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Abstract. Quantitative photoacoustic tomography is an emerging imaging technique aimed at
estimating the distribution of optical parameters inside tissues from photoacoustic images, which
are formed by combining optical information and ultrasonic propagation. This optical parameter
estimation problem is ill-posed and needs to be approached within the framework of inverse prob-
lems. Photoacoustic images are three-dimensional and high-resolution. Furthermore, high-resolution
reconstructions of the optical parameters are targeted. Therefore, in order to provide a practical
method for quantitative photoacoustic tomography, the inversion algorithm needs to be able to per-
form successfully with problems of prominent size. In this work, an efficient approach for the inverse
problem of quantitative photoacoustic tomography is proposed, assuming an edge-preferring prior for
the optical parameters. The method is based on iteratively combining priorconditioned LSQR with a
lagged diffusivity step and a linearisation of the measurement model, with the needed multiplications
by Jacobians performed in a matrix-free manner. The algorithm is tested with three-dimensional
numerical simulations. The results show that the approach can be used to produce accurate and high
quality estimates of absorption and diffusion in complex three-dimensional geometries with moderate
computation time and cost.

Key words. quantitative photoacoustic tomography, priorconditioning, Perona–Malik, LSQR,
matrix-free implementation, total variation
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1. Introduction. In photoacoustic tomography (PAT), high-contrast, high-res-
olution images of biological tissue are produced by utilising the photoacoustic effect
caused by an externally introduced light pulse. Absorption of the light pulse in a target
generates an initial acoustic pressure distribution that is proportional to the absorbed
energy density of the light. Due to the elastic nature of tissue, the initial pressure
distribution propagates as an ultrasonic wave and can be measured on the surface of
the tissue. These measurements are then used to reconstruct the initial pressure and
to form images of the target. Photoacoustic imaging combines the benefits of optical
contrast and ultrasound propagation. The optical methods provide information about
the distribution of chromophores which are light absorbing molecules within the tissue.
The chromophores of interest are e.g. haemoglobin, melanin and various contrast
agents. The ultrasonic waves carry this optical information directly to the surface
with minimal scattering, thus retaining accurate spatial information as well. PAT
has successfully been applied to the visualisation of different structures in biological
tissues such as human blood vessels, microvasculature of tumours and cerebral cortex
in small animals. For more information about PAT, see e.g. [51, 29, 50, 6] and the
references therein.
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2 A. HANNUKAINEN, N. HYVÖNEN, H. MAJANDER, AND T. TARVAINEN

Quantitative photoacoustic tomography (QPAT) is a technique aimed at estimating
the concentrations of the chromophores [12]. The inverse problem associated with
QPAT is two-fold. First, the initial acoustic pressure distribution is estimated from
the measured acoustic waves. This is an inverse initial value problem of acoustics
and it has been studied extensively; see e.g. [51, 27, 50] and the references therein.
The second stage of QPAT consists of the optical inverse problem of determining the
concentrations of chromophores. These concentrations can be reconstructed either by
directly estimating them from photoacoustic images obtained at various wavelengths
[13, 28, 5, 36] or by first recovering the absorption coefficients at different wavelengths
and then calculating the concentrations based on the absorption spectra [39, 13, 5].
In order to obtain accurate estimates, scattering effects need to be taken into account
[4, 12, 47, 38]. As an alternative to the two-step approach, the estimation of the
optical parameters directly from photoacoustic time-series has also been considered
[45, 46, 21, 17, 15, 35].

In this work, the optical inverse problem of QPAT is studied assuming the cor-
responding acoustic inverse problem has already been solved. The estimation of ab-
sorption and diffusion at a single wavelength of light is considered, but the extension
to multiple wavelengths is straightforward. Furthermore, it is assumed that the pho-
toacoustic efficiency, which connects the acoustic pressure with the absorbed optical
energy density and can be identified with the Grüneisen parameter for an absorbing
fluid, is known. For discussion about the estimation of the Grüneisen parameter si-
multaneously with the optical parameters, see e.g. [44, 5, 31, 36, 1]. In the optical
inverse problem of QPAT, two models of light propagation have been used: the radia-
tive transfer equation (RTE) [47, 43, 30, 37, 21] and its diffusion approximation (DA)
[19, 4, 44, 52, 47, 48, 31, 38, 40]. The forward model used here is based on the DA,
although our approach could also be implemented with the RTE.

The optical inverse problem of QPAT is nonlinear and ill-posed. In order to over-
come the ill-posedness, regularisation or Bayesian methods need to be used [26]. In
this work, a Bayesian approach with a Gaussian model for the measurement noise
and an edge-preferring prior for the to-be-estimated optical parameters are employed.
To be more precise, we consider total variation [41] type priors (particularly Perona–
Malik [34]), which are edge-preserving and support piecewise constant images which
consist of a few homogeneous levels. Total variation priors/regularisation have previ-
ously been utilised in QPAT in e.g. [18, 19, 4, 47] and a Mumford–Shah type approach
in [7].

PAT images are three-dimensional (3D) and high-resolution, and hence they con-
tain a significant amount of data. Furthermore, QPAT aims at high-resolution 3D re-
constructions of the optical parameters. In consequence, a practical inversion method
for QPAT must be able to successfully tackle problems with tens, or even hundreds
of thousands of data and unknowns. In this work, we propose an efficient algorithm
for the optical inverse problem of QPAT, capable of handling edge-preferring, total
variation type priors for the optical parameters. The approach is based on iteratively
combining a lagged diffusivity step and a linearisation of the measurement model of
QPAT with priorconditioned LSQR. The algorithm is a modified version of the one
introduced for inverse elliptic boundary value problems in [22, 24]; see also [2] for the
original ideas behind the technique. In particular, to facilitate the treatment of far
greater amounts of data compared to [22, 24], we implement a matrix-free technique
for multiplying vectors by the Jacobian of the measurement map, rendering it possible
to painlessly handle (full) Jacobians with, say, 105 rows and columns. This is one of
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the few studies where QPAT is investigated in 3D; for previous works see [42, 31, 35].
In particular, [18, 19] studied a gradient-based (bound-constrained) split Bregman
method for handling TV regularization in 3D QPAT.

