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Abstract. We investigate a model equation in the crystal growth, which is described

by a level-set mean curvature flow equation with driving and source terms. We establish

the well-posedness of solutions, and study the asymptotic speed. Interestingly, a new

type of nonlinear phenomena in terms of asymptotic speed of solutions appears, which

is very sensitive to the shapes of source terms.
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1. Introduction

1.1. Problem and Background. In this paper, we study a level-set forced mean cur-

vature flow equation motivated by a crystal growth phenomenon described below. The

crystal grows in both vertical and horizontal directions. The vertical direction growth

is stimulated by a nucleation, and the horizontal one is given by a surface evolution.

We assume further that the surface evolution is described by the mean curvature with a

constant force. Under these assumptions, the equation of interest is

(C)

ut −
(

div

(
Du

|Du|

)
+ 1

)
|Du| = c1E in Rn × (0,∞),

u(·, 0) = 0 on Rn,

(1.1)

where c > 0 and E ⊂ Rn are a given constant and a compact set respectively, and

1E(x) :=

{
1 if x ∈ E,
0 if x 6∈ E.

Here for (x, t) ∈ Rn × [0,∞), u(x, t) is the height of the crystal at location x at time t.

Hypotheses:

1. There is a source term c1E which

stimulates the nucleation.

2. Each level set evolves following the

law V = κ+ 1, where κ is its mean

curvature in the direction of the outer

normal vector.

Figure 1. Image of the crystal growth

Let us explain the background of our model from the theory of crystal growth [3]. We

consider a perfectly flat surface of a crystal immersed in a supersaturated media. The

crystal grows by catching adatoms. Assume that there are no dislocations on the surface

so that no spiral growth is expected. There are several models to explain the growth of

a perfectly flat crystal surface and their theories are often called two-dimensional nucle-

ation growth theory [15, 11]. They are roughly classified into single nucleation growth and

multinucleation growth. Single nucleation growth is easy to explain. A nucleation starts

somewhere and it spreads across the surface at an infinity velocity and the surface be-

comes flat again and waits next nucleation. Multinucleation growth model was originally

introduced by Hillig [9] and developed in many ways especially to calculate the growth

rate of the crystal surface, e.g. [21]. There are several multinucleation growth models in

the literature including ours, which is considered as a kind of the birth and spread model

[15, Section 2.6] originally proposed by Nielsen [14].
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In the birth and spread model, an island of a layer of width d of molecules, which looks

like a pancake, is attached on the crystal surface at the first nucleation. This pancake-like

shape spreads to the surface with a finite speed

V = v∞(ρcκ+ 1), (1.2)

where V and κ, respectively, denote the outer normal velocity of the lateral part of the

island, and the outward curvature of the curve bounding the set in the plane where the

island and the original crystal surface touches. The constants ρc > 0 and v∞ > 0 are

the critical radius and the step velocity [3], respectively. The second nucleation will start

either on the top of the island or on the crystal surface and it also spreads afterwards.

The place where each nucleation starts is often randomly distributed if the concentration

in supersaturated media is uniform. These phenomena are experimentally observed in the

literature [16] but it is less often than spiral growth.

Our model is considered as a continuum limit of a kind of the birth and spread model.

Actually, from the continuum point of view, it is derived heuristically from the Trotter-

Kato approximation (see Section 3 for more details). Let E ⊂ Rn be a set where nucleation

starts with supersaturation c. Let u denote the height of the crystal surface, and initially

the crystal surface is perfectly flat, i.e, u(·, 0) ≡ 0. We assume that outside E there

is no supersaturation or no way to nucleate. Within very short time d = ∆t > 0 the

crystal island forms and the shape of crystal becomes the graph of d1E, i.e. u(·, d) = d1E.

During next short time ∆t this island spreads horizontally to the crystal surface with the

velocity V = v∞(ρcκ+ 1) and we get a profile u(·, 2d) = d1E(∆t), where E(s) denotes the

solution of the above eikonal-curvature flow (1.2) starting from E at time s > 0. In the

next stage another nucleation starts again in E and all pancake shapes spread with the

same eikonal-curvature flow. By the repetition of this process we obtain a solution of the

Trotter-Kato approximation of our original problem. Our original equation is its limit as

∆t→ 0. In fact, equation (1.1) is obtained when v∞ = 1 and ρc = 1.

In the literature, it is sometimes assumed as in [15, Section 2.6] that ρc = 0 since ρc
is very small, and in this case, our continuum model is reduced to the Hamilton-Jacobi

equation with discontinuous source term studied recently by Giga and Hamamuki [6],

which justifies a proposed solution of T. P. Shulze and R. V. Kohn [17] modeling spiral

growth phenomena consisting of a pair of screw dislocations with opposite orientation. In

our model we take the curvature effect into account so that the model is more realistic.

Indeed, due to the curvature effect, an interesting physical phenomenon can be explained,

which is new and intuitive. Moreover, from mathematical point of view, we will face many

serious difficulties because of the appearance of the curvature term.

1.2. Main results. Mathematically, equation (C) has two main parts. One comes from

the nucleation described by the right hand side of (C), and the other one comes from the

surface evolution. In general, the surface evolution of each level set is not only nonlinear

but also nonhomogeneous and not monotone. This makes the interaction between the nu-

cleation and the surface evolution extremely nonlinear. In a sense, in order to understand
3



the behavior of solutions of (C), we need to understand the double nonlinear effects com-

ing from the surface evolution and the interaction, which will be explained more clearly

in Sections 3 and 5.

In this paper, we first establish the well-posedness of solutions to (C) as the equation is

not so standard because of the appearance of the discontinuous source term in the right

hand side. In particular, we show that the maximal solution is unique. Our main goal

then is to study the asymptotic growth speed of the maximal solution u to (C), i.e.,

lim
t→∞

u(x, t)

t
,

which describes the speed of the crystal growth. It is important noting that the growth of

u can be seen in a heuristic way via the Trotter-Kato product formula in Section 3 which

helps a lot in analyzing the double nonlinear effects.

In a specific case where E = B(0, R0) for some given R0 > 0, the growth is completely

understood and is analyzed in Section 4. Here B(x,R) denotes the open ball of radius

R > 0 centered at x ∈ Rn. The analysis could be done in an explicit way here as the surface

evolution is homogeneous. More precisely, balls remain balls after the surface evolution.

This also makes the interaction between the nucleation and the surface evolution simple

and clear. The governing equation (C) becomes a first order equation but it is noncoercive.

As studied in [7, 8] the asymptotic speed may depend on the place when the equation is

noncoercive. See also [20] for its physical background. We prove the following theorem

through Propositions 4.3, 4.6 and 4.8.

Theorem 1.1. Assume that E = B(0, R0) for some R0 > 0 fixed. Let u be the maximal

solution of (C). The followings hold

(i) If R0 < n − 1, then u has the formula (4.2) and is bounded on Rn × [0,∞). In

particular,

lim
t→∞

u(x, t)

t
= 0 uniformly for x ∈ Rn.

(ii) If R0 > n− 1, then u has the formula (4.5) and

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ Rn.

(iii) If R0 = n− 1, then u = ct1B(0,n−1). In particular,

lim
t→∞

u(x, t)

t
= c uniformly for x ∈ B(0, n− 1),

and

lim
t→∞

u(x, t)

t
= 0 uniformly for x ∈ Rn \B(0, n− 1).

Some more general results for the case of inhomogeneous source terms which are radially

symmetric are analyzed in Section 4.5 as well. See Theorem 4.12 and Remark 1.

In the general case where E is not radially symmetric, it turns out that a new type of

nonlinear phenomena appears. Very roughly speaking, if the nucleation site E is small

enough, then the solution of (C) does not grow up globally as t→∞. On the other hand,

if the set E is big enough, then the solution of (C) grows up locally uniformly in Rn as
4



t → ∞ with an asymptotic speed c, which is the rate of nucleation. If the set E is of

middle size in a sense, it seems that the asymptotic speed depends on its shape in a very

delicate and sensitive way.

It is worthwhile emphasizing here that we find such phenomena as a fact of experiment

in the crystal growth. In the experiment the set E corresponding the places where adatoms

are sprayed on crystal surfaces. Such a situation is quite popular for growth of metals

in manufacturing technology of semiconductors although spreading mechanism has other

effects. See e.g., [22]. For such phenomena as well as quantum dots the curvature effect

may not be neglected in two-dimensional setting.

