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Engineers manually optimizing a structure using Finite Element based sim-
ulation software often employ an iterative approach where in each iteration
they change the structure slightly and resimulate. Standard Finite Element
based simulation software is usually not well suited for this workflow, as it
restarts in each iteration, even for tiny changes. In settings with complex local
microstructure, where a fine mesh is required to capture the geometric detail,
localized model reduction can improve this workflow. To this end, we intro-
duce ArbiLoMod, a method which allows fast recomputation after arbitrary
local modifications. It employs a domain decomposition and a localized form
of the Reduced Basis Method for model order reduction. It assumes that the
reduced basis on many of the unchanged domains can be reused after a localized
change. The reduced model is adapted when necessary, steered by a localized
error indicator. The global error introduced by the model order reduction is
controlled by a robust and efficient localized a posteriori error estimator, cer-
tifying the quality of the result. We demonstrate ArbiLoMod for a coercive,
parameterized example with changing structure.

Key words. model order reduction, reduced basis method, domain decomposition, a posteriori
error estimation
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1 Introduction

Finite Element based simulation is a standard tool in many CAD/CAE assisted workflows
in engineering. Depending on the complexity of the design simulated, on the underly-
ing partial differential equation, and on the desired fidelity of the approximation of the
solution, performing a simulation may take hours, days or even weeks.

ArbiLoMod aims at the acceleration of a very specific class of problems, namely the
repetitive simulation of parameterized problems with fine microstructure without scale
separation: Problems which exhibit a microstructure on a scale much smaller than the
domain require a very fine mesh to resolve the geometry and thus take very long to
compute. They often have much more degrees of freedom than necessary for the description
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ARBILOMOD

Figure 1.1: DDR memory channel on a printed circuit board subject to local modification
of conductive tracks.

of their physical behavior, thus model order reduction can succeed. For problems with scale
separation, there are established methods to reduce the model such as MsFEM [27], HMM
[17], VMM [28], or LOD [38]. However, when there is no scale separation, homogenization
is not possible. ArbiLoMod is based on a localized RB approach which does not require
scale separation.

In addition, engineers often want to change the problem definition and resimulate several
times in an iterative process. Their goal is not to come from a problem definition to an
approximation of the solution, but to provide approximations to the solutions of a sequence
of problems, where each problem was created by modifying the previous problem. We
assume that changes might be arbitrary, i.e. non parametric, but are of local nature, so
that the majority of the problem setting (e.g. large parts of the geometry) is unchanged
between two simulation runs. ArbiLoMod exploits the similarities between subsequent
problems by reusing local approximation spaces in regions of the computation domain
unaffected by the change.

Furthermore, for many design applications in each iteration, the structure under consid-
eration has to be simulated for a multitude of model parameters to analyze its behavior.
ArbiLoMod includes online offline decomposition techniques from RB methods [23, 42, 21],
using the regularity structure of the solution manifold [6] for fast many-query simulation
of the model.

A particular example that we have in mind is the design of printed circuit boards (PCBs).
The design of PCBs has all of the above mentioned properties: PCBs are nowadays very
complex, there is no scale separation, improvements are often obtained by local changes of
the electronic components and conductive tracks, and when solved in frequency domain,
it is a parameterized problem with the frequency as a parameter. A possible change is
depicted in Figure 1.1. The same applies to integrated circuit (IC) packages, which are in
structure similar to PCBs. Other areas of application could be e.g. resonance analysis in
cars or trains or electromagnetic filter design.

ArbiLoMod’s goal is the reduction of overall simulation times. When measuring simula-
tion times, we assume that the runtime on a single workstation is not the right quantity to
look at. Instead, the runtime on any hardware easily available to the user is what matters,
which particularly includes massive computing power in cluster and cloud environments,
but usually not millions of cores as in supercomputers. As the user still has to pay per
compute node in cloud environments, hundreds to thousands of compute nodes is the fore-
seen environment. Secondary goals during the development of ArbiLoMod were that the
method should be easily implementable on top of existing finite element schemes and that
the detection of changed regions vs. unchanged regions between two simulation runs is
completely automatic.

After an overview over existing methods in the literature, the definition of the problem
setting and a short overview of ArbiLoMod, the structure of the paper follows the structure
of ArbiLoMod: In Section 3 the space decomposition used in this paper is presented.
Training and Greedy algorithms for local basis generation are subject of Section 4. The
a posteriori error estimator employed is discussed Section 5. Localized enrichment of the
bases is described in Section 6. The procedure followed on each geometry change is given
in Section 7. Potentials for parallelization are sketched in Section 8. Section 9 contains
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numerical results.

Existing Approaches

The combination of ideas of the fields of Reduced Basis Methods, of multiscale methods
and domain decomposition methods gained a lot of attention in recent time. In 2002,
Maday and Rønquist published the “Reduced Basis Element” (RBE) method [33, 34],
combining the reduced basis approach with a domain decomposition, coupling local ba-
sis vectors by polynomial Lagrange multipliers on domain boundaries. Built on top of
the RBE is the “Reduced Basis Hybrid Method” (RBHM) [31] and the “Discontinuous
Galerkin Reduced Basis Element” method (DGRBE) [4]. Similar in motivation is the
“Static Condensation Reduced Basis Element” (SCRBE) method [41], which also aims at
systems composed of components, where the geometry of the components can be mapped
to reference geometries. While the connection between the components is simply achieved
by polynomial Lagrange multipliers in the RBE, significant research has been conducted
on choosing the right coupling spaces in the context of the SCRBE. Choosing the right
space at the interfaces is called “Port Reduction” and was included in the name, leading to
the “Port Reduced Static Condensation Reduced Basis Element” (PR-SCRBE) method
[19, 20] which employs a so-called “pairwise training”. A variation of this idea is used
in our method. Recently, also an algorithm to obtain optimal interface spaces for the
PR-SCRBE was proposed [44] and a framework for a posteriori error estimation was in-
troduced [43]. While the PR-SCRBE performs excellent in using the potentials of cloud
environments, its goals are different from ours. While being able to handle various changes
to the system simulated, it does not aim at arbitrary modifications. And it does not try
to hide the localization from the user, but rather exposes it to let the user decide how the
domain decomposition should be done. Another combination of domain decomposition
ideas with reduced basis methods coupling different physical formulations on the domain
boundaries was presented in [35, 36].

A completely different approach to local model order reduction is to see it as an exten-
sion to multiscale methods. There are two ways to combine RB and multiscale methods.
First is to use RB to accelerate the solution of localized problems which occur in multi-
scale methods (“RB within multiscale”). This has been done by multiple authors, see e.g.
[1, 2, 24]. The second way is to use a subspace projection for the global problem, but
use ideas from multiscale methods to construct the basis functions. This second approach
is used by ArbiLoMod and is shared with several methods in the literature: The “Gen-
eralized Multiscale Finite Element Method” GMsFEM [18] uses the idea of “Multiscale
Finite Elements” MsFEM [27] and constructs reduced spaces which are spanned by ansatz
functions on local patches, using only local information. It allows for non-fixed number
of ansatz functions on each local patch. GMsFEM uses local eigenproblems and a parti-
tion of unity for basis generation. Adaptive enrichment for the GMsFEM is presented by
Chung et al. in [14, 12] and online-adaptive enrichment in [13]. While an application of
the GMsFEM to the problem of arbitrary local modifications would be very interesting,
GMsFEM was not designed to be communication avoiding. A parallel implementation
of the enrichment described in [13] would require the communication of high dimensional
basis representations, which is avoided in ArbiLoMod.

There are also developments of the “Generalized Finite Element Method” GFEM [46, 47]
which could be extended to handle arbitrary local modifications. Especially the recent
development of the Multiscale-GFEM [5] could be promising in this regard.

Similar to ArbiLoMod in spirit is the “Localized Reduced Basis Multiscale Method”
(LRBMS) [3, 39]. It uses a non overlapping domain decomposition and discontinuous
ansatz spaces, which are coupled using a DG ansatz at the interface. While LRBMS could
be extended to handle arbitrary local modifications and it can be implemented in a com-
munication avoiding scheme, LRBMS cannot easily be implemented on top of an existing
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conforming discretization scheme. ArbiLoMod, in contrast, inherits all conformity prop-
erties from the underlying discretization. It can be built on top of standard, conforming
finite element schemes and is then conforming itself. Some of the basic ideas of ArbiLo-
Mod were already published by the authors [7, 10]. First results for electrodynamics were
published in [9].

The main advantage of ArbiLoMod is its speed in cloud environments. At every de-
sign decision during the development of ArbiLoMod, care was taken to keep the required
communication in a parallel implementation at a minimum.

