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Abstract. This paper investigates the asymptotic behaviour of solu-
tions to certain infinite systems of ordinary differential equations. In
particular, we use results from ergodic theory and the asymptotic theory
of C0-semigroups to obtain a characterisation, in terms of convergence of
certain Cesàro averages, of those initial values which lead to convergent
solutions. Moreover, we obtain estimates on the rate of convergence for
solutions whose initial values satisfy a stronger ergodic condition. These
results rely on a detailed spectral analysis of the operator describing the
system, which is made possible by certain structural assumptions on
the operator. The resulting class of systems is sufficiently broad to
cover a number of important applications, including in particular both
the so-called robot rendezvous problem and an important class of platoon
systems arising in control theory. Our method leads to new results in
both cases.

1. Introduction

The purpose of this paper is to study the asymptotic behaviour of so-
lutions to infinite systems of coupled ordinary differential equations. In
particular, given m ∈ N, we consider time-dependent vectors xk(t) satisfy-
ing

ẋk(t) = A0xk(t) +A1xk−1(t), k ∈ Z, t ≥ 0,(1.1)

for m×m matrices A0 and A1, and we assume that the initial values xk(0) ∈
Cm, k ∈ Z, are known. The characteristic feature of this class of systems is
that the dynamics of each subsystem depend not only on the state of the
subsystem itself but also the state of the previous subsystem. Systems of
this type arise naturally in applications, and indeed our investigation of such
models is motivated by two important examples.

The first is the so-called robot rendezvous problem [9, 10], where m = 1,
A0 = −1 and A1 = 1. In this case the equations in (1.1) can be thought of as
describing the motion in the complex plane of countably many vehicles, or
robots, indexed by the integers k ∈ Z, following the rule that robot k moves
in the direction of robot k−1 with speed equal to their separation. A second
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2 LASSI PAUNONEN AND DAVID SEIFERT

important example in which the general model (1.1) arises is the study of
platoon systems in control theory; see for instance [17, 19, 21]. Here we begin
with a more realistic dynamical model of our vehicles by associating with
each a position in the complex plane as well as a velocity and an acceleration,
and the control objective is to steer the vehicles towards a state in which,
for each k ∈ Z, vehicle k is a certain target separation ck ∈ C away from
vehicle k − 1 and all vehicles are moving at a target velocity v ∈ C. This
model too can be written in the form (1.1) for m = 3 and suitable 3 × 3
matrices A0 and A1 which involve certain control parameters that need to
be fixed. In both cases the key question is whether solutions converge to
a limit as t → ∞. Thus in the robot rendezvous problem we would like
to know whether the positions of the robots converge to a mutual meeting,
or rendezvous, point, and in the platoon system we ask whether we can
choose the control parameters in such a way that the vehicles asymptotically
approach their target state.

We present a unified approach to the study of these problems by first
reformulating the system (1.1) as the abstract Cauchy problem{

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ X,
(1.2)

on the spaceX = `p(Cm) withm ∈ N and 1 ≤ p ≤ ∞. Note that (1.2) indeed
becomes (1.1) if we let x(t) = (xk(t))k∈Z for t ≥ 0, x0 = (xk(0))k∈Z and take
the bounded linear operator A to act by sending a sequence (xk)k∈Z ∈ X to

Ax = (A0xk +A1xk−1)k∈Z.

Systems of this form are examples of what are sometimes called “spatially
invariant systems”, where in general it is possible for the dynamics of each
subsystem to depend on more than just one other subsystem; see for instance
[4]. Our main objective is to investigate whether or not the solution x(t),
t ≥ 0, of (1.2) converges to a limit as t → ∞ and, if so, what can be
said about the rate of convergence. Most of the existing research into such
systems is confined to the Hilbert space case p = 2. For instance, it is shown
in [8] using Fourier transform techniques that solutions x(t), t ≥ 0, of some
spatially invariant systems of the form (1.1) on the space X = `2(C2) satisfy
x(t) → 0 as t → ∞ for all initial values x0 ∈ X, but that there exists no
uniform rate of decay. Since the Fourier transform approach is specific to the
Hilbert space setting, we develop a new approach to studying the asymptotic
behaviour of solutions of (1.2) in the case where the matrices A0 and A1

satisfy certain additional assumptions. Specifically, we assume throughout
that A1 6= 0 to avoid the trivial uncoupled case, but more importantly we
suppose that there exists a rational function φ such that

A1(λ−A0)
−1A1 = φ(λ)A1, λ ∈ C \ σ(A0).(1.3)

When such a function φ exists we call it the characteristic function of our
system. Both the robot rendezvous problem and the platoon system fall
into this special class, as indeed do many other systems. For systems having
this property we develop techniques allowing us to handle the full range
1 ≤ p ≤ ∞ rather than just the case p = 2, and in particular we include the
cases p = 1 and p = ∞, where it turns out no longer to be the case that
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all solutions converge to a limit. In fact our approach, which is based on a
detailed analysis of the operator A and the C0-semigroup it generates, leads
to a complete understanding of which initial values do and which do not
lead to convergent solutions in these cases, and moreover gives an estimate
on the rate of convergence for a certain subset of initial values.

The paper is organised as follows. Our main theoretical results are pre-
sented in Sections 2, 3, and 4. In Section 2 we examine the spectral proper-
ties of A, and the main results are Theorem 2.3, which among other things
provides a very simple characterisation of the set σ(A) \ σ(A0) in terms of
the characteristic function φ, namely

σ(A) \ σ(A0) =
{
λ ∈ C \ σ(A0) : |φ(λ)| = 1

}
,

and Proposition 2.5, which describes the behaviour of the resolvent operator
of A in the neighbourhood of spectral points. In Section 3 we turn to the del-
icate issue of whether the semigroup generated by A is uniformly bounded.
The main result here is Theorem 3.1, which gives a sufficient condition for
uniform boundedness involving the derivatives of φ. In Section 4, we then
combine the results of Sections 2 and 3 with known results in ergodic theory
and recent results in the theory of C0-semigroups [6, 7, 16] in order to obtain
our main result, Theorem 4.3, which describes the asymptotic behaviour of
solutions to general systems in our class. For instance, it is a consequence
of Theorem 4.3 that there exists an even integer n ≥ 2 determined solely by
the characteristic function φ such that for all x0 ∈ X the derivative of the
solution x(t), t ≥ 0, of (1.2) satisfies the quantified decay estimate

‖ẋ(t)‖ = O

((
log t

t

)1/n
)
, t→∞,(1.4)

and the logarithm can be omitted if p = 2. Moreover, for 1 < p < ∞
not only the derivative of each solution but also the solution itself decays
to zero as t → ∞, but this is no longer true when p = 1 or p = ∞. In
these cases, Theorem 4.3 gives a characterisation, in terms of convergence
of certain Cesàro means, of those initial values x0 ∈ X which do lead to
convergent solutions, and the result also shows that under a supplementary
condition the convergence of solutions to their limit can be quantified in a
form analogous to (1.4).

In Sections 5 and 6 we return to the motivating examples. First, in
Section 5, we apply the general result in the setting of the platoon system,
which leads to extensions of results obtained previously in [8, 21] for the
Hilbert space case p = 2. In particular, the main result in this section,
Theorem 5.1, shows that the platoon system approaches its target for all
x0 ∈ X not just for p = 2, as was shown in [21], but more generally when
1 < p < ∞. We also show that for p = 1 and p = ∞ this statement is
no longer true but our Theorem 5.1 provides a simple ergodic condition on
the initial displacements of the vehicles which is necessary and sufficient for
the solution to converge to a limit. Then, in Section 6 we return to the
robot rendezvous problem and use our general result, Theorem 4.3, to settle
several questions left open in [9, 10]. We conclude in Section 7 by mentioning
several topics which remain subjects for future research.
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The notation we use is more or less standard throughout. In particular,
given a complex Banach space X, the norm on X will typically be denoted
by ‖·‖ and occasionally, in order to avoid ambiguity, by ‖·‖X . In particular,
for m ∈ N and 1 ≤ p ≤ ∞, we let `p(Cm) denote the space of doubly infinite
sequences (xk)k∈Z such that xk ∈ Cm for all k ∈ Z and

∑
k∈Z ‖xk‖p <∞ if

1 ≤ p <∞ and supk∈Z ‖xk‖ <∞ if p =∞. Here and in all that follows we
endow the finite-dimensional space Cm with the standard Euclidean norm
and we consider `p(Cm) with the norm given for x = (xk)k∈Z by ‖x‖ =

(
∑

k∈Z ‖xk‖p)1/p if 1 ≤ p < ∞ and ‖x‖ = supk∈Z ‖xk‖ if p = ∞. With
respect to this norm `p(Cm) is a Banach space for 1 ≤ p ≤ ∞ and a Hilbert
space when p = 2. We write X∗ for the dual space of X, and given φ ∈ X∗
the action of φ on x ∈ X is written as 〈x, φ〉. Moreover we write B(X) for
the space of bounded linear operators on X, and given A ∈ B(X) we write
Ker(A) for the kernel and Ran(A) for the range of A. Moreover, we let
σ(A) denote the spectrum of A and, for λ ∈ C \ σ(A) we write R(λ,A) for
the resolvent operator (λ − A)−1. We write σp(A) for the point spectrum
and σap(A) for the approximate point spectrum of A. Given A ∈ B(X) we
denote the dual operator of A by A′. If A is a matrix, we write AT for the
transpose of A. Given two functions f and g taking values in (0,∞), we
write f(t) = O(g(t)), t → ∞, if there exists a constant C > 0 such that
f(t) ≤ Cg(t) for all sufficiently large values of t. If f(t) = O(g(t)) and
g(t) = O(f(t)) as t → ∞, or more generally as the argument t tends to
some point in the extended complex plane, we write f(t) � g(t) in the limit.
Given two real-valued quantities a and b, we write a . b if there exists a
constant C > 0 such that a ≤ Cb for all values of the parameters that are
free to vary in a given situation. Finally, we denote the open right/left half
plane by C± = {λ ∈ C : Reλ ≷ 0}, and we use a horizontal bar over a set
to denote its closure.

