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Abstract

We study the quasi-neutral limit in an optimal semiconductor design problem constrained
by a nonlinear, nonlocal Poisson equation modelling the drift diffusion equations in thermal
equilibrium. While a broad knowledge on the asymptotic links between the different models
in the semiconductor model hierarchy exists, there are so far no results on the corresponding
optimization problems available. Using a variational approach we end up with a bi-level
optimization problem, which is thoroughly analysed. Further, we exploit the concept of Γ-
convergence to perform the quasi-neutral limit for the minima and minimizers. This justifies
the construction of fast optimization algorithms based on the zero space charge approximation
of the drift-diffusion model. The analytical results are underlined by numerical experiments
confirming the feasibility of our approach.
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equation; optimal control; first-order necessary condition; Γ-convergence.
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1 Introduction

Nowadays, semiconductor devices play a crucial role in our society due to the increasing use of
technical equipment in which more and more functionality is combined. The ongoing miniatur-
ization in combination with less energy consumption and increased efficiency requires that the
designs cycles for the upcoming device generations are shortened significantly. Hence, black-box
optimization approaches like genetic algorithms or derivative-free optimization are not capable to
keep pace with these demands [27]. This insight lead to an increased attention of the electrical en-
gineering community as well as from applied mathematicians within the last decades. Researchers
focused on the optimal design of semiconductor devices based on tailored mathematical optimiza-
tion techniques [10, 26, 7, 20, 3, 8, 29, 13]. In fact, several design questions were considered,
such as increasing the current during on-state, decreasing the leakage current in the off-state or
shrinking the size of the device [3, 6, 12, 19].

Meanwhile, there is a good understanding of the mathematical questions concerning the un-
derlying optimization methods for different semiconductor models, like the drift-diffusion or the
energy transport model (for the specific models see also [36, 33] and the references therein). Fur-
ther, fast and reliable numerical algorithms were designed on basis of the special structure of
the device models, which use adjoint information to provide the necessary derivative information
[3, 22, 6, 31, 11, 4]. But not only the classical model hierarchy was used, also macroscopic quantum
models, e.g., the quantum drift-diffusion model [44, 5] and the quantum Euler-Poisson model [37]
were investigated.

Special interest is in the design or identification of the doping profile of the charged background
ions, which is most important for the electrical behaviour of the semiconductor device [14, 7, 21].
The specific structure of the semiconductor models stemming from the nonlinear coupling with
the Poisson equation for the electrostatic potential allows it also to use the total space charge as a
design variable, which lead to the construction of a fast and optimal design algorithm in the spirit
of the well-known Gummel-iteration [17, 3, 4, 13].

For the semiconductor model hierarchy, it is well known that all these models are linked by
asymptotic limits, which were thoroughly investigated during the last decades (for an overview
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see [36, 32, 33, 24] and the references therein). Especially, they were used for the derivation of
approximate models and algebraic formulas describing the device behaviour, like current-voltage
or capacity-voltage characteristics [40].

One particular limit is the quasi-neutral limit in the classical drift-diffusion model for small
Debye length, which is exploited for the construction of analytical current-voltage characteristics
[33, 40]. For the forward problem this limit is analytically well understood (see, e.g. ,[33, 43, 42,
45, 9, 16, 25] and the references therein). For vanishing Debye length one obtains the so-called
zero space charge approximation, which has been also used in the reconstruction of semiconductor
doping profiles from a Laser-Beam-Induced Current Image (LBIC) in [15]. Also the fast optimiza-
tion approach in [3, 4] suggests that this limit is of particular interest for optimal semiconductor
design.

Here we investigate, if it is reasonable to approximate the solution of the drift-diffusion (DD)
model for small Debye length with the zero space charge solution on the whole domain during
optimal design calculations for semiconductor device. This will significantly speed up the design
calculations, since instead of the multiple solution of a nonlinear partial differential equation it just
requires several solutions of an algebraic equation [33]. The answer to this question is positive and
underlined for the first time by analytical and numerical results for the full optimization problem.
In particular, we consider the quasi-neutral limit for a PDE constrained optimization problem
governed by the DD model in thermal equilibrium [43, 42]. Using the concept of Γ-convergence we
can perform the asymptotic limit and can even show the convergence of minima and minimizers
[2, 35]. This gives an analytical foundation for the assumptions in [14] and justifies the future
usage of the space-mapping approach in optimal semiconductor design (compare also [12, 31]).

The mathematical challenges are on the one hand the rigorous analysis with reduced regularity
assumptions for the forward problem, and on the other hand the non-convexity of the underlying
optimization problem, which allows for the non-uniqueness of the minimizer. To tackle the first
problem, we use the dual formulation of the variational approach in [43, 42], which allows to for-
mulate the optimal design problem as a bi-level optimization problem in the primal variable given
by the electrostatic potential. This yields then an optimization problem constrained by a nonlin-
ear, nonlocal Poisson equation (NNPE). The second challenge suggests that we cannot expect any
rates for the asymptotic limit. Hence, we rely here on the weak concept of Γ-convergence.

The paper is organized as follows. In the remainder of this section we describe the model equa-
tions and the corresponding constrained optimization problems. In the next section, we provide a
thorough analysis for the state equation given by the NNPE. Using a variational approach we show
existence and uniqueness of the state, as well as a priori estimates necessary for the asymptotic
limit. In Section 3 we investigate the design problem analytically. The quasi-neutral limit for
the full optimal design problem is performed in Section 4, where we show the Γ-convergence of
the minima and minimizers. In the last section we present reliable numerical algorithms for the
solution of the NNPE as well as for the adjoint problem, which are used for the construction of
a descent algorithm for the optimization problem. The presented numerical results underline the
analysis in the previous sections. Finally, we give concluding remarks.

1.1 The model equations and design problem

The scaled drift-diffusion equations in thermal equilibrium [34] are given in dimension d = 1, 2 or
3 either by the coupled system

n∇V +∇n = 0, −p∇V +∇p = 0

−λ2∆V = n− p− C

or equivalently, by the nonlinear, nonlocal Poisson equation (NNPE) on Ω ⊂ Rd

− λ2∆V = n(V )− p(V )− C, (Pλ)

where the unknown V is the electrostatic potential, C is a given doping profile (later the design
variable), λ is the scaled Debye length and the charge carriers are described by the densities of
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electrons and holes, respectively, defined by

n = n(V ) = N
e−V∫
e−V dx

, p = p(V ) = P
eV∫
eV dx

, (1)

for some given N,P ≥ 0. The doping profile may be split into its positive and negative part C+

and C− describing the distributions of positively and negatively charged background ions. Then,
it holds C = C+ + C− and we can define the positive and negative total charges

N = δ2 +

∫
Ω

C+ dx, P = δ2 −
∫

Ω

C− dx, (2)

respectively, where δ2 > 0 is the so-called scaled intrinsic density of the semiconductor [33, 43].
Since the device is in thermal equilibrium, we supplement (Pλ) with homogeneous Neumann

boundary conditions ν ·∇V = 0 on ∂Ω, where ν is the outward unit normal along ∂Ω. Notice that
the boundary condition is consistent with (Pλ). Indeed, we have

−λ2

∫
∂Ω

ν · ∇V ds = −λ2

∫
Ω

∆V dx = N − P −
∫
C dx = 0,

which is the global space charge neutrality. For reasons of uniqueness, we further impose the
integral constraint

∫
Ω
V dx = 0 (compare [43]).

In the quasi-neutral limit λ→ 0, (Pλ) reduces to the algebraic equation

B(V ) := −n(V ) + p(V ) + C = 0. (P0)

Remark 1.1. Notice that B(k) = (P − N)/|Ω| + C for any constant k ∈ R and
∫

Ω
B(V ) dx = 0.

Therefore, imposing the integral constraint
∫

Ω
V dx = 0 is justified.

Unless otherwise stated, we make the following assumptions throughout the manuscript.

(A1) Ω ⊂ Rd, d = 1, 2 or 3 is a bounded Lipschitz domain.

(A2) The doping profile satisfies C ∈ H1(Ω).

We use the abbreviation ‖·‖p = ‖·‖Lp(Ω).

Remark 1.2. Existence and uniqueness results for the nonlinear Poisson problem without the
nonlocal terms and with different boundary conditions can be found in [33] and the references
therein. Further, a dual variational approach was used in [43, 42] to incorporate the Neumann
boundary conditions as well as the constraints (1). In both approaches, the analysis requires C ∈
L∞(Ω), which would be too strict for our requirements. Hence, we use instead assumption (A2)
and the dual, nonlocal formulation, which will yield better estimates necessary for our asymptotic
analysis.

The optimal design approach based on the fast Gummel iteration considered in [3, 4] suggests
that the overall device behaviour is determined by the total charge n(V )− p(V )− C. Hence, we
consider in the following a design problem described by a cost functional of tracking-type given
by

J(V,C) =
1

2
‖n(V )− nd‖22 +

1

2
‖p(V )− pd‖22 +

σ

2
‖∇(C − Cref)‖22,

where nd and pd are desired electron and hole distributions, respectively. Here, Cref ∈ H1(Ω) is a
given reference doping profile (see also [21]) and σ > 0 is a parameter, which allows to adjust the
deviation from this reference profile [23]. This allows to adjust the negative and positive charges
separately by changing the doping profile C. Note, that the cost term involves the H1-seminorm,
which is essential for asymptotic limit later on.

Now we are in the position to formulate the optimization problems under consideration:

min J(V,C) subject to (Pλ). (OPλ)
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The asymptotic results for the hierarchy of semiconductor models suggest that there should also be
an asymptotic link between the optimization problems (OPλ) for λ > 0 and λ = 0. In particular,
we are interested in the convergence of minimizing pairs {(Vλ, Cλ)} towards (V0, C0), as well as
in the convergence of J(Vλ, Cλ) towards J(V0, C0). For small λ one can then use the reduced,
algebraic model for the optimization, which will significantly speed-up the optimization process.