The structure of the paper is as follows. The optical measurement model of
QPAT is described in Section 2. The Bayesian framework is introduced in Section 3
and the algorithm itself in Section 4. Section 5 tests the approach with 3D numerical
simulations. The conclusions are drawn in Section 6.

2. Measurement model. We assume the measurements are static in time and
model the examined physical body as a bounded domain Ω ⊂ R3 with a connected
complement and a Lipschitz boundary. The domain Ω is assumed to be isotropic
and the associated diffusion and absorption coefficients are denoted by κ, µ ∈ L∞+ (Ω),
respectively, with the definition

L∞+ (Ω) = {v ∈ L∞(Ω) | ess inf v > 0}

that takes into account the positivity of these physical quantities. In this work the DA
of the RTE is used as the model for light transport. Compared to the full RTE, the
DA generally allows faster reconstruction methods due to its simplicity. According to
the DA, the photon fluence ϕ ∈ H1(Ω) corresponding to the photon flux Φ ∈ L2(∂Ω)
through ∂Ω satisfies the elliptic Robin boundary value problem

−∇ · (κ∇ϕ) + µϕ = 0 in Ω,

1

4
ϕ+

1

2
ν · κ∇ϕ = Φ on ∂Ω,

(2.1)

where ν : ∂Ω→ R3 is the exterior unit normal of ∂Ω (cf. [20]). We assume the available
photoacoustic measurements are noisy samples of the absorbed energy density H ∈
L2(Ω) defined via

H = µϕ , (2.2)

which obviously depends on the optical parameters κ and µ.
Lemma 2.1. The Fréchet derivative of the measurement map[

L∞+ (Ω)
]2 3 (κ, µ) 7→ H ∈ L2(Ω)

at (κ, µ) ∈ [L∞+ (Ω)]2 is given by the linear mapping

[L∞(Ω)]
2 3 (ϑ, θ) 7→ µϕ′ + θ ϕ ∈ L2(Ω)

where ϕ = ϕ(κ, µ) ∈ H1(Ω) is the unique solution of (2.1) and ϕ′ = (ϕ′(κ, µ))(ϑ, θ) ∈
H1(Ω) that of the variational problem∫

Ω

(κ∇ϕ′ · ∇v + µϕ′v)dx+
1

2

∫
∂Ω

ϕ′v dS

= −
∫

Ω

ϑ∇ϕ · ∇v dx−
∫

Ω

θϕv dx (2.3)

for all v ∈ H1(Ω).
Proof. It is well known that the map[

L∞+ (Ω)
]2 3 (κ, µ) 7→ ϕ ∈ H1(Ω)
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is Fréchet differentiable in [L∞+ (Ω)]2 and that the corresponding derivative is given by
(cf. e.g. [14])

[L∞(Ω)]
2 3 (ϑ, θ) 7→ ϕ′ ∈ H1(Ω).

Since the bilinear map

L∞(Ω)×H1(Ω) 3 (λ, ψ) 7→ λψ ∈ L2(Ω)

is obviously continuous, the claim follows from the product and chain rules for Banach
spaces.

3. Bayesian framework and the choice of prior. Let us next consider the
discretised version of (2.1)–(2.2). To begin with, we express the diffusion κ and the
absorption µ as exponential quantities,

κ(κ̃) = κ0 exp(κ̃) and µ(µ̃) = µ0 exp(µ̃), (3.1)

where

κ̃ =

N∑
n=1

κ̃nφn and µ̃ =

N∑
n=1

µ̃nφn (3.2)

are representations of κ̃ and µ̃ with respect to a piecewise linear finite element (FE)
basis {φn}Nn=1 ⊂ H1(Ω) corresponding to a chosen (tetrahedral) partition of Ω. If
there is no possibility of confusion, we denote by κ̃ and µ̃ both the corresponding
vectors of coefficients, κ̃, µ̃ ∈ RN , and the functions defined in (3.2). The positive
real numbers κ0, µ0 > 0 in (3.1) are the constant diffusion and absorption levels that
produce an energy density that is the most compatible with the available measure-
ments (cf. Algorithm 1 in Section 4). Notice that we have chosen the logarithms of
the diffusion and absorption as the free variables since this automatically guarantees
the positivity of the coefficient functions in (2.1).

We assume the available measurement is

χ = h(κ̃, µ̃) + η ∈ RN , (3.3)

where h : RN × RN → RN are the coefficients in an approximation of H(κ̃, µ̃) =
µ(µ̃)ϕ

(
κ(κ̃), µ(µ̃)

)
with respect to the FE basis {φn}Nn=1,1

H ≈
N∑
n=1

hnφn. (3.4)

Moreover, η ∈ RN is a realisation of a normally distributed random variable with zero
mean and a known, symmetric and positive definite covariance matrix Γ ∈ RN×N . It
easily follows that the probability density of the measurements given the parameters
is

p(χ | κ̃, µ̃) ∝ exp
(
− 1

2

(
χ− h(κ̃, µ̃)

)T
Γ−1

(
χ− h(κ̃, µ̃)

))
,

1In our numerical experiments, the actual measurement for given target optical coefficients —
which are not originally represented in the basis {φn}Nn=1 — are simulated by approximating H in
a piecewise linear FEM basis on a denser simulation grid, interpolating the obtained node values
onto the mesh corresponding to {φn}Nn=1, and adding noise. In particular, the model (3.3) is clearly
inexact as it does not account for the interpolation step in the data simulation; this corresponds to
avoiding an obvious inverse crime.
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where the constant of proportionality is independent of κ̃ and µ̃.
The prior information that the optical properties of the examined body are ap-

proximately homogeneous apart from clearly distinguishable inhomogeneities is taken
into account by equipping the logarithms of the diffusion and absorption with the
prior densities

p(κ̃) ∝ exp
(
− aR(κ̃)

)
and p(µ̃) ∝ exp

(
− bR(µ̃)

)
(3.5)

where a, b > 0 are free parameters and R is of the form

R(u) =

∫
Ω

r
(
|∇u(x)|

)
dx, (3.6)

with r : R+ → R+ being a suitable, continuously differentiable, monotonically in-
creasing function (cf. e.g. [2]). All numerical examples presented in this work are
based on a Perona–Malik prior, i.e.,

r(t) =
1

2
T 2 log

(
1 + (t/T )2

)
, (3.7)

where T > 0 is a small parameter controlling the size of detectable edges [34]. How-
ever, exactly the same reconstruction algorithm could as well be employed in the con-
text of e.g. (smoothened) TV or TVq regularisation by simply using another choice
of r (cf. [2, 24]).