2. Spectral theory

We begin by stating two standing assumptions on the matrices A0, A1

appearing in (1.1).

Assumptions 2.1. We assume that

A1 6= 0.(A1)

Moreover we assume that there exists a function φ such that

A1R(λ,A0)A1 = φ(λ)A1, λ ∈ C \ σ(A0).(A2)

If this assumption is satisfied we call φ the characteristic function.

Remark 2.2. It is clear that if (A2) is satisfied then the characteristic
function φ is a rational function whose poles belong to the set σ(A0). Note
also that for |λ| > ‖A0‖ we have

|φ(λ)|‖A1‖ ≤
‖A1‖2

|λ| − ‖A0‖
.

In particular, when (A1) and (A2) both hold it follows that |φ(λ)| → 0 as
|λ| → ∞. It is straightforward to show that both (A1) and (A2) are satisfied
whenever rank(A1) = 1.
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In this section we characterise the spectrum of the operator A under our
standing assumptions (A1) and (A2). The following is the main result. It
essentially characterises the spectrum of A in terms of the characteristic
function φ. Here and in what follows we use the notation

Ωφ =
{
λ ∈ C \ σ(A0) : |φ(λ)| = 1

}
.

Theorem 2.3. Let 1 ≤ p ≤ ∞ and m ∈ N, and suppose that (A1), (A2)
hold. Then the spectrum of A satisfies

σ(A) \ σ(A0) = Ωφ.(2.1)

Moreover, the following hold:

(a) If 1 ≤ p <∞, then σ(A) \ σ(A0) ⊂ σap(A) \ σp(A).

(b) If p =∞, then σ(A) \ σ(A0) ⊂ σp(A) and, given λ ∈ σ(A) \ σ(A0),

Ker(λ−A) =
{

(φ(λ)kx0)k∈Z : x0 ∈ Ran(R(λ,A0)A1)
}
.(2.2)

In particular, dim Ker(λ−A) = rank(A1) for all λ ∈ σ(A) \ σ(A0).

Furthermore, for λ ∈ σ(A) \ σ(A0) the range of λ−A is dense in X if and
only if 1 < p <∞.

Remark 2.4. The points σ(A0) may be in either σ(A) or ρ(A) depending
on the matrices A0 and A1. Note for instance that, given λ ∈ C, any
vector x = (xk)k∈Z with x0 ∈ Ker(λ − A0) ∩ Ker(A1) and xk = 0 for
k 6= 0 satisfies x ∈ Ker(λ − A). In particular, λ ∈ σ(A0) ∩ σ(A) whenever
Ker(λ−A0)∩Ker(A1) 6= {0}. Moreover, if λ ∈ C is such that Ran(λ−A0)+
Ran(A1) 6= Cm then it is easy to see that any sequence (xk)k∈Z ∈ X such
that xk 6∈ Ran(λ−A0)+Ran(A1) for some k ∈ Z has an open neighbourhood
which is disjoint from Ran(λ−A), so Ran(λ−A) cannot be dense in X and
once again λ ∈ σ(A0) ∩ σ(A). In Sections 5 and 6 we will see examples in
which, by contrast, we have σ(A0) ∩ σ(A) = ∅.

Proof of Theorem 2.3. We begin by showing that every λ ∈ C \ σ(A0) such
that |φ(λ)| 6= 1 belongs to ρ(A). Indeed, given λ ∈ C \ σ(A0), let Rλ =
R(λ,A0). Supposing first that |φ(λ)| < 1, we consider the operator R(λ) ∈
B(X) given by

R(λ)x =

(
Rλxk +RλA1Rλ

∞∑
`=0

φ(λ)`xk−`−1

)
k∈Z

(2.3)

for all x = (xk)k∈Z ∈ X, noting that this gives a well-defined element of X
by Young’s inequality. Using the fact that (A1Rλ)` = φ(λ)`−1A1Rλ for all
` ∈ N as a consequence of assumption (A1), it is straightforward to verify
that (λ− A)R(λ)x = R(λ)(λ− A)x = x for all x ∈ X, and hence λ ∈ ρ(A)
and R(λ,A) = R(λ). A completely analogous argument goes through for
λ ∈ C\σ(A0) such that |φ(λ)| > 1, with the only difference that the operator
R(λ) ∈ B(X) is now defined by

R(λ)x =

(
Rλxk −RλA1Rλ

∞∑
`=0

φ(λ)−`−1xk+`

)
k∈Z

for all x ∈ X. This shows that σ(A) \ σ(A0) ⊂ Ωφ.
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Suppose now that 1 ≤ p < ∞ and let λ ∈ Ωφ. We will first show that
λ /∈ σp(A). To this end, let x ∈ X be such that (λ−A)x = 0. Then a simple

calculation shows that xk = φ(λ)k−`−1RλA1x` for all k, ` ∈ Z with k > `,
and in particular ‖xk‖ = ‖RλA1x`‖ for all k > `. Hence the assumption
that x ∈ X implies that x = 0 and therefore λ /∈ σp(A), as required. In
order to show that λ ∈ σap(A), choose y0 ∈ Cm such that A1y0 6= 0 and, for
n ∈ N, define the sequence xn = (xnk)k∈Z ∈ X by

xnk =
φ(λ)kRλA1y0

(2n+ 1)1/p‖RλA1y0‖
, |k| ≤ n,

and xnk = 0 otherwise. Then ‖xn‖p = 1 for all n ∈ N, and a direct compu-
tation shows that

‖(λ−A)xn‖p =
‖y0‖p + ‖A1RλA1y0‖p

(2n+ 1)‖RλA1y0‖p
→ 0, n→∞.

Thus λ ∈ σap(A), which establishes (a).
Now suppose that p =∞ and let λ ∈ Ωφ. We will prove that (2.2) holds,

from which (b) follows. Note first that if x0 ∈ Ran(RλA1) then a simple
calculation shows that (φ(λ)kx0)k∈Z ∈ Ker(λ − A). On the other hand, if
x = (xk)k∈Z ∈ Ker(λ−A), then

(λ−A0)xk −A1xk−1 = 0

and hence xk = RλA1xk−1 ∈ Ran(RλA1) for all k ∈ Z. Since

xk = (RλA1)
2xk−2 = φ(λ)RλA1xk−2 = φ(λ)xk−1, k ∈ Z,

by assumption (A1) we obtain that xk = φ(λ)kx0 for all k ∈ Z. Thus (b)
follows, and by combining (a) and (b) with the fact that σ(A) \σ(A0) ⊂ Ωφ

we obtain (2.1). It remains to prove the final statement.
Suppose first that 1 < p < ∞ and let q = p(p − 1)−1 be the Hölder

conjugate of p. Moreover let λ ∈ Ωφ and that y = (yk)k∈Z ∈ X∗ = `q(Cm)
is such that 〈(λ − A)x, y〉 = 0 for all x ∈ X. Then y ∈ Ker(λ − A′), where
the dual operator A′ of A is given by A′y = (AT0 yk +AT1 yk+1)k∈Z for all y =
(yk)k∈Z ∈ X∗. Since by assumption (A1) we have (A1RλA1)

T = φ(λ)AT1 , a
direct computation shows that

yk = φ(λ)`−k−1RTλA
T
1 y`

for all k, ` ∈ Z with k < `. As in the above argument showing that λ /∈ σp(A)
we obtain that y = 0, and hence Ran(λ−A) is dense in X by a standard
corollary of the Hahn-Banach theorem. On the other hand, if p = 1 and
λ ∈ Ωφ we can consider the element y = (yk)k∈Z ∈ X∗ = `∞(Cm) with
entries

yk = φ(λ)−kRTλA
T
1 y0, k ∈ Z,

where y0 ∈ Cm is chosen in such a way that AT1 y0 6= 0. A simple verification
shows y ∈ Ker(λ − A′) and hence that 〈(λ − A)x, y〉 = 0 for all x ∈ X,
so Ran(λ−A) cannot be dense in X. Finally, suppose that p = ∞ and
that λ ∈ Ωφ. Let y = (φ(λ)ky0)k∈Z ∈ X, where y0 ∈ Cm is such that
RλA1Rλy0 6= 0. We show that y lies outside the closure of Ran(λ−A).



