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WAVE BREAKING IN A SHALLOW WATER MODEL

VERA MIKYOUNG HUR AND LIZHENG TAO

ABSTRACT. We prove wave breaking — bounded solutions with unbounded
derivatives — in the nonlinear nonlocal equations which combine the dispersion
relation of water waves and the nonlinear shallow water equations, and which
generalize the Whitham equation to permit bidirectional wave propagation,
provided that the slope of the initial data is sufficiently negative.

1. INTRODUCTION

As Whitham [Whi74] emphasized, “the breaking phenomenon is one of the most
intriguing long-standing problems of water wave theory.” The nonlinear shallow
water equations:

om + 0z (u(l 4+ an)) =0,
oru + 0xm + audzu =0,

(1.1)

approximate the physical problem when the order of the characteristic wavelengh
is greater than the undisturbed fluid depth, and they explain wave breaking. That
is, the solution remains bounded but its slope becomes unbounded in finite time.
Here t € R is proportional to elapsed time, and x € R is the spatial variable in
the primary direction of wave propagation; n = n(x,t) represents the free surface
displacement from the depth = 1, and u = u(z,t) is the particle velocity at the
rigid horizontal bottom; a > 0 is the dimensionless nonlinearity parameter. See
[Lan13], for instance, for details. We assume for simplicity that the constant due
to gravitational acceleration is 1. Note that the phase speed associated with the
linear part of (1.1) is independent of the spatial frequency, whereas the speed of a
plane wave with the spatial frequency & near the quiescent state of water® is

(12) chrw(e) = R,
In other words, (1.1) neglects the dispersion effects of the physical problem.

But the shallow water theory goes too far. It predicts that all solutions carrying
an increase of elevation break. Yet observations have long been established that
some waves in water do not break. Perhaps, the neglected dispersion effects inhibit
breaking.
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But, including some' dispersion effects, the Korteweg-de Vries (KdV) equation:
1 3
(1.3) o + (1 + 6&8325)8177 + 3¢ NnoLn = 0,

in turn, goes too far and predicts that no solutions break. To conclude, one needs
some dispersion effects to satisfactorily explain breaking, but the dispersion of the
KdV equation seems too strong. This is not surprising because the phase speed =
1-— %a§2 associated with the linear part of (1.3) poorly approximates? that of water
waves (see (1.2)) when ¢ is large.

Whitham therefore noted that “it is intriguing to know what kind of simpler
mathematical equation (than the governing equations of the water wave problem)
could include” the breaking effects, and he put forward (see [Whi74], for instance)

3
(1.4) oim + My a0:m + Eanﬁmn = 0.
Here M5 is a Fourier multiplier operator, defined via its symbol as

(1.5) M2 f(§) = c(§)f(S),

and ¢ = cyw (see (1.2)). It combines the dispersion relation of the unidirectional
propagation of water waves and a nonlinearity of the shallow water theory. In a
small amplitude and long wavelength regime, where a = &> « 1, the Whitham
equation agrees with the KdV equation up to the order of a. As a matter of fact,
solutions of (1.4)-(1.5), where ¢ = cww, and (1.3) exist and they converge to those
of the water wave problem up to the order of a during a relevant interval of time; see
[Lan13], for instance, for details. Including the full range of the dispersion in water
waves, on the other hand, the Whitham equation may offer an improvement over
the KdV equation for short and intermediately long waves. Whitham conjectured
that his equation would capture the breaking effects.

Seliger [Sel68] made a rather ingenious argument, albeit formal, and claimed that
a sufficiently asymmetric solution of (1.4)-(1.5) breaks, provided that the Fourier
transform of ¢ be even, bounded, integrable, and monotonically decay to zero at
infinity. Unfortunately, it does not apply to the Whitham equation, because cyw
is not integrable (see (1.2)). Later Constantin and Escher [CE98] turned Seliger’s
argument into a rigorous proof. Naumkin and Shishmarév [NS94] made another
breaking argument, provided that the Fourier transform of ¢ and its derivative be
integrable and |c(€)| < C|¢|7/3 for |€] » 1 for some C' > 0. Unfortunately, the
Fourier transform of ¢y may not be written explicitly and, hence, the assumptions
in [NS94] seem difficult to verify for the Whitham equation. While preparing the
manuscript, one of the authors [[url5] solved Whitham’s conjecture.

In recent years, the Whitham equation gathered renewed attention because of
its ability to explain high frequency phenomena in water waves. In particular, one
of the authors [[1J15] proved that a small-amplitude, periodic traveling wave of
(1.4)-(1.5), where ¢ = cww (see (1.2)), be spectrally unstable to long wavelength
perturbations, provided that the wave number is greater than a critical value, and

In the long wave limit as & — 0, one may expand the right side of (1.2) and find that

cww(©) = (1-£€) +0(€".

A relative error of 10%, say, between cy w (1/a€) and the phase speed for the KAV equation
is made for y/a€ > 1.242. ...
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stable to square integrable perturbations otherwise. In other words, the Whitham
equation captures the Benjamin-Feir instability® of Stokes waves. By the way, the
Benjamin-Feir instability is a high frequency effect, which does not manifest in the
KdV and nonlinear shallow water equations. But the linear operator associated
with the Whitham equation does not admit collisions of spectra away from the
origin, which numerical computations (see [DO11], for instance) indicate to lead
to new kinds of instabilities in the physical problem. To quote Whitham, “it is
intriguing to know what kind of simpler mathematical equation could include” the
breaking and other high frequency effects.
We propose “bidirectional Whitham” or “Boussinesq-Whitham” equations:

o + Oz (u(l + an)) = 0,

(1.6) Oiu + Moym + audzu =0,

where M is a Fourier multiplier operator, defined via its symbol as

(L7) MHE) = S (©)F(€) = W}ﬂf@

They combine the dispersion relation of the bidirectional propagation of water waves
and the nonlinear shallow water equations (see (1.1)). The spectrum of the linear
operator associated with (1.6) is the same as that for the physical problem. In a
small amplitude and long wavelength regime, where a = £2 « 1, moreover, they
agree with a variant¥ of the Boussinesq equations:

¢ + O (u(1 + an)) = 0,

1.8
(18) (1 - %a@i)@tu + 0z + aud,u = 0,

up to the order of a, like the Whitham equation does with the KdV equation.
As a matter of fact, one may modify the argument in [Lanl3], for instance, to
verify that solutions of (1.6)-(1.7) and (1.8) exist and they converge to those of the
water wave problem up to the order of a during a relevant interval of time. The
global-in-time well-posedness for (1.8) was established in [Sch&1] and [Amig4], for
instance. Including the full dispersion in water waves, on the other hand, (1.6)-
(1.7) may capture the breaking effects. This is the subject of investigation here.
The Benjamin-Feir instability and other high frequency effects for (1.6)-(1.7) were
studied in [HP16a].

If we furthermore assume that n is much smaller than the fluid depth = 1 then
we may reject terms of the order un in the former equation of (1.6) with respect to
terms of the order w and, after suppressing a, we arrive at

O + Ozu +udzn = 0,

(1.9) otu + Moym + ud,u = 0.

(Although we reject n with respect to 1, we must not ud,n since it is a priori not
smaller than terms in the latter equation of (1.6).) The main result asserts the

wave breaking in (1.9) and (1.7), provided that the slope of the initial velocity is

SA periodic wave train in water is unstable to slow modulations, provided that the carrier

wave number times the undisturbed fluid depth is greater than 1.363...; see [BF67, Whi67], for
instance.
YThey do not explicitly appear in the work of Boussinesq. But (280) in [Bou77], for instance,

after several “higher order terms” drop out, becomes equivalent to (1.8).
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sufficiently negative. Note that the integral representation of M@, may be written
explicitly. Specifically,

(1.10) Moo f(x) = —%Pvfoo () N
- 2

where PV stands for the Cauchy principal value.

