
ar
X

iv
:1

41
2.

11
96

v2
  [

m
at

h.
O

C
] 

 4
 D

ec
 2

01
4

STOCHASTIC QUASI-NEWTON METHODS FOR

NONCONVEX STOCHASTIC OPTIMIZATION

XIAO WANG ∗, SHIQIAN MA † , AND WEI LIU ‡

December 1, 2014

Abstract. In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume

that only stochastic information of the gradients of the objective function is available via a stochastic first-order oracle (SFO).

Firstly, we propose a general framework of stochastic quasi-Newton methods for solving nonconvex stochastic optimization.

The proposed framework extends the classic quasi-Newton methods working in deterministic settings to stochastic settings, and

we prove its almost sure convergence to stationary points. Secondly, we propose a general framework for a class of randomized

stochastic quasi-Newton methods, in which the number of iterations conducted by the algorithm is a random variable. The

worst-case SFO-calls complexities of this class of methods are analyzed. Thirdly, we present two specific methods that fall into

this framework, namely stochastic damped-BFGS method and stochastic cyclic Barzilai-Borwein method. Finally, we report

numerical results to demonstrate the efficiency of the proposed methods.

Keywords: Stochastic Optimization, Nonconvex Optimization, Stochastic Approximation, Quasi-Newton Method, BFGS

Method, Barzilai-Borwein Method, Complexity

Mathematics Subject Classification 2010: 90C15; 90C30; 62L20; 90C60

1. Introduction. In this paper, we consider the following stochastic optimization problem:

min
x∈Rn

f(x) (1.1)

where f : Rn → R is continuously differentiable and possibly nonconvex. We assume that the exact infor-

mation of function values and gradients of f are not available and only noisy gradients of f can be obtained

via subsequent calls to a stochastic first-order oracle (SFO). Problem (1.1) arises in many applications,

including machine learning [27], simulation-based optimization [13], and mixed logit modeling problems in

economics and transportation [4, 2, 21]. In these applications, the objective function is sometimes given in

the form of an expectation of certain function with a random variable being a parameter:

f(x) = E[F (x, ξ)], or f(x) =

∫

Ξ

F (x, ξ)dP (ξ),

where ξ denotes a random variable and its distribution P is supported on Ξ. Since in many cases either the

integral is difficult to evaluate or function F (·, ξ) is not given explicitly, the function values and gradients of

f cannot be easily obtained and only noisy gradient information of f is available.

The idea of employing stochastic approximation (SA) to solve stochastic programming problems can be

traced back to the seminal work by Robbins and Monro [38]. The classical SA method mimics the steepest

∗School of Mathematical Sciences, University of Chinese Academy of Sciences, China. Email: wangxiao@ucas.ac.cn. Research
of this author was supported in part by Postdoc Grant 119103S175, UCAS President Grant Y35101AY00 and NSFC Grant
11301505.

†Corresponding author. Department of Systems Engineering and Engineering Management, The Chinese University of Hong
Kong, Shatin, N. T., Hong Kong, China. Email: sqma@se.cuhk.edu.hk. Research of this author was supported in part by the
Hong Kong Research Grants Council General Research Fund (Grant 14205314).

‡IBM T. J. Watson Research Center, Yorktown Heights, New York, USA. Email: weiliu@us.ibm.com

1

http://arxiv.org/abs/1412.1196v2


gradient descent method using a stochastic gradient, i.e., it updates the iterates via

xk+1 = xk − αkGk,

where Gk is an unbiased estimate of the gradient of f at xk, and αk is a stepsize for the stochastic gradient

step. In the literature, the SA method is also referred to as stochastic gradient descent (SGD) method. The

SA method has been further studied extensively in [7, 12, 14, 36, 37, 40, 41], and the main focus in these

papers has been the convergence of SA in different settings. Recently, there have been lots of interests in

analyzing the worst-case complexity of SA methods. Works along this direction were mainly ignited by the

complexity theory developed by Nesterov for first-order methods engaging in solving convex optimization

problems [32, 33]. Nemirovski et al. [31] proposed a mirror descent SA method for solving nonsmooth

convex stochastic programming problem x∗ := argmin{f(x) | x ∈ X} and analyzed its worst-case iteration

complexity, where f is nonsmooth and convex and X is a convex set. Specifically, it was shown in [31] that

for any given ǫ > 0, the proposed mirror descent SA method needs O(ǫ−2) iterations to obtain an x̄ such that

E[f(x̄)− f(x∗)] ≤ ǫ, where E[y] denotes the expectation of the random variable y. Other SA methods with

provable complexity analysis for solving convex stochastic optimization problems have also been studied in

[15, 22, 23, 24, 25].

It is noted that the SA methods mentioned above all concentrated on convex stochastic optimization

problems. Recently there have been lots of interests on SA methods for nonconvex stochastic optimiza-

tion problems (1.1) in which f is a nonconvex function. Ghadimi and Lan [17] proposed a randomized

stochastic gradient (RSG) method for nonconvex stochastic optimization (1.1). RSG returns an iterate

from a randomly chosen iteration as an approximate solution. It is shown in [17] that to return an ǫ-

solution x̄, i.e., E[‖∇f(x̄)‖2] ≤ ǫ, the total number of SFO-calls needed by RSG is in the order of O(ǫ−2).

Ghadimi and Lan [16] also studied an accelerated stochastic SA method for solving stochastic optimiza-

tion problems (1.1) based on Nesterov’s accelerated gradient method, which improved the complexity for

convex cases from O(ǫ−2) to O(ǫ−4/3). A class of nonconvex stochastic optimization problems, in which

the objective function is a composition of a nonconvex function f and a convex nonsmooth function g, i.e.,

x∗ := argmin{f(x) + g(x) : x ∈ R
n}, was considered by Ghadimi et al. in [19], and a mini-batch SA method

was proposed and its worst-case SFO-calls complexity was analyzed. In [9], a stochastic block mirror de-

scent method, which incorporates the block-coordinate decomposition scheme into stochastic mirror-descent

methodology, was proposed for a nonconvex stochastic optimization problem x∗ = argmin{f(x) : x ∈ X}
with X having a block structure. More recently, Wang et al. [44] proposed a penalty method for nonconvex

stochastic optimization problems with nonlinear constraints, and also analyzed its SFO-calls complexity.

The aforementioned methods are all first-order methods in the sense that they only use (stochastic)

first-order derivative information of the objective function. In this paper, we consider methods for solving

(1.1) that employ certain approximate second-order derivative information of the objective function. Since

approximate second-order information is used, this kind of methods are expected to take less number of

iterations to converge, with the price that the per-iteration computational effort is possibly increased. Along

this line, there have been some works in designing stochastic quasi-Newton methods for unconstrained

stochastic optimization problems. Methods of this type usually employ the following updates

xk+1 = xk − αkB
−1
k Gk, or xk+1 = xk − αkHkGk, (1.2)

where Bk (resp. Hk) is a positive definite matrix that approximates the Hessian matrix (resp. inverse of

2



the Hessian matrix) of f(x) at xk. Some representative works in this class of methods are discussed in the

following. Among the various SGD methods, the adaptive subgradient (AdaGrad) proposed in [10] has been

proven to be quite efficient in practice. AdaGrad takes the form of (1.2) with Bk being a diagonal matrix

that estimates the diagonal of the squared root of the uncentered covariance matrix of the gradients. [3] also

studied the method using SGD with a diagonal rescaling matrix based on the secant condition associated

with quasi-Newton methods. In addition, it was shown in [3] that if Bk is chosen as the exact Hessian at the

optimal solution x∗, the number of iterations needed to achieve an ǫ-solution x̄, i.e., E[f(x̄)−f(x∗)] ≤ ǫ, is in

the order of O(ǫ−1). However, the optimal solution of the problem usually cannot be obtained beforehand, so

the exact Hessian information remains unknown. [39] discussed the necessity of including both Hessian and

covariance matrix information in a (stochastic) Newton type method. The quasi-Newton method proposed

in [5] uses some subsampled Hessian algorithms via the sample average approximation (SAA) approach to

estimate Hessian-vector multiplications. In [6], the authors proposed to use the SA approach instead of

SAA to estimate the curvature information. This stochastic quasi-Newton method is based on L-BFGS

[26] and performs very well in some problems arising from machine learning, but no theoretical convergence

analysis was provided in [6]. Stochastic quasi-Newton methods based on BFGS and L-BFGS updates were

also studied for online convex optimization in Schraudolph et al. [42], with no convergence analysis provided,

either. Mokhtari and Ribeiro [29] propose a regularized stochastic BFGS method (RES) for solving (1.1)

with f being strongly convex, and proved its almost sure convergence. Recently, Mokhtari and Ribeiro [30]

proposed an online L-BFGS method that is suitable for strongly convex stochastic optimization problems

arising in the regime of large scale machine learning, and analyzed its global convergence. It should be

noted that all the aforementioned methods based on stochastic quasi-Newton information mainly focused on

solving convex or strongly convex stochastic optimization problems.