ASYMPTOTICS FOR SYSTEMS OF DIFFERENTIAL EQUATIONS 7

Indeed, let 0 < ε < ‖RλA1Rλy0‖/‖RλA1Rλ‖ and suppose for the sake of
contradiction that there exists x ∈ X such that

‖(λ−A)x− y‖ = sup
k∈Z
‖(λ−A0)xk −A1xk−1 − yk‖ < ε.

Let zk = (λ−A0)xk−A1xk−1− yk, so that ‖zk‖ < ε for all k ∈ Z. A simple
inductive argument shows that for all n ∈ N we have

x0 = φ(λ)n−1RλA1x−n +Rλ(y0 + z0) +RλA1Rλ

n−1∑
`=1

φ(λ)`−1(y−` + z−`).

Since ∥∥∥∥RλA1Rλ

n∑
`=1

φ(λ)`−1y−`

∥∥∥∥ = n‖RλA1Rλy0‖, n ∈ N,

we obtain that

‖x0‖ ≥ n
(
‖RλA1Rλy0‖ − ε‖RλA1Rλ‖

)
− ‖Rλ‖(‖y0‖+ ε)− ‖RλA1‖‖x‖

for all n ∈ N. However, by the choice of ε this is absurd. Hence no such
x ∈ X exists and in particular the range of λ − A is not dense in X. This
completes the proof. �

The next result establishes a useful estimate for the norm of the resolvent
operator in the neighbourhood of singular points.

Proposition 2.5. Fix 1 ≤ p ≤ ∞ and m ∈ N, and suppose that (A1), (A2)
hold. If λ ∈ C \ σ(A0) is such that |φ(λ)| 6= 1, then∣∣∣∣‖R(λ,A)‖ − ‖R(λ,A0)A1R(λ,A0)‖

|1− |φ(λ)||

∣∣∣∣ ≤ ‖R(λ,A0)‖.

In particular, for λ0 ∈ C \ σ(A0) such that |φ(λ0)| = 1 we have

‖R(λ,A)‖ � 1

|1− |φ(λ)||
as λ→ λ0 in the region {λ ∈ C \ σ(A0) : |φ(λ)| 6= 1}.

Proof. As in the proof of Theorem 2.3, we let Rλ = R(λ,A0) for λ ∈ C \
σ(A0). We consider the case where 0 < |φ(λ)| < 1; the case |φ(λ)| > 1
follows similarly, as in the proof of Theorem 2.3. From (2.3) we see that for
λ ∈ C \ σ(A0) such that |φ(λ)| < 1 we have R(λ,A) = D(λ) +Q(λ), where
D(λ)x = (Rλxk)k∈Z and

Q(λ)x =

(
RλA1Rλ

∞∑
`=0

φ(λ)`xk−`−1

)
k∈Z

for all x = (xk)k∈Z ∈ X. Note that ‖D(λ)‖ = ‖Rλ‖, so the result will follow
from the triangle inequality once we have established that

‖Q(λ)‖ =
‖RλA1Rλ‖
1− |φ(λ)|

.(2.4)

In fact, since

‖Q(λ)‖ ≤ ‖RλA1Rλ‖
1− |φ(λ)|
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for 1 ≤ p ≤ ∞ by a straightforward estimate, it suffices to prove the converse
inequality.

Suppose first that p =∞ and consider the sequence x = (eikθy0)k∈Z ∈ X,
where θ = arg φ(λ) and y0 ∈ Cm is such that ‖x0‖ = 1 and ‖RλA1Rλy0‖ =
‖RλA1Rλ‖. Then ‖x‖ = 1 and

‖Q(λ)x‖ = sup
k∈Z

∥∥∥∥RλA1Rλ

∞∑
`=0

φ(λ)`xk−`−1

∥∥∥∥ =
‖RλA1Rλ‖
1− |φ(λ)|

,

thus establishing (2.4). Now suppose that 1 ≤ p < ∞. Once again let
θ = arg φ(λ) and let y0 ∈ Cm be such that ‖y0‖ = 1 and ‖RλA1Rλy0‖ =
‖RλA1Rλ‖. Furthermore, let ε ∈ (0, 1) and let M,N ∈ N be such that

∞∑
`=M+1

|φ(λ)|` < ε and
N −M
N

> (1− ε)p.

Consider the sequence x = (xk)k∈Z ∈ X with entries xk = eikθαky0, where

αk = N−1/p for −N ≤ k ≤ −1 and αk = 0 otherwise. Then ‖x‖ = 1 and

‖Q(λ)x‖p = ‖RλA1Rλ‖p
∑
k∈Z

( ∞∑
`=0

|φ(λ)|`αk−`−1

)p
,

and hence by our choices of M and N we obtain that

‖Q(λ)x‖ ≥ ‖RλA1Rλ‖
N1/p

 ∑
M−N+1≤k≤0

(
M∑
`=0

|φ(λ)|`
)p1/p

> (1− ε)‖RλA1Rλ‖
1− |φ(λ)|

− ε(1− ε)‖RλA1Rλ‖.

Since ε ∈ (0, 1) was arbitrary, (2.4) follows and the proof is complete. �

We conclude this section with a refinement of Proposition 2.5 in an im-
portant special case.

Lemma 2.6. Fix 1 ≤ p ≤ ∞ and m ∈ N, and suppose that (A1), (A2) hold,
and that 0 ∈ Ωφ ⊂ C− ∪ {0}. Then there exists an even integer n ≥ 2 such
that 1− |φ(is)| � |s|n as |s| → 0.

Proof. The rational function φ is of the form φ(λ) = p(λ)/q(λ), where p
and q are coprime polynomials and the roots of q are contained in the set
σ(A0) ⊂ C−. Since |φ(0)| = 1 and |φ(λ)| → 0 as |λ| → ∞, we have that
|φ(is)| < 1 for s 6= 0 and hence

1− |φ(is)| = |q(is)|2 − |p(is)|2

|q(is)|(|p(is)|+ |q(is)|)
, s 6= 0.

The denominator of the right-hand side is bounded from above and from
below near s = 0. Thus the rate at which 1− |φ(is)| → 0 is equal to that at
which r(s) = |q(is)|2 − |p(is)|2 → 0 as |s| → 0. Since r is a real polynomial
satisfying r(0) = 0 and r(s) > 0 for s 6= 0, we have that r(s) = snr0(s),
s ∈ R, where n ∈ N is even and r0 is a polynomial satisfying r0(0) > 0. The
claim now follows. �



ASYMPTOTICS FOR SYSTEMS OF DIFFERENTIAL EQUATIONS 9

Remark 2.7. Note that n = nφ is determined by the characteristic function
φ. We call nφ the resolvent growth parameter.

3. Uniform boundedness of the semigroup

Consider our general model and assume that assumptions (A1) and (A2)
are satisfied. In this section we present conditions on the characteristic
function φ under which the semigroup generated by A is uniformly bounded
or even contractive. Since uniform boundedness necessarily requires that
σ(A) ⊂ C−, Theorem 2.3 shows that it is necessary to assume that Ωφ ⊂ C−,
where Ωφ = {λ ∈ C \ σ(A0) : |φ(λ)| = 1}. Note also that, since |φ(λ)| → 0
as |λ| → ∞ by Remark 2.2, we must have |φ(λ)| < 1 for all λ ∈ C+ in this
case. The following theorem is the main result of this section.

Theorem 3.1. Let 1 ≤ p ≤ ∞ and m ∈ N. Suppose that assumptions (A1),
(A2) hold, that σ(A0) ⊂ C− and that Ωφ ⊂ C−. If furthermore

sup
0<λ≤1

λ

1− |φ(λ)|
<∞ and sup

n∈N
sup
λ>0

λn+1

n!

∞∑
`=1

∣∣∣∣ dndλnφ(λ)`
∣∣∣∣ <∞,(3.1)

then the semigroup generated by A is uniformly bounded. If

sup
λ>0

(
λ‖R(λ,A0)‖+ λ

‖R(λ,A0)A1R(λ,A0)‖
1− |φ(λ)|

)
≤ 1,(3.2)

then the semigroup generated by A is contractive.

Proof. Both parts of the result are consequences of the Hille-Yosida theorem.
We thus aim to establish a uniform upper bound for ‖λnR(λ,A)n‖ as λ > 0
and n ∈ N are allowed to vary. For λ > 0 we let Rλ = R(λ,A0). Then by
(2.3) in the proof of Theorem 2.3 and by standard properties of resolvent
operators we have that

R(λ,A)nx = (Rnλxk)k∈Z +

(
(−1)n−1

(n− 1)!

∞∑
`=0

dn−1

dλn−1
(
φ(λ)`RλA1Rλ

)
xk−`−1

)
k∈Z

for all x = (xk)k∈Z ∈ X, and hence

‖λnR(λ,A)n‖ ≤ ‖λnRnλ‖+
λn

(n− 1)!