Theorem 1.1 (Wave breaking in (1.9)-(1.10)). Assume that ng,ug € H*(R). For
€ > 0 sufficiently small, assume that

(1.11) [ud™ ) Loy <n(— D/t g, n=203,...,
1
1.12 @ —
( ) ol (R) <267
n 1 n/arn—
(1.13) 175 ooy <on fopn=1, n=1,2,...

Jor some b =1 and for some o such that 5(1 +€) < a < 2(1 — 14¢). Moreover,
assume that

(114) & inf up(@)” >1 + o= s,
1—e\2 . ’ 1/4 4e
(1.15) e<1+6) (= inf up(2) /! >,
80
(1.16) (1= (= inf ug (@)™ >—(1+ (2¢)"/b).

Then the solution of (1.9)-(1.10) and

n(z,0) =no(x),  u(,0) = uo(x),
exhibits wave breaking. Specifically,
|u(z,t)| < 0 forallzeR for allte|[0,T)

but
inf Oyu(x,t) - —oo ast —T—
zeR
for some T > 0. Moreover,
1 1 1 1
1.17 T .
(L117) 1+ € —inf e up(2) =T (1 —¢€)? —inf er uh(2)

The assumptions (1.11)-(1.13) require that ng and ug belong to the Gevrey class
of index 1/a. Since 1/a > 1, nontrivial ny and ug with compact support exist.
They are technical assumptions and may be removed if the kernel associated with
the integral representation of M is regular; see [Sel68, CE98], for instance. The
assumptions (1.14)-(1.16) require that uf, be sufficiently negative somewhere in R.
The breaking scenario, we think, is that the profile of u at such a point steepens
until it becomes vertical in finite time.

Following along the same line as the argument in [HT14, Hurl5] for (1.4)-(1.5),
where c(£) = [£]*71, 0 < a < 1/2, the proof of Theorem 1.1 examines the ordinary
differential equations for u and its derivatives of all orders along the characteristics,
which involve Md, and n and its derivatives of all orders along the characteris-
tics. In other words, we examine 7, v and their derivatives of all orders along the
characteristics (see (3.3)-(3.6)). To the best of the authors’ knowledge, this is new.
Naumkin and Shishmarév [NS94] made a breaking argument for related, nonlinear
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nonlocal equations. But it does not apply to (1.9) (or (1.6)) because of the severe
nonlinearities.

In Lemma 3.1, we make a straightforward calculation and show that the kernel
associated with (1.10) is singular of a logarithmic order near zero. To compare,
the kernel associated with the integral representation of My /20, (see (1.5)) for the
Whitham equation may not be written explicitly, although it behaves like |x|_1/ 2
near zero; see [[Turl5], for instance, and references therein. Note that Md, is less
singular than M 0, On the other hand, the nonlinearities of (1.9) are much more
severe than that of (1.4), permitting n and its derivatives to grow large along the
characteristics (see (3.21)-(3.22)), when one attempts to bound the nonlocal forcing
term involving 7 along the characteristics by the nonlinearity in the latter equation
of (1.9). This is why we are unable to handle the nonlinearity of (1.6). We make
strong use of that the kernel associated with (1.10) less singular than a polynomial
order near zero. Moreover, n and its derivatives along the characteristics grow
larger than what a logarithmic singularity can control, so that we cannot control the
second derivative of u along the characteristics, like in [[IT14] for (1.4)-(1.5), where
c(&) = |€]*7! and @ > 1/3. We exploit the “smoothing effects” of the characteristics
when the derivative of w is sufficiently negative (see (3.54) and (3.55)).

It is physically more satisfying to prove wave breaking for 7, rather than u. We
believe that 1 breaks when u does. The proof of Theorem 1.1, however, does not
explore blowup in the former equation of (1.9). Moreover, it is desirable to prove
wave breaking in (1.6), rather than (1.9). This is a subject of future investigation.

Remarks on other Boussinesq-Whitham models. Perhaps, the best known
among Boussinesq’s equations in the shallow water theory is

1 3
(1.18) 0?77 = 092677 + gaain + gaai(nz).

Including the full dispersion in water waves, one may follow Whitham’s heuristics
and replace the square of the phase speed = 1 — %a§2 by that of water waves (see
(1.2)). The result becomes

(1.19) ¥n=ﬂmﬁn+gaﬁm%,

where M is in (1.7). It is one of many which stake the claim to the “Boussinesq-
Whitham equation.” Unfortunately, the initial value problem associated with the
linear part of (1.19) is ill-posed in the periodic setting. Hence, it is not suitable for
the purpose of describing wave packet propagation.

Under the assumption 0:n + d,n = O(a), (1.18) is formally equivalent to

1 3
fn=§fﬁn+ﬁn+§wﬂf)

up to the order of a. Including the full dispersion in water waves, likewise, one
arrives at

3
(1.20) 02 = M(agn + 5aag(n?)).

The initial value problem for (1.20) is well-posed at least locally in time. But it
fails to explain the Benjamin-Feir instability; see [[TP16b], for instance, for details.
Hence, it is a poor candidate for the purpose of studying the stability of Stokes
waves. In contrast, one of the authors [[HP16a] proved the Benjamin-Feir instability
in (1.6)-(1.7).
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Saut [Sauld] (see also [Dob87]) alternatively proposed

On + M2zu + ady(un) = 0,

1.21
( ) Ot + 0xm + audzu = 0,

as Boussinesq-Whitham equations. They are formally equivalent to (1.6)-(1.7) up
to the order of a. But, to the best of the authors’ knowledge, the well-posedness
issue for (1.21) has not been studied. In contrast, in Section 2, we establish the
local-in-time well-posedness for (1.9)-(1.10).

To conclude, (1.6) (or (1.9)) is preferred over other Boussinesq-Whitham models
for the purpose of studying the breaking and stability of water waves.

2. LOCAL WELL-POSEDNESS
We discuss the initial value problem associated with (1.9)-(1.10) or, equivalently,

0t + Ozu + udym = 0,

(2.1) oru — Hh + Rn + udu = 0.

Here H denotes the Hilbert transform, defined as a Fourier multiplier as

~

Hf(€) = ~isgn(©)](6).
Since
sgn(€) — tanh(&)| < e l¢l pointwise in R
by a direct calculation (see [Yos82, Lemma 2.15], for instance), we find that
(2.2) IRf | s m) < C|fllL2w) for any s = 0,
where C' > 0 a constant is independent of f.

Theorem 2.1 (Local well-posedness). Ifny € H*(R) and ug € H*'/2(R) for s > 2
then a unique solution of (1.9)-(1.10),

n(x,0) = no(z) and u(x,0) = ug(x),
exists in H*(R) x H*TY2(R) during the interval of time [0,T) for some T > 0.
Moreover, (1o, uo) — (n(t),u(t)) is continuous on H*(R) x H**Y2(R) for all t €
[0, 7).

Combining an a priori bound and a compactness argument, one may be able
to establish local-in-time well-posedness for (1.1) in H*(R) x H**Y?(R), s > 2;
see [[Kat83], for instance, for details. Without recourse to the dispersion effects,
the argument in [[<at83] works for (2.1)-(2.2) mutatis mutandis. Below we merely

include how one obtains a priori bound for (2.1)-(2.2), and we omit other parts of
the proof.

Note that |H | .2) = | f]|r2r) and #* = —1. Note that A := H0, is self-adjoint
and linked with half-integer Sobolev spaces. Specifically,

f_ (f* + FAS) de

is equivalent to HfH?{m(R). Moreover the commutator of A is “smoothing.”
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Lemma 2.2. It follows that
(2.3)
0

f afHOf do < Clallpss | ey and | a(@fyHouf do < Clal oy |f12ce

- —o0

where C' > 0 a constant is independent of f and a.