Under the assumption that κ̃ and µ̃ are independent, the Bayes’ formula yields

p(κ̃, µ̃ |χ) ∝ p(χ | κ̃, µ̃) p(κ̃)p(µ̃)

∝ exp
(
− 1

2

(
χ− h(κ̃, µ̃)

)T
Γ−1

(
χ− h(κ̃, µ̃)

)
− aR(κ̃)− bR(µ̃)

)
,

where the constants of proportionality do not depend on κ̃ and µ̃. The algorithm
described in the following section seeks an (approximate) maximum estimate for this
posterior (MAP estimate), or equivalently tries to approximate the minimiser for the
functional

F (κ̃, µ̃) :=
1

2

(
χ− h(κ̃, µ̃)

)T
Γ−1

(
χ− h(κ̃, µ̃)

)
+ aR(κ̃) + bR(µ̃). (3.8)

In the following, we denote β = [κ̃T, µ̃T]T ∈ R2N and write occasionally h(β) and
F (β) to shorten the notation.

Remark 3.1. It is arguably unrealistic to assume that κ̃ and µ̃ are independent
because both of them are prone to change at interfaces between different tissues. How-
ever, since assuming a dependence between the two parameters would make the setting
less general as well as less illposed, we leave considerations on introducing a suitable
joint prior for future studies.

4. The algorithm. In this section we briefly introduce our method for minimis-
ing (3.8); for more information, see [2, 22, 24]. The algorithm is only described here
for a single boundary photon flux Φ, but it trivially generalises to the case of multiple
illuminations.

The basic version of the iterative algorithm starts at the initial guess β(0) =
[κ̃T

init, µ̃
T
init]

T, where κ̃init = 0 ∈ RN corresponds to the constant diffusion κ0 (cf. (3.1))
and µ̃init = log(χ/(ϕ0µ0)), with ϕ0 = ϕ(κ0, µ0) being the fluence corresponding to the
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homogeneous parameter values κ0 and µ0. Note that the choice of µ̃init is motivated
by (2.2) and (3.1). Linearising h(β) around β(l) in (3.8) results in a new functional

F (l)(β) :=
1

2

(
y(l) − J (l)β)TΓ−1

(
y(l) − J (l)β

)
+ aR(κ̃) + bR(µ̃), (4.1)

where the matrix J (l) ∈ RN×2N is the Jacobian of the map β 7→ h(β) evaluated at
β(l) and

y(l) = χ− h(β(l)) + J (l)β(l) ∈ RN .

For a given illumination Φ ∈ L2(Ω), the coefficients h(β(l)) in (3.4) are solved from
(2.1)–(2.2) with the optical parameters defined via (3.1) by the finite element method
(FEM) employing the aforementioned piecewise linear basis functions {φn}Nn=1. The
approximation of the elements in J (l) is based on Lemma 2.1 and the chain rule; the
details are given in Appendix. In particular, the Jacobians are not formed explicitly,
but the needed matrix-vector multiplications are performed row by row in a matrix-
free manner. This enables painless handling of (full) Jacobians with tens of thousands
of rows and columns in our numerical experiments. Details about the utilised FE
meshes can be found in Section 5.

Taking the gradient of (4.1), one obtains the necessary condition for a minimiser,
that is,

(J (l))TΓ−1J (l)β + a

[
(∇R)(κ̃)

0

]
+ b

[
0

(∇R)(µ̃)

]
= (J (l))TΓ−1y(l), (4.2)

where 0 ∈ RN . The gradient ∇R : RN → RN can be given as [2]

(∇R)(u) = M(u)u,

where M ∈ RN×N is the FEM system matrix in the basis {φn}Nn=1 for the elliptic
partial differential operator

−∇ · cu∇ (4.3)

with a natural boundary condition on ∂Ω and the positive-valued diffusion coefficient

cu : x 7→ r′(|∇u(x)|)
|∇u(x)|

, Ω→ R+.

It follows easily that M is positive semidefinite with the one-dimensional kernel
Ker(M) = span{[1, . . . , 1]T}.

We rewrite (4.2) as(
(J (l))TΓ−1J (l) +

[
aM(κ̃) 0

0 bM(µ̃)

])
β = (J (l))TΓ−1y(l), (4.4)

and get rid of its nonlinearity with respect to β = [κ̃T, µ̃T]T by substituting M(κ̃(l))
and M(µ̃(l)) for M(κ̃) and M(µ̃), respectively. This corresponds to a single lagged
diffusivity step [49]. Denoting a Cholesky factor of Γ−1 by Γ−1/2 and setting

A = Γ−1/2J (l), M =

[
M(κ̃(l)) 0

0 b
aM(µ̃(l))

]
, ỹ = Γ−1/2y(l), (4.5)
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we finally arrive at the equation(
ATA+ aM

)
β = ATỹ, a > 0, (4.6)

from which β(l+1) is to be solved.
Solving (4.6) is equivalent to determining the MAP or conditional mean (CM)

estimate for the linear model

Aβ = ỹ (4.7)

assuming a suitable additive Gaussian measurement noise model and for β a zero-mean
(improper) Gaussian prior with a scaled version of M as the inverse covariance matrix.
In our setting, the leading idea of priorconditioning [8, 9, 10, 11]2 is to include the
prior information in M directly in the Krylov subspace structure produced by LSQR
[32, 33]. As M is only positive semidefinite with a nontrivial kernel, we approximate
it in (4.6) by the positive definite matrix

Mδ = M + δI (4.8)

where δ > 0 is a small positive constant, that is, we consider(
ATA+ aMδ

)
β = ATỹ, a > 0, (4.9)

in place of (4.6). In terms of the MAP estimate for (4.7), this corresponds to assuming
that the inverse covariance matrix of the Gaussian prior is proportional to Mδ instead
of M , making the prior proper.

