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GLOBAL DYNAMICS OF BOSE-EINSTEIN CONDENSATION

FOR A MODEL OF THE KOMPANEETS EQUATION

C. DAVID LEVERMORE, HAILIANG LIU, AND ROBERT L. PEGO

Abstract. The Kompaneets equation describes a field of photons exchang-
ing energy by Compton scattering with the free electrons of a homogeneous,
isotropic, non-relativistic, thermal plasma. This paper strives to advance our
understanding of how this equation captures the phenomenon of Bose-Einstein
condensation through the study of a model equation. For this model we prove
existence and uniqueness theorems for global weak solutions. In some cases a
Bose-Einstein condensate will form in finite time, and we show that it will con-
tinue to gain photons forever afterwards. Moreover we show that every solution
approaches a stationary solution for large time. Key tools include a universal
super solution, a one-sided Oleinik type inequality, and an L

1 contraction.

1. Introduction

Photons can play a major role in the transport of energy in a fully ionized
plasma through the processes of emission, absorption, and scattering. At high
temperatures or low densities, the dominant process can be Compton scattering
off free electrons. We make the simplification that the plasma is spatially uniform,
isotropic, nonrelativistic, and thermal at temperature T . We also neglect the heat
capacity of the photons and assume that T is fixed. If the photon field is also
spatially uniform and isotropic then it can be described by a nonnegative number
density f(x, t) over the unitless photon energy variable x ∈ (0,∞) given by

x =
~|k|c
kBT

,

where ~ is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant,
and k is the photon wave vector. Because x is a unitless radial variable, the total
photon number and (unitless) total photon energy associated with f(x, t) are then
given by

N [f ] =

∫ ∞

0

f x2 dx , E[f ] =

∫ ∞

0

f x3 dx .

When the only energy exchange mechanism is Compton scattering of the photons
by the free electrons in the plasma then the evolution of f is governed by the
Kompaneets equation [19]

∂tf =
1

x2
∂x

[

x4
(

∂xf + f + f2
)]

. (1.1)
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This Fokker-Planck approximation to a quantum Boltzmann equation is justified
physically by arguing that little energy is exchanged by each photon-electron colli-
sion.

Because x is a radial variable, the associated divergence operator has the form
x−2∂xx

2. Thereby we see from (1.1) that the diffusion coefficient in the Kompaneets
equation is x2, which vanishes at x = 0. This singular behavior allows the f2

convection term to drive the creation of a photon concentration at x = 0. This
hyperbolic mechanism models the phenomenon of Bose-Einstein condensation. Our
goal is to better understand how the Kompaneets equation generally describes
the process of relaxation to equilibrium over large time and how it captures the
phenomenon of Bose-Einstein condensation in particular.

Rather than addressing these questions for the Kompaneets equation (1.1) we
will consider the model Fokker-Planck equation

∂tf =
1

x2
∂x

[

x4
(

∂xf + f2
)]

, (1.2)

posed over x ∈ (0, 1) and subject to a zero flux boundary condition at x = 1.
This model is obtained by simply dropping the f term that appears in the flux of
the Kompaneets equation (1.1) and reducing the x-domain to (0, 1). As we will
see, this model shares many structural features with the Kompaneets equation. In
particular, it shares the x2 diffusion coefficient and the f2 convection term that
allow the onset of Bose-Einstein condensation. The neglect of the f term in the
flux of the Kompaneets equation is a reasonable approximation during the onset
of Bose-Einstein condensation when we expect f to be large. The advantage of
model (1.2) is that we know some estimates for it that have no known analogs for
(1.1), and which facilitate the study of condensate dynamics and equilibration. A
disadvantage of (1.2) is that its equilibrium solutions differ from those of (1.1),
so we may expect the long-time behavior of its solutions to be similar to that of
solutions of (1.1) only in a qualitative sense.

1.1. Structure of the Kompaneets Equation. Here we describe some struc-
tural features of the Kompaneets equation that will be shared by our model. First,
solutions of (1.1) formally conserve total photon number N [f ]. Indeed, we formally
compute that

d

dt
N [f ] = x4

(

∂xf + f + f2
)

∣

∣

∣

∞

0
= 0 ,

under the expectation that the flux vanishes as x approaches 0 and ∞. Second,
solutions of (1.1) formally dissipate quantum entropy H [f ] given by

H [f ] =

∫ ∞

0

h(f, x)x2dx , h(f, x) = f log(f)− (1 + f) log(1 + f) + xf .

Indeed, because

hf(f, x) = log(f)− log(1 + f) + x = log

(

exf

1 + f

)

,

∂xhf = hff∂xf + 1 =
1

f(1 + f)
(∂xf + f + f2) ,

we formally compute that

d

dt
H [f ] =

∫ ∞

0

hf (f, x) (∂tf)x
2dx = −

∫ ∞

0

x4f(1 + f)
(

∂xhf (f, x)
)2
dx ≤ 0 .
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By this “H theorem,” we expect solutions to approach an equilibrium for which
∂xhf (f, x) = 0. These equilibria have the Bose-Einstein form

f = fµ(x) =
1

ex+µ − 1
, for some µ ≥ 0 .

At this point a paradox arises. The total photon number for the equilibrium fµ
is

N [fµ] =

∫ ∞

0

x2

ex+µ − 1
dx .

This is a decreasing function of µ over [0,∞), and is thereby bounded above by
N [f0], which is finite. Because total number is supposed to be conserved, we expect
any solution to relax to an equilibrium fµ with the same total number as the initial
data, satisfying N [fµ] = N [f in]. But if the initial number N [f in] > N [f0] then no
such equilibrium exists!

1.2. Bose-Einstein Condensation. The foregoing paradox indicates that there
must be a breakdown in the expectations given above. Previous studies ([6] in
particular) have shown that a breakdown in the no-flux condition at x = 0 can
occur. A physical interpretation of a nonzero photon flux at x = 0 is that the
photon distribution forms a concentration of photons at zero energy (i.e., energy
that is negligible on the scales described by the model). This Bose-Einstein con-
densate accounts for some of the total photon number. See especially the works
[27, 3, 6, 12], and the discussion of related literature in subsection 1.4 below. As
massless, chargeless particles of integer spin, photons are the simplest bosons. In-
deed, S. N. Bose had photons in mind in 1924 when he proposed his new way of
counting indistinguishable particles, work soon followed by Einstein’s prediction of
the existence of the condensate. Yet it was not until 2010 that the first observation
of a photon condensate was reported by Martin Weitz and colleagues [18].

In the present context, we can gain insight into this phenomenon by dropping
the diffusion term in (1.1), as discussed by Levich and Zel’dovich [27]. In this case
the Kompaneets equation simplifies to the first-order hyperbolic equation

∂tf =
1

x2
∂x

[

x4
(

f + f2
)]

.

Letting n = x2f , this becomes

∂tn = ∂x
[

x2n+ n2
]

, (1.3)

whose characteristic equations are

ẋ = −x2 − 2n , ṅ = 2xn .

Because n ≥ 0, the origin x = 0 is an outflow boundary, and no boundary con-
dition can be specified there. Clearly any nonzero entropy solution will develop a
nonzero flux of photons into the origin in finite time, leading to the formation of a
condensate.

The fact the f2 convection term plays an essential role in the formation of Bose-
Einstein condensates is illustrated by considering what happens when that term is
dropped from the Kompaneets equation (1.1). This leads to the linear degenerate
parabolic equation

∂tf =
1

x2
∂x

[

x4
(

∂xf + f
)]

. (1.4)
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This equation is the analog of the Kompaneets equation for classical statistics. Its
solutions formally conserve N [f ] and dissipate the associated entropy

H [f ] =

∫ ∞

0

h(f, x)x2dx , where h(f, x) = f log(f)− f + xf .

Its family of equilibria is

fµ(x) = e−x−µ , for some µ ∈ R .

The initial-value problem for (1.4) is well-posed in cones of nonnegative densities f
such that

∫ ∞

0

(exf)pe−xx2dx <∞ , for some p ∈ (1,∞) .

These solutions [17]

• are smooth over R+ × R
+,

• are positive over R+ × R
+ provided that f in is nonzero,

• satisfy all the expected boundary conditions,
• conserve N [f ] and dissipate H [f ] as expected,
• approach fµ as t→ ∞, where N [f in] = N [fµ].

In particular, the no-flux boundary condition is satisfied at x = 0 without being
imposed! Therefore, no Bose-Einstein concentration happens!

1.3. Present Investigation. Of course, solutions of the hyperbolic model (1.3)
may develop shocks at any location. However, the diffusion term in the Kompaneets
equation (1.1) prevents shock formation for x > 0. The results of Escobedo et al. [6]
prove that the degeneracy of its diffusion does not prevent shock formation at x = 0.
These authors proved that there exist solutions of (1.1) that are regular and satisfy
no-flux conditions for t on a bounded interval 0 < t < Tc (which is solution-
dependent), but at time t = Tc the flux at x = 0 becomes nonzero. Such solutions
exist for arbitrarily small initial photon number. Moreover, global existence and
uniqueness of solutions of (1.1) was proved subject to a boundedness condition for
x2f for x ∈ [0, 1].

A number of interesting questions about solutions to the Kompaneets equation
remain unanswered by previous studies: What happens to a condensate once it
forms? Can it lose photons as well as gain them? Are there any boundary conditions
at all that we can impose near x = 0 that yield different condensate dynamics,
allowing the condensate to interact with other photons? Can we identify the long-
time limit of any initial density of photons?

In order to focus clearly on these questions, we have found it convenient to drop
the linear term x2f from the Kompaneets flux and consider the model equation
(1.2), which retains the essential features of nonlinearity and degenerate diffusion.
The equilibria of equation (1.2) are

fµ(x) =
1

x+ µ
, for some µ ≥ 0 . (1.5)

We include these solutions in the class of functions considered by restricting our
attention to the interval 0 < x < 1 and imposing a no-flux boundary condition at
x = 1. For these equilibria the maximal total photon number is N [f0] =

1
2 .

For this model problem, we shall assemble a fairly detailed description of well-
posedness and long-time dynamics. We establish existence and uniqueness in a
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natural class of nonnegative weak solutions for initial data that simply has some
finite moment

∫ ∞

0

xpf in dx , p ≥ 2 .

These results are proved with essential use of estimates for hyperbolic (first-order)
equations, and establish that while the model Kompaneets equation (1.4) is para-
bolic for x > 0, the point x = 0 remains an outflow boundary at which no boundary
condition can be specified.

The solution map is nonexpansive in L1-norm with weight x2. Therefore the total
photon numberN [f(t)] is nonincreasing in time. A condensate can gain photons but
never lose them, and must form in finite time whenever N [f in] > N [f0]. Moreover,
once it starts growing it never stops. Every solution relaxes to some equilibrium
state fµ in the long-time limit t → ∞. We cannot identify the limiting state in
general, but the solution must approach the maximal steady state f0 if the initial
data fin ≥ f0 everywhere.

The proofs of the results on long-time behavior are greatly facilitated by two
features of the model problem (1.2). First, the problem admits a universal super-
solution fsuper determined by

x2fsuper(x, t) = x+
1− x

t
+

2√
t
. (1.6)

By consequence, for every solution, x2f is in fact bounded in x for each t > 0,
and moreover one has lim supt→∞ x2f(x, t) ≤ x = x2f0(x) for every solution, for
example. Also, every solution satisfies

∂x(x
2f) ≥ −4

t
,

which is Oleinik’s inequality for admissible solutions of the conservation law (1.3)
after dropping the linear flux term x2n.

1.4. Literature on Related Problems. As indicated above, the Kompaneets
equation is derived from a Boltzmann-Compton kinetic equation for photons inter-
acting with a gas of electrons in thermal equilibrium—see [19], and especially [8]
for a derivation and links to some of the physical literature. Regarding the analysis
of the Boltzmann-Compton equation itself, when a simplified regular and bounded
kernel is adopted, Escobedo and Mischler [7] studied the asymptotic behavior of the
solutions, and showed that the photon distribution function may form a condensate
at zero energy asymptotically in infinite time. Further, Escobedo et al. [9] showed
that the asymptotic behavior of solutions is sensitive not only to the total mass
of the initial data but also to its precise behavior near the origin. In some cases,
solutions develop a Dirac mass at the origin for long times (in the limit t→ ∞) in a
self-similar manner. For the Boltzmann-Compton equation with a physical kernel,
some results concerning both global existence and non-existence, depending on the
size of initial data, were obtained by Ferrari and Nouri [11].

A natural question is whether results analogous to those obtained in the present
paper concerning the development of condensates may hold for other kinetic equa-
tions that govern boson gases, such as Boltzmann-Nordheim (aka Uehling-Uhlenbeck)
quantum kinetic equations. Concerning these issues we refer to the work of H. Spohn
[25], Xuguang Lu [21], the recent analysis of blowup and condensation formation
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by Escobedo and Velazquez [10], and references cited therein. Higher-order Fokker-
Planck-type approximations to the Boltzmann-Nordheim equation were derived
formally by Josserand et al [12], and an analysis of the behavior of solutions has
been performed recently by Jüngel and Winkler [13, 14].

Bose-Einstein equilibria and condensation phenomena also appear in classical
Fokker-Planck models that incorporate a quantum-type exclusion principle [15, 16].
Concerning mathematical results on blowup and condensates for these models, we
refer to work of Toscani [26] and Carrillo et al. [4] and references therein.

1.5. Plan of the Paper. In Section 2 we introduce our notion of weak solutions for
(1.2) together with relevant notations, followed by precise statements of the main
results, and a discussion of related literature. In Section 3 we prove the uniqueness
of weak solutions for initial data with some finite moment. Existence is proved in
Section 4 by passing to the limit in a problem regularized by truncating the domain
away from x = 0.

In Section 5 we establish that condensation must occur if the initial photon
number N [fin] > N [f0], and we show that once a shock forms at x = 0 in finite
time, it will persist and continue growing for all later time. Large-time convergence
to equilibrium is proved for every solution in Section 6, using arguments related to
LaSalle’s invariance principle.

The paper concludes with three appendices that deal with several technical but
less central issues. A simple, self-contained treatment of some anisotropic Sobolev
embedding estimates used in our analysis is contained in Appendix A. The trun-
cated problem used in Section 4 requires a special treatment due to the fact that the
zero-flux boundary condition at x = 1 is nonlinear — this treatment is carried out
in Appendix B. A proof of interior regularity of the solution, sufficient to provide
a classical solution away from x = 0 but up to the boundary x = 1, is established
in Appendix C.

