c′ ∈ Cy we obtain that

|Ay|+ |Cy| ≤
n

3
+ 37δn − 42 and |Ay|+ |By| ≤

n

3
+ 37δn − 42.

Summing these three inequalities and dividing by 2, we obtain that

|Ay|+ |By|+ |Cy| ≤
n+ 111δn − 126

2
.

Furthermore, by the codegree condition,

2n

3
− δn ≤ d(x, y) ≤ |Ay|+ |By|+ |Cy|+

(

n− |V ′|
)

≤ n+ 141δn − 158

2
,

where we apply |V ′| ≥ n− 15δn+16 from Lemma 6.1. Rearranging terms yields (1−429δ)n
6 ≤ −158

2 ,
which is a contradiction as δ ≤ 1/429.

Set V1 = {y ∈ V \ {x} : Γ(x, y) ∩ A = ∅}, V2 = {y ∈ V \ {x} : Γ(x, y) ∩ B = ∅} and
V3 = {y ∈ V \ {x} : Γ(x, y) ∩ C = ∅}. Without loss of generality, assume that |V1| ≤ |V2| ≤ |V3|.
Claim 6.4 shows that V1 ∪ V2 ∪ V3 covers V (G) \ {x}. We now show that in fact V1, V2, V3 are
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pairwise disjoint, and A ⊆ V1, B ⊆ V2, and C ⊆ V3. Suppose instead that there exists y ∈ V1 ∩ V2.
Then Γ(x, y) ∩ (A ∪B) = ∅. By the codegree condition and Lemma 6.1,

2n

3
− δn ≤ d(x, y) ≤ |Cy|+

(

n− |V ′|
)

≤ n

3
+ δn − 2 + 15δn − 16 =

n

3
+ 16δn − 18.

Rearranging terms yields (1−51δ)n
3 ≤ −18, which for δ ≤ 1/51 is a contradiction.

Furthermore, consider a′ ∈ A. By Claim 6.3, a′xv ∈ E(G) for all but at most 36δn−40 vertices
v ∈ B ∪ C. By Lemma 6.1,

|B| − 36δ + 40 ≥ (1− 159δ)n

3
+ 59

which is strictly positive when δ ≤ 1/159. Thus we have that Γ(a′, x) has a non-empty intersection
with B; similarly we have that Γ(a′, x) ∩ C 6= ∅, from which we can finally deduce by Claim 6.4
that Γ(a′, x) ∩A = ∅ and that A ⊆ V1. Similarly we have B ⊆ V2 and C ⊆ V3.

We claim that
∀i ∈ {1, 2, 3}, |Vi| ≤ n/3 + δn − 1 (7)

Indeed, let c′ ∈ C. By the definition of V3, we have Γ(c
′, x) ⊆ V1∪V2. By the codegree assumption,

it follows that

2n

3
− δn ≤ d(c′, x) ≤ |V1|+ |V2| = n− 1− |V3|,

from which we get that |V3| ≤ n/3+ δn− 1, as claimed. By (7), we have |Vi| = n− 1−⋃

j 6=i |Vj | ≥
n/3− 2δn + 1 and consequently,

4

3
− 2δn ≤ |Vi| −

n− 1

3
≤ δn − 2

3
.

This gives Part (v) of Theorem 2.9.

Claim 6.5 (New version of Claim 2.8). Let y ∈ Vi. Then provided δ ≤ 1
429 , Γ(y, x) contains all but

at most 18δn − 18 vertices from
⋃

j 6=i Vj and no vertex from Vi.

Proof. Suppose without loss of generality that y ∈ V1. Then by Claim 6.4, A ∩ Γ(y, x) = ∅. Thus
2n

3
− δn ≤ d(x, y) ≤ |Γ(x, y) ∩ (V2 ∪ V3) |+ |Γ(x, y) ∩ (V1 \ A) | ≤ |Γ(x, y) ∩ (V2 ∪ V3) |+ 15δn − 16

since |V1 \A| ≤ n− |V ′| ≤ 15δn− 16 by Lemma 6.1. Hence |Γ(x, y) ∩ (V2 ∪ V3) | ≥ 2n
3 − 16δn+ 16.

By (7),

| (V2 ∪ V3) \ Γ(x, y)| ≤ 2
(n

3
+ δn− 1

)

−
(

2n

3
− 16δn + 16

)

= 18δn − 18.