2 Preliminaries

Problem Setting

In this contribution we particularly look at problems that are modeled by partial differ-
ential equations with complex local structure, typically on a very fine scale compared to
the overall problem setting. In addition, we assume that the problem might depend on
a number of parameters µ ∈ P ⊂ Rp. As a model problem to explore and design our
new simulation technique ArbiLoMod, we consider elliptic equations with complex micro-
structure. To simplify the presentation, we restrict ourselves to the two dimensional case
in this publication. Thus, let Ω ⊂ Rd, d = 2 denote the polygonal computational domain,
and V , H1

0 (Ω) ⊂ V ⊂ H1(Ω) denote the solution space. We then look at variational
problems of the form

find uµ ∈ V such that aµ(uµ, v) = 〈fµ, v〉 ∀ v ∈ V. (2.1)

Here, aµ : V × V → R, µ ∈ P denotes a parameterized bilinear form with inherent
micro-structure and fµ ∈ V ′ a force term. V is equipped with the standard H1 inner
product and the thereby induced norm. aµ is assumed to be coercive and continuous and
by αµ, γµ we denote the lower (upper) bounds for the coercivity (norm) constants of aµ,
i.e. αµ‖ϕ‖2V ≤ aµ(ϕ,ϕ) for all ϕ ∈ V and ‖aµ‖ ≤ γµ. We further assume that the bilinear
form aµ(u, v) has a decomposition affine in the parameters and can be written as a sum
of parameter independent bilinear forms ab(u, v) with parameter dependent coefficient
functions θb(µ):

aµ(u, v) =
∑
b

θb(µ)ab(u, v) (2.2)

As an example aµ could be given as

aµ(u, v) =

∫
Ω

σµ(x)∇u(x)∇v(x)dx (2.3)

where σµ : Ω → R denotes a parameterized heat conduction coefficient that varies in
space on a much finer scale then the length scale of Ω.

Structure of ArbiLoMod

The main ingredients of ArbiLoMod are:
1. a localizing space decomposition,
2. local training and greedy algorithms,
3. a localized a posteriori error estimator,
4. a localized adaptive enrichment procedure.

ArbiLoMod builds upon a space decomposition of the original ansatz space V consisting
of a set of subspaces Vi ⊂ V whose direct sum is the original ansatz space, i.e.

V =
⊕
i

Vi. (2.4)
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Figure 2.1: Overview of ArbiLoMod. Generation of initial reduced interface spaces by
training and of reduced volume spaces by greedy basis generation is subject
of Section 4. Convergence is assessed with the localized a posteriori error
estimator presented in Section 5. Enrichment is discussed in Section 6. On
each geometry change, the procedure starts over, where new initial interface
spaces are only generated in the region affected by the change.

The subspaces Vi are meant to have local properties, i.e. all elements of one subspace
Vi have support only in a small subset of the domain. In the first step, for each local
subspace Vi, a reduced local subspace Ṽi ⊆ Vi is constructed using training and greedy
algorithms. Thereafter, the global problem is solved in the space formed by the direct sum
of all reduced local subspaces:

with Ṽ :=
⊕
i

Ṽi (2.5)

find ũµ ∈ Ṽ such that aµ(ũµ, v) = 〈fµ, v〉 ∀ v ∈ Ṽ .

To assess the quality of the thus obtained solution, a localized a posteriori error estimator
is employed. If necessary, the solution is improved by enriching the reduced local sub-
spaces, using a residual based, localized enrichment procedure. Finally, on each localized
change, affected bases are discarded and the procedure starts over. An overview is given
in Figure 2.1.

3 Space Decomposition

In this section we introduce definitions for the different kinds of spaces needed in the
method. Since ArbiLoMod is designed to work on top of existing discretization schemes, we
formulate the method on a discrete level. The following definitions are for two dimensional
problems, but can be easily extended for three dimensional problems.

3.1 Basic Subspaces

Vh denotes a discrete ansatz space, spanned by ansatz functions {ψi}Ni=1 =: B. We assume
that the ansatz functions have a localized support, which is true for many classes of
ansatz functions like Lagrange- or Nédélec-type functions. We first introduce a direct
decomposition of the ansatz space Vh into “basic subspaces”. These are used to construct
the space decomposition later. To obtain the subspaces we classify the ansatz functions
by their support and define each subspace as the span of all ansatz functions of one class.
To this end, we introduce a non overlapping domain decomposition of the original domain
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Ω into open subdomains Ωi:

Ω =

ND⋃
i=1

Ωi Ωi ∩ Ωj = ∅ for i 6= j (3.1)

where ND is the number of subdomains. For each ψ in B, we call Iψ the set of indices of
subdomains that have non-empty intersection with the support of ψ, i.e.

Iψ :=
{
i ∈ {1, . . . , ND}

∣∣∣ supp(ψ) ∩ Ωi 6= ∅
}
. (3.2)

We collect all occurring domain sets in Υ:

Υ :=
{
Iψ, ψ ∈ B

}
. (3.3)

We define sets for each codimension:

Υ0 :=
{
ξ ∈ Υ

∣∣∣ |ξ| = 1
}
, Υ1 :=

{
ξ ∈ Υ

∣∣∣ |ξ| = 2
}
, Υ2 :=

{
ξ ∈ Υ

∣∣∣ |ξ| > 2
}
. (3.4)

The elements of Υ2,Υ1, and Υ0 can be associated with interior vertices (codimension
2), faces (codimension 1) and cells (codimension 0) of the domain decomposition. The
classification is very similar to the classification of mesh nodes in domain decomposition
methods, see for example [32, Def. 3.1] or [48, Def. 4.2].

Definition 3.1 (Basic Subspaces) For each element ξ ∈ Υ we define a basic subspace
Uξ of V as:

Uξ := span
{
ψ ∈ B

∣∣∣ Iψ = ξ
}
.

Remark 3.2 (Basic Decomposition) The definition of Uξ induces a direct decomposi-
tion of Vh:

Vh =
⊕
ξ∈Υ

Uξ.

3.2 Space Decomposition

As mentioned in the introduction, ArbiLoMod is based on a space decomposition. It can
work on the Basic Decomposition introduced in Definition 3.1. However, faster convergence
and smaller basis sizes are achieved using the modified space decomposition introduced in
this section. Here we assume that the discrete ansatz space Vh is spanned by finite element
ansatz functions defined on a mesh which resolves the subdomains Ωi.

For each of the spaces Uξ defined in Definition 3.1, we calculate extensions. The exten-
sions are computed on the “extension space” E(Uξ) which is defined as

E(Uξ) :=
⊕{

Uζ

∣∣∣ ζ ⊆ ξ}. (3.5)

Examples for extension spaces are given in Figure 3.1. For each space Uξ, a linear
extension operator Extend is defined:

Extend : Uξ → E(Uξ). (3.6)

For all ξ in Υ0, Extend is just the identity. For all ξ in Υ1, we extend by solving the ho-
mogeneous version of the equation with Dirichlet zero boundary values for one (arbitrary)
chosen µ ∈ P. For example, in the situation depicted in Fig. 3.2b,

Extend : U{1,2} → U{1} ⊕ U{1,2} ⊕ U{2}
ϕ 7→ ϕ+ ψ

where ψ ∈ U{1} ⊕ U{2} solves

aµ(ϕ+ ψ, φ) = 0 ∀φ ∈ U{1} ⊕ U{2}
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1

ξ = {1} ∈ Υ0

1 2

ξ = {1, 2} ∈ Υ1

1 2

3 4

ξ = {1, 2, 3, 4} ∈ Υ2

dof of Uξ

dof of E(Uξ)

mesh line

domain boundary

1 domain number

Figure 3.1: Visualization of basic spaces Uξ and their extension spaces for Q1 ansatz func-
tions (one dof per mesh node).

(a) ξ = {1} ∈ Υ0 (b) ξ = {1, 2} ∈ Υ1 (c) ξ = {1, 2, 3, 4} ∈ Υ2

domain boundary

mesh line

Figure 3.2: Visualization of some example elements of the local subspaces Vξ for inhomo-
geneous coefficients. The structure in the solution results from variations in
the heat conduction coefficient.

For all ξ in Υ2, Extend is defined by first extending linearly to zero on all edges in the
extension domain, i.e. in all spaces in E(Uξ) which belong to Υ1. Then, in a second
step, the homogeneous version of the equation with Dirichlet boundary values is solved
on the spaces in E(Uξ) which belong to Υ0. The procedure is visualized in Figure 3.3.
The functions constructed by this two step procedure are the same as the MsFEM basis
functions used by Hou and Wu [27]. Note that the base functions for E(Uξ), ξ ∈ Υ2 form
a partition of unity in the interior of the coarse partition of the domain. They can be
completed to form a partition of unity on the whole coarse partition of the domain if
suitable base functions for the vertices at the boundary of the domain are added. This will
be used in Section 5 below for the robust and efficient localization of an a posteriori error
estimator. Examples of extended functions for all codimensions are given in Figure 3.2.
In the case of the Laplace equation these basis functions coincide with the hat functions
on the coarse partition (see Figure 3.3). As discussed in Section 5 below, the choice of
hat function can be an alternative choice that allows for a better a priori bound of the
constants in the localized a posteriori error estimator, as their gradient is controled by
1/H – where H denotes the mesh size of the macro partition – independent of the contrast
of the data.

For the communication avoiding properties of the ArbiLoMod, it is important to note
that extensions can be calculated independently on each domain, i.e. Extend(ϕ)|Ωi can
be calculated having only information about ϕ and Ωi, without knowledge about other
domains. Using this operator, we define the local subspaces Vξ:

Definition 3.3 (Extended Subspaces) For each element ξ ∈ Υ we define an extended
subspace Vξ of Vh as:

Vξ :=
{

Extend(ϕ)
∣∣∣ ϕ ∈ Uξ}.

According to the definition in (3.4) we call Vξ a cell, face, or vertex space, if ξ ∈ Υ0, ξ ∈ Υ1,
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(a) Value 1 in U{1,2,3,4} (b) Linear in Uξ, ξ ∈ Υ1 (c) Solving in Uξ, ξ ∈ Υ0

Figure 3.3: Extend operator is executed in two steps for spaces Vξ, ξ ∈ Υ2. Exemplified
for the generation of V{1,2,3,4} from U{1,2,3,4}. Mesh and spaces as depicted in
Fig 3.1. Script: generate vertex extension plots.nb.

or ξ ∈ Υ2, respectively (cf. Fig. 3.2).