2. Main results

2.1. Model Initial-Value Problem. In light of the foregoing discussion, it is
convenient to work with the densities

n = x2f , nin = x2f in . (2.1)

The flux in our model equation (1.2) can be expressed as

J = x2∂xn+ n2 − 2xn . (2.2)

The initial-value problem for our model equation (1.2) that we will consider is

∂tn− ∂xJ = 0 , 0 < x < 1 , t > 0 , (2.3a)

J(1, t) = 0 , t > 0 , (2.3b)

n(x, 0) = nin(x), 0 < x < 1 . (2.3c)

Here we have imposed the no-flux boundary condition at x = 1, but do not impose
any boundary condition at x = 0, where the diffusion coefficient x2 vanishes.

We work with a weak formulation of the initial-value problem (2.3). We require
the initial data nin to satisfy

nin ≥ 0 , xpnin ∈ L1((0, 1]) for some p ≥ 0 . (2.4)
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Let Q = (0, 1] × (0,∞). We say n is a weak solution of the initial-value problem
(2.3) if

n ≥ 0 , n , ∂xn ∈ L2
loc(Q) , (2.5a)

xpn ∈ L1((0, 1]× (0, T )) for every T > 0 , (2.5b)

n(·, t) → nin in L1
loc((0, 1]) as t→ 0+ , (2.5c)

∫

Q

(

n ∂tψ − J ∂xψ
)

dX = 0 (dX = dx dt) , (2.5d)

for every C1 test function ψ with compact support in Q. Condition (2.5a) is needed
to make sense of the weak formulation (2.5d). Condition (2.5b) is an admissibility
condition we need to establish uniqueness. Condition (2.5c) gives the sense in which
the initial data is recovered.

2.2. Uniqueness, Existence, and Regularity. The following results establish
the basic uniqueness, existence, and regularity properties of weak solutions to (2.3).
Henceforth we will use N [n] to denote the total photon number,

N [n] =

∫ 1

0

n dx ,

replacing the earlier notation N [f ]. We will also denote the positive part of a
number a by a+ = max{a, 0}.

Theorem 2.1 (Stability and comparison). Let nin and n̄in satisfy (2.4) for some
p ≥ 0. Let n and n̄ be weak solutions of (2.3) associated with the initial data nin

and n̄in respectively as defined by (2.5). Set cp = p(p+ 3). Then
∫ 1

0

xp(n− n̄)+(x, t) dx ≤ ecpt
∫ 1

0

xp(nin − n̄in)+ dx , a.e. t > 0 . (2.6)

Furthermore, if nin ≥ n̄in a.e. on (0,1), then n ≥ n̄ a.e. on Q. In particular, if
nin = n̄in a.e. on (0,1) then n = n̄ a.e. on Q.

From (2.6) we draw immediately the following conclusion on uniqueness.

Corollary 2.2 (Uniqueness). Let n and n̄ be two weak solutions to (2.3), subject
to initial data nin, n̄in respectively, with xpnin, xpn̄in ∈ L1((0, 1]). Then

∫ 1

0

xp|n(x, t) − n̄(x, t)| dx ≤ ecpt
∫ 1

0

xp|nin − n̄in| dx, a.e. t > 0. (2.7)

For each initial data nin satisfying xpnin ∈ L1(0, 1) for some p ≥ 0, there exists at
most one weak solution of (2.3).

Remark 2.1. Because c
0
= 0, if (2.4) holds with p = 0 then (2.7) is the L1-

contraction property

‖(n− n̄)(t)‖L1(0,1) ≤ ‖nin − n̄in‖L1(0,1) . (2.8)

In particular, the total photon number N [n] is nonincreasing in time.

Theorem 2.3 (Existence and global bounds). Let nin satisfy (2.4) for some p ≥ 0.
Then there exists a unique global weak solution n of (2.3) as defined by (2.5).
Moreover xpn ∈ C([0,∞);L1(0, 1)) and we have the following bounds:
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(i) (A universal upper bound) For every t > 0,

n ≤ x+
1− x

t
+

2√
t

for a.e. x ∈ (0, 1) ,

(ii) (Olenik-type inequality) For a.e. (x, t) ∈ Q,

∂xn ≥ −4

t
.

(iii) (Energy estimate) n ∈ C((0,∞), L2(0, 1)), and whenever 0 < s < t,
∫ 1

0

n2(x, t) dx +

∫ t

s

∫ 1

0

[n2 + x2(∂xn)
2] dx dτ ≤

∫ 1

0

n2(x, s) dx +
8

3
(t− s) . (2.9)

Note that the Oleinik-type inequality allows for the formation of ‘shock waves’
in n at x = 0, but rules out oscillations.

Theorem 2.4 (Regularity away from x = 0). For the global weak solution n from
Theorem 2.3, the quantities n, ∂xn, ∂tn and ∂2xn are locally Hölder-continuous on
Q. Furthermore, n is smooth in the interior of Q.

2.3. Dynamics of solutions. Next we state our main results concerning the for-
mation of condensates and the large-time behavior of solutions. Observe that the
bounds in (i) and (ii) of Theorem 2.3 imply the existence of the right limit n(0+, t),
for each t > 0.

Theorem 2.5 (Formation and growth of condensates). Let nin satisfy (2.4) for
some p ≥ 0. Let n be the unique global weak solution to (2.3) associated with nin.
Then

(i) (Conservation of photons.) For every t > s > 0 we have
∫ 1

0

n(x, t) dx =

∫ 1

0

n(x, s) dx −
∫ t

s

n(0+, τ)2 dτ .

(ii) (Persistence.) There exists t∗ ∈ [0,∞] such that n(0+, t) > 0 whenever
t > t∗, and n(0+, t) = 0 whenever 0 ≤ t < t∗.

(iii) (Formation.) If N [nin] > 1
2 then n(0+, t) > 0 whenever .

1

2
√
t
<

√
1 + δ − 1 , where 2δ = N [nin]− 1

2
.

(iv) (Absence.) If nin ≤ x, then t∗ = ∞. I.e., for every t > 0 we have n(0+, t) =
0 and N [n(·, t)] = N [nin].

The formula in part (i) justifies a physical description of the photon energy distri-
bution that contains a Dirac delta mass at x = 0, corresponding to a condensate of
photons at zero energy that keeps total photon number conserved. By the formula
in part (i), the quantity

∫ t

s

n(0+, τ)2 dτ

is the number of photons that have entered the condensate between times s and t.
This quantity is nonnegative, meaning the condensate behaves like a ‘black hole’—
photons go in but do not come out. Part (ii) shows that a condensate never stops
growing once it starts. Part (iii) states that a condensate must develop in finite time
for any initial data nin with more photons than the maximal equilibrium n0 = x.
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Part (iv) means that for initial data bounded above by n0, a condensate does not
form.

According to Theorems 2.1 and 2.2, however, we see that the notion of a conden-
sate is not strictly required for mathematically discussing existence and uniqueness.
The solution is determined by the conditions imposed for x ∈ (0, 1], and it so hap-
pens that the total photon number can decrease due to an outward flux at x = 0+.

Theorem 2.6 (Large-time convergence). Let nin satisfy (2.4) for some p ≥ 0. Let
n be the unique global weak solution to (2.3) associated with nin. Then there exists
µ ≥ 0 such that

lim
t→∞

‖n(·, t)− nµ‖1 = 0 , where nµ(x) =
x2

x+ µ
.

The equilibrium nµ to which a solution converges depends not only on N [nin],
but also on details of nin. In some special cases, µ can be explicitly determined.

Corollary 2.7. Let n be the global solution to (2.3), subject to initial data satisfying
nin(x) ≥ x for x ∈ (0, 1]. Then

lim
t→∞

n(x, t) = n0(x) = x.

Moreover,

|n(x, t)− x| ≤ 1

t
+

2√
t
, for every t > 0 . (2.10)

If nin(x) ≤ x for x ∈ (0, 1], then

lim
t→∞

n(x, t) = nµ(x) =
x2

x+ µ
,

with µ uniquely determined by the relation

N [nin] = N [nµ] =
1

2
− µ+ µ2 log

(

1 +
1

µ

)

. (2.11)

Remark 2.2. For the model equation (1.2), these results provide a definite answer
to the main issues of concern. The main assertions are expected to hold true for
the full Kompaneets equation (1.1), and may be partially true for some extensions
of the Kompaneets equation [24, 5]. Theorems 2.1 and 2.2 improve upon Theorems
1 and 2 of [6, p. 3839] for the Kompaneets equation, in the sense that we impose
no growth condition near x = 0. Though for a model equation, Theorems 2.4 and
2.5 provide a theoretical justification of observations made previously, including the
detailed singularity analysis given in [6], the self-similar blow-up of the Kompaneets
equation’s solution in finite time [12], as well as the classical result of Levich and
Zel’dovich [27] on shock waves in photon spectra.

Remark 2.3. We remark that the quantum entropy defined by

H [n] =

∫ 1

0

[xn− x2 log(n)] dx

satisfies

H [n(t)] +

∫ t

0

∫ 1

0

n2

(

1− ∂x

(

x2

n

))2

dx ≤ H [nin] , ∀t > 0,
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provided H [nin] <∞. As we have no need for this entropy dissipation inequality in
this paper, we omit the proof. We mention, however, that the entropy H [n] is not
sensitive to the presence of the Bose-Einstein condensate.

3. Uniqueness of weak solutions

This section is primarily devoted to the proof of Theorem 2.1. At the end of this
section we include an additional result, a strict L1 contraction property, which will
be used in section 6.

3.1. Proof of Theorem 2.1. Let w = n − n̄ and n̂ = n + n̄ − 2x. Then from
(2.5d) for both n and n̄ it follows that

∫

Q

(w ∂tψ − (x2∂xw + n̂w) ∂xψ) = 0. (3.1)

The estimate (2.6) can be derived formally by using a test function of form ψ =
xp1[0,t]H(w), where H(w) is the usual Heaviside function and 1E is the charac-
teristic function of a set E. This is not an admissible test function, however, and
instead we need several approximation steps.

For use below, we fix a smooth, nondecreasing cutoff function χ : R → [0, 1] with
the property χ(x) = 0 for x ≤ 1, χ(x) = 1 for x ≥ 2, and set χǫ(x) = χ(x/ǫ) for
ǫ > 0. For any interval I ⊂ [0,∞) we define the space-time domains

QI = (0, 1]× I, so Q = Q(0,∞) = (0, 1]× (0,∞). (3.2)

1. (Steklov average in t.) For h 6= 0, the Steklov average uh of a continuous function
u on Q is defined by extending u(x, t) to be zero for t < 0, and setting

uh(x, t) =
1

h

∫ t+h

t

u(x, s) ds, (x, t) ∈ Q.

By density arguments, the Steklov average extends to an operator with the following
properties: First, for 1 ≤ p < ∞, if u ∈ Lp

loc(Q) then uh ∈ Lp
loc(Q) with weak

derivative

∂tuh =
u(·, ·+ h)− u(·, ·)

h
∈ Lp

loc(Q).

Moreover, one has uh → u in Lp
loc(Q) as h→ 0.

Since

n, n̄ ∈ B+ := {n | n, ∂xn ∈ L2
loc(Q) with n ≥ 0},

it follows ∂jx∂
k
t wh ∈ L2

loc(Q) for j, k = 0, 1, whence wh is continuous on Q. If ψ is
a C1 test function with compact support in Q, the same is true for ψ−h if |h| is
sufficiently small, and a simple calculation with integration by parts and justified
by density of smooth functions shows that

∫

Q

w ∂t(ψ−h) =

∫

Q

w(∂tψ)−h =

∫

Q

wh∂tψ = −
∫

Q

(∂twh)ψ.

Substitution of this into (3.1) and treating the other term similarly, one finds
∫

Q

(

(∂twh)ψ + (x2∂xw + n̂w)h ∂xψ
)

= 0. (3.3)

Recall n, n̄ ∈ B+, hence n̂w and ∂x(n̂w) are in L
1
loc(Q), whence (n̂w)h is contin-

uous in Q. By replacing ψ(x, t) by ψ(x, t)χǫ(t−σ)χǫ(τ − t) and taking ǫ→ 0 using
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dominated convergence, we find that for any C1 function ψ with compact support
in Q[0,∞),
∫

Q[σ,τ]

(

(∂twh)ψ + (x2∂xw + n̂w)h ∂xψ
)

= 0, whenever [σ, τ ] ⊂ (0,∞). (3.4)

By approximation, (3.4) holds for any ψ ∈ W 1,2(Q) supported in Q[0,∞).

2. (Integrate in t.) Define ζ(a) =
∫ a

0 χǭ(u) du as a smooth, convex approximation to
the function a 7→ a+. Since ζ is Lipshitz with ζ′(a) = 1 for a > 2ǭ, the composition

ζ(wh) ∈ W 1,2
loc (Q), with the weak derivatives

∂tζ(wh) = ζ′(wh)∂twh, ∂xζ(wh) = ζ′(wh)∂xwh.

We may now set ψ(x, t) = η(x)(ζ′ ◦ wh)(x, t) in (3.4), where η is any C2 function
with compact support in (0, 1]. In what follows, we assume also that η ≥ 0 and

η′ ≥ 0 on (0, 1]. The function t 7→
∫ 1

0 η(x)ζ(wh(x, t)) dx is absolutely continuous
for t > 0, with
∫ 1

0

η(x)ζ(wh(x, t)) dx
∣

∣

∣

t=τ

t=σ
=

∫

Q[σ,τ]

ηζ′(wh)∂twh = −
∫

Q[σ,τ]

(x2∂xw+n̂w)h ∂x(ηζ
′(wh))

(3.5)
whenever [σ, τ ] ⊂ (0,∞).

