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Abstract. Polynomial filtering can provide a highly effective means of computing all eigenvalues
of a real symmetric (or complex Hermitian) matrix that are located in a given interval, anywhere
in the spectrum. This paper describes a technique for tackling this problem by combining a Thick-
Restart version of the Lanczos algorithm with deflation (‘locking’) and a new type of polynomial filters
obtained from a least-squares technique. The resulting algorithm can be utilized in a ‘spectrum-
slicing’ approach whereby a very large number of eigenvalues and associated eigenvectors of the
matrix are computed by extracting eigenpairs located in different sub-intervals independently from
one another.
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1. Introduction. The problem of computing a very large number of eigenval-
ues of a large sparse real symmetric (or complex Hermitian) matrix is common to
many applications in the physical sciences. For example, it arises in the Density
Functional Theory (DFT) based electronic structure calculations for large molecular
systems or solids, where the number of wanted eigenvalues can reach the order of tens
of thousands or more. While a number of codes were developed in the past for solving
large-scale eigenvalue problems [1, 2, 3, 6, 10, 11, 33, 39], these have not been de-
signed specifically for handling the situation when the number of targeted eigenpairs
is extremely large and when the eigenvalues are located well inside the spectrum. It
is only in the last few years that this difficult problem has begun to be addressed by
algorithm developers [6, 22, 30, 36].

Given an n × n real symmetric (or complex Hermitian) matrix A, the problem
addressed in this paper is to compute all of its eigenvalues that are located in a given
interval [ξ, η], along with their associated eigenvectors. The given interval should
be a sub-interval of the interval [λn, λ1], where λn and λ1 are the smallest and
largest eigenvalues of A, respectively. In this setting, two types of problems can be
distinguished. The most common situation treated so far in the literature is the case
when the interval [ξ, η] is located at one end of the spectrum, i.e., the case when either
ξ = λn or η = λ1. These are often termed extreme eigenvalue problems. Computing
all eigenvalues in a given interval is typically not an issue in this case. Here most
methods will work well. The second situation, when λn < ξ < η < λ1, is harder to
solve in general and is often called an ‘interior’ eigenvalue problem.
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Being able to efficiently compute the eigenvalues inside a given interval [ξ, η] con-
stitutes a critical ingredient in an approach known as ‘spectrum slicing’ for extracting
a large number of eigenpairs. Spectrum slicing is a divide and conquer strategy in
which eigenvalues located in different sub-intervals are computed independently from
one another. This is discussed in detail in the next section. A common approach to
obtain the part of spectrum in [ξ, η] is to apply the Lanczos algorithm or subspace
iteration to a transformed matrix B = ρ(A), where ρ is either a rational function or
a polynomial.

For extreme intervals, a standard Chebyshev acceleration within a subspace it-
eration code is exploited in [14] in DFT self-consistent field (SCF) calculations. For
interior intervals, the best known strategy is based on the shift-and-invert transforma-
tion, where the Lanczos algorithm or subspace iteration is applied to B = (A−σI)−1,
with the shift σ selected to point to the eigenvalues in the wanted interval (e.g., σ
can be selected as the middle of the interval). The shift-and-invert transformation
maps the eigenvalues of A closest to σ to the extreme ones of B. This technique may
be effective in some situations but it requires a factorization of the matrix A − σI
which can be prohibitively expensive for large matrices produced from 3D models. In
contrast, polynomial filtering essentially replaces (A − σI)−1 by a polynomial ρ(A)
such that all eigenvalues of A inside [ξ, η] are transformed into dominant eigenvalues
of ρ(A). Our experience in electronic structure calculations indicates that polynomial
filtering can perform quite well.

The earlier paper [6] described a filtered Lanczos approach for solving the same
problem. Though the basic idea of the present paper is also based on a combination
of polynomial filtering and the Lanczos process, the two approaches have fundamental
differences. First, the polynomial filters used in [6] are different from those of this
paper. They are based on a two-stage approach in which a spline function, called the
base filter, is first selected and then a polynomial is computed to approximate this
base filter. In the present paper, the filter is a simpler least-squares approximation to
the Dirac delta function with various forms of damping.

The second difference is that the projection method used in [6] is the Lanczos al-
gorithm with partial reorthogonalization [32] and no restart. In contrast, the present
paper uses the Lanczos algorithm with a combination of explicit deflation (‘locking’)
and implicit restart. A subspace iteration approach is also considered. In essence, the
projection methods used in this paper are geared toward a limited memory implemen-
tation. The choice of the filters puts an emphasis on simplicity as well as improved
robustness relative to [6].

The paper is organized as follows. Section 2 provides a high-level description of
the spectrum slicing strategy for computing a large subset of eigenvalues, which is
the main motivation for this work. Section 3 introduces a least-squares viewpoint for
deriving polynomial filters used in the eigenvalue computation. Section 4 discusses
how to efficiently combine the restarted Lanczos algorithm with polynomial filtering
and deflation. Numerical examples are provided in Section 5 and the paper ends with
concluding remarks in Section 6.

2. Motivation: Spectrum slicing. The algorithms studied in this paper are
part of a bigger project to develop a parallel package named EVSL (Eigen-Value
Slicing Library) for extracting very large numbers of eigenvalues and their associated
eigenvectors of a matrix. The basic methodology adopted in EVSL is a divide-and-
conquer approach known as spectrum slicing.
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2.1. Background. The principle of spectrum slicing is conceptually simple.
It consists of dividing the overall interval containing the spectrum into small sub-
intervals and then computing eigenpairs in each sub-interval independently.

For this to work, it is necessary to develop a procedure that is able to extract
all eigenvalues in a given arbitrary small interval. Such a procedure must satisfy two
important requirements. The first is that the eigenpairs in each sub-interval under
consideration are to be computed independently from any of the other sub-intervals.
The procedure should be as oblivious as possible to any other calculations. The only
possible exception is that we may have instances where checking for orthogonality
between nearby pairs will be warranted. The other requirement is that the procedure
under consideration should not miss any eigenvalue.