Proof. Note that A'/? is self-adjoint, and we calculate that
Jaf’;’-[&xf dx = Ja(Al/zf)2 dx + J(AW[AW, alf)f de.

Clearly, the first term of the right side is bounded by ||z |AY2 f[2,. We claim that
the second term of the right side is bounded by [[£[a 11 f]|3;/> up to multiplication
by a constant. Indeed, since

~

- = f €232 — [ V2Yale — €076 dex

and since |[€|V2||€]Y2 — |€,]12] < C|¢ — & ] for all €,£&; € R for some constant C' > 0
by a direct calculation (see the proof of [Yos82, Lemma 2.14], for instance), Young’s
inequality and the Parseval theorem assert that

|AYV2[AY2, a]f ]z < ClIEfa] o] £ e

for some constant C' > 0 independent of f and a. Holder’s inequality therefore
proves the claim. The first inequality of (2.3) then follows by the Sobolev inequality.
Note that H is skew-adjoint, and we calculate that

Ja(@zf)Hazf de = — Ja(%&zf)azf dx — J([H,a]azf)azf dx
1
=3 J([H,a]@zf)ézf dz.

(A1/2 [A1/2, CL]f)/\

Since
@l al2uf) (© = ——= | losn(e) —senienate - v fieo) de

and since [€] + [&1] < |€ — &1| when sgn(€) # sgn(&1) by a direct calculation (see the
proof of [Yos82, Lemma 2.14], for instance), Young’s inequality and the Parseval
theorem assert that

|02, alozfl > < —H|§I2GHL1HfHL2

Holder’s inequality and the Sobolev inequality then prove the second inequality of
(2.3). This completes the proof. O

To proceed, for k > 1 an integer, let

Ed

(24) B0 = 3 aqe) + 510 s # Xl
where

1 (® ) 5 . .
(2.5) e(t) =5 J_w((ﬁﬁm(t)) + (03u(t))A(0Lu(t))) du.

Note tha Ex(t) is equivalent to ||1n(t)| gr ry + [|u(t) ] gre+1r2(w)-
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Lemma 2.3 (A priori bound). If n € H*(R) and u € H*V2(R), for k = 2 an
integer, solve (2.1)-(2.2) during the interval of time [0,T) for some T > 0 then

Ey(0)
2.6 Ep(l) K ————=—
for allt € [0,T'], 0 < T' < T, where C > 0 a constant is independent of n and wu,
and T depends upon Ey(0). Moreover,
(2.7) In(@)| mx @y + lw)] mesz@) < C 9(0)] e ry s |1w(0)] Fres/zw))
for all t € [0,T"].
Proof. For j > 1 an integer, differentiating (2.5) in time and using (2.1), we arrive
at
des _ _ _ .
U~ [ @ + @@ d

=— J@i(azu + ud,n) () dx — J@i(f’ﬂn + Rn + udpu)A(u) dx
=:(I) + (II)

during the interval of time (0,7"). An integration by parts leads to that
@8) (0=~ [@ e do+ g [@@n? ds
- [ (@i ~ wi@i @) do.
Since A = H?o,, H is skew-adjoint and H? = —1, moreover,
(29) (D) =~ [(@ (@) do - (42 R @) do
- Ju(ag;“um(ag“u) da — jJ(amu)(aiu)(H%“u) da
- (@it ~ u(ei ) - (@ @A)

Note that the first term of the right side of (2.8) and the first term of the right side
of (2.9) cancel each other when added together after an integration by parts. Note
that the second term of the right side of (2.8) is bounded by i d,ulr=|din|2.,
and the last term of the right side of (2.8) is bounded by |u|g:||din|?. up to
multiplication by a constant by the Leibniz rule. Note that the second term of
the right side of (2.9) is bounded by [n|z2]|d%ulz> by (2.2), and the third and
the fourth terms of the right side of (2.9) are bounded by |ul| gs/2+ |05 ul|3.. by
(2.3). Moreover, note that the last term of the right side of (2.9), for j > 2 an
integer, is bounded by [[u|?,;, .. |AY20%ul 2 up to multiplication by a constant by
the fractional Leibniz rule and the Sobolev inequality. To recapitulate,

de;
dt

for j = 2 an integer during the interval of time (0,7), where C' > 0 a constant is
independent of 1 and w.

(2.10) S O+ ulgsas + Nl gserz) (Il + lulgi2)
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To proceed, we use (2.1) and integrate by parts to show that

1d

1
1) 5l == [t utmy do < fosulialnloa + 5lonul el

1d
(212) 3o luls = [y~ Ry~ udsu)u do < 2nlselul e + ol elul?

during the interval of time (0,7"). Adding (2.10) through (2.12), we deduce that

dE}, )
— < CE
dt k

for k > 2 an integer during the interval of time (0,7"), where C' > 0 a constant is
independent of  and w. Therefore (2.6) follows because it invites a solution until
the time 7" = (CFEy(0))~!. Furthermore (2.7) follows because Ej(t) is equivalent
to |n(t)| mx + |w(t)| gr+1/2. This completes the proof. O

3. PROOF OF THEOREM 1.1

We assume that 7y and ug satisfy (1.11)-(1.13), (1.14)-(1.16). Let n and u be
the unique solution of (1.9)-(1.10),

n(z,0) =no(z) and wu(x,0) = uo(z),

in C*([0,T); H°(R) x H*(R)) for some T > 0. We assume that 7" is the maximal
time of existence.

For z € R, let X (t; ) solve

(3.1) Cil—);(t;x) =u(X(t;z),t) and X(0;z) ==x.
Since u(x,t) is bounded and satisfies a Lipschitz condition in z for all x € R for all
t € [0,T), it follows from the ODE theory that X (-;z) is continuously differentiable
throughout the interval (0, 7T) for all € R. Since u(z,t) is smooth in x for all x € R
for all t € [0,T), furthermore, x — X (-;x) is infinitely continuously differentiable
throughout the interval (0,7 for all z € R.

Let

(3.2) Cult;x) = () (X (G 2),t)  and v, () = (07 u)(X (t ), 1)

forn =0,1,2,.... Differentiating (1.9) with respect to = and evaluating the result
at x = X(t;x), we arrive at
dco
3.3 —= =0
(3.3) i + v )
dGy,
(3.4) % + Z (7;) ViCrt1—j + Ung1 =0 forn=1,2,...,
j=1
and
d’UO
3.5 — + Ko(t;2) =0
( ) dt + 0( 755) )
dv,, n
(3.6) i Z ) Vit + Kn(t;x) =0 forn=1,2,....

Jj=1
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Here and elsewHere <§L> ’s are the binomial coefficients, and
Kn(t;2) = (MO n)(X (t2),1)
1 0
—— 5| s ) — )@ 6.0 - @n)(w.0) dy
—00
for n = 0,1,2... (see (1.10)). Since u(z,t) is smooth, square integrable in z,
and smooth in ¢ for all € R for all ¢ € [0,7T), and since X (¢; ) is continuously
differentiable in ¢ and smooth in z for all ¢ € [0,T) for all € R, it follows that

K, (t; ) is continuously differentiable in ¢ and smooth in x for all ¢t € [0,T) for all
reR.

Lemma 3.1. Let 0 < 0 < 1. For e > 0 is sufficiently small,

401, . .
B.7) Kt o) < —=(0 IOl + 6 (G ®)e@),  n=0,1,2,...

for all t € [0,T) for all x € R.

The proof involves direct calculations of (1.10). We include the detail in Appen-
dix A.

Let

(3.8) m(t) = inf vy (t;2) = inf (Opu)(z,t) =: m(0)g~ (t).
xeR T€R

Note that v1 (¢; -) and, hence, m(t) are continuous for all t € [0, T). Clearly, m(t) < 0
for all t € [0,7T), q(0) = 1 and ¢(¢) > 0 for all ¢ € [0,7T). Indeed, m(t) = 0 would
imply that u(-,t) be non-decreasing in R and, hence, u(-,t) = 0.