2 The Nonlocal Nonlinear Poisson Problem

In this section we provide a priori estimates for the solutions of (Pλ), λ ≥ 0, and thereafter show
existence, as well as uniqueness of solutions under assumptions (A1) and (A2).

Consider the NNPE (Pλ) given by

−λ2∆V +B(V ) = 0 in Ω, ν · ∇V = 0 on ∂Ω,

with integral constraint
∫

Ω
V dx = 0, where as before

B(v) := −N e−v∫
e−v dx

+ P
ev∫
ev dx

+ C.

For the analysis we reformulate (Pλ) using a variational approach: Consider the functional

b(v) := N ln

(
1

|Ω|

∫
Ω

e−v dx

)
+ P ln

(
1

|Ω|

∫
Ω

ev dx

)
+

∫
Ω

C v dx.

One readily sees that the first variation of the functional b formally gives the operator B. Indeed,
taking the variation of b at some v ∈ C∞0 (Ω), we obtain

δ

δv
b(v)[h] =

∫
Ω

B(v)h dx for all h ∈ C∞0 (Ω).

Again, since b(k) = 0 for any constant k ∈ R, it suffices to consider functions with
∫
v dx = 0.

Henceforth, we set P = {v ∈ L1(Ω) |
∫

Ω
v dx = 0}, and consider an extension of b given by

b̄λ : L1(Ω)→ R ∪ {+∞} : b̄λ(v) =

{
λ2‖∇v‖22 + b(v) v ∈ Σ

+∞ else
,

for any λ ≥ 0, with Σ := {v ∈ P | b(v) < +∞, ∇v ∈ L2(Ω)}.
Remark 2.1. Note, that the first variation of b̄λ for v ∈ Σ is in fact the weak formulation of
nonlinear Poisson equation (Pλ) (cf. (11)).

The main result of this section is summarized in the following theorem.

Theorem 2.2. Let C ∈ H1(Ω). For each λ ≥ 0, there exists a unique minimizer Vλ of the problem

minv∈L1(Ω) b̄λ(v), (MPλ)

and consequently a unique solution of the nonlinear Poisson equation (Pλ) with

Vλ ∈ Σ ∩ L∞(Ω), λ > 0, and V0 ∈ Σ.

Furthermore, the sequence (Vλ) ⊂ Σ satisfies the following convergences

Vλ ⇀ V0 in H1(Ω), Vλ → V0 in L4(Ω),

n(Vλ)→ n(V0), p(Vλ)→ p(V0) in L2(Ω),

where n and p are as given in (1).
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Remark 2.3. The main contribution of the result above is the well-posedness of (Pλ) also for
unbounded doping profiles C ∈ H1(Ω), which allows for more general control functions in the
optimal control problem discussed in the following sections. This clearly extends the results in
[43]. Furthermore, we are able to deduce L∞-estimates for the case λ > 0 and C ∈ Lp(Ω), p > 2,
which was up to the authors knowledge also not known before in this setup.

We outline the idea of the proof: To prove the first part of the theorem, we invoke a standard
technique of variational calculus [39] on a family of auxiliary problems. Namely, we consider the
minimization of the auxiliary functional given by

b̄σλ : L1(Ω)→ R ∪ {+∞} : b̄σλ(v) =

{
λ2‖∇v‖22 + b(v) v ∈ Σσ

+∞ else
, (MPaλ)

for λ, σ ≥ 0, with Σσ :=
{
v ∈ Σ | ‖∇v‖2 ≤ σ

}
⊂ Σ.

To this end, we will show in Subsection 2.1 that b̄σλ is strictly convex, coercive and weakly lower
semicontinous on L1(Ω). We then derive necessary a priori estimates for weak solutions of (Pλ),
λ ≥ 0 in Subsection 2.2, which will allow us to obtain unique minimizers for b̄λ.

2.1 Properties of the Functionals

Lemma 2.4. The functionals b̄σλ are coercive in L1(Ω) for λ ≥ 0, σ > 0.

Proof. Let v ∈ Σσ and v 6= 0. Throughout the proof, we denote Ω± := supp(v±) to be the support
of v+ = max{0, v} and v− = min{v, 0} respectively. Since, v 6= 0, we have Ω± 6= ∅, simply due to
the integral constraint

∫
Ω
v dx = 0. Furthermore, we set uA = 1

|A|
∫
A
u dx for any measurable set

A ⊂ Ω.
We begin with an elementary result due to Jensen’s inequality. Since

1

|Ω|

∫
Ω

e±vdx ≥ 1

|Ω|

∫
Ω±

e±v
±
dx =

|Ω±|
|Ω|

1

|Ω±|

∫
Ω±

e±v
±
dx,

we obtain

ln

(
1

|Ω|

∫
Ω

e±vdx

)
≥ ln

(
1

|Ω±|

∫
Ω±

e±v
±
dx

)
+ ln(|Ω±|/|Ω|)

≥ 1

|Ω±|

∫
Ω±
|v±| dx+ ln(|Ω±|/|Ω|) =: |v±|Ω± + η±

simply from the monotonicity of the logarithm and Jensen’s inequality for concave functions.
Consequently, we have

N ln

(
1

|Ω|

∫
Ω

e−v dx

)
≥ N

(
|v−|Ω− + η−

)
=

∫
Ω

C+
(
|v−|Ω−

)
dx+ δ2|v−|Ω− +Nη−.

Similarly, we obtain for the other term

P ln

(
1

|Ω|

∫
Ω

ev dx

)
≥
∫

Ω

|C−|
(
|v+|Ω+

)
dx+ δ2|v+|Ω+ + Pη+.

On the other hand, we have for the linear term∫
Ω

Cv dx ≥ −
∫

Ω+

|C−|v+dx−
∫

Ω−
C+|v−| dx.

Putting these inequalities together yields

b̄σλ(v) ≥ λ2‖∇v‖22 +
δ2

|Ω|
‖v‖1 + (Nη− + Pη+)

−
∫

Ω−
C+
[
|v−| − |v−|Ω−

]
dx−

∫
Ω+

|C−|
[
|v+| − |v+|Ω+

]
dx.
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To estimate the last two terms, we use the Poincaré inequality, i.e.,

‖u− uA‖L2(A) ≤ cp‖∇u‖L2(A),

with u ∈ {|v−|, |v+|} and A ∈ {Ω−,Ω+} respectively.
Since v ∈ Σσ, ‖∇v‖2 ≤ σ, we finally obtain

b̄σλ(v) ≥ λ2‖∇v‖22 +
δ2

|Ω|
‖v‖1 − σ(c+p + c−p )‖C‖2 + (Nη− + Pη+), (3)

which yields the coercivity in L1(Ω) and thereby concluding the proof.

Remark 2.5. As a matter of fact, in the case λ > 0, coercivity of the functional b̄λ may be obtained
directly. Indeed, applying Young’s inequality on (3) gives

b̄σλ(v) ≥ (λ2 − κ)‖∇v‖22 +
δ2

|Ω|
‖v‖1 −

c+p + c−p
κ

‖C‖22 + (Nη− + Pη+),

for any κ > 0. Choosing κ < λ2 provides the coercivity in L1(Ω), and in fact, also in H1(Ω).
Therefore, the restriction ‖∇V ‖2 ≤ σ is superfluous in this case.

A direct consequence of the proof of Lemma 2.4 is the following result. Its proof is a slight
modification of the arguments used in Lemma 2.4, which we therefore omit.

Corollary 2.6. If v ∈ Σ satisfies b(v) ≤M for some M > 0, then there exists a constant K > 0,
depending only on M and |Ω| such that∫

Ω

e±vdx ≤ |Ω| exp

(
1

δ2

(
K + (c+p + c−p )‖C‖2‖∇v‖2

))
.

In particular, n, p and e|v| are elements of L1(Ω).

Lemma 2.7. The functionals b̄σλ are weakly lower semicontinuous in L1(Ω) for λ ≥ 0, σ > 0.
More precisely, we have that

vn ⇀ v in L1(Ω) =⇒ b̄σλ(v) ≤ lim infn→∞ b̄σλ(vn).

Proof. We consider the case where lim infn→∞ b̄σλ(vn) < +∞, otherwise there is nothing to show.
In this case we may extract a bounded subsequence (not relabeled) with (vn) ⊂ Σσ. In particular,
‖∇vn‖2 ≤ σ for all n ∈ N. Consequently, (vn) ⊂ H1(Ω) is bounded by the Poincaré inequality,
which tells us that vn → v in L2(Ω) and∇vn ⇀ ∇v in L2(Ω), for some subsequence (not relabeled).
Hence, for the terms ∫

Ω

Cvn dx and

∫
Ω

|∇vn|2dx,

weak lower semicontinuity follows from linearity and the properties of norms, respectively. There-
fore, we are left to show the weak lower semicontinuity of the two middle terms of b̄σλ.

This result ultimately follows from the weak lower semicontinuity of the functionals
∫

Ω
e±vdx

in L1(Ω) and the continuity and monotonicity of the logarithm function. In the following, we
define the terms s±n :=

∫
Ω
e±vndx and gk := infn≥k{sn}. Since∫

Ω

e±vdx ≤ lim infn→∞

∫
Ω

e±vndx,

we are left to show that ln(lim infn→∞ sn) ≤ lim infn→∞ ln(sn). By definition,

gk ≤ sn ∀n ≥ k =⇒ ln(gk) ≤ ln(sn) ∀n ≥ k,

since ln is monotonically increasing. Consequently, ln(gk) ≤ infn≥k{ln(sn)}. Hence

ln(lim inf
n→∞

sn) = ln(limk→∞ gk) = lim
k→∞

ln(gk)

≤ limk→∞ infn≥k{ln(sn)} = lim inf
n→∞

ln(sn),

due to the continuity of the logarithm.
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Lemma 2.8. The functional b̄λ is strictly convex for all λ ≥ 0.

Proof. The first part of b̄λ for λ > 0 is strictly convex, simply due to the strict convexity of the
norm. Therefore, it suffices to show the strict convexity of b̄0.