3. (Take h → 0.) As h → 0, the hypotheses for weak solutions imply that n,
n̄ ∈ L1

loc(Q[0,∞)). By consequence, in L1
loc([0,∞)) we have

∫ 1

0

η(x)ζ(wh(x, ·)) dx →
∫ 1

0

η(x)ζ(w(x, ·)) dx. (3.6)

In fact, we will show that the right-hand side here is absolutely continuous for t > 0,
from studying the terms on the right-hand side of (3.5): First, as h→ 0, in L2

loc(Q)
we have

x2∂xwh → x2∂xw. (3.7)

And along a subsequence hj → 0, ζ′(wh) → ζ′(w) and ζ′′(wh) → ζ′′(w) boundedly
a.e. on compact subsets of Q. Hence in L2

loc(Q) we have

∂x(η ζ
′(wh)) = η′ζ′(wh) + η ζ′′(wh)∂xwh → η′ζ′(w) + η ζ′′(w)∂xw.

Since ζ′(w)∂xw = ∂xζ(w), we find
∫

Q[σ,τ]

(x2∂xwh)∂x(η ζ
′(wh)) →

∫

Q[σ,τ]

(

x2η′∂xζ(w) + x2η ζ′′(w)(∂xw)
2
)

. (3.8)

Next we deal with the nonlinear term in (3.5). Observe
∫

Q[σ,τ]

(n̂w)h∂x(η ζ
′(wh)) =

∫ τ

0

η ζ′(wh)(n̂w)h(1, t) dt−
∫

Q[σ,τ]

η ζ′(wh)(∂x(n̂w))h.

(3.9)
Since n, n̄ ∈ B+ we have n̂w, ∂x(n̂w) ∈ L1

loc(Q), and it follows that (n̂w)h(1, ·) →
n̂w(1, ·) in L1

loc((0,∞)). Moreover,w(1, ·) ∈ L2
loc((0,∞)) and ζ′(wh(1, ·)) → ζ′(w(1, ·))

boundedly a.e. on compact subsets of (0,∞) along a sub-subsequence of h → 0.
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Thus we may pass to the limit on the right-hand side of (3.9), integrate back by
parts, and infer that the limit is
∫ τ

σ

η ζ′(w)(n̂w)(1, t) dt−
∫

Q[σ,τ]

η ζ′(w)∂x(n̂w) =

∫

Q[σ,τ]

(n̂w)(η′ζ′(w)+η ζ′′(w)∂xw).

(3.10)
One can justify this equality using an additional argument approximating w = n−n̄
via smooth functions in B+: Note the intermeditate term

∫

Q[σ,τ]
(n̂w)∂x(η ζ

′(w))

does not make sense with only the regularity assumed for w, due to insufficient
integrability in time (L1 for one factor, L2 for the other). The right-hand side
of (3.10) does make sense, however, since ζ′(w) and wζ′′(w) are bounded on the
support of the integrand.

In sum, we find that in L1
loc((0,∞)) and for a.e. τ > σ > 0,

∫ 1

0

η(x)ζ(w(x, t)) dx
∣

∣

∣

t=τ

t=σ
= −

∫

Q[σ,τ]

(

x2η′∂xζ(w) + x2η ζ′′(w)(∂xw)
2
)

(3.11)

−
∫

Q[σ,τ]

(n̂w)(η′ζ′(w) + η ζ′′(w)∂xw).

4. (Take ǭ → 0.) Note that since ζ(w), ∂xζ(w) ∈ L2
loc(Q), we have ζ(w(1, ·)) ∈

L2
loc((0,∞)) and

−
∫

Q[σ,τ]

x2η′∂xζ(w) = −
∫ τ

σ

η′(1)ζ(w(1, t)) dt+

∫

Q[σ,τ]

ζ(w)∂x(x
2η′) ≤

∫

Q[σ,τ]

ζ(w)∂x(x
2η′).

Since η, η′ ≥ 0, n̂ ≥ −2x, and wζ′(w) ≥ 0, therefore
∫ 1

0

η(x)ζ(w(x, t)) dx
∣

∣

∣

t=τ

t=σ
≤

∫

Q[σ,τ]

(

ζ(w)∂x(x
2η′)+2xη′wζ′(w)− n̂wη ζ′′(w)(∂xw)

)

.

(3.12)
Now we take the limit ǭ ↓ 0, for which we have ζ ◦ w ↑ w+ and w(ζ′ ◦ w) ↑ w+

pointwise. Moreover, wζ′′ ◦ w = (w/ǭ)χ′(w/ǭ) is bounded and converges to zero
a.e. Since ηn̂∂xw ∈ L1(Q), by dominated convergence the last term in (3.12) tends
to zero, and we derive

∫ 1

0

η w+(x, τ) dx ≤
∫ 1

0

η w+(x, σ) dx +

∫

Q[σ,τ]

(x2η′′ + 4xη′)w+, (3.13)

for a.e. τ > σ > 0. Due to assumption (2.5c) on weak solutions, now we can take
σ → 0 and conclude that this inequality holds also with σ = 0.

5. (Make Gronwall estimate.) Finally, we take η of the form η(x) = xpχǫ(x), where
p ≥ 0 is the exponent for which we assume xpnin ∈ L1(0, 1). Observe that

xη′ = xp(pχ+ (x/ǫ)χ′), x2η′′ = xp(p(p− 1)χ+ 2p(x/ǫ)χ′ + (x/ǫ)2χ′′), (3.14)

where the arguments of χ, χ′ and χ′′ are x/ǫ. As ǫ → 0, since we assume xpn
and xpn̄ are in L1(Q[0,T ]) for any T > 0, we infer by monotone and dominated
convergence that

∫ 1

0

xpw+(x, τ) dx ≤
∫ 1

0

xpwin
+ (x) dx + cp

∫ τ

0

∫ 1

0

xpw+(x, t) dx dt, (3.15)
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for a.e. τ > 0, with cp = p(p − 1) + 4p = p(p + 3). Denoting the (absolutely
continuous) right hand side of (3.15) by U(τ), we have

U(τ) = U(0) +

∫ τ

0

U ′(s) ds ≤ U(0) + cp

∫ τ

0

U(s)ds,

and Gronwall’s inequality implies that

U(τ) ≤ ecpτ
∫ 1

0

xp win
+ (x) dx,

for all τ > 0. This proves (2.6). Clearly, nin ≤ n̄in implies n ≤ n̄, by virtue of
(2.6).

3.2. Strict L1-contraction. From Corollary 2.2 it easily follows that weak solu-
tions of (2.3) enjoy the L1 contraction property mentioned in (2.8). For use in
section 6 below, we strengthen this to the following strict L1 contraction property
for C1 solutions that cross transversely.

Lemma 3.1. Let n, n̄ be nonnegative solutions to (2.3) with respect to initial data
nin, n̄in that are in L1(0, 1) ∩ L∞(0, 1), then for a.e. t > 0,

‖n(·, t)− n̄‖L1(0,1) ≤ ‖nin − n̄in‖L1(0,1). (3.16)

Moreover, assuming the solutions n and n̄ are C1 in (0, 1) × [0,∞), and that for
some t0 ≥ 0, n(·, t0) and n̄(·, t0) cross transversely at least once on (0, 1), then for
all t > t0 we have

‖n(·, t)− n̄(·, t)‖L1(0,1) < ‖n(·, t0)− n̄(·, t0)‖L1(0,1). (3.17)

Proof. The L1-contraction estimate (3.16) follows directly from Corollary 2.2 with
p = 0. In order to prove (3.17), it suffices to treat the case t0 = 0 for t > 0
sufficiently small, and assume the right-hand side is finite. Let w = n− n̄ and n̂ =
n+ n̄− 2x. If n crosses n̄ transversely at (x0, 0), then the regularity of the solution

implies that there exists a nondegenerate rectangle Σ0 = [x0 − δ̂, x0 + δ̂] × [0, δ]
such that w(x0, 0) = 0 and ∂xw 6= 0 in Σ0. We suppose ∂xw(x0, 0) > 0 (relabeling

n and n̄ if necessary), whence ∂xw ≥ c1 > 0 in Σ0, so w(x0 + δ̂, t) > c1δ̂ > 0 and

w(x0 − δ̂, t) < −c1δ̂ < 0.
We follow the proof of Theorem 2.1 up to (3.12), finding that for 0 < σ < τ < δ,

∫ 1

0

η(x)ζ(w(x, t)) dx
∣

∣

∣

t=τ

t=σ
(3.18)

≤
∫

Q[σ,τ]

(

−x2ηζ′′(w)(∂xw)2 + ζ(w)∂x(x
2η′) + 2xη′wζ′(w)− n̂wη ζ′′(w)(∂xw)

)

.

Here we include a term −x2ηζ′′(w)(∂xw)2 from (3.11) that was dropped in (3.12).
This identity is valid for any C2 function η ≥ 0 with compact support in (0, 1] and
with η′ ≥ 0. We may require x2η ≥ c2 > 0 in Σ0. Therefore, taking ǭ ↓ 0, we find

∫

Q[σ,τ]

x2ηζ′′(w)(∂xw)
2 ≥

∫

Σ0∩Q[σ,τ]

c1c2ζ
′′(w)∂xw

=

∫ τ

σ

c1c2ζ
′(w)

∣

∣

∣

x0+δ̂

x0−δ̂
dt→ c1c2(τ − σ) > 0 .

When taking the limit ǭ ↓ 0,we also have ζ ◦w ↑ w+ and w(ζ′ ◦w) ↑ w+ pointwise.
Moreover, wζ′′ ◦ w = (w/ǭ)χ′(w/ǭ) is bounded and converges to zero a.e. Since



14 C. DAVID LEVERMORE, HAILIANG LIU, AND ROBERT L. PEGO

ηn̂∂xw ∈ L1(Q), by dominated convergence the last term in (3.18) tends to zero,
and we derive
∫ 1

0

η w+(x, τ) dx ≤
∫ 1

0

η w+(x, σ) dx+

∫

Q[σ,τ]

(x2η′′+4xη′)w+−c1c2(τ−σ) . (3.19)

Finally, we take η of the form η(x) = χθ(x) with θ < x0 − δ̂. Observe that

xη′ = (x/θ)χ′, x2η′′ = (x/θ)2χ′′, (3.20)

where the arguments of χ, χ′ and χ′′ are x/θ. As θ → 0, since we assume n and n̄
are in L1(Q), we infer by monotone and dominated convergence that

∫ 1

0

w+(x, τ) dx ≤
∫ 1

0

w+(x, σ) dx − c1c2(τ − σ) <

∫ 1

0

win
+ (x) dx , (3.21)

where the last inequality follows by applying Theorem 2.1 with t = σ and p = 0.
Adding this result together with (2.6) with p = 0 and n interchanged with n̄, we
obtain (3.17). �

4. Existence of weak solutions

The existence result in Theorem 2.3 is proved through three main approximation
steps:

(i) Approximate the rough initial data nin ∈ L1(xpdx) by smooth data nin
κ

that is strictly positive and bounded.
(ii) Truncate the problem (2.3) to x ∈ [ǫ, 1] with ǫ > 0, resulting in a strictly

parabolic problem at the cost of needing to impose an additional boundary
condition at x = ǫ.

(iii) Further approximate by cutting off the nonlinearity in the flux near the
boundary x = 1, resulting in a problem with linear boundary conditions.

Passing to the limit in the various approximations involves compactness arguments
and uniform estimates that are based on energy estimates and Gronwall inequalities.
Step (iii) is comparatively straightforward and its analysis is relegated to Appendix
B. We deal with steps (i) and (ii) in the remainder of this section.

4.1. Smoothing the initial data. Consider fixed initial data nin in L1(xpdx). We
regularize the given initial data to obtain a family of functions nin

κ for small κ > 0,
which are smooth on [0, 1] and positive on (0, 1], with the following properties:

∫ 1

0

xp|nin
κ − nin| dx→ 0 as κ→ 0 , (4.1)

nin
κ (x) = κx2 , 0 < x < κ , (4.2)

nin
κ (x) =

κx2

κx+ 1
, 1− κ < x < 1 . (4.3)

(The properties in (4.2) and (4.3) are conveniences so that we get compatible initial
data in the approximation steps to follow below.) The desired regularization can
be achieved through mollification: Let ρ be a smooth, nonnegative function on R

with support contained in (−1, 1) and total mass one. Define

ρκ(x) = κ−1ρ(x/κ), χ(x) =

∫ x

−∞

ρ(z) dz (4.4)



GLOBAL DYNAMICS OF BOSE-EINSTEIN CONDENSATION 15

(note χ(x) = 0 for x < −1 and χ(x) = 1 for x > 1), and require that

xpnin
κ (x) =

∫ 1−2κ

2κ

ρκ(x− y) ypnin(y) dy +
κx2+p

1 + κxχ(4x− 2)
.

The integral term vanishes when x < κ or x > 1 − κ, and there is no singularity
near x = 0.

For this regularized initial data, our goal is to prove the following result.

Proposition 4.1. For every small enough κ > 0, there exists a weak solution nκ

of (2.3) with initial data nin = nin
κ , having nκ ∈ C([0,∞), L1((0, 1])).

4.2. Truncation. To obtain nκ, we regularize by truncating the domain away from
the origin, thus removing the degenerate parabolic nature of the problem. In other
words, we will study classical solutions of the following problem for small ǫ > 0: In
terms of the (left-oriented) flux

Jǫ = x2∂xnǫ − 2xnǫ + n2
ǫ , (4.5)

we seek a solution to the problem

∂tnǫ = ∂xJǫ , x ∈ (ǫ, 1), t ∈ (0,∞) , (4.6a)

nǫ = nin
κ , x ∈ (ǫ, 1) , t = 0 , (4.6b)

0 = Jǫ , x = 1 , t ∈ [0,∞) , (4.6c)

0 = ǫ2∂xnǫ − 2ǫnǫ , x = ǫ , t ∈ [0,∞) . (4.6d)

The boundary condition (4.6d) says Jǫ = n2
ǫ at x = ǫ. As will be seen in section 5

below, this boundary condition is well-adapted to proving the conservation identity
for photon number in Theorem 2.5. An important point to note, however, is that
the uniqueness result of Theorem 2.1 shows that the solution of (2.3) does not
depend on the choice of this boundary condition in (4.6d).

For fixed small ǫ > 0, the following global existence result for classical solutions
of (4.6) is proved in Appendix B. Note that due to (4.2) and (4.3), the boundary
conditions (4.6c)–(4.6d) hold at t = 0 whenever 0 < ǫ < κ.

Proposition 4.2. Let nin
κ be smooth and positive on (0, 1] and satisfy (4.2)–(4.3).