Remark 3.4 (Extended Decomposition) The definition of Vξ induces a direct decom-
position of Vh:

Vh =
⊕
ξ∈Υ

Vξ.

Space decompositions of the same spirit are used in the context of Component Mode
Synthesis (CMS), see [26, 25].

3.3 Projections

Definition 3.5 (Local Projection Operators) The projection operators PUξ : Vh →
Uξ and PVξ : Vh → Vξ are defined by the relation

ϕ =
∑
ξ∈Υ

PUξ (ϕ) =
∑
ξ∈Υ

PVξ (ϕ) ∀ϕ ∈ Vh.

As both the subspaces Uξ and the subspaces Vξ form a direct decomposition of the space
Vh, the projection operators are uniquely defined by this relation.

The implementation of the projection operators PUξ is very easy: It is just extracting
the coefficients of the basis functions forming Uξ out of the global coefficient vector. The
implementation of the projection operators PVξ is more complicated and involves the
solution of local problems, see Algorithm 1.

Algorithm 1: Projections in Vξ

1 Function SpaceDecomposition(ϕ):
Input : function ϕ ∈ Vh
Output: decomposition of ϕ

2 /* iterate over all codimensions in decreasing order */

3 for codim ∈ {d, . . . , 0} do
4 for ξ ∈ Υcodim do
5 ϕξ ← Extend(PUξ (ϕ))

6 ϕ← ϕ− ϕξ
7 return {ϕξ}
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4 Local Basis Generation

For each local subspace Vξ, an initial reduced local subspace Ṽξ ⊆ Vξ is generated, using
only local information from an environment around the support of the elements in Uξ. The
strategy used to construct these reduced local subspaces depends on the type of the space:
whether ξ belongs to Υ0, Υ1 or Υ2. The three strategies are given in the following. The
local basis generation algorithms can be run in parallel, completely independent of each
other. See Section 8 for further discussion of the potential parallelization. As the algo-
rithms only use local information, their results do not change when the problem definition
is changed outside of the area they took into account. So there is no need to rerun the
algorithms in this case. Our numerical results indicate that the spaces obtained by local
trainings and greedys have good approximation properties (see Section 9). The quality of
the obtained solution will be guaranteed by the a posteriori error estimator presented in
Section 5 below.

4.1 Basis Construction for Reduced Vertex Spaces

The spaces Vξ for ξ ∈ Υ2 are spanned by only one function (see Figure 3.2c for an example)
and are thus one dimensional. The reduced spaces are therefore chosen to coincide with
the original space, i.e. Ṽξ := Vξ, ∀ξ ∈ Υ2.

4.2 Local Training for Basis Construction of Reduced Face Spaces

To generate an initial reduced local subspace for Vξ, ξ ∈ Υ1 we use a local training
procedure. Its main four steps are to

1. solve the equation on a small domain around the space in question with zero bound-
ary values for all parameters in the training set Ξ,

2. solve the homogeneous equation repeatedly on a small domain around the space in
question with random boundary values for all parameters in Ξ,

3. apply the space decomposition to all obtained local solutions to obtain the part
belonging to the space in question and

4. use a greedy procedure to create a space approximating this set.
The complete algorithm is given in Algorithm 3 and explained below.

The training is inspired by the “Empirical Port Reduction” introduced in Eftang et al.
[19] but differs in some key points. The main differences are: (1) Within [19], the trace
of solutions at the interface to be trained is used. This leads to the requirement that
interfaces between domains do not intersect. In ArbiLoMod, a space decomposition is
used instead. This allows ports to intersect, which in turn allows the decomposition of
space into domains. (2) The “Empirical Port Reduction” trains with a pair of domains.
We use an environment of the interface in question, which contains six domains in the
2D case. In 3D, it contains 18 domains. (3) PR-SCRBE aims at providing a library of
domains which can be connected at their interfaces. The reduced interface spaces are used
in different domain configurations and have to be valid in all of them. Within the context of
ArbiLoMod, no database of domains is created and the interface space is constructed only
for the configuration at hand, which simplifies the procedure. (4) The random boundary
values used in [19] are generalized Legendre polynomials with random coefficients. In
ArbiLoMod, the finite element basis functions with random coefficients are used, which
simplifies the construction greatly, especially when there is complex structure within the
interface.

The Training Space

To train a basis for Ṽξ, ξ ∈ Υ1, we start from the subspace Uξ. For each subspace Uξ,
we define a corresponding training space T (Uξ) on an environment associated with the
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1 2 3

4 5 6

ξ = {2, 5} ∈ Υ1

dof of Uξ
dof of T (Uξ)
dof of C(T (Uξ))

mesh line
domain boundary

1 domain number

Figure 4.1: Visualization of basic spaces U{2,5}, its training space, and the coupling space
of its training space for Q1 ansatz functions (one dof per mesh node).

face ξ. The following definition is geometric and tailored to a domain decomposition in
rectangular domains. More complex domain decompositions would need a more complex
definition here. We define the neighborhood

Nξ :=
{
i ∈ {1, . . . , ND}

∣∣∣ Ωi ∩
(⋂
k∈ξ

Ωk
)
6= ∅
}

(4.1)

and with that the training spaces

T (Uξ) :=
⊕{

Uζ

∣∣∣ ζ ⊆ Nξ}. (4.2)

The training space is coupled to the rest of the system via its coupling space

C(T (Uξ)) :=
⊕{

Uζ

∣∣∣ ζ ∩Nξ 6= ∅, ζ * Nξ
}
. (4.3)

A sketch of the degrees of freedom associated with the respective spaces is given in Fig-
ure 4.1. These definitions are also suitable in the 3D case. We have fixed the size of
the neighborhood to one domain from the interface in question in each direction. This
facilitates the setup of local problems and the handling of local changes: After a local
change, the affected domains are determined. Afterwards, all trainings have to be redone
for those spaces which contain an affected domain in their training domain. While a larger
or smaller training domain might be desirable in some cases (see [22]), it is not necessary:
As missing global information is added in the enrichment step, ArbiLoMod always con-
verges to the desired accuracy, even if the training domain is not of optimal size. So the
advantages of having the size of the training domain fixed to one domain outweighs its
drawbacks.

The reduced basis must be rich enough to handle two types of right hand sides up to a
given accuracy εtrain: (a) source terms and boundary conditions, and (b) arbitrary values
on the coupling interface, both in the whole parameter space P. We define an extended
parameter space P × C(T (Uξ)). For this parameter space we construct a training space
Ξ×G ⊂ P×C(T (Uξ)), where G denotes an appropriate sampling of C(T (Uξ)). We use the
finite element basis BC(T (Uξ)) on the coupling space and generates M random coefficient
vectors ri of size NB = dim(C(T (Uξ))). With this an individual coupling space function
ϕ ∈ C(T (Uξ)) is constructed as

ϕi =

NB∑
j=1

rijφj ; φj ∈ BC(T (Uξ)). (4.4)

For our numerical experiments in Section 9, we use uniformly distributed random coeffi-
cients over the interval [−1, 1] and Lagrange basis functions. For each µ ∈ Ξ and each pair
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(µ, gc) ∈ Ξ × G we construct snapshots uf and uc as solutions for right hand sides fµ(.),
aµ(gc, .) respectively, i.e.

aµ(uf , φ) = 〈fµ, φ〉 ∀φ ∈ T (Uξ), (4.5)

aµ(uc, φ) = −aµ(gc, φ) ∀φ ∈ T (Uξ) .

Based on the set of snapshots which we call Z, a reduced basis B is constructed using
a greedy algorithm (cf. Alg. 2). In the numerical experiments, the V -norm and V -inner

product are used. The complete generation of the reduced face spaces Ṽξ, ξ ∈ Υ1 with

basis B̃Ṽξ is summarized in Alg. 3.

Algorithm 2: SnapshotGreedy

1 Function SnapshotGreedy(Z, εtrain):
Input : set of elements to approximate Z,

training tolerance εtrain

Output: basis of approximation space B
2 B ← ∅
3 while maxz∈Z ‖z‖ > εtrain do
4 ẑ ← arg maxz∈Z ‖z‖
5 ẑ ← ẑ

‖ẑ‖
6 Z ← {z − (z, ẑ)ẑ | z ∈ Z}
7 B ← B ∪ {ẑ}
8 return B

Algorithm 3: Training to construct reduced face spaces Ṽξ, ξ ∈ Υ1

1 Function Training(ξ,M, εtrain):
Input : space identifier ξ,

number of random samples M ,
training tolerance εtrain

Output: reduced local subspace Ṽξ
2 G← RandomSampling(ξ, M )

3 Z ← ∅
4 foreach µ ∈ Ξ do
5 find uf ∈ T (Uξ) such that:
6 aµ(uf , φ) = fµ(φ) ∀φ ∈ T (Uξ)

7 Z ← Z ∪ PVξ (uf )

8 foreach gc ∈ G do
9 find uc ∈ T (Uξ) such that:

10 aµ(uc + gc, φ) = 0 ∀φ ∈ T (Uξ)

11 Z ← Z ∪ PVξ (uc)

12 B̃Vξ ← SnapshotGreedy(Z, εtrain)

13 return span(B̃Vξ )

4.3 Basis Construction for Reduced Cell Spaces Using Local Greedy

For each cell space Vξ, ξ ∈ Υ0 we create a reduced space Ṽξ. These spaces should be
able to approximate the solution in the associated part of the space decomposition for any

11
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variation of functions from reduced vertex or face spaces that are coupled with it. We
define the reduced coupling space C̃(Vξ) and its basis B̃C̃(Vξ).