The idea of spectrum slicing by polynomial filtering is illustrated in Figure 2.1. In
this approach, the spectrum is first linearly transformed into the interval [-1, 1]. This
transformation is necessary because the polynomials are often expressed in Chebyshev
bases. The interval of interest is then split into p sub-intervals (p = 3 in the illus-
tration). In each of the sub-intervals we select a filter polynomial of a certain degree
so that eigenvalues within the sub-interval are amplified. In the illustration shown in
Figure 2.1, the polynomials are of degree 20 (left), 30 (middle), and 32 (right). High
intersection points of the curves delineate the final sub-intervals used.
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Fig. 2.1. Polynomial filters for 3 different slices.

2.2. Slicing strategies. The simplest way to slice a target interval is to divide
it uniformly into several sub-intervals of equal size. However, when the distribution
of eigenvalues is nonuniform, some intervals may contain many more eigenvalues than
others. An alternative is required so that the cost of computing eigenvalues within
each sub-interval is not excessive.

A better slicing strategy is to divide the interval based on the distribution of
eigenvalues. This can be done by exploiting algorithms for computing density of
states (DOS) [17]. We can use Newton’s method or a form of bisection to divide the
interval in such a way that each sub-interval contains roughly the same number of
eigenvalues. However, when the eigenvalues are not uniformly distributed, the size
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of each partitioned sub-interval can be quite different. As a result, we may have to
use filter polynomials with varying degrees on different slices. One advantage of this
slicing strategy is that we can ensure that roughly the same amount of memory is
required to compute eigenpairs within each sub-interval. This is especially important
for a parallel computational environment.

The optimal number of slices in which to partition the spectrum depends on
a number of factors such the efficiency of matrix-vector multiplications, the total
number of eigenpairs to be computed, etc. In a parallel computing environment, it
also depends on the number of processors available.

2.3. Parallel strategies. If a given interval contains many eigenpairs, we divide
it into a number of sub-intervals and map each sub-interval to a group of processors, so
that eigenvalues contained in different sub-intervals can be computed in parallel. This
strategy forms the basic configuration of parallel spectrum slicing and is illustrated
in Figure 2.2. A division of the initial interval into sub-intervals containing roughly
the same number of eigenvalues will prevent the orthogonalization and Rayleigh-Ritz
procedure from becoming a bottleneck. It will also limit the amount of work (hence
the granularity) associated with each concurrent subtask. When the number of sub-
intervals is much larger than the number of processor groups, dynamic scheduling
should be used to map each sub-interval to a processor group and launch the compu-
tation for several sub-intervals in parallel. Parallelism across slices constitutes only
one of the levels of parallelism. Another level corresponds to the matrix-vector oper-
ations which can be treated with graph partitioning.
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Fig. 2.2. The two main levels of parallelism in EVSL.

3. Least-squares polynomial filters. The article [6] relied on polynomial fil-
ters developed in [26]. These polynomials are computed as least-squares approxima-
tions to a base filter, typically a spline function. The base filter transforms eigenvalues
in the desired interval to values that are close to one and those outside the interval to
values that are close to zero. The advantage of this procedure is that it is very flexi-
ble since the base filter can be selected in many different ways to satisfy any desired
requirement. On the other hand, the procedure is somewhat complex. In EVSL we
will only use one type of filter namely, Chebyshev polynomial approximation to the
Dirac delta function.

3.1. Approximating the Dirac delta function. Since Chebyshev polynomi-
als are defined over the reference interval [−1, 1], a linear transformation is needed to
map the eigenvalues of a general Hermitian matrix A to this reference interval. This
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is achieved by the following transformation:

Â =
A− cI
d

with c =
λ1 + λn

2
, d =

λ1 − λn
2

. (3.1)

In other words, all work will be performed on the transformed matrix Â which now
has its eigenvalues in the interval [−1, 1]. In practice, the maximum (λ1) and the
minimum (λn) eigenvalues of A can be replaced by an upper bound λ̃1 and a lower
bound λ̃n obtained by adequate perturbations of the largest and smallest eigenvalues
obtained from a few steps of the standard Lanczos algorithm [40].

Assume that the matrix A is thus linearly transformed so that its eigenvalues are
in [−1, 1] and let γ be the value on which the Dirac delta function is to be centered.
Then, apart from a scaling by a constant, a formal expansion of this Dirac delta
function

ρk(t) =

k∑
j=0

µjTj(t), (3.2)

with

µj =

{
1
2 if j = 0
cos(j cos−1(γ)) otherwise

(3.3)

where Tj(t) is the Chebyshev polynomial of the first kind of degree j. Consider the
normalized sequence of Chebyshev polynomials:

T̂j =

{
Tj/
√
π if j = 0

Tj/
√
π/2 otherwise

(3.4)

which are orthonormal in that 〈T̂i , T̂j〉w = δij , where 〈· , ·〉w represents the Chebyshev
L2 inner product, and δij is the Kronecker delta function. Then, the formal expansion

of δγ is δγ ≈
∑k
j=0 µ̂j T̂j , where µ̂j = 〈T̂j , δγ〉w. Making the change of variables

t = cos θ and setting θγ = cos−1(γ), we get

µ̂j =

√
2− δj0
π

∫ π

0

cos(jθ)δθγdθ =

√
2− δj0
π

cos(jθγ).

Thus, it can be seen that
∑
µ̂j T̂j(t) = 2

π

∑
µjTj(t) with µj defined by (3.3).

The biggest attraction of the above expansion relative to the one used in [6] is its
simplicity. It has no other parameters than the degree k and the point γ on which
the Dirac delta function is centered. It may be argued that it is not mathematically
rigorous or permissible to expand the Dirac delta function, which is a distribution, into
orthogonal polynomials. Fortunately, the resulting polynomials obey an alternative
criterion.

