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Abstract. We analyze the governing partial differential equations of a model of pole-to-pole oscillations
of the MinD protein in a bacterial cell. The sensitivity to extrinsic noise in the parameters of the model is
explored. Our analysis shows that overall, the oscillations are robust to extrinsic perturbations in the sense that
small perturbations in reaction coefficients result in small differences in the frequency and in the amplitude.
However, a combination of analysis and simulation also reveals that the oscillations are more sensitive to some
extrinsic time-scales than to others.
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1. Introduction. Mathematical models are now essential to the way biological scientists
understand single cells [11, 16, 24]. Chemical reactions and transport of chemical species are
often described by deterministic models, for example, by partial differential equations (PDEs)
and the Law of Mass Action. However, noise plays a fundamental role in many cellular pro-
cesses [1, 5, 27] such as switching between stable modes of gene expression [4, 19, 31, 32].
For such processes, a discrete and stochastic modelling framework is more appropriate than
a deterministic continuum model, especially when a single cell contains only a small number
of molecules of a particular chemical species [1, 5, 34]. Such a framework is provided by the
chemical master equation [7, 34], which is increasingly applied in systems biology.

When formulating a stochastic model of a process, we may distinguish between external or
extrinsic noise that is independent of the system being modeled, and internal or intrinsic noise
that is inherently part of the system itself. Van Kampen discusses this issue in his classic text. He
emphasizes the importance of making this distinction at a conceptual level during the process of
model formulation [34, Chapter IX.5, Chapter XVII.7]. Biologists also employ the terminology
of intrinsic and extrinsic noise when describing stochastic phenomena in relation to models of
gene expression, although identifying and measuring intrinsic and extrinsic contributions to
dynamic systems can be challenging [3, 13, 30]. A common interpretation is that intrinsic noise
arises from the inherently discrete nature of a collision theory of chemical reactions, in which
there is randomness associated with the chance collisions of molecules, whereas extrinsic noise
arises from all of the other processes that we do not explicitly include in the mechanistic steps
of our mathematical model but which we do believe exert influence. The stage of the cell-cycle,
ambient temperature, a dynamic microenvironment, or the number of ribosomes in a cell, all
effect cellular processes but they are usually not explicitly included in models; instead their
effects may be regarded as extrinsic noise. For example, temperature effects chemical reaction
rates and also biological oscillations [10, 33, 35].

We are interested in a mathematical model of MinD oscillations in bacteria [4, 18, 25, 35]
and the robustness of the model to extrinsic spatial and temporal fluctuations in the coeffi-
cients. The model is a system of nonlinear PDEs with diffusion for the mean values of the
concentrations of the species. If the copy number of the molecular species is large then the
relative intrinsic fluctuations are small and a deterministic PDE system without intrinsic noise
is a good approximation. This is often the case for the MinD oscillations [15, 35] but not in all
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situations [4]. The question of robustness is certainly important specifically in the context of
models of MinD oscillations [12, 18], but it is also important more generally in the field of un-
certainty quantification and in systems biology, where parameters are often poorly characterised
[36]. Moreover, oscillations in biology have a rich literature, in which robustness of oscillations
is an important theme, e.g. [21, 37]. With our approach combining analysis with simulations we
find that overall, the MinD model is robust to fluctuations in the coefficients, in the sense that
small fluctuations in the coefficients lead to only small changes in the period or to small changes
in the amplitude of the oscillations. However, our results also reveal that the oscillations are
more sensitive to some timescales of the extrinsic fluctuations than to others.

The outline of the paper is as follows. The PDE model of the Min oscillations is found
in Section 2. The model is linearized, expanded in a cosine series, and in a small parameter
ε in Section 3. The extrinsic perturbations of the parameters of the model are scaled by ε
and the influence of the perturbations on the frequency and the amplitude of the oscillations
is analyzed. Section 4 is a brief review of the properties of an Ornstein-Uhlenbeck process for
the colored temporal noise and how the spatial noise is generated. The autocorrelations for
the changes in frequency are derived in Section 5 assuming that the perturbations are as in
Section 4. Comparison is made in Section 6 between the solutions of the nonlinear model and
the linearized model used in the analysis. Some conclusions are drawn in the final Section 7.

Fig. 1: Stochastic simulations in three space dimensions of the oscillations in MinD proteins at one pole
(top) and the time-averaged concentration profile along an E. coli bacterium (bottom) with unperturbed
parameters (left) and temporal and spatial perturbations of the parameters (right).

2. MinD proteins oscillate in a single cell. Experimental observations of a single
bacteria cell reveal that MinD proteins oscillate from one pole of the cell to the other, with
a period of about one minute [4, 17, 18, 20, 25, 35]. During these oscillations, Min proteins
spend most of the time at the poles of the cell and much less time at the middle of the cell,
so that a time-averaged profile shows MinD concentration lowest in the middle of the cell and
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Fig. 2: Solution of the deterministic PDE model, in one space dimension and time, of MinD oscillations
(2.1). (a) Temporal variation of ρd shown at the left boundary at x = 0 (solid blue) and at the right
boundary x = 4.5 (dashed red). (b) Top: Kymographs of the dynamics of the concentration show
regular oscillations (high concentration: red, low concentration: blue). Most time is spent at the poles,
with a relatively fast transition from one pole to the other. Middle: Power spectrum confirms strong
periodic components of the solution. The maximal peak corresponds to a period of about 40 s. Bottom:
The time-averaged concentration profile is at a minimum near the middle of the cell.3



highest at the poles of the cell. These oscillations in space and time are associated with correct
functioning of cell division. The time-averaged MinD concentration profile can be thought of
as a potential function that repels key cellular machinery (such as Ftsz proteins and assembly
of the Z-ring) from the poles of the cell, and instead pushes the machinery to the middle of
the cell, where MinD concentration is lowest. This allows the cell to correctly locate and divide
at approximately the middle, which is important for producing two equal-sized daughter cells.
Disruptions of these oscillations are associated with cells that divide unevenly or that exhibit
other problematic phenotypes [4] so robustness is an important issue [12, 28, 29].

The Min system is simulated stochastically in three dimensions (3D) with a mesoscopic
model and Gillespie’s SSA [8] implemented in [2] in Figure 1. Parameters are not perturbed
in the left column, so the noise is intrinsic there. In the right column, one parameter, σdD
in (2.1), is perturbed in space and time and we have both intrinsic and extrinsic noise. The
MinD oscillations are affected by the extrinsic noise in the upper right panel but the average
concentration profile is less sensitive.

A system of reaction-diffusion PDEs is a popular macroscopic model for the oscillations of
the Min protein [14, 18]. It includes five species with concentrations that vary in space and
time: three species in the cytosol of the cell, and two species that are membrane-bound. Let the
concentrations of MinD:ADP, MinD:ATP, and MinE in the cytosol be ρDD(x, t), ρDT (x, t), and
ρE(x, t). Let ρd(x, t) and ρde(x, t) be the concentrations of MinD:ATP and MinE:MinD:ATP,
which are complexes on the membrane. The volume of the domain (the cytosol in a single cell)
is denoted by Ω with the boundary (the membrane of the cell) ∂Ω and an outward normal n.

The equations for the concentrations of the species in the model of Huang et al. [14] are

(2.1)

∂tρDD = σdeρde − σDT ρDD + γD∆ρDD,
∂tρDT = σDT ρDD − (σD + σdD(ρd + ρde))ρDT + γD∆ρDT ,
∂tρE = σdeρde − σEρdρE + γE∆ρE ,
∂tρd = (σD + σdD(ρd + ρde))ρDT − σEρdρE ,
∂tρde = σEρdρE − σdeρde.