Then for any sufficiently small ǫ > 0, there is a global classical solution nǫ of (4.6),
smooth in the domain

Qǫ := (ǫ, 1)× (0,∞) , (4.7)

with nǫ, Jǫ and ∂xnǫ globally bounded and continuous on Q̄ǫ = [ǫ, 1]× [0,∞).

From this result, we will derive Proposition 4.1 by taking ǫ ↓ 0 after establishing
a number of uniform bounds on the solution nǫ of (4.6). The global bounds stated
in Theorem 2.3 will follow directly from corresponding uniform bounds on nǫ, which
are proved in Lemmas 4.4 and 4.5 and are inherited by nκ.

4.3. Uniform estimates for the truncation. The first few uniform estimates
that we establish on the solution nǫ of (4.6) are pointwise estimates that arise from
comparison principles.

Lemma 4.3. We have nǫ(x, t) > 0 for every (x, t) ∈ [ǫ, 1]× [0,∞) .
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Proof. Recall min[ǫ,1] n
in
κ > 0. If we suppose the claim fails, then 0 < t∗ < ∞,

where

t∗ = sup{t | nǫ(x, t) > 0 for all x ∈ [ǫ, 1]} .
By continuity, there exists X∗ = (x∗, t∗) with x∗ ∈ [ǫ, 1] such that nǫ(X

∗) = 0. We
claim first that x∗ 6= ǫ or 1. If x∗ = ǫ or 1, by the strong maximum principle [23], we
must have 0 6= ∂xnǫ(X

∗), but this violates the boundary conditions (4.6c)–(4.6d).
Thus ǫ < x∗ < 1, but this is also not possible due to rather standard comparison

arguments: There exists δ > 0 such that δ is less than the minimum of nǫ(ǫ, t),
nǫ(1, t) and nǫ(x, 0) whenever 0 ≤ t ≤ t∗ and x ∈ [ǫ, 1]. Setting w = e3tnǫ, we find

that w > δ at t = 0, and there is some first time t̂ ∈ (0, t∗) when w(X̂) = δ for

some X̂ = (x̂, t̂) with x̂ ∈ (ǫ, 1). Then ∂tw ≤ 0, ∂xw = 0 and ∂2xw ≥ 0 at X̂, but
computation then shows ∂tw ≥ w = δ > 0. This finishes the proof. �

Next we establish a universal upper bound on our solution of (4.6). We do this
by establishing that the function defined by

S(x, t) = x+
1− x

t
+

2√
t

(4.8)

is a universal super-solution. This fact depends essentially on the hyperbolic nature
of our problem at large amplitude—Note that the middle term (1−x)/t is a centered
rarefaction wave solution of the equation ∂tn− 2n∂xn = 0.

Lemma 4.4. We have

nǫ(x, t) < S(x, t) for all (x, t) ∈ Q̄ǫ .

Furthemore, there exists τ1 > 0, depending only on supnin
κ , such that

nǫ(x, t) < S(x, t+ τ1) for all (x, t) ∈ Q̄ǫ .

Proof. Let us write L[n] := ∂tn− x2∂2xn− 2n(∂xn− 1). Then a simple calculation
gives

L[S] =
1− x

t2
+

2x

t
+ 3t−3/2 > 0 .

Hence with v = S − nǫ, we have

L[S]− L[nǫ] = ∂tv − x2∂2xv − ∂x((nǫ + S)v) + 2v > 0 . (4.9)

By continuity we have minx v(x, t) > 0 for small t > 0, and we claim that this
continues to hold for all t > 0. If not, there is a first time t̂ when it fails, and some
X̂ = (x̂, t̂) with x̂ ∈ [ǫ, 1] where v(X̂) = 0. By (4.9) it is impossible that x̂ ∈ (ǫ, 1).

If x̂ = ǫ, then v = 0 and ∂xv ≥ 0 at X̂ . But due to the boundary condition (4.6d)
we find that at (x, t) = (ǫ, t̂),

0 ≤ ǫ∂xv = ǫ∂xS − 2S = ǫ

(

1− 1

t

)

− 2

(

ǫ+
1− ǫ

t
+

2√
t

)

< 0 .

So x̂ 6= ǫ. On the other hand, if x̂ = 1, we would have v = 0 and ∂xv ≤ 0 at X̂.
But then, at (x, t) = (1, t̂) we find by (4.6c) that

0 ≥ ∂xv = ∂xS + S2 − 2S = 1− 1

t
+

(

1 +
2√
t

)2

− 2

(

1 +
2√
t

)

=
3

t
> 0 .
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Thus x̂ 6= 1, and the result S − nǫ > 0 follows. Furthermore, if supnin
κ ≤ 2/

√
τ1

then

min
x

(S(x, τ1)− nin
κ (x)) >

2√
τ1

− ‖nin
κ ‖L∞ ≥ 0 .

Then the above procedure shows that S(x, t+ τ1) is also a super-solution. �

The next result bounds ∂xnǫ from below. This is again a typical kind of estimate
for the hyperbolic equation ∂tn− 2n∂xn = 0.

Lemma 4.5. (Oleinik-type inequality) We have

∂xnǫ(x, t) ≥ −4

t
for all (x, t) ∈ Q̄ǫ .

Futhermore, there exists τ2 > 0, depending only on inf ∂xn
in
κ , such that

∂xnǫ(x, t) ≥ − 4

t+ τ2
for all (x, t) ∈ Q̄ǫ .

Proof. Let w = ∂xnǫ with nǫ being the solution of (4.6). Differentiation of (4.6a)
shows that w satisfies

∂tw = x2∂2xw + 2(nǫ + x)∂xw + 2w(w − 1) , (x, t) ∈ Qǫ , (4.10a)

ǫ2w(ǫ, t) = 2ǫnǫ(ǫ, t) , t > 0 , (4.10b)

w(1, t) = 2nǫ(1, t)− nǫ(1, t)
2 , t > 0 . (4.10c)

We claim that z = −4/t is a sub-solution of this problem. Set U = w−z = w+4/t.
A direct calculation gives

∂tU − x2∂2xU − 2(nǫ + x)∂xU − 2(w − 4/t)U + 2U =
4

t2
(7 + 2t) > 0 .

Note that U(x, t) > 0 for t > 0 small, because ∂xnǫ is continuous on Q̄ǫ. Then
U(x, t) > 0 for all x and t as long as it is so at x = ǫ and x = 1. At x = ǫ, we have

U(ǫ, t) = w(ǫ, t) +
4

t
=

2

ǫ
nǫ(ǫ, t) +

4

t
> 0 .

On the other hand, at x = 1, we have

U(1, t) = w(1, t) +
4

t
= 2nǫ(1, t)− nǫ(1, t)

2 +
4

t
.

If 0 ≤ nǫ(1, t) ≤ 2 then U(1, t) ≥ 4/t, and otherwise, 2 < nǫ(1, t) ≤ S(1, t) =
1 + 2t−1/2, hence

U(1, t) ≥ 2S(1, t)− S(1, t)2 +
4

t
= 1 .

Therefore U(1, t) > 0.
Provided τ2 > 0 is sufficiently small so that ∂xn

in
κ > −4/τ2, we have

min
x

{

w(x, 0) +
4

τ2

}

> 0 ,

hence the above procedure shows that w(x, t) ≥ −4/(t+ τ2) for all (x, t) under
consideration. This concludes the proof. �

We now turn to obtain some compactness estimates that will be needed to estab-
lish convergence as ǫ ↓ 0. First we establish equicontinuity in the mean for solutions
of (4.6).
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Lemma 4.6. For each t > 0, we have
∫ 1

ǫ

|∂xnǫ| dx ≤ K1(t), K1(t) = 1 +
2√
t+ τ1

+
8

t+ τ2
, (4.11)

and for all t > 0 and all small h > 0,
∫ 1

ǫ

|nǫ(x, t+ h)− nǫ(x, t)| dx ≤ K2(t)h
1/2 , (4.12)

where K2(t) is a decreasing function of t with K2(0) bounded by a constant depend-
ing only on supnin

κ and inf ∂xn
in
κ .

Proof. With τ1 and τ2 determined by the previous two lemmas, set

u(x, t) = nǫ(x, t) +
4x

t+ τ2
,

Then by Lemma 4.5, u is a non-decreasing function of x, satisfying ∂xu > 0. We
have

∫ 1

ǫ

|∂xnǫ| dx =

∫ 1

ǫ

∣

∣

∣

∣

∂xu− 4

t+ τ2

∣

∣

∣

∣

dx ≤ 4

t+ τ2
+

∫ 1

ǫ

∂xu dx (4.13)

≤ 8

t+ τ2
+ nǫ(1, t) ≤

8

t+ τ2
+ S(1, t+ τ1) = K1(t) .

This proves the first estimate of the lemma.
We next prove the bound (4.12). Fix any t > 0 and consider h > 0 small.

Suppressing the dependence on t and h, we set

v(x) = nǫ(x, t+ h)− nǫ(x, t) , x ∈ [ǫ, 1] ,

and observe that

‖v‖∞ ≤ 2‖S(·, t+ τ1)‖∞ ,

∫ 1

ǫ

|∂xv| dx ≤ 2K1(t) . (4.14)

We proceed by approximating |v(x)| by φ(x)v(x) where φ is obtained by mollifying
sgn v(x). Let ρ be a smooth, nonnegative function on R with support contained in
(−1, 1) and total mass one, and α > 0 be a parameter. (We will take α = 1

2 below.)
We define ρh(x) = h−αρ(x/hα), and set

φ(x) =

∫ 1

ǫ

ρh(x− z) sgn v(z) dz . (4.15)

To bound the integral of |v(x)| over [ǫ, 1], we bound integrals over the sets

Ih = [ǫ + hα, 1− hα] , Îh = [ǫ, ǫ+ hα] ∪ [1− hα, 1] ,

writing
∫ 1

ǫ

|v(x)| dx =

∫ 1

ǫ

φ(x)v(x) dx+

∫

Ih

(

|v(x)|−φ(x)v(x)
)

dx+

∫

Îh

(

|v(x)|−φ(x)v(x)
)

dx .

(4.16)
Since |φ| ≤ 1, the third term is bounded using the first estimate in (4.14) as

∫

Îh

∣

∣|v(x)| − φ(x)v(x)
∣

∣ dx ≤ 8hα‖S(·, t)‖∞ . (4.17)
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We next estimate the middle term in (4.16). For x ∈ Ih, we compute

|v(x)| − φ(x)v(x) =

∫

R

ρh(x − z)
(

|v(x)| − v(x) sgn v(z)
)

dz .

Noting that ||a| − a sgn b| ≤ 2|a− b| for any real a, b, we have
∣

∣|v(x)| − v(x) sgn v(z)
∣

∣ ≤ 2|v(x) − v(z)| .
Integrating over Ih, we find

∫

Ih

∣

∣|v(x)| − φ(x)v(x)
∣

∣ dx ≤ 2

∫

Ih

∫

|y|<hα

ρh(y)|v(x) − v(x − y)| dy dx

≤ 2

∫

Ih

∫

|y|<hα

ρh(y)|y|
∫ 1

0

|∂xv(x − ys)| ds dy dx .

Now we integrate first over x, note x − ys ∈ [ǫ, 1] and use (4.14), and note that
|y| ≤ hα and ρh has unit integral. We infer that

∫

Ih

∣

∣|v(x)| − φ(x)v(x)
∣

∣ dx ≤ 2hα
∫ 1

ǫ

|∂xv| dx ≤ 4hαK1(t) . (4.18)

Finally, we bound the first term in (4.16). Multiply equation (4.6a) by φ and
integrate over (ǫ, 1)× (t, t+ h). Integration by parts yields
∫ 1

ǫ

φv(x) dx =

∫ t+h

t

∫ 1

ǫ

(∂xφ)
(

−x2∂xnǫ − n2
ǫ + 2xnǫ

)

dx dτ −
∫ t+h

t

φ(ǫ)n2
ǫ(ǫ, τ) dτ .

(4.19)

Note that |φ| ≤ 1 and |∂xφ| ≤ h−α‖ρ′‖1 By virtue of 0 ≤ nǫ ≤ S, we have
∫ 1

ǫ

φv dx ≤ h−α‖ρ′‖1
∫ t+h

t

∫ 1

ǫ

(|∂xnǫ|+ S2 + 2S) dx dτ +

∫ t+h

t

S(ǫ, τ)2 dτ

≤ h1−α‖ρ′‖1(K1(t) + 3‖S(·, t+ τ1)‖2∞) + h‖S(·, t+ τ1)‖2∞ .

Assembling all the bounds on the terms in (4.16) above, we obtain
∫ 1

ǫ

|v(x)| dx ≤ ‖S(·, t+ τ1)‖2∞(8hα + h+ 3h1−α‖ρ′‖1) +K1(t)(4h
α + h1−α‖ρ′‖1) .

Choosing α = 1
2 and determining K2(t) to correspond, the result in the lemma

follows. �

Finally, we have the following energy estimate.

Lemma 4.7. For any t > s > 0,
∫ 1

ǫ

n2
ǫ(x, t) dx+

∫ t

s

∫ 1

ǫ

[n2
ǫ + x2(∂xnǫ)

2] dx dτ ≤
∫ 1

ǫ

n2
ǫ(x, s) dx+

8

3
(t− s) . (4.20)

Proof. From equation (4.6a) and the boundary conditions (4.6c)–(4.6d) it follows

d

dt

∫ 1

ǫ

n2
ǫ dx = −2

∫ 1

ǫ

(∂xnǫ)Jǫ dx− 2n3
ǫ(ǫ, t) = −2

∫ 1

ǫ

[n2
ǫ + x2(∂xnǫ)

2]dx+ Γ(t) ,

with

Γ(t) = −2

3
n3
ǫ(1, t)−

4

3
n2
ǫ(ǫ, t) + 2n2

ǫ(1, t)− 2ǫn2
ǫ(ǫ, t) ≤ max

u>0

(

−2

3
u3 + 2u2

)

=
8

3
.

Hence, the claimed estimate follows by integration in time. �
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4.4. Proof of Proposition 4.1. We now show a solution of (2.3) does exist for
initial data nin

κ as prepared in subsection 4.1. Let nǫ be our solution of (4.6), for
small ǫ > 0.