We provide a framework to get estimates of growth rate in Sections 3 and 5. We then

choose a representative case where E is of square shape in R2 to study in details in Section

6. We establish the following theorem through Propositions 6.1 and 6.6.

Theorem 1.2. Assume that n = 2 and E = {(x1, x2) : |xi| ≤ d, i = 1, 2} for some d > 0

fixed. Let u be the maximal solution of (C). The followings hold

(i) If d < 1/
√

2, then u is bounded on R2 × [0,∞). In particular,

lim
t→∞

u(x, t)

t
= 0 uniformly for x ∈ R2.

(ii) If d > 1, then

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ R2.

(iii) If d = 1, then

lim
t→∞

u(x, t)

t
= c uniformly for x ∈ B(0, 1).

(iv) If 1/
√

2 < d < 1, then there exist α, β such that 0 < α < β < c and

α ≤ lim inf
t→∞

u(x, t)

t
≤ lim sup

t→∞

u(x, t)

t
≤ β locally uniformly for x ∈ R2.

Parts (i)–(iii) of Theorem 1.2 are obtained straightforwardly by using Theorem 1.1 and

the comparison principle. To prove part (iv) of Theorem 1.2, a first important step is to

understand the behavior of the level sets of the top and bottom of solutions to (C). We

study this by using a set theoretic approach (see [5, Chapter 5] for instance) in Section 5.

This perspective gives us rough estimates (Theorems 5.4, 5.6) on the behavior of the height

of solutions to (C), but this is not enough to obtain the precise behavior of limt→∞ u(x, t)/t.

Indeed, we have not yet been able to get the precise behavior limt→∞ u(x, t)/t in part (iv)

of Theorem 1.2, which is the case where E is of middle size.

We conclude this Introduction to give some related works studying large-time asymp-

totic behavior of solutions of problems which are non-coercive or of second order problem.

The list is not exhaustive at all. As an example of non-coercive Hamilton-Jacobi equations

the instability of flatness in crystal growth is discussed in [20, 7, 8], and the turbulent

flame speed is studied in the context of G-equations in [18, 19]. In [4] the large-time

behavior of solutions of mean curvature flow equations with driving force is studied.
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2. Wellposedness

In this section, we consider a little bit more general equationut −
(

div

(
Du

|Du|

)
+ 1

)
|Du| = f(x) in Rn × (0,∞),

u(·, 0) = u0 on Rn,

(2.1)

where f : Rn → [0,∞) is a bounded function, and u0 : Rn → [0,∞) is a continuous with

suppu0, supp f ⊂ B(0, R) for some R > 0. (2.2)

This is an important assumption as, for any T > 0, we only deal with compactly supported

solutions of (2.1) and (C) on Rn × [0, T ]. Notice that

div

(
Du

|Du|

)
|Du| = tr

[(
I − Du⊗Du

|Du|2

)
D2u

]
,

where I is the identity matrix of size n. Set σ(p) := I − (p⊗ p)/|p|2, and

H(p,X) := −tr [σ(p)X]− |p| for (p,X) ∈ (Rn \ {0})× Sn, (2.3)

where Sn is the set of real symmetric matrices of size n.

We first recall the definition of viscosity solutions to an equation with discontinuous

functions, which was introduced in [10].

Definition 1 (Viscosity solutions). Let u : Rn × [0,∞) → R be a locally bounded. We

say that u is a viscosity subsolution of (2.1) if u∗(·, 0) ≤ u0 on Rn, and

τ +H∗(p,X) ≤ f ∗(x0) for all (x0, t0) ∈ Rn × (0,∞), (p,X, τ) ∈ J+u∗(x0, t0).

We say that u is a viscosity supersolution of (2.1) if u∗(·, 0) ≥ u0 on Rn, and

τ +H∗(p,X) ≥ f∗(x0) for all (x0, t0) ∈ Rn × (0,∞), (p,X, τ) ∈ J−u∗(x0, t0).

Here for a locally bounded function h on Rm for m ∈ N, we denote the upper semi-

continuous envelope (resp., lower semicontinuous envelope) by h∗ and h∗ defined as

h∗(x) := limδ→0 sup{h(y) : |x − y| ≤ δ} and h∗(x) := limδ→0 inf{h(y) : |x − y| ≤ δ},
respectively, and we write J+u∗(x, t) and J−u∗(x, t) for the super and sub semijets of

u∗, u∗ at (x, t) ∈ Rn × (0,∞), respectively.

We say that u is a viscosity solution of (2.1) if it is both a viscosity subsolution and a

viscosity supersolution of (2.1).

It is well-known that if the function f on the right hand side of (2.1) is continuous

on Rn, then the comparison principle and the uniqueness of solutions hold. See [5] for

instance. On the other hand, if we deal with discontinuous functions f on the right hand

side of (2.1), we lose the uniqueness of viscosity solutions in general. See [6] for some

examples and observations of first order Hamilton-Jacobi equations with discontinuous

source terms. We only have the comparison principle in a weak sense. The following

result is standard in the theory of viscosity solutions, but we present it here to make the

paper self-contained.
6



Proposition 2.1 (Weak Comparison Principle). Fix T > 0. Assume that v ∈ USC (Rn×
[0, T ]) and w ∈ LSC (Rn × [0, T ]), which are compactly supported, i.e.,

v(x, t) = w(x, t) = 0 for all x ∈ Rn \B(0, RT ), t ∈ [0, T ] and some RT > 0, (2.4)

are a viscosity subsolution and a viscosity supersolution of (2.1) with f, g on the right

hand side respectively, where f and g are locally bounded functions satisfying f ∗ ≤ g∗ on

Rn. Then v ≤ w on Rn × [0, T ].

Proof. We argue by contradiction and suppose that maxRn×[0,T ](v − w) > 0. Then, there

exists a small constant α > 0 such that for each ε > 0 sufficiently small, we have

max
x,y∈Rn

t∈[0,T ]

{
v(x, t)− w(y, t)− |x− y|

4

4ε
− α

T − t

}
> 0.

As v(x, t) = w(x, t) = 0 for all (x, t) ∈ (Rn \B(0, RT ))× [0, T ], the maximum is attained

at (xε, yε, tε) ∈ B(0, RT )2 × (0, T ) and by passing to a subsequence if necessary, we can

assume (xε, yε, tε)→ (x0, x0, t0) as ε→ 0 for some x0 ∈ B(0, RT ), t0 ∈ [0, T ].

In view of Ishii’s lemma, for any ρ > 0, there exist (aε, pε, Xε) ∈ J2,+v(xε, tε) and

(bε, pε, Yε) ∈ J2,−w(yε, tε) such that

aε − bε =
α

(T − tε)2
, pε =

|xε − yε|2(xε − yε)
ε

,

(
Xε 0

0 −Yε

)
≤ A+ ρA2, (2.5)

where

A :=
1

ε
|xε − yε|2

(
I −I
−I I

)
+

2

ε

(
(xε − yε)⊗ (xε − yε) −(xε − yε)⊗ (xε − yε)
−(xε − yε)⊗ (xε − yε) (xε − yε)⊗ (xε − yε)

)
.

The definition of viscosity solutions implies the following inequalities:

aε +H∗(pε, Xε) ≤ f ∗(xε), and bε +H∗(pε, Yε) ≥ g∗(yε). (2.6)

Note that (2.5) implies Xε ≤ Yε.

In the case pε 6= 0, i.e., xε 6= yε, we have

H∗(pε, Xε)−H∗(pε, Yε) = tr [σ(pε)(Yε −Xε)] ≥ 0.

In the case pε = 0, we have xε = yε. Due to (2.5), we have A = 0, which implies Xε ≤ 0

and Yε ≥ 0. Thus,

H∗(pε, Xε) ≥ H∗(0, 0) = 0, and H∗(pε, Yε) ≤ H∗(0, 0) = 0.

In both cases, H∗(pε, Xε)−H∗(pε, Yε) ≥ 0. Combine this with (2.6) to yield

α

T 2
≤ α

(T − tε)2
≤ f ∗(xε)− g∗(yε).