ΥC
ξ :=

{
ζ ∈ Υ | ζ ∩ ξ 6= ∅, ζ * ξ

}
(4.6)

C̃(Vξ) :=
⊕
ζ∈ΥC

ξ

Ṽζ B̃C̃(Vξ) :=
⋃

ζ∈ΥC
ξ

B̃Ṽζ (4.7)

We introduce an extended training set: Ξ× {1, . . . , NB̃ + 1}, NB̃ := dim(C̃(Vξ)). Given a
pair (µ, j) ∈ Ξ× {1, . . . , NB̃ + 1}, we define the associated right hand side as

gµ,j(φ) :=

{
−aµ(ψj , φ) if j ≤ NB̃
〈fµ, φ〉 if j = NB̃ + 1 ,

(4.8)

where ψj denotes the j-th basis function of B̃C̃(Vξ). We then construct the reduced cell

space Ṽξ as the classical reduced basis space (cf. Alg. 4, LocalGreedy) with respect to the
following parameterized local problem: Given a pair (µ, j) ∈ Ξ × {1, . . . , NB̃ + 1}, find
uµ,j ∈ Vξ such that

aµ(uµ,j , φ) = gµ,j(φ) ∀φ ∈ Vξ. (4.9)

The corresponding reduced solutions are hence defined as: Find ũµ,j ∈ Ṽξ such that:

aµ(ũµ,j , φ) = gµ,j(φ) ∀φ ∈ Ṽξ (4.10)

Both problems have unique solutions due to the coercivity and continuity of aµ. For the
LocalGreedy (Algorithm 4) we use the standard Reduced Basis residual error estimator,
i.e.

‖uµ,j − ũµ,j‖Vξ ≤ ∆cell(ũµ,j) :=
1

αLB(µ)
‖Rµ,j(ũµ,j)‖V ′

ξ
, (4.11)

with the local residual

Rµ,j : Vξ → V ′ξ (4.12)

ϕ 7→ gµ,j(·)− aµ(ϕ, ·)
and a lower bound for the coercivity constant αLB . The idea of using a local greedy to
generate a local space for all possible boundary values can also be found in [30, 4].

5 A-Posteriori Error Estimator

The model reduction error in the ArbiLoMod has to be controlled. To this end, an a
posteriori error estimator is used which should have the following properties:

1. It is robust and efficient.
2. It is online-offline decomposable.
3. It is parallelizable with little amount of communication.
4. After a localized geometry change, the offline computed data in unaffected regions

can be reused.
5. It can be used to steer adaptive enrichment of the reduced local subspaces.

All these requirements are fulfilled by the estimator presented in the following. We develop
localized bounds for the standard RB error estimator,

∆(ũµ) :=
1

αµ
‖Rµ(ũµ)‖V ′

h
(5.1)

where Rµ(ũµ) ∈ V ′h is the global residual given as 〈Rµ(ũµ), ϕ〉 = 〈fµ, ϕ〉 − aµ(ũµ, ϕ). This
error estimator is known to be robust and efficient ([23, Proposition 4.4]):

‖uµ − ũµ‖V ≤ ∆(ũµ) ≤ γµ
αµ
‖uµ − ũµ‖V . (5.2)

12
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Algorithm 4: LocalGreedy to construct local cell spaces Ṽξ, ξ ∈ Υ0

1 Function LocalGreedy(ξ, εgreedy):
Input : space identifier ξ,

greedy tolerance εgreedy

Output: reduced local subspace Ṽξ
2 B̃Ṽξ ← ∅
3 while max

µ∈Ξ
j∈{1,...,NB̃+1}

∆cell(ũµ,j) > εgreedy do

4 µ̂, ̂← arg max
µ∈Ξ
j∈{1,...,NB̃+1}

∆cell(ũµ,j)

5 find uµ̂,̂ ∈ Vξ such that:
6 aµ̂(uµ̂,̂, φ) = gµ̂,̂(φ) ∀φ ∈ Vξ
7 uµ̂,̂ ← uµ̂,̂ −

∑
φ∈B̃

Ṽξ

(φ, uµ̂,̂)V φ

8 B̃Ṽξ ← B̃Ṽξ ∪
{
‖uµ̂,̂‖−1

V uµ̂,̂
}

9 return span(B̃Ṽξ )

5.1 Abstract Estimates

We start by showing two abstract localized estimates for the dual norm of a linear func-
tional.

Proposition 5.1 Let {Oξ}ξ∈ΥE be a collection of linear subspaces of Vh for some finite
index set ΥE and let Ṽ ⊂ Vh denote an arbitrary subspace. Moreover let POξ : Vh −→
Oξ ⊆ Vh, ξ ∈ ΥE be continuous linear mappings which satisfy

∑
ξ∈ΥE

POξ = idVh . With

the stability constant of this partition modulo Ṽ defined as

cpu,Ṽ := sup
ϕ∈Vh\{0}

(
∑
ξ∈ΥE

infϕ̃∈Ṽ ∩Oξ
∥∥POξ (ϕ)− ϕ̃

∥∥2

V
)

1
2

‖ϕ‖V
,

we have for any linear functional f ∈ V ′h with 〈f, ϕ̃〉 = 0 ∀ϕ̃ ∈ Ṽ the estimate

‖f‖V ′
h
≤ cpu,Ṽ ·

( ∑
ξ∈ΥE

‖f‖2O′
ξ

) 1
2
,

where ‖f‖O′
ξ

denotes the norm of the restriction of f to Oξ.

Proof. Using the Cauchy-Schwarz inequality and 〈f, ϕ̃〉 = 0 ∀ϕ̃ ∈ Ṽ , we have

‖f‖V ′
h

= sup
ϕ∈Vh\{0}

∑
ξ∈ΥE

〈
f, POξ (ϕ)

〉
‖ϕ‖V

= sup
ϕ∈Vh\{0}

∑
ξ∈ΥE

infϕ̃∈Ṽ ∩Oξ
〈
f, POξ (ϕ)− ϕ̃

〉
‖ϕ‖V

≤ sup
ϕ∈Vh\{0}

∑
ξ∈ΥE

‖f‖O′
ξ

infϕ̃∈Ṽ ∩Oξ
∥∥POξ (ϕ)− ϕ̃

∥∥
V

‖ϕ‖V

≤ sup
ϕ∈Vh\{0}

(
∑
ξ∈ΥE

‖f‖2O′
ξ
)

1
2 (
∑
ξ∈ΥE

infϕ̃∈Ṽ ∩Oξ
∥∥POξ (ϕ)− ϕ̃

∥∥2

V
)

1
2

‖ϕ‖V

= cpu,Ṽ ·
( ∑
ξ∈ΥE

‖f‖2O′
ξ

) 1
2
.

13
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A stability constant very similar to cpu,Ṽ appears in the analysis of overlapping do-
main decomposition methods (e.g. [48, Assumption 2.2], [45]) and in localization of error
estimators on stars (e.g. [15]).

Proposition 5.2 With the assumptions in Proposition 5.1, let
⋃̇J
j=1ΥE,j = ΥE be a

partition of ΥE such that

∀1 ≤ j ≤ J ∀ξ1 6= ξ2 ∈ ΥE,j : Oξ1 ⊥ Oξ2 .

Then we have ( ∑
ξ∈ΥE

‖f‖2O′
ξ

) 1
2 ≤
√
J‖f‖V ′

h
,

Proof. Let Oξ1 ⊥ Oξ2 be some subspaces of Vh, and let f be a continuous linear
functional on Oξ1 ⊕Oξ2 . If vf,1 ∈ Oξ1 and vf,2 ∈ Oξ2 are the Riesz representatives of the
restrictions of f to Oξ1 and Oξ2 , then due to the orthogonality of Oξ1 and Oξ2 , vf,1 + vf,2
is the Riesz representative of f on Oξ1 ⊕Oξ2 . Thus,

‖f‖2(Oξ1⊕Oξ2 )′ = ‖vf,1 + vf,2‖2Vh
= ‖vf,1‖2Vh + ‖vf,2‖2Vh = ‖f‖2O′

ξ1

+ ‖f‖2O′
ξ2

,

where we have used the orthogonality of the spaces again. The same is true for a larger
orthogonal sum of spaces. We therefore obtain:

∑
ξ∈ΥE

‖f‖2O′
ξ

=

J∑
j=1

∑
ξ∈ΥE,j

‖f‖2O′
ξ

=

J∑
j=1

‖f‖2(⊕ξ∈ΥE,j
Oξ)′

≤ J‖f‖2V ′
h
.

When grouping the spaces Oξ so that in each group, all spaces are orthogonal to each
other, J is the number of groups needed. Applying both estimates to the residual, we
obtain an efficient, localized error estimator:

Corollary 5.3 The error estimator ∆loc(ũµ) defined as

∆loc(ũµ) :=
1

αµ
cpu,Ṽ

( ∑
ξ∈ΥE

‖Rµ(ũµ)‖2O′
ξ

) 1
2 (5.3)

is robust and efficient:

‖uµ − ũµ‖V ≤ ∆loc(ũµ) ≤
γµ
√
Jcpu,Ṽ

αµ
‖uµ − ũµ‖V

Proof. Applying Propositions 5.1 and 5.2 to the error estimator
∆(ũµ) = 1

αµ
‖Rµ(ũµ)‖V ′

h
yields, together with (5.2), the proposition.