As discovered by several groups of researchers [3, 29, 42], when solving convex stochastic optimiza-

tion problems, stochastic quasi-Newton methods may result in nearly singular Hessian approximations Bk

due to the presence of stochastic information. [29] proposed a regularized BFGS update strategy which

can preserve the positive-definiteness of Bk. However, for nonconvex optimization problems, preserving

the positive-definiteness of Bk is difficult even in deterministic settings. In classic quasi-Newton methods

for nonconvex deterministic optimization, line search techniques are usually incorporated to guarantee the

positive-definiteness of Bk. However, performing the line search techniques in stochastic optimization is

no longer practical, because the exact function values are not available. Therefore, a crucial issue in ap-

plying quasi-Newton methods to solve nonconvex stochastic optimization (1.1) is how to keep the positive-

definiteness of the updates Bk without using the line search techniques. In this paper, we will discuss and

address this issue. Our contributions in this paper are as follows.

1. We propose a general framework of stochastic quasi-Newton methods for solving nonconvex stochas-

tic optimization problem (1.1). In addition, we analyze its almost sure convergence to the stationary

point of (1.1).

2. We propose a general framework of randomized stochastic quasi-Newton methods for solving (1.1).

In this kind of methods, the methods return an iterate from a randomly chosen iteration. We analyze

their worst-case SFO-calls complexity to find an ǫ-solution x̄, i.e., E[‖∇f(x̄)‖2] ≤ ǫ.

3. We propose two concrete stochastic quasi-Newton update strategies, namely stochastic damped-

BFGS update and stochastic cyclic-BB-like update, to adaptively generate positive definite Hessian

approximations. Both strategies fit into the proposed general frameworks, so the established con-

vergence and complexity results apply directly.

3



Notation. The gradient of f(x) is denoted as ∇f(x). The subscript k refers to the iteration number

in an algorithm, e.g., xk is the k-th x iterate. Without specification, ‖x‖ represents the Euclidean norm

of vector x. Both 〈x, y〉 and xTy with x, y ∈ R
n denote the Euclidean inner product of x and y. λmax(A)

denotes the largest eigenvalue of a symmetric matrix A. A � B with A,B ∈ R
n×n means that A − B is

positive semidefinite. In addition, mod (a, b) with two positive integers a and b denotes the modulus of

division a/b. We also denote by PΩ the projection onto a closed convex set Ω.

Organization. The rest of this paper is organized as follows. In Section 2, we present a general

framework of stochastic quasi-Newton methods for nonconvex stochastic optimization (1.1) and analyze its

convergence in expectation. In Section 3, we present a general framework of randomized stochastic quasi-

Newton methods and analyze its worst-case SFO-calls complexity for returning an ǫ-solution. In Section

4, we propose two concrete quasi-Newton update strategies, namely stochastic damped-BFGS update and

stochastic cyclic-BB-like update. In Section 5 we report some numerical experimental results. Finally, we

draw our conclusions in Section 6.

2. A general framework for nonconvex stochastic quasi-Newton methods. In this section we

study the stochastic quasi-Newton methods for nonconvex stochastic optimization problem (1.1). We assume

that only noisy gradient information of f is available via SFO calls. Namely, for the input x, SFO will

output a stochastic gradient G(x, ξ) of f , where ξ is a random variable whose distribution is supported on

Ξ ⊆ R
d. Here we assume that Ξ does not depend on x.

We now give some assumptions required throughout this paper.

AS.1 f ∈ C1(Rn), i.e., f : Rn → R is continuously differentiable. f(x) is lower bounded by f low for any

x ∈ R
n. ∇f is globally Lipschitz continuous with Lipschitz constant L.

AS.2 For any iteration k, we have

a) Eξk [G(xk, ξk)] = ∇f(xk), (2.1)

b) Eξk

[

‖G(xk, ξk)−∇f(xk)‖2
]

≤ σ2, (2.2)

where σ > 0 is the noise level of the gradient estimation, and ξk, k = 1, . . . , are independent to each

other, and they are also assumed to be independent of xk.

In SGD methods, iterates are normally updated through

xk+1 = xk − αkG(xk, ξk), (2.3)

or the following mini-batch version

xk+1 = xk − αk ·
1

mk

mk
∑

i=1

G(xk, ξk,i), (2.4)

where mk ≥ 1 is a positive integer and refers to the batch size in the k-th iteration. For deterministic

unconstrained optimization, quasi-Newton methods have been proven to perform better convergence speed

than gradient-type methods, because approximate second-order derivative information is employed. In de-

terministic unconstrained optimization, quasi-Newton methods update the iterates using

xk+1 = xk − αkB
−1
k ∇f(xk), (2.5)

4



where the stepsize αk is usually determined by line search techniques, and Bk is a positive definite matrix

that approximates the Hessian matrix of f(x) at iterate xk. One widely-used updating strategy for Bk is

the following BFGS formula [35]:

(BFGS) : Bk+1 = Bk +
yky

T

k

sTkyk
− Bksks

T

kBk

sTkBksk
, (2.6)

where sk := xk+1−xk and yk := ∇f(xk+1)−∇f(xk). It is known that (2.6) preserves the positive-definiteness

of sequence {Bk}. BFGS method and the limited memory BFGS method [26] demonstrate faster convergence

speed than gradient methods both theoretically and numerically. Interested readers are referred to [35] for

more details on quasi-Newton methods in deterministic settings.

In the stochastic settings, since the exact gradients of f are not available, the update formula (2.6) cannot

guarantee that Bk+1 is positive definite. To overcome this difficulty, Mokhtari and Ribeiro [29] proposed the

following updating formula which preserves the positive-definiteness of Bk:

xk+1 = xk − αk(B
−1
k + ζkI)Gk, (2.7)

where ζk is a safeguard parameter such that B−1
k + ζkI is uniformly positive definite for all k, and Gk is

defined as

Gk =
1

mk

mk
∑

i=1

G(xk, ξk,i), (2.8)

where the positive integer mk denotes the batch size in gradient samplings. From AS.2 we know that Gk

has the following properties:

E[Gk|xk] = ∇f(xk), E[‖Gk −∇f(xk)‖2|xk] ≤
σ2

mk
. (2.9)

We also make the following bound assumption on Bk. Note that similar assumption was required in [29].

AS.3 There exist two positive scalars m and M such that

mI � B−1
k + ζkI � MI, for any k,

where m and M are positive scalars.

From (2.8), it follows that Gk depends on random variables ξk,1, . . . , ξk,mk
. We denote ξk := (ξk,1, . . . , ξk,mk

).

We use ξ[k] to denote the collection of all the random variables in the first k iterations, i.e., ξ[k] := (ξ1, . . . , ξk).

It is easy to see from (2.8) and (2.7) that the random variable xk+1 depends on ξ[k] only. Since Bk depends

on xk, we make the following assumption on Bk(k ≥ 2) (note that B1 is pre-given in the initial setting):

AS.4 For any k ≥ 2, the random variable Bk depends only on ξ[k−1].

The following equality follows directly from AS.4 and (2.9):

E[B−1
k Gk|ξ[k−1]] = B−1

k ∇f(xk).

We will see later that this equality plays a key role in analyzing our stochastic quasi-Newton methods.

Moreover, both assumptions AS.3 and AS.4 can be realized and we will propose two specific updating

schemes of Bk that satisfy AS.3-4 in Section 4.