We formally introduce a (Cholesky) factorisation Mδ = LTL, but emphasise that
such is not actually needed in the final algorithm because we resort to a version of
LSQR that is compatible with symmetric preconditioning [2]. Subsequently, (4.9) is
multiplied from the left by (L−1)T and a is chosen to be zero, which altogether leads
to the ill-posed linear equation

(L−1)TATAL−1β̃ = (L−1)TATỹ (4.10)

where β̃ = Lβ. We solve (4.10) by combining LSQR [2] with an early stopping rule;
loosely speaking, the regularisation provided by a > 0 is replaced with the early stop-
ping of a Krylov subspace method. Each round of LSQR includes one multiplication
with M−1

δ , which is not overly expensive as Mδ results from a discretisation of an el-
liptic partial differential equation and is, in particular, sparse. If one starts the LSQR
iteration from β̃ = 0, it is easy to see that the approximate solution is in the range
of M−1

δ regardless of the number of iterations; see [2, 22] for more details. As M−1
δ

is proportional to the (fictive) prior covariance matrix for (4.9), this means that the
prior information in Mδ — originating from the previous iterates κ̃(l) and µ̃(l) of the
outer loop, cf. (4.5) and (4.8) — is indeed directly included in the candidate solutions
for (4.10) produced by the LSQR sequence.

The LSQR iteration is terminated when the residual for (4.7) ceases to decrease
substantially: We monitor the relative reduction of the residual over a window of m0

LSQR steps,

rm = 1− |Aβm − ỹ|
|Aβm−m0 − ỹ|

, m > m0, (4.11)

2Priorconditioning is related to transforming a Tikhonov functional into the standard form [16,
23, 25].
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where βm is the mth element in the LSQR sequence. Once rm ≤ τ , for some user
specified τ > 0 and m0 ∈ N, the latest iterate βm is named β(l+1) and one proceeds
to the next linearisation of the measurement model (cf. (4.1)).

Including an overall stopping criterion based on tracking the decrease of the resid-
ual for the original nonlinear measurement model, our reconstruction algorithm is
altogether as follows:

Algorithm 1. Select T > 0, the ratio b/a for (3.5), the parameters m0 ∈ N and
τ > 0 related to (4.11), and δ > 0. Let 1 = [1, . . . , 1]T ∈ RN and determine (κ0, µ0)
as the minimising pair for∣∣Γ−1/2

(
χ− h(log(κ)1, log(µ)1)

)∣∣
over (κ, µ) ∈ R2

+. Solve ϕ0 = ϕ(κ01, µ01) and initialise κ̃init = 0 ∈ RN , µ̃init =

log(χ/(ϕ0µ0)). Set β(0) = [κ̃T
init, µ̃

T
init]

T and l = 0.

1. Let h = h(β(l)), J = J (l) and ỹ = Γ−1/2
(
χ − h + Jβ(l)

)
. (Recall that J

is not built explicitly, but the corresponding matrix-vector multiplications are
performed in a matrix-free manner as explained in Appendix.)

2. Build M(κ̃(l)) and M(µ̃(l)) as finite element discretisations of (4.3) and form
Mδ = LTL according to (4.5) and (4.8).

3. Apply the LSQR algorithm of [2] to

(L−1)TJT(Γ−1/2)TΓ−1/2JL−1β̃ = (L−1)TJT(Γ−1/2)Tỹ, β = L−1β̃,

starting from β̃ = 0. Terminate the iteration when rm ≤ τ (cf. (4.11)) and
denote the corresponding solution β(l+1).

4. If the nonlinear residual corresponding to (3.3) has not decreased, i.e.,∣∣Γ−1/2
(
χ− h(β(l+1))

)∣∣ ≥ ∣∣Γ−1/2(χ− h)
∣∣,

substitute the previous parameter vector β(l) = [(κ̃(l))T, (µ̃(l))T]T in (3.1) and
declare the resulting κ and µ the reconstruction. Otherwise, set l← l+ 1 and
return to step 1.

The performance of Algorithm 1 is relatively insensitive to the choice of the free
parameters T, δ > 0, which are set to T = 5 · 10−3 and δ = 10−6 in our numerical
experiments. Moreover, we choose b/a = 1, which means that we assume as strong
priors for κ̃ = log(κ/κ0) and µ̃ = log(µ/µ0), cf. (3.5). The choice of m0 and τ is a more
delicate issue: via trial and error, we ended up setting m0 = 10 and τ = 10−2, that is,
all LSQR iterations in our numerical tests are terminated when the residual for (4.7)
decreases less than one percent over ten steps. These are certainly not optimal values
for m0 and τ , but they seem rather generic and result in adequate reconstructions.

With K illuminations Φ(1), . . . ,Φ(K) ∈ L2(∂Ω), the number of measurements
increases from N to KN , which in turn results in larger Jacobians and slower compu-
tations. Be that as it may, Algorithm 1 trivially generalises to such a setting: one just
needs to stack the individual measurements in a vector of length KN , form the corre-
sponding covariance matrix for the measurement noise as a block diagonal matrix of
the original covariances, and build the ‘total Jacobian’ by piling the ‘sub-Jacobians’
on top of each other (in a matrix-free manner). The only essential change concerns
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Fig. 5.1: Test 1. Left: the target absorption. Right: the target diffusion. The values
in the intervals [µbg±0.001] and [κbg±0.01] indicated in the colorbars are transparent
in the respective images.

the initialisation of the absorption coefficient: we form exp(µ̃
(k)
init), k = 1, . . . ,K, sepa-

rately for each illumination as described in Algorithm 1 and subsequently choose the
exponential of the actual initial guess exp(µ̃init) to be their average.

Remark 4.1. The early stopping of LSQR in step 3 of Algorithm 1 has previ-
ously been successfully implemented in the contexts of electrical impedance and optical
tomography by resorting to the Morozov discrepancy principle [24, 22]. In our setting,
this would lead to monitoring when the residual for (4.7) falls below the (whitened)
noise level √

E
(
|Γ−1/2η|2

)
=
√
KN.