Online-offline decomposition of this error estimator can be done by applying the usual
strategy for online-offline decomposition used with the standard RB error estimator (see
e.g. [23, Sec. 4.2.5] or the numerically more stable approach [8]) to every dual norm in
∆loc(ũµ).
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5.2 Choosing Spaces

The error estimator defined in Corollary 5.3 works for any spaces Oξ and mappings POξ ful-
filling the assumptions in Proposition 5.1. However, in order to obtain good constants cpu,Ṽ

and
√
J , both have to be chosen carefully. In addition, two more properties are needed for

good performance of the implementation. First, the subspaces should be spanned by FE
ansatz functions, allowing the residual to be easily evaluated on these spaces. Second, the
inner product matrix on the subspaces should be sparse, as the inner product matrix has
to be solved in the computation of the dual norms. We use an overlapping decomposition
based on the non-overlapping domain decomposition introduced in (3.1).

Definition 5.4 (Overlapping space decomposition) Let the index set ΥE for the over-
lapping space decomposition be given by the vertices of the domain decomposition, i.e.

ΥE = Υ2. (5.4)

We then define the overlapping spaces Oξ supported on the overlapping domains Ωξ by:

Oξ :=
⊕{

Uζ

∣∣∣ ζ ⊆ ξ}, Ωξ :=

◦⋃
i∈ξ

Ωi ξ ∈ ΥE . (5.5)

Note that we have Oξ = {ψ ∈ B | ◦
supp(ψ) ⊆ Ωξ} ⊆ H1

0 (Ωξ). Contrary to Vξ or Uξ, these
spaces do not form a direct sum decomposition of Vh. We next state a first estimate on the
partition of unity constant of Corollary (5.3) for this choice of partition, which does not
take into account that the residual vanishes on the reduced space. The resulting estimate
thus depends on H−1, where H is the minimum diameter of the subdomains of the macro
partition. Typically the size of the macro partition is moderate such that H−1 is small.
However, in the following Proposition 5.7 we will show that the constant cpu,Ṽ can be
actually bounded independent of H, when we choose a partition of unity that is contained
in the reduced space Ṽ .

Proposition 5.5 Let covlp := maxx∈Ω #{ξ ∈ ΥE | x ∈ Ωξ} be the maximum number of
estimator domains Ωξ overlapping in any point x of Ω and let Hξ := diam(Ωξ), ξ ∈ ΥE

and H := minξ∈ΥE Hξ. Furthermore, assume that there exist partition of unity functions
pξ ∈ H1,∞(Ω), ξ ∈ ΥE and a linear interpolation operator I : V −→ Vh such that

(i)
∑
ξ∈ΥE

pξ(x) = 1 for all x ∈ Ω,

(ii) maxξ∈ΥE ‖pξ‖∞ ≤ 1 and ‖∇pξ‖∞ ≤ c′puH
−1
ξ for all ξ ∈ ΥE,

(iii) I(ϕ) = ϕ for all ϕ ∈ Vh,
(iv) I(pξVh) ⊆ Oξ for all ξ ∈ ΥE,
(v) ‖I(pξvh)− pξvh‖V ≤ cI‖vh‖Ωξ,1 for all ξ ∈ ΥE , vh ∈ Vh.

Then we have:

cpu,Ṽ ≤
√

4 + 2c2I + 4
(
c′puH−1

)2 · √covlp.

Proof. We compute the bound for cpu using the partition of unity and the interpolation
operator. To this end, let

POξ (ϕ) := I(pξϕ), ξ ∈ ΥE .

Due to (iv), these are linear mappings Vh −→ Oξ, and using (i) and (iii) we obtain∑
ξ∈ΥE

POξ (ϕ) = I(
∑
ξ∈ΥE

pξϕ) = I(ϕ) = ϕ for all ϕ ∈ Vh. Thus, Corollary 5.3 applies
with this specific choice of partition operators POξ . Now, using (ii) and (v) we have for
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any ϕ ∈ Vh∑
ξ∈ΥE

∥∥POξ (ϕ)
∥∥2

V
≤ 2

∑
ξ∈ΥE

‖I(pξϕ)− pξϕ‖2V + ‖pξϕ‖2V

≤ 2
∑
ξ∈ΥE

c2I‖ϕ‖2Ωξ,1 +

∫
Ωξ

2|∇pξϕ|2(x) + 2|pξ∇ϕ|2(x) + |pξϕ|2(x)dx

≤ 2
∑
ξ∈ΥE

c2I‖ϕ‖2Ωξ,1 + (1 + 2
(
c′puH

−1)2)|ϕ|2Ωξ,0 + 2|ϕ|2Ωξ,1

≤ (4 + 2c2I + 4
(
c′puH

−1)2)covlp‖ϕ‖2V
This gives us the estimate.

Remark 5.6 When the domain decomposition Ωi is sufficiently regular (e.g. see the nu-
merical examples below), partition of unity functions satisfying (i) and (ii) can easily be
found. If Vh ∪ {pξ | ξ ∈ ΥE} consists of p-th order finite element basis functions for some
fine triangulation of Ω, Lagrange interpolation can be chosen as interpolation operator I.
In fact, using standard interpolation error estimates and inverse inequalities one sees that
for each element T of the fine triangulation with diameter h one has:

‖I(pξvh)− pξvh‖T,1 ≤ chp|pξvh|T,p+1

≤ c′hp
p∑
k=1

|vh|T,k · |pξ|T,p+1−k,∞

≤ c′′hp
p∑
k=1

h−(k−1)|vh|T,1 · h−(p+1−k)|pξ|T,0,∞

≤ c′′p|vh|T,1,
where c′′ is a constant bounded by the shape regularity of the fine triangulation.

For the rectangular domain decomposition used in the numerical example below, the con-
stant J is J = 2d = 4: it is possible to divide the overlapping domains into four classes,
so that within each class, no domain overlaps with any other (cf. [13, Sec. 5]).

Furthermore, the coercivity constant αµ and the stability constant γµ, or estimates,
are required. For the numerical example presented in Section 9, those can be calculated
analytically. In general this is not possible and the details of estimating them numerically
are subject for further investigations. The numerical computation of a lower bound for
the coercivity constant was subject of extensive research in the RB community (see e.g.
[29, 11]), but these methods require the calculation of the coercivity constant at some
parameter values and thus require the solution of a global, fine scale problem. To the
authors’ knowledge, there are no publications on localization of these methods so far.

The upper bound on the constant cpu,Ṽ in Proposition 5.5 depends on the domain size

H approximately like H−1. As the domain size is considered a constant in the context
of ArbiLoMod, the error estimator is already considered efficient with this bound. In the
next proposition, we however show that the constant can indeed be bounded independent
of H, if we exploit that the residual vanishes on the reduced space Ṽ .

Proposition 5.7 Let pξ, ξ ∈ ΥE be a partition of unity and I an interpolation operator
satisfying the prerequisites of Proposition 5.5. Furthermore, assume V = H1

0 (Ω) and that
pξ ∈ Ṽ ∩Oξ for ξ ∈ Υint

E := {ξ ∈ ΥE | Ω̄ξ ∩ ∂Ω = ∅}, e.g. pξ is chosen as a basis function
of Ṽξ (see Subsections 3.2 and 4.1 above). Then the following estimate holds:

cpu,Ṽ ≤
√

4 + 2c2I + 4(c′pucpc)2 · √covlp,

with a Poincaré-inequality constant cpc (see proof below) that does not depend on the fine
or coarse mesh sizes (h,H).
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Proof. For arbitrary ϕ ∈ Vh let ϕ̄ξ := 1
|Ωξ|

∫
Ωξ
ϕ. We then have with Υext

E := ΥE \Υint
E

cpu,Ṽ = sup
ϕ∈Vh\{0}

(
∑
ξ∈ΥE

infϕ̃∈Ṽ ∩Oξ
∥∥POξ (ϕ)− ϕ̃

∥∥2

V
)

1
2

‖ϕ‖V

≤ sup
ϕ∈Vh\{0}

(
∑
ξ∈Υint

E

∥∥POξ (ϕ)− ϕ̄ξpξ
∥∥2

V
+
∑
ξ∈Υext

E

∥∥POξ (ϕ)
∥∥2

V
)

1
2

‖ϕ‖V
,

where we have used that by construction ϕ̄ξpξ ∈ Ṽ ∩Oξ for all ξ ∈ Υint
E . For any ϕ ∈ Vh

and ξ ∈ Υint
E we then have

∥∥POξ (ϕ)− ϕ̄ξpξ
∥∥2

V
≤ 2c2I‖ϕ‖2Ωξ,1 + 2‖(ϕ− ϕ̄ξ)pξ‖2V , where

‖(ϕ− ϕ̄ξ)pξ‖2V ≤
∫

Ωξ

2|∇(ϕ− ϕ̄ξ)pξ|2(x) + 2|(ϕ− ϕ̄ξ)∇pξ|2(x)dx

+ ‖(ϕ− ϕ̄ξ)pξ‖2L2(Ωξ).