We shall show that
(3.9) |K1(t;2)] < 2m?2(t) for all t € [0,T) for all z € R.

Since! |MO:flr2r) < | fllz2(r) by the Parseval theorem, it follows from (1.14) and
the Sobolev inequality that

|K1(0; )| = [Mung ()] < [[no oz ry < 2m?(0) for all z € R.

That is, (3.9) holds at ¢ = 0. Suppose on the contrary that |K;(T1;z)| = 2m?(Th)
for some Ty € (0,7) for some x € R. By continuity, we may assume, without loss
of generality, that

(3.10) |K1(t;2)] < 2m?2(t) for all t € [0,T) for all z € R.

We seek a contradiction.

Below we gather some preliminaries.

Lemma 3.2. Let 0 <y < 1. Forte[0,T}], let

(3.11) Y,(t) ={reR:uv(t;z) < (1 —v)m(t)}.

If 0 < e < v < 1/2 for € > 0 sufficiently small then ¥, (t2) < X,(t1) whenever
0<t1 <ta<Ti.

INote in passing that —M@, is the Hilbert transform for the infinite horizontal strip of unit
depth, subject to the Neumann boundary condition at the bottom.
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The proof is very similar to that of [[HT14, Lemma 2.1]. We include the detail
in Appendix A for completeness.

Lemma 3.3. 0 < q(t) <1 and it is decreasing for all t € [0,T1].

Proof. The proof is very similar to that of [HT14, Lemma 2.2]. Here we include
the detail for future references.

For 0 < e <y < 1/2, e > 0 sufficiently small, let « € 3,(77), and we suppress it
to simplify the exposition. Note from (3.8) and Lemma 3.2 that

(3.12) m(t) <vi(t) < (1 —~)m(t) <0  forall t € [0,T].
One may write the solution of (3.6), where n = 1, as

v = 01(0) = m(0)r—!
(3.13) 1(¢) 1+ 01(0) §g (1 + (v 2Ky)(7) dr O)r10).

Clearly, r(t) is continuously differentiable and r(t) > 0 for all ¢ € [0,T}]. Since
(v 2K ()] < (1 —) % < e for all t € [0, T1]
for € > 0 sufficiently small, by (3.12) and (3.10), we infer from (3.13) that
(3.14) (1+¢e)m(0) < % < (1—-¢m(0) <0
throughout the interval (0,73). Consequently, r(¢) and, hence, vi(t) (see (3.13))
are decreasing for all ¢ € [0, T1]. Furthermore, m(t) and, hence, ¢(t) (see (3.8)) are

decreasing for all ¢ € [0,T1]. This completes the proof. By the way, note from (3.8),
(3.13) and (3.12) that

(3.15) q(t) <r(t) < ——q(t) for all ¢ € [0, Ty].

Lemma 3.4. For s >0, s # 1, and for t € [0,T1],

(3.16) JO ¢ °(r) dr < — ~ - 1(1 ,16)1“ mto) (¢~ ﬁ)

For t € [0,T1],

A\

(3.17) Jo g (1) dT < — a —16)2 mt()) <log . i - logq(t)).

The proof is found in [HT14, Lemma 2.3|, for instance; see also the proof of
(3.33) below.

To proceed, we shall show that
(3.18) o ()| @) =[u(®)] @) < Co,

(3.19) o1 ()] e ) =11 (Pw) ()] oo ®y < Crg™ (),
(3.20) |vn ()o@ =(0xu)(®)lLem < Con(n=D/atiyn=lg=1=(n=1o )
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forn=2,3,..., and

.
(3.21) ICo ) Loy =[n()] Lo () < TQ(J (t),
3 C n/apn— —€—No

(3.22) 1Gn (Ol Loy =11(05M) @) = (r) < ?271 b 1q (t)
forn=1,2,... for all t € [0,71]. Here
(3.23)

Co = 2(Juol ey + lublrem),  Cr=2luflrem,  Ca=(—m(0))**,
and

1 2 3

(3.24) 5(1+e)<a<§(1714e) and O’=§+66
so that

oca < 1—10e.

Throughout the proof, we use
1
OO > 01 and 501 = HuéHLoo(R) > CQ >1

to simplify the exposition. It follows from (3.23), (3.8), (1.11) and (1.12), (1.13)
that

lvo(0) | Loe )y =lwuollLe(r) < Co,
[01(0) | L= ) =l bl Lo @) < Cr = Cig™ (0),
[0n(0) | Lon iy =[u™ | Loy < Con(m=D/et1pn=1g=1=(n=1) ()

forn=2,3,..., and

IS0 (0) I @) =lnm0lLe®) < 5= < —¢ “(0),

n C n/apn—1_—e—no
16n () 2=y =l o () < ?271 loprlg (0)

for n =1,2,.... That is, (3.18)-(3.20) and (3.21)-(3.22) hold for all n = 0,1,2,...
at t = 0. Suppose on the contrary that (3.18)-(3.20) and (3.21)-(3.22) hold for all
n = 0,1,2,... throughout the interval [0,7%), but one of the inequalities fails for
some n at t = Ty for some T € (0,71]. By continuity, we may assume that

(3:25) lvo(®)] = (%) <Co,
(3.26) o1 (8)]| oo (r) <Crg (1),
(3.27) [0 ()| v ) <Can"~ D/t tpn=lg1=(n=le¢)

forn=2,3,..., and

C —€
(3.28) [oMlze@ <=0~ (),

C =1 _—e—no
(3:29) IGn(t) e vy <= n™ 0" g™ (1)

forn=1,2,... for all t € [0,T>]. We seck a contradiction.
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Proof of (3.21). We integrate (3.3) over the interval [0, 75] to show that

To
Kdﬂwﬂﬂmhf+f fon (85 2)] dt
0

1 T2
<—+qj () dt
26 0

Cs 1 1 1
<22 _ _
2¢ G (1 —¢€)2m(0) (10g 1—e¢ 10gq(T2)>

<Q + 2(1 i 6)gq‘ﬁ(%)

2¢ 1—e¢
Oy e 2/1+4+¢€\2 e
<5 1 (T2)+E( — )q (T»)
Cy _.
<T2q (T»)

for all € R. Therefore (3.21) holds throughout the interval [0,7]. Here the
second inequality uses (1.12) and (3.26), the third inequality uses that Cy > 1 and
(3.17), the fourth inequality uses that

€

1 1

log 1 <2 and —logx < -z~
€

throughout 0 < z < 1 for all 0 < e < 1, by direct calculations, and Lemma 3.3.

Moreover, we assume, without loss of generality, that ||uf|L> = —m(0). The fifth
inequality uses Lemma 3.3, and the last inequality uses (1.15). Indeed,

(-5) (om0 > 4.

1+e¢

Proof of (3.22). We gather some more preliminaries.
Forn > 1, let

1
(3.30) v1(Ts;2) =m(Ts5) and v(t;x) < iz 6)1/(1+6+1w)m(t)

for all ¢t € [T5,Tz] for some T3 € (0,7%) and for some = € R. Indeed, since vy
and m are uniformly continuous throughout the interval [0, Tz], we may choose T5
sufficiently close to T so that the latter inequality of (3.30) holds for all ¢ € [T5, T3]
for € > 0 sufficiently small. We repeat the argument in the proof of Lemma 3.3 to
find that

dr
(3.31) (1+¢e)m(0) < o S (1 —¢e)m(0)

throughout the interval (T3, 7T%) for some € > 0 sufficiently small and

(3.32) q(t) <r(t) < (1 + e)YOFernaly ()
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for all t € [T5,T»]. Moreover we calculate that

T2 T2
f () de < (14 E)J 1 () gy
T3 TB
1+e 1 T2 1 dr
< —— T —(t) dt
1 (O)LT )5 ®)
1 1+4€ 1
_ —€—no(T.\ _ pm€—no (T,
e+nalfem(0)(r (T2) =7 (T5))
1 1+4€ 1

(3.33) (¢ "(T2) — g " (13)).

