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WAVE BREAKING IN A SHALLOW WATER MODEL

VERA MIKYOUNG HUR AND LIZHENG TAO

Abstract. We prove wave breaking — bounded solutions with unbounded
derivatives — in the nonlinear nonlocal equations which combine the dispersion
relation of water waves and the nonlinear shallow water equations, and which
generalize the Whitham equation to permit bidirectional wave propagation,
provided that the slope of the initial data is sufficiently negative.

1. Introduction

As Whitham [Whi74] emphasized, “the breaking phenomenon is one of the most
intriguing long-standing problems of water wave theory.” The nonlinear shallow
water equations:

(1.1)
Btη ` Bxpup1 ` aηqq “ 0,

Btu ` Bxη ` a uBxu “ 0,

approximate the physical problem when the order of the characteristic wavelengh
is greater than the undisturbed fluid depth, and they explain wave breaking. That
is, the solution remains bounded but its slope becomes unbounded in finite time.
Here t P R is proportional to elapsed time, and x P R is the spatial variable in
the primary direction of wave propagation; η “ ηpx, tq represents the free surface
displacement from the depth “ 1, and u “ upx, tq is the particle velocity at the
rigid horizontal bottom; a ą 0 is the dimensionless nonlinearity parameter. See
[Lan13], for instance, for details. We assume for simplicity that the constant due
to gravitational acceleration is 1. Note that the phase speed associated with the
linear part of (1.1) is independent of the spatial frequency, whereas the speed of a
plane wave with the spatial frequency ξ near the quiescent state of water˚ is

(1.2) c2WW pξq “ tanhpξq
ξ

.

In other words, (1.1) neglects the dispersion effects of the physical problem.
But the shallow water theory goes too far. It predicts that all solutions carrying

an increase of elevation break. Yet observations have long been established that
some waves in water do not break. Perhaps, the neglected dispersion effects inhibit
breaking.
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˚The derivation of (1.2) dates back to the work of Airy in 1845!
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But, including some: dispersion effects, the Korteweg-de Vries (KdV) equation:

(1.3) Btη `
´
1 ` 1

6
aB2

x

¯
Bxη ` 3

2
a ηBxη “ 0,

in turn, goes too far and predicts that no solutions break. To conclude, one needs
some dispersion effects to satisfactorily explain breaking, but the dispersion of the
KdV equation seems too strong. This is not surprising because the phase speed “
1´ 1

6
aξ2 associated with the linear part of (1.3) poorly approximates; that of water

waves (see (1.2)) when ξ is large.
Whitham therefore noted that “it is intriguing to know what kind of simpler

mathematical equation (than the governing equations of the water wave problem)
could include” the breaking effects, and he put forward (see [Whi74], for instance)

(1.4) Btη ` M1{2Bxη ` 3

2
a ηBxη “ 0.

Here M1{2 is a Fourier multiplier operator, defined via its symbol as

(1.5) {M1{2fpξq “ cpξq pfpξq,
and c “ cWW (see (1.2)). It combines the dispersion relation of the unidirectional
propagation of water waves and a nonlinearity of the shallow water theory. In a
small amplitude and long wavelength regime, where a “ ξ2 ! 1, the Whitham
equation agrees with the KdV equation up to the order of a. As a matter of fact,
solutions of (1.4)-(1.5), where c “ cWW , and (1.3) exist and they converge to those
of the water wave problem up to the order of a during a relevant interval of time; see
[Lan13], for instance, for details. Including the full range of the dispersion in water
waves, on the other hand, the Whitham equation may offer an improvement over
the KdV equation for short and intermediately long waves. Whitham conjectured
that his equation would capture the breaking effects.

Seliger [Sel68] made a rather ingenious argument, albeit formal, and claimed that
a sufficiently asymmetric solution of (1.4)-(1.5) breaks, provided that the Fourier
transform of c be even, bounded, integrable, and monotonically decay to zero at
infinity. Unfortunately, it does not apply to the Whitham equation, because cWW

is not integrable (see (1.2)). Later Constantin and Escher [CE98] turned Seliger’s
argument into a rigorous proof. Naumkin and Shishmarëv [NS94] made another
breaking argument, provided that the Fourier transform of c and its derivative be
integrable and |cpξq| ď C|ξ|´1{3 for |ξ| " 1 for some C ą 0. Unfortunately, the
Fourier transform of cWW may not be written explicitly and, hence, the assumptions
in [NS94] seem difficult to verify for the Whitham equation. While preparing the
manuscript, one of the authors [Hur15] solved Whitham’s conjecture.

In recent years, the Whitham equation gathered renewed attention because of
its ability to explain high frequency phenomena in water waves. In particular, one
of the authors [HJ15] proved that a small-amplitude, periodic traveling wave of
(1.4)-(1.5), where c “ cWW (see (1.2)), be spectrally unstable to long wavelength
perturbations, provided that the wave number is greater than a critical value, and

:In the long wave limit as ξ Ñ 0, one may expand the right side of (1.2) and find that

cWW pξq “
´
1 ´ 1

6
ξ2

¯
` Opξ4q.

;A relative error of 10%, say, between cWW p?
aξq and the phase speed for the KdV equation

is made for
?
aξ ą 1.242 . . . .
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stable to square integrable perturbations otherwise. In other words, the Whitham
equation captures the Benjamin-Feir instability§ of Stokes waves. By the way, the
Benjamin-Feir instability is a high frequency effect, which does not manifest in the
KdV and nonlinear shallow water equations. But the linear operator associated
with the Whitham equation does not admit collisions of spectra away from the
origin, which numerical computations (see [DO11], for instance) indicate to lead
to new kinds of instabilities in the physical problem. To quote Whitham, “it is
intriguing to know what kind of simpler mathematical equation could include” the
breaking and other high frequency effects.

We propose “bidirectional Whitham” or “Boussinesq-Whitham” equations:

(1.6)
Btη ` Bxpup1 ` aηqq “ 0,

Btu ` MBxη ` a uBxu “ 0,

where M is a Fourier multiplier operator, defined via its symbol as

(1.7) yMfpξq “ c2WW pξq pfpξq “ tanhpξq
ξ

pfpξq.

They combine the dispersion relation of the bidirectional propagation of water waves
and the nonlinear shallow water equations (see (1.1)). The spectrum of the linear
operator associated with (1.6) is the same as that for the physical problem. In a
small amplitude and long wavelength regime, where a “ ξ2 ! 1, moreover, they
agree with a variant¶ of the Boussinesq equations:

(1.8)

Btη ` Bxpup1 ` aηqq “ 0,
´
1 ´ 1

3
aB2

x

¯
Btu ` Bxη ` a uBxu “ 0,

up to the order of a, like the Whitham equation does with the KdV equation.
As a matter of fact, one may modify the argument in [Lan13], for instance, to
verify that solutions of (1.6)-(1.7) and (1.8) exist and they converge to those of the
water wave problem up to the order of a during a relevant interval of time. The
global-in-time well-posedness for (1.8) was established in [Sch81] and [Ami84], for
instance. Including the full dispersion in water waves, on the other hand, (1.6)-
(1.7) may capture the breaking effects. This is the subject of investigation here.
The Benjamin-Feir instability and other high frequency effects for (1.6)-(1.7) were
studied in [HP16a].

If we furthermore assume that η is much smaller than the fluid depth “ 1 then
we may reject terms of the order uη in the former equation of (1.6) with respect to
terms of the order u and, after suppressing a, we arrive at

(1.9)
Btη ` Bxu ` uBxη “ 0,

Btu ` MBxη ` uBxu “ 0.

(Although we reject η with respect to 1, we must not uBxη since it is a priori not
smaller than terms in the latter equation of (1.6).) The main result asserts the
wave breaking in (1.9) and (1.7), provided that the slope of the initial velocity is

§A periodic wave train in water is unstable to slow modulations, provided that the carrier
wave number times the undisturbed fluid depth is greater than 1.363 . . . ; see [BF67,Whi67], for
instance.

¶They do not explicitly appear in the work of Boussinesq. But (280) in [Bou77], for instance,
after several “higher order terms” drop out, becomes equivalent to (1.8).
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sufficiently negative. Note that the integral representation of MBx may be written
explicitly. Specifically,

(1.10) MBxfpxq “ ´1

2
PV

ż 8

´8

fpyq
sinhpπ

2
px ´ yqq dy,

where PV stands for the Cauchy principal value.

Theorem 1.1 (Wave breaking in (1.9)-(1.10)). Assume that η0, u0 P H8pRq. For
ǫ ą 0 sufficiently small, assume that

}upnq
0

}L8pRq ănpn´1q{α`1bn´1, n “ 2, 3, . . . ,(1.11)

}η0}L8pRq ă 1

2ǫ
,(1.12)

}ηpnq
0

}L8pRq ă1

ǫ
nn{αbn´1, n “ 1, 2, . . .(1.13)

for some b ě 1 and for some α such that 1

2
p1 ` ǫq ă α ă 2

3
p1 ´ 14ǫq. Moreover,

assume that

ǫ2p´ inf
xPR

u1
0pxqq2 ą1 ` }η0}H2pRq,(1.14)

ǫ
´1 ´ ǫ

1 ` ǫ

¯2

p´ inf
xPR

u1
0pxqq1{4 ą 4e

21{α´1 ´ 1
,(1.15)

ǫ5p1 ´ ǫq4p´ inf
xPR

u1
0pxqq3{4 ą80

π
p1 ` p2eq1{αbq.(1.16)

Then the solution of (1.9)-(1.10) and

ηpx, 0q “ η0pxq, upx, 0q “ u0pxq,
exhibits wave breaking. Specifically,

|upx, tq| ă 8 for all x P R for all t P r0, T q
but

inf
xPR

Bxupx, tq Ñ ´8 as t Ñ T´
for some T ą 0. Moreover,

(1.17)
1

1 ` ǫ

1

´ infxPR u
1
0
pxq ă T ă 1

p1 ´ ǫq2
1

´ infxPR u1
0
pxq .