5



We now present a general framework of stochastic quasi-Newton methods (SQN) for solving (1.1) in

Algorithm 2.1.

Algorithm 2.1 SQN: Stochastic quasi-Newton method for nonconvex stochastic optimization
(1.1)

Input: Given x1 ∈ R
n, a positive definite matrix B1 ∈ R

n×n, batch sizes {mk}k≥1, safeguard parameters
{ζk}k≥1 and stepsizes {αk}k≥1 satisfying

+∞
∑

i=0

αi = +∞,

+∞
∑

i=0

α2
i < +∞. (2.10)

1: for k = 1, 2, . . . do
2: Calculate Gk through (2.8), i.e.,

Gk =
1

mk

mk
∑

i=1

G(xk, ξk,i).

3: Calculate xk+1 through (2.7), i.e.,

xk+1 = xk − αk(B
−1
k + ζkI)Gk.

4: Generate Bk+1 that satisfies assumptions AS.3 and AS.4.
5: end for

We now analyze the convergence of Algorithm 2.1. Note that if the sequence of iterates {xk} generated

by Algorithm 2.1 lies in a compact set, then it follows from AS.1 that {∇f(xk)} is bounded. Then there

exists M̄ > 0 such that

‖∇f(xk)‖ ≤ M̄. (2.11)

The following lemma provides a descent property of the objective value of Algorithm 2.1.

Lemma 2.1. Assume that {xk} is generated by Algorithm 2.1 and (2.11) and assumptions AS.1-4 hold.

Then the expectation of function value f(xk+1) conditioned on xk satisfies

E[f(xk+1)|xk] ≤ f(xk)− αkm‖∇f(xk)‖2 +
1

2
Lα2

kM
2

(

M̄2 +
σ2

mk

)

, (2.12)

where the conditioned expectation is taken with respect to ξk.

Proof. Using AS.1, AS.3 and (2.7), we have

f(xk+1)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− αk〈∇f(xk), (B
−1
k + ζkI)Gk〉+

L

2
α2
k‖(B−1

k + ζkI)Gk‖2

≤ f(xk)− αk〈∇f(xk), (B
−1
k + ζkI)∇f(xk)〉 − αk〈∇f(xk), (B

−1
k + ζkI)δk〉+

L

2
α2
kM

2‖Gk‖2, (2.13)

where δk = Gk −∇f(xk). Taking expectation on both sides of (2.13) conditioned on xk with respect to ξk

6



and noticing that E[δk|xk] = 0, we obtain from AS.4 that

E[f(xk+1)|xk] ≤ f(xk)− αk〈∇f(xk), (B
−1
k + ζkI)∇f(xk)〉+

L

2
α2
kM

2
E[‖Gk‖2|xk]. (2.14)

From (2.9), (2.11) and E[δk|xk] = 0, we have the following relations:

E[‖Gk‖2|xk] = E[‖Gk −∇f(xk) +∇f(xk)‖2|xk]

= E[‖∇f(xk)‖2|xk] + E[‖Gk −∇f(xk)‖2|xk] + 2E[δk,∇f(xk)〉|xk]

= ‖∇f(xk)‖2 + E[‖Gk −∇f(xk)‖2|xk]

≤ M̄2 +
σ2

mk
,

which together with (2.14) and AS.3 yields (2.12).

Before proceeding our analysis, we introduce the definition of supermartingale (see [11] for more details).

Definition 2.1. Let Fk be an increasing sequence of σ-algebra. If {Xk} is a stochastic process satisfying

(i) E[|Xk|] < ∞;

(ii) Xk ∈ Fk for all k;

(iii) E[Xk+1|Fk] ≤ Xk for all k,

then {Xk} is said to be a supermartingale.

The following theorem states the convergence of a nonnegative supermartingale (see, e.g., Theorem 5.2.9

in [11]).

Proposition 2.1. If {Xk} is a nonnegative supermartingale, then limk→∞ Xk → X almost surely and

E[X ] ≤ E[X0].

Now we are ready to give the main convergence result of our stochastic quasi-Newton method (Algorithm

2.1). Its proof essentially follows Theorem 1 in [29], but our assumptions here are relatively weaker.

Theorem 2.1. Assume that (2.11) and assumptions AS.1-4 hold for {xk} generated by Algorithm 2.1

with batch size mk = m̄ for any k. Then

lim inf
k→∞

‖∇f(xk)‖ = 0, with probability 1. (2.15)

Proof. Define

γk := f(xk) +
LM2(M̄2 + σ2/m̄)

2

∞
∑

i=k

α2
i ,

βk := αkm‖∇f(xk)‖2.

Let Fk be the σ-algebra measuring γk, βk and xk. Then from (2.12) we have that

E[γk+1|Fk] = E[f(xk+1)|Fk] +
LM2(M̄2 + σ2/m̄)

2

∞
∑

i=k+1

α2
i

≤ f(xk)− αkm‖∇f(xk)‖2 +
LM2(M̄2 + σ2/m̄)

2

∞
∑

i=k

α2
i

= γk − βk, (2.16)

7



which implies that

E[γk+1 − f low|Fk] ≤ γk − f low − βk.

Since βk ≥ 0, we have 0 ≤ E[γk − f low] ≤ γ1 − f low < +∞. Then according to Definition 2.1, {γk − f low}
is a supermartingale. Therefore, Proposition 2.1 shows that there exists γ such that limk→∞ γk = γ with

probability 1, and E[γ] ≤ E[γ1]. Note that from (2.16) we have E[βk] ≤ E[γk]− E[γk+1]. Thus,

E[

∞
∑

k=0

βk] ≤
∞
∑

k=0

(E[γk]− E[γk+1]) < +∞,

which further yields that

∞
∑

k=0

βk = m

∞
∑

k=0

αk‖∇f(xk)‖2 < +∞ with probability 1.

Since
∑∞

k=0 αk = +∞, it follows that (2.15) holds.

Remark 2.1. Note that in Algorithm 2.1 we require that the stepsizes αk satisfy (2.10). This condition

is easy to be satisfied. For example, one very simple strategy is to set αk = O(1/k). In the numerical

experiments we will show later, we test the performance of the algorithm using different settings of αk that

satisfy (2.10).

3. A general framework for randomized stochastic quasi-Newton method for (1.1). In Section

2, we proposed a general framework for stochastic quasi-Newton methods and studied its convergence. In

this section, we propose another algorithmic framework, which is called randomized stochastic quasi-Newton

method (RSQN), for solving (1.1). RSQN is very similar to SQN (Algorithm 2.1), with the only difference

being that RSQN returns the iterate from a randomly chosen iteration as the final approximate solution.

The idea of returning the iterate from a randomly chosen iteration is inspired by the RSG method [17]. It

is shown in [17] that by randomly choosing an iteration number R, RSG returns xR as an ǫ-solution, i.e.,

E[‖∇f(xR)‖2] ≤ ǫ with the worst-case SFO-calls complexity being O(ǫ−2). Inspired by RSG, we propose

the following RSQN (Algorithm 3.1) and analyze its worst-case SFO-calls complexity.

In the following, we give the worst-case SFO-calls complexity of Algorithm 3.1 for returning xR such

that E[‖∇f(xR)‖2] ≤ ǫ.

Theorem 3.1. Assume assumptions AS.1-4 hold, and the stepsizes αk in Algorithm 3.1 are chosen such

that 0 < αk ≤ 2m/(LM2) with αk < 2m/(LM2) for at least one k. Moreover, suppose that the probability

mass function PR is given as follows:

PR(k) := Prob{R = k} =
mαk − LM2α2

k/2
∑N

k=1 (mαk − LM2α2
k/2)

, k = 1, . . . , N. (3.1)

Then for any N ≥ 1, we have

E[‖∇f(xR)‖2] ≤
Df + (LM2σ2)/2

∑N
k=1(α

2
k/mk)

∑N
k=1 (mαk − LM2α2

k/2)
, (3.2)

where Df := f(x1)− f low and the expectation is taken with respect to R and ξ[N ].

8



Algorithm 3.1 RSQN: Randomized stochastic quasi-Newton method for nonconvex stochastic
optimization (1.1)

Input: Given maximum iteration number N , x1 ∈ R
n, a positive definite matrix B1 ∈ R

n×n, stepsizes
{αk}k≥1 , batch sizes {mk}k≥1 and positive safeguard parameters {ζk}k≥1. Randomly chooseR according
to probability mass function PR supported on {1, . . . , N}.