<7
e+nol—em(0)

It offers a refinement over (3.16) when T3 and T» are sufficiently close. Here the
first inequality uses (3.32), the second inequality uses (3.31), and the last inequality
uses (3.32) and (3.30).

Proof of (3.22) for n = 1. Let |(1(T2; 21)| = maxger |(1(T2; z)|. We may assume,
without loss of generality, that ¢;(T;21) > 0. Since ¢; is uniformly continuous
throughout the interval [0, T3], we may choose T3 close to T, so that

(334) Cl (t, Il) >0 for all t e [Tg,TQ].

Moreover, we may choose T3 closer to Ts, if necessary, so that (3.30) and (3.33)
hold throughout the interval [T3,T5]. Note from (3.4) that

&(fﬂﬂl) = —v1(t; 1) (G 21) — va(ts 1)

dt
G

€

< — m(O) (t)qiéfa'(t) + CZ21/O‘+1bq71’”(t)

C
<(—m(0) + 2V +1pe) 2 g1 (1)
€
for all ¢t € (T3,T). Here the first inequality uses (3.8), (3.34), (3.29) and (3.27),
and the second inequality uses Lemma 3.3. We then integrate it over the interval
[T5,T5] to show that

€

1o
C1(To;x1) <G (T3521) + (—m(0) + 21/°‘+1be)%f g () dt
Ts

<=4 (Ts) — (—m(0) + 219 Lpe)

1 1+e¢ 1 Co, ___ e
EO’T EO’T
Xe—i—al—em(O)e(q (T2) —q (T3))

o 1+el+eCy, ., o
<2 T (Ty) b (T (Ty) — T (Ty))
_ 1 (1+€)2 Cy P 1 (1+€)2 Csy o
_<176+U 1—e¢ )Tq (T3)+6+U 1—e¢ ?q (T2)
C:
<T2q*€*U(T2).

Therefore (3.22) holds for n = 1 throughout the interval [0, T%]. Here the second
inequality uses (3.29) and (3.33), the third inequality uses (1.14). Indeed,

—m(0) > 2V if e <27V 1p7h
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The last inequality uses (3.24) and Lemma 3.3. Indeed,

1 (1+e¢)?
e+o0 1—e€

<1

for € > 0 sufficiently small.

Proof of (3.22) for n > 2. We establish one more preliminary.

Lemma 3.5. Forn > 2,

“ ny .(i—1)/a N (n+1—j5)/a 2e n/a
(3.35) > (j)y(] Dietl(n 4 1 — j)nti=dle < T fatl,
j=2

The proof uses Stirling’s inequality. We include the detail in Appendix A.

For n = 2, let |G, (T2; )| = maxger |(n(T2; x)|. We may assume, without loss
of generality, that ¢, (Te;z,) > 0. We may choose T3 close to T5 so that

(3.36) Calt;zn) =0 for all t € [T5,Tz].

Moreover, we may choose T3 closer to Ts, if necessary, so that (3.33) holds through-
out the interval [T5,75]. Note from (3.4) that

dGy
E (tv In)

n

— o (G2 2n) — Y

j=2

<~ nm(0) g (g ()
€

S n C2~’— et N (n+1—j)/apn—1_—1—(j—1)c —e—(n+1—j)o
s (;) e A LT )
j=2

(?) Vj (t§ xn)gn-ﬁ-l—j (t; xn) - Un+l(t; xn)

+ Co(n + 1) yng 7o (1)

< — nm(o)%nn/abnfqulfefna (t)
€

2e C3 Cy fn+1\n/a
n/a+1~2 1n—1 _—l—c—no 2 ( ) n/apn —l—no
+ ST — " g (t) + e—(—, (n+ 1)n"™“b"q (t)

2
<< - m(o)n + 760271 + el/abe(n —+ 1)) @nn/abnfqulfefng(t)
21/a—1 -1 c

for all ¢t € (T3,T). Here the first inequality uses (3.8), (3.36), (3.29) and (3.27),
the second inequality uses (3.35), and the last inequality uses Lemma 3.3. We then
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integrate it over the interval [T3, T3] to show that
Cn (TQ; xn)

+<fm(0)n+21/a_7 c

2e fel C: n/apn— T —l—e—no
1_102n+61/ be(n+1))—2n/b 1J ¢! (t) dt
<%nn/abn—lq—e—na (TS)
€
2 Con+ eMobe(n + 1
7<7m(0)n+m on + e e(n+ ))

1 1+e 1 Co iy oo e
L pn/apn €~no () €e—no(m

C
<_2nn/o¢bn—1q—e—na (TB)
€

n+en+en+1)1+eCo ,inin_i, —e—no eno
n+ D14 eyt (g=emne(Ty) — = (Ty)
e+ no 1—€ €

2+5¢1+e\Cy R 2+5c1+eCsy R
<(1- _)_ n/abn 1 _—e—no T ~2 n/abn 1 _—e—no T
( 20+€l—¢ e ? (3)+20'+€1—6€n ¢ (T2)

C
<_2nn/o¢bn—1q—e—na (Tg)
€

Therefore (3.22) holds for n = 2,3,... throughout the interval [0,75]. Here the
second inequality uses (3.29) and (3.33), the third inequality uses (1.14) and (1.15).
Indeed,

2e
_ 1/4 - _ 1/«
e(—m(0))"/* > ] and m(0) > e"’*b
1+2
if 0 < ¢ < e"/*~1. The fourth inequality uses (3.24) and that (—’—;J)rnﬂ
no + e

decreases in n for n > 2, by a direct calculation. The last inequality uses (3.24)
and Lemma 3.3. Indeed,

24+b5el+e

0<
204+€l —¢

<1

for € > 0 sufficiently small, by a direct calculation.

Proof of (3.18). Recall (3.7). We choose §(t) = ¢7(t) and use (3.28), (3.29) to
calculate that
(3.37)

40 C —o€e—e
|Ko(t; z)| < - ——2q

T €2

01

T €

g (a0 + T B ) )

€
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for all ¢ € [0, T3] for all x € R. We then integrate (3.5) over the interval [0, T>] to
show that

Ty
0T 9)] <luoles + | [ Kaltio)]
0

1 0C, ("
<—OO+——2J g () dt
2 T € Jy
1 40 Cy 1 1 1 1 e
<—O i ( _ l—0e—c T )
270 T @ T —oe—e(l—e)ltoete m(0) \(1 — ¢)l-oc—c 7 (T2)
<10 B 40 1 1 1 Cy
270 T 1—ce—e(1—e)2em(0)
1 1
<§CO + 5(—m(0))
<Oo

for all € R. Therefore (3.18) holds throughout the interval [0,7%]. Here the
second inequality uses (3.23) and (3.37), the third inequality uses (3.16) and that
oe + ¢ < 1 for e > 0 sufficiently small, the fourth inequality uses Lemma 3.3, and
the fifth inequality uses (1.16). Indeed,

(1 —€)?(1 — oe — €)(—m(0))* > 80

™

for € > 0 sufficiently small. The last inequality uses (3.23).