∞∑
`=0

∥∥∥∥ dn−1dλn−1
(
φ(λ)`RλA1Rλ

)∥∥∥∥(3.3)

for all λ > 0 and all n ∈ N. Now since σ(A0) ⊂ C−, there exists ε > 0 such
that A0 + ε generates a uniformly bounded semigroup, and in particular

sup
n∈N

sup
λ>0
‖(λ+ ε)nRnλ‖ <∞.(3.4)

Thus the first term on the right-hand side of (3.3) is uniformly bounded as
λ > 0 and n ∈ N are allowed to vary. It remains to consider the second
term. Let φ`(λ) = φ(λ)` and observe that, for λ > 0 and `, n ∈ Z+,

1

n!

dn

dλn
(
φ(λ)`RλA1Rλ

)
=

n∑
k=0

φ
(k)
` (λ)

k!

1

(n− k)!

dn−k

dλn−k
(RλA1Rλ)
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and by (3.4)∥∥∥∥ 1

n!

dn

dλn
(RλA1Rλ)

∥∥∥∥ =

∥∥∥∥ n∑
j=0

Rj+1
λ A1R

n−j+1
λ

∥∥∥∥ . n+ 1

(λ+ ε)n+2

for all λ > 0 and n ∈ Z+. It follows that

λn

(n− 1)!

∞∑
`=0

∥∥∥∥ dn−1dλn−1
(
φ(λ)`RλA1Rλ

)∥∥∥∥ . λn n−1∑
k=0

∞∑
`=0

|φ(k)` (λ)|
k!

n− k
(λ+ ε)n−k+1

for all λ > 0 and n ∈ N. Using the first part of assumption (3.1) for the
interval 0 < λ ≤ 1 and the fact that supλ>1 |φ(λ)| < 1 for the interval
1 < λ <∞, it is straightforward to see that the first term on the right-hand
side, corresponding to k = 0, is uniformly bounded above by

sup
n∈N

sup
λ>0

1

1− |φ(λ)|
nλn

(λ+ ε)n+1
<∞.

Using the second part of assumption (3.1) the remaining terms on the right-
hand side can be estimated, for all λ > 0 and n ∈ N, by

λn
n−1∑
k=1

∞∑
`=0

|φ(k)` (λ)|
k!

n− k
(λ+ ε)n−k+1

.
n−1∑
k=1

kλk−1

(λ+ ε)k+1
≤ ε−2.

Combining the last two estimates with (3.4) in (3.3) shows that

sup
n∈N

sup
λ>0
‖λnR(λ,A)n‖ <∞,

and hence the semigroup generated by A is uniformly bounded by the Hille-
Yosida theorem.

For the second statement we note that if (3.2) holds, then Proposition 2.5
shows that λ‖R(λ,A)‖ ≤ 1 for all λ > 0, and thus the semigroup generated
by A is contractive by the Hille-Yosida theorem. �

The next lemma shows that the assumptions in (3.1) are satisfied in a
simple but important special case.

Lemma 3.2. Let ζ > 0 and k ∈ N be given, and suppose that

φ(λ) =
ζk

(λ+ ζ)k
, λ ∈ C \ {−ζ}.

Then both conditions in (3.1) are satisfied.

Proof. Note first that

sup
0<λ≤1

λ

1− |φ(λ)|
= sup

0<λ≤1

λ(λ+ ζ)k

(λ+ ζ)k − ζk
≤ sup

0<λ≤1

(λ+ ζ)k

kζk−1
<∞,

so the first part of (3.1) certainly holds. For n, ` ∈ N and λ > 0 we have
that ∣∣∣∣ dndλnφ(λ)`

∣∣∣∣ = ζk`
(k`+ n− 1)!

(k`− 1)!|λ+ ζ|k`+n
.
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Given λ > 0 let z = (λ+ ζ)/ζ. Then z > 1 and
∞∑
`=1

∣∣∣∣ dndλnφ(λ)`
∣∣∣∣ ≤ 1

ζn

∞∑
`=1

(k`+ n− 1)!

(k`− 1)!zk`+n
≤ 1

ζn

∞∑
`=1

(`+ n− 1)!

(`− 1)!z`+n
.

Since
∞∑
`=1

(`+ n− 1)!

(`− 1)!z`+n
=
∞∑
`=1

(−1)n
dn

dzn
1

z`
=

dn

dzn

(
1

z − 1

)
=

n!

(z − 1)n+1

and z − 1 = λ/ζ, we obtain that

sup
n∈N

sup
λ>0

λn+1

n!

∞∑
`=1

∣∣∣∣ dndλnφ(λ)`
∣∣∣∣ ≤ ζ,

and hence φ also satisfies the second part of (3.1), as required. �

4. Asymptotic behaviour

We now turn to the asymptotic behaviour of solutions to our system (1.2).
For this we require, in addition to our earlier assumptions (A1) and (A2),
three further assumptions. Recall that Ωφ = {λ ∈ C \ σ(A0) : |φ(λ)| = 1},
where φ is the characteristic function of our system.

Assumptions 4.1. We introduce the further assumptions that

σ(A0) ⊂ C−,(A3)

0 ∈ Ωφ ⊂ C− ∪ {0} and φ′(0) 6= 0,(A4)

sup
t≥0
‖T (t)‖ <∞,(A5)

where T is the semigroup generated by A.

Remark 4.2. Differentiating the identity in assumption (A2) gives

−A1R(λ,A0)
2A1 = φ′(λ)A1, λ ∈ C \ σ(A0).

In particular, if (A3) holds then −A1A
−2
0 A1 = φ′(0)A1, and now assumption

(A4) implies that A1A
−1
0 restricts to an isomorphism from Ran(A−10 A1) onto

Ran(A1).

In what follows we write L for the inverse of this isomorphism appearing
in Remark 4.2, so that L maps Ran(A1) isomorphically onto Ran(A−10 A1).
Moreover, having fixed 1 ≤ p ≤ ∞ and m ∈ N, we let

Y =
{
x0 ∈ X : lim

t→∞
x(t) exists

}
,(4.1)

where x(t), t ≥ 0, is the solution of (1.2) with initial condition x(0) =
x0. Furthermore, we denote the right-shift operator on X by S, so that
Sx = (xk−1)k∈Z for all x = (xk)k∈Z ∈ X. Recall finally that nφ denotes the
resolvent growth parameter of our system; see Remark 2.7. The aim in this
section is to prove the following theorem.

Theorem 4.3. Let 1 ≤ p ≤ ∞, m ∈ N and assume that (A1)–(A5) hold.
Define the operator M ∈ B(X) by M(xk) = (A1A

−1
0 xk), and let the operator

L and the space Y be defined as above.
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(a) We have Y = X if and only if 1 < p <∞. More specifically:
(i) If 1 < p < ∞ then Y = X and x(t) → 0 as t → ∞ for all

x0 ∈ X.
(ii) If p = 1 and x0 ∈ X then x0 ∈ Y if and only if∥∥∥∥ 1

n

n∑
k=1

φ(0)kSkMx0

∥∥∥∥→ 0, n→∞,(4.2)

and if this holds then x(t)→ 0 as t→∞.
(iii) If p = ∞ and x0 ∈ X then x0 ∈ Y if and only if there exists

y0 ∈ Ran(A1) such that for y = (φ(0)ky0) we have∥∥∥∥ 1

n

n∑
k=1

φ(0)kSkMx0 − y
∥∥∥∥→ 0, n→∞,(4.3)

and if this holds then x(t)→ z as t→∞, where z = (φ(0)kLy0).
(b) Let nφ be the resolvent growth parameter of the system.

(i) If 1 ≤ p <∞ and the decay in (4.2) is like O(n−1) as n→∞
then

‖x(t)‖ = O

((
(log t)|1−2/p|

t

)1/nφ
)
, t→∞.(4.4)

(ii) If p =∞ and the decay in (4.3) is like O(n−1) as n→∞ then

‖x(t)− z‖ = O

((
log t

t

)1/nφ
)
, t→∞.

(c) For 1 ≤ p ≤ ∞ and all x0 ∈ X we have

‖ẋ(t)‖ = O

((
(log t)|1−2/p|

t

)1/nφ
)
, t→∞.

The proof of Theorem 4.3 is based on a number of general results. Given
a C0-semigroup T on a complex Banach space X, let

Y =
{
x ∈ X : lim

t→∞
T (t)x exists

}
,(4.5)

noting that this notation is consistent with (4.1).

Proposition 4.4. Let T be a uniformly bounded C0-semigroup on a complex
Banach space X and suppose that the generator A of T satisfies σ(A)∩ iR =
{0}. Then the set Y defined in (4.5) satisfies Y = X0 ⊕ X1, where X0 =
Ker(A) and X1 denotes the closure of Ran(A). Moreover, if x ∈ Y and
T (t)x→ y as t→∞, then y = Px, where P ∈ B(Y ) is the projection onto
X0 along X1.