However, according to our experience, such an approach does not work, in general,
for quantitative photoacoustic tomography based on simulated interior measurements
without committing an inverse crime or using a dubiously large ‘fudge factor’ to scale
the noise level: The discrepancy associated to the interpolation of the target energy
density H, which is computed on a denser simulation grid (cf. (3.4)), onto the FEM
mesh employed in Algorithm 1 is easily of the same order as the error corresponding
to the one percent of artificial noise that is added to the data in the numerical experi-
ments of Section 5. This effect is particularly pronounced if the target absorption and
diffusion contain jumps that cause quick deviations in H and therefore also lead to
larger interpolation errors.

5. Numerical experiments. To demonstrate the performance of our algo-
rithm, we present two numerical experiments. The first one considers a complicated
target and several illuminations. The second test studies how the number and di-
rections of illuminations affect the quality of reconstructions for a somewhat simpler
phantom.

Test 1. We first examine the cylindrical body with constant background proper-
ties and embedded inhomogeneities visualised in Figure 5.1. The shapes of the target
inclusions are described in Table 5.1 and the corresponding constant values of the op-
tical parameters are listed in Table 5.2. In particular, the target diffusion corresponds
to a reduced scattering coefficient that varies in the interval [0.5, 6.7] mm−1, which
means that our values for the optical parameters could mimic e.g. those in breast
tissue [3]. We illuminate the object in turns with K = 4 photon fluxes that penetrate
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Table 5.1: Test 1. Geometrical specification of the inclusions in the target absorption
and diffusion illustrated in Figure 5.1. The unit of length is mm.

Absorption Diffusion
rectangles: size 4× 6× 4 (1) cylinder: radius 1,
(1) center (0,−11, 0) center (0, y, 0), y ∈ [−20, 20]
(2) center (0, 0, 0)
(3) center (0, 11, 0) cubes: size 43,

center (ρ cos θ, y, ρ sin θ), ρ = 5.5
helical cylinders: radius 1, (2) θ = π/6, y = −15
center (ρ cos θ, y, ρ sin θ), (3) θ = 3π/6, y = −9
ρ = 5.5, y ∈ [−16, 16] (4) θ = 5π/6, y = −3
(4) θ ∈ [π/6, 11π/6] (5) θ = 7π/6, y = 3
(5) θ ∈ [7π/6, 17π/6] (6) θ = 9π/6, y = 9

(7) θ = 11π/6, y = 15

Fig. 5.2: Test 1. Visualisation of the measurement. Two slices of each h(k), k =
1, . . . , 4, are plotted: one at the position y = 0, the other at z = 0 for k = 1, 3 (left)
and x = 0 for k = 2, 4 (right) depending on the direction of the illumination.

the boundary through rectangular regions located symmetrically around the curved
side of the cylinder. The illuminations are homogeneous along the axis of the cylin-

der, their central polar angles are θ
(k)
0 = (k − 1)π/2, k = 1, . . . , 4, and the angular

width of each illumination is π/4. The amplitude of the input flux Φ(k) : ∂Ω → R,
k = 1, . . . , 4, is modeled as

Φ(k)(θ) =

{
cos
(
4(θ − θ(k)

0 )
)

if θ ∈
[
θ

(k)
0 − π

8 , θ
(k)
0 + π

8

]
,

0 otherwise

where θ is the polar angle with respect to the axis of the cylindrical domain.
To simulate the data for the numerical experiments, we first solve for each illu-

mination Φ = Φ(k) the photon fluence ϕ(k) from the equation (2.1) by using a fine
FE mesh with Nf = 130091 nodes and 690905 tetrahedrons, and then calculate the

corresponding node values of the absorbed energy density h
(k)
f ∈ RNf according to

(2.2). Next, in order to avoid an obvious inverse crime, we project the absorbed en-
ergy density onto a coarser FE mesh (N = 51794 nodes and 260216 tetrahedrons)
which is also used in the reconstruction algorithm. In other words, the (noiseless)
measurement, which is illustrated in Figure 5.2, consists of the nodal values

h(k) = Ph
(k)
f ∈ RN , k = 1, . . . , 4,
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Fig. 5.3: Test 1. The initial guess µinit for the absorption. Left: a 3D-visualisation;
the values in the interval [µ0±0.004] indicated in the colorbar are transparent. Right:
slices at the positions y = −11, 0, 11 (top row) and x = 0 (bottom row).

where the matrix P ∈ RN×Nf describes the linear interpolation from the fine FE mesh
onto the coarse one. Finally, we corrupt the measurement with 1% of Gaussian noise,
that is, we end up with the data χ = {χ(k)}k=1,...,4 ⊂ RN , where

χ
(k)
i = h

(k)
i + η

(k)
i

and η
(k)
i ∼ N (0, (0.01|h(k)

i |)2) for i = 1, . . . , N and k = 1, . . . ,K.
In the initialisation phase of Algorithm 1, we choose the free parameters as de-

scribed at the end of Section 4,

T = 5 · 10−3, b/a = 1, m0 = 10, τ = 10−2, δ = 10−6,

and obtain the approximate background values κ0 = 0.26 mm and µ0 = 0.0087 mm−1

for the optical parameters. To construct the initial guess for the absorption shown

in Figure 5.3, we compute ϕ
(k)
0 = ϕ(k)(κ01, µ01) for k = 1, . . . , 4 and set µ̃init =

log(µinit/µ0), with

µinit =
1

4

4∑
k=1

χ(k)

ϕ
(k)
0

.

According to Algorithm 1, the initial guess for the logarithm of the diffusion is κ̃init =
0 ∈ RN , which corresponds to the homogeneous κinit = κ01 ∈ RN estimate. However,
starting from a homogeneous κinit leads to somewhat slow convergence during the first
rounds of Algorithm 1. To avoid this, we employ the (already quite reasonable) initial
guess µinit for the absorption to run a single LSQR iteration only for the diffusion. To
be more precise, we include a ‘zeroth step’ in Algorithm 1 in between the initialisation
and step 1:

0. Set h = h(κ̃init, µ̃init). Form the Jacobian J = Jκ̃(κ̃init, µ̃init) (w.r.t. κ̃ eval-
uated at (κ̃init, µ̃init)), set ŷ = Γ−1/2(χ − h + Jκ̃init) and build the matrix
Mδ(κ̃init) = LTL. Apply the LSQR algorithm to solve

(L−1)TJT(Γ−1/2)TΓ−1/2JL−1κ̂ = (L−1)TJT(Γ−1/2)Tŷ, κ̃ = L−1κ̂,

stating from κ̂ = 0 and terminating when rm ≤ τ . (Re)define the initial guess
κ̃init to be the corresponding solution. Reset β(0) = [κ̃T

init, µ̃
T
init]

Tand continue
to step 1.
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Fig. 5.4: Test 1. The (refined) initial guess κinit for the diffusion. Left: a 3D-
visualisation; the values in the interval [κ0 ± 0.075] indicated in the colorbar are
transparent. Right: slices at the positions y = −15,−9,−3 (top row), y = 3, 9, 15
(middle row) and x = 0 (bottom row).