Proposition 3.1. Let ρk(t) be the Chebyshev expansion defined by (3.2)–(3.3)
and let ρ̂k(t) be the polynomial that minimizes

‖r(t)‖w (3.5)

over all polynomials r of degree ≤ k, such that r(γ) = 1, where ‖.‖w represents the
Chebyshev L2-norm. Then ρ̂k(t) = ρk(t)/ρk(γ).
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Proof. It is known [35] that the unique minimizer of (3.5) can be expressed via
the Kernel polynomial formula:

ρ̂k(t) ≡
∑k
j=0 T̂j(γ)T̂j(t)∑k
j=0 T̂

2
j (γ)

. (3.6)

From the expression of T̂j in terms of Tj in (3.4), the above equation yields

ρ̂k(t) =
T0(γ)T0(t) +

∑k
j=1 2Tj(γ)Tj(t)

T 2
0 (γ) +

∑k
j=1 2T 2

j (γ)
=
T0(t)/2 +

∑k
j=1 Tj(γ)Tj(t)

T 2
0 (γ)/2 +

∑k
j=1 T

2
j (γ)

.

The numerator is equal to ρk defined by (3.2)–(3.3) and so the polynomials ρk and
ρ̂k are multiples of one another.

Least-squares polynomials of this type have been advocated and studied in the
context of polynomial preconditioning, where γ = 0; see [25, §12.3.3] and [24]. In
this case the polynomial ρ̂k(t) is the ‘residual polynomial’ used for preconditioning.
A number of results have been established for the special case γ = 0 in [24]. Here we
wish to consider additional results for the general situation where γ 6= 0.

The starting point is the alternative expression (3.6) of the normalized filter poly-
nomial ρ̂k(t). Next, we state a corollary of the well-known Christoffel-Darboux for-
mula on kernel polynomials shown in [5, Corollary 10.1.7]. When written for Cheby-
shev polynomials (3.4) of the first kind, this corollary gives the following result.

Lemma 3.2. Let T̂j, j = 0, 1, . . . be the orthonormal Chebyshev polynomials of
the first kind defined in (3.4). Then

m∑
j=0

[T̂j(t)]
2 =

1

2

[
T̂ ′m+1(t)T̂m(t)− T̂ ′m(t)T̂m+1(t)

]
. (3.7)

This will allow us to analyze the integral of ρ̂2k with respect to the Chebyshev weight.

Theorem 3.3. Assuming k ≥ 1, the following equalities hold:∫ 1

−1

[ρ̂k(s)]2√
1− s2

ds =
1∑k

j=0[T̂j(γ)]2
(3.8)

=
2π

(2k + 1)
× 1

1 +
sin(2k+1)θγ
(2k+1) sin θγ

, (3.9)

where θγ = cos−1 γ.

Proof. Let Dk ≡
∑k
j=0[T̂j(γ)]2. Since the sequence of polynomials T̂j is orthonor-

mal, (3.6) implies that

‖ρ̂k‖2w =

[
1

Dk

]2 k∑
j=0

[T̂j(γ)2] =
1

Dk
.

This shows (3.8). We now invoke Lemma 3.2 to evaluate Dk. Recall that T ′j(t) =
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j sin(jθ)/ sin(θ) where cos(θ) = t. Then we obtain, for any t = cos θ:

k∑
j=0

[T̂j(t)]
2 =

1

2

[
T̂ ′k+1(t)T̂k(t)− T̂ ′k(t)T̂k+1(t)

]
=

1

π

(k + 1) sin((k + 1)θ) cos(kθ)− k sin(kθ) cos((k + 1)θ)

sin θ

=
k

π
+

1

π

sin((k + 1)θ) cos(kθ)

sin θ

=
k

π
+

1

π

sin((k + 1)θ + kθ) + sin((k + 1)θ − kθ)
2 sin θ

=
2k + 1

2π
+

1

π

sin((2k + 1)θ)

2 sin θ
.

This leads to (3.9), by setting θγ = cos−1 γ, and factoring the term 2π/(2k + 1).
The term sin((2k + 1)θ)/((2k + 1) sin θ) in the denominator of (3.9) is related to

the Dirichlet Kernel [5]. It is a Chebyshev polynomial of the second kind of degree
2k normalized so that its maximum value is equal to one. Recall that for these
polynomials, which are often denoted by Um, we have Um(1) = m+ 1 and Um(−1) =
(−1)m(m+ 1) and these are the points of largest magnitude of Um. Hence sin((2k +
1)θ)/((2k + 1) sin θ) = U2k(t)/(2k + 1) ≤ 1, with the maximum value of one reached.
Just as important is the behavior of the minimum value which seems to follow a
pattern similar to that of other Gibbs oscillation phenomena observed. Specifically,
the minimum value seems to converge to the value -0.217... as the degree increases.
Three plots are shown in Figure 3.1 for illustration.
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 sin(m θ) / (m sin(θ))

m = 7

m=13

m=19

Fig. 3.1. The function sinmθ/(m sin θ) for m = 7, 13, 19

The above analysis shows that the integral in (3.8) decreases roughly like 2π/(2k+
1). It can help understand how the function is expected to converge. For example, in
Section 3.3 we will exploit the fact that at the (fixed) boundaries ξ, η of the interval the
polynomial value is bound to decrease as the degree increases, otherwise the integral
would remain higher than a certain value which would lead to a contradiction.

3.2. Oscillations and damping. As is well-known, expansions of discontinuous
functions lead to oscillations near the discontinuities known as Gibbs oscillations. To
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alleviate this behavior it is customary to add damping multipliers so that (3.2) is
actually replaced by

ρk(t) =

k∑
j=0

gkj µjTj(t). (3.10)

Thus, the original expansion coefficients µj in the expansion (3.2) are multiplied by
smoothing factors gkj . These tend to be quite small for the larger values of j that
correspond to the highly oscillatory terms in the expansion. Jackson smoothing, see,
e.g., [23, 12], is the best known approach. The corresponding coefficients gkj are given
by the formula

gkj =
sin((j + 1)αk)

(k + 2) sin(αk)
+

(
1− j + 1

k + 2

)
cos(jαk),

where αk = π
k+2 . More details on this expression can be seen in [12]. Not as well

known is another form of smoothing proposed by Lanczos [15, Chap. 4] and referred
to as σ-smoothing. It uses the following simpler damping coefficients instead of gkj ,
called σ factors by the author:

σk0 = 1; σkj =
sin(jθk)

jθk
, j = 1, . . . , k; with θk =

π

k + 1
.