For u, v ∈ Σ, κ ∈ (0, 1), we obtain from the Hölder inequality∫
Ω

e±(κu+(1−κ)v)dx ≤ ‖e±κu‖σ‖e±(1−κ)v‖ σ
σ−1

= ‖e±u‖κκσ‖e±v‖1−κ(1−κ) σ
σ−1

.

Choosing σ = 1/κ then yields∫
Ω

e±(κu+(1−κ)v) dx ≤ ‖e±u‖κ1‖e±v‖1−κ1 .

Since the logarithm is monotonically increasing we get

ln

(∫
Ω

e±(κu+(1−κ)v)dx

)
≤ ln

(
‖e±u‖κ1‖e±v‖1−κ1

)
= κ ln

(∫
Ω

e±udx

)
+ (1− κ) ln

(∫
Ω

e±vdx

)
.

Since
∫
Cv dx is linear, we obtain altogether the convexity of b̄0.

To ensure the strict convexity, we show that equality holds only for u = v. Since Hölder’s
inequality is based on Young’s inequality, equality holds for

eκuσ

‖eκu‖σσ
=

e(1−κ)v σ
σ−1

‖e(1−κ)v‖
σ
σ−1
σ
σ−1

.

Setting again σ = 1/κ, we have

eκuσ

‖eκu‖σσ
=

eu

‖eκu‖σσ
and

e(1−κ)v σ
σ−1

‖e(1−κ)v‖
σ
σ−1
σ
σ−1

=
ev

‖e(1−κ)v‖
σ
σ−1
σ
σ−1

.

Thus, in the equality case

eu = ev
‖eκu‖σσ

‖e(1−κ)v‖
σ
σ−1
σ
σ−1

⇐⇒ u = v + w with w = ln

 ‖eκu‖σσ
‖e(1−κ)v‖

σ
σ−1
σ
σ−1

 .

However, from the assumptions
∫

Ω
u dx = 0,

∫
Ω
v dx = 0, we obtain w = 0 and thus u = v, which

implies strict convexity of the functional.

2.2 A priori estimates

We begin by showing a priori estimates for weak solutions of the algebraic equation (P0), and
proceed with L∞-estimates of solutions to (Pλ), λ > 0.

Lemma 2.9. Let C ∈ H1(Ω) and V ∈ Σ be a solution of (P0), then n and p, defined in (1), are
elements of L2(Ω). Define for V the values

α :=
N∫

Ω
e−V dx

, β :=
P∫

Ω
eV dx

, 0 < γ2 :=
√
αβ <∞,

with N,P given in (2). Then, V ∈ Σ satisfies further γ2‖∇V ‖2 ≤ 1
2‖∇C‖2.
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Proof. The proof mimics ideas stated in [43, 42]. Set V = ln g for some nonnegative function g.
Then the algebraic equation (P0) reads

γ4

β

1

g
− βg = C,

or equivalently
g2(x) + g(x)C(x)/β − γ4/β2 = 0.

Solving for g gives

g(x) =
1

2β

[
−C(x) +

√
4γ4 + C2(x)

]
,

since g is required to be nonnegative. Therefore,

V (x) = ln

(
1

2β

[
−C(x) +

√
4γ4 + C2(x)

])
. (4)

A simple consequence of the algebraic expression is that regularity of solutions may be determined
easily. Indeed, taking the exponential of V and rearranging the terms give

p = p(V ) = βeV =
1

2

[
−C(x) +

√
4γ4 + C2(x)

]
. (5)

Therefore, we square the equation for p and integrate over Ω to obtain∫
Ω

p2dx =
1

4

∫
Ω

∣∣∣C −√4γ4 + C2
∣∣∣2 dx ≤ ∫

Ω

(
C2 + 2γ4

)
dx, (6)

which provides an L2-estimate for p ∈ L2(Ω). Using the algebraic equation (P0) again, we end up
with a similar estimate for n. More specifically, we have

n = C + p ∈ L2(Ω), (7)

with a similar L2-bound on n as in (6). Therefore, both n, p ∈ L2(Ω).
Similarly, we compute the derivative of the algebraic equation to obtain

(C + 2βg)∇g + g∇C = 0,

and consequently,

∫
Ω

|∇V |2dx =

∫
Ω

∣∣∣∣∇gg
∣∣∣∣2 dx =

∫
Ω

∣∣∣∣∣ 1√
4γ4 + C2

∣∣∣∣∣
2

|∇C|2dx.

Since 0 ≤ 1/|4γ4 + C2| ≤ 1/4γ4 a.e. in Ω, one gets the estimate for γ2‖∇V ‖2.

Remark 2.10. In fact, the regularity of n and p may be significantly improved. Indeed, since
H1(Ω) ↪→ L6(Ω) for d ≤ 3, we can use (5) to obtain p ∈ L6(Ω), and hence n ∈ L6(Ω) from the
algebraic equation (7). Furthermore, we have that p ∈ W 1,1(Ω), and consequently n ∈ W 1,1(Ω).
Indeed, we use the representation (5) to obtain∫

Ω

|∇p| dx ≤ 1

2

∫
Ω

|∇C| dx+

∫
Ω

|C|√
4γ4 + C2

|∇C| dx ≤
(
|Ω|
2

+
‖C‖2
4γ4

)
‖∇C‖2.

Another simple observation that results from the algebraic equation (7) is the explicit form

n+ p = C + 2p =
√

4γ4 + C2 ≥ 2γ2 a.e. in Ω.

8



As pointed out earlier, for λ > 0, we obtain uniform estimates when C ∈ Lr(Ω), r > 2. The
proof essentially relies on the fact that Vλ ∈ Σ and that B is monotone, since b̄λ is convex on its
domain of definition. To obtain L∞-estimates, we make use of the Stampacchia method [28].

Lemma 2.11. Let C ∈ L2(Ω) and Vλ ∈ Σ, λ > 0, be a solution of (Pλ), then

‖Vλ‖H1(Ω) ≤ cλ ‖C‖2,

for a constant cλ > 0, depending on λ. Furthermore, Vλ ∈ L∞(Ω) for C ∈ Lr(Ω), r > 2.

Proof. Testing (Pλ) with Vλ ∈ Σ and integration by parts yield

λ2

∫
Ω

|∇Vλ|2dx+

∫
Ω

B(Vλ)Vλ dx = 0.

Due to the convexity of b, we know that B is monotone, i.e.

〈B(u)−B(v), u− v〉 ≥ 0 for all u, v ∈ Σ.

Therefore, inserting B(0) in between yields

〈B(Vλ), Vλ〉 = 〈B(Vλ)−B(0), Vλ〉+ 〈B(0), Vλ〉 ≥ 〈B(0), Vλ〉 =

∫
Ω

CVλ dx,

where we used the fact that Vλ ∈ P. A simple application of Young’s inequality yields

λ2

∫
Ω

|∇Vλ|2dx ≤ −
∫

Ω

CVλ dx ≤
1

2κ
‖C‖22 +

κ

2
‖Vλ‖22 ≤

1

2κ
‖C‖22 +

κ

2
c2p‖∇Vλ‖22,

where we used the Poincaré inequality with constant cp > 0 in the last inequality. Hence, choosing
κ = λ2/c2p provides the required estimate.

Now set ϕ+
λ,k = max{0, Vλ − k} ∈ H1(Ω), A+

k = supp(ϕ+
λ,k) and

ψ+
λ,k = χA+

k

(
ϕ+
λ,k −

∫
A+
k

ϕ+
λ,k dx

)
∈ P ∩H1(Ω).

Following the arguments above, we test (Pλ) with ψ+
λ,k to obtain

λ2

∫
Ω

|∇ψ+
λ,k|

2dx+

∫
A+
k

B(Vλ)ψ+
λ,k dx = 0.

By definition, ψ+
λ,k = Vλ −m on A+

k , where m = k +
∫

Ω
ϕ+
λ,k dx ∈ R. Therefore,

〈B(Vλ), ψ+
λ,k〉 = 〈B(Vλ)−B(m), ψ+

λ,k〉+ 〈B(m), ψ+
λ,k〉 ≥ 〈B(m), ψ+

λ,k〉 =

∫
A+
k

Cψ+
λ,k dx,

where we used, again, that ψ+
λ,k ∈ P. Mimicking the arguments from above, we obtain

‖∇ψ+
λ,k‖

2
L2(A+

k )
≤ c2λ ‖C‖2L2(A+

k )
, (8)

with cλ = cp/λ
2. Henceforth, we can apply Stampacchia’s strategy to obtain the L∞-estimate.

On the right-hand side we estimate from above by

‖C‖2
L2(A+

k )
≤ ‖C‖2

L2+ε(A+
k )
|A+
k |
ε/(2+ε).

On the left-hand side (8), we use the Poincaré inequality on ψ+
λ,k to obtain∥∥∥∥∥ϕ+

λ,k −
1

|A+
k |

∫
A+
k

ϕ+
λ,k dx

∥∥∥∥∥
2

L2(A+
k )

= ‖ψ+
λ,k‖

2
L2(A+

k )
≤ c‖∇ψ+

λ,k‖
2
L2(A+

k )
.
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The term on the left-hand side may be explicitly written as∫
A+
k

∣∣∣∣∣Vλ − k − 1

|A+
k |

∫
A+
k

ϕ+
λ,k dx

∣∣∣∣∣
2

dx =

∫
A+
k

|Vλ − k|2dx−
1

|A+
k |

∣∣∣∣∣
∫
A+
k

ϕ+
λ,k dx

∣∣∣∣∣
2

.

