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SEMI-INFINITE PROGRAMMING USING HIGH-DEGREE

POLYNOMIAL INTERPOLANTS AND SEMIDEFINITE

PROGRAMMING

DÁVID PAPP

Abstract. In a common formulation of semi-infinite programs, the infinite constraint
set is a requirement that a function parametrized by the decision variables is nonnegative
over an interval. If this function is sufficiently closely approximable by a polynomial or
a rational function, then the semi-infinite program can be reformulated as an equiva-
lent semidefinite program, which in turn can be solved with interior-point methods very
efficiently to high accuracy. On the other hand, solving this semidefinite program is chal-
lenging if the polynomials involved are of high degree, due to numerical difficulties and
bad scaling arising both from the polynomial approximations and from the fact that the
semidefinite programming constraints coming from the sum-of-squares representation of
nonnegative polynomials are badly scaled. We combine polynomial function approxima-
tion techniques and polynomial programming to overcome these numerical difficulties,
using sum-of-squares interpolants. Specifically, it is shown that the conditioning of the
reformulations using sum-of-squares interpolants does not deteriorate with increasing de-
grees, and problems involving sum-of-squares interpolants of hundreds of degrees can be
handled without difficulty. The proposed reformulations are sufficiently well scaled that
they can be solved easily with every commonly used semidefinite programming solver,
such as SeDuMi, SDPT3, and CSDP. Motivating applications include convex optimiza-
tion problems with semi-infinite constraints and semidefinite conic inequalities, such as
those arising in the optimal design of experiments. Numerical results align with the the-
oretical predictions; in the problems considered, available memory was the only factor
limiting the degrees of polynomials, to approximately 1000.

1. Introduction

A linearly constrained semi-infinite convex optimization problem with infinitely many
linear constraints indexed by a one-dimensional index set can be posed as:

minimizex f(x)

subject to A(t)x ≤ b ∀ t ∈ T = [0, 1]

x ∈ X

(1)

with respect to the decision variables x, where the setX ⊆ R
n is convex, closed and bounded,

f is convex and continuous on X , b is an m-dimensional vector, A is a [0, 1] → R
m function.

Slightly more generally, the index set T may be a finite union of closed intervals. Even
without any restrictions on the dependence of A on t, (1) is a convex optimization problem,
and the Weierstrass extreme value theorem guarantees that its minimum is attained.
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In many applications, x represents a function p : T 7→ R that is known to belong to a
given finite dimensional linear space (that is, x is the coefficient vector of p in some fixed
basis), and the infinite constraint set represents p(t) ≥ 0 for all t ∈ T . Similar constraints

on the derivatives of a differentiable function, such as dp(t)
dt ≥ 0 (implying monotonicity) or

d2p(t)
dt2 ≥ 0 (implying convexity) can also be represented in a similar fashion. Optimization

models incorporating such constraints have been used, for example, in arrival rate estimation
[1], and in semi-parametric density estimation with and without shape constraints [32].

In most applications, including all the ones mentioned above, the index set T is low-
dimensional, and is often simply an interval or a two-dimensional rectangular box [25, 18, 36].
In this paper, we focus on the one-dimensional case.

Several algorithms have been proposed to solve semi-infinite linear and semi-infinite con-
vex programming problems, including cutting plane and cutting surface methods such as
[22, 6, 27], local reduction methods [18], exchange methods [44], and homotopy methods [23].
See also [25] for a relatively recent review on semi-infinite convex programming, including
an overview on numerical methods with plenty of references.

The primary motivation behind this work is the case when solutions need to be computed
with high accuracy, which is often the case when the results of the optimization are inputs of
further numerical computations that are sensitive to errors in their inputs. Such problems
arise for example in the computation of optimal designs of experiments, where the points in
T for which the semi-infinite constraints are active (the zeros of the optimal b−A(·)x) need
to be determined. We shall revisit this problem, and discuss it in more detail, in Section 6.3.
There are several other areas where certifying the nonnegativity of high-degree univariate
polynomials and (more generally, the positive semidefiniteness of univariate polynomial
matrices) is of high importance, these include numeric-symbolic computation in algebraic
geometry, optimal control, and signal processing; see, e.g., [28, 2].

The methods mentioned above for solving (1) rarely have faster than linear convergence,
which is sufficient for computing low-accuracy solutions, but makes them particularly chal-
lenging to apply when the solutions are needed to be computed with high accuracy. The
convergence rate of discretization methods is particularly well understood [37]. On the other
hand, in special cases that admit “nice” finitely constrained convex optimization formula-
tions, or a linear cone optimization formulation over “nice” cones such as symmetric cones,
superlinearly convergent (or even polynomial time) interior point methods can be utilized
to compute solutions with high accuracy. These special cases include when all the sets and
functions involved in the problem formulation are semidefinite representable (see below),
which implies that (1) can be posed as a semidefinite optimization problem.

Let Sk denote the set of k× k real symmetric matrices, and S
k
+ denote the set of positive

semidefinite matrices from S
k. We shall also use the notation M < 0 to denote that the

matrix M is positive semidefinite. Recall [43], [4, Sec. 4.2] that a set S ⊆ R
n is semidefinite

representable if for some k ≥ 1 and ℓ ≥ 0 there exist affine functions A : Rn 7→ S
k and

C : Rℓ 7→ S
k such that the set S can be characterized by a linear matrix inequality in the

following way:

S = {s ∈ R
n | ∃u ∈ R

ℓ : A(s) + C(u) < 0}.
With this definition, we can also say that a continuous function is semidefinite representable
if all of its (closed) lower level sets are semidefinite representable. (For maximization prob-
lems, a concave objective function is semidefinite representable if its closed upper level sets
are semidefinite representable.)

For the rest of the paper we assume that
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(1) the objective function f is semidefinite representable;
(2) the set X is semidefinite representable;
(3) the set T is the union of finitely many closed and bounded intervals; and
(4) the elements of A(t) are continuous on T .

These assumptions are practically nonrestrictive, and the first two of them imply that
aside from the infinite constraint set A(t)x ≤ b, the problem (1) can be posed as a semidefi-
nite program. If, additionally, A(t) belongs to a “nice” set of univariate functions, for which
the set {x ∈ R

n |A(t)x ≤ b ∀ t ∈ [a, b]} is also semidefinite representable for every given in-
terval [a, b], then (1) can be reformulated as a semidefinite program, and can in principle be
solved to high accuracy with existing semidefinite programming solvers.

The assumptions (3) and (4) imply that the elements of A(t) can be approximated ar-
bitrarily closely in the uniform norm by polynomials [39, Chapter 1]. Since the set of non-
negative polynomials is also semidefinite representable [21, 4], this suggests the following
approach:

(1) Replace all entries of A(t) by polynomials that approximate the entries within a
chosen ε > 0 in the uniform norm, and

(2) reformulate the resulting approximate optimization problem as a semidefinite pro-
gram, and solve this semidefinite program using interior point methods.

While this approach is fairly “obvious”, it can easily be viewed as entirely impractical,
not the least because the semidefinite representation of nonnegative polynomials (when
the polynomials are represented in the standard basis) involves Hankel matrices that are
notoriously ill-conditioned [42, 3], and existing interior point methods are not designed to be
able to handle such problems numerically. Although a change of basis to some orthogonal
basis, such as the Chebyshev or Legendre polynomial basis, can somewhat mitigate this
problem, the resulting semidefinite programs can still be difficult, if not impossible, to
solve with existing semidefinite programming solvers, once the degree of the polynomials
involved exceeds about 40 [30]. In contrast, a very close approximation of A(t) may require
polynomials with at least hundreds of degrees.