The time derivative is denoted by ∂t and the diffusion operator by ∆. Reactions involving ρd
and ρde take place only on the cell membrane. The boundary conditions for the species in the
cytosol are reflective at ∂Ω, i.e. n · ∇ρ = 0.

Other models of the Min system are reviewed in [18]. The model of Fange and Elf [4] has
diffusion also on the membrane and the term σdDρdeρDT is missing in the second and fourth
equations in (2.1). The change of MinD from ADP to ATP form is ignored and there is an
upper bound on the number of membrane binding sites in the model of Meacci and Kruse [20].

The geometry of the cell Ω is modelled as cylindrical, with spherical caps at both ends. The
cell radius is 0.5µm, the cylindrical part is 3.5µm, and the volume V is 3.2725µm3. The typical
reaction parameters in (2.1) are

(2.2)
σde = 0.7s−1, σDT = 1s−1, σD = 0.025µms−1,
σdD = 6.8 · 105M−1s−1, σE = 5.60 · 107M−1s−1.

The diffusion coefficients are γD = γE = 2.5µm2s−1. The cell length is assumed to be constant
although the length is varying during the cell cycle and has an influence on the oscillations [6].

Figure 2 shows the deterministic solution of the system (2.1) for the parameters (2.2) in
one dimension (1D). As can be seen, periodic oscillations of MinD from pole to pole (top)
works to establish a relative temporal average concentration profile in which MinD has a higher
concentration in the regions near the polar caps and a minimum in the middle of the cell
(bottom). For these values of the parameters, the power spectrum (middle pane) has its main
peak at approximately 0.025 Hz, corresponding to a period of approximately 40 seconds. The
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solution is similar to the stochastic realization in Figure 1 with unperturbed parameters. The
steady state solution ρ∞ of (2.1) agrees very well with the average values in space and time of
the stochastic simulations. The time period T of the oscillations is about 40 seconds in both
the deterministic equations and the stochastic simulations.

3. Analysis of the macroscopic model. The deterministic PDE model switches between
a spatially homogeneous equilibrium and unstable periodic oscillations, via stable oscillations
when parameters σ are varied. The oscillatory behavior can be compatible with the suppression
of Z-ring formation at the bacterium’s poles only if the oscillations are reliable enough in space
and of large enough amplitude. We are interested in oscillatory solutions of (2.1) and where
in the parameter space they appear. Small perturbations around a steady state solution ρ∞
(or a fixed point) are introduced. The small perturbations satisfy linearized equations with
a constant system matrix. The eigenvalues of this matrix tell us where the perturbations are
stable, unstable, or oscillate. The coefficients σ are perturbed in space and time about a constant
mean value. In this way, the uncertainty in the parameters is introduced. The amplitude and
the frequency of the oscillations in the MinD system are changed by the perturbations which
are assumed to be small such that linearization is possible.

3.1. Invariants in the deterministic model. Since∫
Ω

∆ρdΩ =

∫
∂Ω

n · ∇ρdS = 0,

it follows from (2.1) that the total number of MinD and MinE molecules, ND and NE , defined
by

(3.1) ND =
∫

Ω
ρDD + ρDT + ρd + ρde dΩ, NE =

∫
Ω
ρE + ρde dΩ,

are constant and ∂tND = ∂tNE = 0. The total number of molecules in our examples are
ND = 4500 and NE = 1575.

The conclusion from (3.1) for a constant steady state solution

(3.2) ρT∞ = (ρDD∞, ρDT∞, ρE∞, ρd∞, ρde∞),

is that the quantities ρDtot and ρEtot in

(3.3) ρDtot = ND/V = ρDD∞ + ρDT∞ + ρd∞ + ρde∞, ρEtot = NE/V = ρE∞ + ρde∞,

are conserved in all solutions. Then ρd∞ and ρde∞ can be eliminated from the stationary
equation of (2.1) using (3.3) yielding three nonlinear equations for ρDD∞, ρDT∞, and ρE∞.
The constants ρDtot and ρEtot are 1375 and 481. Only one fixed point has been found in the
neighborhood of the σ-values in (2.2) and it depends smoothly on the parameters.

3.2. Model with variable parameters. In order to investigate the influence of a varia-
tion in the σ-parameters, a 1D simplification of the model in (2.1) is introduced in the interval
[0, L] with L = 4.5µm and

(3.4) ∂tρ = f(ρ) + κ(x, t)g(ρ) + γD∂2
xρ, ∂xρ = 0 at x = 0, L.

Here f and g contain the reaction terms and D is diagonal with Djj = 1, j = 1, 2, 3, and
Djj = 0, j = 4, 5 in the MinD model, and ∂x denotes ∂/∂x. A 1D model is found to be sufficient
to study Min oscillations in [18]. See also Figures 1 and 2. The parameters (2.2) in (2.1) are
constant in f and are multiplied by the same factor κ varying in space and time in g. The
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assumption is that the perturbed parameters appear linearly in the right hand side of (3.4).
The factor is assumed to have the expansion

(3.5)
κ(x, t) = (1 + εκt(t) +O(ε2))(1 + εκx(x) +O(ε2))

= 1 + εκt(t) + εκx(x) +O(ε2)

in a small parameter ε. The perturbations are such that

(3.6) lim
t→∞

1

t

∫ T

0

κt(s) ds = 0,
1

L

∫ L

0

κx(x) dx = 0.

Thus, the mean values of the σ-parameters in space and time are not changed. The unperturbed
constant steady state ρ∞ with κ = 1 satisfies

(3.7) f(ρ∞) + g(ρ∞) = 0.

A perturbation of ρ∞ is denoted by

(3.8) δρ(x, t)T = (δρDD(x, t), δρDT (x, t), δρE(x, t), δρd(x, t), δρde(x, t)).

Insert ρ∞+ δρ into (3.4) and linearize the system of equations. Terms of O(‖δρ‖2) are ignored
and the Jacobians of f and g at ρ∞ are denoted by F = ∂f/∂ρ and G = ∂g/∂ρ. Then δρ(x, t)
satisfies

(3.9)
∂tδρ = Fδρ+ κ(x, t)Gδρ+ γD∂2

xδρ
= Jδρ+ γD∂2

xδρ+ εκt(t)Gδρ+ εκx(x)Gδρ+O(ε2).

where J = F + G. The constant Jacobian matrix J depends on the steady state solution ρ∞
and the unperturbed reaction coefficients. The expansion of δρ in the small parameter is

(3.10) δρ = δρ0 + εδρ1 + ε2δρ2 +O(ε3).

This expansion will be inserted into (3.9) to derive equations for δρ0 and δρ1 but first the
stability of the lowest order term in the expansion is investigated.

3.3. Stability analysis of the lowest perturbation mode. An equation for the un-
perturbed solution δρ0(x, t) is obtained by letting ε = 0 in (3.9)

(3.11) ∂tδρ0 = Jδρ0 + γD∂2
xδρ0,

satisfying the constraints obtained from (3.1)

(3.12) δρDD + δρDT + δρd + δρde = 0, δρE + δρde = 0.

The stability of the constant steady state is first investigated by letting δρ0 be constant in
space in (3.11), δρ0 = δρ0(t). Then the equation for δρ0 is

(3.13) ∂tδρ0 = Jδρ0,

with the solution

(3.14) δρ0(t) = exp(Jt)δρ0(0).

The eigenvalues λj(J) of J determine the stability properties of the solution. If max<λj < 0
then a spatially constant perturbation will vanish but suppose that max<λj > 0 and δρ0(0) 6= 0.
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Then there are growing perturbations violating the assumption of small perturbations. Fur-
thermore, in order to satisfy (3.12) at least one component must approach −∞ breaking the
non-negativity constraint on the concentrations. Therefore, we let the constant steady state be
unperturbed initially with δρ0(0) = 0 and δρ0(t) = 0.