The assumptions (1.11)-(1.13) require that η0 and u0 belong to the Gevrey class
of index 1{α. Since 1{α ą 1, nontrivial η0 and u0 with compact support exist.
They are technical assumptions and may be removed if the kernel associated with
the integral representation of M is regular; see [Sel68, CE98], for instance. The
assumptions (1.14)-(1.16) require that u1

0 be sufficiently negative somewhere in R.
The breaking scenario, we think, is that the profile of u at such a point steepens
until it becomes vertical in finite time.

Following along the same line as the argument in [HT14,Hur15] for (1.4)-(1.5),
where cpξq “ |ξ|α´1, 0 ă α ă 1{2, the proof of Theorem 1.1 examines the ordinary
differential equations for u and its derivatives of all orders along the characteristics,
which involve MBx and η and its derivatives of all orders along the characteris-
tics. In other words, we examine η, u and their derivatives of all orders along the
characteristics (see (3.3)-(3.6)). To the best of the authors’ knowledge, this is new.
Naumkin and Shishmarëv [NS94] made a breaking argument for related, nonlinear
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nonlocal equations. But it does not apply to (1.9) (or (1.6)) because of the severe
nonlinearities.

In Lemma 3.1, we make a straightforward calculation and show that the kernel
associated with (1.10) is singular of a logarithmic order near zero. To compare,
the kernel associated with the integral representation of M1{2Bx (see (1.5)) for the

Whitham equation may not be written explicitly, although it behaves like |x|´1{2

near zero; see [Hur15], for instance, and references therein. Note that MBx is less
singular than M1{2Bx. On the other hand, the nonlinearities of (1.9) are much more
severe than that of (1.4), permitting η and its derivatives to grow large along the
characteristics (see (3.21)-(3.22)), when one attempts to bound the nonlocal forcing
term involving η along the characteristics by the nonlinearity in the latter equation
of (1.9). This is why we are unable to handle the nonlinearity of (1.6). We make
strong use of that the kernel associated with (1.10) less singular than a polynomial
order near zero. Moreover, η and its derivatives along the characteristics grow
larger than what a logarithmic singularity can control, so that we cannot control the
second derivative of u along the characteristics, like in [HT14] for (1.4)-(1.5), where
cpξq “ |ξ|α´1 and α ą 1{3. We exploit the “smoothing effects” of the characteristics
when the derivative of u is sufficiently negative (see (3.54) and (3.55)).

It is physically more satisfying to prove wave breaking for η, rather than u. We
believe that η breaks when u does. The proof of Theorem 1.1, however, does not
explore blowup in the former equation of (1.9). Moreover, it is desirable to prove
wave breaking in (1.6), rather than (1.9). This is a subject of future investigation.

Remarks on other Boussinesq-Whitham models. Perhaps, the best known
among Boussinesq’s equations in the shallow water theory is

(1.18) B2

t η “ B2

xη ` 1

3
aB4

xη ` 3

2
aB2

xpη2q.

Including the full dispersion in water waves, one may follow Whitham’s heuristics
and replace the square of the phase speed “ 1 ´ 1

3
aξ2 by that of water waves (see

(1.2)). The result becomes

(1.19) B2

t η “ MB2

xη ` 3

2
aB2

xpη2q,

where M is in (1.7). It is one of many which stake the claim to the “Boussinesq-
Whitham equation.” Unfortunately, the initial value problem associated with the
linear part of (1.19) is ill-posed in the periodic setting. Hence, it is not suitable for
the purpose of describing wave packet propagation.

Under the assumption Btη ` Bxη “ Opaq, (1.18) is formally equivalent to

B2

t η “ 1

3
B2

t B2

xη ` B2

xη ` 3

2
aB2

xpη2q

up to the order of a. Including the full dispersion in water waves, likewise, one
arrives at

(1.20) B2

t η “ M

´
B2

xη ` 3

2
aB2

xpη2q
¯
.

The initial value problem for (1.20) is well-posed at least locally in time. But it
fails to explain the Benjamin-Feir instability; see [HP16b], for instance, for details.
Hence, it is a poor candidate for the purpose of studying the stability of Stokes
waves. In contrast, one of the authors [HP16a] proved the Benjamin-Feir instability
in (1.6)-(1.7).
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Saut [Sau15] (see also [Dob87]) alternatively proposed

(1.21)
Btη ` MBxu ` aBxpuηq “ 0,

Btu ` Bxη ` a uBxu “ 0,

as Boussinesq-Whitham equations. They are formally equivalent to (1.6)-(1.7) up
to the order of a. But, to the best of the authors’ knowledge, the well-posedness
issue for (1.21) has not been studied. In contrast, in Section 2, we establish the
local-in-time well-posedness for (1.9)-(1.10).

To conclude, (1.6) (or (1.9)) is preferred over other Boussinesq-Whitham models
for the purpose of studying the breaking and stability of water waves.

2. Local well-posedness

We discuss the initial value problem associated with (1.9)-(1.10) or, equivalently,

(2.1)
Btη ` Bxu ` uBxη “ 0,

Btu ´ Hh ` Rη ` uBxu “ 0.

Here H denotes the Hilbert transform, defined as a Fourier multiplier as

yHfpξq “ ´isgnpξq pfpξq.
Since

|sgnpξq ´ tanhpξq| ď e´|ξ| pointwise in R

by a direct calculation (see [Yos82, Lemma 2.15], for instance), we find that

(2.2) }Rf}HspRq ď C}f}L2pRq for any s ě 0,

where C ą 0 a constant is independent of f .

Theorem 2.1 (Local well-posedness). If η0 P HspRq and u0 P Hs`1{2pRq for s ą 2
then a unique solution of (1.9)-(1.10),

ηpx, 0q “ η0pxq and upx, 0q “ u0pxq,

exists in HspRq ˆ Hs`1{2pRq during the interval of time r0, T q for some T ą 0.

Moreover, pη0, u0q ÞÑ pηptq, uptqq is continuous on HspRq ˆ Hs`1{2pRq for all t P
r0, T q.

Combining an a priori bound and a compactness argument, one may be able
to establish local-in-time well-posedness for (1.1) in HspRq ˆ Hs`1{2pRq, s ą 2;
see [Kat83], for instance, for details. Without recourse to the dispersion effects,
the argument in [Kat83] works for (2.1)-(2.2) mutatis mutandis. Below we merely
include how one obtains a priori bound for (2.1)-(2.2), and we omit other parts of
the proof.

Note that }Hf}L2pRq “ }f}L2pRq andH2 “ ´1. Note that Λ :“ HBx is self-adjoint
and linked with half-integer Sobolev spaces. Specifically,

ż 8

´8

pf2 ` fΛfq dx

is equivalent to }f}2
H1{2pRq

. Moreover the commutator of Λ is “smoothing.”
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Lemma 2.2. It follows that
(2.3)ż 8

´8

afHBxf dx ď C}a}H3{2`pRq}f}2H1{2pRq and

ż 8

´8

apBxfqHBxf dx ď C}a}H5{2`pRq}f}2L2pRq,

where C ą 0 a constant is independent of f and a.

Proof. Note that Λ1{2 is self-adjoint, and we calculate that
ż
afHBxf dx “

ż
apΛ1{2fq2 dx `

ż
pΛ1{2rΛ1{2, asfqf dx.

Clearly, the first term of the right side is bounded by }a}L8}Λ1{2f}2L2. We claim that
the second term of the right side is bounded by }|ξ|pa}L1}f}2

H1{2 up to multiplication
by a constant. Indeed, since

pΛ1{2rΛ1{2, asfq^pξq “ 1?
2π

ż 8

´8

|ξ|1{2p|ξ|1{2 ´ |ξ1|1{2qpapξ ´ ξ1q pfpξ1q dξ1

and since |ξ|1{2||ξ|1{2 ´ |ξ1|1{2| ď C|ξ ´ ξ1| for all ξ, ξ1 P R for some constant C ą 0
by a direct calculation (see the proof of [Yos82, Lemma 2.14], for instance), Young’s
inequality and the Parseval theorem assert that

}Λ1{2rΛ1{2, asf}L2 ď C}|ξ|pa}L1}f}L2

for some constant C ą 0 independent of f and a. Hölder’s inequality therefore
proves the claim. The first inequality of (2.3) then follows by the Sobolev inequality.

Note that H is skew-adjoint, and we calculate that
ż
apBxfqHBxf dx “ ´

ż
apHBxfqBxf dx ´

ż
prH, asBxfqBxf dx

“ ´ 1

2

ż
prH, asBxfqBxf dx.