We shall mention that in Step (1) above one may wish to use rational function approx-
imations in place of polynomials. Everything in this paper generalizes to rational function
approximation, but for ease of presentation we focus on polynomial approximations only.
See Section 7 (Discussion) for a brief description on how to incorporate rational function
approximations.

As the main contribution of this paper, we demonstrate that using a suitable problem-
dependent basis of polynomial interpolants to represent the approximators of A(t), the above
approach of polynomial approximation and semidefinite reformulation can be carried out
efficiently, completely circumventing the aforementioned numerical difficulties and scaling
issues, even if the polynomials involved are of high degree. The approach uses polynomial
interpolants. The use of interpolants in polynomial optimization problems was first pro-
posed in [24], where it was shown that it is numerically preferable to represent a polynomial
nonnegativity constraint in terms polynomial interpolants instead of the standard monomial
basis when optimizing a univariate polynomial using semidefinite programming. We show
that a combination of constructive approximation techniques from [20, 41] and the semidef-
inite programming approach of [24] yields a very efficient interior-point approach to a large
class of semi-infinite programming problems.
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From an implementation perspective, this means combining efficient and numerically
stable algorithms for manipulating polynomial interpolants and standard semidefinite pro-
gramming solvers. Beyond its simplicity, an additional advantage of this approach over
developing tailor-made algorithms to handle the polynomial nonnegativity constraints is
that this approach is directly applicable to convex optimization problems that involve semi-
definite constraints other than the ones arising from polynomial nonnegativity. A family of
such problems is presented in Section 6.3.

The rest of the paper is structured as follows. In Section 2, we briefly review existing
results regarding best polynomial approximations of smooth functions, and their represen-
tations as Lagrange or Hermite interpolants. In Section 3, we extend the results of [24]
and [12] to provide semidefinite representations of sum-of-squares interpolants. Following
that, we discuss how sum-of-squares Lagrange interpolants admit well-scaled semidefinite
representations that can be handled with any existing semidefinite programming solver, in
Section 4. Section 5 is concerned with a formally minor, but numerically critical issue of rep-
resenting low-degree polynomials as high-degree interpolants in a fashion that does not affect
the numerical properties of the semidefinite representation. This is an essential ingredient of
optimization problems involving sum-of-squares polynomials of different degrees. Numerical
examples are presented in Section 6. The first couple of examples illustrate the individual
components developed throughout Sections 2–5, while the statistical applications (concern-
ing optimal designs of experiments) demonstrate how the developed methodology can be
used to solve convex semi-infinite programs with both functional and conic constraints using
high-degree polynomial approximations and semidefinite programming. Section 7 concludes
the paper with a discussion on the advantages and limitations of the approach.

2. Two- and one-sided approximations

In order to keep the paper self contained, we shall very briefly review a few key results
from constructive approximation theory that we shall make use of. The reader will find
much more detail on these ideas in the references provided with the Propositions below.
We shall connect these results to conic programming representations of best and near-best
polynomial approximations of smooth functions in the next section.

Consider a differentiable function f : [−1, 1] 7→ R that we wish approximate by a polyno-
mial. If the approximating polynomial is allowed to take both larger and smaller values than
f , we speak of a two-sided approximation, while one-sided approximation refers to the case
when the approximating polynomial is required to stay above (or below) f . Best and near-
best approximations can be particularly easily constructed using Lagrange interpolation (for
two-sided approximation) and Hermite interpolation (for one-sided approximation).

2.1. Lagrange interpolants and near-optimal two-sided approximation. Consider
a differentiable function f : [−1, 1] 7→ R that we wish to uniformly approximate by a poly-
nomial, and take a set of distinct points t0, . . . , tn in the interval [−1, 1]. Then there is a
unique polynomial pn of degree n satisfying p(tj) = f(tj) for each j = 0, . . . , n. We call
pn the polynomial (Lagrange) interpolant of f on the interpolation points t0, . . . , tn. If the
interpolation points are chosen well, increasing the number of interpolation points decreases

the interpolation error ‖f − pn‖∞ def
= max−1≤t≤1 |f(t)− pn(t)|. A particularly useful choice

of interpolation points is the set of Chebyshev points of the second kind, defined by the
formula

tℓ = cos(ℓπ/n) ℓ = 0, . . . , n. (2)
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Another frequently used interpolation points are the Chebyhev points of the first kind ; they
are defined by the formula

tℓ = cos((ℓ+ 1/2)π/(n+ 1)) ℓ = 0, . . . , n. (3)

Many other schemes exist for choosing interpolation points.
Using the Chebyshev points defined in (2), the interpolation error converges to zero at a

rate dependent on an appropriate measure of smoothness of f :

Proposition 1 ([41, Theorem 7.2]). For an integer k ≥ 1, let f and its derivatives through
f (k−1) be absolutely continuous on [−1, 1], and suppose that the kth derivative f (k) is of
bounded variation Vf(k) . Then for every n ≥ k+1, the interpolant pn through the Chebyshev
points (2) satisfies

‖f − pn‖∞ ≤ 4Vf(k)

πk(n− k)k
.

The convergence is even faster, has a geometric rate, for analytic functions; we shall omit
the somewhat complicated details of the constructive formulation of this theorem.

Interpolants through Chebyshev points are also nearly as good approximations as any
other polynomial approximant of the same degree can be:

Proposition 2 ([41, Theorem 16.1]). Let f be a continuous function on [−1, 1], and pn
its degree n interpolant through the Chebyshev points (2). Then for every polynomial q of
degree n, we have

‖f − pn‖∞ ≤
(

2 + 2
π log(n+ 1)

)

‖f − q‖∞.

Specifically, as
(

2 + 2
π log(n+ 1)

)

< 10 for all n ≤ 200000, this proposition says that in
every application considered in this paper, interpolants on Chebyshev points lose at most
one digit of accuracy compared to the best polynomial approximant of the same degree.

2.2. Hermite interpolants and optimal one-sided approximation. In some applica-
tions it is imperative that the computed approximate optimal solution x∗ to (1) be feasible
(and not just approximately feasible). However, because Lagrange interpolants oscillate
around f , the polynomial approximation of A(t)x∗ might also oscillate around the true
function, and as a result, might be slightly infeasible to (1). If this is undesirable, and x
is componentwise nonnegative, then this problem can be avoided by using one-sided ap-
proximations, that is, polynomial approximants that are always below (or above) the true
function. An elementary approach is to replace the approximant pn of Proposition 1 by
(pn − ε), or (pn + ε) for upper approximations, where ε = 4Vf(k)/(πk(n − k)k). With the
help of Proposition 2 one can argue that this is also a near-best one-sided approximation in
the uniform norm.

If the derivatives of f are of constant sign, we can also use the best one-sided approxima-

tion of f in the L1-norm ‖f‖1 def
=

∫ 1

−1
|f(t)|dt, which can be characterized as an (Hermite)

interpolant at the zeros of certain orthogonal polynomials. These zeros depend only on the
degree of the approximation, but not the approximated function f itself. The following
proposition summarizes the characterization of these polynomial approximants. (See, for
example, [14, Section 1.4] for a definition of the Legendre and Jacobi polynomials referred
to in the next Proposition.)