Another perturbation mode satisfying the boundary conditions in (3.4) is

(3.15) δρ0(x, t) = δρ0(t) cos(πx/L).

The solution to (3.11) with this ansatz is

(3.16) δρ0(x, t) = exp(H1t) cos(πx/L)δρ0(0), H1 = J − (γπ2/L2)D.

The stability of this perturbation is determined by the eigenvalues λj(H1), j = 1, . . . , 5. In the
neighborhood of the σ-values in (2.2), there is an oscillatory mode with <λj(H1) = 0, j = 1, 2,
and <λj(H1) < 0, j = 3, 4, 5, in numerical computations of the eigenvalues.

Let sTj = (sjDD, sjDT , sjE , sd, sde) be the eigenvector of H1 corresponding to λj and let
sjA = exp(µjA + iνjA), A = DD,DT,E, d, de. The oscillatory eigenvalue λ1 = iθ1 has the
eigenvector s1. The eigenvector of λ2 = iθ2 = λ∗1 = −iθ1 is s2 = s∗1. Then with initial data
δρ0(0) = s1 + s∗1, the oscillatory perturbation is derived from the solution of (3.11)

(3.17)
δρ0A(x, t) = (s1A exp(iθ1t) + s∗1A exp(−iθ1t)) cos(πx/L)

= 2|s1A| cos(ν1A + θ1t) cos(πx/L),
A = DD,DT,E, d, de.

The oscillations in time have the period T = 2π/θ1 with different phase angles ν1A for the
species. The period will change when L increases due to cell growth. In the analysis here, we
let L be constant.

The spatial mode in (3.15) and (3.17) has two peaks in space, one at x = 0 and one at
x = L with alternating sign and oscillates in time. The time average of the square of the species
concentration in (3.17) is

1

T

∫ T

0

(δρ0A(x, t))2 dt = |s1A|2 cos2(πx/L)

with a dip at the center of the cell in the MinD concentration as observed in Figures 1 and 2.
Similar analyses for related model equations can be found in [17, 20].

The sensitivity in the oscillatory eigenvalue of H1 in (3.16) to changes in the reaction
parameters is evaluated in Figure 3. The isolines for max<λj = 0 are drawn in the σdD − σE
plane for different σde and σDT . The eigenvalues are insensitive to σD. This is confirmed in
[33]. In the stable regions in the lower and left parts of the figures with <λj(H1) < 0, δρ0(x, t)
will decay in (3.16) and ρ(x, t) will approach the steady state ρ∞. The perturbation is mildly
unstable in the upper right part of the figures and will grow there until nonlinear effects, non-
negativity and the bounds on the total number of MinD and MinE molecules (3.3) will limit the
amplitude. For these parameters and the two oscillatory eigenvalues, <λj is small compared to
=λj .

The dependence of the period on the σ parameters is displayed in Figure 4. The isolines of
T are computed as 2π/=λj for the oscillatory eigenvalues. The period varies quickly when σdD
is changed around the base values of σ but is insensitive to perturbations in σE there.

3.4. Perturbation analysis. Equations for the space and time dependent perturbation
δρ of the steady state in (3.8) and (3.10) when ε > 0 will be derived from (3.9) using separation
of variables.
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Fig. 3: The perturbations of the steady state solution are oscillatory on the lines in the σE−σdD plane.
The curves represent different values of σde (top) and σDT (bottom).

The solution is first expanded in a cosine series in space

(3.18) δρ(x, t) =

∞∑
ω=1

δρ̂ω(t) cos(ωπx/L), x ∈ [0, L], t ≥ 0.

Then the boundary conditions in (3.4) are satisfied. The initial condition is taken to be

(3.19) δρ(x, 0) = δρ̂1(0) cos(πx/L).
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Fig. 4: The isolines of the period of the oscillations for the perturbations of the steady state solution in
the σE − σdD plane. The curves represent different values of T .

Let Hω = J − (γω2π2/L2)D and insert δρ in (3.18) into (3.9) to obtain

(3.20)

∂t

∞∑
ω=1

δρ̂ω(t) cos(ωπx/L) =

∞∑
ω=1

Hωδρ̂ω cos(ωπx/L)

+ε(κt + κx)

∞∑
ω=1

Gδρ̂ω cos(ωπx/L) +O(ε2).

Introduce a change of variables δρ̂ω = Sδûω where S = (s1, s2, s3, s4, s5) is the eigenvector
matrix of H1. The corresponding transformations of Hω and G are Ĥω = S−1HωS and Ĝ =
S−1GS. When ω = 1, H1 is a diagonal matrix with the eigenvalues λj = λj(H1) on the diagonal.
The eigenvalues of Hω, ω ≥ 2, are λωj . For the linearized system of equations (3.9), we assume

(3.21)
Dii ≥ 0, i = 1, . . . , 5, Djj > 0 for at least one j,
λ1 = iθ1, λ2 = iθ2 = −iθ1, <λj < 0, j = 3, 4, 5,
<λωj < 0, j = 1, . . . , 5, ω ≥ 2.

The third assumption concerning λωj is not necessary if the diffusion is the same in all compo-
nents with D = I. Then λωj = λj − γ(ω2 − 1)π2/L2 and

(3.22) <λωj = <λj − γ(ω2 − 1)π2/L2 < <λj ≤ 0, j = 1, . . . , 5, ω ≥ 2.

The following analysis is also simplified considerably if D = I.
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The equations satisfied by the coefficients δûωj(t) are for j = 1, . . . , 5,

(3.23)

∂t

∞∑
ω=1

δûωj cos(ωπx/L) =

∞∑
ω=1

5∑
k=1

Ĥωjkδûωk cos(ωπx/L)

+ε(κt + κx)

∞∑
ω=1

5∑
k=1

Ĝjkδûωk cos(ωπx/L) +O(ε2).

A Lindstedt-Poincaré transformation of time

(3.24) t = s(1 + εψj1(s) + ε2ψj2(s) + . . .)

is introduced for the j:th equation to avoid secular solutions later with terms in δûωj growing
linearly in time, see e.g. [22]. Then the time derivative is transformed to

(3.25) ∂sδûωj = ∂tδûωj
dt

ds
= (1 + εsψ′j1 + εψj1 +O(ε2))∂tδûωj .

Consequently, the equation in s is

(3.26)

∂s

∞∑
ω=1

δûωj cos(ωπx/L) = (1 + ε(sψ′j1 + ψj1))

∞∑
ω=1

5∑
k=1

Ĥωjkδûωk cos(ωπx/L)

+ε(κt + κx)

∞∑
ω=1

5∑
k=1

Ĝjkδûωk cos(ωπx/L) +O(ε2).

Insert the ε-expansion of δûωj

(3.27) δûωj = δûωj0 + εδûωj1 +O(ε2)

into (3.26) and collect terms multiplied by εk, k = 0, 1, 2 . . . For ε0 we arrive at an equation for
δûωj0

(3.28) ∂sδûωj0 =

5∑
k=1

Ĥωjkδûωk0, ω ≥ 1.

By (3.19), the initial conditions are

(3.29)
δû1j0(0) = δû1j00 =

5∑
k=1

(S−1)jkδρ̂1k(0), j = 1, . . . , 5,

δûωj0(0) = 0, ω ≥ 2, j = 1, . . . , 5.