Since

pBxrH, asBxfq^pξq “ ´ 1?
2π

ż 8

´8

ξpsgnpξq ´ sgnpξ1qqpapξ ´ ξ1qξ1 pfpξ1q dξ1

and since |ξ| ` |ξ1| ď |ξ ´ ξ1| when sgnpξq ‰ sgnpξ1q by a direct calculation (see the
proof of [Yos82, Lemma 2.14], for instance), Young’s inequality and the Parseval
theorem assert that

}BxrH, asBxf}L2 ď 1

2
}|ξ|2pa}L1}f}L2.

Hölder’s inequality and the Sobolev inequality then prove the second inequality of
(2.3). This completes the proof. �

To proceed, for k ě 1 an integer, let

(2.4) E2

kptq “ 1

2
}ηptq}2L2pRq ` 1

2
}uptq}2L2pRq `

kÿ

j“1

ejptq,

where

(2.5) ejptq “ 1

2

ż 8

´8

ppBj
xηptqq2 ` pBj

xuptqqΛpBj
xuptqqq dx.

Note tha Ekptq is equivalent to }ηptq}HkpRq ` }uptq}Hk`1{2pRq.
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Lemma 2.3 (A priori bound). If η P HkpRq and u P Hk`1{2pRq, for k ě 2 an
integer, solve (2.1)-(2.2) during the interval of time r0, T q for some T ą 0 then

(2.6) Ekptq ď Ekp0q
1 ´ CEkp0qt

for all t P r0, T 1s, 0 ă T 1 ă T , where C ą 0 a constant is independent of η and u,
and T 1 depends upon Ekp0q. Moreover,

(2.7) }ηptq}HkpRq ` }uptq}Hk`1{2pRq ď Cpt, }ηp0q}HkpRq, }up0q}Hk`1{2pRqq

for all t P r0, T 1s.

Proof. For j ě 1 an integer, differentiating (2.5) in time and using (2.1), we arrive
at

dej

dt
“

ż
ppBtBj

xηqpBj
xηq ` pBtBj

xuqΛpBj
xuqq dx

“ ´
ż

Bj
xpBxu ` uBxηqpBj

xηq dx ´
ż

Bj
xp´Hη ` Rη ` uBxuqΛpBj

xuq dx

“:pIq ` pIIq

during the interval of time p0, T q. An integration by parts leads to that

pIq “ ´
ż

pBj`1

x uqpBj
xηq dx ` 1

2

ż
pBxuqpBj

xηq2 dx(2.8)

´
ż

pBj
xpuBxηq ´ upBj`1

x ηqqpBj
xηq dx.

Since Λ “ HBx, H is skew-adjoint and H2 “ ´1, moreover,

pIIq “ ´
ż

pBj`1

x ηqpBj
xuq dx ´

ż
pHBj`1

x RηqpBj
xuq dx(2.9)

´
ż
upBj`1

x uqHpBj`1

x uq dx ´ j

ż
pBxuqpBj

xuqpHBj`1

x uq dx

´
ż

pBj
xpuBxuq ´ upBj`1

x uq ´ jpBxuqpBj
xuqqΛpBj

xuq dx.

Note that the first term of the right side of (2.8) and the first term of the right side
of (2.9) cancel each other when added together after an integration by parts. Note
that the second term of the right side of (2.8) is bounded by 1

2
}Bxu}L8}Bj

xη}2L2 ,

and the last term of the right side of (2.8) is bounded by }u}Hj }Bj
xη}2

L2 up to
multiplication by a constant by the Leibniz rule. Note that the second term of
the right side of (2.9) is bounded by }η}L2}Bj

xu}L2 by (2.2), and the third and
the fourth terms of the right side of (2.9) are bounded by }u}H5{2` }Bj

xu}2
H1{2 by

(2.3). Moreover, note that the last term of the right side of (2.9), for j ě 2 an
integer, is bounded by }u}2

Hj`1{2}Λ1{2Bj
xu}L2 up to multiplication by a constant by

the fractional Leibniz rule and the Sobolev inequality. To recapitulate,

(2.10)
dej

dt
ď Cp1 ` }u}H5{2` ` }u}Hj`1{2qp}η}2Hj ` }u}2

Hj`1{2q

for j ě 2 an integer during the interval of time p0, T q, where C ą 0 a constant is
independent of η and u.
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To proceed, we use (2.1) and integrate by parts to show that

1

2

d

dt
}η}2L2 “ ´

ż
pBxu ` uBxηqη dx ď }Bxu}L2}η}L2 ` 1

2
}Bxu}L8}η}2L2,(2.11)

1

2

d

dt
}u}2L2 “

ż
pHη ´ Rη ´ uBxuqu dx ď 2}η}L2}u}L2 ` }Bxu}L8}u}2L2(2.12)

during the interval of time p0, T q. Adding (2.10) through (2.12), we deduce that

dEk

dt
ď CE2

k

for k ě 2 an integer during the interval of time p0, T q, where C ą 0 a constant is
independent of η and u. Therefore (2.6) follows because it invites a solution until
the time T 1 “ pCEkp0qq´1. Furthermore (2.7) follows because Ekptq is equivalent
to }ηptq}Hk ` }uptq}Hk`1{2 . This completes the proof. �

3. Proof of Theorem 1.1

We assume that η0 and u0 satisfy (1.11)-(1.13), (1.14)-(1.16). Let η and u be
the unique solution of (1.9)-(1.10),

ηpx, 0q “ η0pxq and upx, 0q “ u0pxq,
in C8pr0, T q;H8pRq ˆH8pRqq for some T ą 0. We assume that T is the maximal
time of existence.

For x P R, let Xpt;xq solve

(3.1)
dX

dt
pt;xq “ upXpt;xq, tq and Xp0;xq “ x.

Since upx, tq is bounded and satisfies a Lipschitz condition in x for all x P R for all
t P r0, T q, it follows from the ODE theory that Xp¨ ;xq is continuously differentiable
throughout the interval p0, T q for all x P R. Since upx, tq is smooth in x for all x P R

for all t P r0, T q, furthermore, x ÞÑ Xp¨ ;xq is infinitely continuously differentiable
throughout the interval p0, T q for all x P R.

Let

(3.2) ζnpt;xq “ pBn
xηqpXpt;xq, tq and vnpt;xq “ pBn

xuqpXpt;xq, tq
for n “ 0, 1, 2, . . . . Differentiating (1.9) with respect to x and evaluating the result
at x “ Xpt;xq, we arrive at

dζ0

dt
` v1 “ 0,(3.3)

dζn

dt
`

nÿ

j“1

ˆ
n

j

˙
vjζn`1´j ` vn`1 “ 0 for n “ 1, 2, . . . ,(3.4)

and

dv0

dt
` K0pt;xq “ 0,(3.5)

dvn

dt
`

nÿ

j“1

ˆ
n

j

˙
vjvn`1´j ` Knpt;xq “ 0 for n “ 1, 2, . . . .(3.6)
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Here and elsewHere

ˆ
n

j

˙
’s are the binomial coefficients, and

Knpt;xq “pMBn`1

x ηqpXpt;xq, tq

“ ´ 1

2

ż 8

´8

cschpπ
2

pXpt;xq ´ yqqppBn
xηqpXpt;xq, tq ´ pBn

xηqpy, tqq dy

for n “ 0, 1, 2 . . . (see (1.10)). Since upx, tq is smooth, square integrable in x,
and smooth in t for all x P R for all t P r0, T q, and since Xpt;xq is continuously
differentiable in t and smooth in x for all t P r0, T q for all x P R, it follows that
Knpt;xq is continuously differentiable in t and smooth in x for all t P r0, T q for all
x P R.

Lemma 3.1. Let 0 ă δ ă 1. For ǫ ą 0 is sufficiently small,

(3.7) |Knpt;xq| ă 40

π

1

ǫ
pδ´ǫ}ζnptq}L8pRq ` δ1´ǫ}ζn`1ptq}L8pRqq, n “ 0, 1, 2, . . .

for all t P r0, T q for all x P R.

The proof involves direct calculations of (1.10). We include the detail in Appen-
dix A.

Let

(3.8) mptq “ inf
xPR

v1pt;xq “ inf
xPR

pBxuqpx, tq “: mp0qq´1ptq.

Note that v1pt; ¨q and, hence, mptq are continuous for all t P r0, T q. Clearly,mptq ă 0
for all t P r0, T q, qp0q “ 1 and qptq ą 0 for all t P r0, T q. Indeed, mptq ě 0 would
imply that up¨ , tq be non-decreasing in R and, hence, up¨ , tq ” 0.

We shall show that

(3.9) |K1pt;xq| ă ǫ2m2ptq for all t P r0, T q for all x P R.

Since} }MBxf}L2pRq ď }f}L2pRq by the Parseval theorem, it follows from (1.14) and
the Sobolev inequality that

|K1p0;xq| “ |Mη2
0pxq| ď }η0}H3{2`pRq ă ǫ2m2p0q for all x P R.

That is, (3.9) holds at t “ 0. Suppose on the contrary that |K1pT1;xq| “ ǫ2m2pT1q
for some T1 P p0, T q for some x P R. By continuity, we may assume, without loss
of generality, that

(3.10) |K1pt;xq| ď ǫ2m2ptq for all t P r0, T q for all x P R.