We now estimate the last term on the right-hand side using Hölder’s inequality to obtain∣∣∣∣∣
∫
A+
k

ϕ+
λ,k dx

∣∣∣∣∣
2

≤ |A+
k |

2
p

(∫
A+
k

|ϕ+
λ,k|

qdx

) 2
q

= |A+
k |

2
p ‖Vλ − k‖2Lq(A+

k )
≤ |A+

k |
2
p ‖Vλ‖2Lq(Ω),

with 1/p+ 1/q = 1. Choosing p = (2 + ε)/(1 + ε), i.e., q = 2 + ε, we obtain

1

|A+
k |

∣∣∣∣∣
∫
A+
k

ϕ+
λ,k dx

∣∣∣∣∣
2

≤ ‖Vλ‖2Lq(Ω)|A
+
k |
ε/(2+ε).

Furthermore, notice that for any h > k ≥ 0, we have that A+
h ⊂ A

+
k and hence∫

A+
k

|Vλ − k|2dx ≥
∫
A+
h

|h− k|2dx = |h− k|2|A+
h |.

Putting these terms together leads to the inequality

ζ(h) ≤ cζ
|h− k|2

ζ(k)β ,

with ζ(h) = |A+
h |, β = ε/(2 + ε), and some constant cζ > 0 depending on the norms ‖C‖2+ε

and ‖Vλ‖2+ε. From a lemma of Kinderlehrer and Stampacchia [28, II. Lemma B1], there exists
some K > 0 such that ζ(k) = |A+

k | = 0 for every k ≥ K, which clearly implies Vλ ≤ K almost
everywhere in Ω.

Analogously, one shows a lower bound for Vλ by testing (Pλ) with

ψ−λ,k = χA−
k

(
ϕ−λ,k −

∫
Ω

ϕ−λ,k dx

)
∈ P ∩H1(Ω),

where ϕ−λ,k = min{Vλ + k, 0} ∈ H1(Ω) and A−k = supp(ϕ−λ,k). Altogether, Vλ ∈ L∞(Ω).

Lemma 2.12. Let C ∈ H1(Ω). The sequence of minimizers (Vλ) of (MPλ) contains subsequences
that converge weakly in H1(Ω) and strongly in L4(Ω) towards the unique minimizer V0 of (MP0).
Furthermore,

n(Vλ)→ n(V0), p(Vλ)→ p(V0) in L2(Ω).

Proof. We begin by considering the sequence of inequalities

λ2

∫
Ω

|∇Vλ|2dx+ b(Vλ) ≤ λ2

∫
Ω

|∇V0|2dx+ b(V0) ≤ λ2

∫
Ω

|∇V0|2dx+ b(Vλ). (9)

Therefore, from Lemma 2.9 we obtain∫
Ω

|∇Vλ|2dx ≤
∫

Ω

|∇V0|2dx ≤M,

for some constant M > 0. Since (Vλ) ⊂ P, we have the boundedness of (Vλ) in H1(Ω) by the
generalized Poincar inequality. Therefore, we can extract a weakly converging subsequence (not
relabeled), which converges towards some V∗ ∈ H1(Ω). We can then estimate

b̄0(V∗) ≤ lim inf
λ→0

b̄0(Vλ) ≤ lim inf
λ→0

b̄λ(Vλ) ≤ lim inf
λ→0

b̄λ(V0) = b̄0(V0).
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However, by the uniqueness of the minimizer of b̄0, we obtain V∗ ≡ V0. Hence, Vλ ⇀ V0 in H1(Ω).
Due to the compact embedding H1(Ω) ↪→ L4(Ω) for d ≤ 3, we may further extract another

subsequence (not relabeled) satisfying

Vλ → V0 in L4(Ω), Vλ → V0 a.e. in Ω.

Notice from the sequence of inequalities (9), that

b(Vλ) ≤ λ2

∫
Ω

|∇V0|2dx+ b(V0) ≤ K,

for some K > 0 independent of λ. Corollary 2.6 then provides the boundedness of the sequence
(e±Vλ) in L1(Ω). Moreover, the almost everywhere convergence of Vλ towards V0 also provides the
almost everywhere convergence of e±Vλ towards e±V0 . By the Lebesgue dominated convergence
theorem, we obtain the strong convergence e±Vλ → e±V0 in L1(Ω). It is now easy to see that

n(Vλ)→ n(V0), p(Vλ)→ p(V0) in L1(Ω).

In order to show the above convergence in L2(Ω), we will have to work slightly more.
We begin by computing the difference

n(Vλ)− n(V0) =
N e−Vλ∫
e−Vλdx

− N e−V0∫
e−V0dx

=
N∫

e−Vλdx

[(
e−Vλ − e−V0

)
+

(∫
Ω

e−V0dx−
∫

Ω

e−Vλdx

)
n(V0)

N

]
.

Taking the square of the equality above and integrating over Ω yields

‖n(Vλ)− n(V0)‖22 ≤
2N2

‖e−Vλ‖21

[
‖e−Vλ − e−V0‖22 +

‖n(V0)‖22
N2

∣∣‖e−V0‖1 − ‖e−Vλ‖1
∣∣2] .

For the first term on the right-hand side, we use convexity of e−s, s ∈ R, to deduce

e−V0 − e−Vλ ≤ e−V0(Vλ − V0).

Consequently, we obtain

‖n(Vλ)− n(V0)‖22 ≤
2N2

‖e−Vλ‖21

[
‖e−V0‖24‖Vλ − V0‖24 +

‖n(V0)‖22
N2

∣∣‖e−V0‖1 − ‖e−Vλ‖1
∣∣2] .

From Remark 2.10, we see that ‖e−V0‖4 is bounded, and so we can pass to the limit to conclude

n(Vλ)→ n(V0) in L2(Ω).

Similar arguments may be used to derive the strong convergence for (p(Vλ)) in L2(Ω).

2.3 Proof of Theorem 2.2

We begin the proof by showing the existence of minimizers for the auxiliary problem (MPaλ) and
use a priori estimates obtained above to conclude the result for (MPλ).

Let (vλ,σn ) ⊂ L1(Ω) be a minimizing sequence of b̄σλ. In particular, there exists a subsequence
(not relabeled) with (vλ,σn ) ⊂ Σσ. Due to the coercivity of b̄σ0 on L1(Ω) (cf. Lemma 2.4), we have the
boundedness of (vλ,σn ) in L1(Ω). Furthermore, since ‖∇vλ,σn ‖2 ≤ σ and

∫
Ω
vλ,σn dx = 0 for all n ∈ N,

the generalized Poincaré inequality provides the boundedness of (vλ,σn ) in L2(Ω), and therefore the
boundedness of (vλ,σn ) in H1(Ω). Due to reflexivity of H1(Ω), we may extract a weakly converging
subsequence (not relabeled), satisfying vλ,σn ⇀ vσλ in H1(Ω) for some vσλ ∈ H1(Ω). Consequently,
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vλ,σn ⇀ v in L1(Ω). We further obtain vσλ ∈ Σσ from the weak lower semicontinuity of b̄σλ in L1(Ω)
(cf. Lemma 2.7). Since b̄σλ is strictly convex (cf. Lemma 2.8), vσλ ∈ Σσ is the unique minimizer.

From the a priori estimate on a solution to (P0), γ2‖∇Vλ‖2 ≤ 1
2‖∇C‖2 given in Lemma 2.9,

we may choose σ sufficiently large so as to obtain V0 = vσ0 for any σ ≥ σ∗ for some σ∗ < ∞
sufficiently large, thereby obtaining the unique minimizer of (MP0). Similarly, the same arguments
apply to the case λ > 0 due to the a priori estimates obtained in Lemma 2.11. Finally, the
strong convergence Vλ → V0 in L4(Ω) is given in Lemma 2.12, thereby concluding the proof of
Theorem 2.2. �

3 Analysis of the Constrained Optimization Problem

The goal of this section is to prove the existence of a solution to the constrained optimization
problem (OPλ) and to derive the first-order optimality system.

3.1 Existence of minimizers to the constraint optimization problem

We define the set of admissible doping profiles as

Uad ⊂ H1(Ω), (10)

with the additional property:

A ⊂ Uad bounded w.r.t. ‖∇ · ‖2 implies A bounded in H1(Ω).

Remark 3.1. Examples of such admissible sets are H1
0 (Ω), P ∩H1(Ω), and{

u ∈ H1(Ω) | ‖u‖p ≤M
}
, p ≥ 1,

for some fixed constant M > 0. This extends significantly the range of admissible sets for the
doping profile considered so far [21, 3], where a typical restriction was C ∈ H1(Ω) ∩ L∞(Ω).

In order to formulate the problem, we write a weak solution of the NNPE (Pλ) as solution of
the operator equation

eλ(Vλ, C) = 0 in Y∗ :=
(
H1(Ω) ∩ P

)∗
, (11)

where the operator eλ : Σ× Uad → Y∗ is given by

〈eλ(Vλ, C), ϕ〉 := 〈−λ2∆Vλ − n(Vλ) + p(Vλ) + C,ϕ〉 for all ϕ ∈ Y,

with the previously defined densities

n(V ) = N
e−V∫

Ω
e−V dx

, p(V ) = P
eV∫

Ω
eV dx

. (12)

The optimal control problem that is investigated in the sequel reads:

Problem 1. Find (V∗, C∗) ∈ Σ× Uad such that

(V∗, C∗) = arg min J(V,C) subject to eλ(V,C) = 0 in Y∗, (OPλ)

where the functional is given by

J(V,C) =
1

2
‖n(V )− nd‖22 +

1

2
‖p(V )− pd‖22 +

σ

2
‖∇(C − Cref)‖22,

for some given nd, pd ∈ L2(Ω), Cref ∈ H1(Ω) and constant σ > 0.
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The existence of a minimizer for (OPλ) is a consequence of the well-posedness result for (Pλ)
and the a priori estimates obtained in the previous section.

Theorem 3.2. There exists at least one solution (V∗, C∗) ∈ Σ× Uad to (OPλ), λ ≥ 0.

Proof. By definition J is bounded from below and we can define

j := inf {J(V,C) | (V,C) ∈ Σ× Uad} ≥ 0.