Output: xR.
1: for k = 1, 2, . . . , R do
2: Calculate Gk through (2.8), i.e.,

Gk =
1

mk

mk
∑

i=1

G(xk, ξk,i).

3: Calculate xk+1 through (2.7), i.e.,

xk+1 = xk − αk(B
−1
k + ζkI)Gk.

4: Generate Bk+1 such that assumptions AS.3 and AS.4 hold.
5: end for

Proof. From (2.13) it follows that

f(xk+1) ≤ f(xk)− αk〈∇f(xk), (B
−1
k + ζkI)∇f(xk)〉 − αk〈∇f(xk), (B

−1
k + ζkI)δk〉+

L

2
α2
kM

2[‖∇f(xk)‖2 + 2〈∇f(xk), δk〉+ ‖δk‖2]

≤ f(xk)−
(

mαk −
LM2

2
α2
k

)

‖∇f(xk)‖2 +
LM2

2
α2
k‖δk‖2 + LM2α2

k〈∇f(xk), δk〉

− αk〈∇f(xk), (B
−1
k + ζkI)

−1δk〉,

where δk = Gk − ∇f(xk). Summing up the above inequality over k = 1, . . . , N and noticing that αk ≤
2m/(LM2), we have

N
∑

k=1

(

mαk −
LM2

2
α2
k

)

‖∇f(xk)‖2

≤f(x1)− f low +
LM2

2

N
∑

k=1

α2
k‖δk‖2 +

N
∑

k=1

(LM2α2
k〈∇f(xk), δk〉 − αk〈∇f(xk), (B

−1
k + ζkI)

−1δk〉). (3.3)

Notice that both xk and Bk depend only on ξ[k−1]. Thus, by AS.2 and AS.4 we have that

Eξk [〈∇f(xk), δk〉|ξ[k−1]] = 0, Eξk [〈∇f(xk), (B
−1
k + ζkI)δk〉|ξ[k−1]] = 0.

Moreover, from (2.9) it follows that Eξk [‖δk‖2|ξ[k−1]] ≤ σ2/mk. Therefore, taking the expectation on both

sides of (3.3) with respect to ξ[N ] yields

N
∑

k=1

(mαk − LM2α2
k/2)Eξ[N ]

[‖∇f(xk)‖2] ≤ f(x1)− f low +
LM2σ2

2

N
∑

k=1

α2
k

mk
. (3.4)

9



Since R is a random variable with probability mass function PR given in (3.1), it follows that

E[‖∇f(xR)‖2] = ER,ξ[N ]
[‖∇f(xR)‖2] =

∑N
k=1

(

mαk − LM2α2
k/2

)

Eξ[N ]
[‖∇f(xk)‖2]

∑N
k=1 (mαk − LM2α2

k/2)
, (3.5)

which together with (3.4) implies (3.2).

Remark 3.1. Different from SQN (Algorithm 2.1), stepsizes αk in RSQN (Algorithm 3.1) are not

required to satisfy the condition (2.10). Besides, the assumption on the boundedness of {‖∇f(xk)‖} is not

needed in RSQN.

The following complexity result follows immediately from Theorem 3.1.

Corollary 3.2. Under the same conditions as in Theorem 3.1, further assume that the stepsizes

αk = m/(LM2) and the batch sizes mk = m̄ for all k = 1, . . . , N for some integer m̄ ≥ 1. Then the following

holds

E[‖∇f(xR)‖2] ≤
2LM2Df

Nm2
+

σ2

m̄
, (3.6)

where the expectation is taken with respect to R and ξ[N ].

From Corollary 3.2 we can see that the right hand side of (3.6) depends on the batch size m̄. Once m̄ is

fixed, no matter how large the maximum iteration number N is, the right hand side of (3.6) is always lower

bounded by σ2/m̄. Since we want E[‖∇f(xR)‖2] to be as small as possible, we expect that it approaches

zero when N is sufficiently large. Therefore, m̄ has to be chosen properly. The following corollary provides

a choice of m̄ such that the worst-case SFO-calls complexity of RSQN method is in the order of O(ǫ−2) for

obtaining an ǫ-solution.

Corollary 3.3. Let N̄ be the total number of SFO-calls needed to calculate stochastic gradient Gk in

Step 2 of Algorithm 3.1 for all the iterations. Under the same conditions as in Corollary 3.2, if we further

assume that the batch size mk is defined as

mk = m̄ :=









min







N̄ ,max







1,
σ

L

√

N̄

D̃





















, (3.7)

where D̃ is some problem-independent positive constant, then we have

E[‖∇f(xR)‖2] ≤
4LM2Df

N̄m2



1 +
σ

L

√

N̄

D̃



+max

{

σ2

N̄
,
σL

√

D̃√
N̄

}

, (3.8)

where the expectation is taken with respect to R and ξ[N ].

Proof. Note that the number of iterations of Algorithm 3.1 is at most N = ⌈N̄/m̄⌉. Obviously, N ≥
N̄/(2m̄). From Corollary 3.2 we have that

E[‖∇f(xR)‖2] ≤
2LM2Df

Nm2
+

σ2

m̄
≤ 4LM2Df

N̄m2
m̄+

σ2

m̄
(3.9)

≤ 4LM2Df

N̄m2



1 +
σ

L

√

N̄

D̃



+max

{

σ2

N̄
,
σL

√

D̃√
N̄

}

,

which completes the proof.

10



The following corollary follows immediately from Corollary 3.3.

Corollary 3.4. Under the same conditions as Corollary 3.3, for any given ǫ > 0, we further assume

that the total number of SFO calls N̄ to calculate Gk in Step 2 of Algorithm 3.1 satisfies

N̄ ≥ max

{

C2
1

ǫ2
+

4C2

ǫ
,

σ2

L2D̃

}

(3.10)

where

C1 =
4σM2Df

m2
√

D̃
+ σL

√

D̃, C2 =
4LM2Df

m2
,

and D̃ is same as in (3.7). Then we have

E[‖∇f(xR)‖2] ≤ ǫ,

where the expectation is taken with respect to R and ξ[N ]. It follows that to achieve E[‖∇f(xR)‖2] ≤ ǫ, the

number of SFO-calls needed to compute Gk in Step 2 of Algorithm 3.1 is at most in the order of O(ǫ−2).

Proof. (3.10) indicates that

√

N̄ ≥
√

C2
1 + 4ǫC2

ǫ
≥

√

C2
1 + 4ǫC2 + C1

2ǫ
.

(3.10) also implies that σ2/N̄ ≤ σL
√

D̃/
√
N̄ . Then from Corollary 3.3 we have that

E[‖∇f(xR)‖2] ≤
4LM2Df

N̄m2



1 +
σ

L

√

N̄

D̃



+
σL

√

D̃√
N̄

=
C1√
N̄

+
C2

N̄
≤ ǫ.

Remark 3.2. In Corollaries 3.3 and 3.4 we did not consider the SFO-calls that may be involved in

updating Bk+1 in Step 4 of the algorithms. In the next section, we will consider two specific updating schemes

for Bk, and analyze their SFO-calls complexities for calculating Bk.

4. Two specific updating schemes for Bk. In Sections 2 and 3, we proposed two general frameworks

for stochastic quasi-Newton methods for solving (1.1) and analyzed their convergence and worst-case SFO-

calls complexity, respectively. In both frameworks, we require that the Hessian approximation Bk satisfies

assumptions AS.3 and AS.4. In this section, we study two specific updating schemes for Bk such that AS.3

and AS.4 always hold.

4.1. Stochastic damped BFGS updating formula. In the setting of deterministic optimization, the

classical BFGS algorithm updates the Bk through the formula (2.6). It can be proved that Bk+1 is positive

definite as long as Bk is positive definite and s⊤k yk > 0 (see, e.g., [35, 43]). Line search techniques are

usually used to ensure that s⊤k yk > 0 is satisfied. However, in stochastic quasi-Newton method, line search

techniques cannot be used because the objective function value is assumed to be difficult to obtain. As a

result, how to preserve the positive definiteness of Bk is a main issue in designing stochastic quasi-Newton

algorithms.