Figure 3.2 shows an illustration of three filters of degree 20, one of which is without
damping and the others using the Jackson damping and the Lanczos σ-damping,
respectively. Scaling is used so that all 3 polynomials take the same value 1 at γ.
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Three  filters using different smoothing

 

 

No damping

Jackson

Lanczos σ

Fig. 3.2. Polynomial filters of degree 20 using 3 different damping techniques.

3.3. Choosing the degree of the filter. A good procedure based on polyno-
mial filtering should begin by selecting the polynomial and this cannot be left to the
user. It must be done automatically, requiring only the sub-interval [ξ, η] as input,
and optionally the type of damping to be used. The procedure we currently use starts
with a low degree polynomial (e.g., k = 3) and then increases k until the values of
ρk(ξ) and ρk(η) both fall below a certain threshold φ (e.g., φ = 0.6 for mid-interval
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filters, φ = 0.3 for end intervals). For example, in Figure 3.3, on the left side we would
get a degree of k = 15 when φ = 0.3 and on the right side k = 20 when φ = 0.6. Once
the degree has been selected, a post-processing is carried out to try to get a ‘balanced
polynomial’, i.e., one whose values at ξ and η are the same. This is discussed next.
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Jackson Chebyshev on [−1, −0.95]; deg. = 3 : 2 : 15
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Jackson Chebyshev on [0.3, 0.6]; deg. = 5 : 5 : 25

Fig. 3.3. Jackson-Chebyshev polynomial filters for a left-end interval (left) and a middle in-
terval (right).

3.4. Balancing the filter. It is preferable to have a filter ρk whose values at ξ
and η are the same to facilitate the selection of desired eigenvalues during the Lanczos
procedure. For this, a process is required in which the center γ of the Delta function
is moved. This is not a costly process but its effects are important. For example, it
now becomes easy to determine if a computed eigenvalue θ = ρk(λ) corresponds to
an eigenvalue λ that is inside or outside the interval [ξ, η]. If φ ≡ ρk(ξ) = ρk(η) then:

λ ∈ [ξ, η] iff θ ≡ ρk(λ) ≥ φ.

Thus, to find all eigenvalues λ ∈ [ξ, η] it suffices to find all eigenvalues of ρk(Â) that
are greater than or equal to φ. In the actual algorithm, this serves as a preselection
tool only. All eigenvalues θj ’s that are above the threshold φ are preselected. Then
the corresponding eigenvectors ũj ’s are computed along with the Rayleigh quotients
ũHj Aũj , which will be ignored if they do not belong to [ξ, η]. Additional details will
be given in the full algorithm described in Section 4.2.

To adjust the center γ so that ρk(ξ) = ρk(η), it is important to use the variable
θ = cos−1 t which plays a prominent role in the definition of Chebyshev polynomials.
We will denote by θx the angle θx = cos−1(x). Thus cos(θξ) = ξ, cos(θη) = η,
cos(θγ) = γ, etc. We then apply Newton’s method to solve the equation

ρk(ξ)− ρk(η) = 0, (3.11)

with respect to θγ , through the coefficients µj (see (3.10) and (3.3)). The polynomial
ρk can be written in terms of the variable θ = cos−1(t) as

ρk(cos θ) =

k∑
j=0

gkj cos(jθγ) cos(jθ).

Note that the first damping coefficient gk0 is multiplied by 1/2 to simplify notation,
so that the first term with j = 0 in the expansion is not 1 but rather 1/2. In this way
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Fig. 3.4. Balancing the polynomial filter. Here the center γ of the Dirac delta function is
moved slightly to the right to yield a balanced polynomial.

(3.11) becomes

f(θγ) ≡
k∑
j=0

gkj cos(jθγ)[cos(jθξ)− cos(jθη)] = 0. (3.12)

In order to solve this equation by Newton’s method, we need the derivative of f
with respect to θγ which is readily computable:

f ′(θγ) = −
k∑
j=0

gkj j sin(jθγ)[cos(jθξ)− cos(jθη)].

Furthermore, as it turns out, the mid-angle

θc =
1

2
(θξ + θη) (3.13)

already provides a good initial guess for a balanced filter, though the values at the
boundaries differ slightly as is shown in Figure 3.4. In fact, the initial value θc in
(3.13) is good enough to yield convergence of the Newton iteration in 1 or 2 steps
in many cases. However, there may be difficulties for low degree polynomials. Thus,
if the Newton’s scheme fails to converge in 2 steps, we compute the roots of (3.12)
exactly via an eigenvalue problem, see Appendix A.

4. The Thick-Restart filtered Lanczos algorithm with deflation. We now
discuss how to efficiently combine a Thick-Restart (TR) version of the Lanczos algo-
rithm with the polynomial filtering and deflation to compute all the eigenpairs inside
an arbitrary interval. Since we will apply the Lanczos algorithm to ρk(Â) instead of
A, the following discussion will deal with a given Hermitian matrix denoted by B, to
remind the reader of the use of spectral transformations in the actual computation.
A filtered subspace iteration scheme is also discussed.

4.1. The Lanczos algorithm. The Lanczos algorithm builds an orthonormal
basis of the Krylov subspace

Km = span{q1, Bq1, . . . , Bm−1q1}
10



by a Gram-Schmidt process in which, at step j, the vector Bqj is orthogonalized
against qj and (when j > 1) against qj−1. In the Lanczos algorithm the matrix B
is needed only in the form of matrix-vector products, which may be very economical
when B is sparse. In addition, no costly pre-processing is required as is the case for
codes based on shift-and-invert [13] or rational filtering [9, 22, 30, 31].