Recalling the uniform estimates 0 < nǫ ≤ S(x, t+ τ1) from Lemmas 4.3 and 4.4,
and using Lemma 4.6, we see the family{nǫ} is uniformly bounded and equicontin-
uous in the mean on any compact subset of (0, 1]× [0,∞). Consequently, we may
extract a sequence ǫk ↓ 0 as k → ∞, such that for each a ∈ (0, 1) and T > 0, nǫk

converges to some function n, boundedly almost everywhere in [a, 1] × [0,∞) and
in C([0, T ];L1([a, 1])), with

∫ 1

a

|n(x, t+ h)− n(x, t)| dx ≤ Ch1/2 . (4.21)

Actually, this C is independent of a, so (4.21) holds also with a = 0. Moreover, due
to (4.20) we can ensure that

x∂xnǫk → x∂xn weakly in L2
loc(Q) .

We claim that n is a weak solution of (2.3). Multiply (4.6a) by a smooth test
function ψ with compact support in (0, 1]×(0,∞), and integrate over (ǫ, 1)×(0,∞)
with integration by parts to obtain, for small enough ǫ,

∫ ∞

0

∫ 1

ǫ

(

nǫ∂tψ − (x2∂xnǫ + n2
ǫ − 2xnǫ)∂xψ

)

= 0 . (4.22)

Setting ǫ = ǫk and letting k → ∞, we conclude that
∫ ∞

0

∫ 1

0

(

n∂tψ − (x2∂xn+ n2 − 2xn)∂xψ
)

= 0 (4.23)

for all smooth test functions ψ. By completion, we infer that (4.23) holds for all ψ
merely in H1 with compact support in Q. Hence n is a weak solution as claimed.

Since there may exist at most one such solution of (2.3), we conclude that the
whole family {nǫ} converges to n, as ǫ→ 0. This ends the proof of Proposition 4.1.
✷

4.5. Proof of Theorem 2.3. Our next task is to complete the proof of Theorem
2.3 by studying the solutions nκ from Proposition 4.1 in the limit κ→ 0.

By the Gronwall inequality from (2.6), for any fixed T > 0, and small κ1, κ2 > 0,

sup
t∈[0,T ]

∫ 1

0

xp|(nκ1 − nκ2)(x, t)| dx ≤ ecpt
∫ 1

0

xp|(nin
κ1

− nin
κ2
)(x)| dx . (4.24)

This with (4.1) implies that nκ is a Cauchy sequence in C([0, T ];L1(xpdx)), and
therefore there is a function n ∈ C([0, T ];L1(xpdx)) such that limκ→0 nκ = n. From
the local-in-time energy estimate (4.20) we have

∫ 1

0

n2
κ(x, t) dx +

∫ t

s

∫ 1

0

[n2
κ + x2(∂xnκ)

2] dx dτ ≤
∫ 1

0

n2
κ(x, s) dx +

8

3
(t− s) .

The right hand side, by virtue of 0 ≤ nκ(x, t) ≤ S(x, t), is bounded for any s > 0
by

∫ 1

0

S(x, s)2dx+
8

3
(t− s) <∞ .

Taking the limit κ → 0, we deduce that n and ∂xn lie in L2
loc(Q(0,T ]), and the

limit n is non-negative and satisfies (2.5d). This proves that n is indeed a weak
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solution of (2.3), as claimed. Moreover, from Lemma 4.4 it follows that the limit n
has the universal upper bound that for every t > 0,

n ≤ S(x, t) = x+
1− x

t
+

2√
t

for a.e. x ∈ (0, 1) ,

and Lemma 4.5 implies that for almost every (x, t) ∈ Q(0,T ], its slope has the
one-sided bound

∂xn ≥ −4

t
.

Finally, the limit function n ∈ C((0, T ], L2), due to the following estimate. With

ω(h) = sup
s≤t≤s+h

∫ 1

0

xp|n(x, t)− n(x, s)| dx , Cs = sup
x∈[0,1]

S(x, s) ,

whenever 0 < t− s < h is so small that α = ω(h)1/(p+1) < 1 we have
∫ 1

0

|n(x, t)− n(x, s)|2 dx ≤ C2
sα+ Csα

−p

∫ 1

α

xp|n(x, t)− n(x, s)| dx ≤ (C2
s + Cs)α .

By consequence, the energy estimate (2.9) follows from the one for nκ. This finishes
the proof of Theorem 2.3. ✷

5. Finite time condensation

The results of this section establish Theorem 2.5, demonstrating that loss of
photons is due to the generation of a nonzero flux at x = 0+, that such a flux
persists if ever formed, and that photon loss does occur if the initial photon number
exceeds the maximum attained in steady state.

Throughout this section, we let n be any global weak solution of (2.3).

5.1. Formula for loss of photon number. First, we show how any possible
decrease of photon number in time is related to the nonvanishing of n(0, t)2 =
n(0+, t)2, which is the formal limit of the flux J at the origin x = 0. The following
result implies part (i) of Theorem 2.5 in particular.

Lemma 5.1. For any fixed t > s > 0,
∫ 1

0+
n(x, t) dx =

∫ 1

0+
n(x, s) dx −

∫ t

s

n2(0, τ) dτ . (5.1)

Moreover, for any t > 0
∫ 1

0+
n(x, t) dx ≤ 1

2
+

1

2t
+

2√
t
. (5.2)

Proof. Integration of equation (4.6a) over (x, 1)× (s, t), using Jǫ(1, t) = 0, gives
∫ 1

x

nǫ(y, τ) dy
∣

∣

∣

τ=t

τ=s
= −

∫ t

s

(x2∂xnǫ(x, τ) + n2
ǫ(x, τ) − 2xnǫ(x, τ)) dτ .

Taking an average in x over (ǫ, a), we find

−
∫ a

ǫ

∫ 1

x

nǫ(y, τ) dy dx
∣

∣

∣

t

s
+

∫ t

s

−
∫ a

ǫ

n2
ǫ dx dτ =

∫ t

s

−
∫ a

ǫ

(2xnǫ − x2∂xnǫ) dx dτ . (5.3)

For the first term on the left-hand side, integrating on [x, 1] = [x, a]∪ [a, 1] we note

−
∫ a

ǫ

∫ 1

x

nǫ(y, τ) dy dx =

∫ 1

a

nǫ(y, τ) dy +R
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where, because ǫ ≤ x,

R = −
∫ a

ǫ

∫ a

x

nǫ(y, τ) dy ≤
(

−
∫ a

ǫ

∫ a

ǫ

nǫ(y, τ)
2 dy dx

)1/2 (

−
∫ a

ǫ

∫ a

ǫ

1 dy dx

)1/2

≤
(
∫ a

ǫ

n2
ǫ dy

)1/2

(a− ǫ)
1/2

≤ Csa
1/2 ,

due to the energy estimate in Theorem 2.4. The right-hand side in (5.3) is bounded
above by

(
∫ t

s

−
∫ a

ǫ

(2nǫ − x∂xnǫ)
2 dx dτ

)1/2 (∫ t

s

−
∫ a

ǫ

x2 dx dτ

)1/2

≤
(
∫ t

s

−
∫ a

ǫ

8n2
ǫ + 2x2(∂xnǫ)

2 dx dτ

)1/2
(

(t− s)a2
)1/2

≤
(
∫ t

s

∫ 1

ǫ

n2
ǫ + x2(∂xnǫ)

2 dx dτ

)1/2 (
8(t− s)a2

a− ǫ

)1/2

≤ Ct,s

(

a2

a− ǫ

)1/2

.

Passing to the limit ǫ ↓ 0 first, we have
∫ 1

a

n(x, τ) dx
∣

∣

∣

t

s
+

∫ t

s

−
∫ a

0

n2(x, τ) dx dτ = O(1)a1/2 .

The desired equality follows from further taking a ↓ 0. Moreover, by virtue of
n ≤ S, we have

∫ 1

0

n(x, t) dx ≤
∫ 1

0

S(x, t) dx =
1

2
+

1

2t
+ 2t−1/2,

for any t > 0. The proof is complete. �

Because n is a classical solution of ∂tn = ∂xJ for x, t > 0, by integration over
x ∈ [a, 1], τ ∈ [s, t] we can infer that the loss term in (5.1) arises from the exit
flux from the interval [a, 1] in the limit a → 0. Thus the following result provides
a precise sense in which the flux J(a, t) converges to n2(0, t) as a→ 0.

Corollary 5.2. Whenever t > s > 0 we have

lim
a→0+

∫ t

s

J(a, τ) dτ =

∫ t

s

n2(0, τ) dτ. (5.4)

5.2. Persistence of condensate growth. Next we prove part (ii) of Theorem 2.5,
showing that n(0, t) once positive will remain positive for all time. More precisely:

Lemma 5.3. If n(0, t∗) > 0 for some t∗ > 0, then n(0, t) ≥ b(t)x̂ for all t > t∗,
where

b(t) =
(

(1 + t∗/4)e2(t−t∗) − 1
)−1

, x̂ = min

{

t∗n(0, t∗)

4
, 1

}

.
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Proof. From ∂xn(x, t
∗) ≥ −4/t∗ we have

n(x, t∗) ≥
(

n(0, t∗)− 4x

t∗

)

+

≥ 4

t∗
(x̂ − x)+ = b(t∗)(x̂ − x)+ .

Hence n(x, t∗) ≥ n̂(x, t∗) with

n̂(x, t) = b(t)(x̂ − x)+ .

Note that n̂(1, t) = 0, and for 0 < x < x̂ we have

L[n̂] := ∂tn̂− x2∂2xn̂+ 2n̂− 2n̂∂xn̂ = (x̂− x)(b′(t) + 2b(t) + 2b(t)2) = 0 .

We claim n ≥ n̂ on (0, x̂] for t > t∗. Let ǫ > 0. Substitution of n = n̂+ v+ ǫΨ into
the equation L[n] = 0 gives

L̂[v] := ∂tv − x2∂2xv + 2v − 2v∂xn̂− 2n∂xv = −ǫL̂[Ψ] .

Choosing Ψ = −t+ log x, we have Ψ < 0 and

L̂[Ψ] = 2Ψ + 2Ψb− 2n

x
< 0 ,

hence L̂[v] > 0 for 0 < x < x̂, t ≥ t∗. For 0 < x ≤ σ for σ sufficiently small
(depending on ǫ),

v = n− n̂− ǫΨ ≥ −n̂+ ǫ(t− log σ) > 0 , ∀t > t∗ .

Moreover, at x = x̂ we have

v(x̂, t) = n(x̂, t) + ǫ(t− log x̂) > 0 .

These facts, together with the fact v(x, t∗) ≥ ǫ(t− log x) > 0, ensure that

v(x, t) > 0 , ∀t > t∗, x ∈ (0, x̂] .

Since ǫ > 0 is arbitrary, we infer

n(x, t) ≥ n̂(x, t) , ∀t ≥ t∗, x ∈ (0, 1] .

This gives the desired estimate upon taking x→ 0. �

5.3. Formation of condensates. The next result shows that photon loss will
occur—meaning a condensate will form—in finite time if the initial photon number
N [nin] > 1

2 . This proves part (iii) of Theorem 2.5. Note that 1
2 = N [x] is the

maximum photon number for any steady state.

Proposition 5.4. If N [nin] > 1
2 , then photon loss begins in finite time. More

precisely, we have n(0, t) > 0 whenever

1

2
√
t
<

√
1 + δ − 1 , where 2δ = N [nin]− 1

2
. (5.5)

Proof. From the supersolution obtained in Lemma 3.2 it follows that

n(x, t) ≤ x+
1− x

t
+ 2t−1/2 .

Integration in x over (0, 1) leads to

N [n(·, t)] ≤ 1

2
+

1

2t
+

2√
t
.
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Using Lemma 5.1 we have
∫ t

0

n(0, τ)2 dτ ≥ N [nin]− 1

2
− 2√

t
− 1

2t
= 2δ + 2− 2

(

1 +
1

2
√
t

)2

.

The right-hand side becomes positive when (5.5) holds. The conclusion then follows
from Lemma 5.3. �

5.4. Absence of condensates. Part (iv) of Theorem 2.5 follows from a simple
comparison: If nin(x) ≤ x, then since x = n0(x) is a steady weak solution, the
comparison property from Theorem 2.1 implies n(x, t) ≤ x for all t ≥ 0. Then
n(0+, t) = 0, so by part (a), no condensate is formed and we have

N [n(·, t)] = N [nin] for all t > 0 .

6. Large time convergence

We now investigate the large time behavior of solutions with non-trivial initial
data. In the system (2.3), the flux vanishes for any equilibrium:

0 = J = n2∂x

(

x− x2

n

)

. (6.1)

Consequently n = nµ for some constant µ ≥ 0, where

nµ(x) =
x2

x+ µ
.

Our main goal in this section is to prove Theorem 2.6, which means that for every
solution of (2.3) provided by Theorem 2.3 with nonzero initial data nin, there exists
µ ≥ 0 such that

‖n(·, t)− nµ‖1 =

∫ 1

0

|n(x, t)− nµ(x)| dx → 0 as t→ ∞. (6.2)

It will be convenient to denote by

n(·, t) = U(t)a

the solution of (2.3) with initial data nin(x) = a(x), x ∈ (0, 1). Due to the bound
n(x, t) ≤ S(x, t) that holds by Theorem 2.3(i), for t ≥ 1 any solution U(t)nin will
lie in the set

A := {a ∈ L∞(0, 1) : 0 ≤ a(x) ≤ 3 for a.e. x ∈ (0, 1)} ,
since S(x, 1) ≡ 3. The set A is positively invariant under the semi-flow induced by
the solution operator:

U(t)A ⊂ A , t ≥ 0 .

With the metric induced by the L1 norm,

ρ(n1, n2) = ‖n1 − n2‖1 ,
the set A is a complete metric space, and by Lemma 3.1, U(t) is a contraction: We
have

‖U(t)a− U(t)b‖1 ≤ ‖a− b‖1 .
whenever t ≥ 0 and a, b ∈ A.

For present purposes it is important that a stronger contractivity property also
holds, as shown in Lemma 3.1: Namely, if the functions a and b are C1 and cross
transversely, then for t > 0, U(t) strictly contracts the L1 distance between a
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and b. Based on these contraction properties and the one-sided Oleinik bound in
Theorem 2.3(ii), we proceed to establish the large time convergence (6.2).