Proof. If x ∈ X0, then T (t)x = x for all t ≥ 0 and hence x ∈ Y . Thus
X0 ⊂ Y . Now define the function f ∈ L1(R+) by f(t) = (t−1)e−t, then the
Laplace transform F of f is given by

F (λ) = − λ

(1 + λ)2
, Reλ ≥ 0,
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and we can define the operator Q ∈ B(X) by

Qx =

∫ ∞
0

f(t)T (t)x dt, x ∈ X,

noting that Q = AR(1, A)2. Since F vanishes on the set σ(A)∩iR = {0} and
since singleton sets are of spectral synthesis, it follows from the Katznelson-
Tzafriri theorem [20, Theorem 3.2] that ‖T (t)Q‖ → 0 as t→∞, and hence
Ran(Q) ⊂ Y . A simple argument shows that Ran(Q) = Ran(A) ∩ D(A),
where D(A) denotes the domain of A. In particular, Ran(Q) is dense in X1,
so by uniform boundedness of T we obtain that X1 ⊂ Y . Thus X0+X1 ⊂ Y .
Next we show that the sum is direct. Suppose that x ∈ X0 ∩ X1. Since
x ∈ X0, ‖x‖ = ‖T (t)x‖ for all t ≥ 0. On the other hand, since x ∈ X1,
‖T (t)x‖ → 0 as t→∞. It follows that x = 0, and hence X0 ∩X1 = {0}, as
required.

Now suppose that x ∈ Y . Then there exists y ∈ X such that y =
lims→∞ T (s)x. For t ≥ 0 we have T (t)y = lims→∞ T (t)T (s)x = y, which
implies that y ∈ X0. Let z = x− y. Then

‖T (t)z‖ = ‖T (t)x− y‖ → 0, t→∞.(4.6)

Suppose that z ∈ X \ X1. It follows from a standard application of the
Hahn-Banach theorem that there exists φ ∈ X∗ such that 〈z, φ〉 = 1 and
φ|X1 = 0. In particular, φ|Ran(A) = 0 and hence φ ∈ Ker(A′). It follows that
T (t)′φ = φ for all t ≥ 0, and therefore

〈T (t)z, φ〉 = 〈z, T (t)′φ〉 = 〈z, φ〉 = 1, t ≥ 0.

This contradicts (4.6), so z ∈ X1. Thus x = y + z ∈ X0 + X1 and conse-
quently Y = X0 ⊕X1. Furthermore,

lim
t→∞

T (t)x = y = Px,

where P : Y → Y is the projection onto X0 along X1. Since both X0 and
X1 are closed, P is bounded and the proof is complete. �

Remark 4.5. Note that if x ∈ Y and T (t)x→ y as t→∞, then

lim
t→∞

1

t

∫ t

0
T (s)x ds = y.(4.7)

It is well known that the set of x ∈ X for which (4.7) holds is given by
X0⊕X1, where X0 and X1 are as in Proposition 4.4. The result is therefore
Tauberian in flavour, showing as it does that (4.7) implies limt→∞ T (t)x =
y. Note that this ergodic approach also leads to the further equivalent
characterisation of the set Y as

Y =

{
x ∈ X : lim

λ→0+
R(λ,A)x exists

}
.

For details of the above results see for instance [2, Section 4.3], and for a
more general result related to Proposition 4.4 see [2, Theorem 5.5.4].

As observed in Remark 4.5, the characterisation of the set Y obtained in
Proposition 4.6 can be interpreted as the set of mean ergodic vectors of the
semigroup T . We now collect some important facts about the set of mean
ergodic vectors of certain bounded linear operators, which will then be used
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to obtain descriptions of the set Y in the case where the semigroup T has a
suitable bounded generator.

Proposition 4.6. Let X be the dual space of a complex Banach space X∗
and consider the operator A = B − C, where B,C ∈ B(X). Suppose that C
is invertible and that the operator Q = C−1B is power-bounded and satisfies
Q = U ′ for some U ∈ B(X∗). Let Z = X0 ⊕ X1, where X0 = Ker(A) and
X1 denotes the closure of Ran(A), and let Z0 = X0 ⊕Ran(A). Then, given
x ∈ X, we have x ∈ Z if and only if there exists y ∈ X0 such that∥∥∥∥ 1

n

n∑
k=1

QkC−1(x− y)

∥∥∥∥→ 0, n→∞.(4.8)

Furthermore, Z0 consists of all those x ∈ Z for which the convergence in
(4.8) is like O(n−1) as n→∞.

Proof. Note first that X0 = Fix(Q) and that Ran(A) = {Cx : x ∈ Ran(I −
Q)}. Hence X1 = {Cx : x ∈ X2}, where X2 denotes the closure of Ran(I −
Q). By [13, Theorem 1.3 of Section 2.1] and power-boundedness of Q,

X2 =

{
x ∈ X : lim

n→∞

1

n

n∑
k=1

Qkx = 0

}
.

Hence, given x ∈ X, we have x ∈ Z if and only if there exists y ∈ X0

such that x− y ∈ X1, which is equivalent to C−1(x− y) ∈ X2. This shows
that (4.8) holds. The characterisation of Z0 follows similarly using [14,
Theorem 5], and it is here that the duality assumptions are needed. �

Remark 4.7. The characterisation of the space Z in fact holds on arbitrary
complex Banach spaces and when the condition of power-boundedness is
replaced by the weaker assumptions that Q is Cesàro bounded, which is to
say

sup
n≥1

∥∥∥∥ 1

n

n∑
k=1

Qk
∥∥∥∥ <∞,

and that ‖Qnx‖ = o(n) as n→∞ for each x ∈ X. A characterisation of Z0

in this more general setting can be deduced from the results in [14].

We now seek to combine Propositions 4.4 and 4.6 in to obtain a charac-
terisation of the set Y defined in (4.5) when the semigroup T is generated
by a suitable bounded operator A. In particular, we hope to deduce from
Proposition 4.6 a statement about the rate at which certain semigroup orbits
converge to a limit. This requires two abstract results.

Theorem 4.8. Let X be a complex Banach space and suppose T is a uni-
formly bounded C0-semigroup on X whose generator A ∈ B(X) satisfies
σ(A) ∩ iR = {0}. Suppose that

‖R(is, A)‖ ≤ m(|s|), 0 < |s| ≤ 1,

for some continuous non-increasing function m : (0, 1] → [1,∞). Then for
any c ∈ (0, 1)

(4.9) ‖AT (t)‖ = O
(
m−1log(ct)

)
, t→∞,
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where m−1log is the inverse function of the map mlog : (0, 1]→ (0,∞) given by

mlog(r) = m(r) log

(
1 +

m(r)

r

)
, 0 < r ≤ 1.(4.10)

Proof. The result is a consequence of [7, Corollary 2.12]. Indeed, since T is
norm-continuous and hence differentiable, it follows from [5, Theorem 5.6]
that the non-analytic growth bound ζ(T ) of T satisfies ζ(T ) = −∞, and in
particular ζ(T ) < 0. Thus [7, Corollary 2.12] shows that

‖T (t)AR(1, A)‖ = O
(
m−1log(ct)

)
, t→∞,

and (4.9) follows by applying the bounded linear operator I −A. �

Remark 4.9. (a) The unquantified version of the above result, namely that
‖AT (t)‖ → 0 as t → ∞ when T is bounded and σ(A) ∩ iR = {0}
is shown in the more general setting of eventually differentiable semi-
groups in [3, Theorem 3.10]. The result can also be deduced from the
Katznelson-Tzafriri theorem. Indeed, it was shown that in the proof of
Proposition 4.4 that ‖T (t)AR(1, A)2‖ → 0 as t → ∞, from which the
claim follows easily; see also [6, Remark 6.3]

(b) As is shown in [7, Corollary 2.12], the result in fact holds more gener-
ally for bounded semigroups whose generator is not necessarily bounded.
When X is a Hilbert space, it follows from [5, Theorem 5.4] that the con-
dition ζ(T ) < 0 can be replaced by the condition sup|s|≥1 ‖R(is, A)‖ <
∞. A more direct way of showing that ζ(T ) = −∞ when the semigroup
T has bounded generator is to observe that in this case

T (t) =

∞∑
n=0

tn

n!
An, t ≥ 0,

with the sum converging in operator norm. In particular, T itself extends
to an analytic and exponentially bounded operator-valued family on a
sector containing (0,∞), and the claim follows from the definition of
ζ(T ). See [5] for details on the non-analytic growth bound ζ(T ).

(c) Theorem 4.8 can also be deduced from [16, Proposition 3.1] with the
function M : [1,∞) → (0,∞) taken to be constant, since in this case
both the M−1log -term and the t−1-term are dominated by the m−1log-term.

The next result is a special case of Theorem 4.8 dealing with the case
of polynomial resolvent growth, and it contains a sharper estimate in the
Hilbert space setting.

Theorem 4.10. Let X be a complex Banach space and suppose T is a
uniformly bounded C0-semigroup on X whose generator A ∈ B(X) satisfies
σ(A) ∩ iR = {0} and ‖R(is, A)‖ = O(|s|−α) as |s| → 0 for some α ≥ 1.
Then

‖AT (t)‖ = O

((
log t

t

)1/α
)
, t→∞.