Fig. 5.5: Test 1. The evolution of the residuals after each iteration step. During
step 0, only the diffusion is estimated. The dashed lines indicate the theoretical
(whitened) noise level

√
KN . Left: The nonlinear residuals |Γ−1/2(χ − h(β))| corre-

sponding to the outer iteration. Right: The LSQR residuals |Aβ − ỹ| corresponding
to the inner iteration on a logarithmic scale.

The resulting diffusion estimate κinit = κ0 exp(κ̃init) is illustrated in Figure 5.4. It
is not as accurate as the initial guess for the absorption, but inclusions have already
started to form at the correct positions.

The algorithm then proceeds in the standard way, i.e., with the simultaneous
reconstruction of the absorption and the diffusion; see steps 1–4 in Algorithm 1.
The residuals for both the outer and the inner iteration are depicted in Figure 5.5.
The algorithm terminates after five linearisations (including step 0), meaning that
the reconstruction, presented in Figure 5.6, is a result of four linearisations of the
measurement model (cf. step 4 of Algorithm 1). The reconstructions of both opti-



TOTAL VARIATION TYPE PRIORS IN QPAT 13

Fig. 5.6: Test 1. The reconstructions of the absorption (above) and the diffusion
(below). Left: 3D-visualisations; the values in the intervals [µ0±0.0025] and [κ0±0.1]
indicated in the colorbars are transparent in the respective images. Right: slices of
the reconstructed absorption at the positions y = −11, 0, 11 and x = 0 and of the
reconstructed diffusion at the positions y = −15,−9,−3, 3, 9, 15 and x = 0.

cal parameters are in accordance with the prior information: there are well localised
inclusions in an approximately constant background. Moreover, the inclusions lie at
approximately correct positions. On the negative side, the reconstruction of the diffu-
sion exhibits some instability near the object boundary, which causes very high jumps
at a few isolated nodes: the highest and the lowest point values are max(κ) = 8.47
and min(κ) = 0.0086, respectively. However, discarding the nodes at the boundary,
one gets the reasonable extremal values max(κ|Ω\∂Ω) = 0.78 and min(κ|Ω\∂Ω) = 0.03
(which are used as the limits for the diffusion plot in Figure 5.6). In addition, in spite
of the aforementioned outliers in the reconstructed diffusion, the mean values over
the background and the inclusions presented in Table 5.2 are approximately correct
for both parameters. Even though the reconstructed means are not exactly the same
as the target values, they are very close to the corresponding mean values of the in-
terpolated parameters Pµtarget and Pκtarget (except for the ‘most difficult’ diffusive
inclusion (1) lying along the axis of Ω), which is arguably the best one can expect to
achieve.
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Table 5.2: Test 1. The mean values of the absorption and the diffusion in the target
illustrated in Figure 5.1, in the target interpolated onto the sparser grid, and in the
reconstruction shown in Figure 5.6. The mean values are taken over the correct
supports of the inclusions listed in Table 5.1.

Absorption mean values (mm−1) Diffusion mean values (mm)
µtarget Pµtarget µrec κtarget Pκtarget κrec

bg 0.01 0.0101 0.00996 bg 0.3 0.300 0.304
(1) 0.05 0.0459 0.0456 (1) 0.05 0.0874 0.0708
(2) 0.02 0.0189 0.0188 (2) 0.05 0.0668 0.0628
(3) 0.002 0.00266 0.00263 (3) 0.15 0.163 0.165
(4) 0.05 0.0432 0.0425 (4) 0.6 0.579 0.595
(5) 0.002 0.00338 0.00335 (5) 0.05 0.0792 0.0764

(6) 0.15 0.169 0.174
(7) 0.6 0.573 0.576

As mentioned after Algorithm 1, the reconstructions seem insensitive to the choice
of the threshold parameter T > 0. Considering significantly higher noise levels (say,
10%) clearly deteriorates the quality of the reconstructions, with the diffusion coef-
ficient exhibiting a higher level of instability. However, e.g., doubling the noise level
does not considerably alter the performance of the algorithm. Moderate changes in
the density of the reconstruction mesh mainly affect the reconstruction process via
the computation time.

The running time of Algorithm 1 for this experiment was approximately 12 min-
utes with a MATLAB (2014a) implementation on a laptop with 16 GB RAM and an
Intel Core i7-4600U CPU having clock speed 2.10 GHz.

Test 2. In practical applications it is not always possible to illuminate the target
from several different directions. We next study the effect of the number and position
of illuminations on the cubical target of size 113 mm3 visualised in Figure 5.7a. The
absorption is composed of a homogeneous background µbg = 0.015 mm−1 with two
embedded inhomogeneities: a cross-shaped inclusion lying along the plane z = x with
absorption 0.01 mm−1 and an origin-centered spherical shell with outer radius 5 mm,
inner radius 4 mm and the absorption level 0.02 mm−1 (except at the intersection
with the cross). The background diffusion level is κbg = 0.3 mm and there are also
two diffusive inhomogeneities: a cross-shaped inclusion lying along the plane z = −x
with diffusion 0.4 mm and a ball centered at the origin with radius 3 mm and diffusion
0.2 mm (except at the intersection with the cross).

To begin with, we illuminate the object through its bottom face with only one
photon flux Φ = Φbtm : ∂Ω→ R that is modeled as the characteristic function

Φbtm(x) =

{
1 if x ∈ ∂Ωbtm,

0 otherwise,

where ∂Ωbtm = {(x, y, z) ∈ R3 : |x| ≤ 5.5, |y| ≤ 5.5, z = −5.5}. The simulation of
the data follows the same steps as in the previous example; in particular, the level of
additive noise is still one percent. (In this case, the fine FE mesh has Nf = 133649
nodes and 752914 tetrahedrons whereas the coarse one has N = 54721 nodes and
295176 tetrahedrons.)
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(a) The target absorption (left) and
diffusion (right).