Proposition 3 ([7]). Assume that f is a continuous function on [−1, 1] whose (n + 1)-st
derivative f (n+1) is nonnegative on (−1, 1).
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(1) If n = 2k− 1 is odd, let t1, . . . , tk be the zeros of the Legendre polynomial of degree
k. Then the degree-n polynomial of best approximation of f from below in the L1

norm is the unique polynomial pn satisfying

pn(tℓ) = f(tℓ) and p′n(tℓ) = f ′(tℓ), ℓ = 1, . . . , k.

(2) If n = 2k is even, let t1, . . . , tk be the zeros of the Jacobi polynomial P
(0,1)
k . Then

the degree-n polynomial of best approximation of f from below in the L1 norm is
the unique polynomial pn satisfying

pn(−1) = f(−1) and pn(tℓ) = f(tℓ) and p′n(tℓ) = f ′(tℓ), ℓ = 1, . . . , k.

Analogous characterizations of best approximations from above are also given in [7].

3. Sum-of-squares interpolants

We say that a polynomial is sum-of-squares if it can be written as a (finite) sum of squared
polynomials. Specifically, we write p ∈ SOS2k if p is a polynomial (of degree at most 2k)
that can be written as a sum of squares of polynomials of degree k. It is well-known [34]
that a univariate polynomial p of degree 2k is nonnegative on the entire real line if and only
if p ∈ SOS2k. Similarly, a polynomial p of degree n is nonnegative over [−1, 1] if and only
if it can be written as a weighted sum of squared polynomials [26], either in the form of

p(t) = (1 + t)q(t) + (1 − t)r(t), q ∈ SOS2k−2, s ∈ SOS2k−2 if n = 2k − 1, (4)

or in the form

p(t) = (1 + t)(1− t)q(t) + s(t), q ∈ SOS2k−2, s ∈ SOS2k, if n = 2k. (5)

This, in turn, yields a semidefinite representation of the set of nonnegative polynomials
of a fixed degree, using the fact that the cone of sums of squares of functions from any finite
dimensional functional space is semidefinite representable [29, 33]. The precise form of this
semidefinite representation depends on the bases that the polynomials being squared (q, r,
and s) and the sum-of-squares polynomial (p) are represented in.

For the purposes of this paper, we need a representation that uses only the values of p and
its derivatives at prescribed interpolation points, so that the polynomial approximations of
the functions involved in (1) need not be explicitly constructed, but one may work directly
with sampled values of the original functions to be approximated. For Lagrange interpolants
at the points t0, . . . , tn, this is equivalent to representing the squared polynomials in an
arbitrary basis, while representing p in the Lagrange basis polynomials corresponding to
the interpolation points t0, . . . , tn [24]. The theorem below shows that for every fixed set
of interpolation points, the coefficient vectors of nonnegative polynomials in the interpolant
basis are a linear image of the cone of positive semidefinite matrices. We use the notation

A •B def
=

∑

i,j AijBij to denote the component-wise (Frobenius) inner product.

Theorem 4. Let t0, . . . , t2k ∈ R be distinct interpolation points and f0, . . . , f2k ∈ R be
arbitrary function values prescribed at these points. Fix an arbitrary basis p0, . . . , pk of
polynomials of degree k. Then there is a nonnegative polynomial q ∈ SOS2k satisfying
q(tℓ) = fℓ for each ℓ = 0, . . . , 2k if and only if there exists a (k + 1) × (k + 1) positive
semidefinite matrix X satisfying

A(ℓ) •X = fℓ ℓ = 0, . . . , 2k, where A
(ℓ)
ij = pi(tℓ)pj(tℓ). (6)
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We omit the proof, as this proposition is subsumed by Theorem 5 below, which provides
a similar characterization for Hermite interpolants. The following is a generalization of both
Theorem 4 above and (the main, unnumbered, results of) Sections 3.2 and 3.3 of [11].

Theorem 5. Let t1, . . . , tk ∈ R be distinct interpolation points, let m1, . . . ,mk and d be

nonnegative integers satisfying 2d + 1 =
∑k

ℓ=1(mℓ + 1), and let f
(m)
ℓ ∈ R be arbitrary

prescribed values of the mth derivative at tℓ for every ℓ = 1, . . . , k and m = 0, . . . ,mℓ. Also
fix an arbitrary basis p0, . . . , pd of polynomials of degree d. Then there is some nonnegative
polynomial q ∈ SOS2d satisfying

q(m)(tℓ) = f
(m)
ℓ ℓ = 1, . . . , k, m = 0, . . . ,mℓ

if and only if there exists a (d+ 1)× (d+ 1) positive semidefinite matrix X satisfying

A(ℓ,m) •X = f
(m)
ℓ ℓ = 0, . . . , 2k, where A

(ℓ,m)
ij = dm

dtm (pi(t)pj(t))
∣

∣

t=tℓ
. (7)

Proof. Using the shorthand p(t) to denote the column vector (p0(t), . . . , pd(t))
T, q ∈ SOS2d

if and only if there exists some (d+ 1)× (d+ 1) positive semidefinite matrix X with which
q(t) = p(t)TXp(t) = (p(t)p(t)T) • X for every t ∈ R. Differentiating both sides of this
equation, we obtain

dm

dtm q(t) = dm

dtm (p(t)p(t)T) •X ∀ t, (8)

where the differentiation of the matrix on the right-hand side is understood componentwise.
Since the prescribed derivative values and the degree determine q uniquely, equation (8)

holds for every m ≥ 0 and every t ∈ R if and only if it holds for each tℓ, ℓ = 0, . . . , k with
m from 0 up to mℓ, which is precisely the system of equations (7) in our claim. �

4. Scaling

One of the key difficulties in working with polynomials of high degree is that numerical
difficulties arise if the polynomials involved are represented in an unsuitable basis, such as
the monomial basis, as it is customary in the sum-of-squares literature. In the representation
of Theorem 4 one can freely choose both the interpolation points and the basis p. The choice
of Chebyshev points of the first kind and appropriately scaled Chebyshev polynomials works
particularly well. Recall that the Chebyshev polynomials of the first kind are the sequence
of polynomials of increasing degree defined by the recursion

T0(t) = 1, T1(t) = t, Ti(t) = 2tTi−1(t)− Ti−2(t) i = 2, 3, . . . (9)

The following lemma states that if we represent the polynomials to be squared in the
appropriately scaled Chebyshev basis, and use Chebyshev points as the interpolation points,
then the representation (6) is perfectly scaled.

Lemma 6. Let t0, . . . , t2k be the Chebyshev points given in (3) (with n = 2k), and de-

fine p0 =
√

1
2k+1T0 and pi =

√

2
2k+1Ti for i = 1, . . . , k, where the Ti are the Chebyshev

polynomials given in (9). Then the vectors (pi(t0), . . . , pi(t2k)) for i = 0, . . . , k form an
orthonormal system.

Proof. The statement is an easy consequence of the discrete orthogonality relation of Cheby-
shev polynomials [17, eq. (3.30)]: for every n > 0 and 0 ≤ i, j ≤ n,

n
∑

ℓ=0

Ti(tℓ)Tj(tℓ) = Kiδij ,
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where K0 = n + 1, Ki = (n + 1)/2 when i ≥ 1, and δ is the Kronecker symbol. Applying
this identity, we have the following:

(1) If i = j = 0, then

2k
∑

ℓ=0

p20(tℓ) =
1

2k + 1

2k
∑

ℓ=0

T 2
0 (tℓ) = 1.

(2) If i > j = 0, then

2k
∑

ℓ=0

pi(tℓ)pj(tℓ) =

√
2

2k + 1

2k
∑

ℓ=0

Ti(tℓ)T0(tℓ) = 0.