By assumption (3.21) for ω = 1, the solution for large s is

(3.30)
δû110(s) = exp(iθ1s)δû1100, δû120(s) = exp(−iθ1s)δû1200,
δû1j0(x, s) ≈ 0, j = 3, 4, 5,

and because of the initial conditions

(3.31) δûωj0(s) = 0, ω ≥ 2, j = 1, . . . , 5.
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Since λj 6= ±iθ1 when j = 3, 4, 5, there is no secular term for these j and we let ψji = 0, i ≥
1, in (3.24) and s = t. With the approximations in (3.30) and assuming that δû1100 = δû1200 = 1
to simplify the notation, the equations for δûωj1 follow from terms proportional to ε1

(3.32)

∂s

∞∑
ω=1

δûωj1 cos(ωπx/L) =

∞∑
k=1

5∑
k=1

Ĥωjkδûωk1 cos(ωπx/L)

+(κt(s) + κx(x)) cos(πx/L)(Ĝj1 exp(iθ1s) + Ĝj2 exp(−iθ1s))
+(sψ′j1 + ψj1)iθj exp(iθjs) cos(πx/L), j = 1, 2,

∂t

∞∑
ω=1

δûωj1 cos(ωπx/L) =

∞∑
k=1

5∑
k=1

Ĥωjkδûωk1 cos(ωπx/L)

+(κt(t) + κx(x)) cos(πx/L)(Ĝj1 exp(iθ1t) + Ĝj2 exp(−iθ1t)), j = 3, 4, 5.

Let κx have the cosine expansion

(3.33) κx(x) =

∞∑
ω=2

κ̂xω cos(ωπx/L)

such that (3.6) is fulfilled. The factor κx cos(πx/L) in (3.32) can be written

(3.34)
κx(x) cos(πx/L) =

∞∑
ω=1

κ̃xω cos(ωπx/L),

κ̃xω = 1
2 κ̂x,ω+1, ω = 1, 2, κ̃xω = 1

2 (κ̂x,ω−1 + κ̂x,ω+1), ω ≥ 3.

Using the expansion (3.34) in (3.32) we obtain the equations for ω = 1

(3.35)
∂sδû1j1 = iθjδû1j1 + (κt + κ̃x1)(Ĝj1 exp(iθ1s) + Ĝj2 exp(−iθ1s))

+(sψ′j1 + ψj1)iθj exp(iθjs), j = 1, 2,

∂tδû1j1 = λjδû1j1 + (κt + κ̃x1)(Ĝj1 exp(iθ1t) + Ĝj2 exp(−iθ1t)), j = 3, 4, 5.

Choose ψj1(s) for j = 1, 2, in (3.24) such that

(3.36) iθj(sψ
′
j1(s) + ψj1(s)) + (κt(s) + κ̃x1)Ĝjj = 0

in (3.35). Then the equation for ω = 1 and j = 1 is

(3.37) ∂sδû111 = iθ1δû111 + (κt + κ̃x1)Ĝ12 exp(−iθ1s)

with the initial condition δû111(0) = 0. The solution to (3.37) is

(3.38)
δû111(s) =

∫ s

0

exp(iθ1(s− v))(κt + κ̃x1)Ĝ12 exp(−iθ1v) dv

= Ĝ12

(
κ̃x1

θ1
sin(θ1s) + exp(iθ1s)

∫ s

0

exp(−2iθ1v)κt(v) dv

)
.

The solution for j = 2 is obtained by replacing θ1 by −θ1 and switching the indices 1 and 2 in
(3.38)

(3.39) δû121(s) = Ĝ21

(
− κ̃x1

θ1
sin(θ1s) + exp(−iθ1s)

∫ s

0

exp(2iθ1v)κt(v) dv

)
.
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The solution of (3.35) for ω = 1 and j ≥ 3 is

(3.40)

δû1j1(t) =

∫ t

0

exp(λj(t− v))(κt + κ̃x1)(Ĝj1 exp(iθ1v) + Ĝj2 exp(−iθ1v)) dv

=
κ̃x1Ĝj1
λj − iθ1

(exp(λjt)− exp(iθ1t))+
κ̃x1Ĝj2
λj + iθ1

(exp(λjt)− exp(−iθ1t))

+Ĝj1 exp(λjt)

∫ t

0

κt(v) exp((−λj + iθ1)v)) dv

+Ĝj2 exp(λjt)

∫ t

0

κt(v) exp(−(λj − iθ1)v)) dv.

Since <λj < 0 by the assumption (3.21), exp(λjt) vanishes for large t.
The equations for ω ≥ 2 and j = 1, . . . , 5, are derived from (3.32) and (3.34)

(3.41) ∂tδûωj1 =

5∑
k=1

Ĥωjkδûωk1 + κ̃xω(Ĝj1 exp(iθ1t) + Ĝj2 exp(−iθ1t)).

Transform back in (3.41) from δûω to δρ̂ω in (3.20) using S. The eigenvector matrix of Hω is
Sω = (sω1, sω2, sω3, sω4, sω5) and the eigenvalues λωj satisfy <λωj < 0 by (3.21). Then change
the variables such that δρ̂ω = Sωδũω. Let δũω1 be the term in δũω multiplied by ε. The
equation for the j:th component of δũω1 is

(3.42) ∂tδũωj1 = λωjδũωj1 + κ̃xω(G̃ωj1 exp(iθ1t) + G̃ωj2 exp(−iθ1t)),

where G̃ωj` =
∑5
k=1(S−1

ω S)jkĜk`, ` = 1, 2. Solving (3.42) for ω ≥ 2 using the initial conditions
(3.29) we arrive at a solution similar to (3.40)

(3.43)

δũωj1(t) =

∫ t

0

exp(λωj(t− v))κ̃xω(G̃ωj1 exp(iθ1v) + G̃ωj2 exp(−iθ1v)) dv

=
κ̃xωG̃ωj1
λωj − iθ1

(exp(λωjt)− exp(iθ1t))

+
κ̃xωG̃ωj2
λωj + iθ1

(exp(λωjt)− exp(−iθ1t)).

For large t, exp(λωjt)→ 0 and δûωj1, ω = 1, 2, . . . is simplified to

(3.44) δũωj1(t) = −κ̃xωΘωj , Θωj =
G̃ωj1

λωj − iθ1
exp(iθ1t) +

G̃ωj2
λωj + iθ1

exp(−iθ1t).

The solution to the Euler equation (3.36) is

(3.45) ψj1(s) = − Ĝjj
iθjs

(
κ̃x1s+

∫ s

0

κt(v) dv

)
.

Introduce

(3.46) κxt(t) = κ̃x1 +
1

t

∫ t

0

κt(v) dv.

By (3.24) and (3.45) we conclude that

(3.47) s = t

(
1 +

εĜjj
iθj

κxt(s)

)
+O(ε2) = t

(
1 +

εĜjj
iθj

κxt(t)

)
+O(ε2), j = 1, 2.
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Let δũω with components δũωj be defined as in (3.27). Combining (3.27), (3.30), (3.38),
and (3.44) with (3.47), the two lowest order terms in the ε-expansion of δû are

(3.48)

δû11(t) = δû110(t) + εδû111(t) +O(ε2) = exp
(
iθ1t+ εĜ11tκxt(t)

)
+εĜ12

(
κ̃x1

θ1
sin(θ1t) + exp(iθ1t)

∫ t

0

exp(−2iθ1v)κt(v) dv

)
+O(ε2)

δû1j(t) = εδû1j1(t) +O(ε2) = −εκ̃x1

(
Ĝj1

λj − iθ1
exp(iθ1t) +

Ĝj2
λj + iθ1

exp(−iθ1t)

)
+εĜj1 exp(λjt)

∫ t

0

κt(v) exp((−λj + iθ1)v)) dv

+εĜj2 exp(λjt)

∫ t

0

κt(v) exp(−(λj − iθ1)v) dv +O(ε2), j = 3, 4, 5,

δũωj(t) = εδũωj1(t) +O(ε2) = −εκ̃xωΘωj(t) +O(ε2), ω ≥ 2,

when the transient has disappeared for large t. The solution for the other oscillatory mode δû12

is obtained from δû11 by replacing θ1 by −θ1 and switching the indices 1→ 2 and 2→ 1 in Ĝjk
as in (3.39). If κx = 0 then (3.48) is simplified and δũωj(t) = O(ε2).