Proof of (3.19). For n > 1, use (3.7), where §(t) = n~Y%¢°(t), and (3.29) to
calculate that

401 eaC n/apn—1_—oe —€—no
[t )] <— < (" ob g7 (1)~ ()

€/ x— OlC n alpn , o—0o€ —e—(n g
/om0 2 (1) (D g (g (D (t))

40 (1 N (n +1 >n/a+1/ab> C_22nn/a+e/abn—lq—o'e—e—no- ()

7T n €
40 C
(338) <?(1 + (26)1/ab)6—22n(n71)/a+2bn71q7170a7(n71)0(t)

for all t € [0, 7] for all 2z € R. Here the last inequality uses (3.24). Indeed,
nfa+e¢/a<(n—1)/a+2 and ce+e+no<l+oa+(n—1)c

for n > 1 an integer.
Suppose for now that vy (Ts; ) = 0. Note from (3.6) that

d’Ul

o (t7) = —vi(te) — Ka(t o) < [Ki(t o))
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for all t € (0,T3) for all z € R. We then integrate it over the interval [0, T3] to show
that

1>
v1(To; ) <|ug| L= +f | Ky (t; )| dt
0

1 40 Cy (T
2ty [t

0
<30 21+ 2002 2 e - - 9)
<301 = T+ 200 2 o e )

1 1
<§Olq_l(T2) — gm(O)q_ng
<Clq_l(t).

The second inequality uses (3.23) and (3.38), (3.24), Lemma 3.3. Indeed, ca <
1 — 10e. The third inequality uses (3.16), and the fifth inequality uses Lemma 3.3
and (1.16). Indeed,

21— P m(0)* > 21+ (20)70)

for € > 0 sufficiently small. The last inequality uses (3.23).
Suppose on the contrary that vi(To;2) < 0. We may assume, without loss of
generality, that |[up| > = —m(0). We then infer from (3.8) and (3.23) that

vi(Tas2) = m(Tz) = m(0)g~ ' (T2) > —Ciq~ ' (T2).
Therefore (3.19) holds throughout the interval [0, T5].

Proof of (3.20) for n > 3. We gather some more preliminaries.
For n > 2, abusing notation, let

1 t
(1 + o)/ +m—Da) m(t)

vi(T5;2) = m(T3) and wvi(t;z) <

for all t € [T5,Tz] for some T3 € (0,73) and for some z € R. Indeed, since vy
and m are uniformly continuous throughout the interval [0, T5], we may choose T3
sufficiently close to T so that the latter inequality holds for all ¢ € [T3,T2]. We
repeat the argument in the proof of (3.33) to show that

Ty
(3.39) J A (W
T3
1 1+e 1
1+ (n—1)01—em(0)

For n > 3, moreover, we repeat the argument in the proof of Lemma 3.5 to show
that

(q727(n71)o(T2) _ q727(n71)a(T3))'

n—1
) s(G-1)/at1 (n—j)at1 Ze otz
(3.40) J; (]) J (n+1-—j) < et 1" .
For n > 3, abusing notation, let |v,(T%;x,)| = maxger |vn(T2;2)|. We may

assume, without loss of generality, that v, (T%;x,) > 0. Since v,, is uniformly
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continuous throughout the interval [0, 73], we may choose T3 sufficiently close to
T5 so that

(3.41) Un(t; ) =0 for all t € [T5, T3]
and (3.39) holds. Note from (3.6) that

dv’ﬂ N N 7”71 " Vi\T, T U AT, T — T
D) = = (n+ Dotz 2) 2(3) (6015 (8 20) — Kon(ts 22)

<—(n+ 1)m(O)C2n(nfl)/a+1bn71q71(t)qflf(nfl)cr(t)

+ Z ( )02 (j— 1)/a+1(n+ 1 _])(n 9)/atlpn—1 —1 = 1)0( )q—l—(n—j)o(t)

+ IKn(t, )|
< — (n i l)m(O)an(n_l)/a+lbn_lq_2_(n_l)a(t)
2
i 022 21/017? 1n(nfl)/a+2bn71q72f(n71)cr(t)

+ L 0o Ginm eyt ”"()

2e

<(fn~b(o)(n+1)+2l/T

40
Can+ —(1+(2 )1/%) n)
% 0271 n— 1)/a+1bn lq—2 (n—l)a(t)

for all t € (T5,T>). Here the first inequality uses (3.8), (3.41) and (3.27), the second
inequality uses (3.40) and (3.38), and the last inequality uses Lemma 3.3 and (3.24).
Indeed, cor < 1 — 10e. We then integrate it over the interval [T3,T%] to show that

'Un(T2; xn) <vn(T3; In)

2e 40 1
+ ( — m(O)(n + 1) + ngn + ?(1 + (26)1/0‘b)6—2n>

T
% C2n(n71)/a+1bn71J\ ? q727(n71)o(t) dt
Ts
<C«2n(nfl)/oz+1bnfqulf(nfl)cr(TB)

2e 40

" 1 1+e 1
1+ (n—1)c1—em(0)
() = )
<C’2n(”71)/0‘+1b"fqulf(”fl)g(Tg)
n+l+en 1+e€
l+(n—1)cl1—¢

<02n(n71)/a+1bnfqulf(nfl)o(TQ)'

- ( —m(0)(n+1)+

O2n(n—1)/o¢+lbn—1

Czn(n—l)/a+lbn—1 (q—l—(n—l)a(T2) _ q_l_(n_l)U(Tg))

Therefore (3.20) holds for n = 3,4, ... throughout the interval [0,75]. Here the
second inequality uses (3.27) and (3.39), the third inequality uses (1.15) and (1.16).
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Indeed,
2e

40

—em(0) >

(1+6)n+1

no+1—o
n > 3, by a direct calculation, and (3.24), Lemma 3.3. Indeed,

for e > 0 sufficiently small. The last inequality uses that decreases in

- 4+361+6<
20+11—¢

for € > 0 sufficiently small.

Proof of (3.20) for n = 2. Abusing notation, let |vy(Ts; x2)| = maxer |v2(Te; )]
We may assume, without loss of generality, that ve(Th; x2) > 0. We may choose T3
close to T so that

(3.42) va(t;2) = 0 for all t € [T5,Tz].

Moreover, we may choose T3 closer to T, if necessary, so that (3.39) holds.
Suppose for now that zz ¢ 3y /3(T%). That is, v1(To;x2) > 2m(T2) (see (3.11)).
We may choose T3 closer to T5, if necessary, so that

2
(3.43) vi(t;a0) = > gm m(t) for all t € [T3,Tz].
Note from (3.6) that
d’U2

7 —(t;x2) = — 3v1(t; x2)v2(t; 22) — Ka(t; x2)
< —2m(0)Co2"* g~ (1) (1)

40 Cs

+_(1+( )1/ab) 21/a+2b —l—oca— cr(t)
7T

<2( m(0) + @(H( 2¢)'/*b)— )C 21/at1pg=2=0 (1)

for all ¢t € (T3,T2). Here the first inequality uses (3.43), (3.42), (3.8) and (3.38),
and the second inequality uses (3.24) and Lemma 3.3. Indeed, cav < 1 — 10e. We
then integrate it over the interval [T5, T3] to show that

’UQ(TQ;JJQ) <'U2(T3;=T2)
40 "
+2( m(0) + —(1 + (2¢)V/b)— )Cz21/““bj g *7o(t) dt
™ T3

<O221/a+1bq7170(T3)

~2( = m(0) + 201+ (20)0)3)

I T+e 1 Va+ly, —l—c _ 1o
X 1+0176m(0)022 b(g (T2) — ¢ (T3))
—1—0c 2 I+e @ —l—0c —l—0c
<ot ong a1+ 2B ety o) g 1on(ay))

<CQ21+1/abqilig(T2).



WAVE BREAKING IN A SHALLOW WATER MODEL 21

Here the second inequality uses (3.27) and (3.39), and the third inequality uses
(1.16). Indeed,

4
—e*m(0) > _0(1 + (2¢)Y°b)
T
for € > 0 sufficiently small. The last inequality uses (3.24) and Lemma 3.3. Indeed,

2 (1+e)?

0<
1+0 1—c¢

<1

for € > 0 sufficiently small.

Suppose on the contrary that x» € ¥/3(7%). Lemma 3.2 then dictates that

(3.44) v1(t;x2) < %m(t) <0 for all t € [0, Tx].