(3) If i ≥ 1 and j ≥ 1, then

2k
∑

ℓ=0

pi(tℓ)pj(tℓ) =
2

2k + 1

2k
∑

ℓ=0

Ti(tℓ)Tj(tℓ) = δij . �

We can also express this relation in terms of the dual constraints. If yℓ denotes the dual
variable corresponding to the linear equation A(ℓ) • X = fℓ in (6), then dual constraint
corresponding to the primal variable X is that the matrix

Y (y)
def
=

2k
∑

ℓ=0

yℓp(tℓ)p(tℓ)
T = PT diag(y)P, (10)

where P = (pi(tℓ))ℓ,i, is positive semidefinite. Choosing each pi and tℓ as suggested by
Lemma 6 we obtain a matrix P with orthonormal columns. Factoring, or computing eigen-
values of Y (y) for different values of y is therefore not numerically challenging even if the
number of interpolation points (and the degree of the polynomials involved) is in the thou-
sands. (See Section 6 for numerical examples.) An additional advantage is that algorithms
that compute the values of Chebyshev polynomials at Chebyshev points to arbitrary accu-
racy are readily available [9, 41, 13]; also note that these values Ti(tℓ), and therefore the
coefficient matrices A(ℓ) in (6) need only be computed once, offline, for every value of n.

The case of general interpolation points is in principle similarly easy. For every set of
points t0, . . . , t2k one can find a basis p0, . . . , pk of polynomials of degree k satisfying the
discrete orthogonality relation

n
∑

ℓ=0

pi(tℓ)pj(tℓ) = δij ,

by taking an arbitrary basis, and applying an orthogonalization procedure, e.g., QR factor-
ization [19, Sec. 19]. It is important to note that the representation (6) does not require
that the basis p0, . . . , pk is explicitly identified or expressed in any particular basis, only
the values of the basis polynomials are needed at the interpolation points. Throughout the
orthogonalization procedure one can work directly with the values of the basis polynomials
at the prescribed points. For example, the initial basis can be the Chebyshev polynomial
basis, as in that basis stable evaluation of the basis polynomials is easy [9, 13], and then the
orthogonalization procedure applied to the vectors of function values directly computes the
values of pi(tℓ) for each interpolation point tℓ for the orthogonalized basis p.

The same procedure is applicable to the weighted-sum-of-squares representations (4) and
(5) of polynomials that are nonnegative over an interval. In the dual constraint (10), the
(ℓ, i)-th entry pi(tℓ) of the coefficient matrix P is replaced by w(tℓ)

1/2pi(tℓ), where w is the
weight polynomial (in the case of polynomials over [−1, 1], this is the polynomial 1− t, 1+ t,
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or 1− t2, depending on the parity of the degree), and it is this weighted coefficient matrix
that needs to be orthogonalized for a perfectly scaled representation of the weighted-sum-
of-squares constraint.

5. High-degree representation of low-degree polynomials

If the polynomial approximations of (1) involve interpolants of different degrees, it may
be necessary to lift the lower degree interpolants into the space of higher degree ones.
When polynomials are represented in the monomial basis or in an orthogonal basis, this is
straightforward: the coefficients of the higher degree terms simply need to be set to zero. The
analogous constraint for interpolants is that the low-degree polynomial must take consistent
values at the interpolation points used to represent the high-degree polynomials. Since the
evaluation of a polynomial at a given point is a linear functional, the mapping B : Rn+1 7→
R

N+1 from the values of a degree-n polynomial on a given set of n+ 1 interpolation points
to the values on a larger set of N + 1 interpolation points is linear, therefore this mapping
can be represented by a system of linear equality constraints.

For example, suppose that the infinite constraint set can be written in the form

p(t)− q(t) ≥ 0 ∀ t ∈ [−1, 1],

where q is a given degree-N polynomial represented as an interpolant on the N+1 Chebyshev
points of the second kind (2), whereas p is an degree-n polynomial to be optimized, with
n < N , represented as an interpolant on n+1 Chebyshev points. To represent this constraint
using sum-of-squares interpolants, p− q needs to be a degree-N sum-of-squares interpolant,
and the variable p must be “upsampled” and represented as a degree-N interpolant.

The coefficient matrix of these constraints can be determined using interpolation formu-
lae. It is important to note that although the previous section shows that the sum-of-squares
representation of nonnegative interpolants can always be scaled, regardless of the location of
the interpolation points, the problem of polynomial interpolation is inherently ill-conditioned
in general, meaning that small changes in the values of the degree-n polynomial can result
in large changes in the upsampled values [5]. On the other hand, if the low-degree polyno-
mial is an interpolant on Chebyshev points, or any other point set with asymptotic density
(1 − x2)−1/2, then the interpolation problem is well-conditioned; moreover, the coefficients
of the upsampling constraints can be computed efficiently and in a numerically stable man-
ner, using barycentric Lagrange interpolation [20]. In practice, these computations can be
conveniently carried out using the Matlab package chebfun.

It is for this reason that in all our numerical examples in this paper, all polynomials are
represented as interpolants using Chebyshev points as interpolation points.

6. Applications and numerical experiments

The complete algorithm for the solution of semi-infinite programs given in the form (1)
can be summarized as follows:

1. Choose a convenient family of interpolation points. If the application does not prescribe
them, use Chebyshev points of the second kind defined in (2).

2. Find a componentwise polynomial approximation P (t) of each component of A(t), ex-
pressed as an interpolant, by evaluatingA(·) at each interpolation point. Use Proposition 1
to compute the number of points that ensure that the interpolants have small uniform
approximation error. (In the examples in this paper we always use enough points to
obtain a uniform error less than double machine precision.)
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3. Reformulate the polynomial inequalities b−P (t)x ≥ 0 as linear semidefinite optimization
constraints using Theorem 4 (if Lagrange interpolation is used) or Theorem 5 (for Hermite
interpolation).

4. If the degree of the components of P (·) is high, use the procedure in Section 4 to or-
thogonalize the semidefinite representation of the polynomial constraints. If Chebyshev
points were chosen in Step 1, Lemma 6 gives the orthonormal representation in closed
form, and this step can be omitted.

5. Solve the resulting convex optimization problem with a suitable convex optimization
method. If the convex constraints x ∈ X and the objective function f are semidefinite
representable (as defined in Section 1), we can use interior point methods for semidefinite
programming.

Note that as long as the approximation P (t) for A(t) is sufficiently close, the original prob-
lem and the polynomial approximation are numerically equivalent. Specifically, infeasibility
or unboundedness in (1) is detected in the last step.

In the rest of the section we illustrate the method using a number of examples.

6.1. Polynomial envelopes. Our first example demonstrates that the computational in-
frastructure presented in Sections 3 and 4 is indeed capable of handling high-degree poly-
nomials without any numerical difficulties. Consider the following problem: given degree-
d polynomials p1, . . . , pm, find the greatest degree-n polynomial lower approximation of
min(p1, . . . , pm), where the minimum is understood pointwise. Formally, we seek the opti-
mal solution to

maximizep

∫ 1

−1

p(t)dt

subject to p(t) ≤ pi(t) ∀ t ∈ [−1, 1] i = 1, . . . ,m.

(11)

All polynomials involved can be represented as interpolants on the same max(n, d) + 1
points. The decision variables are the function values p(tℓ), ℓ = 1, . . . ,max(n, d) + 1 at the
interpolation points tℓ. The nonnegativity of the polynomials pi(t)−p(t) can be formulated
as these polynomials being weighted sums of squares. The integral in the objective can
be replaced by the sum

∑

ℓ p(tl)wℓ with appropriately chosen weights wℓ for an explicit
representation as a linear function of the decision variables. For this example, we assume
that n ≥ d so that we do not have to worry about the upsampling issue discussed in the
previous section.