In the original variables, we have from (3.48) that

(3.49)
δρ = S1δû1 cos(πx/L) +

∞∑
ω=2

Sωδũω cos(ωπx/L)

= (δû110(t)s11 + δû120(t)s12) cos(πx/L) +O(ε).

The main oscillatory mode given by s11 and s12 is perturbed by a term of O(ε) due to the
perturbed coefficients in the model.

The inverse of the eigenvector matrix S−1
ω , ω ≥ 1, has the properties

(3.50) S−1
ω =


ςω1

ςω2

. . .
ςω5

 , S−1
ω Sω =

 ςω1sω1 ςω1s
∗
ω1 . . .

ςω2sω1 ςω2s
∗
ω1 . . .

. . .

 =

 1 0 . . .
0 1 . . .
. . .

 .

The rows ςωj of S−1
ω are such that ςωjsωk = 0 when j 6= k and ςωjsωj = 1. We find that

ςω2 = ς∗ω1 by S−1
ω Sω in (3.50). The elements in the upper left corner of G̃ω and Ĝ = G̃1 are

then

(3.51) Ĝω11 = ςω1Gsω1 = ς∗ω2Gs
∗
ω2 = Ĝ∗ω22, Ĝω12 = ςω1Gsω2 = ς∗ω2Gs

∗
ω1 = Ĝ∗ω21.

Therefore, δû120 = δû∗110 in (3.48) and δρ in (3.49) is

(3.52)
δρ = (δû110s1 + δû∗110s

∗
1) cos(πx/L) +O(ε)

= 2<{δû110(t)s1} cos(πx/L) +O(ε).

The argument in the exponential in the leading term of O(1) in δû110 in (3.48) is denoted
by (ξ + iη)t with

(3.53) ξ(t) = εĜ11Rκxt(t), η(t) = θ1 + εĜ11Iκxt(t), Ĝ11R = <Ĝ11, Ĝ11I = =Ĝ11.

Depending on the sign of ξ(t) in (3.53), there will be a slow growth or decay of the main
oscillatory mode. The frequency of the oscillations in η(t) will be perturbed slightly depending
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on κxt(t). Thus, by (3.52) and as in (3.17)

(3.54)

δρA = 2<{exp
(
i(θ1 + εĜ11Iκxt(t))t

)
exp

(
εĜ11Rtκxt(t)

)
× cos(πx/L)|s1A| exp(iν1A)}+O(ε)

= 2|s1A| exp
(
εĜ11Rtκxt(t)

)
cos
(

(θ1 + εĜ11Iκxt(t))t+ ν1A

)
× cos(πx/L) +O(ε),

A = DD,DT,E, de, e.

The oscillations in all components are modified by εĜ11Iκxt(t) in (3.54) due to an accumulation
of the temporal perturbation κt in (3.46) and the constant spatial perturbation κ̃x1 = 1

2 κ̂x2 in
(3.34) and (3.33) of the reaction coefficients. The temporal perturbation vanishes for large t by
the assumption in (3.6).

Partition the interval [0, t] into subintervals [tj−1, tj ], j = 1, . . . , J, with ∆tj = tj − tj−1 and
use (3.46). The dominant part of δû11 in (3.48) will evolve between tj−1 and tj as

(3.55) δû110(tj) = exp

(
iθ1∆tj + εĜ11(κ̃x1∆tj +

∫ tj

tj−1

κt(v) dv)

)
δû110(tj−1) +O(ε).

Introduce the average

(3.56) κtj =
1

∆tj

∫ tj

tj−1

κt(v) dv

in (3.55). Then

(3.57)

δû110(tj) = exp
(
iθ1∆tj + εĜ11∆tj(κ̃x1 + κtj)

)
δû110(tj−1) +O(ε)

= exp

(
iθ1tj + εĜ11(tj κ̃x1 +

J∑
k=1

∆tjκtj)

)
δû110(0) +O(ε),

and the frequency η(tj) in (3.53) at tj is

(3.58) η(tj) = θ1 + εĜ11I(κ̃x1 +
1

tj

J∑
k=1

∆tkκtk) = θ1 + εĜ11I(κ̃x1 +
1

tj

∫ tj

0

κt(v) dv).

The contribution to the oscillation in δû110(tj) locally in [tj−1, tj ] is iηj∆tj with

(3.59) ηj = θ1 + εĜ11I(κ̃x1 + κtj).

The effects of the perturbations evaluated numerically in Figures 3 and 4 are compared to
(3.54). The σ values in the unperturbed f in (3.4) and its Jacobian F are as in (2.2) with the
frequency θ1 ≈ 2π/40. Perturbations are introduced in each one of the σ parameters keeping the
other ones constant. This defines G in (3.9). Then Ĝ11 is computed with the results in Table 1.
If σdD is increased then the frequency of the oscillations increases since Ĝ11I > 0 in the table
and the amplitude of the linearization increases since Ĝ11R > 0 in agreement with Figures 3 and
4. The sensitivity to perturbations in σdD is also large in the stochastic simulations in Figure 1.
When σde increases in the left panel of Figure 3 the oscillations are damped and Ĝ11R < 0 in
the table. The changes in stability are small in the right panel of Figure 3 when σDT is varied
because Ĝ11R ≈ 0. Neither the frequency nor the amplitude is sensitive to changes in σD in
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σA σDT σde σD σdD σE
Ĝ11R 0.0005 -0.0654 -0.0022 0.1327 0.0074

Ĝ11I 0.0343 0.2670 0.0021 0.1999 0.0611

Table 1: Perturbations in Ĝ11 due to perturbations in the σ parameters of the model.

Section 3.3 and in Table 1. A perturbation in σE has little influence on the frequency in Figure 4
and Ĝ11I is small.

Let us consider a special problem where all coefficients are perturbed in the same way
by κ(x, t) and G is such that it is diagonalized by S. Then Ĝjk = 0 when j 6= k and the
expressions in (3.48) are somewhat simplified with δû1j = δû1j1 = 0 in (3.40) for j ≥ 3. With
this assumption in (3.48)

(3.60) δû11(t) = exp
(
iθ1t+ εĜ11tκxt(t))

)
+O(ε2).

The effect on δρ of the higher order spatial modes with ω ≥ 2 in δûωj from (3.48) is

(3.61) εh(x, t) =

∞∑
ω=2

5∑
j=1

sωjδũωj cos(ωπx/L) = −ε
∞∑
ω=2

κ̃xω cos(ωπx/L)

5∑
j=1

sωjΘωj(t).

The perturbation εh depends on the spatial perturbations in κ̃xω and Θωj(t) in (3.44) which is
time dependent but is independent of κx and κt. The expression for δρ is obtained as in (3.52)

(3.62) δρ = δu1s1 + δu∗1s
∗
1 + εh(x, t) +O(ε2) = 2<{δu1s1}+ εh(x, t) +O(ε2).