In [29], the RES algorithm is proposed for strongly convex stochastic optimization, in which iterates

are updated via (2.7) where ζk is set as a positive constant Γ. The following formula is adopted in [29] for

11



calculating the difference of the gradients:

ŷk = Ḡk+1 −Gk − δ̂sk,

where δ̂ > 0 and

Ḡk+1 :=
1

mk

mk
∑

i=1

G(xk+1, ξk,i).

It should be noted that the same sample set {ξk,1, . . . , ξk,mk
} is used to compute Gk and Ḡk+1. Bk+1 is then

calculated by the shifted BFGS update:

Bk+1 = Bk +
ŷkŷ

T

k

sTk ŷk
− Bksks

T

kBk

sTkBksk
+ δ̂I, (4.1)

where the shifting term δ̂I is added to prevent Bk+1 from being close to singular. It is proved in [29] that

Bk+1 � δ̂I under the assumption that f is strongly convex. However, (4.1) cannot guarantee the positive

definiteness of Bk+1 for nonconvex problems. Hence, we propose the following stochastic damped BFGS

updating procedure (Procedure 4.1) for nonconvex problems. The damped BFGS updating procedure has

been used in sequential quadratic programming method for constrained optimization in deterministic setting

(see, e.g., [35]).

Procedure 4.1 Stochastic Damped-BFGS update (SDBFGS)

Input: Given δ > 0, ξk, Bk, Gk, xk and xk+1.
Output: Bk+1.
1: Calculate sk = xk+1 − xk and calculate ŷk through

ŷk = Ḡk+1 −Gk − δsk,

where Ḡk+1 := 1
mk

∑mk

i=1 G(xk+1, ξk,i).
2: Calculate

r̂k = θ̂kŷk + (1 − θ̂k)Bksk,

where θ̂k is calculated through:

θ̂k =

{

1, if sTk ŷk ≥ 0.2sTkBksk,

(0.8sTkBksk)/(s
T

kBksk − sTk ŷk), if sTk ŷk < 0.2sTkBksk.

3: Calculate Bk+1 through

Bk+1 = Bk +
r̂k r̂

T

k

sTk r̂k
− Bksks

T

kBk

sTkBksk
+ δI. (4.2)

Remark 4.1. Notice that the most significant difference between Procedure 4.1 and RES lies in that r̂k,

which is a convex combination of ŷk and Bksk, is used to replace ŷk in the updating formula (4.2) for Bk+1.

12



The following lemma shows that {Bk} obtained by Procedure 4.1 is uniformly positive definite.

Lemma 4.1. Suppose that Bk is positive definite, then Bk+1 generated by Procedure 4.1 satisfies

Bk+1 � δI. (4.3)

Proof. From the definition of r̂k, we have that

sTk r̂k = θ̂k(s
T

k ŷk − sTkBksk) + sTkBksk =







sTk ŷk, if sTk ŷk ≥ 0.2sTkBksk,

0.2sTkBksk, if sTk ŷk < 0.2sTkBksk,

which implies sTk r̂k ≥ 0.2sTkBksk. Denote uk = B
1
2

k sk. Then we have

Bk − Bksks
T

kBk

sTkBksk
= B

1
2

k

(

I − uku
T

k

uT

kuk

)

B
1
2

k .

Since I − uku
T

k

uT

k
uk

� 0 and sTk r̂k > 0, we have that Bk +
r̂kr̂

T

k

sT
k
r̂k

− Bksks
T

kBk

sT
k
Bksk

� 0. It then follows from (4.2) that

Bk+1 � δI.

From Lemma 4.1 we can see that, if starting with B1 � δI, we have Bk � δI for all k. So if we further

choose ζk ≥ ζ for any positive constant ζ, then it holds that

ζI � B−1
k + ζkI �

(

1

δ
+ ζ

)

I, for all k,

which satisfies the assumption AS.3 with m = ζ and M = ζ + 1/δ. Moreover, Since Ḡk+1 is dependent

only on ξk, it follows from (4.2) that Bk+1 is dependent only on ξ[k], which satisfies the assumption AS.4.

Therefore, we conclude that assumptions AS.3 and AS.4 hold for Bk generated by Procedure 4.1. We

should also point out that in stochastic damped BFGS update Procedure 4.1, the shifting parameter δ can

be any positive scalar. But the shifting parameter δ̂ in (4.1) used in RES is required to be smaller than the

smallest eigenvalue of the Hessian of the strongly convex function f , which is usually negative for nonconvex

problem.

Note that in Step 1 of Procedure 4.1, the stochastic gradient at xk+1 that is dependent on ξk is computed.

Thus, when Procedure 4.1 is called at the k-th iteration to generate Bk+1 in Step 4 of Algorithm 3.1, another

mk SFO-calls are needed. As a result, the number of SFO-calls at the k-th iteration of Algorithm 3.1

becomes 2mk. This leads to the following complexity result for Algorithm 3.1.

Theorem 4.1. Denote Nsfo as the total number of SFO-calls in Algorithm 3.1 with Procedure 4.1 to

generate Bk+1. Under the same conditions as in Corollary 3.4, to achieve E[‖∇f(xR)‖2] ≤ ǫ, Nsfo is at

most 2N̄ where N̄ satisfies (3.10), i.e., is in the order of O(ǫ−2).

4.2. Stochastic cyclic-BB-like updating formula. Note that computing B−1
k Gk in the updating

formula for xk (2.7) might be costly if Bk is dense or the problem dimension is large. To overcome this

potential difficulty, we propose a cyclic Barzilai-Borwein (BB) like updating formula for Bk in this section.

This updating formula can ensure that Bk is a diagonal matrix and thus very easy to be inverted.

The BB method has been studied extensively since it was firstly proposed in [1]. BB method is a gradient

method with certain properties of quasi-Newton method. At the k-th iteration, the step size αBB

k for the

13



gradient method is calculated via

αBB

k := argmin
α∈R

‖αsk − yk‖2, or αBB

k := argmin
α∈R

‖sk − yk/α‖2,

where sk := xk − xk−1, yk := ∇f(xk)−∇f(xk−1). Direct calculations yield

αBB

k =
sTkyk
‖sk‖2

, or αBB

k =
‖yk‖2
sTkyk

.

Many studies have shown the superiority of BB methods over the classical gradient descent method in both

theory and practical computation. Readers are referred to [20] for a relatively comprehensive discussion on

BB methods. Besides, BB methods have been applied to solve many problems arising in real applications,

such as image reconstruction [45, 34] and electronic structure calculation [46], and they have shown promising

performance. Recently, the nice numerical behavior of cyclic BB (CBB) methods attracts a lot of attentions

(see, e.g., [8, 20]). In CBB method, BB stepsize is used cyclicly, i.e., the stepsize in the l-th cycle is

αql+i = αBB

ql+1, i = 1, . . . , q,

where q ≥ 1 is the cycle length and l = 0, 1, . . .. In the setting of deterministic optimization, line search

techniques are usually adopted in CBB to ensure the global convergence. Although line search techniques

are not applicable in stochastic optimization, we can still apply the idea of CBB to design an efficient

algorithm that does not need to compute matrix inversion or solve linear equations in (2.7). The details of

our procedure to generate Bk using stochastic CBB-like method are described as follows.

We set Bk := λ−1
k I, and λk is updated as in CBB method λql+i = λBB

ql+1, i = 1, . . . , q, where q is the

cycle length and l = 0, 1, . . ., and λBB
ql+1 is the optimal solution to

min
λ∈R

‖λ−1sql − yql‖2, or min
λ∈R

‖sql − λyql‖2, (4.4)

where sk = xk+1 − xk and the gradient difference yk is defined as

yk = Ḡk+1 −Gk =

∑mk

i=1 G(xk+1, ξk,i)

mk
−

∑mk

i=1 G(xk, ξk,i)

mk
. (4.5)

Direct calculations yield that λBB
ql+1 = sTqlyql/‖yql‖2 or λBB

ql+1 = ‖sql‖2/sTqlyql. However, λBB
ql+1 calculated in

this way might be negative since sTqlyql < 0 might happen. Therefore, we must adapt the stepsize in order

to preserve the positive definiteness of Bk. We thus propose the following strategy for calculating λk:

λk+1 =



















λk, if mod(k, q) 6= 0,

1, if mod(k, q) = 0, sTkyk ≤ 0

P[λmin,λmax]
sTqlyql

‖yql‖2 or P[λmin,λmax]
‖sql‖

2

sT
ql
yql

, if mod(k, q) = 0, sTkyk > 0,

(4.6)

where P[λmin,λmax] denotes the projection onto the interval [λmin, λmax], where λmin and λmax are given

parameters. Note that we actually switch to gradient descent method (by setting λk = 1) if sTkyk < 0. In our

numerical tests later we will report the frequency of BB steps in this procedure. Notice that Bk generated

14



in this way satisfies the assumption AS.3 with

m = min{λmin, 1}, M = max{λmax, 1},

and in this case we can set ζk = 0 for all k in (2.7).