Let ε→ 0 to deduce that

lim sup
ε→0

(f ∗(xε)− g∗(yε)) ≤ lim sup
ε→0

f ∗(xε)− lim inf
ε→0

g∗(yε) ≤ (f ∗ − g∗)(x0) ≤ 0,

which is a contradiction. �
7



In the case where we drop the curvature term, i.e., we consider the Hamilton–Jacobi

equation with a discontinuous source term, if we additionally assume

(f∗)
∗ = f ∗ on Rn, (2.7)

then we can prove the uniqueness of viscosity solutions in the class of upper semicontinuous

functions in the sense of [10]. This can be done by using a control approach which is an

analogue of [1]. On the other hand, as far as the authors know, there is no uniqueness

results for (2.1) under (2.7). Therefore, in this paper, we consider the maximal viscosity

solutions of (2.1). To make it clear, we give its definition here.

Definition 2 (Maximal viscosity solutions). We say that u is a maximal viscosity solution

of (2.1) if u is a viscosity solution of (2.1) satisfying (2.4) and for every viscosity solution

v of (2.1) satisfying (2.4), u ≥ v on Rn × [0,∞).

Theorem 2.2 (Existence and Uniqueness). There exists a unique maximal viscosity so-

lution u of (2.1).

Proof. Fix T > 0. For k ∈ N and x ∈ Rn, define

fk(x) := sup
y∈Rn

(f ∗(y)− k|x− y|) .

It is straightforward that fk ∈ C(Rn) and fk(x) ↓ f ∗(x) pointwise as k →∞.

By the standard theory of viscosity solutions, there exists a unique viscosity solution

uk ∈ C(Rn× [0, T ]) of (2.1) with the right hand side fk, and by the comparison principle,

we can easily prove uk(x) ↓ u(x) for all x ∈ Rn as k → ∞. Furthermore, in light of

assumption (2.2), there exists RT > 0 such that

uk(x, t) = u(x, t) = 0 for all (x, t) ∈ (Rn \B(0, RT ))× [0, T ], and k ∈ N.

Note that in view of this monotonicity

u = inf
k∈N

uk = lim sup ∗k→∞u
k, (2.8)

where lim sup ∗ is the upper half-relaxed limit. Thus, u ∈ USC (Rn × [0, T ]).

Clearly, uk is a supersolution of (2.1) for each k ∈ N, which yields immediately that

u is also a supersolution of (2.1) in view of the inf-stability. Thanks to (2.8), u is a

subsolution of (2.1) in view of the stability property of the upper half-relaxed limit for

viscosity subsolutions. Therefore, u is a solution of (2.1). Moreover, u is compactly

supported on Rn × [0, T ].

Next, we prove that u is continuous at t = 0. By [5, Lemma 4.3.4], there exists a

viscosity subsolution v ∈ C(Rn × [0, T ]) with a compact support of (2.1) with f = 0 on

the right hand side. Thus, by the comparison principle, v(y, t)−u0(x) ≤ u(y, t)−u0(x) ≤
uk(y, t)−u0(x) for all x, y ∈ Rn, t ∈ [0, T ], which implies u(y, t)→ u0(x) as (y, t)→ (x, 0).

Finally, we show that u is the unique maximal viscosity solution of (2.1). Indeed, take

any v to be a viscosity solution of (2.1). By the comparison principle, v∗ ≤ uk. Let

k →∞ to deduce the desired result. �
8



3. Heuristic observation

In this section, we give a formal argument in order to understand the behavior of

solutions of (C). Our goal in this section is to explain intuitively with a geometric aspect

how the asymptotic average of solutions depends on the shape of E. This is basically the

same as the derivation of the problem from physics explained in Introduction.

3.1. Trotter-Kato product formula. We consider the following double-step method:

(N)

{
vt = c1E in Rn × (0,∞),

v(·, 0) = u0 in Rn,

and

(P)

wt =

(
div
( Dw
|Dw|

)
+ 1

)
|Dw| in Rn × (0,∞),

w(·, 0) = u0 in Rn.

We call (N) and (P) the nucleation problem and the propagation problem, respectively.

We define the operators S1(t) : L∞(Rn) → L∞(Rn), and S2(t) : Lip (Rn) → Lip (Rn),

respectively by

S1(t)[u0] := u0 + c1Et, and S2(t)[u0] := w(·, t), (3.1)

where w is the unique viscosity solution of (P).

For x ∈ Rn, τ > 0, i ∈ N, set

U τ (x, iτ) := S1(τ)
(
S2(τ)S1(τ)

)i
[u0]. (3.2)

The function U τ (x, iτ) is called the Trotter-Kato product formula, we can expect for

x ∈ Rn and t = iτ > 0 fixed,

lim
i→∞

U τ (x, iτ) = u(x, t) locally uniformly for x ∈ Rn, (3.3)

under some condition, where u is the “solution” of (C). In the framework of the theory

of viscosity solutions, Barles and Souganidis in [2] first proved (3.3). Our situation here

actually does not fit into the framework of [2], as we do not have the comparison principle

for (C) because of the discontinuous source term c1E on the right hand side of (C). Nev-

ertheless, it is quite reasonable to assume that (3.3) holds in order to guess the behavior

of the solution u to (C).

In light of this, the behavior of u(x, t)/t as t→∞ can be consider as the behavior of

lim
t→∞

(
lim
τ→0
iτ=t

U τ (x, iτ)

iτ

)
. (3.4)

The advantage of considering U τ (x, iτ) lies in the fact that its graph is a pyramid of

finite number of steps of height cτ . The double-step method can then be described in a

geometrical way as follows:

(N) At each nucleation step, we drop from above an amount of cτ1E crystal down to

the pyramid with the assumption that the crystals are not sticky;

(P) At each propagation step, each layer of the pyramid evolves under a forced mean

curvature flow (V = κ+ 1).
9



Let us emphasize that, in general, the growth of the pyramid is highly nonlinear. The

reason comes from the fact that the behavior of each layer is extremely complicated, which

will be pointed out in Section 5 in more clearly. One particular layer can receive some

amount of crystal in each nucleation step, then changes its shape in each propagation step.

Of course the layers change not only in a nonlinear way but also in a nonhomogeneous

way in each propagation step. Furthermore, the changes are not monotone (unlike the

case V = 1). These affect the next nucleation step seriously as the receipt of crystals at

each layer will change dramatically from time to time. More or less, this says that the

problem has double nonlinear effects.

3.2. Notations and Spherical symmetric case. In this subsection, we make the anal-

ysis above clearer by a careful step by step analysis. In order to do so, we introduce no-

tations below. For A ⊂ Rn and t > 0, let F [A](t) be the solution to the surface evolution

equation

(S) V = κ+ 1 on Γ(t) with Γ(0) = A.

Fix i ∈ N and τ > 0. For j ∈ {1, . . . , i} and k ∈ {1, . . . , j}, we define the sets Eτ (j, k) ⊂
Rn, which are the layers of the pyramids, as follows:

Eτ (1, 1) :=E,

Eτ (2, 1) :=E ∪ F [Eτ (1, 1)](τ), Eτ (2, 2) := E ∩ F [Eτ (1, 1)](τ),

Eτ (3, 1) :=E ∪ F [Eτ (2, 1)](τ), Eτ (3, 2) := (E ∩ F [Eτ (2, 1)](τ)) ∪ F [Eτ (2, 2)](τ),

Eτ (3, 3) :=E ∩ F [Eτ (2, 2)](τ),

...

Let us now use this system to investigate spherical symmetric cases, i.e.,

E = B(0, R0).

It is worth pointing out that the spherical symmetric cases are easy to understand because

of the fact that balls remain balls after the evolution under the forced mean curvature flow

V = κ + 1. So the changes in shapes in each propagation step are homogeneous, which

make behaviors of the nucleation steps and the pyramids extremely clear. Our concern

therefore is only whether B(0, R0) grows or shrinks under the propagation step or not.

This leads to the distinction between the three cases:

R0 < n− 1, R0 > n− 1, and R0 = n− 1. (3.5)

We first consider the case where R0 < n − 1. As the curvature term is stronger than

the force term, the surfaces start to shrink. Thus,

Eτ (1, 1) =B(0, R0),

Eτ (2, 1) =B(0, R0), Eτ (2, 2) = B(0, R(τ)),

Eτ (3, 1) =B(0, R0), Eτ (3, 2) = B(0, R(τ)), Eτ (3, 3) = B(0, R(2τ)),

...
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where R(t) is the solution of the ODEṘ(t) = −n− 1

R(t)
+ 1 for t > 0,

R(0) = R0.

On the other hand, if R0 > n − 1, then the curvature term is weaker than the force

term and the surfaces start to expand. Thus,

Eτ (1, 1) =B(0, R0),

Eτ (2, 1) =B(0, R(τ)), Eτ (2, 2) = B(0, R0),

Eτ (3, 1) =B(0, R(2τ)), Eτ (3, 2) = B(0, R(τ)), Eτ (3, 3) = B(0, R0).