The sequence of vectors computed in the course of the Lanczos algorithm satisfies
the 3-term recurrence:

βi+1qi+1 = Bqi − αiqi − βiqi−1. (4.1)

Therefore, in principle only three Lanczos vectors need to be stored in main mem-
ory. As is well-known, in exact arithmetic, this 3-term recurrence would deliver an
orthonormal basis {q1, . . . , qm} of Km. In the presence of rounding, orthogonality be-
tween the qi’s is quickly lost, and so a form of reorthogonalization is needed in practice
and this will be discussed shortly. The Lanczos procedure is sketched in Algorithm 1,
in which matrix Qj ≡ [q1, . . . , qj ] contains the basis constructed up to step j as its
column vectors.

1: Input: a Hermitian matrix B ∈ Cn×n, and an initial unit vector q1 ∈ Cn.
2: q0 := 0, β1 := 0
3: for i = 1, 2, . . . ,m do
4: w := Bqi − βiqi−1
5: αi := qHi w
6: w := w − αiqi
7: Reorthogonalize: w := w −Qj(QHj w) . classical Gram-Schmidt
8: βi+1 := ‖w‖2
9: if βi+1 = 0 then

10: qi+1 = a random vector of unit norm that is orthogonal to q1, . . . qi
11: else
12: qi+1 := w/βi+1

13: end if
14: end for

Algorithm 1: The m-step Lanczos algorithm.

Let Tm denote the symmetric tridiagonal matrix

Tm =


α1 β2

β2 α2
. . .

. . .
. . . βm
βm αm

 , (4.2)

where the scalars αi, βi are those produced by the Lanczos algorithm. Relation (4.1)
can be rewritten in the form:

BQm = QmTm + βm+1qm+1e
H
m, (4.3)

where em is the mth column of the canonical basis and qm+1 is the last vector com-
puted by the m-step Lanczos algorithm. Let (θi, yi) be an eigenpair of Tm. In case of

ambiguity, (θ
(m)
i , y

(m)
i ) will denote the same eigenpair at the mth step of the process.
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Then the eigenvalues θ
(m)
i , known as Ritz values, will approximate some of the eigen-

values of B as m increases. The vectors u
(m)
i = Qmy

(m)
i , referred to as Ritz vectors,

will approximate the related eigenvectors of B. The Lanczos algorithm quickly yields
good approximations to extreme eigenvalues of B while convergence is often much
slower for those eigenvalues located deep inside the spectrum [21, 27].

As was already mentioned, the qi’s form an orthonormal basis in theory, but
in practice they loose their orthogonality soon after at least one eigenvector starts
converging, leading to an unstable underlying computation. This was studied in detail
by Paige in the 1970s [18, 19, 20]. A remedy to this problem is to reorthogonalize
the vectors when needed. Since we will use a restarted form of the Lanczos algorithm
with moderate dimensions, we decided to apply full re-orthogonalization to enforce
orthogonality among the qi’s to working precision (Line 7 in Algorithm 1).

4.1.1. Thick restart. The method Filtlan described in [6] essentially employs
the non-restarted Lanczos algorithm with B in the form of a polynomial in A and
the i loop is not halted after m steps but only when all eigenvalues inside the interval
are captured. One main issue with Filtlan is that if the number of eigenvalues
inside the interval is large or the eigenvalues near the boundaries of the interval
are clustered, then the number of Lanczos steps required by Filtlan may become
quite large and this can limit its applicability. This is because reorthogonalization is
necessary and becomes expensive. Memory cost becomes another issue as large bases
must now be saved. An undesirable feature of non-restarted procedures is that we
do not know in advance how big these bases can be, because the number of steps
required for convergence to take place is unknown. Therefore, for very large problems
for which limited memory procedures are required, restarting becomes mandatory. In
the algorithms described in this paper, we limit the total memory need to that of
m+ 1 vectors plus an additional set of nev vectors for the computed eigenvectors.

In a standard restarted procedure, an initial vector q is selected from the current
Lanczos iterations and the Lanczos procedure is restarted with this vector as the
initial vector q1. We adopt the TR procedure [34, 37] as it blends quite naturally
with the filtering technique employed here. The main idea of the TR procedures is to
restart not with one vector but with multiple “wanted” Ritz vectors. This technique
implements essentially the idea of implicit restarting [16] in a different form.

Here we recall the main steps of TR, assuming for simplicity that there are no
locked vectors yet. In this case, suppose that after m steps of the Lanczos algorithm,
we end up with, say l Ritz vectors u1, u2, . . . , ul that we wish to use as the restarting
vectors along with the last vector qm+1. An important observation is that each Ritz
vector has a residual in the direction of qm+1 [27]. Specifically, we have

(B − θiI)ui = (βm+1e
T
myi)qm+1 ≡ siqm+1, for i = 1, . . . , l. (4.4)

Let q̂i = ui and q̂l+1 = qm+1. Rewriting (4.4) in a matrix form, it follows that

BQ̂l = Q̂lΘl + q̂l+1s
H , (4.5)

where Q̂l = [q̂1, . . . , q̂l], the diagonal matrix Θl consists of the corresponding Ritz
values, and the vector sH is given by sH = [s1, . . . , sl]. After restart, to perform one
step from q̂l+1, we proceed as in the Arnoldi algorithm:

βl+2q̂l+2 = Bq̂l+1 −
l+1∑
i=1

(Bq̂l+1, q̂i)q̂i = Bq̂l+1 −
l∑
i=1

siq̂i − αl+1q̂l+1, (4.6)
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where αl+1 = (Bq̂l+1, q̂l+1). Thus, after completing the first step after the restart, we
get the factorization

BQ̂l+1 = Q̂l+1T̂l+1 + βl+2q̂l+2e
H
l+1 with T̂l+1 =

(
Θl s
sH αl+1

)
. (4.7)

From this step on, the algorithm proceeds in the same way as the standard Lanczos
algorithm, i.e., q̂k for k ≥ l + 3 is computed using the 3-term recurrence, until the
dimension reaches m, and the matrix T̂m will be completed by the tridiagonal sub-
matrix consisting of αk and βk. An induction argument will show that a vector qj
computed in this way will be orthogonal to all previous qi’s.