We choose a minimizing sequence {(Vk, Ck)} ⊂ Σ × Uad. Since J is radially unbounded with
respect to the second variable, and Uad is an admissible set given in (10), we obtain uniform
boundedness for (Ck) in H1(Ω). Lemmas 2.9 (λ = 0) and 2.11 (λ > 0) then provide the uniform
boundedness of (Vk) in H1(Ω) and {(n(Vk), p(Vk))} in L2(Ω). This allows to extract subsequences
(not relabeled):

Vk ⇀ V∗, Ck ⇀ C∗ in H1(Ω),

n(Vk) ⇀ n∗, p(Vk) ⇀ p∗ in L2(Ω).

Consequently, passing to the limit in the weak formulation of (Pλ) gives

0 = 〈eλ(Vk, Ck), ϕ〉 −→ 〈−λ2∆V∗ − n∗ + p∗ + C∗, ϕ〉 for all ϕ ∈ H1(Ω).

Since solutions of (Pλ) are known to be unique, we may identify the limit densities n∗ = n(V∗),
and p∗ = p(V∗) accordingly. Therefore, n(Vk) ⇀ n(V∗) and p(Vk) ⇀ p(V∗) in L2(Ω).

By the weak lower semicontinuity of the L2-norm, we have that

J(V∗, C∗) ≤ lim infk→∞ J(Vk, Ck) = j,

by which we conclude that (V∗, C∗) solves (OPλ).

Remark 3.3. As we have seen in the previous section, solutions Vλ of (Pλ) may be characterized as
unique minimizers corresponding to (MPλ) for each λ ≥ 0, respectively. In particular, Lemmas 2.9
and 2.11 provide a priori bounds for Vλ, λ ≥ 0, where the bounds strongly depend on the doping
profile C ∈ H1(Ω). This allows us to define the so-called control-to-state map, Φ: Uad → Σ, which
maps any C to the unique weak solution Vλ ∈ Σ, satisfying eλ(Vλ, C) = 0 in H1(Ω)∗. In fact, this
map is continuous and bounded. This fact will be essential when deriving first order necessary
optimality conditions in the next sections.

Remark 3.4. Note, that we cannot ensure the uniqueness of the minimizer of the optimization
problem (OPλ) due to the non-convexity induced by the constraint. Hence, the convergence
behaviour of minimizing pairs (Vλ, Cλ) of the optimization is a priori not clear. This is in contrast
to the asymptotic limit for the state equation.

3.2 Derivation of the first-order optimality system

In the following, we assume that
Uad = Cref +H1 ∩ P,

where Cref ∈ H1(Ω). Owing to the definition of Uad, we have that∫
Ω

C dx =

∫
Ω

Cref dx for any C ∈ Uad.

For reasons of convenience, we denote u := C − Cref ∈ Y.
Formally, the first-order optimality system may be derived using the standard L2 approach

[23, 41]. In this approach, one defines an extended Lagrangian L : Σ × Y × Y → R associated to
the constrained optimization problem, which reads

L(V, u, ξ) := J(V, u+ Cref) + 〈eλ(V, u+ Cref), ξ〉.
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The first-order optimality system corresponding to L is then given by

dL(V, u, ξ) = 0,

with d denoting the Fréchet derivative of the Lagrangian L. As usual, the derivative with respect
to ξ yields the state system, while the adjoint system is derived by taking the derivative with
respect to V , i.e.,

[dV eλ(V, u+ Cref)]
∗ξ = −dV J(V, u+ Cref).

Taking the derivative with respect to u yields

[dueλ(V, u+ Cref)]
∗ξ = −duJ(V, u+ Cref).

Elementary computations lead to the adjoint system

−λ2∆ξ +K[ξ] = Kn[n− nd]−Kp[p− pd] in Ω, ν · ∇ξ = 0 on ∂Ω, (13)

where

Kn[ξ] = n

(
ξ − 1

N

∫
Ω

n ξ dy

)
, Kp[ξ] = p

(
ξ − 1

P

∫
Ω

p ξ dy

)
,

and K[ξ] = Kn[ξ] +Kp[ξ], and the optimality condition for u given by

σ∆u = ξ in Ω, ν · ∇u = 0 on ∂Ω, (14)

which is clearly uniquely solvable for u ∈ Y, as a result of standard linear elliptic theory.
In order to rigorously justify the first-order optimality system, we will first show the Fréchet

differentiability of the Lagrangian L. We begin this step with the following statement.

Lemma 3.5. The mappings n, p : Σ → L2(Ω) as defined in (12) are Fréchet differentiable as
Nemytskii-operators.

Proof. Using the differentiability of the exponential function and (·)−1 on (0,∞), we compute the
Gateaux derivative of n in the direction h ∈ Σ, which yields

δn(V )[h] = Kn[h] = n(V )

(
h− 1

N

∫
Ω

n(V )h dy

)
.

Due to Remark 2.10, we have that n = n(V ) ∈ L4(Ω), and hence

‖δn[h]‖22 =

∫
Ω

n2

(
h− 1

N

∫
Ω

nh dy

)2

dx ≤ ‖n‖24
∥∥∥∥(h− 1

N

∫
Ω

nh dy

)∥∥∥∥2

4

<∞,

for any h ∈ H1(Ω), which says that δn(V ) : H1(Ω)→ L2(Ω) is a bounded linear operator.
Analogously, one can show the same estimates for

δp(V )[h] = Kp[h] = p

(
h− 1

P

∫
Ω

ph dy

)
,

and therefore δp : H1(Ω)→ L2(Ω) is also a bounded linear operator.

A direct consequence of the previous lemma is the Fréchet differentiability of the operator eλ,
which we summarize in the following result.

Lemma 3.6. The mapping eλ as defined in (11) is Frchet differentiable. The actions of the
derivative at a point (V, u) ∈ Σ× Y in a direction h ∈ H1(Ω) are given by

〈dV eλ(V, u+ Cref)[hV ], ϕ〉 = −λ2

∫
Ω

∇hV · ∇ϕdx+

∫
Ω

K[hV ]ϕdx,

with K defined as above, and

〈dueλ(V, u+ Cref)[hu], ϕ〉 =

∫
Ω

hu ϕdx,

for any test function ϕ ∈ Y.
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Remark 3.7. Note that the operator K is self-adjoint with respect to the L2 scalar product. Indeed,
elementary computations gives∫

Ω

Kn[h]ϕdx =

∫
Ω

n

(
h− 1

N

∫
Ω

nh dy

)
ϕdx =

∫
Ω

nhϕdx− 1

N

(∫
Ω

nh dy

)(∫
Ω

nϕdx

)
=

∫
Ω

n

(
ϕ− 1

N

∫
Ω

nϕdx

)
h dy =

∫
Ω

hKn[ϕ] dy.

Similarly, we show that Kp is self-adjoint, and hence K is self-adjoint on L2(Ω).
Furthermore, we have that∫

Ω

Kn[h] dx =

∫
Ω

Kp[h] = 0 for any h ∈ H1(Ω),

which would necessitate the constraint h ∈ Y = H1(Ω) ∩ P.

In the following we show the existence of a unique solution of the adjoint problem.

Lemma 3.8. For any λ > 0, there exists a unique solution ξ ∈ Y for the adjoint system (13).

Proof. To apply the Lax-Milgram theorem we consider the variational formulation of (13):

Find ξ ∈ Y : a(ξ, ϕ) = f(ϕ) for all ϕ ∈ Y,

where the bilinear form a : Y × Y → R and linear form f : Y → R are defined by

a(ξ, ϕ) := λ2

∫
Ω

∇ξ · ∇ϕdx+

∫
Ω

K[ξ]ϕdx,

f(ϕ) :=

∫
Ω

(
Kn[n− nd]−Kp[p− pd]

)
ϕdx.

Continuity of the forms follow easily from the fact that n, p, ϕ ∈ L4(Ω) and Lemma 3.5.
To show coercivity of the bilinear form, one uses Jensen’s inequality to obtain

a(ξ, ξ) = λ2

∫
Ω

|∇ξ|2dx+

∫
Ω

(n+ p)ξ2dx−N
(∫

Ω

n

N
ξ dx

)2

− P
(∫

Ω

p

P
ξ dx

)2

≥ λ2

∫
Ω

|∇ξ|2dx+

∫
Ω

(n+ p)ξ2dx−
∫

Ω

n ξ2dx−
∫

Ω

p ξ2dx ≥ λ‖∇ξ‖22.

Since the Poincaré inequality ‖ξ‖2 ≤ cp‖∇ξ‖2 holds in Y, we have that the seminorm ‖∇ · ‖2 is
equivalent to the standard H1-norm. Therefore, a is coercive and Lax-Milgram’s theorem yields
the required well-posedness result for the adjoint problem.

Remark 3.9. In the case λ = 0, the adjoint equation becomes a Fredholm type integral equation

K[ξ] = f, (15)

where f contains all terms of (13) independent of ξ. As mentioned in Remark 3.7, the linear
operator K is self-adjoint with a kernel containing all constants. Since

〈f, 1〉 =

∫
Ω

Kn[n− nd] dx+

∫
Ω

Kp[p− pd] dx = 0,

we obtain the unique solvability of the adjoint equation for λ = 0, which follows directly from the
Fredholm alternative theorem[1, 18].

Having the well-posedness of the adjoint equations for any λ ≥ 0 at hand, we now state the
corresponding first-order optimality system.
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Corollary 3.10. The first-order optimality system corresponding to (OPλ), λ ≥ 0, reads

−λ2∆V +B(V ) = 0

−λ2∆ξ +K[ξ] = f

∆u = ξ

in Ω,

in Ω,

in Ω,

ν · ∇V = 0

ν · ∇ξ = 0

ν · ∇u = 0

on ∂Ω,

on ∂Ω,

on ∂Ω,

for the tuple (V, u, ξ) ∈ Σ× Y × Y with f = Kn[n(V )− nd]−Kp[p(V )− pd] ∈ L2(Ω).