(b) The reconstruction corresponding
to the illumination Φbtm.

(c) The reconstruction corresponding
to the illuminations Φbtm and Φrgt.

(d) The reconstruction corresponding
to the illuminations Φbtm and Φtop.

(e) The reconstruction corresponding
to the illuminations Φbtm, Φrgt and
Φbck.

(f) The reconstruction corresponding
to the illuminations Φbtm, Φtop and
Φbck.

Fig. 5.7: Test 2. In the 3D-visualisations the values in the intervals indicated in
the colorbars are transparent in the respective images. The slices are taken for both
parameters along the planes z = x (left) and z = −x (right).
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Using the same free parameters and forming the initial guesses κ̃init and µ̃init as in
the first example, we get the approximate background levels κ0 = 0.29 and µ0 = 0.015
as well as the final reconstruction presented in Figure 5.7b. The reconstruction of the
absorption is reasonable, although it includes shadows of the diffusive inclusions. On
the other hand, the diffusion produced by Algorithm 1 is almost constant, making
it practically useless. This reconstruction, resulting in a (nonlinear) residual clearly
under the noise level

√
N , was obtained after only two steps of LSQR already in step 0

of the algorithm. The reconstructions one gets by starting with κ̃init = 0, i.e., without
step 0, or even by setting µ̃init = 0 are essentially the same. In addition, changing
the direction of the illumination does not seem to affect the results. We conclude
that when using only one illumination, the absorption can explain the measurement
(almost) completely, and hence one cannot simultaneously reconstruct the diffusion.
This is not very surprising as it is well known that the optical inverse problem of QPAT
is nonunique for one illumination; see [4, 13, 31, 37, 44]. However, to add an extra
twist, [7] recently presented a uniqueness result for piecewise constant absorption and
diffusion with only one illumination.

Let us then complement the measurement corresponding to the flux Φbtm with
a second one. To evaluate the effect of the chosen illumination directions, we con-
sider two cases: illuminations through adjacent faces and through opposite sides. To
study the first case, we combine Φbtm with Φrgt, i.e., a homogeneous flux through the
right-hand face of the cube. In the second case, Φbtm is accompanied by Φtop, i.e., a
homogeneous flux through the top facet. Both Φrgt and Φtop : ∂Ω→ R are modelled
by the appropriate characteristic functions on ∂Ω. The reconstruction algorithm is
run for the two cases with the same free parameters as previously. As a result, we
get the same approximate background values as with one illumination, but the final
reconstructions, presented in Figures 5.7c–5.7d, are significantly better: two illumina-
tions result in decent reconstructions of both optical parameters. It has to be noted,
however, that the directions of the two employed photon fluxes play a significant role:
for the illuminations through adjacent faces, the reconstructed diffusion is inaccurate
close to the opposite edge, whereas the opposite illuminations lead to good quality
reconstructions of both parameters in the whole domain.

Finally, we add a third measurement to the two-illumination settings considered
above. The additional measurement is induced by a homogeneous photon flux through
the back of the cube, with its amplitude Φbck : ∂Ω → R modelled once again by the
appropriate characteristic function. The triplet Φbtm, Φrgt and Φbck corresponds to il-
luminations around one corner of the cube, while the facet-wise fluxes Φbtm, Φtop and
Φbck for the other three-illumination test cover the boundary of the cube as evenly as
possible. The resulting reconstructions are presented in Figures 5.7e–5.7f. Compared
to the two-illumination cases, the reconstructions of the diffusion are now somewhat
sharper. However, as with two adjacent illuminations, when the three photon fluxes
are supported around one corner, the reconstruction of the diffusion close to the oppo-
site corner is far from satisfactory. For three illuminations, there should be no problem
with the (theoretical) uniqueness, so it seems that the physics of the measurement
setting limits the reconstruction quality: the light does not penetrate deep enough
into the object in order to provide reliable information about the diffusion near the
opposite corner, where the reconstruction mainly reflects the prior information. On
the other hand, complementing the opposite illuminations with a third measurement
leads to slightly more detailed reconstructions, but the difference between the two-
and three-illumination cases is not substantial (cf. Figures 5.7d and 5.7f).
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The reconstructions corresponding to two illuminations shown in Figures 5.7c–
5.7d resulted from three linearisations of the measurement model in Algorithm 1 (in-
cluding step 0), while it took four linearisations to produce the three-illumination re-
constructions in Figures 5.7e–5.7f. The corresponding computation times were about
five and ten minutes, respectively, with the same hardware as in Test 1.

6. Concluding remarks. In this work, the inverse problem of QPAT was inves-
tigated. The aim of QPAT is to produce high-resolution reconstructions of the optical
parameters of interest from given three-dimensional, high-resolution PAT images. A
computationally efficient algorithm for the inverse problem of QPAT was introduced
by combining priorconditioned LSQR, a lagged diffusivity step and linearisations of
the measurement model in two nested iterations. To facilitate handling a high number
of measurements and unknowns, all multiplications by Jacobians in the algorithm were
implemented in a matrix-free manner. The numerical studies exclusively employed a
Perona–Malik prior, although other types of edge-preserving priors can as easily be
utilised in the described approach. The proposed reconstruction algorithm was tested
with 3D numerical simulations. The results demonstrate that the approach is capable
of producing accurate and good quality estimates of the absorption and diffusion in
complex 3D geometries in a reasonable computation time, even when the tests are
run on a standard laptop. This suggests that QPAT can be developed into a practical
method without compromising the accuracy of the estimates or the good resolution
the method can potentially provide.