We seek a contradiction.

Below we gather some preliminaries.

Lemma 3.2. Let 0 ă γ ă 1. For t P r0, T1s, let
(3.11) Σγptq “ tx P R : v1pt;xq ď p1 ´ γqmptqu.
If 0 ă ǫ ď γ ă 1{2 for ǫ ą 0 sufficiently small then Σγpt2q Ă Σγpt1q whenever
0 ď t1 ď t2 ď T1.

}Note in passing that ´MBx is the Hilbert transform for the infinite horizontal strip of unit
depth, subject to the Neumann boundary condition at the bottom.
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The proof is very similar to that of [HT14, Lemma 2.1]. We include the detail
in Appendix A for completeness.

Lemma 3.3. 0 ă qptq ď 1 and it is decreasing for all t P r0, T1s.

Proof. The proof is very similar to that of [HT14, Lemma 2.2]. Here we include
the detail for future references.

For 0 ă ǫ ď γ ă 1{2, ǫ ą 0 sufficiently small, let x P ΣγpT1q, and we suppress it
to simplify the exposition. Note from (3.8) and Lemma 3.2 that

(3.12) mptq ď v1ptq ď p1 ´ γqmptq ă 0 for all t P r0, T1s.

One may write the solution of (3.6), where n “ 1, as

(3.13) v1ptq “ v1p0q
1 ` v1p0q

şt
0
p1 ` pv´2

1
K1qpτqq dτ

“: mp0qr´1ptq.

Clearly, rptq is continuously differentiable and rptq ą 0 for all t P r0, T1s. Since

|pv´2

1
K1qptq| ă p1 ´ γq´2ǫ2 ă ǫ for all t P r0, T1s

for ǫ ą 0 sufficiently small, by (3.12) and (3.10), we infer from (3.13) that

(3.14) p1 ` ǫqmp0q ď dr

dt
ď p1 ´ ǫqmp0q ă 0

throughout the interval p0, T1q. Consequently, rptq and, hence, v1ptq (see (3.13))
are decreasing for all t P r0, T1s. Furthermore, mptq and, hence, qptq (see (3.8)) are
decreasing for all t P r0, T1s. This completes the proof. By the way, note from (3.8),
(3.13) and (3.12) that

(3.15) qptq ď rptq ď 1

1 ´ γ
qptq for all t P r0, T1s.

�

Lemma 3.4. For s ą 0, s ‰ 1, and for t P r0, T1s,
ż t

0

q´spτq dτ ď ´ 1

s ´ 1

1

p1 ´ ǫq1`s

1

mp0q
´
q1´sptq ´ 1

p1 ´ ǫq1´s

¯
.(3.16)

For t P r0, T1s,
ż t

0

q´1pτq dτ ď ´ 1

p1 ´ ǫq2
1

mp0q
´
log

1

1 ´ ǫ
´ log qptq

¯
.(3.17)

The proof is found in [HT14, Lemma 2.3], for instance; see also the proof of
(3.33) below.

To proceed, we shall show that

}v0ptq}L8pRq “}uptq}L8pRq ă C0,(3.18)

}v1ptq}L8pRq “}pBxuqptq}L8pRq ă C1q
´1ptq,(3.19)

}vnptq}L8pRq “}pBn
xuqptq}L8pRq ă C2n

pn´1q{α`1bn´1q´1´pn´1qσptq(3.20)
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for n “ 2, 3, . . . , and

}ζ0ptq}L8pRq “}ηptq}L8pRq ă C2

ǫ
q´ǫptq,(3.21)

}ζnptq}L8pRq “}pBn
xηqptq}L8pRq ă C2

ǫ
nn{αbn´1q´ǫ´nσptq(3.22)

for n “ 1, 2, . . . for all t P r0, T1s. Here
(3.23)

C0 “ 2p}u0}L8pRq ` }u1
0}L8pRqq, C1 “ 2}u1

0}L8pRq, C2 “ p´mp0qq3{4,

and

(3.24)
1

2
p1 ` ǫq ă α ă 2

3
p1 ´ 14ǫq and σ “ 3

2
` 6ǫ

so that

σα ă 1 ´ 10ǫ.

Throughout the proof, we use

C0 ą C1 and
1

2
C1 “ }u1

0}L8pRq ą C2 ą 1

to simplify the exposition. It follows from (3.23), (3.8), (1.11) and (1.12), (1.13)
that

}v0p0q}L8pRq “}u0}L8pRq ă C0,

}v1p0q}L8pRq “}u1
0}L8pRq ă C1 “ C1q

´1p0q,
}vnp0q}L8pRq “}upnq

0
}L8pRq ă C2n

pn´1q{α`1bn´1q´1´pn´1qσp0q

for n “ 2, 3, . . . , and

}ζ0p0q}L8pRq “}η0}L8pRq ă 1

2ǫ
ă C2

ǫ
q´ǫp0q,

}ζnp0q}L8pRq “}ηpnq}L8pRq ă C2

ǫ
nn{αbn´1q´ǫ´nσp0q

for n “ 1, 2, . . . . That is, (3.18)-(3.20) and (3.21)-(3.22) hold for all n “ 0, 1, 2, . . .
at t “ 0. Suppose on the contrary that (3.18)-(3.20) and (3.21)-(3.22) hold for all
n “ 0, 1, 2, . . . throughout the interval r0, T2q, but one of the inequalities fails for
some n at t “ T2 for some T2 P p0, T1s. By continuity, we may assume that

}v0ptq}L8pRq ďC0,(3.25)

}v1ptq}L8pRq ďC1q
´1ptq,(3.26)

}vnptq}L8pRq ďC2n
pn´1q{α`1bn´1q´1´pn´1qσptq(3.27)

for n “ 2, 3, . . . , and

}ζ0ptq}L8pRq ďC2

ǫ
q´ǫptq,(3.28)

}ζnptq}L8pRq ďC2

ǫ
nn{αbn´1q´ǫ´nσptq(3.29)

for n “ 1, 2, . . . for all t P r0, T2s. We seek a contradiction.
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Proof of (3.21). We integrate (3.3) over the interval r0, T2s to show that

|ζ0pT2;xq| ď}η0}L8 `
ż T2

0

|v1pt;xq| dt

ă 1

2ǫ
` C1

ż T2

0

q´1ptq dt

ďC2

2ǫ
´ C1

1

p1 ´ ǫq2
1

mp0q
´
log

1

1 ´ ǫ
´ log qpT2q

¯

ăC2

2ǫ
` 2

´1 ` ǫ

1 ´ ǫ

¯2 1

ǫ
q´ǫpT2q

ďC2

2ǫ
q´ǫpT2q ` 2

ǫ

´1 ` ǫ

1 ´ ǫ

¯2

q´ǫpT2q

ăC2

ǫ
q´ǫpT2q

for all x P R. Therefore (3.21) holds throughout the interval r0, T2s. Here the
second inequality uses (1.12) and (3.26), the third inequality uses that C2 ą 1 and
(3.17), the fourth inequality uses that

log
1

1 ´ ǫ
ă 2ǫ and ´ log x ă 1

ǫ
x´ǫ

throughout 0 ă x ă 1 for all 0 ă ǫ ă 1, by direct calculations, and Lemma 3.3.
Moreover, we assume, without loss of generality, that }u1

0}L8 “ ´mp0q. The fifth
inequality uses Lemma 3.3, and the last inequality uses (1.15). Indeed,

´1 ´ ǫ

1 ` ǫ

¯2

p´mp0qq3{4 ą 4.

Proof of (3.22). We gather some more preliminaries.
For n ě 1, let

(3.30) v1pT3;xq “ mpT3q and v1pt;xq ď 1

p1 ` ǫq1{p1`ǫ`nσq
mptq

for all t P rT3, T2s for some T3 P p0, T2q and for some x P R. Indeed, since v1
and m are uniformly continuous throughout the interval r0, T2s, we may choose T3

sufficiently close to T2 so that the latter inequality of (3.30) holds for all t P rT3, T2s
for ǫ ą 0 sufficiently small. We repeat the argument in the proof of Lemma 3.3 to
find that

(3.31) p1 ` ǫqmp0q ď dr

dt
ď p1 ´ ǫqmp0q

throughout the interval pT3, T2q for some ǫ ą 0 sufficiently small and

(3.32) qptq ď rptq ď p1 ` ǫq1{p1`ǫ`nσqqptq
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for all t P rT3, T2s. Moreover we calculate that
ż T2

T3

q´1´ǫ´nσptq dt ď p1 ` ǫq
ż T2

T3

r´1´ǫ´nσptq dt

ď 1 ` ǫ

1 ´ ǫ

1

mp0q

ż T2

T3

r´1´ǫ´nσptqdr
dt

ptq dt

“ ´ 1

ǫ ` nσ

1 ` ǫ

1 ´ ǫ

1

mp0q pr´ǫ´nσpT2q ´ r´ǫ´nσpT3qq

ď ´ 1

ǫ ` nσ

1 ` ǫ

1 ´ ǫ

1

mp0q pq´ǫ´nσpT2q ´ q´ǫ´nσpT3qq.(3.33)

It offers a refinement over (3.16) when T3 and T2 are sufficiently close. Here the
first inequality uses (3.32), the second inequality uses (3.31), and the last inequality
uses (3.32) and (3.30).