This establishes the first part of our claim.
For the second part of our claim (namely that Γ(y, x) ∩ V1 = ∅), suppose that yy′x ∈ E(G) for

some y′ ∈ V1. Then Γ(y, y′) ∩ Γ(y, x) ∩ Γ(y′, x) = ∅. Consequently,
2n

3
− δn ≤ d(y, y′) ≤ 1 + |V1| − 2 +

∣

∣(V2 ∪ V3) \
(

Γ(y, x) ∩ Γ(y′, x)
)
∣

∣

≤ 1 +
n

3
+ δn − 1− 2 + 2(18δn − 18)

where in the last inequality we applied (7) and the first part of the claim. This implies that
(1−114δ)n

3 ≤ −38, a contradiction when δ ≤ 1/114.
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This establishes Part (i) of Theorem 2.9. By Claim 6.5, the total number of missing xViVj

edges, i 6= j is at most

1

2

∑

i

(18δn − 18)|Vi| =
1

2
(n− 1)(18δn − 18) < 9δn2,

establishing Part (ii) of the theorem. Since a triple v1v2v3 with vi ∈ Vi is an edge of G only if one of
the xvivi+1 triples is missing, by Part (ii) and Equation (7), there can be at most 9δn2(n/3+ δn) <
4δn3 such triples in total, establishing Part (iii) of the Theorem.

Finally we need to bound the number of non-edges of G intersecting exactly two of V1, V2, V3.
Fix v1 ∈ V1 and v2 ∈ V2. Given a set S ⊆ V (G), let d(v1, v2, S) = |Γ(v1, v2)∩S| denote the number
of neighbours of v1 and v2 in S and d̄(v1, v2, S) = |S \ Γ(v1, v2)|. By the codegree condition, we
have

d(v1, v2, V1 ∪ V2) ≥
2

3
n− δn − 1− d(v1, v2, V3).

Together with (7), this implies that

d̄(v1, v2, V1 ∪ V2) ≤ |V1|+ |V2| − 2−
(

2

3
n− δn− 1− d(v1, v2, V3)

)

≤ 2
(n

3
+ δn− 1

)

− 2− 2

3
n+ δn+ 1 + d(v1, v2, V3)

= 3δn − 3 + d(v1, v2, V3),

The number of non-edges of G in the form of V1V1V2 or V1V2V2 is thus

1

2

∑

v1∈V1,v2∈V2

d̄(v1, v2, V1 ∪ V2) ≤
1

2

(

|V1||V2|(3δn − 3) + e(V1, V2, V3)
)

where e(V1, V2, V3) denotes the number of tripartite edges. We know that e(V1, V2, V3) ≤ 9δn2(n/3+
δn). Thus the number of non-edges of G intersecting exactly two of V1, V2, V3 is at most

1

2

∑

i

|Vi||Vi+1| (3δn − 3) +
3

2
e(V1, V2, V3) ≤

n− 1

2

(n

3
+ δn− 1

)

(3δn − 3) +
9

2
δn3(1 + 3δ)

<
n

2

(n

3
+ δn

)

3δn +
9

2
δn3(1 + 3δ) < 6δn3,

where we applied (7) in the second inequality. This establishes Part (iv) of the Theorem.

Proof of Theorem 2.10. Case 1: n = 3m ≥ 858. Let G be a 3-graph on n = 3m vertices with
δ2(G) = 2m − 2 =

(

2
3 − 2

n

)

n. Suppose x ∈ V (G) is not covered by any copy of K4. Since
δ = 2

n
≤ 1

429 , we can apply Theorem 2.9 to obtain a tripartition V1⊔V2⊔V3 = V (G)\{x} satisfying
conditions (i)–(v) from Theorem 2.9. Assume without loss of generality that |V1| ≤ |V2| ≤ |V3|. For
any vertex v3 ∈ V3, we have (by condition (i))

2m− 2 ≤ d(x, v3) ≤ |V1|+ |V2| = 3m− 1− |V3|,

from which it follows that |V3| ≤ m+ 1.
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Suppose |V3| = m+1. The condition (i) tells us that all triples of the form xvv3 with v ∈ V1⊔V2

and v3 ∈ V3 must be in G, for otherwise d(x, v3) < 2m − 2 = δ2(G). Now consider any pair of
vertices v1 ∈ V1, v2 ∈ V2 for which xv1v2 is in G (such pairs must exist by condition (ii), say). For
every v3 ∈ V3, both of xv1v3 and xv2v3 are in G, whence the tripartite triple v1v2v3 must be absent
from G (since otherwise xv1v2v3 would induce a copy of K4 in G). Thus the codegree of v1, v2 is
at most |V1|+ |V2| − 1 = 2m− 3, a contradiction.