Random instances were generated by drawing uniformly random integer coefficients from
[−9, 9] for each pi represented in the Chebyshev basis. For ease of implementation, the dual
problem,

minimizey
∑

i,ℓ

pi(tℓ)yiℓ

subject to
∑

i

yiℓ = wℓ ∀ ℓ,
∑

ℓ

(1 + tℓ)A
(ℓ)yiℓ < 0 ∀ i,

∑

ℓ

(1− tℓ)A
(ℓ)yiℓ < 0 ∀ i,

(12)

was solved, after orthogonalizing the matrix inequalities using the procedure outlined in
Section 4. We employed three different solvers, Sedumi [38], SDPT3 version 4 [40], and
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CSDP version 6.2 [8], each running in Matlab 2014a, interfaced using the OPTI Toolbox
[10] version 2.20, to confirm that the semidefinite formulations can indeed be solved with
off-the-shelf SDP solvers. A variety of values for the number of polynomials m as well as
the degrees n and d were tried. The fact that the A(ℓ) matrices are of rank one can also in
principle be exploited by dual solvers [24], although the solvers used in this study do not
take advantage of this.

In each case, the optimal polynomial interpolant p was recovered from the optimal dual
solution: p(tℓ) is the optimal dual variable corresponding to the linear equality constraint
∑

i yiℓ = wℓ in (12).
For solvers that do not handle linear equality constraints well (specifically, those that

represent Ax = b as a pair of inequalities b ≤ Ax ≤ b), it is useful to note that the polyno-
mials pi can be assumed to satisfy pi(tℓ) ≤ 0 for all i and ℓ, without any loss of generality,
which in turn allows us to assume that the primal variables p(tℓ) in (11) are constrained
(redundantly) to be non-positive. With this modification, the equality constraint in the
dual problem (12) becomes an inequality

∑

i yiℓ ≤ wℓ ∀ ℓ.
Example 1. Figure 1 depicts three quintic polynomials, along with three best polynomial
lower approximations of their pointwise minimum. The degrees of the approximating poly-
nomials are 5, 15, and 75, respectively. The 75-degree lower approximation is visually nearly
indistinguishable from the minimum of the three polynomials. The computations for this
plot were carried out using Sedumi.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Figure 1. Three polynomials of degree 5, along with their best lower poly-
nomial approximations of degree 5, 15, and 75.

To find the optimal polynomials with the highest numerically possible accuracy, we set
the Sedumi accuracy goal eps to zero so that the solver keeps iterating as long as it can
make any progress. Figure 2 shows the plot of the difference between mini pi and the three
polynomial lower approximations. Only the sections of the plots close to the x-axis are
shown, in order to demonstrate that the resulting optimal polynomials are computed to
sufficiently high accuracy that the points of contact (the points where mini pi(t) = p(t)) can
be separated, and computed to several digits of accuracy.

To test the limits of the approach when applied to polynomials of very high degree, similar
problems were solved for higher values of n, with the three SDP solvers mentioned above
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Figure 2. Pointwise difference between the three optimal polynomials and
mini pi from Figure 1. Only the near-zero section of the plots are shown;
the number of contact points can be easily read off the diagrams. The
polynomials have degrees 5, 15, and 75, respectively.

n+ 1 # of nonzeros # of iterations solver time [s] primal inf. dual inf. duality gap

100 0.5 M 23 5 5.0 · 10−10 3.0 · 10−14 3.25 · 10−14

200 4.0 M 21 44 3.5 · 10−10 1.5 · 10−13 9.04 · 10−13

300 13.5 M 24 215 1.7 · 10−10 1.4 · 10−14 6.23 · 10−15

400 32.1 M 21 547 2.3 · 10−10 1.7 · 10−13 6.01 · 10−14

500 62.6 M 19 1128 1.1 · 10−9 9.1 · 10−13 2.43 · 10−13

600 108 M 20 2456 2.6 · 10−9 2.0 · 10−12 4.56 · 10−13

700 171 M 21 4847 4.8 · 10−10 3.0 · 10−13 6.19 · 10−14

800 256 M 21 8670 7.2 · 10−10 3.2 · 10−13 5.76 · 10−14

900 321 M 20 12969 1.9 · 10−9 1.1 · 10−12 1.80 · 10−13

1000 501 M 19 19875 5 · 10−9 2.8 · 10−12 4.19 · 10−13

Table 1. Solver statistics from Sedumi from the solution of Example 1.
Instances of the optimization problem (11)-(12) was solved for m = 2,
d = 5, and different values of the degree n. (That is, n+ 1 in the heading
is the number of interpolation points.) M in the second column stands
for millions. The last three columns show the relative infeasibility of the
optimal primal and dual solutions, and the relative duality gap. Larger
problems (n+1 ≥ 1100) could not be solved because of memory constraints.

(Sedumi, SDPT3, and CSDP). As before, to obtain the highest possible accuracy, we set
tolerances and accuracy goals to zero so that the solvers keep iterating as long as they can
make any progress. Otherwise, default parameter settings were used with each solver.

With each solver, as the sizes of the SDPs grow quadratically with the degree of the
polynomials involved, the available memory became a bottleneck. Therefore, we reduced
the number of constraints to m = 2, and then increased n as shown in the tables below.
Using a standard desktop computer with 32GB RAM, the degree was increased until the
solvers ran out of memory, and were unable to solve the problem. The number of nonzeros
in the constraint matrix of the semidefinite program, along with the number of iterations,
the solver running time, and the final duality gap for each run of Sedumi is shown in Table 1;
the same solver statistics (without repeating the problem statistics) for SDPT3 are shown
in Table 2, and for CSDP in Table 3. It is apparent from the results that the solvers are
able to solve even the largest instances, involving polynomials of degree 1000, without any
numerical difficulty, and the memory constraint is the only bottleneck.
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n+ 1 # of iterations solver time [s] primal inf. dual inf. duality gap

100 24 4 6.3 · 10−10 1.1 · 10−11 5.2 · 10−12

200 25 25 1.4 · 10−9 3.9 · 10−12 5.7 · 10−12

300 29 107 8.5 · 10−9 1.0 · 10−12 1.5 · 10−11

400 26 264 2.7 · 10−9 5.1 · 10−12 1.7 · 10−11

500 29 695 3.4 · 10−9 4.3 · 10−13 1.6 · 10−11

600 30 1395 9.7 · 10−10 1.6 · 10−12 3.1 · 10−10

700 30 2527 2.2 · 10−9 9.5 · 10−13 1.7 · 10−10

800 33 4732 3.0 · 10−8 2.3 · 10−13 5.4 · 10−12

900 30 6724 5.6 · 10−10 4.2 · 10−12 9.1 · 10−10

1000 31 10505 3.9 · 10−10 2.2 · 10−13 2.4 · 10−11

Table 2. Solver statistics from SDPT3 from the solution of Example 1.
Instances of the optimization problem (11)-(12) was solved for m = 2,
d = 5, and different values of the degree n. Larger problems (n+1 ≥ 1100)
could not be solved because of memory constraints.

n+ 1 # of iterations solver time [s] primal inf. dual inf. duality gap

100 17 1 1.89 · 10−11 6.68 · 10−13 1.74 · 10−9

200 19 10 2.57 · 10−12 1.63 · 10−12 3.71 · 10−10

300 21 45 9.13 · 10−12 2.29 · 10−10 1.70 · 10−9

400 19 136 1.83 · 10−11 7.02 · 10−12 6.38 · 10−9

500 21 371 4.41 · 10−12 7.83 · 10−10 1.72 · 10−9

600 23 788 4.79 · 10−12 1.23 · 10−10 1.59 · 10−9

700 22 1486 1.54 · 10−12 3.09 · 10−10 8.39 · 10−10

800 22 2474 3.33 · 10−12 1.72 · 10−9 1.97 · 10−9

900 20 4569 7.25 · 10−12 3.57 · 10−11 7.38 · 10−9

1000 22 8634 9.00 · 10−13 1.84 · 10−10 5.68 · 10−10

1100 22 15129 9.88 · 10−13 4.46 · 10−9 7.75 · 10−10

Table 3. Solver statistics from CSDP from the solution of Example 1.
Instances of the optimization problem (11)-(12) was solved for m = 2,
d = 5, and different values of the degree n. Larger problems (n+1 ≥ 1200)
could not be solved because of memory constraints.