Proof of (3.22) for n “ 1. Let |ζ1pT2;x1q| “ maxxPR |ζ1pT2;xq|. We may assume,
without loss of generality, that ζ1pT2;x1q ą 0. Since ζ1 is uniformly continuous
throughout the interval r0, T2s, we may choose T3 close to T2 so that

(3.34) ζ1pt;x1q ě 0 for all t P rT3, T2s.
Moreover, we may choose T3 closer to T2, if necessary, so that (3.30) and (3.33)
hold throughout the interval rT3, T2s. Note from (3.4) that

dζ1

dt
pt;x1q “ ´ v1pt;x1qζ1pt;x1q ´ v2pt;x1q

ď ´ mp0qC2

ǫ
q´1ptqq´ǫ´σptq ` C22

1{α`1bq´1´σptq

ďp´mp0q ` 21{α`1bǫqC2

ǫ
q´1´ǫ´σptq

for all t P pT3, T2q. Here the first inequality uses (3.8), (3.34), (3.29) and (3.27),
and the second inequality uses Lemma 3.3. We then integrate it over the interval
rT3, T2s to show that

ζ1pT2;x1q ďζ1pT3;x1q ` p´mp0q ` 21{α`1bǫqC2

ǫ

ż T2

T3

q´1´ǫ´σptq dt

ďC2

ǫ
q´ǫ´σpT3q ´ p´mp0q ` 21{α`1bǫq

ˆ 1

ǫ ` σ

1 ` ǫ

1 ´ ǫ

1

mp0q
C2

ǫ
pq´ǫ´σpT2q ´ q´ǫ´σpT3qq

ăC2

ǫ
q´ǫ´σpT3q ` 1 ` ǫ

ǫ ` σ

1 ` ǫ

1 ´ ǫ

C2

ǫ
pq´ǫ´σpT2q ´ q´ǫ´σpT3qq

“
´
1 ´ 1

ǫ ` σ

p1 ` ǫq2
1 ´ ǫ

¯C2

ǫ
q´ǫ´σpT3q ` 1

ǫ ` σ

p1 ` ǫq2
1 ´ ǫ

C2

ǫ
q´ǫ´σpT2q

ăC2

ǫ
q´ǫ´σpT2q.

Therefore (3.22) holds for n “ 1 throughout the interval r0, T2s. Here the second
inequality uses (3.29) and (3.33), the third inequality uses (1.14). Indeed,

´mp0q ą 21{α`1b if ǫ ă 2´1{α´1b´1.
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The last inequality uses (3.24) and Lemma 3.3. Indeed,

0 ă 1

ǫ ` σ

p1 ` ǫq2
1 ´ ǫ

ă 1

for ǫ ą 0 sufficiently small.

Proof of (3.22) for n ě 2. We establish one more preliminary.

Lemma 3.5. For n ě 2,

(3.35)
nÿ

j“2

ˆ
n

j

˙
jpj´1q{α`1pn ` 1 ´ jqpn`1´jq{α ă 2e

21{α´1 ´ 1
nn{α`1.

The proof uses Stirling’s inequality. We include the detail in Appendix A.

For n ě 2, let |ζnpT2;xnq| “ maxxPR |ζnpT2;xq|. We may assume, without loss
of generality, that ζnpT2;xnq ą 0. We may choose T3 close to T2 so that

(3.36) ζnpt;xnq ě 0 for all t P rT3, T2s.

Moreover, we may choose T3 closer to T2, if necessary, so that (3.33) holds through-
out the interval rT3, T2s. Note from (3.4) that

dζn

dt
pt;xnq

“ ´ nv1pt;xnqζnpt;xnq ´
nÿ

j“2

ˆ
n

j

˙
vjpt;xnqζn`1´jpt;xnq ´ vn`1pt;xnq

ď ´ nmp0qC2

ǫ
nn{αbn´1q´1ptqq´ǫ´nσptq

`
nÿ

j“2

ˆ
n

j

˙
C2

2

ǫ
jpj´1q{α`1pn ` 1 ´ jqpn`1´jq{αbn´1q´1´pj´1qσptqq´ǫ´pn`1´jqσptq

` C2pn ` 1qn{α`1bnq´1´nσptq

ď ´ nmp0qC2

ǫ
nn{αbn´1q´1´ǫ´nσptq

` 2e

21{α´1 ´ 1
nn{α`1

C2
2

ǫ
bn´1q´1´ǫ´nσptq ` ǫ

C2

ǫ

´n ` 1

n

¯n{α

pn ` 1qnn{αbnq´1´nσptq

ď
´

´ mp0qn ` 2e

21{α´1 ´ 1
C2n ` e1{αbǫpn ` 1q

¯C2

ǫ
nn{αbn´1q´1´ǫ´nσptq

for all t P pT3, T2q. Here the first inequality uses (3.8), (3.36), (3.29) and (3.27),
the second inequality uses (3.35), and the last inequality uses Lemma 3.3. We then
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integrate it over the interval rT3, T2s to show that

ζnpT2;xnq
ďζnpT3;xnq

`
´

´ mp0qn ` 2e

21{α´1 ´ 1
C2n ` e1{αbǫpn ` 1q

¯C2

ǫ
nn{αbn´1

ż T2

T3

q´1´ǫ´nσptq dt

ďC2

ǫ
nn{αbn´1q´ǫ´nσpT3q

´
´

´ mp0qn ` 2e

21{α´1 ´ 1
C2n ` e1{αbǫpn ` 1q

¯

ˆ 1

ǫ ` nσ

1 ` ǫ

1 ´ ǫ

1

mp0q
C2

ǫ
nn{αbn´1pq´ǫ´nσpT2q ´ q´ǫ´nσpT3qq

ăC2

ǫ
nn{αbn´1q´ǫ´nσpT3q

` n ` ǫn ` ǫpn ` 1q
ǫ ` nσ

1 ` ǫ

1 ´ ǫ

C2

ǫ
nn{αbn´1pq´ǫ´nσpT2q ´ q´ǫ´nσpT3qq

ď
´
1 ´ 2 ` 5ǫ

2σ ` ǫ

1 ` ǫ

1 ´ ǫ

¯C2

ǫ
nn{αbn´1q´ǫ´nσpT3q ` 2 ` 5ǫ

2σ ` ǫ

1 ` ǫ

1 ´ ǫ

C2

ǫ
nn{αbn´1q´ǫ´nσpT2q

ăC2

ǫ
nn{αbn´1q´ǫ´nσpT2q.

Therefore (3.22) holds for n “ 2, 3, . . . throughout the interval r0, T2s. Here the
second inequality uses (3.29) and (3.33), the third inequality uses (1.14) and (1.15).
Indeed,

ǫp´mp0qq1{4 ą 2e

21{α´1 ´ 1
and ´ mp0q ą e1{αb

if 0 ă ǫ ă e´1{αb´1. The fourth inequality uses (3.24) and that
p1 ` 2ǫqn ` ǫ

nσ ` ǫ
decreases in n for n ě 2, by a direct calculation. The last inequality uses (3.24)
and Lemma 3.3. Indeed,

0 ă 2 ` 5ǫ

2σ ` ǫ

1 ` ǫ

1 ´ ǫ
ă 1

for ǫ ą 0 sufficiently small, by a direct calculation.

Proof of (3.18). Recall (3.7). We choose δptq “ qσptq and use (3.28), (3.29) to
calculate that
(3.37)

|K0pt;xq| ď 40

π

1

ǫ

´C2

ǫ
q´σǫptqq´ǫptq ` C2

ǫ
qσ´σǫptqq´ǫ´σptq

¯
“ 40

π

C2

ǫ2
q´σǫ´ǫptq
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for all t P r0, T2s for all x P R. We then integrate (3.5) over the interval r0, T2s to
show that

|v0pT2;xq| ď}u0}L8 `
ż T2

0

|K0pt;xq| dt

ă1

2
C0 ` 40

π

C2

ǫ2

ż T2

0

q´σǫ´ǫptq dt

ď1

2
C0 ´ 40

π

C2

ǫ2
1

1 ´ σǫ ´ ǫ

1

p1 ´ ǫq1`σǫ`ǫ

1

mp0q
´ 1

p1 ´ ǫq1´σǫ´ǫ
´ q1´σǫ´ǫpT2q

¯

ă1

2
C0 ´ 40

π

1

1 ´ σǫ ´ ǫ

1

p1 ´ ǫq2
1

ǫ2
C2

mp0q

ă1

2
C0 ` 1

2
p´mp0qq

ăC0

for all x P R. Therefore (3.18) holds throughout the interval r0, T2s. Here the
second inequality uses (3.23) and (3.37), the third inequality uses (3.16) and that
σǫ ` ǫ ă 1 for ǫ ą 0 sufficiently small, the fourth inequality uses Lemma 3.3, and
the fifth inequality uses (1.16). Indeed,

ǫ2p1 ´ ǫq2p1 ´ σǫ ´ ǫqp´mp0qq5{4 ą 80

π

for ǫ ą 0 sufficiently small. The last inequality uses (3.23).