...

By using these observations, we can somehow understand the behavior of (3.4) in each

cases of (3.5).

In the next section, we only consider the spherical case and rigorously derive the formula

of u as well as its large time average.

4. Spherical symmetric case

In this section, we study the case where

E = B(0, R0) for some R0 > 0,

and investigate the large time average of the maximal viscosity solution u.

It is reasonable to look for radially symmetric solution u of (C) of the form

u(x, t) = φ(|x|, t) = φ(r, t).

Then,

ut = φt, Du = φr
x

|x|
,

D2u = φrr
x⊗ x
|x|2

+ φr
1

|x|

(
I − x⊗ x

|x|2
)
.

Plugging these into (C) to reduce it to the following initial value problem, which is basi-

cally a singular noncoercive Hamilton–Jacobi equation in 1−dimension,

(C′)

φt −
(n− 1)φr

r
− |φr| = c1[0,R0](r) in (0,∞)× (0,∞),

φ(·, 0) = 0 on [0,∞).

From the next subsequences, we consider three cases divided in (3.5).
11



4.1. The case R0 < n − 1. In order to obtain the maximal viscosity solution, we ap-

proximate from above to get a decreasing sequence of supersolutions. Its limit will be the

maximal viscosity solution once we prove that it is a subsolution.

Fix ε > 0 sufficiently small such that R0 + ε < n− 1. We first solve a boundary value

problem of a linear ordinal differential equation:

(ODE)


(
−(n− 1)

r
+ 1

)
ψεr = cIε(r) in (0, R0 + ε),

ψε(R0 + ε) = 0,

where

Iε(r) :=


1 for r ∈ [0, R0],
(R0+ε)−r

ε
for r ∈ [R0, R0 + ε],

0 for r ∈ [R0 + ε,+∞).

It is clear that, for 0 ≤ r ≤ R0 + ε,

ψε(r) :=

∫ r

0

cIε(s)

−n−1
s

+ 1
ds−

∫ R0+ε

0

cIε(s)

−n−1
s

+ 1
ds.

We set ψε(r) := 0 for r ≥ R0 + ε, and extend ψε to the whole R in a symmetric way (i.e.,

set ψε(r) = ψε(−r) for all r ≤ 0). Denote uε ∈ C(Rn × [0,∞)) by

uε(x, t) := min {ψε(|x|), ct} . (4.1)

Figure 2. Picture of uε in Case 1

Lemma 4.1. The function uε is a viscosity supersolution of (2.1) for g(x) = cIε(|x|).

Proof. The claim is clear for (x, t) ∈ B(0, R0 + ε) × (0,∞) as uε is the minimum of two

supersolutions there. Also there is nothing to check in case |x| > R0 + ε as uε = g = 0

there.

We only need to check carefully the case where |x| = R0 + ε. It is worth to mention

first that for any t0 > 0, we always have that uε(x, t) = ψε(|x|) for x in a neighborhood of

∂B(0, R0 + ε) and t ∈ (t0/2, t0 + 1). In other words, uε does not change with respect to

time in this neighborhood. Take φ ∈ C2(Rn) to be a test function such that ψε − φ has

a strict minimum at x0 ∈ ∂B(0, R0 + ε). In light of Lemma 8.1 in Appendix, for some

s ≤ 0,

Dφ(x0) = s
x0

R0 + ε
, and tr [σ(Dφ(x0))D2φ(x0)] ≤ (n− 1)s

R0 + ε
.

12



Thus, for s > 0,

H(Dφ(x0), D2φ(x0))− cIε(R0 + ε) = −tr [σ(Dφ(x0))D2φ(x0)]− |Dφ(x0)|

≥
(
(n− 1)− (R0 + ε)

)
|s|

R0 + ε
≥ 0,

which implies the conclusion. �

We define

ψ(r) := lim
ε→0

ψε(r) = inf
ε→0

ψε(r) for r ∈ R.

Actually, ψ can be computed explicitly as following

ψ(r) =

{
c ((r + (n− 1) log |r − n+ 1|)− (R0 + (n− 1) log |R0 − n+ 1|)) for r ∈ [0, R0],

0 for r ∈ (R0,∞).

For (x, t) ∈ Rn × [0,∞), set

v(x, t) := min {ψ(|x|), ct} = lim
ε→0

uε(x, t) = inf
ε>0

uε(x, t). (4.2)

It is important noticing that uε converges to v uniformly in Rn × [0,∞).

By the comparison principle and Lemma 4.1, it is clear that uε ≥ u and hence v ≥ u.

Furthermore, uε is also a supersolution of (C) for all ε > 0, and so is v. We now show

that in fact u = v. In order to achieve this, we need the following result

Lemma 4.2. The function v is a subsolution of (C).

Proof. Set T0 := (n−1) log(n−1)−(R0+(n−1) log |R0−n+1|). For t ≥ T0, v(x, t) = ψ(|x|)
for all x ∈ Rn and there is nothing to check.

Let us now fix (x0, t0) ∈ Rn × (0, T0) such that v(x0, t0) = ψ(x0) = ct0. Assume that

v − φ has a strict maximum at (x0, t0) for some test function φ ∈ C2(Rn × (0,∞)) and

that φ(x0, t0) = v(x0, t0) = ct0. Clearly, 0 ≤ φt(x0, t0) ≤ c. Thanks to Lemma 8.1, for

some s ∈ [ψ′(|x0|), 0],

Dφ(x0, t0) = s
x0

|x0|
, and tr [σ(Dφ(x0))D2φ(x0)] ≥ (n− 1)s

|x0|
.

Thus, for s > 0,

φt(x0, t0)−H(Dφ(x0), D2φ(x0))− c1E(x0) ≤ φt(x0, t0) +
s(|x0| − n+ 1)

|x0|
− c. (4.3)

For t < t0, let r(t) be the function in (|x0|, R0) which satisfies

t = r(t) + (n− 1) log(n− 1− r(t))− (R0 + (n− 1) log(n− 1−R0)),

and set x(t) := r(t)x0/|x0|. Then we have φ(x(t), t) ≥ v(x(t), t) = ct for t ≤ t0 and

φ(x(t0), t0) = φ(x0, t0) = ct0. Therefore,

c ≥ d

dt
(φ(x(t), t))|t=t0 = φt(x0, t0) +Dφ(x0, t0) · x′(t0)

= φt(x0, t0) + r′(t0)

(
Dφ(x0, t0) · x0

|x0|

)
= φt(x0, t0) + s

|x0| − n+ 1

|x0|
.

We combine this and (4.3) to get the result. �
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In conclusion, we obtain

Proposition 4.3. Let u be the maximal solution of (C). Then, we have the formula (4.2),

and thus u is bounded on Rn × [0,∞). In particular,

lim
t→∞

u(x, t)

t
= 0 in C(Rn).

Proof. Since the maximal solution u is obtained by (4.2), we have

u(x, t) = min{ψ(|x|), ct} ≤ ψ(|x|) for all (x, t) ∈ Rn × [0,∞).

This immediately implies the conclusion. �

4.2. The case R0 > n−1. Fix ε > 0. We first look at an initial-boundary value problem

of a linear partial differential equation in 1-dimension:

(L)ε

ϕεt +

(
−(n− 1)

r
+ 1

)
ϕεr = 0 in (R0 + ε,∞)× (0,∞)

ϕε(R0 + ε, t) = ct on [0,∞).

By using the method of characteristics, we can find a solution to the above PDE

ϕε(r, t) = c
(
t− r − (n− 1) log(r − (n− 1)) +R0 + ε+ (n− 1) log(R0 + ε− (n− 1))

)
.

Define uε : Rn × [0,∞)→ R as

uε(x, t) :=

{
ct for all (x, t) ∈ B(0, R0 + ε)× [0,∞)

(ϕε(|x|, t))+ for all (x, t) ∈ (Rn \B(0, R0 + ε))× [0,∞).

Figure 3. Picture of uε in Case 2

Lemma 4.4. The function uε is a viscosity supersolution of (2.1) for g(x) = c1B(0,R0+ε).

Proof. We only need to check at (x0, t0) ∈ Rn× (0,∞) where uε(x0, t0) = ϕε(|x0|, t0) = 0.