Differentiating (3.1) with respect to = and using (3.2), we arrive at

(345) (0.X) =0, (0:X), (0. X)(0;0) = 1
and

(346) (@2X) =0a(0:X)? + 1a(22X), (22X)(0;2) = 0,

(347) LX) =05(0X)° + 30 X)(@X) + i (@2X), (@2X)(0;) = 0.

An integration of (3.5) leads to that

¢

w(tia) = 6(o) — | Ka(tia) dr.

0
Differentiating it with respect to « and using (3.2), we arrive at
(3.48) (v2(0,X)% + v1(02X))(t; ) = ug(z) — Ly(t; o),
(3.49) (v3(0:X) 4 3v9(0, X)(02X) + v1 (02 X)) (t; ) = ufy (x) — I3(t; ),
where
t

(3.50) L(t;x) = J (K2(0:.X)? + K1(02X)) (73 ) dr,

0
t

(3.51) I3(t;z) = fo (K3(0,X)% + 3K2(0,X)(02X) + K (03 X))(7;2) dr.

Moreover, note from (3.47) and (3.49) that

(352 S@X ) =) - Bia),  (@X)02)=0
We claim that

(3.53) %qu(t) < (0. X)(t22) <20 C(t)  for all £ [0, T,

Indeed, note from (3.1), (3.45) and (3.13), (3.14) that
L drjdt _d(@.X)/dt _ 1 dr/dt

~

l—¢ r 0. X T 1l4e€e r
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throughout the interval (0,7%). We then integrate it and use (3.45) to show that

(;%%)”“‘”<<awxxmngs(§g%)”“+ﬂ.

The claim therefore follows from (3.15).
To proceed, we claim that

1/a+4
(3.54) (EX)(60)] < - L b=
and
(3.55) (3X) (1 22)| < —5—=C3H2q>2747¢(1)

( )
for all ¢t € [0,T%]. Tt follows from (3.46) and (3.47) that (3.54) and (3.55) hold at
t = 0. Suppose on the contrary that (3.54) and (3.55) hold throughout the interval
[0,T}), but one of them fails at ¢t = T for some T} € (0,T>]. By continuity, we may
assume that

2 21/a+4 2—o0—2¢
(3.56) ()t = 2 Cab (1)
and
€ —z0 €
(3.57) (O3 X) (5 22)) <m2—(m02252q3 27ETE()

for all t € [0,Ty]. We seek a contradiction.

Proof of (3.54). We recall (3.50) and calculate that
(3.58)

40 O ‘ —1l—0ca—0o —4Z€
a(tian)| <21+ 20V Z [ (4210201 r (g2
0

21/a+4 v o o9
— Sy G T (a (7)) dr
40 Co Cy t
<_ 1 /ey gl/a+dp J o+8e
(1 @e)ien) Z2ierty(1- ) | a7 () dr
<*@@+()M®@Tm%b
7T
! 1 1 1—0+8e¢ o—1—8e
£y —(1—
e g e (0 R A A
(3.59) <eCobg*~7T8¢(t)

for all ¢ € [0,T4]. Here the first inequality uses (3.38), (3.53) and (3.56), and the
second inequality uses Lemma 3.3 and (3.24). Indeed,

oc+oa+2—1<o0—8e
The third inequality uses (3.23) and (3.16), and the last inequality uses Lemma 3.3,
(3.24) and (1.16). Indeed,

1 80

3 o+1—8e
—e3(1 — 0 - -
e’(1-¢) m(0) > ——o-—

(1+( )l/ab)2l/a+5
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for € > 0 sufficiently small. We then evaluate (3.48) at ¢t = Ty and « = z3 to show
that

(02 X)(Ty; 2))|
=|vy N (Ty; z2)||uf (w2) — To(Ty; 22) — v2(Ty; 22) (0 X ) (Ta; 2)?|

3 1 —0+38€ @ —1—0 —2Ze
< — S q(T)(2Y°H b + €Cobg' ~78(Ty) + 4 - 21 Cobg™ =7 (Ty) >~ (1))

2 m(0)
<= 2520t 4 oy Ty)
S22 m(0)

2l/o¢+4

< Ole/aq27072€(T4).

m(0)

Therefore (3.54) holds throughout the interval [0, Tz]. Here the first inequality uses
(3.44), (3.8) and (1.11), (3.59), (3.27), (3.53), the second inequality uses (3.23) and
(3.24), Lemma 3.3, and the last inequality follows for e > 0 sufficiently small.

Proof of (3.55). Similarly, recall (3.51) and we calculate that
40 Co
Is(t; —(1+ (2¢)°b)=
)] <221+ 200 ) G

t
% f (8 . 32/ 2p2g—1-0a=20 (1 3=3¢ (1)
0

C
_ @ .92/a+6 2 32 —l1-ca—0o 1—e 2—0—2€¢
62 (T)a"~“(1)q ()
€ 2;2 —1-0a 3—20+47e
+ 2 (0) C3b%q (T)q (7')) dr
<@(1 + (2¢)Y°b)
™

y (2332/a+2 1 3. 92/atT & eC3 )% 2

t
b 1—20+7¢ d
0 [ g ar

m(0) = m?(0)
<i—0(1 + (2¢)Yb) (233%*+2 + (?:ﬂfzg;;; + (_m(eo))l/z)
y — 12 e 61)20_76 mio) %b2(q2—2o+7e(t) —(1- 6)20—2—76)
(3.60)  <-— nf(zo)cgzbz’q“"”f(t)

for all t € [0,74]. Here the first inequality uses (3.38), (3.53), (3.56) and (3.57),
and the second inequality uses (3.24). Indeed,

2—oca—20—3e¢>1—20 + Te.

The third inequality uses (3.16), and the last inequality uses (1.14) and (1.16).
Indeed,

1 40
_(1 + (26)1/O¢b)(23 . 32/O¢+2 +3. 22/a+7 + 6)

401 _ N20—Te(__ 3/4
€ (1= (=m(0))"" > oo —
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for € > 0 sufficiently small. We then integrate (3.52) over the the interval [0, T4] to
show that

Ty
[(95.X)(T; o)) <J (lug (z2)] + |I3(t; 22)|) dt
0
T, 2
32/a+1p2 € C2b2a220+7e (1)) dt
32/atl €2 1 1 1
< —
( C3 m(O)) 20 — 3 —Te (1 —€)20-1-7<m(0)
> 022b2(q372a+7e(T4) o (1 - 6)2073775)
€ 272 3—20+7¢
<m2—(0)02b q + (T4)

Therefore (3.55) holds throughout the interval [0,T:]. Here the second inequality
uses (1.11) and (3.60), the third inequality uses (3.16), and the last inequality uses
(3.24) and (1.15). Indeed,

562(1 - 6)20’—1—76 - 1)(32/a+1(7m(0))1/2 + 62) > 1
for € > 0 sufficiently small. This proves (3.54) and (3.55).
Returning to the proof of (3.20) for n = 2, we recall that v (T; x2) = maxger |v2(To; )]

and xg € ¥1/3(T2). Differentiating vo and evaluating at t = Ty, x = 22, we use (3.2)
to find that

Ug(TQ; IQ)(@IX)(TQ, IQ) = 0
Let’s multiply (3.48) by 3v2(0,X) and (3.49) by v; and take their difference. Eval-
uating the result at t = T> and z = x5, we show that
1 _
03 (To; 3) =3(0:X) 3(To; ) (vF (T3 2) (05X ) (To; 2)
+ Bug(T; 22)(0: X ) (T2; 22) (ug (w2) — Lo (T2; 22))
—v1(To; 22) (ug (v2) — I3(T2;22)))

§ —3—6¢ 2 € 22 —2 3—20+47e
<50 (B (P 0) s CRV (T (D)
+ 621/a+102l)q7170(Tz)qlie(Tz)(21/a+lb + GCqulingge(Tg))
- m(O)q_l(T )(32/a+1b2 - € C2b2/aq2—20+7e(T )))
2 m(0) 2 2

8 21/a+1 32/a+1
- 6 - 21/a+1 =2 _
=3 (c+ ( s ) m(0)

<C2222/a+2 b2 (Ty).