Moreover, if X is a Hilbert space then the logarithm can be omitted.
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Proof. The first statement is a consequence of Theorem 4.8 with the choice
m(r) = Cr−α, 0 < r ≤ 1, for a suitable constant C ≥ 1, since in this case

m−1log(ct) = O

((
log t

t

)1/α
)
, t→∞,

for all c ∈ (0, 1). The second statement is a direct consequence of [6, Theo-
rem 7.6] and boundedness of the generator A. �

Remark 4.11. It follows from [6, Corollary 6.11] that if in Theorem 4.10
we in fact have ‖R(is, A)‖ � |s|−α as |s| → 0, then there exists a constant
c > 0 such that

‖AT (t)‖ ≥ c

t1/α
, t ≥ 1,

provided that ‖sR(is, A)‖ → ∞ as |s| → 0. Since the resolvent growth
parameter nφ is always strictly greater than 1 by Lemma 2.6, it follows from
Proposition 2.5 that the latter condition is always satisfied in Theorem 4.3.

We now combine the previous results in this section in order to obtain
a general result about the asymptotics of semigroups whose generators are
suitable bounded operators. Recall from (4.5) that

Y =
{
x ∈ X : lim

t→∞
T (t)x exists

}
.

Theorem 4.12. Let T be a uniformly bounded C0-semigroup on a space X
which is the dual of a complex Banach space X∗. Suppose that the generator
A of T satisfies A = B−C, where B,C ∈ B(X), C is invertible, the operator
Q = C−1B is power-bounded and satisfies Q = U ′ for some U ∈ B(X∗).
Suppose furthermore that σ(A) ∩ iR = {0} and that

‖R(is, A)‖ ≤ m(|s|), 0 < |s| ≤ 1,

for some continuous non-increasing function m : (0, 1]→ [1,∞).
Then, given x ∈ X, we have x ∈ Y if and only if there exists y ∈ Fix(Q)

such that ∥∥∥∥ 1

n

n∑
k=1

QkC−1(x− y)

∥∥∥∥→ 0, n→∞,(4.11)

and if (4.11) holds then T (t)x→ y as t→∞. Moreover, if the convergence
in (4.11) is like O(n−1) as n→∞, then for each c ∈ (0, 1)

‖T (t)x− y‖ = O
(
m−1log(cn)

)
, t→∞,(4.12)

where mlog is as defined in (4.10). In particular, if ‖R(is, A)‖ = O(|s|−α)
for some α ≥ 1 as |s| → 0, then

‖T (t)x− y‖ = O

((
log t

t

)1/α
)
, t→∞,(4.13)

and the logarithm can be omitted if X is a Hilbert space.

Proof. The description of the set Y follows immediately by combining Propo-
sitions 4.4 and 4.6. If the convergence in (4.11) is like O(n−1) as n → ∞,
then by Proposition 4.6 we have that x−y = Az for some z ∈ X, and hence

T (t)x− y = T (t)(x− y) = T (t)Az, t ≥ 0.
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Thus (4.12) follows from Theorem 4.8, and (4.13) and the statement after
it follow from Theorem 4.10. �

Remark 4.13. By Remark 4.7 it is possible to obtain the unquantified
statements of Theorem 4.12 under weaker assumptions.

We now come to the proof of Theorem 4.3.

Proof of Theorem 4.3. Note first that X has a predual X∗ for each choice of
p. Indeed, if 1 < p ≤ ∞ then X is the dual of X∗ = `q(Z;Cm), where q is the
Hölder conjugate of p, and if p = 1 then X is the dual of X∗ = c0(Z;Cm),
the space of Cm-valued sequences (xk)k∈Z such that |xk| → 0 as k → ±∞.
Since σ(A0) is contained in the open left half-plane by assumption (A3), A0

is invertible and hence so is M0. Moreover, σ(A) ∩ iR = {0} by assumption
(A4) and Theorem 2.3, and by Proposition 2.5 we have that ‖R(is, A)‖ �
|s|−nφ as |s| → 0. For j = 0, 1 let Mj ∈ B(X) denote the operator given by
Mj(xk) = (Ajxk), noting that both M0 and M1 commute with the right-shift
operator S on X. Moreover, let M,N ∈ B(X) be given by M = M1(−M0)

−1

and N = (−M0)
−1M1 so that Mx = (A1R0xk)k∈Z and Nx = (R0A1xk)k∈Z

for all x = (xk)k∈Z ∈ X. Then A = B − C with B = SM1 and C = −M0.
Let Q = C−1B. Then Q = SN and in particular Q = U ′, where U ∈ B(X∗)
is given by Ux = (AT1R

T
0 xk+1)k∈Z. Moreover, for n ≥ 1, it follows from

our assumption on the matrices A0, A1 that Nn = φ(0)n−1N , and hence
Qn = φ(0)n−1SnN . Note also that |φ(0)| = 1 since 0 ∈ Ωφ. In particular,

‖Qn‖ = ‖SnN‖ ≤ ‖N‖, n ≥ 1,

so Q is power-bounded. Moreover,

QnC−1 = (−M0)
−1φ(0)n−1SnM, n ≥ 1.

Suppose that 1 ≤ p < ∞ and let x0 ∈ X. Then Ker(A) = Fix(Q) = {0},
and since M0 is an isomorphism and |φ(0)| = 1, it follows from Theorem 4.12
that x0 ∈ Y if and only if (4.2) holds, and that x(t)→ 0 as t→∞ whenever
this is the case. If p = ∞ then by Theorem 2.3 any z ∈ Ker(A) has the
form z = (φ(0)kz0) for some z0 ∈ Ran(A−10 A1). For such a z ∈ Ker(A)

let y = Mz. Then y = (φ(0)ky0), where y0 = A1A
−1
0 z0. In particular,

y0 ∈ Ran(A1) and z0 = Ly0. Moreover, φ(0)nSnMz = y for all n ≥ 1 and
hence, given x0 ∈ X, Theorem 4.12 implies that x0 ∈ Y if and only if (4.3)
holds for some y0 ∈ Ran(A1), and that x(t) → z as t → ∞ whenever this
is the case. When p = 1 and when p = ∞, it is straightforward to see that
(4.2) and, respectively, (4.3) are not satisfied for all x0 ∈ X, whereas (4.2)
does hold for all x0 ∈ X when 1 < p <∞, as can be seen by considering the
dense subspace of finitely supported sequences. Thus Y = X if and only if
1 < p < ∞ and part (a) is established. For part (b) note that (ii) follows
immediately from Theorem 4.12, while if 1 ≤ p < ∞ and convergence in
(4.2) is like O(n−1) as n→∞, Theorem 4.12 shows that

‖x(t)‖ = O

((
log t

t

)1/nφ
)
, t→∞,

and that the logarithm can be omitted when p = 2. The estimate in (4.4)
now follows by appealing to the Riesz-Thorin theorem [11, Theorem 9.3.3]
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to interpolate these bounds for 1 < p < 2 and 2 < p < ∞. Part (c) follows
similarly using the fact that ẋ(t) = AT (t)x0 for all x0 ∈ X and t ≥ 0. �

Remark 4.14. (a) The statement in part (a)(i) can also be deduced from
the well-known Arendt-Batty-Lyubich-Vũ theorem; see [1, 15]. Indeed,
the semigroup T is uniformly bounded by assumption (A5), and by
Theorem 2.3 the other assumptions ensure that the generator A of T
has no residual spectrum on the imaginary axis. This argument can be
extended to obtain strong stability of T also in the case where Ωφ meets
the imaginary axis in several (but necessarily at most finitely many)
points.

(b) It follows from Remark 4.11 together with Lemma 2.6 and an applica-
tion of the uniform boundedness principle that the rates in Theorem 4.3
are optimal when p = 2 and worse than optimal by at most a loga-
rithmic term when p 6= 2. We expect that the quantified statements in
Theorem 4.3 remain true without the logarithms even when p 6= 2, but
we leave it as an open problem whether this is indeed the case; see also
Remark 5.2(a) and Theorem 6.1 below.

5. The platoon model

In this section we study a linearised model of an infinitely long platoon of
vehicles. The objective is to drive the solution of the system to a configura-
tion in which all of the vehicles are moving at a given constant velocity v ∈ C
and the separation between the vehicles k and k−1 is equal to ck ∈ C, k ∈ Z.
For k ∈ Z and t ≥ 0, we write dk(t) for the separation between vehicles k
and k− 1 at time t, vk(t) for the velocity of vehicle k at time t and ak(t) for
the acceleration of vehicle k at time t. Furthermore, we let yk(t) = ck−dk(t)
denote the deviation of the actual separation from the target separation of
vehicles k and k − 1 at time t, and we similarly let wk(t) = vk(t)− v stand
for the excess velocity of vehicle k at time t. Note in particular that, as
the variables are allowed to be complex, they can be used to describe the
dynamics of the vehicles in the complex plane and not just along a straight
line. On the other hand, if all the variables are constrained to be real, the
same model can be used to study the behaviour of an infinitely long chain
of vehicles.