Assume that uε − φ has a strict minimum at (x0, t0) for some test function φ ∈ C2(Rn ×
[0,∞) and uε(x0, t0) = φ(x0, t0) = 0. In light of Lemma 8.1, for some s ∈ [ϕr(|x0|, t0), 0],

Dφ(x0, t0) = s
x0

|x0|
, and tr [σ(Dφ(x0, t0))D2φ(x0, t0)|] ≤ (n− 1)s

|x0|
.

Thus,

φt(x0, t0) +H(Dφ(x0, t0), D2φ(x0, t0))− c1B(0,R0+ε))(x0) ≥ φt(x0, t0) +
s(|x0| − n+ 1)

|x0|
.

(4.4)
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For t < t0, let r(t) be the function in (R0 + ε, |x0|) which satisfies

t = r(t) + (n− 1) log(r(t)− n+ 1)− (R0 + ε+ (n− 1) log(R0 + ε− n+ 1)),

and set x(t) := r(t)x0/|x0|. Then we have φ(x(t), t) ≤ uε(x(t), t) = 0 for t ≤ t0 and

φ(x(t0), t0) = φ(x0, t0) = 0. Therefore,

0 ≤ d

dt
(φ(x(t), t))|t=t0 = φt(x0, t0) +Dφ(x0, t0) · x′(t0)

= φt(x0, t0) + r′(t0)

(
Dφ(x0, t0) · x0

|x0|

)
= φt(x0, t0) + s

|x0| − n+ 1

|x0|
.

We combine this and (4.4) to get the result. �

For (x, t) ∈ Rn × [0,∞), set

v(x, t) := lim
ε→0

uε(x, t) = inf
ε>0

uε(x, t),

It is important noticing that uε converges to v locally uniformly in Rn × [0,∞). We

actually have

v(x, t) =

{
ct for all (x, t) ∈ B(0, R0)× [0,∞)

(ϕ(|x|, t))+ for all (x, t) ∈ (Rn \B(0, R0))× [0,∞),
(4.5)

where ϕ is the solution to (L)0, i.e.,

ϕ(r, t) = c
(
t− r − (n− 1) log(r − (n− 1)) +R0 + (n− 1) log(R0 − (n− 1))

)
.

By the comparison principle and Lemma 4.4, it is clear that uε ≥ u and hence v ≥ u.

Furthermore, uε is also a supersolution of (C) for all ε > 0, and so is v. We now show

that in fact u = v. In order to achieve this, we need the following result

Lemma 4.5. The function v is a subsolution of (C).

Proof. It is enough to test at (x0, t0) ∈ Rn × (0,∞) in case |x0| = R0. Assume that

v − φ has a strict maximum at (x0, t0) for some test function φ ∈ C2(Rn × [0,∞)) and

v(x0, t0) = φ(x0, t0) = ct0. We first note that φt(x0, t0) = c. We use Lemma 8.1 once more

to deduce that for some s ∈ [ϕr(R0, t0), 0],

Dφ(x0, t0) = s
x0

R0

, and tr [σ(Dφ(x0, t0))D2φ(x0, t0)] ≥ (n− 1)s

R0

.

Hence, for s > 0,

φt(x0, t0) +H(Dφ(x0, t0), D2φ(x0, t0))− c1E(x0) ≤ s
R0 − n+ 1

R0

≤ 0. �

In conclusion, we obtain

Proposition 4.6. Let u be the maximal solution of (C). Then, u has the formula (4.5),

and

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ Rn.
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4.3. The critical case R0 = n− 1. We denote by ur the maximal solution of (C) when

E = B(0, r) when r > n− 1. By the comparison principle, we get that u ≤ ur and hence

u ≤ lim
r→0

ur = inf
r>0

ur = ct1B(0,n−1) =: v.

It is clear that v is a supersolution of (C). We now show that v is in fact a subsolution of

(C), which yields again that u = v = ct1B(0,n−1).

Lemma 4.7. The function v = ct1B(0,n−1) is a subsolution of (C).

Proof. As usual, it is enough to test at (x0, t0) ∈ Rn × (0,∞) in case |x0| = R0 = n − 1.

Assume that v − φ has a strict maximum at (x0, t0) for some test function φ ∈ C2(Rn ×
[0,∞)) and v(x0, t0) = φ(x0, t0) = ct0. We note first that φt(x0, t0) = c. Lemma 8.1 yields

that for some s ≤ 0,

Dφ(x0, t0) = s
x0

R0

, and tr [σ(Dφ(x0, t0))D2φ(x0, t0)] ≥ (n− 1)s

R0

= s.

Hence, for s > 0,

φt(x0, t0) +H(Dφ(x0, t0), D2φ(x0, t0))− c1E(x0) ≤ s− s = 0. �

We conclude by the following result.

Proposition 4.8. We have the following asymptotics

lim
t→∞

u(x, t)

t
= c uniformly for x ∈ B(0, n− 1),

and

lim
t→∞

u(x, t)

t
= 0 uniformly for x ∈ Rn \B(0, n− 1).

4.4. Some immediate consequences. By using the above results, we get some results

for general compact sets E when it is either small enough or large enough.

Corollary 4.9. If E ⊂ B(y, n− 1) for some y ∈ Rn, then

lim
t→∞

u(x, t)

t
= 0 uniformly for x ∈ Rn.

If B(y, n− 1) ⊂ intE for some y ∈ Rn, then

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ Rn.

Corollary 4.10. Assume that E =
⋃k
i=1B(yi, ri) for some given k ∈ N, yi ∈ Rn, and

0 < ri ≤ n− 1 for 1 ≤ i ≤ k. Assume further that the closed balls B(yi, ri) for 1 ≤ i ≤ k

are disjoint. Denote by K = {i : 1 ≤ i ≤ k, ri = n− 1}. Then

lim
t→∞

u(x, t)

t
= c uniformly for x ∈

⋃
i∈K

B(yi, ri)

and

lim
t→∞

u(x, t)

t
= 0 uniformly for x ∈ Rn \

⋃
i∈K

B(yi, ri).
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Proof. For 1 ≤ i ≤ k, denote by ui the solution of (C) corresponding to c1B(yi,ri)
. The

important point is that {ui > 0} ⊂ B(yi, ri), which implies that

{ui > 0} ∩ {uj > 0} = ∅ for i 6= j.

Hence, u = max1≤i≤k ui. The results then follow from Propositions 4.3 and 4.8. �

4.5. Optimal control interpretation and inhomogeneous f . We now consider a

slightly more general version of (C) in the spherical symmetric situation. More precisely,

we are concerned with (2.1) in case f(x) = h(|x|) where h : [0,∞) → [0,∞) is upper

semicontinuous and there exists R > 0 such that

supp h ⊂ [0, R].

It is again reasonable to look for radially symmetric solution u(x, t) = φ(|x|, t) = φ(r, t).

Then φ satisfies {
φt − n−1

r
φr − |φr| = h(r) in (0,∞)× (0,∞),

φ(·, 0) = 0 on [0,∞).
(4.6)

Let ψ = −φ, and then ψ solves{
ψt − n−1

r
ψr + |ψr|+ h(r) = 0 in (0,∞)× (0,∞),

ψ(·, 0) = 0 on [0,∞).
(4.7)

The Hamiltonian of (4.7) is H̃(p, r) = |p| − n−1
r
p+ h(r), which is convex and singular at

r = 0. We can easily compute the corresponding Lagrangian L̃ as

L̃(q, r) =

{
−h(r) if

∣∣q + n−1
r

∣∣ ≤ 1

+∞ otherwise.

Therefore, the representation formula of ψ in light of optimal control theory is

ψ(r, t) = inf

{∫ t

0

(−h(γ(s))) ds : γ([0, t]) ⊂ (0,∞), γ(t) = r,

∣∣∣∣γ′(s) +
n− 1

γ(s)

∣∣∣∣ ≤ 1 a.e.

}
.

This yields that, for (r, t) ∈ (0,∞)× [0,∞),

φ(r, t) = sup

{∫ t

0

h(γ(s)) ds : γ([0, t]) ⊂ (0,∞), γ(t) = r,

∣∣∣∣γ′(s) +
n− 1

γ(s)

∣∣∣∣ ≤ 1 a.e.

}
.

(4.8)

We can then prove that u(x, t) := φ(|x|, t) is the maximal viscosity solution to (C) in a

similar manner to that of Sections 4.1–4.2. We now provide a general version of Proposi-

tion 4.6.