The stochastic CBB updating procedure for Bk+1 is summarized formally in Procedure 4.2.

Procedure 4.2 Stochastic Cyclic-BB-like update (SCBB)

Input: Given q ∈ N+, Gk, λmin, λmax ∈ R
n with 0 < λmin < λmax, ξk, Gk, xk and xk+1.

Output: Bk+1.
1: if mod(k, q) = 0 then
2: Calculate sk = xk+1 − xk and

yk =

∑mk

i=1 G(xk+1, ξk,i)

mk
−Gk;

3: if sTkyk > 0 then

4: λk+1 = P[λmin,λmax]
sTkyk

‖yk‖2 or P[λmin,λmax]
‖sk‖

2

sT
k
yk

;

5: else
6: λk+1 = 1;
7: end if
8: else
9: λk+1 = λk;

10: end if
11: Set Bk+1 = λ−1

k+1I.

When Procedure 4.2 is used to generateBk+1 in Step 4 of Algorithm 3.1, we have the following complexity

result on SFO-calls.

Theorem 4.2. Denote Nsfo as the total number of SFO-calls in Algorithm 3.1 with Procedure 4.2 called

to generate Bk+1 at each iteration. Under the same conditions as Corollary 3.4, to achieve E[‖∇f(xR)‖2] ≤ ǫ,

Nsfo is at most ⌈(1 + q)N̄/q⌉ where N̄ satisfies (3.10), i.e., Nsfo is in the order of O(ǫ−2).

Proof. Under the same conditions as Corollary 3.4, the batch size mk = m̄ for any k. If Procedure 4.2 is

called at each iteration of Algorithm 3.1, then in every q iterations, m̄(q+1) SFO-calls are needed. Since to

achieve E[‖∇f(xR)‖2] ≤ ǫ the number SFO calls in Step 2 of Algorithm 3.1 is at most N̄ , the total number

of SFO-calls in Algorithm 3.1 is at most ⌈(1 + q)N̄/q⌉.

5. Numerical Experiments. In this section, we conduct numerical experiments to test the practical

performance of the proposed algorithms.

By combining Algorithms 2.1 and 3.1 with Procedures 4.1 and 4.2, we get the following four algorithms:

SDBFGS (Algorithm 2.1 with Procedure 4.1), SCBB (Algorithm 2.1 with Procedure 4.2), RSDBFGS (Al-

gorithm 3.1 with Procedure 4.1), and RSCBB (Algorithm 3.1 with Procedure 4.2). We compare them with

three existing methods for solving (1.1): SGD, RSG [17] and RES [29].

Since the course of these algorithms is a stochastic process, we run each instance Nrun times and report

the performance in average. In particular, we report the number of SFO-calls (Nsfo), the CPU time (in

seconds), and the mean and variance (var.) of ‖∇f(x∗
k)‖ (or ‖∇f(x∗

k)‖2) over Nrun runs, where x∗
k is the

output of the tested algorithm at k-th run with k = 1, . . . , Nrun.

All the algorithms are implemented in Matlab R2013a on a PC with a 2.60 GHz Intel microprocessor

15



and 8GB of memory.

5.1. A convex stochastic optimization problem. We first consider a convex stochastic optimization

problem, which is also considered in [29]:

min
x∈Rn

f(x) = Eξ[f(x, ξ)] := E[
1

2
xT(A+Adiag(ξ))x − bTx], (5.1)

where ξ is uniformly drawn from Ξ := [−0.1, 0.1]n, b is chosen uniformly randomly from [0, 1]n, and A

is a diagonal matrix whose diagonal elements are uniformly chosen from a discrete set S which will be

specified later. We can control the condition number of (5.1) through the choice of S and we will explore

the performances of algorithms under different condition numbers.

For (5.1), we compare SDBFGS and SCBB with SGD and RES. For SGD, we tested two different choices

of stepsize, i.e., αk = 102/(103 + k) and 104/(104 + k). We also tested some other choices for αk, but the

performance with these two are relatively better. The parameters for the other three algorithms are set as

follows:

SCBB: αk =
102

103 + k
, λmin = 10−6, λmax = 108, q = 5,

SDBFGS: αk =
102

103 + k
, ζk = 10−4, δ = 10−3,

RES: αk =
102

103 + k
, Γ = 10−4, δ̂ = 10−3.

Note that the parameter settings for RES are the same as the ones used in [29]. To make a fair comparison

with RES, we thus adopted the same stepsize in these three algorithms above.

Since the solution of (5.1) is x∗ = A−1b if the random perturbation is ignored, we terminate the

algorithms when

‖xk − x∗‖
max{1, ‖x∗‖} ≤ ρ,

where ρ > 0 is a given tolerance. We chose ρ = 0.01 in our experiments. We set the batch size mk = 5 for all

the tested algorithms. Besides, for each instance the maximum iteration number is set as 104. The results

for different dimension n and set S are reported in Table 5.1. Note that different choices of S can reflect

different condition numbers of (5.1).

From Table 5.1 we see that the performance of SGD is poor compared with the other three methods.

The average number of SFO-calls of SGD is significantly larger than the ones given by RES, SDBFGS

and SCBB. Moreover, SGD diverges if the stepsize αk is too large or the condition number of the problem

increases. It is also noticed that the performance of RES and SDBFGS is comparable. Furthermore, SCBB

seems to be the best among the tested algorithms in terms of mean and variance of ‖∇f(x∗
k)‖ as well as the

CPU time, although RES and SDBFGS need less number of SFO-calls.

5.2. A nonconvex support vector machine problem. In this section, we compare RSDBFGS and

RSCBB with RSG studied in [17] for solving the following nonconvex support vector machine problem with

a sigmoid loss function (see [28])

min
x∈Rn

f(x) := Eu,v[1− tanh(v〈x, u〉)] + λ‖x‖22 (5.2)

16



Table 5.1

Results for solving (5.1). Mean value and variance (var.) of {‖∇f(x∗
k
)‖ : k = 1, . . . , Nrun} with Nrun = 20 are reported.

“—” means that the algorithm is divergent.

n SGD SGD RES SDBFGS SCBB

αk = 10
2

103+k
αk = 10

4

104+k
αk = 10

2

103+k
αk = 10

2

103+k
αk = 10

2

103+k

S = {0.1, 1}

500

Nsfo 2.921e+03 2.400e+02 5.035e+02 5.025e+02 7.653e+02
mean 9.781e-02 2.446e-01 9.933e-02 1.002e-01 1.123e-01
var. 7.046e-07 1.639e-04 4.267e-06 7.329e-06 6.020e-06
CPU 2.848e-01 2.580e-02 9.607e-01 6.273e-01 3.095e-02

1000

Nsfo 2.925e+03 2.380e+02 5.015e+02 5.000e+02 7.243e+02
mean 1.453e-01 3.532e-01 1.476e-01 1.474e-01 1.667e-01
var. 1.101e-06 1.368e-04 1.117e-05 8.251e-06 9.984e-06
CPU 1.172e+00 8.665e-02 6.031e+00 6.109e+00 2.924e-01

5000

Nsfo 2.924e+03 2.400e+02 5.045e+02 5.045e+02 7.575e+02
mean 3.165e-01 7.982e-01 3.194e-01 3.180e-01 3.624e-01
var. 1.255e-06 2.050e-04 1.336e-05 1.246e-05 8.917e-06
CPU 1.270e+01 7.661e-01 3.492e+02 3.577e+02 2.371e+00