Appendix: Matrix-free approximation of the Jacobians. The aim of this
appendix is explaining how to efficiently approximate multiplications by the Jacobian
Jhκ̃,µ̃ of the map

R2N 3 (κ̃, µ̃) 7→ h
(
κ(κ̃), µ(µ̃)

)
∈ RN ,

where h is the discretisation of the measurement H(κ(κ̃), µ(µ̃)) = µ(µ̃)ϕ
(
κ(κ̃), µ(µ̃)

)
,

cf. (3.4), and

κ(κ̃) = κ0 exp(κ̃) and µ(µ̃) = µ0 exp(µ̃)

are the elementwise transformations of the parameters introduced in (3.1). As in
Sections 3 and 4, we only consider here the case of one illumination, which corresponds
to the photon flux Φ, cf. (2.1). In the case of multiple illuminations, more bookkeeping
of the indices is required, but otherwise the described methodology works as for a
single flux of photons.

First of all, since κn = κ(κ̃n) and µn = µ(µ̃n) for all n = 1, . . . , N , we get the
Jacobian Jhκ̃,µ̃ = [Jhκ̃ , J

h
µ̃ ] ∈ RN×2N by the chain rule

Jhκ̃ =

[
∂hi
∂κ̃j

]N
i,j=1

=

[
∂hi
∂κj

dκj
dκ̃j

]N
i,j=1

=

[
∂hi
∂κj

κj

]N
i,j=1

= Jhκ diag(κ),

Jhµ̃ =

[
∂hi
∂µ̃j

]N
i,j=1

=

[
∂hi
∂µj

dµj
dµ̃j

]N
i,j=1

=

[
∂hi
∂µj

µj

]N
i,j=1

= Jhµ diag(µ).

In particular, operating with Jhκ̃,µ̃ boils, in essence, down to multiplying with Jhκ,µ =

[Jhκ , J
h
µ ].

According to Lemma 2.1, the Fréchet derivative of H is(
H ′(κ, µ)

)
(ϑ, θ) = µϕ′ + θϕ,
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where ϕ(κ, µ) is the solution of (2.1) and (ϕ′(κ, µ))(ϑ, θ) is the solution of the varia-
tional problem (2.3). To approximate Jhκ,µ at the optical parameters κ(κ̃) and µ(µ̃)
corresponding to given κ̃ and µ̃, we use the FEM with the piecewise linear basis
{φn}Nn=1 appearing in (3.2) to evaluate H ′(κ, µ), letting the perturbations ϑ and θ
run in turns through {φn}Nn=1. To be more precise, denoting the node values of the
FEM approximations for ϕ(κ, µ), (ϕ′(κ, µ))(ϑ, θ) and θ by {ϕn}, {ϕ′n(ϑ, θ)} and {θn},
respectively, we approximate

(
H ′(κ, µ)

)
(ϑ, θ) ≈

N∑
n=1

(
h′n(κ, µ)

)
(ϑ, θ)φn,

where

(h′n(κ, µ)) (ϑ, θ) = µnϕ
′
n(ϑ, θ) + θnϕn, n = 1, . . . , N.

Accordingly, the (approximate) Jacobian Jhκ,µ = [Jhκ , J
h
µ ] is formed as

Jhκ =
[(
h′i(κ, µ)

)
(φj , 0)

]N
i,j=1

= diag(µ) Jϕκ ,

Jhµ =
[(
h′i(κ, µ)

)
(0, φj)

]N
i,j=1

= diag(µ) Jϕµ + diag(ϕ).

We still need to consider how to handle multiplications by Jϕκ and Jϕµ matrix-freely.

Based on the weak formulation of (2.1),∫
Ω

(κ∇ϕ · ∇v + µϕv) dx+
1

2

∫
∂Ω

ϕv dS = 2

∫
∂Ω

Φv dS for all v ∈ H1(Ω),

we first form the FEM system matrix K = K(κ, µ) ∈ RN×N and load vector f =
f(Φ) ∈ RN corresponding to the basis {φn}Nn=1, and solve the node values ϕ ∈ RN
from the equation

Kϕ = f.

Next, we approximate the derivative (ϕ′(κ, µ)) (ϑ, θ) based on the variational problem
(2.3). Since the left-hand side of (2.3) is identical to that in the weak formulation of
(2.1), the FEM system matrix K ∈ RN×N stays the same. Letting the perturbations
on the right-hand side of (2.3) run in turns through {φn}Nn=1, we get the load matrix
G(ϕ) ∈ RN×2N and the equation

KJϕκ,µ = G or K
[
Jϕκ , J

ϕ
µ

]
=
[
G(1), G(2)

]
,

where

G
(1)
i,j = −

∫
Ω

φj ∇ϕ · ∇φi dx, G
(2)
i,j = −

∫
Ω

φjϕφi dx,

for i, j = 1, . . . , N .

Finally, instead of solving the huge system to form the Jacobian explicitly, we
use the matrices K and G to implicitly operate on a given vector: multiplying s =
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[(s(1))T, (s(2))T]T ∈ R2N by Jhκ̃,µ̃ ∈ RN×2N gives

Jhκ̃,µ̃s = Jhκ̃ s
(1) + Jhµ̃s

(2)

= diag(µ)K−1G(1) diag(κ)s(1)

+
(

diag(µ)K−1G(2) + diag(ϕ)
)

diag(µ)s(2)

= diag(µ)K−1
(
G(1) diag(κ)s(1) +G(2) diag(µ)s(2)

)
+ diag(ϕ) diag(µ)s(2).

We also need to be able to multiply a given vector t ∈ RN with the transpose (Jhκ̃,µ̃)T ∈
R2N×N . Since matrices K and G(2) are symmetric, we get

Jhκ̃,µ̃
Tt =

[
JhT
κ̃ t

JhT
µ̃ t

]
=

[
diag(κ)(G(1))TK−1 diag(µ)t

diag(µ)
(
G(2)K−1 diag(µ) + diag(ϕ)

)
t

]

=

[
diag(κ) 0

0 diag(µ)

]([
(G(1))T

G(2)

]
K−1 diag(µ)t+

[
0

diag(ϕ)t

])
.

Numerically speaking, multiplying a vector by the Jacobian Jhκ̃,µ̃ or its transpose is
relatively cheap: one only needs to perform elementwise multiplications of vectors and
matrix-vector multiplications with sparse matrices, and to operate with the inverse
of the FEM system matrix K on a vector. However, when the number of degrees
of freedom and/or illuminations is very high, the sizes of the matrices G(1) and G(2)

may become impractically large. In this case, one can continue the analysis to avoid
forming the matrices G(1) and G(2) altogether, but the details are omitted here for
brevity.
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