Proposition 4.11. Let u be the maximal viscosity solution to (C). Assume that there

exists r0 > n− 1 such that

c := h(r0) = max
r∈[0,∞)

h(r).

Then

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ Rn.
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Proof. We only need to prove that φ(·, t)/t → c as t → ∞ locally uniformly in [0,∞).

It is clear from the representation formula that φ(r, t) ≤ ct for (r, t) ∈ (0,∞) × (0,∞),

which yields that

lim sup
t→∞

φ(r, t)

t
≤ c uniformly for r ∈ (0,∞).

We now need to obtain the lower bound. Fix r ∈ (0,∞) and consider two cases.

Case 1: r > r0. Set T1 := r0(r−r0)
r0−(n−1)

. For t > T1, consider the curve γ : [0, t]→ (0,∞) as

γ(s) :=

{
r0 for 0 < s < t− T1,

r0 + (s− t+ T1) r0−(n−1)
r0

for t− T1 < s < t.

One can check that γ is admissible in formula (4.8) and hence

φ(r, t) ≥
∫ t

0

h(γ(s)) ds ≥
∫ t−T1

0

h(γ(s)) ds ≥ c(t− T1),

as h is nonnegative, which is sufficient to get the conclusion.

Case 2: 0 < r ≤ r0. We first consider the following ODE{
ξ′(s) = −1− n−1

ξ(s)
for s > 0,

ξ(0) = r0.

Take T2 > 0 to be the smallest value such that ξ(T2) = r. It is immediate that T2 ≤ r0.

For t > T2, consider γ : [0, t]→ (0,∞) as

γ(s) :=

{
r0 for 0 ≤ s < t− T2,

ξ(s− t+ T2) for t− T2 < s ≤ t.

Clearly, γ is admissible in formula (4.8) and

φ(r, t) ≥
∫ t

0

h(γ(s)) ds ≥ c(t− T ). �

Based on the above proposition and its proof, we have the following general result.

Theorem 4.12. Set

c1 := max
r∈[n−1,∞)

h(r) and c2 = sup
r∈(n−1,∞)

h(r).

Then,

lim
t→∞

u(x, t)

t
= c1 uniformly for x ∈ B(0, n− 1),

lim
t→∞

u(x, t)

t
= c2 locally uniformly for x ∈ Rn \B(0, n− 1).

The proof of this theorem is similar to that of Proposition 4.11 hence omitted. It is

important noticing that the large time average result of this theorem covers that of all the

cases in Propositions 4.3, 4.6, and 4.8. It however does not give explicit/precise formulas

of the maximal solution as in the mentioned propositions.
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Remark 1. (i) One can easily generalize the surface evolution part to V = v∞(ρcκ+ 1),

where v∞, ρc > 0 are given constants. Indeed, after rescaling the values x, t, we can reduce

the problem to the case where V = κ + 1. (ii) One can also deal with a general initial

data which is bounded and uniformly continuous on Rn instead of the constant initial

data. (iii) Theorem 4.12 is surprising as even though the source term is very thin, it very

essentially affects the growth of the crystal in a long time. More precisely, if we consider

f(x) = c1∂B(0,R0) for R0 > n− 1 fixed, then we have

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ Rn.

5. A framework to get estimates of growth rate

In a nonspherically symmetric case, it seems hard at this moment to obtain the precise

large time average limt→∞ u(·, t)/t, where u is the maximal viscosity solution of (C). We

will point out why so in Section 7. Therefore, we here start to build up a framework to ob-

tain rough estimates, namely the estimates on lim supt→∞ u(·, t)/t and lim inft→∞ u(·, t)/t
first.

We first try to understand the behavior of the top and bottom of a solution u to (C)

as it should give an information of the behavior of the height of u.

5.1. Motion of the top and the bottom of solutions. Let v be a viscosity subsolution

of (C). By the comparison principle, we have v∗(x, t) ≤ ct in Rn × [0,∞). For t ≥ 0, set

Amax(t) := {x ∈ Rn : v∗(x, t) = ct} , (5.1)

which is a compact set for t > 0 since v∗ is upper semicontinuous and compactly supported.

Lemma 5.1. Let Amax(t) be the set defined by (5.1). Then Amax(t) is a set theoretic

subsolution of V = κ+1, i.e., h(x, t) := 1Amax(t)(x) is a viscosity subsolution of (2.1) with

f = 0 (see [5, Definition 5.1.1] for details). Moreover, Amax(t) ⊂ E for all t ∈ (0,∞).

Proof. We first notice that vc(x, t) := v(x, t) − ct is a viscosity subsolution of (2.1)

with the right hand side f ≡ 0, and vc ≤ 0 in Rn × [0,∞). Moreover, Amax(t) =

{x ∈ Rn : v∗c (x, t) = 0}. Thus, it is clear to see that Amax(t) is a set theoretic subsolution

of V = κ+ 1 in view of [5, Theorem 5.1.6].

We next prove that Amax(t) ⊂ E for all t ∈ (0,∞). Suppose otherwise that there would

exist x0 ∈ Amax(t0) ∩ Ec for some t0 > 0. Then ϕ(x, t) := ct is a test function of v∗ from

above. This is a contradiction as

c = ϕt(x0, t0) +H∗(Dϕ(x0, t0), D2ϕ(x0, t0)) ≤ c1E(x0) = 0,

where H is defined by (2.3). �

Let w be a viscosity supersolution of (C). By the comparison principle again, we have

w∗(x, t) ≥ 0 in Rn × [0,∞). We set

Amin(t) := Rn \ {x ∈ Rn : w∗(x, t) = 0} = {x ∈ Rn : w∗(x, t) > 0}. (5.2)

Lemma 5.2. Let Amin(t) be the set defined by (5.2). Then Amin(t) is a set theoretic

supersolution of V = κ+ 1, i.e., h(x, t) := 1Amin(t)(x) is a viscosity supersolution of (2.1)

with f = 0. Moreover, intE ⊂ Amin(t) for all t ∈ (0,∞).
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Proof. We only prove intE ⊂ Amin(t) for all t ∈ (0,∞). Suppose otherwise that there

would exist x0 ∈ E ∩ Acmin(t0) for some t0 > 0. Then, w(x0, t0) = 0 which implies

ϕ(x, t) ≡ 0 is a test function of w∗ from below. This is a contradiction as

0 = ϕt(x0, t0) +H∗(Dϕ(x0, t0), D2ϕ(x0, t0)) ≥ c1E(x0) = c. �

In this manner, Amax(t) and Amin(t) are a set theoretic subsolution and supersolution,

respectively, of obstacle problems of V = κ+ 1 with

Amax(t) ⊂ E, and intE ⊂ Amin(t) for all t ≥ 0.

We give here a level set formulation for later use. See [5, Chapter 5] for more details. The

functions h(x, t) := 1Amax(t)(x), h(x, t) := 1Amin(t)(x) are, respectively, a subsolution and a

supersolution to

max

{
vt −

(
div

(
Dv

|Dv|

)
+ 1

)
|Dv|, v − 1E(x)

}
= 0 in Rn × (0,∞),

min

{
vt −

(
div

(
Dv

|Dv|

)
+ 1

)
|Dv|, v − 1intE(x)

}
= 0 in Rn × (0,∞).

We refer the readers to [11, 13] for some of related works concerning asymptotic behavior

of solutions of obstacle problems. Let us emphasize that even though [13] studies the

large time behavior of obstacle problems for Hamilton-Jacobi equations with possibly

degenerate diffusion tr (A(x)D2u), our problem here is not included since the degeneracy

of the diffusion depends on the gradient of the solution.

5.2. Upper and lower estimates. From the heuristic observation by the Trotter-Kato

approximation, we realize that the motion of the top (5.1) and the bottom (5.2) can be

described by the obstacle problem of the surface evolution equation.

For a closed set A ⊂ Rn, we denote by F−[A](t) (resp., F+[A](t)) the solution of the

front propagation of the obstacle problem

V = κ+ 1 with obstacle A, i.e., F−[A](t) ⊂ A (resp., intA ⊂ F+[A](t))

for any t ≥ 0, and F±[A](0) = A. We introduce two following geometric assumptions:

(G1) there exist an open set D ⊃ E and t0 > 0 such that F−[D](t0) = ∅,
(G2) F+[E](t)→ Rn as t→∞,

where E is the given set from the source.