S = {0.1, 1, 10}

500

Nsfo 2.927e+03 5.000e+04 2.865e+02 2.875e+02 8.315e+03
mean 1.622e-01 — 6.016e-01 5.698e-01 9.429e-02
var. 5.421e-05 — 1.162e-02 9.589e-03 3.281e-06
CPU 3.041e-01 4.842e+00 5.132e-01 3.683e-01 7.994e-01

1000

Nsfo 2.928e+03 5.000e+04 2.875e+02 2.880e+02 7.101e+03
mean 2.137e-01 — 7.707e-01 7.791e-01 1.372e-01
var. 4.638e-05 — 7.222e-03 6.860e-03 2.834e-06
CPU 9.459e-01 1.934e+01 3.354e+00 3.595e+00 2.855e+00

5000

Nsfo 2.925e+03 5.000e+04 2.865e+02 2.865e+02 8.035e+03
mean 4.911e-01 — 1.957e+00 1.956e+00 2.903e-01
var. 6.575e-05 — 3.916e-02 4.517e-02 5.618e-06
CPU 1.564e+01 1.525e+02 2.023e+02 2.039e+02 2.254e+01

S = {0.1, 1, 10, 100}

500

Nsfo 5.000e+04 5.000e+04 6.279e+03 6.409e+03 4.953e+04
mean — — 3.193e-01 3.479e-01 2.049e-01
var. — — 6.003e-02 6.754e-02 9.889e-05
CPU 3.136e+00 3.517e+00 8.458e+00 9.817e+00 3.955e+00

1000

Nsfo 5.000e+04 5.000e+04 9.028e+03 9.016e+03 5.644e+04
mean — — 5.615e-01 5.005e-01 2.397e-01
var. — — 6.704e-02 8.857e-02 2.132e-04
CPU 1.774e+01 1.203e+01 1.251e+02 1.267e+02 1.169e+01

5000

Nsfo 5.000e+04 5.000e+04 6.756e+03 6.694e+03 6.000e+04
mean — — 9.388e+00 1.104e+01 1.118e+00
var. — — 4.133e+01 5.345e+01 2.581e-04
CPU 1.534e+02 3.041e+03 3.022e+03 5.820e+03 1.278e+02

where λ > 0 is a regularization parameter, u ∈ R
n denotes the feature vector, v ∈ {−1, 1} refers to the

corresponding label and (u, v) is drawn from the uniform distribution on [0, 1]n × {−1, 1}. Note that we

do not compare with RES here because RES is designed for solving strongly convex problems. In order to

compare with RSG, we adopt the same experimental settings as in [18]. The regularization parameter λ is

set as 0.01. The initial point is set as x1 = 5 ∗ x̄1, where x̄1 is drawn from the uniform distribution over

[0, 1]n. At the k-th iteration, to compute the stochastic gradient at iterate xk, a sparse vector uk with 5%

nonzero components is first generated following the uniform distribution on [0, 1]n, and then vk is computed

through vk = sign(〈x̄, uk〉) for some x̄ ∈ R
n drawn from uniform distribution on [−1, 1]n. Note that here the

batch size mk is equal to 1.

The code of RSG was downloaded from http://www.ise.ufl.edu/glan/computer-codes. In order to make

a fair comparison, we generate our codes RSDBFGS and RSCBB by replacing the update formula (2.3) in

RSG by SDBFGS and SCBB procedures. In both RSDBFGS and RSCBB, we adopt the same stepsize as

in RSG. Note that an auxiliary routine is implemented to estimate the Lipshitz constant in [18]. The cycle

17

http://www.ise.ufl.edu/glan/computer-codes


length in SCBB is set as q = 5. We test the three algorithms with different problem sizes n = 500, 1000 and

2000 and different number of SFO-calls Nsfo = 2500, 5000, 10000 and 20000. Recall that the theoretical

performance of expectation of squared norm of gradient at returned point has been analyzed in Section 3. We

next report the mean value and variance of ‖∇f(x∗
k)‖2 over Nrun = 20 runs of each algorithm solving (5.2)

in Table (5.2). To evaluate the quality of x∗
k in terms of classification, we also report the misclassification

error on a testing set {(ui, vi) : i = 1, . . . ,K}, which is defined as

err(x∗
k) :=

|{i : vi 6= sign(〈x∗
k, ui〉), i = 1, . . . ,K}|
K

,

and the sample size K = 75000. Here, the testing set is generated in the same way as we have introduced in

previous paragraph.

From Table 5.2 we have the following observations. First, both RSDBFGS and RSCBB outperform RSG

in terms of mean value and variance of ‖∇f(x∗
k)‖2, and in all cases RSDBFGS is the best. Second, both

RSDBFGS and RSCBB outperform RSG in most cases in terms of misclassification error, and RSDBFGS

is always the best. Third, RSDBFGS consumes most CPU time and RSG and RSCBB are comparable in

terms of CPU time. Fourth, for fixed n, the misclassification error decreases when Nsfo increases.

Finally, we conduct some further tests to study the behavior of RSCBB. Note that in Procedure 4.2 we

need to switch to a gradient step whenever sTkyk < 0 happens. So it is important to learn how often this

happens in the course of the algorithm. In Table 5.3 we report the percentage of BB steps in RSCBB for

solving (5.2). We can see from Table 5.3 that for fixed n, the percentage of BB steps monotonically decreases

when Nsfo increases. Nonetheless, as we observed from the previous numerical tests, using BB steps helps

significantly in improving the efficiency and accuracy of the algorithm.

6. Conclusions and remarks. In this paper we proposed two classes of stochastic quasi-Newton meth-

ods for nonconvex stochastic optimization. We first proposed a general framework of stochastic quasi-Newton

methods, and analyzed its theoretical convergence in expectation. We further proposed a general framework

of randomized stochastic quasi-Newton methods and established its worst-case SFO-calls complexity. This

kind of methods do not require the stepsize to converge to zero and provide an explicit worst-case SFO-calls

complexity bound. To create positive definite Hessian approximations that satisfy the assumptions required

in the convergence and complexity analysis, we proposed two specific stochastic quasi-Newton update strate-

gies, namely SDBFGS and SCBB strategies. We also studied their worst-case SFO-calls complexities in

the corresponding stochastic quasi-Newton algorithms. Finally, we reported some numerical experimental

results that demonstrate the efficiency of our proposed algorithms. The numerical results indicate that the

proposed SDBFGS and SCBB are preferable compared with some existing methods such as SGD, RSG and

RES. We also noticed that the phenomenon shown in Table 5.3 deserves a further investigation to better

understand the behavior of BB steps in designing stochastic quasi-Newton methods, and we leave this as a

future work.

REFERENCES

[1] J. Barzilai and J.M. Borwein. Two point step size gradient methods. IMA J. Numer. Anal, 8:141–148, 1988.

[2] F. Bastin, C. Cirillo, and P. L. Toint. Convergence theory for nonconvex stochastic programming with an application to

mixed logit. Math. Program., 108:207–234, 2006.

[3] A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. J. Mach. Learn.

Res., 10:1737–1754, 2009.

18



Table 5.2

Results of RSG, RSDBFGS and RSCBB for solving (5.2). Mean value and variance (var.) of {‖∇f(x∗
k
)‖2 : k =

1, . . . , Nrun} and average classification error (err.) with Nrun = 20 are reported.