6.2. Recovering best one-sided approximations. The following example combines the
semidefinite optimization model of Example 1 with high-degree polynomial approximation
of nonpolynomial functions, and it also incorporates the ideas introduced in Section 5. For
easier verification of the results, we pose a problem that can be solved in essentially closed
form using Proposition 3.

Example 2. Consider the problem of finding the best polynomial lower approximation
(of a given degree) of the function f(t) = exp(t100) defined over [−1, 1]. It can be shown
using Propositions 1 and 2 that the polynomial interpolant p200 of f on the 200 Chebyshev
points has a maximum absolute error smaller than double machine precision. For numerical
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purposes, finding the best polynomial lower approximant p (of a given degree lower than
200) to f is equivalent to finding the optimal solution p to the problem

maximizep

∫ 1

−1

p(t)dt

subject to p(t) ≤ p200(t) ∀ t ∈ [−1, 1].

(13)

This problem can be translated to a semidefinite program nearly identically to the previ-
ous example, except that now p has to be upsampled to the 200 interpolation points, using
barycentric interpolation, as discussed in Section 5. The modified dual problem becomes

minimizey,z
∑

i,ℓ

pi(tℓ)yiℓ

subject to
∑

i

yiℓ + zℓ = wℓ ∀ ℓ,
∑

ℓ

(1 + tℓ)A
(ℓ)yiℓ < 0 ∀ i,

∑

ℓ

(1 − tℓ)A
(ℓ)yiℓ < 0 ∀ i,

BTz = 0,

(14)

where B ∈ R
200×n is the barycentric interpolation matrix mapping the values of a degree-

(n− 1) polynomial p at the n Chebyshev points to the values at the 200 Chebyshev points
used to represent p200.

As an example, we solved this problem to determine the optimal polynomial lower ap-
proximant of degree 49 (represented as an interpolant on the 50 Chebyshev points) using
SeDuMi. As before, for the highest numerically possible accuracy, we set the SeDuMi accu-
racy goal eps to zero so that the solver iterates while it can make any progress. Finally, the
points of contact of the roots of optimal approximant were determined numerically using the
root finding algorithm for interpolants implemented in the Matlab toolbox Chebfun v.5.0.1
[13]. The obtained roots are shown in Table 4.

Proposition 3 provides a characterization of the optimal solution as an Hermite inter-
polant on the roots of the 25-degree Legendre polynomial L25, meaning the points of contact
are the (known, and numerically precisely computable) roots of L25, allowing us to check
the accuracy of our calculations. Table 4 shows the values of the roots obtained from our
optimization procedure and the correct values with machine precision accuracy. The largest
absolute error of the roots was 6.16 · 10−7, the largest relative error (not defined for the
root equal to zero) was 4.88 · 10−6. In other words, all roots were accurate up to at least 5
significant digits.

6.3. Experimental design. Problems discussed in this section are among the author’s
main motivation for studying semi-infinite linear programs with additional conic constraints.

The goal of optimal experimental design in general is to maximize the quality of statistical
inference by collecting the right data, given limited resources. In the context of linear
regression, the inference is based on a data model

y(t) =

m
∑

i=1

βifi(t) + ǫ(t), (15)



SEMI-INFINITE PROGRAMMING USING POLYNOMIAL INTERPOLANTS 15

Computed point of contact Exact point of contact

−0.995556972963306 −0.995556969790498
−0.976663935477085 −0.976663921459518
−0.942974611506432 −0.942974571228974
−0.894992079192159 −0.894991997878275
−0.833442768114398 −0.833442628760834
−0.75925946688898 −0.759259263037358
−0.673566645603713 −0.673566368473468
−0.57766328506073 −0.577662930241223
−0.473003173358265 −0.473002731445715
−0.361172781372549 −0.361172305809388
−0.243867464225739 −0.243866883720988
−0.122865277764643 −0.12286469261071
−6.15973190950935 ·10−7 0
0.122864093106243 0.12286469261071
0.243866329210549 0.243866883720988
0.361171807947986 0.361172305809388
0.473002281718963 0.473002731445715
0.577662568403695 0.577662930241223
0.673566077288833 0.673566368473468
0.759259051474652 0.759259263037358
0.833442487648842 0.833442628760834
0.894991911861248 0.894991997878275
0.942974528231816 0.942974571228974
0.976663905379173 0.976663921459518
0.995556966216301 0.995556969790498

Table 4. Comparison of the numerically computed points of contact from
Example 2 and the exact values (shown with double machine precision
accuracy) derived from Proposition 3. In spite of the high degree of the
polynomials involved, all computed points of contact (computed as the
roots of high-degree sum-of-squares interpolants) are accurate up to at least
5 significant digits.

where f1, . . . , fm are known functions, and the random variable ǫ (of known probability
distribution) represents measurement errors and other sources of variation unexplained by
the model. In the experiment, the (noisy) values of y are observed for a number of different
values of t chosen from the given design space I, and the goal of the experiment is to infer
the values of the unknown coefficients βi, i = 1, . . . ,m. By a design we mean a set of
values {t1, . . . , ts} for which the response y(ti) is to be measured, along with the number of
repeated measurements ri to be taken at each ti. Multiple measurements are allowed, since
assuming independent measurement errors, the repeated measurements can help reduce our
uncertainty of the “true” (noise-free) value of each y(ti). The problem of deciding how
many (discrete) measurements to take at what points ti is a non-convex (combinatorial)
optimization problem, which is commonly simplified to a convex problem by relaxing the
integrality constraints on ri [16, 35]. In the resulting model one can normalize the vector r
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by assuming
∑

i ri = 1 (in addition to r ≥ 0), so that ri represents not the number, but the
fraction of experiments to be conducted at the point ti.

This way, the experiment design is mathematically a finitely supported probability distri-
bution ξ satisfying ξ = ti with probability ri, i = 1, . . . , s. It is immediate that the feasible
set (the set of probability measures supported on a finite subset of a given set I ⊆ R

n) is
convex.