Remark 3.11. From the numerical perspective, it is not recommended to solve the first-order opti-
mality system as is. This is due to the nonlocality of the linear operator K. Indeed, discretization
of a nonlocal operator leads to dense matrices, which would require a large amount of memory.
This is especially the case in higher spatial dimensions. Moreover, iterative methods become less
efficient for solving such linear systems.

For this reason, we will introduce a path following method for the optimization algorithm. To
this end, we define the so-called reduced cost functional Ĵ : Y → R. Using the control-to-state
map Φ defined in Remark 3.3, the reduced cost functional Ĵ reads

Ĵ(u) := J(Φ(u+ Cref), u+ Cref).

Using the fact that Φ is Fréchet differentiable (cf. Lemma 3.6), we differentiate Ĵ to obtain

dĴ(u)[h] = 〈dV J(Φ(u+ Cref), u+ Cref), dΦ(u+ Cref)[h]〉+ duJ(u+ Cref)[h],

which is well-defined for any h ∈ Y. It is easy to see that

dΦ(u+ Cref)[h] = −dV eλ(V, u+ Cref)
−1[dueλ(V, u+ Cref)][h].

Consequently, for any h ∈ Y, it follows that

dĴ(u)[h] = 〈[dueλ(V, u+ Cref)]
∗ξ + duJ(u+ Cref), h〉 =

∫
Ω

ξ h dx+

∫
Ω

∇u · ∇h dx,

where ξ ∈ Y satisfies the adjoint equation (13). Furthermore, since Y is a Hilbert space, we may
find a corresponding element gu ∈ Y such that (gu, h)Y = dĴ(u)[h]. More specifically, gu satisfies
the elliptic equation∫

Ω

∇gu · ∇ϕdx =

∫
Ω

ξ ϕ dx+

∫
Ω

∇u · ∇ϕdx for all ϕ ∈ Y, (16)

which is known to be uniquely solvable in Y.

4 Γ-convergence for the Quasi-neutral Limit λ→ 0

In this section, we study the Γ-convergence of the minimization problems (OPλ), λ ≥ 0 in the
quasi-neutral limit λ → 0. An introduction to this topic may be found, e.g., in [2, 35]. We will
use the following sequential characterization of Γ-limits that can be found in [35, p. 86]:

Proposition 4.1 (Γ-convergence of functionals). Let X be a reflexive Banach space with a sepa-
rable dual and (Fk) be a sequence of functionals from X into R. Then (Fk) Γ-converges to F if
the following two conditions are satisfied:

(i) For every x ∈ X and for every sequence (xk) ⊂ X weakly converging to x:

F (x) ≤ lim infk→∞ Fk(xk) (L-inf)

(ii) For every x ∈ X there exists a sequence (xk) ⊂ X weakly converging to x:

F (x) ≥ lim supk→∞ Fk(xk) (L-sup)
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We will also make use of weak equi-coercivity for functionals on Banach spaces.

Definition 4.2 (Equi-coercivity). Let X be a reflexive Banach space with separable dual. A
sequence of functionals (Fk) is said to be weakly equi-coercive on X, if for every t ∈ R there exists
a weakly compact subset Kt of X such that {Fk ≤ t} ⊂ Kt for every k ∈ N.

Together, these notions lead to the following fact [2]:

Γ-convergence + equi-coercivity =⇒ convergence of minima and minimizers.

This concept of convergence is now applied to our quasi-neutral limit problem. For our specific
case, we choose the space X := H1(Ω)×H1(Ω), endowed with its weak topology. Notice that X,
as a product of reflexive Hilbert spaces with separable dual admits the same properties.

To consider the sequence of functionals in the same space, we include the constraint (11) into
the functional J with the help of a characteristic function. Let Σ, Uad and J be as in Section 3.
We define a set of admissible pairs

Πλ :=
{

(V,C) ∈ Σ× Uad | eλ(V,C) = 0 in H1(Ω)∗
}

and its characteristic function

χΠλ =

{
0, if (V,C) ∈ Πλ

+∞, otherwise
.

We now use χΠλ to include the state equation in the cost functional

Jλ : X → R ∪ {+∞}; Jλ = J + χΠλ ,

where J is the cost functional given as above.
In the following we consider the extended minimization problem:

Find (Vλ, Cλ) ∈ X : (Vλ, Cλ) = arg minJλ(V,C). (exOPλ)

In particular, we investigate the behavior of the sequence of minimizers {(Vλ, Cλ)} as λ tends to
zero. Obviously, a pair (Vλ, Cλ) solving (exOPλ) also solves (OPλ).

The first step in the proof of Γ-limλ→0Jλ = J0, is to show that Γ-limλ→0χΠλ = χΠ0 as λ→ 0.
This is given in the following result.

Lemma 4.3. Let Πλk be defined as above with λk → 0 as k →∞. Then

χΠλk
Γ-converges to χΠ0

as k →∞.

Proof. We make use of Proposition 4.1 for the proof.

(i) Let (V,C) ∈ Π0, then χΠ0
(V,C) ≡ 0. By definition of χΠ0

, the lim inf-inequality is satisfied
trivially. Now let z = (V,C) /∈ Π0, then χΠ0

(z) =∞. Let (zk) be a sequence that converges
weakly to z in Σ × Uad. We assume that lim infk→∞ χΠλk

(zk) = 0. Then, there exists a
subsequence (not relabeled) with (zk) ⊂ Πλk . In this case, the boundedness of the weakly
convergent sequence (Vk) in H1(Ω) allows us to pass to the limit in the term

λ2
k

∫
Ω

∇Vk · ∇ϕdx −→ 0 for any ϕ ∈ H1(Ω).

Furthermore, the boundedness of (Ck) in H1(Ω) provides the boundedness of the sequences
(n(Vk)), (p(Vk)) in L1(Ω) and consequently the strong convergence of the (sub)sequences

n(Vk)→ n(V ), p(Vk)→ p(V ) in L1(Ω),

by the Lebesgue dominated convergence theorem. Hence, the limit k →∞ gives

0 = 〈eλk(zk), ϕ〉 −→ 〈e0(z), ϕ〉 for any ϕ ∈ Y,

i.e., z ∈ Π0, which contradicts our assumption z /∈ Π0, thereby proving (L-inf).
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(ii) Let z /∈ Π0, then χΠ0(z) =∞. In this case, the lim sup-inequality is satisfied trivially. Now
let z ∈ Π0, i.e., χΠ0(z) ≡ 0. Then we find a sequence (Vk) given by Lemma 2.12 that
converges weakly towards V0 in H1(Ω). Hence, the pair (Vk, C) =: zk ⇀ z in X, satisfies
χΠλk

(zk) = 0 for all k ∈ N.

Together, we obtain the Γ-convergence of the sequence of characteristic functions.

As a direct result of the previous lemma, we obtain

Theorem 4.4. Let Jλk for λk ≥ 0 as k →∞, be defined as above. Then

Jλk Γ-converges to J0 as k →∞.

Proof. As in the previous lemma, we make use of Proposition 4.1.

(i) Since χΠλk
satisfies the lim inf-inequality, we can now exploit the weak lower semicontinuity

of the functional J . Let z = (V,C) ∈ X and (zk) be a sequence weakly converging to z in
X. We estimate

J0(z) = J(z) + χΠ0(z) ≤ lim infk→∞ J(zk) + lim infk→∞ χΠλk
(zk)

≤ lim infk→∞ Jλk(zk),

which is the required inequality.

(ii) Let z = (V,C) ∈ X. We begin by assuming that J0(z) =∞, and define zk ≡ z for all k ∈ N.
Then for k0 sufficiently large, we have that Jλk(zk) = ∞ for k > k0, since otherwise the
lim inf-inequality would be violated. Thus, the lim sup-inequality holds.

Next, we assume J0(z) < ∞. In particular, z ∈ Π0. Therefore, Lemma 2.12 ensures the
existence of a sequence (zk) = (Vk, C) ∈ Πλk converging to z in X. For this sequence (or a
subsequence thereof), we further have that

n(Vk)→ n(V ), p(Vk)→ p(V ) in L2(Ω).

Therefore, we have J(zh)→ J(z) as h→∞ and since zk ∈ Πλk , we obtain

J0(z) = J(z) +χΠ0(z) ≥ limk→∞ J(zk) + limk→∞ χΠλk
(z) = lim supk→∞,Jλk(zk),

which is the lim sup-inequality.

With this we conclude our proof.

Remark 4.5. This is the desired convergence that approves the approximation of the solution to
the NNPE (Pλ) with small λ by the zero space charge solution (P0) in optimal semiconductor
design. This underlines the assumptions made in [14] and allows for the construction of faster
optimal design algorithms based on the reduced, algebraic state equation.

4.1 Convergence of minima and minimizers

In the following, we prove, additionally, the convergence of minima and minimizers. To obtain
this, we have to show equi-coercivity of the functionals Jλ.

Theorem 4.6. Let (λk) be a sequence with λk → 0 as k → ∞. Then the family of functionals
(Jλk)k is equi-coercive in X.

Proof. We have to show that {Jλk < t} is bounded in X for each t ∈ R.
Let t <∞, then every (V,C) ∈ Kt := {Jλk(V,C) ≤ t} must be in the set of admissible states

Πλk for some λk > 0, simply due to the presence of the characteristic function. Furthermore,
‖C‖H1 ≤ t due to the radial unboundedness of J w.r.t. C. As seen in the proof of Lemma 2.12,
we have the uniform boundedness of V and therefore the equi-coercivity of the sequence Jλk .
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Now, the convergence of minima and minimizers under the zero space charge limit λ→ 0 may
be obtained from standard results of Γ-convergence [35].

Corollary 4.7. Let Jλ, J0 be defined as above and (λk) be a sequence with λk → 0 as k →∞.

(i) (Convergence of minima) Then J0 attains its minimum on X with

minz∈X J0(z) = limk→∞ infz∈X Jλk(z).

(ii) (Convergence of minimizers) If zk = arg minJλk , then there is a subsequence (not relabeled)
such that the following holds:

zk ⇀ z0 in X, z0 = arg minJ0 ∈ Π0.