We introduce the usual ω-limit set of any element a ∈ A as

ω(a) = ∩s>0 {U(t)a | t ≥ s} .
We have b ∈ ω(a) if and only if there is a sequence {tj} → ∞ such that ‖U(tj)a−
b‖1 → 0.

Lemma 6.1. (The ω-limit set) Let a ∈ A. Then ω(a) is not empty, and is invariant
under U(t), with

U(t)ω(a) = ω(a) , t > 0 . (6.3)

Moreover, for any b ∈ ω(a), b is smooth (at least C2 on (0, 1]) and satisfies

∂xb(x) ≥ 0 , 0 ≤ b(x) ≤ x , 0 < x < 1 . (6.4)

Proof. To show ω(A) is not empty, note that for any sequence tj → ∞, the estimates
from Lemma 4.6 show that {U(tj)a} is bounded in BV . By virtue of the Helley
compactness theorem, some subsequence converges in L1, and this limit belongs to
ω(a).

Next we prove (6.3). Given b ∈ ω(a), there exists tj such that

‖U(tj)a− b‖1 → 0 , j → ∞ .

From L1 contractivity and the semigroup property it follows that ‖(U(t + tj)a −
U(t)b‖1 → 0, hence U(t)b ∈ ω(a). On the other hand, if b ∈ U(t)ω(a), we have
b = U(t)b∗ with b∗ ∈ ω(a). Then for some sequence tj → ∞,

‖U(t+ tj)a− b‖1 = ‖U(t)U(tj)a− U(t)b∗‖1 ≤ ‖U(tj)a− b∗‖1 → 0

as j → ∞, hence b ∈ ω(a).
By relation (6.3), for each b ∈ ω(a) and t > 0, b = U(t)b∗ for some b∗ ∈ ω(a).

From this it follows b is smooth and that ∂xb ≥ −4/t and 0 ≤ b(x) ≤ S(x, t) by
Theorem 2.3. Taking t→ ∞, since S(x, t) → x we infer (6.4). �

Lemma 6.2. (Equilibria and ω(a)) (i) If nµ ∈ ω(a) for some µ ≥ 0, then

lim
t→∞

‖U(t)a− nµ‖1 = 0 . (6.5)

(ii) Let b ∈ ω(A). Then for any µ ≥ 0,

‖b− nµ‖1 = ‖U(t)b− nµ‖1 . (6.6)

(iii) If a 6≡ 0, then 0 /∈ ω(a).

Proof. (i) By definition, for any ǫ > 0, ‖U(tj)a−nµ‖1 < ǫ for large tj . This ensures
that for any t > tj ,

‖U(t)a− nµ‖1 = ‖U(t− tj)U(tj)a− U(t− tj)nµ‖ ≤ ‖U(tj)a− nµ‖1 < ǫ ,

hence (6.5).
(ii) Since b ∈ ω(A), there exists a ∈ A and a sequence {tj} such that tj → ∞ as
j → ∞ and

lim
t→∞

‖U(tj)a− b‖1 = 0 .

Given any µ ≥ 0, by contraction of U(t) we know that

‖U(t)a− nµ‖1 = ‖U(t)a− U(t)nµ‖1
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is decreasing in time and thus admits a limit cµ ≥ 0 as t → ∞, i.e.,

lim
t→∞

‖U(t)a− nµ‖1 = cµ , t→ ∞ .

Letting t = tj in the above equation and passing to the limit, we have

‖b− nµ‖1 = cµ .

Note that if b ∈ ω(a), then U(t)b ∈ ω(a); thereby

‖U(t)b− nµ‖1 = cµ .

Therefore (6.6) holds for ∀t > 0, µ ≥ 0.
(iii) Suppose a 6≡ 0, so that N [a] > 0. We claim 0 /∈ ω(a). Supposing 0 ∈ ω(a)

instead, we write n(·, t) = U(t)a. Then N [n(·, t)] = ‖U(t)a− 0‖1 is non-increasing
and approaches zero as t→ ∞. By Lemmas 5.1 and 5.3, then, a condensate forms
and n(0+, t) > 0 for all large t.

From the Oleinik-type lower bound of Theorem 2.3(ii), x < z < 1 entails n(x, t)−
4
t ≤ n(z, t). After integration from 1− x to 1 we find

(1− x)

(

n(x, t)− 4

t

)

≤ N [n(·, t)] .

For t large enough we have N [n(·, t)] < 1
16 and t > 32, and this ensures that

for all x ∈ [ 14 ,
1
2 ] , n(x, t) ≤ 2N [n(·, t)] + 4

t
<

1

4
≤ x .

Then, because n(0+, t) > 0, the last crossing point defined by

x1 = max{x ∈ (0,
1

4
] : n(x, t) = x} (6.7)

is well defined. Using again Theorem 2.3(ii), it now follows

0 ≤ n(x, t) ≤ x1 +
4

t
x1 for 0 < x < x1 ,

x ≥ n(x, t) ≥ x1 −
4

t
x1 for x1 < x < 2x1 .

From these inequalities, we deduce respectively that
∫ x1

0

|x− n(x, t)| dx ≤ x21

(

1 +
4

t

)

,

∫ 2x1

x1

|x− n(x, t)| dx ≤
∫ 2x1

x1

x dx− x21

(

1− 4

t

)

.

We may also assume t is so large that S(x, t) < 2x for 1
2 ≤ x ≤ 1. Then since

0 ≤ n(x, t) ≤ S(x, t), it follows
∫ 1

2x1

|x− n(x, t)| dx ≤
∫ 1

2x1

x dx .

Because x21(8/t) <
∫ x1

0 x dx, after adding the last three inequalities we find ‖x −
U(t)a‖1 < ‖x−0‖1. But then since ‖x−U(t)a‖1 is nonincreasing in t, it is impossible
that ‖U(t)a− 0‖1 → 0 as t→ ∞. This proves 0 /∈ ω(a). �

The following restatement of the result in Lemma 3.1 plays a critical role in
proving (6.2).
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Lemma 6.3. If a, b ∈ A ∩ C1((0, 1)) and a and b cross transversely at least once
on (0, 1), then

‖U(t)a− U(t)b‖1 < ‖a− b‖1 , t > 0 .

We are now ready to prove (6.2). Let a ∈ A with a 6≡ 0. By Lemma 6.1 we know
that ω(a) is not empty. Let b ∈ ω(a). We need to show there exists a µ ≥ 0 such
that

b = nµ . (6.8)

Since b 6≡ 0 and b is non-decreasing, the quantity

g(x) = x− x2

b(x)
,

which is the first variation δH/δn of entropy, is well defined in some non-empty
interval (x0, 1). If g is not a constant, there exists some x∗ ∈ (x0, 1) such that
g′(x∗) 6= 0. Then it follows that at x = x∗, with µ∗ = −g(x∗) we have

b =
x2

x− g(x)
= nµ∗ , ∂xb = ∂xnµ∗ +

x2g′

(x− g(x))2
6= ∂xnµ∗ .

In other words, b and nµ∗ cross transversely at x∗. Therefore by Lemma 6.3 we
have

‖U(t)b− U(t)nµ∗‖1 < ‖b− nµ∗‖1 .
This contradicts (6.6). We conclude that g must be a constant, i.e., g(x) = −µ,
which gives (6.8). From b 6= 0 and b ≤ x we see that µ ≥ 0.

Remark 6.1. Due to loss of mass, determining µ quantitively for each given initial
data is not straightforward, except for some special cases as treated in Corollary 2.7.

Proof of Corollary 2.7. If nin ≥ x, by the comparison result in Theorem 2.1, we
have

x ≤ n(x, t) , t > 0 .

On the other hand, the supersolution bound from Theorem 2.3(i) ensures that

n(x, t) ≤ x+
1− x

t
+ 2t−1/2.

These together lead to (2.10), hence limt→∞ n(x, t) = x.
In the case of nin ≤ x, we have n(x, t) ≤ x for all t. Then there is no mass loss,

hence the limiting equilibrium state nµ satisfies
∫ 1

0

nµ dx =

∫ 1

0

nin dx = N [nin] .

Integration of the left-hand side yields (2.11). �

Appendix A. Anisotropic Sobolev estimates.

For use in section 4 and Appendices B and C, we need some basic anisotropic
Sobolev estimates that are not easy to find in the extensive literature on the subject.
The results that we need appear to be related to embedding results for anisotropic
Besov spaces contained in the books [2]. For the reader’s convenience, however, we
provide a self-contained treatment based on simple estimates for Fourier transforms.

If Ω ⊂ R
2, the typical anisotropic Sobolev space is

u ∈W 2k,k
2 (Ω) = {u | Ds

xD
r
tu ∈ L2(Ω), 0 ≤ 2r + s ≤ 2k}.
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As usual, if a function u ∈ W 2k,k
2 (Ω), it will automatically belong to certain other

spaces, which depend on k and the dimension. One such space is Cγ,γ/2(Ω). We
say u ∈ Cγ,γ/2(Ω) if there is a constant K such that

|u(x, t)− u(y, τ)| ≤ K(|x− y|2 + |t− τ |)γ/2 ∀(x, t), (y, τ) ∈ Ω.

The space Cγ,γ/2(Ω) is a Banach space with norm given by

‖u‖Cγ,γ/2(Ω) = max
(x,t)∈Ω

|u(x, t)|+ sup
(x,t),(y,τ)∈Ω

|u(x, t)− u(y, τ)|
(|x− y|2 + |t− τ |)γ/2 .

The results we need are contained in the following result.

Theorem A.1. Let D = (a, b)×(c, d) be a rectangular domain in R
2. Suppose that

u and its distributional derivatives ∂tu and ∂2xu are in L2(D), i.e., u ∈ W 2,1
2 (D).

Then u ∈ C1/2,1/4(D), and there is a constant C depending on D and s such that

‖∂xu‖Ls(D) ≤ C‖u‖W 2,1
2 (D), 2 ≤ s < 6.

With very little more work, one can discuss higher-order embeddings and ar-
bitrary space dimensions. We will not provide the details here, but the result is
summarized as follows.

Theorem A.2. Let D be a bounded parabolic cylinder in R
n+1 with C1 spatial

boundary. Suppose that u ∈ W 2k,k
2 (D), then

(i) W 2k,k
2 →







Cγ,γ/2, γ = 2k − n+2
2 , k > n+2

4 ,
Ls, 2 ≤ s <∞, k = n+2

4 ,

Ls, 2 ≤ s < 2(n+2)
(n+2)−4k , k < n+2

4 .

(ii) C‖u‖W 2k,k
2

≥







‖∂xu‖∞, k > n
4 + 1,

‖∂xu‖Ls(D), 2 ≤ s <∞, k = n
4 + 1,

‖∂xu‖Ls(D), 2 ≤ s < 2(n+2)
(n+4)−4k , k < n

4 + 1.

The results in Theorem B.1 correspond to n = 1, k = 1 and the cases γ = 1/2
in part (i) and s ∈ [2, 6) in part (ii).

A.1. Fourier estimates in R
2. The Fourier transform for u ∈ L1(R2) is

û(ξ, l) =

∫

R2

u(x, t)e−2πi(xξ+tl)dx dt, (A.1)

which extends to a bounded linear map u → û from Lp to Lp′

, for 1 ≤ p ≤ 2 and
1/p+ 1/p′ = 1. Moreover, the Hausdorff-Young inequality holds:

‖û‖p′ ≤ ‖u‖p (A.2)

for u ∈ Lp. This simply interpolates ‖û‖∞ ≤ ‖u‖1 and the Plancherel theorem,
‖û‖2 = ‖u‖2. The continuity of û follows from the dominated convergence theorem.
In case û is integrable, one may recover u from û by

u(x, t) =

∫

R2

û(ξ, l)e2πi(xξ+tl)dξdl. (A.3)

We will deduce Theorem A.1 from the corresponding result on all of R2:

Theorem A.3. Suppose u ∈ W 2,1
2 (R2). Then u ∈ C1/2,1/4(R2). Moreover, ∂xu ∈

Ls(R2) for 2 ≤ s < 6, with

‖∂xu‖Ls(R2) ≤ C‖u‖W 2,1
2 (R2).
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To proceed, we first recall a characterization of W 2k,k
2 .

Lemma A.4. (Characterization of W 2k,k
2 (R2) by Fourier transform). Let k be a

nonnegative integer, and set

m(ξ, l) = (1 + l2 + |ξ|4)1/2.

Then u ∈ W 2k,k
2 (R2) if and only if mkû ∈ L2(R2). In addition, there exists a

constant C such that

C−1‖u‖W 2k,k
2

≤ ‖mkû‖L2 ≤ C‖u‖W 2k,k
2

.

The following two technical lemmas will be used as well.

Lemma A.5. For 0 ≤ α < 2β and β ≥ 1, we have

Aα,β := |ξ|α/mβ ∈ Ls(R2) if any only if s > max

{

3

2β − α
,
1

β

}

.

Proof. A direct calculation using the substitution l = y(1 + |ξ|4)1/2 gives

‖Aα,β‖ss =
∫

R2

|ξ|αs
(1 + l2 + |ξ|4)βs/2 dξ dl

=

∫

R2

|ξ|αs(1 + |ξ|4)1/2
(1 + y2)βs/2(1 + |ξ|4)βs/2 dξ dy

=

∫

R

dy

(1 + y2)βs/2

∫

R

|ξ|αs(1 + |ξ|4)1/2
(1 + |ξ|4)βs/2 dξ.

This is bounded if and only if βs > 1 and 2βs− 2 − αs > 1. That is, sβ > 1 and
s(2β − α) > 3. �

Lemma A.6. Let V (x) = |x| ∧ 1 := min{|x|, 1}. Then for some constant C > 0,

‖m−1V (rξ)‖2 + ‖m−1V (r2l)‖2 ≤ Cr1/2 for all r > 0. (A.4)

Proof. For the first term, substituting l = y(1 + |ξ|4)1/2 again, we find

‖m−1V (rξ)‖22 =

∫

R2

(|rξ| ∧ 1)2

(1 + l2 + |ξ|4)dξ dl

≤
∫

R2

(|rξ| ∧ 1)2(1 + |ξ|4)1/2
(1 + y2)(1 + |ξ|4) dξ dy

=

∫

R

dy

(1 + y2)

∫

R

(|rξ| ∧ 1)2

(1 + |ξ|4)1/2 dξ.