As the basis of our study we consider a linear model which has been used
to study infinitely long chains of cars on a highway in [17, 18, 21], namely ẏk(t)ẇk(t)

ȧk(t)

 =

 wk(t)− wk−1(t)
ak(t)

−τ−1ak(t) + τ−1uk(t)

 , k ∈ Z, t ≥ 0,(5.1)

where τ > 0 is a parameter and uk(t) is the control input of vehicle k. In
the above references the model (5.1) was studied on the space X = `2(C3),
and it has in particular been shown that the system is not exponentially
stabilisable [12, 21] but that strong stability can be achieved [8, 12]. In this
paper we study model (5.1) on the spaces X = `p(C3) for 1 ≤ p ≤ ∞, and in
particular we include the case p =∞ argued in [12] to be the most realistic.
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We begin by rewriting the problem in the form of (1.1) for the state
vectors

xk(t) =

yk(t)wk(t)
ak(t)

 , k ∈ Z, t ≥ 0,

by applying an identical state feedback

uk(t) = β1yk(t) + β2wk(t) + β3ak(t), k ∈ Z, t ≥ 0,

to each of the vehicles, where β1, β2, β3 ∈ C are constants. This control law
requires that the state vectors xk(t) are known and available for feedback.
Equations (5.1) can then be written in the form (1.1) with matrices

A0 =

 0 1 0
0 0 1
−α0 −α1 −α2

 and A1 =

0 −1 0
0 0 0
0 0 0


where α0 = −β1/τ , α1 = −β2/τ , and α2 = (1−β3)/τ can be freely assigned
by choosing appropriate feedback parameters β1, β2, β3 ∈ C. This in turn
allows us to choose the eigenvalues of the matrix A1. Since rankA1 = 1,
we know from Remark 2.2 that conditions (A1) and (A2) of Assumption 2.1
are satisfied, and the characteristic function φ is given by the formula

φ(λ) =
α0

p(λ)
, λ ∈ C \ σ(A0),

where p(λ) = λ3 + α2λ
2 + α1λ + α0 is the characteristic polynomial of A0.

Note that φ(0) = 1 and hence 0 ∈ σ(A) by Theorem 2.3. It follows that
the platoon system cannot be stabilised exponentially. Our main goal is to
choose the parameters α0, α1, α2 ∈ C in such a way that the platoon system
achieves good stability properties. The simplest possible characteristic poly-
nomial is p(λ) = (λ−λ0)3 corresponding to the choices α0 = −λ30, α1 = 3λ20,
and α2 = −3λ0 for a fixed λ0 ∈ C. In this case

Ωφ =
{
λ ∈ C : |λ− λ0| = |λ0|

}
,

so in order for conditions (A3) and (A4) of Assumptions 4.1 to be satisfied,
so that σ(A) ⊂ C−∪{0}, it is necessary to choose λ0 = −ζ for some ζ > 0. It
is possible in principle to derive more general necessary geometric conditions
on the roots of p which ensure that (A3) and (A4) are satisfied. We restrict
ourselves here to exhibiting, in Figure 1, several examples of level sets Ωφ

and spectra σ(A) for different choices of the parameters α0, α1, α2 ∈ C−.
We now consider the Cauchy problem (1.2) for the platoon problem with a

characteristic function φ having just one pole. Our main asymptotic result is
a consequence of the general results proved in the preceding sections. Recall
that for 1 ≤ p ≤ ∞ we denote the set of initial states x(0) = x0 leading to
convergent solutions x(t) of the platoon system by

Y =
{
x0 ∈ X : lim

t→∞
x(t) exists

}
.

Theorem 5.1. Let 1 ≤ p ≤ ∞ and consider the platoon model with the
choices α0 = ζ3, α1 = 3ζ2 and α2 = 3ζ, where ζ > 0 is a fixed real number.

(a) We have Y = X if and only if 1 < p <∞. More specifically:
(i) If 1 < p <∞ then Y = X and x(t)→ 0 for all x0 ∈ X.
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Figure 1. The level set Ωφ and σ(A0) for various choices of A0.

(ii) If p = 1 and x0 ∈ X then x0 ∈ Y if and only if the vector
y0 = (yk(0))k∈Z ∈ `1(Z) of initial deviations is such that∥∥∥∥ 1

n

n∑
k=1

Sky0

∥∥∥∥
`1(Z)
→ 0, n→∞,(5.2)

and if this holds then x(t)→ 0 as t→∞.
(iii) If p = ∞ and x0 ∈ X then x0 ∈ Y if and only if there exists

c ∈ C such that for y = (. . . , c, c, c, . . . ) we have∥∥∥∥ 1

n

n∑
k=1

Sky0 − y
∥∥∥∥
`∞(Z)

→ 0, n→∞,(5.3)

and if this holds then x(t)→ z as t→∞, where

z =

. . . ,
 c
−ζc/3

0

 ,

 c
−ζc/3

0

 ,

 c
−ζc/3

0

 , . . .

 .

(b) (i) If 1 ≤ p < ∞ and the decay in (5.2) is like O(n−1) as n → ∞
then

‖x(t)‖ = O

((
(log t)|1−2/p|

t

)1/2
)
, t→∞.

(i) If p =∞ and the decay in (5.3) is like O(n−1) as n→∞ then

‖x(t)− z‖ = O

((
log t

t

)1/2)
, t→∞.

(c) For 1 ≤ p ≤ ∞ and all x0 ∈ X we have

‖ẋ(t)‖ = O

((
(log t)|1−2/p|

t

)1/2
)
, t→∞.

Proof. Note that (A1) holds and that (A2) is satisfied for the function

φ(λ) =
ζ3

(λ+ ζ)3
, λ 6= −ζ.
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As above, we have σ(A0) = {−ζ}, so that (A3) holds, and since

Ωφ = {λ ∈ C : |λ+ ζ| = ζ},

we see that (A4) holds as well. Furthermore, (A5) holds by Lemma 3.2 and
the first part of Theorem 3.1. A simple calculation based on the ideas used
in Lemma 2.6 shows that nφ = 2. Noting that φ(0) = 1 and that

A1(−A0)
−1 =

1 0 0
0 0 0
0 0 0

 , (−A0)
−1A1 =

0 −3/ζ 0
0 1 0
0 0 0

 ,

the result follows from Theorem 4.3. �

Remark 5.2. (a) We do not know whether the logarithms in the decay
estimates of Theorem 5.1 are needed when p 6= 2. We suspect not; see
also Remark 4.14(b) above and Theorem 6.1 below.

(b) It follows from straightforward estimates that the semigroup T generated
by the operator A in the platoon model is in general not contractive,
even when p = 2.

(c) Note that the above analysis can also be used in the setting considered
in [18], where the objective of attaining given target separations as t→
∞ is replaced by the objective that the separations should approach
ck + hvk(t), where h > 0 and ck ∈ C are constants and vk(t) is the
velocity of vehicle k ∈ Z at time t ≥ 0.

6. The robot rendezvous problem

We now return to the robot rendezvous problem, which corresponds in
the general setting of (1.1) to the choices m = 1, A0 = −1 and A1 = 1.
In particular, the Banach space we are working in is X = `p(Z), where
1 ≤ p ≤ ∞. The following result, which can be viewed as an extension of
the results in [9], is in large part a consequence of Theorem 4.3 but with
slightly sharper estimates on the rates of decay. For 1 ≤ p ≤ ∞, we once
again use the notation

Y =
{
x0 ∈ X : lim

t→∞
x(t) exists

}
,

where x(t), t ≥ 0, now denotes the solution of the robot rendezvous problem
with initial condition x(0) = x0.

Theorem 6.1. Let 1 ≤ p ≤ ∞ and consider the robot rendezvous problem.

(a) We have Y = X if and only if 1 < p <∞. More specifically:
(i) If 1 < p <∞ then Y = X and x(t)→ 0 for all x0 ∈ X.
(ii) If p = 1 and x0 ∈ X then x0 ∈ Y if and only if∥∥∥∥ 1

n

n∑
k=1

Skx0

∥∥∥∥→ 0, n→∞,(6.1)

and if this holds then x(t)→ 0 as t→∞.
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(iii) If p = ∞ and x0 ∈ X then x0 ∈ Y if and only if there exists a
constant sequence z ∈ X such that∥∥∥∥ 1

n

n∑
k=1

Skx0 − z
∥∥∥∥→ 0, n→∞,(6.2)

and if this holds then x(t)→ z as t→∞.
(b) (i) If 1 ≤ p < ∞ and the decay in (6.1) is like O(n−1) as n → ∞

then

‖x(t)‖ = O
(
t−1/2

)
, t→∞,(6.3)

(i) If p =∞ and the decay in (6.2) is like O(n−1) as n→∞ then

‖x(t)− z‖ = O
(
t−1/2

)
, t→∞.(6.4)

(c) For 1 ≤ p ≤ ∞ and all x0 ∈ X we have

‖ẋ(t)‖ = O
(
t−1/2

)
, t→∞.(6.5)

Finally, the rate t−1/2 in (6.3), (6.4) and (6.5) is optimal.

Proof. Note that (A1) holds and that (A2) is satisfied for the function

φ(λ) =
1

λ+ 1
, λ 6= −1.