It is worthwhile emphasizing here that for each E ⊂ Rn it is highly nontrivial to check

whether (G1) and (G2) hold or not. This is a purely geometric problem which we have to

investigate independently. In this subsection, we assume (G1) and (G2) first, and study

how it gives an affect to the height of the solution to (1.1). In the next section, we will

discuss more on (G1) and (G2).

Recall that for any T > 0, u ∈ USC (Rn × [0, T ]) and there exists RT > 0 such that

u(x, t) = 0 for all (x, t) ∈ (Rn \B(0, RT ))× [0, T ].
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Thus, x 7→ u(x, T ) attains its maximum at some point x0 ∈ B(0, RT ) and furthermore,

in light of the subsolution built in (4.2),

u(x0, T ) = max
Rn

u(·, T ) > 0.

Lemma 5.3 (Upper estimate). Assume (G1) holds, and let t0 be given by (G1). There

exists b ∈ (0, c) such that maxx∈Rn u(x, t0) ≤ bt0.

Proof. Since Amax(t0) = ∅, we have maxx∈Rn u(x, t0) < ct0. We set

b := max
x∈Rn

u(x, t0)

t0
to get the desired result. �

Theorem 5.4 (Global upper estimate). Assume (G1) holds, and let t0 be given by (G1).

There exists b ∈ (0, c) such that

u(x, t) ≤ bt+ (c− b)t0 for all (x, t) ∈ Rn × (0,∞).

In particular,

lim sup
t→∞

(
sup
x∈Rn

u(x, t)

t

)
≤ b.

Proof. Let w be the maximal solution to (2.1) with g = 1D. In light of Lemma 5.3, there

exists b ∈ (0, c) such that maxx∈Rn w(x, t0) ≤ bt0.

By the comparison principle, u ≤ w on Rn × [0,∞), which yields that

max
x∈Rn

u(x, t0) ≤ max
x∈Rn

w(x, t0) ≤ bt0.

Using again the comparison principle and induction, we deduce that u(x,mt0 + t) ≤
w(x, t) + mbt0 on Rn × [0,∞) for all m ∈ N. In particular, u(x,mt0) ≤ mbt0 for any

x ∈ Rn and m ∈ N.

For t ∈ (mt0, (m+ 1)t0), m ∈ N, we observe that

u(x, t) ≤ u(x,mt0) + c(t−mt0) ≤ bmt0 + c(t−mt0)

= bt+ (c− b)(t−mt0) ≤ bt+ (c− b)t0,

which gives us the estimate on u(x, t) and also the estimate on lim sup. �

We get a lower bound in a similar manner. For R ≥ n and t > 0, set

UR(t) := inf{u∗(x, t) : x ∈ B(0, R) ∪ E}.

Lemma 5.5 (Lower estimate). Assume (G2) holds. For R ≥ n, there exist aR > 0 and

t1 > 0 such that UR(t1) ≥ aRt1.

Theorem 5.6 (Global lower estimate). Assume (G2) holds. For R ≥ n, there exist

aR > 0 and t1 > 0 such that

UR(t) ≥ aR(t− t1) for all t ≥ 0.

Thus,

lim inf
t→∞

(
inf

x∈B(0,R)

u∗(x, t)

t

)
≥ aR.
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Remark 2. By the propagation property it is not difficult to see that aR can be taken

independent of R. Indeed, fix R > n and s > t1. For t > 0, set

An(t) := {x ∈ Rn : u∗(x, t) > an(s− t1)}.

Then B(0, n) ⊂ An(s). Note furthermore that An(t) is a set theoretic supersolution of

V = κ+ 1. Hence, there exists t2 > 0 independent of s such that

B(0, R) ⊂ An(s+ t2).

In other words, t2 is the time it takes to transform B(0, n) into B(0, R) under the forced

mean curvature flow V = κ+ 1. We conclude that

u∗(x, t) ≥ an(t− t1 − t2) for all (x, t) ∈ B(0, R)× (0,∞).

Therefore,

lim inf
t→∞

(
inf

x∈B(0,R)

u∗(x, t)

t

)
≥ an.

6. The behavior of F±[E](t)

In this section we investigate the precise behavior of the solution F±[E](·) of the front

propagation problems with obstacles. We in particular consider a family of squares in R2,

i.e.,

E := E(d) = {(x1, x2) : |xi| ≤ d, i = 1, 2} (6.1)

for d > 0 given as a nontrivial specific example. We first give a straightforward result of

Proposition 4.9.

Proposition 6.1. The followings hold:

(i) If d < 1/
√

2, then u is bounded on R2 × [0,∞). In particular, u(·, t)/t → 0

uniformly in R2 as t→∞.

(ii) If d > 1, then u(·, t)/t→ c locally uniformly in R2 as t→∞.

(iii) If d = 1, then u(·, t)/t→ c uniformly on B(0, 1) as t→∞.

Note that in the case d = 1, Proposition 4.9 does not give the large time behavior of

u(x, t)/t for x ∈ Rn \B(0, 1). As this is a critical case, we do not know yet how to handle

this situation.

We now study the case where 1/
√

2 < d < 1, which is delicate. Our goal is to verify

assumptions (G1) and (G2), which in turn gives us some knowledge on the lim inf and

lim sup behavior of u(·, t)/t as t→∞ by using Theorems 5.4, 5.6.

We first consider the behavior of F−[E](t). More precisely, we first study the behavior

of the solution to the obstacle problem for the graph:

max

{
yt −

yxx
1 + (yx)2

− (1 + (yx)
2)1/2, y − g(x)

}
= 0 for (x, t) ∈ (−D,D)× (0,∞),

(6.2)

where g(x) := −|x|, and D :=
√

2d. We construct a viscosity supersolution w of (6.2) in

[−D,D]× [0, T ] for T > 0 to be chosen with w(x, 0) ≥ g(x)− s in [−D,D] for some s > 0
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satisfying d+ s < 1. Define W : [−D,D]→ R by

W (x) :=

{
−|x| for 1/

√
2 ≤ |x| ≤ D

−
√

2 + (1− x2)1/2 for |x| ≤ 1/
√

2,

and set

w(x, t) = λ(t)W

(
x

λ(t)

)
,

where λ : [0,∞)→ R is the solution of the following ODE
λ′(t) =

1

λ(t)
− 1 for t > 0,

λ(0) =
s

2
.

(6.3)

Pick T > 0 to be the first time that λ(T ) = d+ s/
√

2 < 1. Clearly for t ∈ (0, T ),

λ′(t) ≥ 1

d+ s/
√

2
− 1 = ε0 > 0,

Thus T ≤ ε−1
0 <∞.

Figure 4. Graph of w(x, t)

Lemma 6.2. The function w defined above is a supersolution of (6.2) in [−D,D]× [0, T ]

and w(x, 0) ≥ g(x)− s in [−D,D].

Proof. It is straightforward from the definition that w(x, 0) ≥ g(x)− s.
Let z = x/λ(t). For |z| < 1/

√
2, we compute that

wt = λ′(t)(W − zW ′) = λ′(t)

(
−
√

2 + (1− z2)1/2 − z −z
(1− z2)1/2

)
= λ′(t)

(
−
√

2 +
1

(1− z2)1/2

)
,

wx = W ′ =
−z

(1− z2)1/2
, wxx = W ′′ 1

λ(t)
=

−1

(1− z2)3/2

1

λ(t)
.
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By using the above, for |z| < 1/
√

2,

wt −
wxx

1 + (wx)2
− (1 + (wx)

2)1/2

= λ′(t)

(
−
√

2 +
1

(1− z2)1/2

)
+

1

λ(t)(1− z2)1/2
− 1

(1− z2)1/2

= λ′(t)

(
−
√

2 +
1

(1− z2)1/2

)
+

(
1

λ(t)
− 1

)
1

(1− z2)1/2

= λ′(t)

(
−
√

2 +
2

(1− z2)1/2

)
≥ 0,

as λ′(t) ≥ 0 always for t ∈ [0, T ].

For 1/
√

2 ≤ |z| ≤ D, there is nothing to check as w already touches the obstacle. �

Theorem 6.3. There exists t0 > 0 such that F−[E](t) = ∅ for all t ≥ t0.

Proof. Recall that the original size of the obstacle (square) is 2d ∈ (
√

2, 2). We consider

the extended obstacle with size 2d +
√

2s < 2. By Lemma 6.2, F−[E](T ) is contained

in a ball of radius d + s/
√

2 < 1. We therefore deduce the existence of t0 > 0 such that

F−[E](t0) = ∅. �

Next, we consider the following obstacle problem:

min

{
yt −

yxx
1 + (yx)2

− (1 + (yx)
2)1/2, y − g(x)

}
= 0 for (x, t) ∈ (−D,D)× (0,∞).