With a rescaled Poincaré-type inequality

‖ϕ− ϕ̄ξ‖L2(Ωξ) ≤ cpcHξ‖∇ϕ‖L2(Ωξ),

and ‖ϕ− ϕ̄ξ‖L2(Ωξ) ≤ ‖ϕ‖L2(Ωξ), we get∫
Ωξ

2|∇(ϕ− ϕ̄ξ)pξ|2(x) + 2|(ϕ− ϕ̄ξ)∇pξ|2(x)dx+ ‖(ϕ− ϕ̄ξ)pξ‖2L2(Ωξ)

≤ (2 + 2(c′pucpc)
2)‖∇ϕ‖2L2(Ωξ) + ‖ϕ‖2L2(Ωξ)

In analogy we obtain for the boundary terms, i.e. ξ ∈ Υext
E , the estimates

∥∥POξ (ϕ)
∥∥2

V
≤

2c2I‖ϕ‖Ωξ,1 + 2‖ϕpξ‖2V , and

‖ϕpξ‖2V ≤
∫

Ωξ

2|∇ϕpξ|2(x) + 2|ϕ∇pξ|2(x)dx+ ‖ϕpξ‖2L2(Ωξ)

≤ (2 + 2(c′pucpc)
2)‖∇ϕ‖2L2(Ωξ) + ‖ϕ‖2L2(Ωξ).

using a rescaled Poincaré-type inequality which holds for ξ ∈ Υext
2 as ϕ ∈ Vh has zero

boundary values, i.e.
‖ϕ‖L2(Ωξ) ≤ cpcHξ‖∇ϕ‖L2(Ωξ).

Summing up all contributions we then have

∑
ξ∈Υint

E

∥∥POξ (ϕ)− ϕ̄ξpξ
∥∥2

V
+
∑

ξ∈Υext
E

∥∥POξ (ϕ)
∥∥2

V

≤
∑
ξ∈Υ

2c2I‖ϕ‖2Ωξ,1 + 2
[
(2 + 2(c′pucpc)

2)‖∇ϕ‖2L2(Ωξ) + ‖ϕ‖2L2(Ωξ)

]
≤ (4 + 2c2I + 4(c′pucpc)

2)covlp‖ϕ‖2V .

This gives us the estimate.
Proposition 5.7 gives a bound on cpu,Ṽ that depends on the contrast of the underlying

diffusion coefficient if pξ ∈ Ṽ , ξ ∈ Υint
E is chosen as the MsFEM type hat functions

as suggested in Section 3.2 above. However, it is independent on the mesh sizes h,H.
A crucial ingredient to obtain this bound is the fact that we included this macroscopic
partition of unity in our reduced approximation space Ṽ . If alternatively we would chose
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pξ ∈ Ṽ to be the traditional Lagrange hat functions, the bound on cpu,Ṽ in Proposition 5.7
would be independent of the contrast. In fact, we might expect that cpu,Ṽ behaves much
better then the upper bound due to the approximation properties of the reduced space.
It would actually be possible to compute cpu,Ṽ for given Vh, Ṽ which would however be
computationally expensive and thus not of any use in pratical applications. Proposition
5.7, however shows that the localized a posteriori error estimator in Corollary 5.3 in the
context of ArbiLoMod is indeed robust and efficient, even with respect to H → 0.

Comparing with other localized RB and multiscale methods, one observes a difference
in the scaling of the efficiency constants. While in our case, cpu is independent of both
h and H, the a posteriori error estimator published for LRBMS has a H/h dependency
[39, Theorem 4.6] and in the certification framework for SCRBE, a h−1/2 scaling appears
[43, Proposition 4.5]. The error estimators published for GMsFEM in [12] also have no
dependency on H or h. However, they also rely on specific properties of the basis genera-
tion. Also in the analysis of the “Discontinuous Galerkin Reduced Basis Element Method”
(DGRBE), Pacciarini et.al. have a factor of h−1/2 in the a priori analysis [4] and in the a
posteriori error estimator [40].

5.3 Local Efficiency

So far we did not use properties of the bilinear form other than coercivity and continuity.
Assuming locality of the bilinear form as in (2.3), we get a local efficiency estimate and
an improved global efficiency estimate.

Proposition 5.8 Let the bilinear form a be given by (2.3). Then we have the localized
efficiency estimate

‖Rµ(ũµ)‖O′
ξ
≤ γµ|uµ − ũµ|Ωξ,1. (5.6)

Proof. Using the error identity

aµ(uµ − ũµ, ϕ) = 〈Rµ(ũµ), ϕ〉,

we obtain for any ϕ ∈ Oξ

〈Rµ(ũµ), ϕ〉 =

∫
Ω

σµ(x)∇(uµ − ũµ)(x)∇ϕ(x)dx

=

∫
Ωξ

σµ(x)∇(uµ − ũµ)(x)∇ϕ(x)dx

≤ γµ|uµ − ũµ|Ωξ,1‖ϕ‖V ,

from which the statement follows.

Remark 5.9 Under the assumptions of Proposition 5.8, it is easy to see that we have the
improved efficiency estimate

∆loc(ũµ) ≤
γµ
√
covlpcpu,Ṽ

αµ
‖uµ − ũµ‖V .

In many cases, a better constant can be found. Finite Element ansatz functions are usually
not orthogonal if they share support. So if covlp spaces have support in one point in space,
they have to be placed in different groups when designing a partition for Proposition 5.2,
so covlp ≤ J (cf. [48, p. 67]).
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5.4 Relative Error Bounds

From the error estimators for the absolute error, we can construct error estimators for the
relative error. Estimates for the relative error are given in [23, Proposition 4.4], but the
estimates used here are slightly sharper.

Proposition 5.10 Assuming ‖ũµ‖V > ∆(ũµ) and ‖ũµ‖V > ∆loc(ũµ), the error estima-
tors defined by

∆rel(ũµ) :=
∆(ũµ)

‖ũµ‖V −∆(ũµ)

∆rel
loc(ũµ) :=

∆loc(ũµ)

‖ũµ‖V −∆loc(ũµ)

are robust and efficient:

‖uµ − ũµ‖V
‖uµ‖V

≤ ∆rel(ũµ) ≤
(

1 + 2∆rel(ũµ)
) γµ
αµ

‖uµ − ũµ‖V
‖uµ‖V

‖uµ − ũµ‖V
‖uµ‖V

≤ ∆rel
loc(ũµ) ≤

(
1 + 2∆rel

loc(ũµ)
) γµ√Jcpu,Ṽ

αµ

‖uµ − ũµ‖V
‖uµ‖V

Proof. Realizing that
(
‖ũµ‖V −∆(ũµ)

)
≤ ‖uµ‖V , it is easy to see that

‖uµ − ũµ‖V
‖uµ‖V

≤ ∆(ũµ)

‖uµ‖V
≤ ∆(ũµ)

‖ũµ‖V −∆(ũµ)
, (5.7)

which is the first inequality. Using

‖ũµ‖V + ∆(ũµ) =
(
‖ũµ‖V −∆(ũµ)

) (
1 + 2∆rel(ũµ)

)
the second inequality can be shown:

∆rel(ũµ) =
∆(ũµ)

‖ũµ‖V −∆(ũµ)
≤ γµ
αµ

‖uµ − ũµ‖V
‖ũµ‖V −∆(ũµ)

=
γµ
αµ

‖uµ − ũµ‖V
‖ũµ‖V + ∆(ũµ)

(
1 + 2∆rel(ũµ)

)
≤ γµ
αµ

‖uµ − ũµ‖V
‖uµ‖V

(
1 + 2∆rel(ũµ)

)
.

The inequalities for ∆rel
loc can be shown accordingly.

Reviewing the five desired properties of an a posteriori error estimator at the beginning
of this section, we see that the presented error estimator is robust and efficient (1) and
is online-offline decomposable (2). Parallelization can be done over the spaces Oξ. Only
online data has to be transferred, so there is little communication (3). The online-offline
decomposition only has to be repeated for a space Oξ, if a new basis function with sup-
port in Ωξ was added. So reuse in unchanged regions is possible (4). How the adaptive
enrichment is steered (5) will be described in the following section.

6 Enrichment Procedure

The first ArbiLoMod solution is obtained using the initial reduced local subspaces gener-
ated using the local training and greedy procedures described in Section 4. If this solution
is not good enough according to the a posteriori error estimator, the solution is improved
by enriching the reduced local subspaces and then solving the global reduced problem
again. The full procedure is given in Algorithm 5 and described in the following.
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For the enrichment, we use the overlapping local subspaces introduced in (5.5), which
are also used for the a posteriori error estimator. Local problems are solved in the over-
lapping spaces. The original bilinear form is used, but as a right hand side the residual
of the last reduced solution is employed. The local spaces and the parameter values for
which the enrichment is performed are selected in a Dörfler-like [16] algorithm. The thus
obtained local solutions ul do not fit into our space decomposition, as they lie in one of
the overlapping spaces, not in one of the local subspaces used for the basis construction.
Therefore, the ul are decomposed using the projection operators PVξ defined in Defini-
tion 3.5. In the setting of our numerical example (Section 9), this decomposition yields
at most 9 parts (one codim-2 part, four codim-1 parts and four codim-0 parts). Of these
parts, the one worst approximated by the existing reduced local subspace is selected for
enrichment. “Worst approximated” is here defined as having the largest part orthogonal
to the existing reduced local subspace. We denote the part of PVξ (ul) orthogonal to Ṽξ

w.r.t. the inner product of V by (PVξ (ul))
⊥.

To avoid communication, cell spaces Ṽξ, ξ ∈ Υ0 are not enriched at this point. Such
an enrichment would require the communication of the added basis vector, which might
be large. Instead, only the other spaces are enriched, and the cell spaces associated with
Υ0 are regenerated using the greedy procedure from Section 4.3. For the other spaces, a
strong compression of the basis vectors is possible (cf. Section 8).