I 62) C22b2q_2_2‘7_6(T2)

Therefore (3.20) holds for n = 2 throughout the interval [0,7%]. Here the first
inequality uses (3.53), (3.44), (3.8), (3.57), (3.27) and (1.11), (3.59), (3.60), the
second inequality uses (3.23) and (3.24), Lemma 3.3, and the last inequality uses
that

€+6- 21/a+1(21/0¢+163/4 + 6) + 32/a+1€ + 62 <3. 22/(1—1

for € > 0 sufficiently small.
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Proof of (3.18)-(3.20), (3.21)-(3.22). To summarize, a contradiction proves that
(3.18)-(3.20) and (3.21)-(3.22) hold for all n = 0,1,2,... throughout the interval
[0,T7].

Proof of (3.9). Note from (3.38), (3.8) and (1.16) that
|K1(t;2)| < @(1 + (26)1/0‘1))22272172(0)7712(15) < €m?(t)
T €

for all t € [0,71] for all 2z € R. Indeed,

=m0 > 221 1 (2¢) /o)

™

for e > 0 sufficiently small. A contradiction therefore proves (3.9). We merely pause
to remark that (3.18)-(3.20) and (3.21)-(3.22) hold for alln = 0, 1,2, ... throughout
the interval [0,T"] for all T" < T.

Proof of Theorem 1.1. For ¢t € [0,T), let z € ¥(t). Note from (3.13) and (3.14)
that

m(0)(vr ! (0;2) + (L + )t) < r(t;x) < m(0)(vy ! (032) + (1= e)t).
Moreover, note from Lemma 3.2 that
m(0) < v1(0;2) < (1 —€)m(0).
Consequently,

1

1+ m(0)(1+e)t <r(t) < T

+m(0)(1 — e)t.
Furthermore, (3.15) implies that

(1—€) +m(0)(1 — )t < qt) < —— +m(0)(1 — ).

Tl
. . 1 1 . .
Since the left side decreases to zero as t - ———-—— and the right side decreases
m(0) 1+ e
1
to zero as t — OIS it follows that ¢(t) — 0 and, hence, m(t) — —o

(see (3.8)) as t — T—, where T satisfies (1.17). Note on the other hand that (3.18)
dictates that v (¢; ) remains bounded for all ¢ € [0,7"], T’ < T, for all z € R. That
is, infger Opu(x,t) — —0 as t — T'— but u(z,t) is bounded for all z € R for all
t € [0,T), namely wave breaking. This completes the proof.
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APPENDIX A. ASSORTED PROOFS OF LEMMAS

Proof of Lemma 3.1. We split the integral and perform an integration by parts to
show that

|Kn(t§$)
’_

|
|-5(] Lt ] e Gu@m e, 0 - @) —u.0)

<| % og | tanh(50) (23 )(X (1 7) — 6,1) — (@) (X (1) + 6,1)|

1
Hz [ togltann(go)l@er (X (ta) - .0) d
T Jly|<s

+ ‘ljl ‘ Jcsch(%y)((agn)()((t;:r),t) — (M) (X (t;2) — y, ) dy‘

)

(A1) <2 log(coth(50) 16Ol + = ( [ logeoth(F) dy) 6o ()]

0
Indeed, (1 log(tanh(5y))) = csch(5y). In other words, the kernel associated with
the integral representation of Md, is singular of a logarithmic order near zero and

it decays exponentially at infinity.
Let g(y) = £ log(coth(Zy)). A direct calculation reveals that its inverse function

is
. 2 .
g ' (y) = —log(coth(§y)) = 29(2y).
Note that

and we calculate that

J 29(2y) dy = J g9(z) dz =—J log (1 + m) dz

9(6) 29(5) T J2g(5)

9 [®© mz/2
<— J eTefﬁz/Q dz
T Jog(s) erz/2 — 1

2 em9(d) 0
£ = —mz/2
<W6”9(6)—1J e dz

29(9)
62 5 12

Here the first inequality uses that log(1+z) < z for all > 0, the second inequality

xr
is decreasing for all x > 0, and the third inequality uses that

uses that

ex
coth(%0)

W < 3 for 0 < ¢ < 1, by direct calculations. Consequently,

5
1 12
f 9(y) dy <;610g(coth(%5)) + ﬁtanh(%é)
0

(A.2) <%510g(coth(%5)) + %Mog(coth(%&).

Indeed, a direct calculation reveals that tanh x < 3z log(cothz)) for all 0 < z < 1.
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Substituting (A.2) into (A.1), we then show that

[Fnlt;:2)] < Tog(coth(56))1Gu(t)] = + 26 log(coth(F))Gusr (1)1

<2 108(20) a1 + F108(26) ™ |Gus ()]
<22 () @ Uan@ler + 58I @)] )

for all 0 < € < 1. Therefore (3.7) holds for € > 0 sufficiently small. Here the
second inequality uses that cotha < 227! for all 0 < < 1, and the last inequality
uses that log(z™1) < 1a7¢ throughout 0 < 2 < 1 for all 0 < € < 1, by direct
calculations. This completes the proof. 0

Proof of Lemma 3.2. Suppose on the contrary that z1 ¢ X, (¢1) but z; € X (t2) for
some x1 € R for some 0 < t; < t5 < T3. That is,

(A3)  wvi(ti;z1) > (1 —9)m(ty) and wvi(t2;z1) < (1 —v)m(ts) < %m(tg).

Since vy (-;x1) and m are uniformly continuous throughout the interval [0,T}], we
may choose t; and to close so that

1
vy (t; ) < gm(t) for all ¢ € [tq, to].

Let
(A4) Ul(tl;IQ) = m(tl) < %m(tl)

We may choose to closer to t1, if necessary, so that

1
§m(t) for all ¢ € [t1, t2].
For € > 0 sufficiently small, (3.10) then leads to that

v1(t;ma) <

| K (t25)| < 2m?(t) < 4e2vi(t; o)) < gvf(t;xj) for all t € [t1,t2] and j =1, 2.

Note from (3.6), where n = 1, that

dv1

SHeim) = —of(sm) — Ki(a) > (=1 2 o)

2

and

dvy 0

SrCian) < (=14 2)odsw).
We then integrate them over the interval (¢1,%2) to show that

vy (t1;22)
1+ (1= vty a2)(tz — t1)

- vy (t1;71)
1 + (1 + %)’Ul(tl;xl)(tz — tl)

vy (ta; 1) and vy (to;xe) <
The latter inequality and (A.4) imply that

m(ta) <
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The former inequality and (A.3), on the other hand, imply that

. (1 —y)m(t1)
v1 (t2; 1)>1+(1+%)(1—7)m(f1)(t2—f1)
(1 —y)m(t1)

1+ (1= F)m(tr)(t2 — t1)

>(1 = y)mfta).

A contradiction therefore completes the proof. O

Proof of Lemma 3.5. We use Stirling’s inequality and calculate that

Z ( ) (G-D/atl(y 4 ] — jynti-ia

Z _]ju Dfectl(y 4 1 — j)inti=i)/o

1 — j\n— 1— ji—1 1 — 4)(n+1=d)\ 1/a-1
_nn/a+1z<n+ J) in+ J(J (n+1-j) )

n nn"

<Zepm/a+1 [nz/“]( )(J D/a=- 1)
Jj=2

Therefore (3.35) follows from (3.24). In the first inequality we assume the conven-

tion 00 =
a € R.

[Amig4]
[BF67]

[BouT7]

[CE9S]
[DO11]

[Dobs7]

[HJ15]
[HP16a)

[HP16b]

[HT14]

[Hurl5]

1, and in the last inequality [a] denotes the greatest integer not exceeding
O
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