Proof of (3.19). For n ě 1, use (3.7), where δptq “ n´1{αqσptq, and (3.29) to
calculate that

|Knpt;xq| ď40

π

1

ǫ

´
nǫ{αC2

ǫ
nn{αbn´1q´σǫptqq´ǫ´nσptq

` nǫ{α´1{αC2

ǫ
pn ` 1qpn`1q{αbnqσ´σǫptqq´ǫ´pn`1qσptq

¯

“40

π

´
1 `

´n ` 1

n

¯n{α`1{α

b
¯C2

ǫ2
nn{α`ǫ{αbn´1q´σǫ´ǫ´nσptq

ă40

π
p1 ` p2eq1{αbqC2

ǫ2
npn´1q{α`2bn´1q´1´σα´pn´1qσptq(3.38)

for all t P r0, T2s for all x P R. Here the last inequality uses (3.24). Indeed,

n{α ` ǫ{α ă pn ´ 1q{α ` 2 and σǫ ` ǫ ` nσ ă 1 ` σα ` pn ´ 1qσ

for n ě 1 an integer.
Suppose for now that v1pT2;xq ě 0. Note from (3.6) that

dv1

dt
pt;xq “ ´v21pt;xq ´ K1pt;xq ď |K1pt;xq|
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for all t P p0, T2q for all x P R. We then integrate it over the interval r0, T2s to show
that

v1pT2;xq ď}u1
0}L8 `

ż T2

0

|K1pt;xq| dt

ď1

2
C1 ` 40

π
p1 ` p2eq1{αbqC2

ǫ2

ż T2

0

q´2ptq dt

ď1

2
C1 ´ 40

π
p1 ` p2eq1{αbqC2

ǫ2
1

p1 ´ ǫq3
1

mp0q pq´1pT2q ´ p1 ´ ǫqq

ă1

2
C1 ´ 40

π
p1 ` p2eq1{αbqC2

ǫ2
1

p1 ´ ǫq3
1

mp0qq
´1pT2q

ă1

2
C1q

´1pT2q ´ 1

2
mp0qq´1T2

ăC1q
´1ptq.

The second inequality uses (3.23) and (3.38), (3.24), Lemma 3.3. Indeed, σα ă
1 ´ 10ǫ. The third inequality uses (3.16), and the fifth inequality uses Lemma 3.3
and (1.16). Indeed,

ǫ2p1 ´ ǫq3p´mp0qq5{4 ą 80

π
p1 ` p2eq1{αbq

for ǫ ą 0 sufficiently small. The last inequality uses (3.23).
Suppose on the contrary that v1pT2;xq ă 0. We may assume, without loss of

generality, that }u1
0}L8 “ ´mp0q. We then infer from (3.8) and (3.23) that

v1pT2;xq ě mpT2q “ mp0qq´1pT2q ą ´C1q
´1pT2q.

Therefore (3.19) holds throughout the interval r0, T2s.

Proof of (3.20) for n ě 3. We gather some more preliminaries.
For n ě 2, abusing notation, let

v1pT3;xq “ mpT3q and v1pt;xq ď 1

p1 ` ǫq1{p2`pn´1qσq
mptq

for all t P rT3, T2s for some T3 P p0, T2q and for some x P R. Indeed, since v1
and m are uniformly continuous throughout the interval r0, T2s, we may choose T3

sufficiently close to T2 so that the latter inequality holds for all t P rT3, T2s. We
repeat the argument in the proof of (3.33) to show that

(3.39)

ż T2

T3

q´2´pn´1qσptq dt

ď ´ 1

1 ` pn ´ 1qσ
1 ` ǫ

1 ´ ǫ

1

mp0q pq´2´pn´1qσpT2q ´ q´2´pn´1qσpT3qq.

For n ě 3, moreover, we repeat the argument in the proof of Lemma 3.5 to show
that

(3.40)
n´1ÿ

j“2

ˆ
n

j

˙
jpj´1q{α`1pn ` 1 ´ jqpn´jq{α`1 ď 2e

21{α´1 ´ 1
npn´1q{α`2.

For n ě 3, abusing notation, let |vnpT2;xnq| “ maxxPR |vnpT2;xq|. We may
assume, without loss of generality, that vnpT2;xnq ą 0. Since vn is uniformly
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continuous throughout the interval r0, T2s, we may choose T3 sufficiently close to
T2 so that

(3.41) vnpt;xnq ě 0 for all t P rT3, T2s

and (3.39) holds. Note from (3.6) that

dvn

dt
pt;xnq “ ´ pn ` 1qv1pt;xnqvnpt;xnq ´

n´1ÿ

j“2

ˆ
n

j

˙
vjpt;xnqvn`1´jpt;xnq ´ Knpt;xnq

ď ´ pn ` 1qmp0qC2n
pn´1q{α`1bn´1q´1ptqq´1´pn´1qσptq

`
n´1ÿ

j“2

ˆ
n

j

˙
C2

2 j
pj´1q{α`1pn ` 1 ´ jqpn´jq{α`1bn´1q´1´pj´1qσptqq´1´pn´jqσptq

` |Knpt;xnq|
ď ´ pn ` 1qmp0qC2n

pn´1q{α`1bn´1q´2´pn´1qσptq

` C2

2

2e

21{α´1 ´ 1
npn´1q{α`2bn´1q´2´pn´1qσptq

` 40

π
p1 ` p2ǫq1{αbqC2

ǫ2
npn´1q{α`2bn´1q´1´σα´pn´1qσptq

ď
´

´ mp0qpn ` 1q ` 2e

21{α´1 ´ 1
C2n ` 40

π
p1 ` p2ǫq1{αbq 1

ǫ2
n

¯

ˆ C2n
pn´1q{α`1bn´1q´2´pn´1qσptq

for all t P pT3, T2q. Here the first inequality uses (3.8), (3.41) and (3.27), the second
inequality uses (3.40) and (3.38), and the last inequality uses Lemma 3.3 and (3.24).
Indeed, σα ă 1 ´ 10ǫ. We then integrate it over the interval rT3, T2s to show that

vnpT2;xnq ďvnpT3;xnq

`
´

´ mp0qpn ` 1q ` 2e

21{α´1 ´ 1
C2n ` 40

π
p1 ` p2ǫq1{αbq 1

ǫ2
n

¯

ˆ C2n
pn´1q{α`1bn´1

ż T2

T3

q´2´pn´1qσptq dt

ďC2n
pn´1q{α`1bn´1q´1´pn´1qσpT3q

´
´

´ mp0qpn ` 1q ` 2e

21{α´1 ´ 1
C2n ` 40

π
p1 ` p2ǫq1{αbq 1

ǫ2
n

¯

ˆ 1

1 ` pn ´ 1qσ
1 ` ǫ

1 ´ ǫ

1

mp0qC2n
pn´1q{α`1bn´1

ˆ pq´1´pn´1qσpT2q ´ q´1´pn´1qσpT3qq
ăC2n

pn´1q{α`1bn´1q´1´pn´1qσpT3q

` n ` 1 ` ǫn

1 ` pn ´ 1qσ
1 ` ǫ

1 ´ ǫ
C2n

pn´1q{α`1bn´1pq´1´pn´1qσpT2q ´ q´1´pn´1qσpT3qq

ăC2n
pn´1q{α`1bn´1q´1´pn´1qσpT2q.

Therefore (3.20) holds for n “ 3, 4, . . . throughout the interval r0, T2s. Here the
second inequality uses (3.27) and (3.39), the third inequality uses (1.15) and (1.16).
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Indeed,

´ǫmp0q ą 2e

21{α´1 ´ 1
C2 ` 40

π
p1 ` p2eq1{αbq 1

ǫ2

for ǫ ą 0 sufficiently small. The last inequality uses that
p1 ` ǫqn ` 1

nσ ` 1 ´ σ
decreases in

n ě 3, by a direct calculation, and (3.24), Lemma 3.3. Indeed,

0 ă 4 ` 3ǫ

2σ ` 1

1 ` ǫ

1 ´ ǫ
ă 1

for ǫ ą 0 sufficiently small.

Proof of (3.20) for n “ 2. Abusing notation, let |v2pT2;x2q| “ maxxPR |v2pT2;xq|.
We may assume, without loss of generality, that v2pT2;x2q ą 0. We may choose T3

close to T2 so that

(3.42) v2pt;x2q ě 0 for all t P rT3, T2s.

Moreover, we may choose T3 closer to T2, if necessary, so that (3.39) holds.
Suppose for now that x2 R Σ1{3pT2q. That is, v1pT2;x2q ą 2

3
mpT2q (see (3.11)).

We may choose T3 closer to T2, if necessary, so that

(3.43) v1pt;x2q ě 2

3
mptq for all t P rT3, T2s.