Proof. The proof of (i) follows from [35, Theorem 7.8], while the proof of (ii) follows from [35,
Corollary 7.20].

5 Numerical Implementation and Results

The aim of this section is the numerical illustration of the previous results. At first, solvers for the
forward and adjoint problem are proposed and their convergence is shown. Then, the proposed
methods are used to solve the optimization problems and compare the results for small λ to the
zero space charge solution.

We recall the optimal control problem: Find (V∗, C∗) ∈ Σ× Uad such that

(V∗, C∗) = arg min J(V,C) subject to eλ(V,C) = 0 in Y∗, (OPλ)

where the functional is given by

J(V,C) =
1

2
‖n(V )− nd‖22 +

1

2
‖p(V )− pd‖22 +

σ

2
‖∇(C − Cref)‖22,

for some given nd, pd ∈ L2(Ω), Cref ∈ H1(Ω) ∩ L∞(Ω) and constant σ > 0. Throughout this
section we assume Uad ⊂ L∞(Ω).

The algorithms for the equations are based on the Finite Element Method (FEM) and realized
with help of the FEniCS package [30] in python. The integral constraints are included in the
variational formulations using Lagrange multipliers. Hence, the discrete functions are defined on
the mixed function space of linear Lagrange basis functions and R.

5.1 Algorithm for the state equation

The forward solver uses a fixed point iteration in order to avoid the discretization of the nonlocal
terms. Keeping the nonlocal terms fixed we solve a local nonlinear monotone equation using
Newton’s method, then the integral terms are updated. More specifically, we begin by choosing
α, β ≥ 0 appropriately.

We then solve the nonlinear auxiliary problem: Find V ∈ Σ satisfying

−λ2∆V − αe−V + βeV + C = 0 in Ω, ν · ∇V = 0 on ∂Ω, (17a)

using a Newton iteration procedure. Finally, we update α, β according to

α =
N∫

Ω
e−V dx

, β =
P∫

Ω
eV dx

. (17b)

This procedure continues until convergence is achieved. A pseudocode of the forward solver
may be found in Algorithm 1. The following theorem assures the convergence of the algorithm
using monotone methods, see for example [38].
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Algorithm 1: Forward Solver (λ > 0)

Data: Initial values (α0, β0) ≥ 0, doping profile C, stopping tolerance tol

Result: (V, n, p) satisfying (Pλ), λ > 0
1 Initialization;
2 while ‖Vk − Vk−1‖H1(Ω) > tol do

(a) solve (17a) for Vk using the Newton’s method

(b) compute (αk+1, βk+1) according to (18)

3 end

Theorem 5.1. The sequence (Vk, αk, βk) constructed by Algorithm 1 converges in H1(Ω)×R2 to
the unique solution (V, α, β) of (17).

Proof. The idea is to make use of a monotone convergence argument. We therefore construct a
bounded sequence (αk, βk) defined by

αk =
N∫
e−Vk

, βk =
P∫
eVk

, (18)

where (Vk) is obtained in the following. First, we define the nonlinear operator

Lv(V ) = −λ2∆V −N e−V∫
e−v

+ P
eV∫
ev
, (19)

for some v ∈ Σ. This operator is known to be strictly monotonically increasing in V ∈ Σ.
Now let V be the unique solution of the nonlinear, nonlocal problem

LV (V ) = −C = −min
x
C(x) ≥ −C, (20)

which is known to exists due to Theorem 2.2. By construction V is a supersolution for the equation
LV (V ) = −C, i.e., it satisfies

LV (V ) ≥ −C.

Analogously we find a subsolution V for the equation LV (V ) = −C, by solving

LV (V ) = −C = −max
x

C(x) ≤ −C. (21)

With help of these sub- and supersolutions, we define the intervals

A =

[
N∫

Ω
e−V dx

,
N∫

Ω
e−V dx

]
=: [α, α], B =

[
P∫

Ω
eV dx

,
P∫

Ω
eV dx

]
= [β, β].

The task is now to show that the sequence (αk, βk) remain within the interval A×B.
Let V0 be the unique solution of

LV (V0) = −C. (22)

The following calculations show that V0 ≤ V a.e. in Ω. Indeed, by subtracting (20) from (22) and
testing with (V0 − V )+ = max{0, V0 − V }, we obtain∫

Ω

|∇(V0 − V )+|2dx ≤ 0,

where we used the fact that (e−x − e−y)(x − y) ≤ 0 and (ex − ey)(x − y) ≥ 0 for any x, y ∈ R.
Since ‖∇ · ‖2 is a norm in Y, we conclude that meas({x ∈ Ω |V0 > V }) = 0. Analogously one
obtains the lower bound V ≤ V0 by subtracting (22) from (21) and testing with (V − V0)+.
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For a sub- and supersolution V 0, V 0 of (22) respectively, we define

α0 =
N∫

Ω
e−V 0 dx

, α0 =
N∫

Ω
e−V 0 dx

, β
0

=
P∫

Ω
eV 0 dx

, β0 =
P∫

Ω
eV 0 dx

.

Clearly, we have the chain of inequalities

V ≤ V 0 ≤ V0 ≤ V 0 ≤ V a.e. in Ω.

Due to the monotonicity of e−x and ex, we further obtain

α ≤ α0 ≤ α0 ≤ α0 ≤ α, β ≤ β
0
≤ β0 ≤ β0 ≤ β.

The iteration proceeds by solving
LV k−1

(Vk) = −C,

resulting in the sequence (αk, βk) within the compact interval A×B. Consequently, the constructed
sequence (αk, βk) admits accumulation points (α∗, β∗) such that

αk −→ α∗, βk −→ β∗ for k →∞,

hold for subsequences (not relabeled) of (αk, βk).
The corresponding solution V ∗ of the auxiliary problem (17a) solves (Pλ). Since, the solution

of (Pλ) is known to be unique, the complete sequence (Vk) converges towards V∗ ∈ Σ.

In the case λ = 0, the equation to solve for V is a nonlinear algebraic equation instead of
a nonlinear Poisson equation. In fact, the proof using sub- and supersolutions may be directly
transfered to this case. As shown in Lemma 2.9, the solution satisfies a given equation. As before,
we perform the iteration for (α, β) in this case as well, see Algorithm 2.

Algorithm 2: Forward Solver (λ = 0)

Data: Initial values (α0, β0) ≥ 0, doping profile C, stopping tolerance tol

Result: (V, n, p) satisfying (P0)
1 Initialization;
2 while ‖Vk − Vk−1‖2 > tol do

(a) compute Vk using (4)

(b) compute (αk+1, βk+1) according to (18)

3 end

5.2 Algorithm for the adjoint equation

As mentioned in Section 3, a direct discretization of the nonlocal terms results in dense matrices.
In order to avoid this, we define two new variables, namely

ξα =
1

N

∫
Ω

n [ξ − (n− nd)] dx, ξβ =
1

P

∫
Ω

p [ξ + (p− pd)] dx. (23a)

Consequently, the adjoint equation (13) may be equivalently written as

−λ2∆ξ + (n+ p)ξ − n ξα − p ξβ = n(n− nd)− p(p− pd) in Ω. (23b)

Note that the occurring matrices are sparse. This formulation is used to define Algorithm 3 for
the adjoint problem in the case λ > 0.

We begin the iteration by solving the linear, local equation (23b) for ξ using the fixed values
of the parameters ξα and ξβ . Then the parameters are updated and the new Poisson equation is
solved. This procedure continues until convergence is achieved, see Algorithm 3. The convergence
the the algorithm is proven by the following theorem.
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Algorithm 3: Adjoint Solver (λ > 0)

Data: Initial values (ξα0 , ξ
β
0 ), solution the forward problem V , stopping tolerance tol

Result: (ξ, ξα, ξβ) solving the adjont system (23)
1 Initialization;
2 while ‖ξk − ξk−1‖H1(Ω) > tol do

(a) solve the adjoint problem (23b) for ξk with fixed (ξαk , ξβk )

(b) update ξk to satisfy
∫
ξk dx = 0

(c) compute (ξαk+1, ξ
β
k+1) according to (23a)

3 end

Theorem 5.2. Let V ∈ L∞(Ω) be given. Then, the sequence (ξk, ξ
α
k , ξ

β
k ) constructed by Algorithm

3 converges in H1(Ω)× R2 to the solution (ξ, ξα, ξβ) of (23) for λ > 0.

Proof. Note that regarding the adjoint system the values of V, n, p, nd and pd are known. Denoting
the difference of two consecutive iterates as

εαk = ξαk − ξαk−1, εβk = ξβk − ξ
β
k−1, εk = ξk − ξk−1,

we apply the Hölder inequality to obtain the estimates

N |εαk |2 ≤
∫

Ω

n ε2
k−1 dx, P |εβk |

2 ≤
∫

Ω

p ε2
k−1 dx

Similarly, we subtract (23b) for two consecutive iterates of ξ and testing with εk result in∫
Ω

λ2|∇εk|2 + (n+ p) ε2
k dx =

∫
Ω

(
n εαk + p εβk

)
εk dx.

Using Young’s inequality we estimate as follows∫
Ω

λ2|∇εk|2 + (n+ p) ε2
k dx ≤

1

2

(
N |εαk |2 +

∫
Ω

(n+ p) ε2
k dx+ P |εβk |

2

)
.