Our goal with the experiment is to maximize our confidence in the estimated components
of β, which can be quantified using the Fisher information [16, 35] that the measured values
carry about β. Under the common assumption that ǫ(t) is normally distributed with mean
zero and variance ω(t), we can estimate the parameters β using ordinary least-squares. Using
the notation f(t) = (f1(t), . . . , fm(t))T, the Fisher information matrix of β corresponding
to the design ξ is

M(ξ) =

∫

I

f(t)f(t)Tω(t)dξ(t). (16)

Of course, this integral simplifies to a finite sum for every design. Note that for every ξ,
M(ξ) ∈ S

m
+ , therefore the optimization usually takes place with respect to some optimality

criterion Φ that measures the quality of the Fisher information matrix. If Φ is an S
m
+ 7→ R

function, the design ξ̂ is called optimal with respect to Φ, or Φ-optimal for short, if Φ(M(ξ̂))
is maximum. Only those criteria Φ are interesting that are compatible with the Löwner
partial order, that is functions Φ satisfying Φ(A) ≥ Φ(B) whenever A < B < 0; see
[35, Chap. 4] for a statistical interpretation of this requirement. Popular choices of Φ
include Φ(M) = det(M), Φ(M) = λmin(M) (smallest eigenvalue), Φ(M) = − tr(M−1), and
Φ(M) = (tr(Mp))1/p for p ≥ 1.

The main result (Theorem 2) of [31] is that if the basis functions fi in (15) are rational
functions, then the optimal design can be computed by solving two semidefinite programs.
(For completeness, the result is repeated in the Appendix.) The first semidefinite program
determines a polynomial whose roots are the support points of the optimal design, while
the second one is used to determine the probability masses assigned to the support points
once the support points are known. The first semidefinite program involves a constraint
that a polynomial be nonnegative over the design space I; see Theorem 7 in the Appendix.
Therefore, this is an instance of (1) that cannot be handled effectively using the commonly
used cutting plane methods of semi-infinite linear programming.

Most practical problems involve basis functions that are not polynomials or rational
functions, therefore we follow the approach suggested in Section 1, and replace each fi by
a close polynomial (or rational) approximant. If any of these approximants has a high
degree, then the aforementioned semidefinite program determines a high-degree polynomial
that must be nonnegative over I, and that must be computed with sufficient accuracy that
allows its roots to be precisely computed.

Example 3. Consider the linear regression model (15) involving a mixture of m = 3
Gaussians fi = exp(−3(x − µi)

2) with µ1 = −0.5, µ2 = 0, and µ3 = 0.5, and suppose we
are interested in finding the best E-optimal design for determining the best fit, over the
design space I = [−1, 1]. Since the fi are not polynomials, we will approximate them by
high-degree polynomial interpolants.

E-optimality means maximizing the smallest eigenvalue Φ = λmin of the Fisher informa-
tion matrix. Therefore, this is a semidefinite representable optimality criterion:

λmin(M) ≥ z ⇐⇒ M − Iz < 0.
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Invoking Theorem 7 in the Appendix with p = 1, A1 = id, B1 = I, C1(·) = 0, and D1 = 0
in (17), we obtain that the support of the optimal design is a subset of the roots of the
optimal polynomial π determined by the solution of the optimization problem

minimize
y∈R, π∈Rd+1,W∈S3+

y

subject to tr(W ) = −1

π(t)
def
= y −W •Mt ≥ 0 ∀ t ∈ [−1, 1],

where Mt = f(t)f(t)T with f(t) = (f1(t), f2(t), f3(t))
T.

Using Chebfun (or the bound of Proposition 1), we obtain that all nonpolynomial func-
tions involved in the optimization problem (including not only fi, but also the products
fifj) can be approximated within machine-precision uniform error over [−1, 1] by polyno-
mial interpolants on 40 Chebyshev points. The nonnegativity constraint is replaced by the
constraint that π is weighted-sum-of-squares with weights 1 + t and 1− t.

As in the previous examples, we solved the resulting semidefinite program, and obtained
the optimal polynomial shown on Figure 3. The polynomial has three roots in [−1, 1], these
are ±0.7410 and 0.
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Figure 3. The optimal polynomial π of degree 40 from the optimal design
of experiments problem discussed in Example 3. The optimal design is
supported on the roots of this polynomial located in [−1, 1], which are
approximately ±0.7410 and 0.

This example was also implemented in Matlab, and solved with multiple solvers. Neither
solver reported any errors or warnings during the solution, and returned the same solution
(within the expected accuracy).

6.3.1. Extension to nonlinear regression models. A similar approach can be used to compute
optimal designs of experiments for nonlinear regression models

y(t) = f(t;β1, . . . , βm) + ǫ(t).

For such models, there are several non-equivalent definitions of optimal designs, here we
only consider the simplest ones called local optimal designs. (These are not local optimal
solutions to a nonconvex optimization model; the term “local” has a statistical meaning in
this context that will be clarified below.)

Local optimal designs for nonlinear models are defined in an almost identical manner
to optimal designs for linear models, except that the in the definition (16) of the Fisher
information matrix, the matrix f(t)f(t)T is replaced by the matrix

(∂f(t)/∂β)(∂f(t)/∂β)T,
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where ∂f(t)/∂β denotes the vector of partial derivatives ∂f(t)/∂βi, i = 1, . . . ,m. It can be
seen that for linear models, ∂f(t)/∂β is simply f , and we arrive at the previous definition.
However, for nonlinear models, ∂f(t)/∂β is dependent on the unknown parameters β that
the experiment is designed to identify. Therefore, local optimal designs are defined with

respect to an initial guess β̂ of these parameter values; replacing the true Fisher information
matrix with a local estimate,

Mβ̂(ξ) =

∫

I

(

∂f(t)

∂β

)(

∂f(t)

∂β

)T
∣

∣

∣

∣

∣

β=β̂

ω(t)dξ(t).

A design ξ̂ is said to be locally optimal with respect to Φ, or locally Φ-optimal for short, if

Φ(Mβ̂(ξ̂)) is maximum. The semidefinite programming characterization of the support of

local optimal designs is entirely analogous to the characterization for linear models given in
Theorem 7.

Example 4. We consider what is perhaps the simplest nonlinear regression model: logistic
regression with only two parameters. In this model we have

f(t) = (1 + exp(−β0 − β1t))
−1,

and the partial derivatives of f with respect to the parameters are

∂f(t)/∂β0 = (2 + 2 cosh(β0 + β1t))
−1 and ∂f(t)/∂β1 = t(2 + 2 cosh(β0 + β1t))

−1.

Using the shorthand g(t) = (2+ 2 cosh(β̂0 + β̂1t))
−1, the optimization model characterizing

the support involves as a constraint the nonnegativity of a function that is in the space

span{1, g(t), tg(t), t2g(t)}.
For our numerical example, we chose the values β0 = 0 and β1 = 12.

In spite of its apparent simplicity, the semidefinite program that arises from a polynomial
approximation of g is far from straightforward. First, it can be shown that g is a function
that exhibits the Runge phenomenon [15], that is, the maximum (pointwise) error between g
and its polynomial interpolants on equispaced points does not tend to zero as the number of
interpolation points increases. (Figure 4.) Even if we use Chebyshev points, the 100-degree
interpolant of g is highly oscillatory, and yields entirely wrong results, with no correct
significant digits in the optimal objective function value.

On the other hand, the 200-degree interpolant of g on Chebyshev points already has a
uniform error less than machine precision over [−1, 1]. Using this approximation, we obtain
that the optimal polynomial has two roots: ±0.08697. As in the previous examples, all of
the SDP solvers returned the same solution without numerical problems, in spite of the high
degree of the polynomials involved in the computation.