The first factor is finite. We proceed to decompose the last integral into two parts,
one over {ξ : |ξ| < r−1} and the other over {ξ : |ξ| > r−1}: The integrand is even,
and

∫ ∞

0

(|rξ| ∧ 1)2

(1 + |ξ|4)1/2 dξ =
∫ r−1

0

(r|ξ|)2
(1 + |ξ|4)1/2 dξ +

∫ ∞

r−1

1

(1 + |ξ|4)1/2 dξ

≤ r2
∫ r−1

0

dξ +

∫ ∞

r−1

|ξ|−2dξ = 2r.
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In a similar fashion, we estimate, using ξ = (1 + l2)1/4η,

‖m−1V (r2l)‖22 =

∫

R2

||r2l| ∧ 1|2
1 + l2 + |ξ|4 dξ dl

≤
∫

R2

(|r2l| ∧ 1)2

(1 + l2)3/4(1 + |η|4)dη dl

=

∫

R

dη

(1 + |η|4)

∫

R

(|r2l| ∧ 1)2

(1 + |l|2)3/4 dl.

The first integral is bounded; the second integral is further estimated by
∫ ∞

0

(|r2l| ∧ 1)2

(1 + |l|2)3/4 dl ≤
∫ r−2

0

(r2|l|)2
(1 + |l|2)3/4 dl +

∫ ∞

r−2

1

(1 + |l|2)3/4 dl

≤ r4
∫ r−2

0

|l|1/2dl +
∫ ∞

r−2

|l|−3/2dl

=

(

2

3
+ 2

)

r =
8

3
r.

These estimates together yield the bound (A.4) as claimed. �

Proof of Theorem A.3. From the inversion formula (A.3) it follows that

‖u‖∞ ≤ ‖û‖1 ≤ ‖mû‖2‖m−1‖2 ≤ C‖u‖W 2,1
2
,

where the bound on ‖m−1‖2 = ‖A0,1‖2 is ensured by Lemma A.5.

(i) Fix (x, t) 6= (y, τ) so that r =
√

|y − x|2 + |τ − t| > 0. Using the inequalities

|e2ia − e2ib| ≤ 2|a− b| ∧ 2 = 2V (a− b),

|(y − x) · ξ + (τ − t)l| ≤ r|ξ|+ r2|l|,
we obtain from the inversion formula and Lemma A.6 that

|u(x, t)− u(y, τ)| ≤ 2π

∫

(V (rξ) + V (r2l))|û(ξ, l)|dξ dl

≤ 2π(‖m−1V (rξ)‖2 + ‖m−1V (r2l)‖2)‖mû‖2
≤ Cr1/2‖u‖W 2,1

2
.

This proves the embedding W 2,1
2 (R2) → C1/2,1/4(R2).

(ii) For 2 ≤ s < 6 we have s′ = s
s−1 ≤ 2 and r > 3 where

1

r
=

1

2
− 1

s
.

We may then use the Hausdorff-Young inequality (A.2) and Lemma A.5 to obtain

‖∂xu‖s ≤ Cs‖ξû‖s′ ≤ ‖mû‖2‖A1,1‖r,≤ C‖u‖W 2,1
2
.

�

Proof of Theorem A.1. Let D be the given closed rectangle in R
2. For functions u

defined a.e. on D, we extend u from D to a larger rectangle D̂ containing D in its
interior, in two steps, using linear combinations of dilated reflections as shown in
Adams [1, Theorem 4.26]. The extension is to be made so that the weak derivatives
are preserved across ∂D.
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For instance, we reflect across the faces of D sequentially: First, from x faces

{a, b} with c ≤ t ≤ d, writing â = a− (b − a), b̂ = b+ (b− a), let

Exu(x, t) =







−3u(2a− x, t) + 4u(−x/2 + 3a/2), â ≤ x ≤ a,
u(x, t), a ≤ x ≤ b,

−3u(2b− x, t) + 4u(−x/2 + 3b/2), b ≤ x ≤ b̂.

and then from the t faces {c, d} in an entirely similar manner, such that

ũ = EtExu(x, t)

is an C1 extension when crossing ∂D and well-defined in D̂ = [â, b̂] × [ĉ, d̂]. Then
multiply by a fixed smooth cutoff function φ(x, t) that is 1 on D and 0 near the

boundary of D̂ to obtain

Eu = φ(x, t)EtExu(x, t).

In this way, given u such that ∂tu and ∂jxu are in L2(D) for j = 0, 1, 2, we obtain
Eu such that ∂tEu and ∂jxEu are in L2(R2) for j = 0, 1, 2. The extension E is thus

a bounded linear operator from ∈W 2,1
2 (D) to W 2,1

2 (R2). Moreover,

Eu = u a.e. in D,

Eu has support in D̂, and

‖Eu‖W 2,1
2 (R2) ≤ C‖u‖W 2,1

2 (D).

This combined with Theorem A.3 when applied to Eu proves Theorem A.1. �

Appendix B. Existence for the truncated problem

In this appendix, we establish the existence of a classical solution to the truncated
problem (4.6). We aim to prove Proposition 4.2. This global existence result does
not appear to follow easily from stated results in standard parabolic theories, due
to the fact that the boundary condition J = 0 at x = 1 is nonlinear. For the
convenience of the reader, we indicate how to establish Theorem 4.2 by use of an
approximation method that involves cutting off the nonlinear term in the flux J
together with interior regularity theory. This will result in a problem with standard
linear Robin-type boundary conditions, that still respects a maximum principle
which keeps the solution uniformly bounded.

B.1. Approximation by flux cut-off. We consider, then, the following problem.
Let χ(x) be a smooth, nondecreasing function with χ(x) = 0 for x < −1, χ(x) = 1
for x > 1 as in (4.4). For small h > 0 define χh(x) = χ(1 + (x− 1)/h), so that

χh(x) =

{

0 , x < 1− 2h ,

1 , x = 1 .
. (B.1)

Writing

Jh = x2∂xnh − 2xnh + n2
h + (3nh − n2

h)χh , (B.2)
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we consider the problem

∂tnh = ∂xJh , x ∈ (ǫ, 1), t ∈ (0,∞), (B.3a)

nh = nin
h , x ∈ (ǫ, 1), t = 0, (B.3b)

0 = Jh , x = 1, t ∈ [0,∞), (B.3c)

0 = ǫ2∂xnh − 2ǫnh, x = ǫ, t ∈ [0,∞) . (B.3d)

We construct the initial data nin
h from the given nin

κ so that at t = 0, the cut-off
flux Jh is the original Jǫ. Namely, we require that at t = 0,

Jh = x2∂xn
in
κ − 2xnin

κ + (nin
κ )

2 . (B.4)

We make nin
h (x) = nin

κ (x) for x < 1 − 2h, and use (B.4) to determine nin
h (x) for

x ∈ [1 − 2h, 1]. These initial data are compatible with the boundary conditions
(B.3c)–(B.3d). Clearly in the limit h ↓ 0, we have nin

h → nin
κ uniformly on [ǫ, 1].

B.2. Uniform bounds on the cut-off problem. Because χh(1) = 1, the bound-
ary condition in (B.3c) is linear in nh, taking the form

∂xnh = −nh x = 1, t ∈ [0,∞) . (B.5)

Moreover, note that (B.3a) takes the explicit form

∂tnh = x2∂2xnh − 2nh + (∂xnh)(2nh + (3− 2nh)χh) + (3nh − n2
h)χ

′
h . (B.6)

For this problem, comparison principles hold, whence we obtain positivity and
uniform sup-norm bounds on solutions.

Lemma B.1. Suppose min[ǫ,1] n
in
h > 0 and max[ǫ,1] n

in
h < M1 where M1 ≥ 3.

Suppose nh is a classical solution of (B.3) in [ǫ, 1]× (0, T ], with nh continuous on
[ǫ, 1]× [0, T ]. Then 0 < nh(x, t) < M1 for all (x, t) ∈ [ǫ, 1]× [0, T ].

Proof. The proof of strict positivity is similar to Lemma 4.2. To prove the upper
bound, suppose nh(X

∗) =M with X∗ = (x∗, t∗), where t∗ > 0 is minimal. Because
∂xnh = −nh < 0 holds at x = 1, and (B.3d) holds at x = ǫ, x∗ must lie strictly
between ǫ and 1. But because (B.6) holds and χ′

h ≥ 0, this is impossible. �

We may obtain global existence of a classical solution to problem (B.3) with cut-
off flux from the proof of Proposition 7.3.6 of [22], due to the time-uniform bounds
on nh in this Lemma, and the fact that the nonlinear terms in (B.3a) appear in the
divergence form Nh(nh) := ∂x(n

2
h(1 − χh)), which enjoys a local Lipschitz bound

in the L∞ norm of the form

‖Nh(u)−Nh(v)‖∞ ≤ K
(

‖u− v‖∞‖u‖C1 + ‖v‖∞‖u− v‖C1

)

, (B.7)

with K = 1 + ‖χ′
h‖∞.

From the proof of [22, Prop. 7.3.6], this solution nh is continuous on [ǫ, 1] ×
[0,∞) = Q̄ǫ, and the quantities ∂xnh, ∂tnh and ∂2xnh are continuous on [ǫ, 1] ×
(0,∞). However, these quantities are actually all continuous on Q̄ǫ by the local-
time existence theorem 8.5.4 of [22], due to the fact that the initial data are C3 and
satisfy the compatibility conditions. (A simple energy estimate for the difference,
along the lines of step 1 in subsection B.3 below, shows that the local solution given
by this theorem agrees with that given by Prop. 7.3.6.)

Additionally, these quantities are also locally Hölder-continuous on [ǫ, 1]×(0,∞),
due to the regularity results stated in [22, Prop. 7.3.3(iii)]. From standard interior
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regularity theory for parabolic problems (e.g., based on Theorem 8.12.1 of [20] and
bootstrapping), we infer that nh is smooth in Qǫ. In particular, the flux Jh is a
classical solution in Qǫ of the equation

∂tJh = x2∂2xJh + (∂xJh)(−2x+ 2nh + (3 − 2nh)χh) . (B.8)

Since Jh is continuous on Q̄ǫ, by the maximum principle it is bounded in terms
of its initial and boundary values—recall Jh = n2

h at x = ǫ. From this and the
sup-norm bound in the previous Lemma, we obtain (ǫ-dependent) uniform bounds
on ∂xnh.

Lemma B.2. There is a constant M2 depending on nin
κ and independent of h and

ǫ, such that |Jh|+ ǫ2|∂xnh| ≤M2 for all (x, t) ∈ Q̄ǫ,

B.3. Energy estimates. These are simpler than the corresponding ones in section
5, because here ǫ > 0 is fixed, and the initial data is smooth.

1. The basic energy estimate is (using that nh is positive and bounded)

d

dt

∫ 1

ǫ

1

2
n2
h dx =

∫ 1

ǫ

nh ∂xJh dx = nhJh

∣

∣

∣

1

ǫ
−
∫ 1

ǫ

(∂xnh)Jh dx

= −nh(ǫ, t)
3 −

∫ 1

ǫ

(∂xnh)(x
2∂xnh − 2xnh + n2

h + (3nh − n2
h)χh) dx

≤ − ǫ
2

2

∫ 1

ǫ

(∂xnh)
2 dx + C

∫ 1

ǫ

n2
h dx

Here C is independent of h and t, and after integration we conclude that ∂xnh (and
also Jh) is uniformly bounded independent of h in L2 on [ǫ, 1]× [0, T ], for any T .

2. For (x, t) ∈ Qǫ, the flux Jh satisfies (B.8), and we find

d

dt

∫ 1

ǫ

1

2
J2
h dx = Jh(x

2∂xJh)
∣

∣

∣

1

ǫ
−
∫ 1

ǫ

(x∂xJh)
2 dx

+

∫ 1

ǫ

Jh(∂xJh)(−4x+ 2nh + (3 − 2nh)χh)

≤ − ǫ
2

3
∂t(nh(ǫ, t)

3)− ǫ2

2

∫ 1

ǫ

(∂xJh)
2 dx+ C

∫ 1

ǫ

J2
h dx .

Upon integration in time, we conclude ∂xJh = ∂tnh is uniformly bounded inde-
pendent of h in L2 on [ǫ, 1]× [0, T ], for any given T . And further, using (B.2) for
x < 1− 2h, we deduce that ∂2xnh is uniformly bounded independent of h in L2 on
any compact set

[ǫ, 1− ǫ̂]× [0, T ] ⊂ [ǫ, 1)× [0,∞) (B.9)

fixed independent of h. (This does not work for ǫ̂ = 0 because χ′
h is not uniformly

bounded.)
3. Next, we have

d

dt

∫ 1

ǫ

1

2
(∂xJh)

2 dx = (∂xJh)(∂tJh)
∣

∣

∣

1

ǫ
−
∫ 1

ǫ

(∂2xJh)(∂tJh) dx

≤ −2nh(ǫ, t)(∂tnh(ǫ, t))
2 − ǫ2

2

∫ 1

ǫ

(∂2xJh)
2 dx+ C

∫ 1

ǫ

(∂xJh)
2 dx .

Because ∂xJh is continuous on Q̄ǫ, we may integrate this inequality over t ∈ [0, T ],
and use the bound on ∂xJh from the previous step, to conclude that ∂2xJh and ∂tJh
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are uniformly bounded independent of h in L2 on [ǫ, 1]× [0, T ]. By the anisotropic
Sobolev estimates in Appendix A, we deduce that ∂xJh is uniformly bounded in-
dependent of h in L4 on [ǫ, 1]× [0, T ], as well.

4. Lastly we derive an interior estimate on ∂3xJh. We define

β(x, t) = −2x+ 2nh + (3 − 2nh)χh , so ∂tβ = 2(1− χh)∂xJh .