Nsfo RSG RSDBFGS RSCBB
n = 500

2500

mean 3.622e-01 1.510e-02 3.021e-02
var. 1.590e-01 3.041e-05 4.006e-04

err.(%) 49.13 33.34 40.09
CPU 3.794e+00 1.799e+01 4.136e+00

5000

mean 2.535e-01 1.441e-02 2.146e-02
var. 1.320e-01 3.887e-05 3.464e-04

err.(%) 45.47 31.09 36.37
CPU 5.100e+00 3.452e+01 5.433e+00

10000

mean 3.201e-01 1.033e-02 6.277e-02
var. 3.052e-01 1.770e-05 1.692e-02

err.(%) 38.12 25.19 35.99
CPU 7.127e+00 6.759e+01 6.969e+00

20000

mean 2.733e-01 1.117e-02 4.710e-02
var. 2.923e-01 8.284e-05 6.327e-03

err.(%) 30.81 24.59 31.60
CPU 1.179e+01 1.227e+02 1.201e+01

n = 1000

2500

mean 8.055e-01 1.966e-02 2.632e-02
var. 4.250e-01 2.824e-05 1.087e-03

err.(%) 48.39 37.07 45.32
CPU 6.810e+00 8.172e+01 6.607e+00

5000

mean 5.188e-01 1.823e-02 3.088e-02
var. 3.595e-01 1.717e-05 2.115e-04

err.(%) 47.73 33.87 41.86
CPU 8.059e+00 1.586e+02 8.296e+00

10000

mean 5.819e-01 1.744e-02 4.359e-02
var. 8.432e-01 6.141e-05 1.543e-03

err.(%) 45.44 30.61 40.07
CPU 1.026e+01 3.890e+02 1.032e+01

20000

mean 4.457e-01 1.542e-02 5.062e-02
var. 6.893e-01 3.920e-05 3.031e-03

err.(%) 37.42 27.43 37.50
CPU 1.841e+01 5.717e+02 1.673e+01

n = 2000

2500

mean 2.731e+00 2.456e-02 5.366e-02
var. 3.654e+00 1.019e-04 6.669e-03

err.(%) 48.80 42.64 46.00
CPU 1.219e+01 4.025e+02 1.246e+01

5000

mean 2.153e+00 2.076e-02 4.303e-02
var. 3.799e+00 1.353e-04 1.211e-03

err.(%) 48.54 40.97 44.43
CPU 1.332e+01 1.048e+03 1.312e+01

10000

mean 8.216e-01 2.546e-02 3.756e-02
var. 7.965e-01 1.084e-04 7.044e-04

err.(%) 46.98 38.73 42.50
CPU 1.840e+01 1.578e+03 1.716e+01

20000

mean 4.570e-01 2.199e-02 5.265e-02
var. 3.782e-01 1.954e-04 2.820e-03

err.(%) 44.00 33.81 40.94
CPU 2.399e+01 3.215e+03 2.448e+01

Table 5.3

Percentage of BB steps in RSCBB for solving (5.2)

n 500 1000 2000
Nsfo 2500 5000 10000 20000 2500 5000 10000 20000 2500 5000 10000 20000

Per.(%) 66.15 54.80 53.21 53.15 56.70 48.45 46.33 40.66 57.12 45.49 32.65 30.04

19



[4] D. Brownstone, D. S. Bunch, and K. Train. Joint mixed logit models of stated and revealed preferences for alternative-fuel

vehicles. Transport. Res. B, 34(5):315–338, 2000.

[5] R. Byrd, G. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic hessian information in optimization methods for

machine learning. SIAM J. Optim., 21(3):977–995, 2011.

[6] R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method for large-scale optimization.

arXiv:1401.7020, 2014.

[7] K. L. Chung. On a stochastic approximation method. Annals of Math. Stat., pages 463–483, 1954.

[8] Y.H. Dai, W.W. Hager, K. Schittkowski, and H. Zhang. The cyclic Barzilai-Borwein method for unconstrained optimiza-

tion. IMA J. Numer. Anal, 26:604–627, 2006.

[9] C. D. Dang and G. Lan. Stochastic block mirror descent methods for nonsmooth and stochastic optimization. Technical

report, Department of Industrial and Systems Engineering, University of Florida, 2013.

[10] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J.

Mach. Learn. Res., 999999:2121–2159, 2011.

[11] R. Durrett. Probability: Theory and Examples. Cambridge University Press, London, 2010.

[12] Y. Ermoliev. Stochastic quasigradient methods and their application to system optimization. Stochastics, 9:1–36, 1983.

[13] M. Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14:192–215, 2002.

[14] A. A. Gaivoronski. Nonstationary stochastic programming problems. Kibernetika, 4:89–92, 1978.

[15] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimiza-

tion, i: a generic algorithmic framework. SIAM J. Optim., 22:1469–1492, 2012.

[16] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Technical

report, Department of Industrial and Systems Engineering, University of Florida, 2013.

[17] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J.

Optim., 15(6):2341–2368, 2013.

[18] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming. Extended

report, http://www.ise.ufl.edu/glan/files/2013/04/NonconvexSA-Techreport1.pdf, 2013.

[19] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for nonconvex stochastic composite

optimization. Math. Program., November, 2014.

[20] W.W. Hager, B.A. Mair, and H. Zhang. An affine-scaling interior-point cbb method for box-constrained optimization.

Math. Program. Ser. A, 119:1–32, 2009.

[21] D. A. Hensher and W. H. Greene. The mixed logit model: The state of practice. Transportation, 30(2):133–176, 2003.

[22] A. Juditsky, A. Nazin, A. B. Tsybakov, and N. Vayatis. Recursive aggregation of estimators via the mirror descent

algorithm with average. Probl. Inform. Transm+, 41(4):78–96, 2005.

[23] A. Juditsky, P. Rigollet, and A. B. Tsybakov. Learning by mirror averaging. Annals of Stat., 36:2183–2206, 2008.

[24] G. Lan. An optimal method for stochastic composite optimization. Math. Program., 133(1):365–397, 2012.

[25] G. Lan, A. S. Nemirovski, and A. Shapiro. Validation analysis of mirror descent stochastic approximation method. Math.

Pogram., 134:425–458, 2012.

[26] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Math. Program., Ser. B,

45(3):503–528, 1989.

[27] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In ICML, 2009.

[28] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent in function space. In NIPS,

volume 12, pages 512–518, 1999.

[29] A. Mokhtari and A. Ribeiro. Res: Regularized stochastic bfgs algorithm. IEEE Trans. Signal Process., no. 10, 2014.

[30] A. Mokhtari and A. Ribeiro. Global convergence of online limited memory bfgs. arXiv:1409.2045v1 [math.OC], 6 Sep.

2014.

[31] A. S. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic program-

ming. SIAM J. Optim., 19:1574–1609, 2009.

[32] A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience Series

in Discrete Mathematics, John Wiley, 1983.

[33] Y. E. Nesterov. Introductory lectures on convex optimization: A basic course. Applied Optimization. Kluwer Academic

Publishers, Boston, MA, 2004.

[34] T. Niu, X. Ye, Q. Fruhauf, M. Petrongolo, and L. Zhu. Accelerated barrier optimization compressed sensing (abocs) for

ct reconstruction with improved convergence. Phys. Med. Biol., 59:1801–1814, 2014.

[35] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, USA, 2006.

[36] B. T. Polyak. New stochastic approximation type procedures. Automat. i Telemekh., 7:98–107, 1990.

20



[37] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J. Control and Optim.,

30:838–855, 1992.

[38] H. Robbins and S. Monro. A stochastic approximatin method. Annals of Math. Stat., 22:400–407, 1951.

[39] N.L. Roux and A.W. Fitzgibbon. A fast natural newton method. In In Proceedings of the 27th International Conference

on Machine Learning (ICML-10), pages 623–630, 2010.

[40] A. Ruszczynski and W. Syski. A method of aggregate stochastic subgradients with on-line stepsize rules for convex

stochastic programming problems. Math. Prog. Stud., 28:113–131, 1986.

[41] J. Sacks. Asymptotic distribution of stochastic approximation. Annals of Math. Stat., 29:373–409, 1958.

[42] N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for online convex optimization. In Proc.

11th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pages 436–443, San Juan, Puerto Rico, 2007.

[43] W. Sun and Y. Yuan. Optimization theory and methods: nonlinear programming. Springer Optimization and Its Appli-

cations, Vol. 1, 2006.

[44] X. Wang, S. Ma, and Y. Yuan. Penalty methods with stochastic approximation for stochastic nonlinear programming.

arXiv:1312.2690, 2013.

[45] Y. Wang and S. Ma. Projected Barzilai-Borwein methods for large scale nonnegative image restorations. Inverse Probl.

Sci. En., 15(6):559–583, 2007.

[46] X. Zhang, J. Zhu, Z. Wen, and A. Zhou. Gradient type optimization methods for electronic structure calculations. SIAM

J. Scientific Comput., 36(3):265–289, 2014.

21