We also have σ(A0) = {−1}, so that (A3) holds, and since

Ωφ = {λ ∈ C : |λ+ 1| = 1},

we see that (A4) holds as well. Assumption (A5) again holds by Lemma 3.2
and Theorem 3.1, and indeed the second part of the latter result even shows
that the semigroup is contractive. As in the proof of Theorem 5.1, a simple
calculation shows that nφ = 2, so all of the statements follow from Theo-
rem 4.3 except for the rates in equations (6.3), (6.4) and (6.5) and the final
statement concerning optimality. The latter follows as in Remark 4.14(b).
In order to obtain the sharper rates we require a better estimate on the
asymptotic behaviour of ‖AT (t)‖ as t → ∞ than is given in Theorem 4.10
for the general case.

For t ≥ 0, let y(t) ∈ `1(Z) be the scalar-valued sequence whose k-th term
is given by

yk(t) =
tk

k!
− tk+1

(k + 1)!
, k ≥ 0,

and yk(t) = 0 for k < 0. It is shown in the proof of [9, Theorem 3] that,
given x0 ∈ X,

AT (t)x0 = e−t
(
y(t) ∗ z0 − x0

)
, t ≥ 0,

where z0 = Sx0 with S being the right-shift. Then ‖z0‖ = ‖x0‖ and it
follows from Young’s inequality that

‖AT (t)x0‖ ≤ e−t
(
1 + ‖y(t)‖`1(Z)

)
‖x0‖, t ≥ 0.

In particular,

‖AT (t)‖ ≤ e−t
(
1 + ‖y(t)‖`1(Z)

)
t ≥ 0.
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As explained in the proof of [9, Theorem 3], for each t ≥ 0 there exists an
integer n(t) ≥ 0 such that n(t) ≤ t ≤ n(t) + 1 and

‖y(t)‖`1(Z) ≤ 2
tn(t)

n(t)!
.

By Stirling’s approximation,

n(t)! ≥
√

2πn(t)

(
n(t)

e

)n(t)
, t ≥ 1.

Now straightforward estimates show that

‖AT (t)‖ ≤ C

t1/2
, t ≥ 2,(6.6)

for some C > 0, and the result follows as in the proof of Theorem 4.3. �

Remark 6.2. (a) Note that in the above setting, the semigroup has an
explicit representation. Indeed, if T (t)(xk) = (yk(t)) for (xk), (yk) ∈ X
and t ≥ 0, then

yk(t) = e−t
∞∑
n=0

tn

n!
xk−n, k ∈ Z, t ≥ 0.

In particular, an application of Young’s inequality gives an alternative,
more direct proof of the fact that the semigroup T is contractive in this
case for 1 ≤ p ≤ ∞; cf. Remark 5.2(b).

(b) The above proof can be refined to give an explicit constant C in (6.6).
For instance, it is straightforward to show that the value

C =
t
1/2
0

et0
+

(
2

π

)1/2(
1− 1

t0

)−t0−1/2
gives the inequality for the range t ≥ t0 > 1. In particular, C = 4.705
works for t ≥ 2, C = 2.191 works for t ≥ 100, and as t0 →∞ the value
of the constant approaches e(2/π)1/2 ≈ 2.169.

(c) For further discussion of the robot rendezvous problem and in particular
its connection with the theory of Borel summability, see [9, 10].

We conclude by briefly considering an interesting generalisation of the
robot rendezvous problem in which the original differential equations are
replaced by

ẋk(t) = xk−1(t) + αkxk(t), k ∈ Z, t ≥ 0,

where for each k ∈ Z either αk = −1 or Reαk < −1. The original robot
rendezvous problem corresponds to the choice αk = −1 for all k ∈ Z. If we
again let X = `p(C) for 1 ≤ p ≤ ∞, we are led to consider the semigroup T
generated by the operator A ∈ B(X) given by Ax = (xk−1 + αkxk)k∈Z for
all (xk)k∈Z ∈ X. We restrict ourselves to stating a result about the decay of
‖AT (t)‖ as t → ∞, which could be used to obtain statements about orbits
and their derivatives as in Sections 4 and 5.

Theorem 6.3. In the modified robot rendezvous problem considered above,
let Ω = {αk : k ∈ Z} and suppose that −1 ∈ Ω. Then, for all c ∈ (0, 1),

‖AT (t)‖ = O
(
m−1log(ct)

)
, t→∞,
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where m : (0, 1]→ [1,∞) is defined by

(6.7) m(r) = sup
r≤|s|≤1

1

dist(is,Ω)− 1
, 0 < r ≤ 1,

and mlog is as in Theorem 4.8.

Proof. Let λ ∈ C be such that dist(λ,Ω) > 1 and define R(λ) ∈ B(X) by

R(λ)x =

 ∞∑
`=0

∏̀
j=0

xk−`
λ− αk−j


k∈Z

for all x = (xk)k∈Z ∈ X. Straightforward computations show that R(λ)(λ−
A)x = (λ − A)R(λ)x = x for all x ∈ X, and hence λ /∈ σ(A) and R(λ) =
R(λ,A) for all λ ∈ C such that dist(λ,Ω) > 1. Furthermore, it is straight-
forward to verify that if dist(λ,Ω) > 1 and ‖x‖ = 1, then

‖R(λ,A)x‖ ≤
∞∑
`=0

1

dist(λ,Ω)`+1
=

1

dist(λ,Ω)− 1
,

and hence ‖R(λ,A)‖ ≤ (dist(λ,Ω)−1)−1 for all λ ∈ C such that dist(λ,Ω) >
1. In particular, ‖R(is, A)‖ ≤ m(|s|) for 0 < |s| ≤ 1, where m : (0, 1] →
[1,∞) is as in (6.7), so the result follows from Theorem 4.8. �

Remark 6.4. Note that the conclusion of Theorem 6.3 remains true when-
ever Ω is replaced by any set Ω′ such that

{αk : k ∈ Z} ⊂ Ω′ ⊂ {λ ∈ C : Reλ < −1} ∪ {−1}.

In particular, we can take Ω′ = Ωψ, where Ωψ = {λ ∈ C : Reλ ≤
−ψ(| Imλ|)} for some non-decreasing and continuously differentiable func-
tion ψ : [0, 1] → [1,∞) satisfying ψ(0) = 1 and ψ(s) > 1 for s ∈ (0, 1]; see
Figure 2. Then (6.7) becomes

(6.8) m(r) =
1

dist(ir,Ωψ)− 1
, 0 < r ≤ 1.

If ψ′(0) > 0, it is easy to see that m(r) � r−2 as r → 0+ and therefore

(6.9) ‖AT (t)‖ = O

((
log t

t

)1/2)
, t→∞.

On the other hand if ψ′(0) = 0 it follows from geometric considerations that

m(r) =
(
ψ(q(r))

(
1 + ψ′(q(r))2

)1/2 − 1
)−1

, 0 < r ≤ 1,

where q : (0, 1] → (0, 1] is the inverse function of the map p(r) = r +
ψ(r)ψ′(r), 0 < r ≤ 1.

Example 6.5. (a) In the original robot rendezvous problem, where Ω =
{−1}, it follows from Theorem 6.3 that (6.9) holds. The proof of Theo-
rem 6.1 shows that the logarithm can be omitted.

(b) In the context of Remark 6.4, if ψ(s) = 1 + sα for some α ≥ 1, then
crude estimates show that m(r) � r−2 as r → 0+ if 1 ≤ α < 2 and
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ir
ψ(r)

dist(ir,Ωψ)

−1 0

Ωψ

Figure 2. The region Ωψ.

m(r) � r−α as r → 0+ if α ≥ 2. Hence in the first case (6.9) holds,
while for α ≥ 2

‖AT (t)‖ = O

((
log t

t

)1/α)
, t→∞.

If p = 2, so that X is a Hilbert space, it follows from Theorem 4.10 that
the logarithm can be omitted in both cases.

7. Conclusion

The main result of this paper, Theorem 4.3, is a powerful tool for study-
ing the asymptotic behaviour of solutions to a rather general class of infinite
systems of coupled differential equations. The versatility of the general the-
ory is illustrated by the applications presented in Sections 5 and 6 to two
important special cases: the platoon model and the robot rendezvous prob-
lem. Underlying Theorem 4.3 are a number of abstract results from operator
theory and in particular the asymptotic theory of operator semigroups. It is
striking how effective the results obtained by these abstract techniques are
even in particular examples, shedding new light both on the platoon model
and the robot rendezvous problem. Nevertheless, a number of important
questions remain open. The first question, namely whether the logarithmic
factors are needed in Theorem 4.3 when p 6= 2, was already raised in Re-
mark 4.14(b). Here it would already be of interest to have an affirmative
answer in certain special cases, for instance the platoon model dealt with in
Theorem 5.1; see Remark 5.2(a). Another aspect of the theory which would
benefit from further development is the condition for uniform boundedness
of the semigroup presented in Theorem 3.1, since in its present state this
condition is rather difficult to verify except for relatively simple characteris-
tic functions. Furthermore, it remains to be determined to what extent the
results obtained here can be extended to situations involving more compli-
cated coupling, such as systems in which the evolution of each subsystem
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depends on the states of several other subsystems rather than just one. Fi-
nally, it would seem worth investigating the corresponding questions in the
discrete-time setting, both from an applications perspective and in view of
the fact that the corresponding abstract theory is equally well developed as
in the continuous-time setting. We hope to address some of these issues in
future publications.
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