4.1.2. Deflation. In addition to TR, an essential ingredient to the success of the
procedure is the inclusion of ‘locking’, i.e., explicit deflation. Once an eigenpair has
converged, we add the eigenvector as a column to a set U of the computed eigenvectors
and exclude it from the search subspace, i.e., we will compute the eigenpairs of (I −
UUH)B in the subsequent iterations. There are several benefits to the use of locking.
First, all the locked eigenvalues will be transformed to zeros. This is critical because
when deflation is used, an eigenvector cannot be computed a second time. Second,
deflation helps to capture any eigenpair that is still left in the interval. In essence
this procedure acts as a form of preconditioning by creating larger gaps among the
eigenpairs not yet discovered, resulting in faster convergence. Finally, locking provides
an efficient means to compute multiple or clustered eigenvalues without resorting to
a block method. Since the filter ρk may transform some distinct eigenvalues inside
[ξ, η] into multiple ones, locking becomes necessary to prevent missing eigenvalues.

4.2. Practical details. We now put together the three important ingredients
of polynomial filtering, restarting, and deflation. In its simplest form, the filtered
Lanczos procedure will first perform m steps of the Lanczos algorithm with the matrix
B = ρk(Â), and then it will restart. Once the m Lanczos steps are executed we obtain
m Ritz values θ1, θ2, . . . , θm, such that

θ1 ≥ θ2 ≥ · · · ≥ θl ≥ ρk(ξ) > · · · ≥ θm.

These are eigenvalues of the tridiagonal matrix Tm in (4.2), with y1, y2, . . . , ym being
the associated eigenvectors. The approximate eigenvectors of B are the Ritz vectors
uj = Qmyj . Recall from Section 3 that when the polynomial filter is constructed, we
select a “bar” value φ, equal to ρk(ξ) and ρk(η), that separates the wanted eigenvalues
(those in [ξ, η] ) from unwanted ones. The eigenvalues θi below φ, i.e., θl+1, . . . , θm,
are discarded. For θ1, . . . , θl, we compute the associated (unit norm) Ritz vectors
u1, u2, . . . , ul and evaluate their Rayleigh quotients relative to A, which is λ̃i = uHi Aui.
A second check is performed at this point that discards any λ̃i falls outside [ξ, η] .

For the remaining approximate eigenpairs (λ̃i, ui) we compute the residual norms
‖Aui− λ̃iui‖2. If a Ritz pair has converged, we add the Ritz vector to the “locked set”
of vectors. All future iterations will perform a deflation step against such a set. The
other, unconverged, candidate eigenvector approximations are added to the “TR set”,
and the algorithm is then restarted. Thus, there are three types of basis vectors used
at any given step: the locked vectors (converged eigenvectors), the vectors selected
for TR, and the remaining Lanczos vectors. The whole procedure is sketched in
Algorithm 2.

The following notes may help clarify certain aspects of the algorithm. Lines 6-9
execute a cycle of the Lanczos procedure that performs matrix-vector products with
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1: Input: a Hermitian matrix A ∈ Cn×n, and an initial unit vector q1 ∈ Cn.
2: Obtain polynomial ρk(t) and “bar” value φ
3: q0 := 0, β1 := 0, Its := 0, lock := 0, l := 0, U := [ ]
4: while Its ≤MaxIts do
5: If l > 0, perform a TR step (4.6), which results Q̂l+2 and T̂l+1 in (4.7)
6: for i = l + 1, . . . ,m do
7: Perform Lines 4 to 13 of Algorithm 1 with B = (I − UUH)ρk(Â)
8: Set Its := Its+ 1
9: end for

10: Result: Q̂m+1 ∈ Cn×(m+1), T̂m ∈ Rm×m
11: Compute candidate Ritz pairs, i.e., (θj , uj) with θj ≥ φ
12: Set Q̂ := [ ] and l := 0
13: for each candidate pair (θj , uj) do

14: Compute λ̃j = uHj Auj

15: If λ̃j /∈ [ξ, η] ignore this pair

16: if {(λ̃j , uj) has converged} then
17: Add uj to Locked set U := [U, uj ]
18: Set lock := lock + 1
19: else
20: Add uj to TR set Q̂ := [Q̂, uj ]
21: Set l := l + 1
22: end if
23: end for
24: if {No candidates found} or {No vectors in TR set} then
25: Stop
26: end if
27: end while

Algorithm 2: The Filtered Lanczos algorithm with TR and deflation.

ρk(Â) and orthonormalizes the resulting vectors against the vectors in the locked set.
In Line 11, eigenpairs of the tridiagonal matrix Tm are computed and the Ritz values
below the threshold φ are rejected. The algorithm then computes the Ritz vectors
associated with the remaining Ritz values. The loop starting in Line 13 determines if
these are to be rejected (Line 15), put into the Locked set (Lines 16-18), or into the
TR set (Lines 20-21).

To reduce computational costs, it is preferable to restart whenever enough eigen-
vectors have converged for B. In Algorithm 2, the Lanczos process is restarted when
the dimension reaches m, i.e., when i = m. A check for early restart is also trig-
gered whenever every Ncycle steps have been performed and Ntest steps have been
executed since the last restart, i.e., when Its mod Ncycle = 0 and i ≥ l + Ntest.
In our implementation, Ntest = 50 and Ncycle = 30 are used. In this check, an
eigendecomposition of Ti is performed and the number of eigenvalues larger than φ,
that have converged, is counted. If this number is larger than nev − lock, where nev
is an estimate of the number of eigenvalues inside the concerned interval given by the
DOS algorithm, the algorithm breaks the i loop and restarts.