(6.4)

Pick r ∈ (1, D). We construct a subsolution v of (6.4) in (−D,D) × [0, T ] for T > 0 to

be chosen such that

v(x, 0) = g(x),

(v(x, T ) +D)2 + x2 ≥ r2 > 1 for all x ∈ [−D,D].

Let φ : (−r, r)× [0,∞)→ R such that

φ(x, t) = −2D +
√
r2 − x2 +

(
1− 1

r

)
t.

It is clear that φ is a separable subsolution of

φt −
φxx

1 + (φx)2
− (1 + (φx)

2)1/2 = 0 in (−r, r)× (0,∞).

Define the function v : R× [0,∞)→ R by

v(x, t) :=

{
max{−|x|, φ(x, t)} for |x| < r,

−|x| for |x| ≥ r.
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Figure 5. Picture of v(x, t)

Lemma 6.4. Let T = r(2D−r)
r−1

. Then the function v defined as above is a subsolution of

(6.4) in R× [0, T ] with v(x, 0) = −|x| in R and

(v(x, T ) +D)2 + x2 ≥ r2 > 1 for all x ∈ [−D,D]. (6.5)

Proof. There is nothing to check in case |x| ≥ r as we always have v(x, t) = −|x|, which

is the obstacle part.

We thus only need to check the case that |x| < r. In (−r, r)× (0,∞), v is defined as the

maximum of two subsolutions of (6.4), which implies that v itself is also a subsolution.

We can easily check that at T = r(2D−r)
r−1

,

v(x, T ) :=

{
−r +

√
r2 − x2 for |x| < r,

−|x| for |x| ≥ r,

which yields (6.5) immediately. �

Theorem 6.5. Assume that 1 < D <
√

2. Then F+[E](t)→ R2 as t→∞.

Proof. By Lemma 6.4, we have that F+[E](T ) contains a ball of radius r > 1. As this

ball of radius r expands to R2 under the forced mean curvature flow V = κ + 1 as time

goes to infinity, we get the conclusion. �

Remark 3. If we consider the case where d < 1/
√

2, then we can easily check that the

function v defined by v(x, t) :=
√

1− x2 for all (x, t) ∈ [−D,D]× [0,∞) is a supersolution

of (6.4) which is static. Therefore, the solution cannot grow up, which we have already

got in Proposition 6.1. On the other hand, if we consider the case where d > 1/
√

2, then

we cannot avoid to have shocks as in Figure 5, and therefore we cannot construct a static

supersolution.

In light of Theorems 6.3, 6.5, we conclude that

Proposition 6.6. Assume that 1/
√

2 < d < 1. Then there exists α, β such that 0 < α <

β < c and

α ≤ lim inf
t→∞

u(x, t)

t
≤ lim sup

t→∞

u(x, t)

t
≤ β locally uniformly for x ∈ R2.

In a similiar manner to Theorem 6.5, we can get a slightly general result.
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Proposition 6.7. Assume that, upon relabeling and reorienting the coordinates axes if

necessary, there exist l > 1 and functions g1, g2 ∈ C([−l, l],R) such that g1 < g2 on [−l, l]
and

{(x, y) : x ∈ [−l, l] and g1(x) ≤ y ≤ g2(x)} ⊂ E.

Then F+[E](t)→ R2 as t→∞.

Remark 4. One important problem in the crystal growth literature is to understand

the large time average of the crystal growth with two sources as well as the interaction

between the sources. In the case that the two sources are the same and of circular shape,

the equation becomes

ut −
(

div

(
Du

|Du|

)
+ 1

)
|Du| = c1B((a,0),R0) + c1B((−a,0),R0) in R2 × (0,∞),

u(·, 0) = 0 on R2,

(6.6)

where a,R0 > 0 are given constants. We assume further that R0 > a, which means that

the two sources overlap. As a corollary to Proposition 6.7, and Theorem 5.6, we get

lim inf
t→∞

u(x, t)

t
≥ α locally uniformly for x ∈ R2,

for some α > 0 if and only if a+R0 > 1. This is a tiny partial result toward this direction,

which remains rather open so far. At least, we are able to give a first condition to have a

locally uniform growth as t→∞.

7. Conclusion

We first established a well-posedness result for maximal viscosity solution of (2.1) in

Section 2. Note that we are not able to prove uniqueness of viscosity solutions because

of the discontinuity of the right hand side of (2.1) (see Remark 1). We believe that the

maximal solution is the correct physical solution.

In the spherically symmetric setting, we provide a complete analysis to understand the

behavior of the solution of (C) and its large time average in Propositions 4.3, 4.6, and

4.8. We also study the case of inhomogeneous source f of (2.1) in Theorem 4.12.

In the nonspherically symmetric case, it seems extremely hard to obtain the precise

large time average of the maximal viscosity solution of (C). For instance, if we consider

the square case and use the Trotter-Kato product formula, then we could see clearly how

complicated the behavior of the pyramid is as in Figure 6. This is of course crucially

different from that of the spherically symmetric case which we observed in Section 3.
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Figure 6

In the square case, we completely understood the case where d < 1/
√

2 and d > 1

in Proposition 6.1 as a corollary of Proposition 4.9. In the case where 1/
√

2 < d < 1,

we could only understand the behaviors of the top and the bottom of the pyramid and

achieve lim inf and lim sup results in Proposition 6.6. Note that we choose the square

case here just to make it a clear representative. Similar results hold for the rectangle and

ellipse cases.

In order to understand the precise large time behavior of solutions, we somehow need

to understand clearly the behavior of the middle layers of the pyramid. So far we do not

yet have tools to analyze these layers.

We are able to get a first nontrivial result for the case where E is the union of the two

balls of same size in Remark 4. The precise growth speed in this case however is still

completely open.

8. Appendix

Lemma 8.1. Let ψ : [0,∞)→ R be a continuous function, which is C2 in (0, R)∪ (R,∞)

for some given R > 0. Assume further that

ψ′(R−) = a and ψ′(R+) = b.

The followings hold

(i) If a < b then for any φ ∈ C2(Rn) such that ψ(|x|)−φ(x) has a strict minimum at

x0 ∈ ∂B(0, R), then for some s ∈ [a, b],

Dφ(x0) = s
x0

R
, and tr [σ(Dφ(x0))D2φ(x0)] ≤ (n− 1)s

R
.

(ii) If a > b then for any φ ∈ C2(Rn) such that ψ(|x|) − φ(x) has a strict maximum

at x0 ∈ ∂B(0, R), then for some s ∈ [b, a],

Dφ(x0) = s
x0

R
, and tr [σ(Dφ(x0))D2φ(x0)] ≥ (n− 1)s

R
.
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Proof. We only prove (i). Without loss of generality, assume x0 = Re1 = (R, 0, . . . , 0)

and ψ(R) = 0. We only need to consider φ of the quadratic form

φ(x) = p · (x− x0) + A(x− x0) · (x− x0),

where A = (aij) is a symmetric matrix. It is straightforward that

Dφ(x0) = p = s
x0

R
= se1 for some s ∈ [a, b].

We hence can rewrite φ(x) ≤ 0 for |x| = R as

φ(x) = s(x1 −R) + aij(xi − δi1R)(xj − δj1R) ≤ 0 for x2
1 + · · ·x2

n = R2, (8.1)

where δij = 0 if i 6= j, and δii = 1. Let x3 = · · · = xn = 0 in the above to yield that, for

x2
1 + x2

2 = R2,

s(x1 −R) + a11(x1 −R)2 + 2a12(x1 −R)x2 + a22(R2 − x2
1) ≤ 0,

which can be simplified further as

a11(R− x1)− 2a12x2 + a22(R + x1) ≤ s.

Letting x1 → R (which also means that x2 → 0) to deduce that

2a22 ≤ s

R
.

By using (8.1) in similar ways, we end up with

2
n∑
i=2

aii ≤ (n− 1)s

R
.

Note finally that

σ(p) = I − p⊗ p
|p|2

=


0 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 ,

and thus

tr [σ(Dφ(x0))D2φ(x0)] =
n∑
i=2

φxixi(x0) = 2
n∑
i=2

aii ≤ (n− 1)s

R
. �
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