Note from (3.6) that

dv2

dt
pt;x2q “ ´ 3v1pt;x2qv2pt;x2q ´ K2pt;x2q

ď ´ 2mp0qC22
1{α`1bq´1ptqq´1´σptq

` 40

π
p1 ` p2eq1{αbqC2

ǫ2
21{α`2bq´1´σα´σptq

ď2
´

´ mp0q ` 40

π
p1 ` p2eq1{αbq 1

ǫ2

¯
C22

1{α`1bq´2´σptq

for all t P pT3, T2q. Here the first inequality uses (3.43), (3.42), (3.8) and (3.38),
and the second inequality uses (3.24) and Lemma 3.3. Indeed, σα ă 1 ´ 10ǫ. We
then integrate it over the interval rT3, T2s to show that

v2pT2;x2q ďv2pT3;x2q

` 2
´

´ mp0q ` 40

π
p1 ` p2eq1{αbq 1

ǫ2

¯
C22

1{α`1b

ż T2

T3

q´2´σptq dt

ďC22
1{α`1bq´1´σpT3q

´ 2
´

´ mp0q ` 40

π
p1 ` p2eq1{αbq 1

ǫ2

¯

ˆ 1

1 ` σ

1 ` ǫ

1 ´ ǫ

1

mp0qC22
1{α`1bpq´1´σpT2q ´ q´1´σpT3qq

ăC22
1`1{αbq´1´σpT3q ` 2

1 ` ǫ

p1 ` ǫq2
1 ´ ǫ

C22
1{α`1bpq´1´σpT2q ´ q´1´σpT3qq

ăC22
1`1{αbq´1´σpT2q.
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Here the second inequality uses (3.27) and (3.39), and the third inequality uses
(1.16). Indeed,

´ǫ3mp0q ą 40

π
p1 ` p2eq1{αbq

for ǫ ą 0 sufficiently small. The last inequality uses (3.24) and Lemma 3.3. Indeed,

0 ă 2

1 ` σ

p1 ` ǫq2
1 ´ ǫ

ă 1

for ǫ ą 0 sufficiently small.

Suppose on the contrary that x2 P Σ1{3pT2q. Lemma 3.2 then dictates that

(3.44) v1pt;x2q ď 2

3
mptq ă 0 for all t P r0, T2s.

Differentiating (3.1) with respect to x and using (3.2), we arrive at

d

dt
pBxXq “v1pBxXq, pBxXqp0;xq “ 1(3.45)

and

d

dt
pB2

xXq “v2pBxXq2 ` v1pB2

xXq, pB2

xXqp0;xq “ 0,(3.46)

d

dt
pB3

xXq “v3pBxXq3 ` 3v2pBxXqpB2

xXq ` v1pB3

xXq, pB3

xXqp0;xq “ 0.(3.47)

An integration of (3.5) leads to that

v0pt;xq “ φpxq ´
ż t

0

K0pt;xq dt.

Differentiating it with respect to x and using (3.2), we arrive at

pv2pBxXq2 ` v1pB2

xXqqpt;xq “ u2
0pxq ´ I2pt;xq,(3.48)

pv3pBxXq3 ` 3v2pBxXqpB2

xXq ` v1pB3

xXqqpt;xq “ u3
0 pxq ´ I3pt;xq,(3.49)

where

I2pt;xq “
ż t

0

pK2pBxXq2 ` K1pB2

xXqqpτ ;xq dτ,(3.50)

I3pt;xq “
ż t

0

pK3pBxXq3 ` 3K2pBxXqpB2

xXq ` K1pB3

xXqqpτ ;xq dτ.(3.51)

Moreover, note from (3.47) and (3.49) that

(3.52)
d

dt
pB3

xXqp¨ ;xq “ u3
0 pxq ´ I3p¨ ;xq, pB3

xXqp0;xq “ 0.

We claim that

(3.53)
1

2
q1`2ǫptq ď pBxXqpt;x2q ď 2q1´ǫptq for all t P r0, T2s.

Indeed, note from (3.1), (3.45) and (3.13), (3.14) that

1

1 ´ ǫ

dr{dt
r

ď dpBxXq{dt
BxX

ď 1

1 ` ǫ

dr{dt
r
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throughout the interval p0, T2q. We then integrate it and use (3.45) to show that
´ rptq
rp0q

¯1{p1´ǫq

ď pBxXqpt;x2q ď
´ rptq
rp0q

¯1{p1`ǫq

.

The claim therefore follows from (3.15).
To proceed, we claim that

|pB2

xXqpt;x2q| ă ´ 21{α`4

mp0q C2bq
2´σ´2ǫptq(3.54)

and

|pB3

xXqpt;x2q| ă ǫ

m2p0qC
2

2b
2q3´2σ`7ǫptq(3.55)

for all t P r0, T2s. It follows from (3.46) and (3.47) that (3.54) and (3.55) hold at
t “ 0. Suppose on the contrary that (3.54) and (3.55) hold throughout the interval
r0, T4q, but one of them fails at t “ T4 for some T4 P p0, T2s. By continuity, we may
assume that

|pB2

xXqpt;x2q| ď ´ 21{α`4

mp0q C2bq
2´σ´2ǫptq(3.56)

and

|pB3

xXqpt;x2q| ď ǫ

m2p0qC
2

2b
2q3´2σ`7ǫptq(3.57)

for all t P r0, T4s. We seek a contradiction.

Proof of (3.54). We recall (3.50) and calculate that

|I2pt;x2q| ď40

π
p1 ` p2eq1{αbqC2

ǫ2

ż t

0

´
4 ¨ 21{α`2bq´1´σα´σpτqq2´2ǫpτq

(3.58)

´ 21{α`4

mp0q C2bq
´1´σαpτqq2´σ´2ǫpτq

¯
dτ

ď40

π
p1 ` p2eq1{αbqC2

ǫ2
21{α`4b

´
1 ´ C2

mp0q
¯ ż t

0

q´σ`8ǫpτq dτ

ď ´ 40

π
p1 ` p2eq1{αbqC2

ǫ2
21{α`5b

ˆ 1

σ ´ 1 ´ 8ǫ

1

p1 ´ ǫqσ`1´8ǫ

1

mp0q pq1´σ`8ǫptq ´ p1 ´ ǫqσ´1´8ǫq

ăǫC2bq
1´σ`8ǫptq(3.59)

for all t P r0, T4s. Here the first inequality uses (3.38), (3.53) and (3.56), and the
second inequality uses Lemma 3.3 and (3.24). Indeed,

σ ` σα ` 2ǫ ´ 1 ă σ ´ 8ǫ.

The third inequality uses (3.23) and (3.16), and the last inequality uses Lemma 3.3,
(3.24) and (1.16). Indeed,

´ǫ3p1 ´ ǫqσ`1´8ǫmp0q ą 1

σ ´ 1 ´ 8ǫ

80

π
p1 ` p2eq1{αbq21{α`5
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for ǫ ą 0 sufficiently small. We then evaluate (3.48) at t “ T4 and x “ x2 to show
that

|pB2

xXqpT4;x2q|
“|v´1

1
pT4;x2q||u2

0px2q ´ I2pT4;x2q ´ v2pT4;x2qpBxXqpT4;x2q2|

ă ´ 3

2

1

mp0qqpT4qp21{α`1b ` ǫC2bq
1´σ`8ǫpT4q ` 4 ¨ 21{α`1C2bq

´1´σpT4qq2´2ǫpT4qq

ď ´ 3

2
p5 ¨ 21{α`1 ` ǫq 1

mp0qC2bq
2´σ´2ǫpT4q

ă ´ 21{α`4

mp0q C2b
1{αq2´σ´2ǫpT4q.

Therefore (3.54) holds throughout the interval r0, T2s. Here the first inequality uses
(3.44), (3.8) and (1.11), (3.59), (3.27), (3.53), the second inequality uses (3.23) and
(3.24), Lemma 3.3, and the last inequality follows for ǫ ą 0 sufficiently small.

Proof of (3.55). Similarly, recall (3.51) and we calculate that

|I3pt;x2q| ă40

π
p1 ` p2eq1{αbqC2

ǫ2

ˆ
ż t

0

´
8 ¨ 32{α`2b2q´1´σα´2σpτqq3´3ǫpτq

´ 6 ¨ 22{α`6
C2

mp0qb
2q´1´σα´σpτqq1´ǫpτqq2´σ´2ǫpτq

` ǫ

m2p0qC
2

2 b
2q´1´σαpτqq3´2σ`7ǫpτq

¯
dτ

ď40

π
p1 ` p2eq1{αbq

ˆ
´
2332{α`2 ` 3 ¨ 22{α`7

C2

mp0q ` ǫC2
2

m2p0q
¯C2

ǫ2
b2

ż t

0

q1´2σ`7ǫpτq dτ

ď40

π
p1 ` p2eq1{αbq

´
2332{α`2 ` 3 ¨ 22{α`7

p´mp0qq1{4
` ǫ

p´mp0qq1{2

¯

ˆ 1

2σ ´ 2 ´ 7ǫ

1

p1 ´ ǫq2σ´7ǫ

1

mp0q
C2

ǫ2
b2pq2´2σ`7ǫptq ´ p1 ´ ǫq2σ´2´7ǫq

ă ´ ǫ2

mp0qC
2

2b
2q2´2σ`7ǫptq(3.60)

for all t P r0, T4s. Here the first inequality uses (3.38), (3.53), (3.56) and (3.57),
and the second inequality uses (3.24). Indeed,

2 ´ σα ´ 2σ ´ 3ǫ ą 1 ´ 2σ ` 7ǫ.