This selection of the local spaces can lead to one reduced local space being enriched
several times in one iteration. Numerical experiments have shown that this leads to poorly
conditioned systems, as the enrichment might try to introduce the same feature into a local
basis twice. To prevent this, the enrichment algorithm enriches each reduced local subspace
at most once per iteration.

Algorithm 5: Online Enrichment

1 Function OnlineEnrichment(d, tol):
Input : enrichment fraction d,

target error tol
2 while max

µ∈Ξ
∆(ũµ) > tol do

3 E ← ∅

4 while

( ∑
(µ,ξ)∈E

‖Rµ(ũµ)‖(Oξ)′

)
/

( ∑
(µ,ξ)∈(Ξ×ΥE)

‖Rµ(ũµ)‖(Oξ)′

)
< d do

5 µ̂, ξ̂ ← arg max
(µ,ξ)∈(Ξ×ΥE)\E

‖Rµ(ũµ)‖(Oξ)′

6 E ← E ∪ (µ̂, ξ̂)

7 /* S is used for double enrichment protection. */

8 S ← ∅
9 for (µ, ξ) ∈ E do

10 find ul ∈ Oξ such that:
11 aµ(ul, ϕ) = 〈Rµ(ũµ), ϕ〉 ∀ϕ ∈ Oξ
12 ξ̌ ← arg max

ξ∈Υ\Υ0

∥∥(PVξ (ul))
⊥∥∥

Vξ

13 if ξ̌ /∈ S then

14 Ṽξ̌ ← Ṽξ̌ ⊕ span((PVξ̌ (ul))
⊥)

15 S ← S ∪ ξ̌

16 run LocalGreedys

17 recalculate reduced solutions
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1 2 3

4 5 6

7 8 9

(a) Example domain number-
ing.

Create basisfunctions for vertex, face and cell spaces:

V{1,2,4,5} V{4,5} V{5}

(b) In each step, only geometry information in red marked area
is needed.

Figure 8.1: Before online enrichment, it is possible to compute all reduced basis function
having support on a domain (Ω5 here) using only local information about the
domain and its surrounding domains.

7 Handling Local Changes

When the enrichment iteration has converged to a sufficient accuracy, the obtained solution
is handed over to the user. The envisioned implementation should then wait for the user
to modify the model under consideration. After a change to the model simulated, the full
procedure described above is repeated, but wherever possible, existing data is reused. On
the changed domains, a new mesh is generated, if necessary. Basis vectors having support
in the changed region are discarded. The domain decomposition is never changed and thus
has to be independent of the geometry. The potential savings are not only in the reduced
basis generation, but also in the assembly of the system matrices. In an implementation
featuring localized meshing and assembly domain by domain, meshing and assembly has
to be repeated only in the domains affected by the change. This approach of recomputing
everything in the changed region was chosen because it allows a robust implementation
without any assumptions about the changes.

8 Runtime and Communication

A major design goal of ArbiLoMod is communication avoidance and scalability in parallel
environments. Although the main topic of this publication are the mathematical proper-
ties, we want to highlight the possibilities offered by ArbiLoMod to reduce communication
in a parallel setup.

Similar to overlapping Domain Decomposition methods we require, that not only the
local domain, but also an overlap region is available locally. For a subdomain Ωi the
overlap region is the domain itself and all adjacent domains, as depicted in Figure 8.1, i.e.
all subdomains in the neighborhood N{i}. As the overlap region includes the support of
all training spaces, one can compute all initial reduced local subspaces with support in Ωi
without further communication. This work can be distributed on many nodes. Afterwards,
only reduced representations of the operator have to be communicated. Using the operator
decomposition ab(u, v) =

∑ND
i=1 a

b
Ωi

(u, v), a global, reduced operator is collected using an
all-to-one communication of reduced matrices. The global reduced problem is then solved
on a single node. It is assumed that the global, reduced system is sufficiently small.

If the accuracy is not sufficient, online enrichment is performed. This step requires
additional communication; first for the evaluation of the error estimator and second to
communicate new basis vectors of reduced face spaces Ṽξ, ξ ∈ Υ1. Note that it is sufficient
to communicate the local projection PUξ (ψ) and reconstruct the actual basis function as
its extension, so that we save communication costs proportional to the volume to surface
ratio.

The evaluation of the localized error estimator requires the dual norms of the residual
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Figure 9.1: First structure in sequence of simulated structures. Unit square with high and
low conductivity regions. White: constant conductivity region (σ = 1), black:
parameterized high conductivity region (σµ = 1 + µ). Homogeneous Neu-
mann boundaries ΓN at top and bottom marked blue, inhomogeneous Dirichlet
boundaries ΓD at left and right marked light red.

in the localized spaces ‖Rµ(ũµ)‖O′
ξ
. Using a stabilized online-offline splitting [8], the

evaluation of the error estimator can be evaluated for the full system using only reduced
quantities. The computation of the reduced operators is performed in parallel, similar to
the basis construction in the first step. The actual evaluation of the error estimator can
be performed on a single node and is independent of the number of degrees of freedom of
the high fidelity model.

An important parameter for ArbiLoMod’s runtime is the domain size H. The domain
size affects the size of the local problems, the amount of parallelism in the algorithm, and
the size of the reduced global problem. An H too large leads to large local problems, while
an H too small leads to a large reduced global problem (see also the numerical example in
Section 9.2 and especially the results in Table 9.3). H has to be chosen to balance these
two effects. As the focus of this manuscript is ArbiLoMod’s mathematical properties, the
question of choosing H for optimal performance will be postponed to future research.

9 Numerical Example

The numerical experiments were performed using pyMOR [37]. The source code for the
reproduction of all results presented in this section are provided as a supplement to this
paper. See the README file therein for installation instructions. Note that this code is
kept simple to easily explore ArbiLoMod’s mathematical properties. It is not tuned for
performance. First results for electrodynamics were published in [9].

9.1 Problem Definition

To illustrate the capabilities of ArbiLoMod we apply it to a sequence of locally modified
geometries. We consider heat conduction without heat sources in the domain on the unit
square Ω :=]0, 1[2. We approximate u solving

−∇ · (σµ∇uµ) = 0 (9.1)

where σµ : Ω→ R is the heat conductivity. We apply homogeneous Neumann boundaries
at the top and the bottom: ∇u·n = 0 on ΓN := (]0, 1[ × 0)∪(]0, 1[ × 1) and inhomogeneous
Dirichlet boundaries at the left and right: u = 1 on ΓD,1 := 0 × ]0, 1[, u = −1 on ΓD,−1 :=
1 × ]0, 1[ (see also Figure 9.1).
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# left (zoom) full structure right (zoom) solution for σµ = 105

1

2

3

4

5

Figure 9.2: Sequence of structures simulated along with solutions for one parameter value.
Very localized changes cause strong global changes in the solution. Script:
create full solutions.py.
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The unit square is partitioned into two regions: one region with constant heat conduc-
tivity σµ = 1 and one region with constant, but parameterized conductivity σµ = 1 + µ
where µ ∈ [100, 105]. We call this second region the “high conductivity region” Ωh,i. For
reproduction or benchmarking, we give precise definitions in the following. In the first
geometry, the high conductivity region is

Ωh,1 :=
[
(0.0, 0.1)× (0, 1)

]
∪
[
(0.9, 1.0)× (0, 1)

]
∪ (9.2)[

(0.11, 0.89)× (0.475, 0.485)
]
∪
[
(0.1, 0.9)× (0.495, 0.505)

]
∪[

(0.11, 0.89)× (0.515, 0.525)
]
,

see also Figure 9.1. The inhomogeneous Dirichlet boundary conditions are handled by
a shift function us and we solve for u0 having homogeneous Dirichlet values where u =
u0 +us. The parametrization of the conductivity in the high conductivity region, σµ, leads
to a term in the affine decomposition of the bilinear form. The affine decomposition of the
bilinear form and linear form are

aµ(u0, ϕ) = µ

∫
Ωh,i

∇u0 · ∇ϕ dx+

∫
Ω

∇u0 · ∇ϕ dx (9.3)

〈fµ, ϕ〉 = −µ
∫

Ωh,i

∇us · ∇ϕ dx−
∫

Ω

∇us · ∇ϕ dx.

The coercivity constant αµ of the corresponding bilinear form with respect to the H1 norm
is bounded from below by αLB := σmin

c2
F

+1
where σmin is the minimal conductivity and cF =

1√
2π

is the constant in the Friedrich’s inequality ‖ϕ‖L2(Ω) ≤ cF ‖∇ϕ‖L2(Ω)∀ϕ ∈ H1
0 (Ω).

The problem is discretized using P 1 ansatz functions on a structured triangle grid with
maximum triangle size h. The grid is carefully constructed to resolve the high conductivity
regions, i.e. h is chosen to be 1/n where n is a multiple of 200. To mimic “arbitrary local
modifications”, the high conductivity region is changed slightly four times, which leads to
a sequence of five structures to be simulated in total. The high conductivity regions are
defined as:

Ωh,2 := Ωh,1 \
[
(0.1, 0.11)× (0.495, 0.505)

]
(9.4)

Ωh,3 := Ωh,2 \
[
(0.89, 0.9)× (0.495, 0.505)

]
Ωh,4 := Ωh,3 ∪

[
(0.1, 0.11)× (0.515, 0.525)

]
Ωh,5 := Ωh,4 ∪

[
(0.89, 0.9)× (0.495, 0.505)

]
These modifications only affect a very small portion of the domain (actually, only 0.01%),
but for high contrast configurations, they lead to strong global changes in the solution,
see Figure 9.2. An equidistant domain decomposition of 8× 8 domains is used. The mesh
resolves the domain boundaries.