Thus |V3| = m, whence |V2| = m also and |V1| = m−1. Now, by condition (i), for every v3 ∈ V3

at most one triple vv3x with v ∈ V1 ⊔ V2 can be missing in G, as otherwise d(v3, x) < 2m − 2;
similarly for every v2 ∈ V2 at most one triple vv2x with v ∈ V1 ⊔ V3 is missing, and for every
v1 ∈ V1 at most 2 triples vv1x with v ∈ V2 ⊔ V3 are missing. Further a tripartite triple v1v2v3 can
be included in G only if one of the triples xv1v2, xv2v3, xv1v3 is missing from G. This shows that
G must be (isomorphic to) a subgraph of F1(E , 3m) for some admissible collection of pairs E .
Case 2: n = 3m+ 1 ≥ 715. Let G be a 3-graph on n = 3m + 1 vertices with minimum codegree
δ2(G) = 2m − 1 =

(

2
3 − 5

3n

)

n. Suppose x ∈ V (G) is not covered by any copy of K4. Since δ =
5
3n ≤ 1

429 , we can apply Theorem 2.9 to obtain a tripartition of V (G)\{x} = V1⊔V2⊔V3 satisfying
conditions (i)–(v) from Theorem 2.9. Assume without loss of generality that |V1| ≤ |V2| ≤ |V3|.

For any vertex v3 ∈ V3, we have (by condition (i))

2m− 1 ≤ d(x, v3) ≤ |V1|+ |V2| = 3m− |V3|,

from which it follows that |V3| ≤ m + 1. If |V3| = m + 1, then by the codegree assumption and
condition (i) all triples of the form xvv3 with v3 ∈ V3 and v ∈ V1 ⊔ V2 are in E(G). Now consider
vertices v1 ∈ V1 and v2 ∈ V2 for which xv1v2 ∈ E(G) (which must exist by condition (ii), say). The
tripartite triple v1v2v3 does not lie in E(G) for any v3 ∈ V3, since otherwise xv1v2v3 would induce
a copy of K4. Thus d(v1, v2) ≤ |V1|+ |V2| − 1 = 2m− 2 < 2m− 1, a contradiction. We must thus
have |V1| = |V2| = |V3| = m.

Now by condition (i) and the codegree assumption, for every vertex vi ∈ Vi all but at most 1 of
the triples xvvi with v ∈ V (G)\ (Vi ∪ {x}) must be in E(G). Furthermore a tripartite triple v1v2v3
can belong to G only if one of the triples xv1v2, xv2v3, xv3v1 is absent from G. This shows that G
is (isomorphic to) a subgraph of F1(E , 3m + 1) for some admissible collection of pairs E .
Case 3: n = 3m+ 2 ≥ 1001.

Let G be a 3-graph on n = 3m+2 vertices with minimum codegree δ2(G) = 2m−1 =
(

2
3 − 7

3n

)

n.
Suppose x ∈ V (G) is not covered by any copy of K4. Since δ = 7

3n ≤ 1
429 , we find a tripartition of

V (G) \ {x} = V1 ⊔ V2 ⊔ V3 satisfying conditions (i)–(v) from Theorem 2.9. Assume without loss of
generality that |V1| ≤ |V2| ≤ |V3|.

For any vertex v3 ∈ V3, by condition (i), we have

2m− 1 ≤ d(x, v3) ≤ |V1|+ |V2| = 3m+ 1− |V3|,

from which it follows that |V3| ≤ m + 2. If |V3| = m + 2, then by the codegree assumption and
condition (i) all triples of the form xvv3 with v3 ∈ V3 and v ∈ V1 ⊔ V2 are in E(G). Now consider
vertices v1 ∈ V1 and v2 ∈ V2 for which xv1v2 ∈ E(G) (which must exist by condition (ii), say). The
tripartite triple v1v2v3 does not lie in E(G) for any v3 ∈ V3, since otherwise xv1v2v3 would induce
a copy of K4. Thus d(v1, v2) ≤ |V1|+ |V2| − 1 = 2m− 2 < 2m− 1, a contradiction. We must thus
have |V3| ≤ m+ 1. Our assumption that |V1| ≤ |V2| ≤ |V3 then implies that |V3| ≤ m+ 1 and that
|V2| ∈ {m,m+ 1}. We have two subcases to consider.
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Case 3a: |V1| = |V2| = m. Condition (i) and the codegree assumption together imply that for
every v ∈ Vi, all but at most 2 of the triples of the form xv (V \ (Vi ∪ {x})) must be in E(G) if
i ∈ {1, 2}, and all but at most 1 if i = 3. Further a tripartite triple v1v2v3 can be in E(G) only
if one of xv1v2, xv2v3, xv3v1 is absent from E(G). This shows that G must be (isomorphic to) a
subgraph of F1(E , 3m) for some admissible collection of pairs E .
Case 3b: |V1| = m− 1, |V2| = m+ 1. Condition (i) and the codegree assumption together imply
that for every v ∈ Vi, all but at most 1 of the triples of the form xv (V \ (Vi ∪ {x})) must be in
E(G) if i ∈ {2, 3}, and all but at most 3 if i = 1. Further a tripartite triple v1v2v3 is in E(G) only
if one of xv1v2, xv2v3, xv3v1 is absent from E(G). This shows that G must be (isomorphic to) a
subgraph of F ′

1(E , 3m) for some admissible collection of pairs E .
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