The third inequality uses (3.16), and the last inequality uses (1.14) and (1.16).
Indeed,

ǫ4p1 ´ ǫq2σ´7ǫp´mp0qq3{4 ą 1

2σ ´ 2 ´ 7ǫ

40

π
p1 ` p2eq1{αbqp23 ¨ 32{α`2 ` 3 ¨ 22{α`7 ` ǫq



24 HUR AND TAO

for ǫ ą 0 sufficiently small. We then integrate (3.52) over the the interval r0, T4s to
show that

|pB3

xXqpT4;x2q| ď
ż T4

0

p|u3
0 px2q| ` |I3pt;x2q|q dt

ă
ż T4

0

´
32{α`1b2 ´ ǫ2

mp0qC
2

2b
2q2´2σ`7ǫptq

¯
dt

ď
´32{α`1

C2
2

´ ǫ2

mp0q
¯ 1

2σ ´ 3 ´ 7ǫ

1

p1 ´ ǫq2σ´1´7ǫ

1

mp0q
ˆ C2

2b
2pq3´2σ`7ǫpT4q ´ p1 ´ ǫq2σ´3´7ǫq

ă ǫ

m2p0qC
2

2 b
2q3´2σ`7ǫpT4q.

Therefore (3.55) holds throughout the interval r0, T2s. Here the second inequality
uses (1.11) and (3.60), the third inequality uses (3.16), and the last inequality uses
(3.24) and (1.15). Indeed,

5ǫ2p1 ´ ǫq2σ´1´7ǫ ´ 1qp32{α`1p´mp0qq1{2 ` ǫ2q ą 1

for ǫ ą 0 sufficiently small. This proves (3.54) and (3.55).

Returning to the proof of (3.20) for n “ 2, we recall that v2pT2;x2q “ maxxPR |v2pT2;xq|
and x2 P Σ1{3pT2q. Differentiating v2 and evaluating at t “ T2, x “ x2, we use (3.2)
to find that

v3pT2;x2qpBxXqpT2;x2q “ 0.

Let’s multiply (3.48) by 3v2pBxXq and (3.49) by v1 and take their difference. Eval-
uating the result at t “ T2 and x “ x2, we show that

v22pT2;x2q “1

3
pBxXq´3pT2;x2qpv21pT2;x2qpB3

xXqpT2;x2q

` 3v2pT2;x2qpBxXqpT2;x2qpu2
0px2q ´ I2pT2;x2qq

´ v1pT2;x2qpu3
0 px2q ´ I3pT2;x2qqq

ă8

3
q´3´6ǫpT2q

´
m2p0q ǫ

m2p0qC
2

2 b
2q´2pT2qq3´2σ`7ǫpT2q

` 621{α`1C2bq
´1´σpT2qq1´ǫpT2qp21{α`1b ` ǫC2bq

1´σ`8ǫpT2qq

´ mp0qq´1pT2q
´
32{α`1b2 ´ ǫ2

mp0qC
2

2b
2{αq2´2σ`7ǫpT2q

¯¯

ă8

3

´
ǫ ` 6 ¨ 21{α`1

´21{α`1

C2

` ǫ
¯

´ 32{α`1

mp0q ` ǫ2
¯
C2

2b
2q´2´2σ´ǫpT2q

ăC2

22
2{α`2b2q´2´2σpT2q.

Therefore (3.20) holds for n “ 2 throughout the interval r0, T2s. Here the first
inequality uses (3.53), (3.44), (3.8), (3.57), (3.27) and (1.11), (3.59), (3.60), the
second inequality uses (3.23) and (3.24), Lemma 3.3, and the last inequality uses
that

ǫ ` 6 ¨ 21{α`1p21{α`1ǫ3{4 ` ǫq ` 32{α`1ǫ ` ǫ2 ă 3 ¨ 22{α´1

for ǫ ą 0 sufficiently small.
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Proof of (3.18)-(3.20), (3.21)-(3.22). To summarize, a contradiction proves that
(3.18)-(3.20) and (3.21)-(3.22) hold for all n “ 0, 1, 2, . . . throughout the interval
r0, T1s.

Proof of (3.9). Note from (3.38), (3.8) and (1.16) that

|K1pt;xq| ď 40

π
p1 ` p2eq1{αbqC2

ǫ2
m´2p0qm2ptq ă ǫ2m2ptq

for all t P r0, T1s for all x P R. Indeed,

ǫ4p´mp0qq5{4 ą 40

π
p1 ` p2eq1{αbq

for ǫ ą 0 sufficiently small. A contradiction therefore proves (3.9). We merely pause
to remark that (3.18)-(3.20) and (3.21)-(3.22) hold for all n “ 0, 1, 2, . . . throughout
the interval r0, T 1s for all T 1 ă T .

Proof of Theorem 1.1. For t P r0, T q, let x P Σǫptq. Note from (3.13) and (3.14)
that

mp0qpv´1

1
p0;xq ` p1 ` ǫqtq ď rpt;xq ď mp0qpv´1

1
p0;xq ` p1 ´ ǫqtq.

Moreover, note from Lemma 3.2 that

mp0q ă v1p0;xq ď p1 ´ ǫqmp0q.

Consequently,

1 ` mp0qp1 ` ǫqt ď rptq ď 1

1 ´ ǫ
` mp0qp1 ´ ǫqt.

Furthermore, (3.15) implies that

p1 ´ ǫq ` mp0qp1 ´ ǫ2qt ď qptq ď 1

1 ´ ǫ
` mp0qp1 ´ ǫqt.

Since the left side decreases to zero as t Ñ ´ 1

mp0q
1

1 ` ǫ
and the right side decreases

to zero as t Ñ ´ 1

mp0q
1

p1 ´ ǫq2 , it follows that qptq Ñ 0 and, hence, mptq Ñ ´8
(see (3.8)) as t Ñ T´, where T satisfies (1.17). Note on the other hand that (3.18)
dictates that v0pt;xq remains bounded for all t P r0, T 1s, T 1 ă T , for all x P R. That
is, infxPR Bxupx, tq Ñ ´8 as t Ñ T´ but upx, tq is bounded for all x P R for all
t P r0, T q, namely wave breaking. This completes the proof.
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Appendix A. Assorted proofs of lemmas

Proof of Lemma 3.1. We split the integral and perform an integration by parts to
show that

|Knpt;xq|

“
ˇ̌
ˇ ´ 1

2

´ ż

|y|ăδ

`
ż

|y|ąδ

¯
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Indeed, p 1

π
logptanhpπ

4
yqqq1 “ 1

2
cschpπ

2
yq. In other words, the kernel associated with

the integral representation of MBx is singular of a logarithmic order near zero and
it decays exponentially at infinity.

Let gpyq “ 1

π
logpcothpπ

4
yqq. A direct calculation reveals that its inverse function

is

g´1pyq “ 2

π
logpcothpπ

4
yqq “ 2gp2yq.

Note that ż δ

0

gpyq dy “ δgpδq `
ż 8

gpδq

g´1pyq dy “ δgpδq `
ż 8

gpδq

2gp2yq dy,

and we calculate thatż 8
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2gp2yq dy “
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Here the first inequality uses that logp1`xq ă x for all x ą 0, the second inequality

uses that
ex

ex ´ 1
is decreasing for all x ą 0, and the third inequality uses that

cothpπ
4
δq

cothpπ
4
δq ´ 1

ă 3 for 0 ă δ ă 1, by direct calculations. Consequently,
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Indeed, a direct calculation reveals that tanhx ă 3x logpcothxqq for all 0 ă x ă 1.
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Substituting (A.2) into (A.1), we then show that

|Knpt;xq| ă 6

π
logpcothpπ
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for all 0 ă ǫ ă 1. Therefore (3.7) holds for ǫ ą 0 sufficiently small. Here the
second inequality uses that cothx ă 2x´1 for all 0 ă x ă 1, and the last inequality
uses that logpx´1q ă 1

ǫ
x´ǫ throughout 0 ă x ă 1 for all 0 ă ǫ ă 1, by direct

calculations. This completes the proof. �

Proof of Lemma 3.2. Suppose on the contrary that x1 R Σγpt1q but x1 P Σγpt2q for
some x1 P R for some 0 ď t1 ď t2 ď T1. That is,

(A.3) v1pt1;x1q ą p1 ´ γqmpt1q and v1pt2;x1q ď p1 ´ γqmpt2q ă 1

2
mpt2q.

Since v1p¨ ;x1q and m are uniformly continuous throughout the interval r0, T1s, we
may choose t1 and t2 close so that
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2
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Let
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2
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For ǫ ą 0 sufficiently small, (3.10) then leads to that
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Note from (3.6), where n “ 1, that
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We then integrate them over the interval pt1, t2q to show that
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The latter inequality and (A.4) imply that
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The former inequality and (A.3), on the other hand, imply that

v1pt2;x1q ą p1 ´ γqmpt1q
1 ` p1 ` γ

2
qp1 ´ γqmpt1qpt2 ´ t1q

ą p1 ´ γqmpt1q
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2
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A contradiction therefore completes the proof. �

Proof of Lemma 3.5. We use Stirling’s inequality and calculate that
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Therefore (3.35) follows from (3.24). In the first inequality we assume the conven-
tion 00 “ 1, and in the last inequality ras denotes the greatest integer not exceeding
a P R. �
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