Configuration

If not specified otherwise, we use a mesh size of 1/h = 200, a training tolerance of εtrain =
10−4, a number of random samplings of M = 60, a greedy tolerance of εgreedy = 10−3, a
convergence criterion of ‖Rµ(ũµ)‖V ′

h
< 10−2, an enrichment fraction of d = 0.5, a training

set of size |Ξ| = 6, and the parameter for extension calculation is µ = 105.

9.2 Results

The initial reduced space is created using the local trainings and greedy algorithms. In
both the trainings and the greedy algorithms a tolerance parameter steers the quality
of the obtained reduced space: In the trainings, εtrain is the stopping criterion for the
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Figure 9.3: Maximum relative H1-error on training set Ξ in dependence of tolerances in
codim 1 training and codim 0 greedy. Online enrichment disabled. Script:
experiment tolerances.py.

geometry
with training without training

trainings greedys iterations iterations
reuse: reuse: reuse: reuse:

no yes no yes no yes no yes
1 112 112 (-0 %) 64 64 (-0 %) 24 24 (-0 %) 46 46 (-0 %)
2 112 5 (-96 %) 64 8 (-88 %) 24 13 (-46 %) 48 28 (-42 %)
3 112 5 (-96 %) 64 8 (-88 %) 20 14 (-30 %) 42 27 (-36 %)
4 112 3 (-97 %) 64 6 (-91 %) 25 10 (-60 %) 54 23 (-57 %)
5 112 5 (-96 %) 64 8 (-88 %) 25 12 (-52 %) 52 27 (-48 %)

Table 9.1: Number of iterations of online enrichment: (a) With and without codim 1
training. (b) With and without reuse of basis functions of previous simulations.
Convergence criterion: ‖Rµ(ũµ)‖V ′

h
< 10−4, greedy tolerance: εgreedy = 10−5.

See also Figures 9.4, 9.5.
Scripts: experiment basisreuse with training.py,
experiment basisreuse.py.

SnapshotGreedy (Algorithm 2) and the local greedys stop when the local error estimator
stays below the prescribed tolerance εgreedy. The resulting reduction errors in dependence
on the two tolerances are depicted in Figure 9.3.

If the resulting error is too big, it can be further reduced using iterations of online
enrichment as depicted in Figure 9.4. Results suggest an very rapid decay of the error
with online enrichment. The benefits of ArbiLoMod can be seen in Figure 9.4 and Table
9.1: after the localized geometry changes, most of the work required in the initial basis
creation does not need to be repeated and the online enrichments converge faster for
subsequent simulations, leading to less iterations. The online enrichment presented here
converges even when started on empty bases, as depicted in Figure 9.5. It does not rely
on properties of the reduced local subspaces created by trainings and greedys. The
performance of the localized a posteriori error estimator ∆rel

loc can be seen in Figure 9.6.
Comparison of the localized estimator ∆rel

loc with the global estimator ∆rel shows that, for
the example considered here, the localization does not add a significant factor beyond the
factor cpu,Ṽ , which is supposed to be close to one and was thus neglected in Fig. 9.6.

Even though our implementation was not tuned for performance and is not parallel,
we present some timing measurements in Table 9.2 and Table 9.3. Table 9.2 shows that,
already in our unoptimized implementation, trainings and greedys have a shorter runtime
than a single global solve for problems of sufficient size. Taking into account that trainings
and greedys create a solution space valid in the whole parameter space, this data is a strong
hint that ArbiLoMod can realize its potential for acceleration for large problems, in an
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Geometry 1

13 24

Geometry 2

14 20

Iteration

Geometry 3

10 25

Geometry 4

12 25

Geometry 5

with reuse

without reuse

Figure 9.4: Relative error over iteration with and without basis reuse after geometry
change. With codim 1 training. Convergence criterion: ‖Rµ(ũµ)‖V ′

h
< 10−4,

greedy tolerance: εgreedy = 10−5. See also Table 9.1.
Script: experiment basisreuse with training.py.
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Figure 9.5: Relative H1 error over iterations with and without basis reuse after geometry
change. Without codim 1 training. Convergence criterion: ‖Rµ(ũµ)‖V ′

h
<

10−4, greedy tolerance: εgreedy = 10−5. See also Table 9.1.
Script: experiment basisreuse.py.
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Geometry 1

1414

Geometry 2

1717

Iteration

Geometry 3

1111

Geometry 4

1616

Geometry 5

maxµ∈Ξ ∆rel(ũµ)

maxµ∈Ξ ∆rel
loc(ũµ)

maxµ∈Ξ ‖uµ − ũµ‖V /‖uµ‖V

Figure 9.6: Error estimators ∆rel and ∆rel
loc over iterations, compared to the relative error.

Plotted for αµ = cpu,Ṽ = 1. Simulation performed with a convergence criterion

of ‖Rµ(ũµ)‖V ′
h
< 10−6, a training tolerance of εtrain = 10−5, and a greedy

tolerance of εgreedy = 10−7. Script: experiment estimatorperformance.py.

1/h global dofs

global solve tim
e [s]

#
dofs,

codim
1 tra

ining space

avg. tim
e per

codim
1 tra

ining [s]

#
dofs,

codim
0 space

max tim
e per

codim
0 gree

dy [s]

#
dofs,

red
uced

problem

solve tim
e, red

uced
[m

s]

max err
or [h]

200 80,401 0.656 7,626 1.02 1,201 4.9 1,178 21.8 1.316
400 320,801 4.87 30,251 5.14 4,901 7.04 1,151 22.4 1.433
600 721,201 23.6 67,876 14 11,101 10.7 1,116 19.1 2.035
800 1,281,601 41.8 120,501 29.5 19,801 17.8 1,101 17.1 2.735

1000 2,002,001 86.4 188,126 51.3 31,001 24.2 1,089 18.8 1.351
1200 2,882,401 230 270,751 81.2 44,701 36.6 1,082 18.6 4.462
1400 3,922,801 230 368,376 120 60,901 51.7 1,073 18.2 2.379

Table 9.2: Runtimes for selected parts of ArbiLoMod without online enrichment. “max
error” denotes maxµ∈Ξ ‖uµ − ũµ‖V /‖uµ‖V . Runtimes measured using a pure
Python implementation, using SciPy solvers (SuperLU sequential). Note that
the global solve time is for one parameter value while training and greedy
produce spaces valid for all parameter values in the training set Ξ. Script:
experiment create timings.py.
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1/H # dofs,
codim

1 tra
ining space

mean tra
ining tim

e [s]

max tra
ining tim

e [s]

# dofs,
codim

0 space

mean gree
dy tim

e [s]

max gree
dy tim

e [s]

# dofs,
red

uced
problem

solve tim
e, red

uced
[ms]

max err
or [h]

4 30,251 10.9 14.1 4,901 3.07 6.6 403 3.85 0.362
5 19,401 6.88 8.74 3,121 2.32 11.7 517 4.38 0.435
8 7,626 2.63 3.55 1,201 1.35 5.69 1,178 14.9 1.32

10 4,901 1.68 1.94 761 0.655 3.98 1,451 19.8 0.220
20 1,251 0.483 0.661 181 0.305 3.18 5,025 94.4 0.0804

Table 9.3: Influence of domain size H. Fine mesh resolution: 1/h = 200. “max error”
is maxµ∈Ξ ‖uµ − ũµ‖V /‖uµ‖V . Smaller domains lead to more parallelism and
smaller local problems, but also to more global dofs and a worse constant in the
a-posteriori error estimator. Measured using a pure Python implementation,
using SciPy solvers (SuperLU sequential). Script: experiment H study.py.

Figure 9.7: Distribution of local basis sizes after initial training. Relative reduction error
at this configuration: 1.3 · 10−3. Script: experiment draw basis sizes.py.

optimized implementation and a parallel computing environment. Especially when the
solution is to be calculated at multiple parameter values. Table 9.3 shows the effect of
choosing the domain size H: Large domains lead to large local problems, while small
domains lead to a large reduced global problem (see also Section 8).

10 Conclusion

We introduced ArbiLoMod, a simulation technique aiming at problems with arbitrary
local modifications and highly parallel computing environments. It is based on the Re-
duced Basis method, inheriting its advantages, but localizing the basis construction and
error estimation. It consists of basis generation algorithms, a localized a posteriori er-
ror estimator controlling the reduction error, and a localized space enrichment procedure,
improving the reduced local spaces if necessary. The initial basis generation algorithms
require no communication of unreduced quantities in a parallel implementation. For the
basis enrichment procedure, a strong compression of the communicated quantities is pos-
sible. We discussed the possibilities to use ArbiLoMod to implement a scalable parallel
code by reducing communication costs due to the local structure and the local Reduced
Basis strategy. ArbiLoMod was demonstrated on a coercive example in two dimensions,
featuring high contrast, fine details and channels. Even though small local modifications
to this example lead to strong global changes in the solution, ArbiLoMod was able to
approximate the new solutions after these geometry changes with a small fraction of the
effort needed for the initial geometry. BSD-licensed source code is provided along with
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this publication, anyone can reproduce all results presented here easily.
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