Another implementation detail is that the orthogonalizations in Line 7 of Al-
gorithm 1 and Line 7 of Algorithm 2 consist of at most two steps of the classical
Gram-Schmidt orthogonalization [7, 8] with the DGKS [4] correction.
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4.3. Filtered subspace iteration. The described filtering procedure can also
be combined with subspace iteration [27], which may be advantageous in certain
applications, such as in electronic structure calculations based on Density Function
Theory (DFT) [29]. This section gives a brief description of this approach to point
out the main differences with the TR Lanczos.

Given a matrix B and block X of s approximate eigenvectors, the subspace iter-
ation is of the form X̄ ← BX, where the columns of X̄ are then transformed via the
Rayleigh–Ritz step into Ritz vectors that are used as an input for the next iteration.
The process is repeated until convergence is reached, and is guaranteed to deliver
eigenvectors corresponding to the s dominant eigenvalues of B, i.e., those with largest
magnitude. The method is attractive for its remarkable simplicity, robustness, and
low memory requirement [28]. In contrast to the Lanczos algorithm, it provides more
flexibility in enabling the use of a good initial guess, which can lead to a significant
reduction of computations in some situations. Furthermore, as a block method, the
subspace iteration offers an additional level of concurrency and allows for a more
intensive use of BLAS3 operations.

When combined with filtering, the subspace iteration is applied to the matrix
B = ρk(Â), whose largest eigenvalues are the images of the wanted eigenvalues of
A from [ξ, η] under the approximate delta function transform ρk(t). This behavior
is different from that of the filtered Lanczos method, which also converges to the
bottom part of the spectrum of B, and therefore requires detection of converged
smallest eigenvalues as is done in step 11 of Algorithm 2 that selects the Ritz values
above the threshold φ.

Note that, subspace iteration requires a reasonable estimate s of the number
of eigenvalues of A in the interval [ξ, η]. As has already been discussed, such an
estimate can be obtained, from the DOS algorithm [17], and should ideally only
slightly exceed the actual number of wanted eigenvalues. Moreover, subspace iteration
can also benefit from deflation of the converged eigenpairs [27, 38].

5. Numerical experiments. FiltLanTR has been implemented in C and the
experiments in Sections 5.1-5.2 were performed in sequential mode on a Linux machine
with Intel Core i7-4770 processor and 16G memory. The OpenMP experiments in
Section 5.3 were performed on a node of Cori (Cray XC40 supercomputer, Phase I) at
the National Energy Research Scientific Computing Center (NERSC). Each node of
this system has two sockets, with each socket populated with a 16-core Intel “Haswell”
processor at 2.3 GHz (i.e., 32 cores per node), and is equipped with 128 GB of DDR4
2133Mhz MHz memory. The code was compiled with the gcc compiler using the -O2
optimization level. The convergence tolerance for the residual norm was set at 10−8

and the Lanczos σ-damping was used for all polynomial filters.

5.1. 3D Laplacian. We first use a model problem to illustrate the effects of the
“bar” value φ and the number of slices on the performance of FiltLanTR. The model
problem was selected as a negative Laplacian−∆ operator subject to the homogeneous
Dirichlet boundary conditions over the unit cube [0, 1]3. Discretizing this operator
on a 60× 60× 60 grid with the 7-point stencil results in a matrix of size n = 216, 000.
The spectrum of this matrix is inside the interval [0.00795, 11.99205]. The goal is to
compute all the 3406 eigenpairs inside the interval [0.6, 1.2].

Selection of φ. In the first experiment we fixed the number of slices at 10 and
varied the value of φ to study its influence on FiltLanTR. The DOS algorithm [17]
was exploited to partition [0.6, 1.2] into 10 slices [ξi, ηi]i=1,...,10 so that each [ξi, ηi]
contains roughly 340 eigenvalues, as shown in the second column of Table 5.1. To

15



validate the effectiveness of this partitioning, the exact number of eigenvalues in each
[ξi, ηi] is provided in the third column of the same table. As can be seen, the difference
between the approximate and the exact number is less than 10 for most sub-intervals.
In the following discussion, we will refer to each sub-interval by its index i shown in
the first column of Table 5.1.

Table 5.1
Partitioning [0.6, 1.2] into 10 sub-intervals for the 3D discrete Laplacian example.

i [ξi, ηi] ηi − ξi #eigs
1 [0.60000, 0.67568] 0.07568 337
2 [0.67568, 0.74715] 0.07147 351
3 [0.74715, 0.81321] 0.06606 355
4 [0.81321, 0.87568] 0.06247 321
5 [0.87568, 0.93574] 0.06006 333
6 [0.93574, 0.99339] 0.05765 340
7 [0.99339, 1.04805] 0.05466 348
8 [1.04805, 1.10090] 0.05285 339
9 [1.10090, 1.15255] 0.05165 334
10 [1.15255, 1.20000] 0.04745 348

The computations of the eigenpairs were performed independently for each sub-
interval. The Krylov subspace dimension and the maximum iteration number were
set as 4nev and 16nev, respectively, where nev is the estimated number of eigenvalues
in each sub-interval. In this example we have nev = 341.

Tables 5.2-5.4, show results of the FiltLanTR runs for which the values of φ
have been set to 0.6, 0.8, and 0.9, respectively. The tables list the degree of the
filter polynomials, the number of total iterations, number of matrix-vector products
(matvecs), the CPU time for matrix-vector products, the total CPU time, as well as
the maximum and average residual norms of the computed eigenpairs. The following
observations can be made. With a fixed φ, the iteration number is almost the same
for each [ξi, ηi] (especially in Tables 5.2 and 5.4). However, the filter degree grows
for sub-intervals deeper inside the spectrum. This results in a higher computational
cost per iteration, as indicated by the increase in the number of matvecs and the CPU
time in columns five and six. Note that the computational accuracy remains identical
for different sub-intervals.