The components of δρ are

(3.63)

δρA(x, t) = 2<{exp(iθ1t+ ε(Ĝ11R + iĜ11I)tκxt(t))|s1A| exp(iν1A)}
× cos(πx/L) + εhA(x, t) +O(ε2)

= 2|s1A| exp(εĜ11Rtκxt(t)) cos
(

(1 + εĜ11Iθ
−1
1 κxt(t))θ1t+ ν1A

)
× cos(πx/L) + εhA(x, t) +O(ε2),

A = DD,DT,E, d, de.

The amplitude of the oscillatory mode with frequency θ1 is perturbed in (3.63) by the
temporal perturbations κt if <Ĝ11 6= 0 and by the spatial perturbations in h(x) and κx.

4. Extrinsic noise. We now describe the model for fluctuations in the rate constants.
Briefly, the usual rate constant, σ, is replaced by σκ(x, t), where κ is an independent stochastic
process. The fluctuations are such that on average the rate constant is not changed, i.e. σκ(x, t)
averages to σ.

4.1. The Ornstein-Uhlenbeck process. An Ornstein-Uhlenbeck (OU) process [7, 9,
23, 34] is a scalar, continuous-time, continuous-state Markov process X(t), that satisfies the
stochastic differential equation (SDE)

(4.1) dX = −1

τ
X(t)dt+

√
cdW.

Here W (t) is a Wiener process. It is an almost surely continuous function, with W (0) = 0,
increments W (t) − W (s) = ∆W that have a normal distribution with mean 0 and variance
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|t− s|, and that are independent on nonoverlapping time intervals. The positive constant τ > 0
is the relaxation time, which is a measure of the average time it takes the OU process to revert
back to the long term mean of 0 after a fluctuation away from 0. For example, the autocorrelation
of the OU process is e−t/τ . The parameter τ is the time scale for how X(t) is correlated in
time. The explicit solution of this SDE (4.1), and thus a sample path representation of an OU
process, is

X(t) = e−t/τ
(
X(0) +

∫ t

0

√
c es/τdW (s)

)
.

This is one way to see that, given a sure initial condition, X(0) = x0, X(t) has a normal
distribution with mean x0e

−t/τ , and variance cτ
2 (1− e−2t/τ ).

More generally, the associated PDF p(x, t) evolves according to the Fokker-Planck PDE

∂tp(x, t) =
1

τ
∂x
(
xp(x, t)

)
+
c

2
∂2
xp(x, t),

given an initial distribution p(x, 0) for X(0). The diffusion constant c > 0 controls the spread
of the distribution. For example, as t → ∞ the process tends to the stationary distribution
p∞(x), which is normally distributed N (0, cτ2 ) with mean 0 and variance cτ

2 . If we choose the
initial distribution to be the same as the stationary distribution, then the distribution of X(t)
is always the same: p(x, 0) ≡ p∞(x) = p(x, t) = N (0, cτ2 ). One nice property of the OU process
is that it is ergodic, i.e. for a sure initial condition, X(0) = x0, and a suitably smooth function
f we have

(4.2) lim
t→∞

1

t

∫ T

0

f
(
X(s)

)
ds =

∫ ∞
−∞

f
(
X
)
dP(X) ≡ E (f(X)) = 〈 f(X) 〉,

where the second integral is with respect to the probability measure P that is equal to the
stationary distribution p∞(x) and 〈 · 〉 denotes the mean value.

To mathematically model the effects of extrinsic noise, we replace the rate constant σ by
Y (t)σ. The extrinsic noise process Y (t) is modeled, up to a normalization constant, by the
exponential of the OU process Y (t) ∝ eX(t). One reason for this choice of an exponential is that
it ensures that the extrinsic process and the rate Y (t)σ are always positive. We model X(t) in
(4.1) as always at the stationary distribution, which is N (0, cτ2 ). Then the autocorrelation of

eX(t) is

(4.3) Aexp(X)(s, t) =
E(eX(s)eX(t))− E(eX)2

Var(eX)
=

exp( cτ2 e
− |s−t|τ )− 1

e
cτ
2 − 1

.

Notice that Y has a lognormal distribution because X has a normal distribution. When a
normal distribution has mean µ and variance σ2, then the mean of the corresponding lognormal
distribution is eµ+σ2/2, and the variance is (eσ

2 − 1)e2µ+σ2

. Since the stationary distribution
for X is N (0, cτ2 ), E(eX) = ecτ/4 and the variance Var(eX) is e

cτ
2 (e

cτ
2 − 1). We normalize so

that the extrinsic noise process has mean 1 by letting

Y (t) = eX(t)/E(eX).

Now with f(x) = ex in (4.2), the ergodic property tells us that the long time average of the
extrinsic noise process Y (t) is 1. Thus, by introducing extrinsic noise in this way, on average,
we do not change the original value of the rate constant E(Y (t)σ) = σE(Y ) = σ.

16



4.2. Spatially correlated noise. The random perturbations at discrete points in space
εκx(xi), i = 1, . . . , N, are sampled from a multivariate normal distribution. The mean value of
the perturbations is 0. The elements of the symmetric, positive definite covariance matrix C are
Cij = E(κx(xi)κx(xj)), i, j = 1, . . . , N . The perturbations are generated by multiplying a vector
with independent, normally distributed N (0, 1) components by the Cholesky factorization of C.

5. Random perturbations in time and space. The perturbations κt(t) and κx(x) in
time and space of the parameters in the model in (2.1) are assumed to be random due to extrinsic
noise. The equation (3.4) is then a random differential equation with parameters depending on
the realization of the process. The analysis of the effect of the perturbations in Section 3.4 is
the same for deterministic and stochastic perturbations but additional conclusions can be drawn
from the distribution of the stochastic perturbations. As in Section 4, the temporal extrinsic
noise κt(t) is here assumed to be generated by an OU process as in [26], and the spatial extrinsic
noise κx(x) by a multivariate normal distribution.

5.1. Random perturbations in time. Assume that κt(t) in (3.5) and (3.46) is a random
variable generated by an OU process Y (t) as in Section 4.1 and let κt(t) = Y (t) − 1. Then
according to (4.2)

(5.1) lim
T→∞

1

T

∫ T

0

κt(v) dv = lim
T→∞

1

T

∫ T

0

Y (v)− 1 dv = 0.

The frequency in (3.53) is

(5.2) η(t) = θ1 + δx + δt(t), δx = εĜ11I κ̃x1 =
1

2
εĜ11I κ̂x2, δt(t) = εĜ11I

1

t

∫ t

0

κt(v) dv.

The deviations from θ1 caused by the spatial and temporal perturbations are δx and δt(t),
respectively. It follows from (5.1) and (5.2) that limt→∞ δt(t) = 0 as required in (3.6).

Define as in (3.55) and (3.56)

(5.3) ηj = θ1 + δx + δtj , δtj = εĜ11Iκtj = εĜ11I
1

∆tj

∫ tj

tj−1

κt(v) dv,

in a time interval [tj−1, tj ]. In a short interval, we have the approximate instantaneous value ηj
of the frequency with the contribution

(5.4) δtj ≈ εĜ11Iκt(tj)

from the variation of σ in time. The autocorrelation for δtj with a small ∆tj is by (4.3)

(5.5)
At(tj , tk) = 〈δtjδtk〉 =

ε2Ĝ2
11I

∆tj∆tk

∫ tj

tj−1

∫ tk

tk−1

〈κt(u)κt(v)〉dudv

≈ ε2Ĝ2
11I〈κt(tj)κt(tk)〉 = ε2Ĝ2

11I

(
exp

(
cτ

2
e−
|tj−tk|

τ

)
− 1

)
.