With help of the Poincar inequality we estimate further to obtain

c0(λ)

∫
Ω

ε2
k dx+

∫
Ω

(n+ p) ε2
k dx ≤ N |εαk |2 + P |εβk |

2.

with c0(λ) = 2λ2/c2p, where cp is the Poincaré constant. Since n, p ∈ L∞(Ω) (cf. Lemma 2.11), we
find some M > 0 such that n+ p ≤M . Therefore, we obtain∫

Ω

(n+ p) ε2
k dx ≤

1

cM

(
N |εαk |2 + P |εβk |

2
)

with cM = 1 + c0(λ)/M > 1. Altogether we obtain the contraction

N |εαk |2 + P |εβk |
2 ≤

∫
Ω

(n+ p) ε2
k−1 dx ≤ cM

(
N |εαk−1|2 + P |εβk−1|

2
)

Thus, the algorithm defines a contraction

f : R2 → R2, f(ξαk , ξ
β
k ) = (ξαk+1, ξ

β
k+1)

Since R2 is a complete metric space, the algorithm converges to the unique fixed point, which
solves the adjoint problem.
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Remark 5.3. Note that the prefactor determining if the function is a contraction or not, depends
on λ2 being positive. For small λ the contraction property deteriorates. A workaround would
be to scale the domain Ω by 1/λ, which results in a vanishing λ2. The drawback is the large
domain arising from this scaling. Computational tests have shown that the large domain and
therefore huge matrices, which require more memory, have greater negative impact than the λ2 in
the contraction.

Remark 5.4. As stated above for λ = 0, the adjoint equation is a Fredholm type integral equation.
The discretization is realized again in FEniCS with linear testfunctions resulting in the system

(MD −MH)ξ = F, (IE)

where M is the mass matrix of the finite elements, D the diagonal matrix with the entries of the
discretized n+ p, H the matrix containing the discretization of the integral kernel, ξ denotes the
vector of the discretized ξ and F is the discretized version terms on the right hand side of (15).

Remark 5.5. In fact, the parameters ξα and ξβ coincide with the adjoint variables corresponding
to α and β respectively, if one considers the operator equation for eλ(V,C) as

〈êλ(V, α, β, C), ϕ〉 = 0 for all ϕ ∈ Y × R× R

where the operator êλ is defined for any ϕ = (ξ, ξα, ξβ) ∈ Y × R× R by

〈êλ,1, ξ〉 = −λ2

∫
Ω

∇V · ∇ξ dx−
∫

Ω

(
αe−V − βeV − C

)
ξ dx,

〈êλ,2, ξα〉 =

(
α

∫
Ω

e−V dx−N
)
ξα, 〈êλ,3, ξβ〉 =

(
β

∫
Ω

eV dx− P
)
ξβ .

In this case, the cost functional J will have to be reformulated in terms of (V, α, β), i.e.,

J(V, α, β, C) =
1

2
‖αe−V − nd‖22 +

1

2
‖βeV − pd‖22 +

σ

2
‖∇(C − Cref)‖22.

To see that ξα is indeed the adjoint variable corresponding to α, we formally compute the Gatéaux
derivative of the Lagrangian

L(V, α, β, C, ϕ) = J(V, α, β, C) + 〈êλ(V, α, β, C), ϕ〉,

with respect to α in any direction h ∈ R, to obtain

dαL(V, α, β, C, ϕ)[h] =

∫
Ω

(αe−V − nd)e−V h dx−
∫

Ω

e−V ξh dx+

∫
Ω

e−V ξαh dx = 0.

Reformulating the equation in terms of ξα ∈ R, we obtain

ξα =
1∫

e−V dx

∫
Ω

e−V [ξ − (n− nd)] dx =
1

N

∫
Ω

n[ξ − (n− nd)] dx,

as required, where we used the fact that n = αe−V .

5.3 Algorithm for the optimal control problem

The forward and adjoint solvers stated above are used in Algorithm 4 for the computation of the
optimal control.

As pointed out in Section 3, the optimality condition for the optimal control is given as a system
of partial differential equations. However, instead of solving the system directly, we consider a
path following optimization procedure, which iteratively determines a better approximation of a
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Algorithm 4: Optimal Control

Data: Initial doping profile C0 and potential V , and stopping tolerances tolopt, tolabs
Result: Optimal doping profile, potential, electron and hole densities (C∗, V∗, n∗, p∗)

1 Initialization;
2 while relative norm of gradient > tolopt and norm of gradient > tolabs do

(a) solve forward problem with either Algorithm 1 or 2

(b) solve adjoint problem with either Algorithm 3 or (IE)

(c) solve Riesz representation problem (25) to obtain gk

(d) compute uk+1 according to (24) using Algorithm 5

3 end

local minimizer. More specifically, we consider a steepest descent algorithm for the reduced cost
functional Ĵ , in which we update the doping profile according to

uk+1 = uk + ωgk, k ≥ 0, (24)

where gk ∈ Y denotes the correct gradient representation of the derivative dĴ , obtained uniquely
by solving the Riesz representation problem∫

Ω

∇gk · ∇ϕdx =

∫
Ω

∇uk · ∇ϕ+ ξk ϕdx for all ϕ ∈ Y. (25)

To obtain an appropriate stepsize ω we apply the Armijo stepsize rule (cf. [23]).

Algorithm 5: Armijo Stepsize Rule

Data: Current iterare uk, gradient gk, initial ω0, initial γ > 0
Result: New iterate uk+1

1 Initialization;

2 while Ĵ(uk + ωgk) ≥ Ĵ(uk) + γ ω‖gk‖2 do
3 ω = ω/2
4 end

5.4 Numerical influence of λ

A comparison of the computation times for the state and adjoint solutions for different λ ≥ 0 can
be found in Table 5.1. As seen in Table 5.1, the computation of the adjoint (λ > 0) is, on average,
cheaper than the one of the state equation. For the state problem, the Newton iteration requires
several solves of the auxiliary problem (17a). Thus, the most computational effort can be salvaged
when reducing the state problem to the λ = 0 case. Instead of solving many nonlinear differential
equations for the Newton iteration, one iterates between α, β and the explicit solution of V for
λ = 0 given in (4).

While the computation times for the solution of the adjoint problem are stable for λ > 0,
one observes the increase in computational time for small λ > 0. Indeed, for small λ > 0, the
corresponding discretization matrices become stiffer and therefore require more iterations when
solving linear systems. Using the zero space charge solution instead of the solution for λ2 = 10−9,
the result of the forward problem is calculated 1000 times faster. Thus, from the computational
point of view the approximation of the optimal controls in cases with small λ > 0 with the zero
space charge solution is very useful. The fourth column of Table 5.1 shows the L2 difference of
the optimal doping profiles for different λ to the zero space charge solution. The values underline
the convergence proved in Section 4 as well.
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λ2 State [s] Adjoint [s] ‖Cλ − C0‖2
1e-3 2.00 2.04 0.064737
1e-4 6.61 4.91 0.056407
1e-5 25.51 10.68 0.032445
1e-6 69.63 11.8 0.0014969
1e-7 117.66 11.3 0.0008388
1e-8 146.55 12.5 0.0007833
1e-9 193.36 10.5 0.0007807
0.0 0.04 1.13 0

Table 5.1: Computation times for the solution of (Pλ) and its adjoint equation for different λ.
Difference between the optimal doping profiles for different λ ≥ 0 and λ = 0 in the L2-norm.

5.5 Numerical results

In this section, we use Algorithm 4 to obtain numerical results for the optimal control problems.
The parameters are set to the values given in Table 5.2.

parameter value parameter value
domain Ω [0, 1] γ 0.0001
grid points 200 ω0 50

tol 1e-8 σ 1e-4
tolopt 5e-2 δ 10e-4
tolabs 5e-5

Table 5.2: Parameter values for the optimization algorithm

The non-symmetric reference doping profile Cref depicted in Figure 5.1(left) serves as the
initial doping profile for the optimization. Note that the desired electron and hole densities in
Figure 5.1(right) are not attainable due to the constraints∫

Ω

(C − Cref) dx = 0, N = δ2 +

∫
Ω

C+dx, P = δ2 −
∫

Ω

C−dx.

By choosing the reference doping profile as initial doping profile, the first constraint is trivially
satisfied. With the desired densities given in Figure 5.1(right), the aim of the cost functional is to
reduce the electron density and to increase the hole density.

In Figure 5.2(left) the optimal doping profiles for different λ are depicted. As predicted by
the theory in Section 4, the optimal doping profiles converges to the zero space charge optimal
doping profile for decreasing values of λ. Note, that the convergence of the densities depicted in
Figure 5.3 is more pronounced than the convergence of the optimal potentials in Figure 5.2(right).
This difference in behaviour of the potential V and the densities may be explained by the structure
of their expressions, since V appears in the exponential terms of n and p.

In the following plots, we investigate the cost functional and parts of it, in which we set

J1(n) =
1

2
‖n(V )− nd‖22, J2(p) =

1

2
‖p(V )− pd‖22, J3(C) =

σ

2
‖∇(C − Cref)‖22.

In Figure 5.4(left), one clearly sees the monotone decrease in the cost functional J , as required.
The positive part of the doping profile and analogously the electron density is reduced compared
to the starting reference profile. On the other hand, we notice that the hole density is reduced
as well, although the goal of J2 is to increase the hole density. This happens because the initial
values of J1 are larger than those of J2 (cf. Figure 5.4(right) and Figure 5.5(left), respectively).
The optimization therefore tends to minimize J2 first. Due to the integral constraints on C and

25



Figure 5.1: Left: Initial and reference doping profile Cref. Right: Desired electron density nd =
0.8C+

ref (red) and hole density pd = 1.2C−ref (blue).

Figure 5.2: Left: The optimal doping profile for different values of λ2. Right: The optimal
potential for different values of λ2.

Figure 5.3: Left: The optimal electron density for different values of λ2. Right: The optimal hole
density for different values of λ2.
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Figure 5.4: Left: Development of J for different values of λ2. Right: Development of J1 for
different values of λ2.

Figure 5.5: Left: Development of the second term of cost functional for different values of λ2.
Right: Development of the third term of the cost functional for different values of λ2.

the definitions of N and P stated above, it is not possible to enlarge the p part. This behaviour
is similar for all values of λ.

The simulations with larger λ2 (10−4 and 10−5) do one Armijo step at the beginning. In the
case λ2 = 10−4, there are two more Armijo steps needed in the second and third iteration. All
other iterates accept the new iterate immediately.
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