Then
∂2t Jh = x2∂2x∂tJh + β∂x∂tJh + 2(1− χh)(∂xJh)

2, (B.10)

and we let η(x) = x− ǫ so that η(ǫ) = 0 and η′ = 1,

d

dt

∫ 1

ǫ

1

2
η2(∂tJh)

2 dx =

∫ 1

ǫ

η2(∂tJh)(∂
2
t Jh) dx

=

∫ 1

ǫ

η2(∂tJh)(β∂x∂tJh + 2(1− χh)(∂xJh)
2) dx

−
∫ 1

ǫ

η2x2(∂x∂tJh)
2 dx−

∫ 1

ǫ

(∂tJh)(∂x∂tJh)∂x(η
2x2) dx

≤ − ǫ
2

2

∫ 1

ǫ

η2(∂x∂tJh)
2 dx + C

∫ 1

ǫ

(∂tJh)
2 + (∂xJh)

4 dx

Because only know ∂tJh is continuous for t > 0, we integrate this over t ∈ [s, T ],
then over s ∈ [0, τ ], and use the bounds from the previous step. We infer that
η∂x∂tJh is uniformly bounded independent of h in L2 on [ǫ, 1]× [τ, T ]. Due to (B.8)
and (B.1), we infer that ∂t(∂xJh) and ∂

2
x(∂xJh) are uniformly bounded independent

of h in [ǫ+ ǫ̂, 1− ǫ̂]× [τ, T ], for any small fixed ǫ̂ > 0 and compact [τ, T ] ⊂ (0,∞).

B.4. Compactness argument. By the anisotropic Sobolev estimates in Appen-
dix A, from the bounds on ∂tJh and ∂2xJh in step 3 above, we have that Jh is
uniformly Hölder-continuous (independent of h) on any compact set

[ǫ, 1]× [0, T ] ⊂ [ǫ, 1]× [0,∞) = Q̄ǫ . (B.11)

Also, by the bounds on ∂tnh and ∂2xnh in step 2, nh is uniformly Hölder-continuous
on any compact set of the form in (B.9). From this we infer by (B.2) for x < 1− 2h
the same for ∂xnh. By step 4, ∂tnh = ∂xJh and ∂2xnh are uniformly Hölder-
continuous on any compact set

[ǫ+ ǫ̂, 1− ǫ̂]× [τ, T ] ⊂ (ǫ, 1)× (0,∞) . (B.12)

From the Arzela-Ascoli theorem and a diagonalization argument, along a subse-
quence of h→ 0 we get uniform convergence of: Jh to Jǫ in sets of form (B.11), nh

and ∂xnh to respective limits nǫ and ∂xnǫ in sets of form (B.9), and ∂tnh to ∂tnǫ

and ∂2xnh to ∂2xnǫ in sets of form (B.12), with all limits Hölder-continuous on the
indicated sets.

In the limit, the PDE ∂tnǫ = ∂xJǫ holds for (x, t) ∈ Qǫ, and

Jǫ = x2∂xnǫ − 2xnǫ + n2
ǫ , (x, t) ∈ [ǫ, 1)× [0,∞) . (B.13)

Because of the continuity of Jǫ on the sets in (B.11) and nǫ on the sets in (B.9),
by regarding (B.13) as an ODE for nǫ we deduce that nǫ and ∂xnǫ are continuous
on the sets in (B.11) also (i.e., up to the boundary x = 1), and both boundary
conditions in (4.6c)–(4.6d) hold.

From standard parabolic theory as before, we find that nǫ is smooth in Qǫ. This
concludes the proof of Proposition 4.2.
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Appendix C. Regularity away from the origin

What we seek to do in this section is to prove Theorem 2.4, providing sufficient
local regularity in the domain Q = (0, 1] × (0,∞) to infer that the solutions n
in Theorem 2.3 are classical, with at least the regularity needed for the strict
contraction estimate in Lemma 3.1. For higher regularity in the interior of Q
we will rely on standard parabolic theory via bootstrap arguments.

The idea is to obtain uniform local bounds on L2 norms of the solutions nh

of the flux-cutoff problem, the associated fluxes Jh in (B.2), and certain space-
time derivatives ∂αnh, ∂

βJh. These bounds will be independent of h, ǫ and the
smoothing parameter κ. The local L2 bounds on these derivatives are inherited
by ∂αnǫ, ∂

βJǫ in the limit h → 0, then by ∂αnκ, ∂
βJκ after taking ǫ → 0, and

then by ∂αn, ∂βJ after taking κ→ 0. Local Hölder-norm bounds for each quantity
v ∈ {n, ∂xn, ∂tn, ∂2xn} in Q will follow from the local L2 bounds on ∂tv and ∂2xv,
due to Theorem A.1.

In order to achieve this, we proceed to first obtain the needed estimates for nh

and Jh, independent of h, ǫ, and κ, and then pass to the limits. Select a smooth
function η̄ : R → [0,∞), convex and nondecreasing with 0 = η̄(0) < η̄(x) ≤ x for
x > 0. Weighted energy estimates with weight η(x) = η̄(x−ma) will yield uniform
estimates in L2(Wm), where the sets Wm ⊂ [ǫ, 1]× [s, T ] have the form

Wm = [(m+ 1)a, 1]× [ms, T ] , m = 1, 2, . . . , (C.1)

for a, s > 0 arbitrary but fixed independent of h, ǫ, and κ.
0. As a preliminary step, we seek a uniform pointwise bound on nh independent

of h, ǫ and κ, in domains of the form

[ǫ, 1]× [τ,∞), τ > 0. (C.2)

From the form of Jh and Jǫ it follows that

nh(x, t)− nǫ(x, t) = nh(1/2, t)− nǫ(1/2, t) +

∫ x

1/2

1

y2
(Jh − Jǫ) dy

+

∫ x

1/2

[

2

y
(nh − nǫ)−

1

y2
(n2

h − n2
ǫ)

]

dy +

∫ x

1−2h

1

y2
(n2

h − 3nh)χh dy.

Using the uniform convergence of nh to nǫ in [ǫ, 1− ǫ̂]× [0, T ] (proven previously),
and of Jh to Jǫ in [ǫ, 1]× [0, T ], as well as the bounds on nh in Lemma B.1 and on
nǫ ≤ S(x, t) in Lemma 4.4, we obtain the uniform convergence of nh toward nǫ as
h→ 0. Therefore, we get the following uniform pointwise bound independent of h,
ǫ, and κ: For any τ > 0, for sufficiently small h > 0 we have

0 < nh(x, t) ≤Mτ = max
x∈[0,1]

S(x, τ) + 1, (x, t) ∈ [ǫ, 1]× [τ,∞). (C.3)

(Here and below, the required smallness of h depends on κ, because the bound in
Lemma 4.4 depends on κ. But we will not mention this further.)
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1. Next we proceed to obtain bounds using weighted energy estimates. The
weighted energy estimate with η(x) = η̄(x− a) is

d

dt

∫ 1

ǫ

1

2
η2n2

h dx =

∫ 1

ǫ

η2nh ∂xJh dx = −
∫ 1

ǫ

(η2∂xnh + 2ηη′nh)Jh dx

= −
∫ 1

a

(η2∂xnh + 2ηη′nh)(x
2∂xnh − 2xnh + n2

h + (3nh − n2
h)χh) dx

≤ −1

2

∫ 1

a

(xη ∂xnh)
2 dx + C

∫ 1

a

(nh + n2
h)

2 dx.

By integration over t ∈ [s, T ] and using (C.3), we infer that

∫ T

s

∫ 1

2a

(xη ∂xnh)
2dx dt

≤
∫ 1

ǫ

η2n2
h(x, s) dx + C

∫ T

s

∫ 1

a

(nh + n2
h)

2 dx dt

≤ Cs , (C.4)

where Cs may depend on s (and T , but we suppress this dependence), but is
independent of h, ǫ, κ. Because η(2a) > 0, we conclude that ∂xnh, hence also
Jh, is uniformly bounded independent of h, ǫ and κ in L2(W1) (with a bound that
depends on a and s).

2. The cut-off flux Jh satisfies

∂tJh = x2∂2xJh + β∂xJh , (C.5)

with boundary condition Jh(1, t) = 0 for t > 0, where

β(x, t) = −2x+ 2nh + (3− 2nh)χh .

Multiply by η2Jh with η(x) = η̄(x− 2a), integrate by parts, and use the inequality
uv ≤ 1

4u
2 + v2 to obtain

d

dt

∫ 1

ǫ

1

2
η2J2

h dx

= −
∫ 1

ǫ

(xη ∂xJh)
2 dx+

∫ 1

ǫ

Jh(∂xJh)(η
2β − ∂x(x

2η2)) dx

≤ −
∫ 1

ǫ

(xη ∂xJh)
2 dx+

∫ 1

ǫ

|Jh∂xJh| · 2xηCs dx

≤ −1

2

∫ 1

ǫ

(xη ∂xJh)
2 dx+ Cs

∫ 1

2a

J2
h dx .

Integrating over t ∈ [τ, T ] first, then averaging over τ ∈ [s, 2s], we obtain

∫ T

2s

∫ 1

3a

(xη ∂xJh)
2dx dt

≤ 1

s

∫ 2s

s

∫ 1

2a

η2J2
h(x, τ)dx dτ + Cs

∫ T

s

∫ 1

2a

J2
h dx dt

≤ C(a, s). (C.6)
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Here we have used |Jh|2 ≤ C(x2|∂xnh|2 + n2
h + n4

h), (C.4) and the upper bound on
nh in (C.3). We conclude that ∂xJh is uniformly bounded in L2(W2), independent
of h, ǫ, κ. Thus ∂tnh (but not ∂2xnh) is uniformly bounded in the same L2 sense.

3. Let us write n1 = ∂tnh = ∂xJh. Then for t > 0,

∂tn1 = ∂xJ1, J1(1, t) = 0, (C.7)

where

J1 = ∂tJh = x2∂xn1 + βn1. (C.8)

Note that the validity of the zero-flux condition J1(1, t) = 0 is implied by the Hölder
continuity of J1. To see this is valid, set v = Jh−n2

h(1−χh). From (B.8) it follows
that v solves

∂tv − x2∂2xv = F,

subject to homogeneous boundary conditions, where the source term

F = ∂xJh(−2x+ 3χh) + x2∂2x(n
2
h(1− χh)).

From the results in Appendix B, F is locally Hölder-continuous on [ǫ, 1]× (0,∞).
Hence, J1 = ∂tv + 2nh∂tnh(1− χh) is continuous up to x = 1.

Multiply (C.7) by η2n1 with η(x) = η̄(x − 3a), and integrate in x over [ǫ, 1] to
obtain

d

dt

∫ 1

ǫ

1

2
η2n2

1 dx = −
∫ 1

ǫ

(η2∂xn1 + 2ηη′n1)(x
2∂xn1 + βn1) dx

≤ −
∫ 1

ǫ

(xη ∂xn1)
2 dx+

∫ 1

ǫ

(

(2x2ηη′ + |β|η2)|n1∂xn1|+ 2ηη′|β|n2
1

)

dx

≤ −1

2

∫ 1

ǫ

(xη ∂xn1)
2 dx+ Cs

∫ 1

3a

n2
1 dx .

Integrating over t ∈ [τ, T ] first, then over τ ∈ [2s, 3s], we obtain

∫ T

3s

∫ 1

4a

(xη ∂xn1)
2dx dτ

≤ 1

s

∫ 3s

2s

∫ 1

3a

η2n2
1(x, τ) dx dτ + Cs

∫ T

2s

∫ 1

3a

n2
1 dx dτ

≤ C(a, s), (C.9)

where the bound on n1 = ∂xJh in (C.6) from step 2 has been used. We conclude
that ∂2xJh and ∂tJh (by (C.5)) are uniformly bounded independent of h, ǫ, and κ in
L2 on W3, hence Jh is uniformly Hölder continuous on W3.

4. Next we compute ∂tJ1 to complete the estimates for classical solutions. Dif-
ferentiating (C.8) with respect to t we find that for t > 0,

∂tJ1 = x2∂2xJ1 + β∂xJ1 + ∂tβ n1, J1(1, t) = 0. (C.10)
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Recall that |β| ≤ Cs and note ∂tβ = 2(1− χh)∂xJh, hence |∂tβ| ≤ 2|n1|. Multiply
by η2J1 with η(x) = η̄(x− 4a), and integrate by parts to find

d

dt

∫ 1

ǫ

1

2
η2J2

1 dx+

∫ 1

ǫ

(xη ∂xJ1)
2 dx

=

∫ 1

ǫ

(βη2 − ∂x(x
2η2))J1(∂xJ1) + η2J1∂tβ n1 dx

≤ 1

2

∫ 1

ǫ

(xη ∂xJ1)
2 dx+ Cs

(
∫ 1

4a

J2
1 dx+

∫ 1

4a

n4
1 dx

)

.

Integrating over t ∈ [τ, T ] first, then averaging over τ ∈ [3s, 4s], we obtain
∫ T

4s

∫ 1

5a

(xη ∂xJ1)
2dx dt ≤ 1

s

∫ 4s

3s

∫ 1

4a

η2J2
1 (x, τ) dx dτ

+ Cs

∫ T

3s

(
∫ 1

4a

J2
1 dx +

∫ 1

4a

n4
1 dx

)

dt

≤ Cs

∫ T

3s

∫ 1

4a

(|∂xn1|2 + |∂xJh|2 + |n1|4) dx dt.

The first two terms are bounded using the bounds from the previous steps, (C.6)
and (C.9). Note also that n1 = ∂xJh is in L4(W3) due to an anisotropic embedding
theorem. Hence

∫ T

4s

∫ 1

5a

(xη ∂xJ1)
2dx dτ ≤ C(a, s). (C.11)

We can conclude that ∂xJ1 (= ∂x∂tJh = ∂t∂xJh = ∂2t nh) is bounded in L2(W4)
independent of h, ǫ, and κ.

5. After taking the limit h→ 0 along a suitable subsequence, we conclude from
steps 1 and 2 that ∂tnǫ = ∂xJǫ is uniformly bounded in L2(W2), hence the same
is true of ∂2xnǫ due to the form of Jǫ in (4.5). By Theorem A.1, nǫ is uniformly
Hölder-continuous on W2, independent of ǫ and κ.

Next we conclude from step 3 that Jǫ is uniformly Hölder-continuous onW3, and
the same is true of ∂xnǫ by (4.5).

From step 4 we then conclude ∂t∂xJǫ is uniformly bounded in L2(W4) and by
differentiating (4.5) we conclude the same for ∂3xJǫ. Therefore ∂xJǫ = ∂tnǫ is
uniformly Hölder-continuous on W4, and the same holds for ∂2xnǫ.

After taking the limits ǫ→ 0, and finally κ→ 0, these estimates ensure that the
weak solution n of Theorem 2.3 is a classical solution in Q = (0, 1]× (0,∞), with
the local Hölder regularity indicated in Theorem 2.4.
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