When ∆tjk = |tj − tk| is small compared to τ in (5.5) then

(5.6) exp

(
cτ

2
e−

∆tjk
τ

)
− 1 ≈ exp

(cτ
2

)(
1− c∆tjk

2

)
− 1,

and when it is large

(5.7) exp

(
cτ

2
e−

∆tjk
τ

)
− 1 ≈ cτ

2
exp

(
−∆tjk

τ

)
.

17



5.2. Random perturbations in space. Assume that the spatial perturbation κx has the
cosine expansion with nonzero even coefficients in (3.33)

(5.8) κx(x) =

∞∑
ω=2,4,...

κ̂xω cos(ωπx/L) =

∞∑
µ=1

κ̂x,2µ cos(2µπx/L), x ∈ [0, L].

Then κx(x) is L-periodic, κx(x+L) = κx(x). The correlation function in space ax(ξ) is defined
by

(5.9)

ax(ξ) =
1

L

∫ L

0

κx(x+ ξ)κx(x) dx

=
1

L

∞∑
µ=1

∞∑
ν=1

κ̂2
x,2µ

∫ L

0

cos(2µπ(x+ ξ)/L) cos(2νπx/L) dx, ξ ∈ [0, L].

This function is also L-periodic. Since∫ L

0

cos(2µπx/L) cos(2νπx/L) dx =

{
0, µ 6= ν,

L/2, µ = ν,

ax(ξ) can be written

(5.10) ax(ξ) =
1

2

∞∑
µ=1

κ̂2
x,2µ cos(2µπξ/L), ξ ∈ [0, L].

The coefficients in the cosine expansion of ax(ξ) are κ̂2
x,2µ/2.

When κx in (3.5) is a random variable, the autocorrelation is

(5.11) Ax(ξ) = 〈ax(ξ)〉 =
1

2

∞∑
µ=1

〈κ̂2
x,2µ〉 cos(2µπξ/L), ξ ∈ [0, L].

The mean values of κ̂2
x,2µ are the coefficients in the expansion of Ax(ξ) in a cosine series such

that

(5.12) 〈κ̂2
x,2µ〉 =

4

L

∫ L

0

Ax(ξ) cos(2µπξ/L) dξ ≡ Âxµ

as in Wiener-Khinchin’s theorem.
As an example take

(5.13) Ax(ξ) =

 (1− ξ/α)/α, ξ ∈ [0, α],
(1 + ξ/α)/α, ξ ∈ [−α, 0),

0, otherwise,

with α ∈ (0, L) which is L-periodic Ax(ξ + L) = Ax(ξ). When α is small there is a correlation
between the perturbations only in the vicinity. The function in (5.13) is scaled such that∫ L

0
Ax(ξ) dξ =

∫ L/2
−L/2Ax(ξ) dξ = 1. The Fourier coefficients are

(5.14) Âxµ = 2 · 4

L

∫ α

0

Ax(ξ) cos(2µπξ/L) dξ =
4L

(µπα)2
sin2(µπα/L) > 0.

The coefficients decay as µ−2 for increasing µ and when α is small then Ax(ξ) approaches the
Dirac measure and Âxµ = 4/L+O(α2).
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There is a shift in the random frequency η in (5.2) caused by δx. With a δx independent of
x, the autocorrelation of δx is

(5.15) Ax(ξ) = 〈δx(x+ ξ)δx(x)〉 = 〈δ2
x〉 = ε2Ĝ2

11I〈κ̃2
x1〉 =

1

4
ε2Ĝ2

11I〈κ̂2
x2〉 =

1

4
ε2Ĝ2

11IÂx1,

and the deviation sx of the frequency from θ1 is

(5.16) sx =
√
Ax(0) =

1

2
εĜ11I

√
Âx1.

6. Comparison between analysis and simulations. The PDE in (2.1), which is gener-
alised to allow fluctuating coefficients σ(x, t) depending on the realisation, is solved numerically
in 1D in [0, L]. The space derivative is approximated on a grid xi, i = 0, 1, . . . , N, with constant
grid size ∆x = xi − xi−1 = L/N and the usual difference formula of second order accuracy.
All reaction coefficients σ are perturbed in time or in space and by the same factor such that
f = 0 in (3.4), J = G, and H1 = G − (γπ2/L2)D in (3.16). The system in (2.1) is solved by
a Runge-Kutta method of fourth order accuracy with a constant time step and N = 21. This
is a slight abuse of a numerical method designed for an ordinary differential equation. Fourth
order temporal accuracy will not be achieved since Y (t) from the OU process in Section 4.1 is
only continuous. An example of a solution is found in Figure 2(a) with unperturbed coefficients.
The peak of ρd alternates regularly between x = 0 and x = L with the frequency θ1 ≈ 2π/40.
The amplitude is approximately constant after an initial transient. The computed eigenvalues
of H1 and Hω satisfy the assumption in (3.21). A typical cell cycle between the cell divisions of
an E. coli is about 1200 s.

The frequency of the oscillations is computed as in (5.3) in an interval [tj−1, tj+1] of length
∆tj where tj , j = 0, 1, . . . , are the time points of the consecutive extrema (maxima and minima)
of the computed oscillations. By (5.2) (and (5.3) where tj → tj+1) we have

(6.1) ηj = θ1 +
1

2
εĜ11I κ̂x2 + εĜ11I

1

∆tj

∫ tj+1

tj−1

κt(v) dv = θ1(1 + ε
Ĝ11I

θ1

(
1

2
κ̂x2 + κ̄tj)

)
).

For the coefficients in (2.2), Ĝ11I ≈ θ1. Consequently,

(6.2) ηj ≈ θ1(1 + ε

(
1

2
κ̂x2 + κ̄tj

)
).

The relative change in the frequency of the solution is ε( 1
2 κ̂x2 + κ̄tj).

The oscillatory frequency of the numerical ρd solution due to temporal perturbations is
compared at x = 0 with the analysis in Section 3.4. The OU process ((4.1)) generates κt(t) =
Y (t) − 1 following Section 4.1. The diffusion c for different relaxation parameters τ is chosen
such that

cτ

2
= log 2.

Since

ηj∆tj = θ1(1 + δt/θ1)∆tj = 2π

and θ1T = 2π, the relative perturbation in the computed frequency in the nonlinear equations
in [tj−1, tj+1] is approximated as

(6.3)
δt(tj)

θ1
≈ δ̄t(tj)

θ1
≡ 2π

θ1∆tj
− 1 =

T −∆tj
∆tj

, j ≥ 1.
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Fig. 5: The temporal perturbations of the reaction coefficients are generated with ε = 0.01 by different
τ parameters in the OU process. Left column: The value of 1+ε(Y (t)−1) generated by the OU process.
Right column: The relative change in the instantaneous frequency δ̄t(t) in (6.3) (solid blue) and δ̄OU (t)
in (6.4) (dashed red).
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The frequency θ1 is given by the unperturbed oscillations between two maxima or two minima.
The effect of the OU perturbations on the frequency in the same interval is

(6.4) δ̄OU (tj) = ε
θ1

∆tj

∫ tj+1

tj−1

Y (v)− 1 dv,

according to the analysis and (6.2). The quantities δ̄t(tj)/θ1 and δ̄OU (tj)/θ1 are compared in
the right column of Figure 5 with good agreement.

The autocorrelation of the observed instantaneous frequency change in (5.5) At(t1, tk) ≈
ε2θ2

1〈κt(t1)κt(tk)〉 is compared to the estimate in (5.5) in Figure 6 for three different relaxations
τ . The 〈 · 〉 average is taken over 200 trajectories and the data are scaled by the initial At(t1, t1).
Since exp(cτ/2) = 2, the correlation depends only on the time scale τ . The estimate behaves
as 1 − log 2

2
∆t1k
τ for small ∆t1k/τ and is very small for large ∆t1k/τ , see (5.6) and (5.7). The

transient phase is short for τ = 1 and not over at 1000 s when τ = 1000.
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Fig. 6: The scaled autocorrelation At(t1, t) of the perturbations in the frequency in (5.5) in the PDE
solution (solid blue) for different τ parameters in the OU process with ε = 0.01 compared with the
estimate in (5.5) (dashed red). Left: τ = 10. Middle: τ = 100. Right: τ = 1000.