7. Discussion

While the examples presented in the previous section are admittedly toy examples of
their respective application areas, the semidefinite programs they lead to are impossible to
solve with commonly used semidefinite solvers if the nonnegative polynomial constraints are
translated to semidefinite constraints in the standard fashion, due to the high degrees of
the polynomials involved. Example 4 in particular demonstrates that the possibly simplest
problem in optimal design of experiments for nonlinear statistical models (the two-parameter
version of the most studied nonlinear regression model) involves nonpolynomial functions
that cannot be adequately approximated with polynomials of less than hundred degrees,
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Figure 4. The function g from Example 4 exhibits the Runge phenome-
non. Shown are the function g in red (this bell-shaped curve appears to be
a horizontal line because of the scale) and its polynomial interpolant on 40
equispaced points.

therefore there is a definite need to be able to reliably optimize over cones of sum-of-squares
polynomials of hundreds of degrees.

The numerical results from these experiments, on the other hand, demonstrate that the
semidefinite representations of sum-of-squares interpolants enable the solution of these prob-
lems with all of the existing semidefinite programming solvers tried in this study: CSDP,
SDPT3, and SeDuMi, thanks to the considerably better numerical properties of the repre-
sentation. The optimal polynomials were computed with high enough accuracy that even
their roots could be located precisely—this is particularly important for their application in
the design of experiments.

It can be beneficial to consider rational function approximations in place of polynomial
approximations. The semidefinite programming formulations can be derived in an analogous
fashion: if a basis {f1, . . . , fn} of a space F of functions have rational function approxima-
tions fi(t) ≈ pi(t)/qi(t), then the cone of nonnegative functions in F can be represented by
the set of coefficients

{

α ∈ R
n
∣

∣

∣

n
∑

i=1

αipi(t)/qi(t) ≥ 0 ∀ t
}

=
{

α ∈ R
n
∣

∣

∣

n
∑

i=1

αiq(t)pi(t)/qi(t) ≥ 0 ∀ t
}

,

where q(t) is the least common multiple of the denominators q1, . . . , qn. The latter descrip-
tion of the cone is a preimage of the cone of nonnegative univariate polynomials, and is
therefore semidefinite representable. From the perspective of this work, rational function
approximations are preferred to polynomial approximations as long as the degree of the poly-
nomials qpi/qi are smaller than the degree required for a good polynomial approximation
of the functions fi.

To derive the semidefinite programming models, it is essential that the high degree poly-
nomial interpolants of given functions be computed quickly and accurately, and that the
resulting interpolants can be processed as needed. For instance, the evaluation of inter-
polants at points other than the interpolation points has to be efficient and stable, and
the roots of interpolants need to be computed efficiently. All the infrastructure required
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for these computations are already available in constructive approximation packages such
as the Matlab toolbox Chebfun. Our results show that these tools can be combined with
the existing semidefinite programming solvers to obtain a reliable tool that can solve semi-
infinite linear programs with general univariate functional constraints, without the need to
derive tailor-made specialized algorithms.

Some questions remain open, mostly around the issue of efficiency. A general criticism of
sum-of-squares techniques is that the semidefinite programming representations of nonnega-
tive polynomials of degree n turn what is inherently an O(n)-variable optimization problem
into a problem with O(n2) variables. This limits somewhat the degree of polynomials that
can be practically handled in sum-of-squares optimization. The techniques presented in this
paper do not address this issue, only the problem of poor scaling.

That said, the semidefinite solvers could handle all instances of the problems that could
fit in the 32 GBs of memory of the desktop computer used in the experiments; this means
several constraints involving 1000-degree polynomials. For applications requiring polynomi-
als of even higher degree (or even low-degree polynomials with a large number of variables),
it will be necessary to find either sparser representations, or tailor-made methods that can
handle the higher degree sum-of-squares constraints directly, avoiding the use of semidef-
inite representation of size O(n2). These might also be helpful in the generalization of
the approach to multivariate polynomials. The semidefinite representability of interpolants
generalize relatively easily to the multivariate case, but the sizes of the semidefinite rep-
resentations motivate further research into the algorithms that can solve this large-scale
problems efficiently.
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Appendix A. A characterization of the support of optimal experimental

designs

The statement of the theorem requires two definitions and some notation.
First, elaborating on the definition used in Section 1, we say that the concave and contin-

uous objective function Φ : Sm+ 7→ R of a maximization problem is semidefinite representable
if its closed upper level sets are semidefinite representable, that is, if for some k1, . . . , kp and
ℓ there exist linear functions Ai : S

m
+ 7→ S

ki , Ci : R
ℓ 7→ S

ki , and matrices Bi ∈ S
ki , Di ∈ S

ki

(i = 1, . . . , p) such that for all X ∈ S
m
+ and z ∈ R, Φ(X) ≥ z holds if and only if there exists

a u ∈ R
ℓ satisfying

Ai(X) +Biz + Ci(u) +Di < 0 i = 1, . . . , p. (17)

Second, we say that the semidefinite representable function Φ : Sm+ 7→ R is admissible
with respect to the set X ⊆ S

m
+ if Φ has a representation (17) for which there exists an

X̂ ∈ X satisfying (17) with strict inequality for some z and u. In other words, the left-hand
side of each of the p inequalities can be made positive definite simultaneously for at least
one X̂ ∈ X .

The latter is a technical condition; most interesting functions Φ are admissible with
respect to every non-empty set X , or at least with respect to every X that contains a non-
singular matrix. Specifically, all commonly used optimality criteria, including D-, E-, and
A-optimality are semidefinite representable, and they are also admissible with respect to
every set of Fisher information matrices for which the criteria is well-defined.

We shall also use the common notation that the adjoint of a linear operator C is denoted
by C∗.

Now we are ready to restate the characterization of the support of optimal experimental
designs.

Theorem 7 ([31]). Suppose that in the linear model (15) the design space I is a finite union
of closed and bounded intervals, the functions fi are rational functions with finite values on
I, and ω is a nonnegative rational function on I. Let Φ be a semidefinite representable
function with representation (17), admissible with respect to the set of Fisher information
matrices M = conv{f(t)f(t)Tω(t) | t ∈ I}. Then the support of the Φ-optimal design is a
subset of the real zeros of the polynomial π obtained by solving the following semidefinite
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programming problem:

minimize
y∈R, π∈R

d+1,

W1∈S
k1
+ , ...,Wp∈S

kp

+

y (18a)

subject to

p
∑

i=1

〈Wi, Bi〉 = −1,

p
∑

i=1

C∗
i (Wi) = 0, (18b)

π = Π(y,W1, . . . ,Wp), (18c)

π(t) ≥ 0 ∀ t ∈ I, (18d)

where d is the degree of the polynomial

t 7→ lcm(den(ω), den(f2
1 ), . . . , den(f

2
m))

(

y −
p

∑

i=1

〈Wi, Ai(M(ξt)) +Di〉
)

, (19)

whose coefficient vector is denoted by Π(y,W1, . . . ,Wp) in (18c) above.

Note that the operator Π in (19) is affine, hence aside from (18d) every constraint in (18)
is a linear equation or linear matrix inequality. Furthermore, (18d) can be translated to
linear matrix inequalities using a sum-of-squares interpolant representation. Hence, (18) is
indeed a semidefinite program.

North Carolina State University, Department of Mathematics. E-mail: dpapp@ncsu.edu.

dpapp@ncsu.edu

	1. Introduction
	2. Two- and one-sided approximations
	2.1. Lagrange interpolants and near-optimal two-sided approximation
	2.2. Hermite interpolants and optimal one-sided approximation

	3. Sum-of-squares interpolants
	4. Scaling
	5. High-degree representation of low-degree polynomials
	6. Applications and numerical experiments
	6.1. Polynomial envelopes
	6.2. Recovering best one-sided approximations
	6.3. Experimental design

	7. Discussion
	References
	Appendix A. A characterization of the support of optimal experimental designs