The properties of the temporal perturbation κt generated by the OU process are evaluated
in Figure 7 for different τ . Averages of integrals of κt are taken over 400 trajectories. After a
transient phase, a stationary distribution p∞ of κt is obtained, cf. Section 4.1. The transient is
longer the larger τ is as in Figure 6. In the upper left figure, the integral tends to 0 as required
in (3.6) but the convergence is fast when τ = 1 and slow for τ = 1000. The response of the OU
perturbations in the frequency η(t) in (5.2) vanishes for large t but at different speed depending
on τ . The average of the square of κt over a period in (6.1) in the upper right figure is small
for τ = 1 and growing for increasing τ . This is also the trend in Figure 5 for the amplitude of
the frequency change. The average 〈κ2

t 〉 estimates the variance of κt after the transient phase
since 〈κ̄t〉 ≈ 0 there. When τ = 1 the fast fluctuations in κt(t), see e.g. the left column of
Figure 5, are averaged efficiently over T in κ̄t. The interval is not sufficiently long for evaluation
of the average for τ = 1000. The absolute value of the integral in the lower panel causes part
of the change in the amplitude of the oscillations in (3.48). Also here there is an effect of the τ
parameter in the OU process.

The shift in the frequency caused by the spatial perturbations in (5.2) and (6.2) is δx =
1
2εθ1κ̂x2. In the first experiment, the perturbations of the reaction coefficients are smooth with
1 + εκx(x) = 1 + ε cos(ωπx/L) where ε = 0.02 and 0.1 and ω = 2. The measured change in
frequency is δ̄x in the solution of (2.1) and is computed as in (6.3). For ε = 0.02, δ̄x/θ1 ≈ 0.01 and
for ε = 0.1, δ̄x/θ1 ≈ 0.05. The expected relative frequency shift in (6.3) is δx/θ1 = 1

2εκ̂x2 = 1
2ε
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Fig. 7: Averaged integrals of κt(t) over 400 realizations for different τ (τ = 1: blue; τ = 10: red;
τ = 100: yellow; τ = 1000: purple). Top: 1

t

∫ t

0
〈κt(s)〉ds for t ∈ [0, 2000]. Middle: 〈κ̄2

tj〉 =

〈
(

1
∆tj

∫ tj+1

tj−1
κt(s) ds

)2

〉 in 50 intervals of length about 40 covering an interval of length about 2000.

Bottom: | exp(iθ1t)
∫ t

0
exp(−2iθ1s)〈κt(s)〉ds| for t ∈ [0, 2000].
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which is in good agreement with the computed shifts. With ω = 6 and ε = 0.1, we have
δ̄x/θ1 = 0.011 in a numerical experiment which is 1/5 of the value at ω = 2.

In the next experiment, the perturbations in the coefficients are random in space with zero
mean. The perturbations at xi are sampled from a multivariate normal distribution and they
are correlated in neighboring grid points xi and xj as described in Section 4.2. The correlations
are a discretization of the ones in (5.13) with a symmetric, circulant, and Toeplitz covariance
matrix C. For α < L, the elements of C are

Cij = Ax(xi − xj) +Ax(xi − xj − L) +Ax(xi − xj + L), i, j = 1, . . . , N.

The procedure in Section 4.2 generates κxi, i = 0, 1, . . . , N, for a given α in (5.13) and their mean
κx is computed. Then κx(xi) = κxi−κx such that κx(xi) has zero mean as in (3.6). The relative
perturbation δx/θ1 is compared to the predictions in (6.2). The coefficient κ̂x2 is determined by
the discrete cosine transform of κx(xi). In Figure 8, two examples of perturbations are found
with α = 2 and the corresponding change in frequency. The frequency shifts are almost constant
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Fig. 8: The spatial perturbations of the reaction coefficients are generated for x ∈ [0, 4.5] by a multivari-
ate normal distribution with α = 2 in (5.13). Left column: ε = 0.1. Right column: ε = 0.01. Upper row:
The εκx(x) value. Lower row: The measured relative change δx/θ1 (solid blue) in the instantaneous
frequency in the time interval and the prediction by linear theory (dashed red).

in time and the theory agrees well with the experiments. Small oscillations are observed in the
perturbed frequency due to the sensitivity to the computed time interval ∆tj in (6.3). If the
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unperturbed interval is ∆t = 2π/θ1 and the perturbed interval is ∆tj = ∆t(1 − µj) with the
relative perturbation µj , then δ̄t(tj) in (6.3) is

δ̄t(tj)

θ1
=

2π

θ1∆tj
− 1 =

1

1− µj
− 1 ≈ µj .

The relative precision in the numerical computations of ∆tj has to be much better than µj
which is about 0.02 and 0.003 in the figures.

The autocorrelation in (5.15) is determined for ε = 0.1 by averaging (δx/θ1)2 over 200 real-
izations resulting in sx/θ1 = 0.0203. The corresponding theoretical value of 1

2ε
√
〈κ̂2
x2〉 is 0.0223

in a reasonable agreement between the nonlinear model and the analysis of the linearization.

7. Discussion. We have explored the robustness of spatiotemporal oscillations using a
complementary combination of analysis and simulation. All parameters in σ in (2.1) and (2.2)
are perturbed by εκt(t) in time and εκx(x) in space. Numerical solutions of the nonlinear system
of PDEs (2.1) with extrinsic noise in σ are compared to the solution without noise. The changes
in the oscillation frequency agree well with the theoretical predictions for a linearized system
satisfying certain assumptions. The MinD model in (2.1) fulfills these assumptions and is robust
in the sense that small perturbations in σ result in small differences in the frequency and the
amplitude.

The analytical approach is suitable for many other systems satisfying the assumptions con-
cerning the eigenvalues of the Jacobian of the linearized system (3.9) and that the parameters in
the reaction rates should appear linearly in the equations. It is likely that the conclusions con-
cerning the Ornstein-Uhlenbeck perturbations in time and the correlated spatial perturbations
are much more general than just for the particular example that we have studied here.
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and intercellular fluctuations in Min-protein dynamics decrease with cell length, Proc. Natl.
Acad. Sci. USA, 107 (2010), pp. 6134–6139, doi:10.1073/pnas.0911708107.

[7] D. Gillespie, Markov Processes: An Introduction for Physical Scientists, Aca-
demic Press, 1992, https://www.elsevier.com/books/markov-processes/gillespie/

978-0-12-283955-9.

24

http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1186/1752-0509-6-76
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1371/journal.pcbi.0020080
http://dx.doi.org/10.1126/science.1075988
http://dx.doi.org/10.1073/pnas.0911708107
https://www.elsevier.com/books/markov-processes/gillespie/978-0-12-283955-9
https://www.elsevier.com/books/markov-processes/gillespie/978-0-12-283955-9


[8] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434, doi:10.1016/0021-
9991(76)90041-3.

[9] D. T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its
integral, Phys. Rev. E, 54 (1996), pp. 2084–2091, doi:10.1103/PhysRevE.54.2084.

[10] P. D. Gould, N. Ugarte, M. Domijan, M. Costa, J. Foreman, D. MacGregor,
K. Rose, J. Griffiths, A. J. Millar, B. Finkelstädt, S. Penfield, D. A. Rand,
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