We next study how the statistics in Tables 5.2-5.4 change as φ increases. We
illustrate this change through barcharts in Figure 5.1. The first plot in Figure 5.1
shows that the degree of the filter decreases monotonically as φ increases for all 10
intervals. This is expected from the way the polynomial is selected; see Section 3.1
and Figure 3.3. The second subfigure in the same row indicates that fewer iterations
are needed if a smaller φ is specified. Thus, if available memory is tight one can trade
memory for computation by setting φ to a lower value, which would lead to high
degree polynomials and fewer iterations of FiltLanTR. These first two subfigures lead
to the conclusion that the total number of iterations and the polynomial degree change
in opposite directions as φ changes. It is hard to predict the value of their product,
which is the total number of matvecs.

However, the first plot on the second row of Figure 5.1 indicates that a smaller φ
can lead to a larger number of matvecs. Subfigure (2,2) suggests using a moderate φ
to reach an optimal performance over all sub-intervals in terms of the iteration time.
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Table 5.2
Numerical results for the 3D discrete Laplacian example with φ = 0.6. The number of eigen-

values found inside each [ξi, ηi] is equal to the exact number shown in Table 5.1.

Interval deg iter matvecs
CPU Time (sec.) Residual
Matvecs Total Max Avg

1 172 1567 270055 551.36 808.33 3.30×10−9 2.90×10−11

2 192 1514 291246 594.83 840.29 4.70×10−9 4.79×10−11

3 216 1513 327395 671.19 918.16 3.30×10−9 3.20×10−11

4 237 1516 359863 736.95 973.66 7.80×10−9 7.08×10−11

5 254 1543 392525 803.71 1051.91 8.50×10−11 1.20×10−12

6 272 1511 411622 843.84 1084.82 4.90×10−9 5.57×10−11

7 294 1562 459897 943.33 1202.39 4.50×10−9 3.61×10−11

8 311 1511 470589 965.23 1205.87 1.50×10−9 2.64×10−11

9 325 1565 509308 1045.54 1300.20 1.10×10−9 1.73×10−11

10 361 1538 555948 1140.49 1392.46 3.80×10−9 3.76×10−11

Table 5.3
Numerical results for the 3D discrete Laplacian example with φ = 0.8. The number of eigen-

values found inside each [ξi, ηi] is equal to the exact number shown in Table 5.1.

Interval deg iter matvecs
CPU Time(sec.) Residual

Matvecs Total Max Avg
1 116 1814 210892 430.11 759.24 6.90×10−9 7.02×10−11

2 129 2233 288681 587.14 986.67 5.30×10−9 7.39×10−11

3 145 2225 323293 658.44 1059.57 6.60×10−9 5.25×10−11

4 159 1785 284309 580.09 891.46 3.60×10−9 4.72×10−11

5 171 2239 383553 787.00 1180.67 6.80×10−9 9.45×10−11

6 183 2262 414668 848.71 1255.92 9.90×10−9 1.13×10−11

7 198 2277 451621 922.64 1338.47 2.30×10−9 3.64×10−11

8 209 1783 373211 762.39 1079.30 8.50×10−9 1.34×10−10

9 219 2283 500774 1023.24 1433.04 4.30×10−9 4.41×10−11

10 243 1753 426586 874.11 1184.76 5.70×10−9 1.41×10−11

The default value of φ is set to 0.8 in the subsequent experiments.

Selection of the number of slices. In the second experiment we fixed the value of
φ at 0.8 and varied the number of slices. The same 3D discrete Laplacian eigenvalue
problem was tested with 2, 5, 15 and 20 slices. The detailed computational results
are tabulated in Appendix B. For each value of the number of slices, we averaged
the statistics from this table across the different slices and show the results in Table
5.5. From the second column of Table 5.5, we see that on average the degree of
the polynomial filters increases (roughly) linearly with the number of slices. This
observation is further supported by the first plot in Figure 5.2.

If the number of iterations per slice decreases linearly with an increasing number
of slices, then a constant matvec number and computational time per slice would be
expected in the fourth and fifth columns of Table 5.5. However, this is not the case
due to a slower reduction of the iteration number, as shown in the second plot of the
first row of Figure 5.2. The total iteration time essentially consists of two parts: the
matrix-vector product time and the reorthogonalization time. With too few slices,
it is reorthogonalization that dominates the overall computational cost. By contrast,
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Table 5.4
Numerical results for the 3D discrete Laplacian example with φ = 0.9. The number of eigen-

values found inside each [ξi, ηi] is equal to the exact number shown in Table 5.1.

Interval deg iter matvecs
CPU Time (sec.) Residual
Matvecs Total Max Avg

1 80 2636 211409 436.11 1006.91 9.90×10−9 1.90×10−10

2 89 2549 227419 468.14 990.79 9.30×10−9 1.62×10−10

3 100 2581 258682 533.39 1076.35 8.80×10−9 1.80×10−10

4 110 2614 288105 594.18 1140.08 9.90×10−9 1.50×10−10

5 118 2606 308109 635.90 1185.56 9.80×10−9 2.17×10−10

6 126 2613 329855 681.94 1235.23 6.40×10−9 1.18×10−10

7 137 2629 360834 746.59 1311.34 8.10×10−9 9.06×10−11

8 145 2603 378099 781.48 1324.18 5.00×10−9 3.45×10−11

9 151 2581 390394 806.61 1339.95 1.00×10−8 3.06×10−10

10 168 2575 433317 894.58 1428.38 8.30×10−9 2.84×10−10
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Fig. 5.1. Comparison of four statistics in Tables 5.2- 5.4 as φ increases from 0.6 to 0.9.

too many slices may lead to excessively high degree polynomial filters for each slice,
thus increase the matvec time. This is illustrated in the left subfigure of Figure 5.2
on the second row.

Finally, when the number of slices doubles for a fixed interval, then, ideally, one
would expect that the number of eigenpairs in each slice is almost halved. Then
we would hope to reduce the computational cost per slice roughly by half each time
the number of slices is doubled, but this is not true in practice. As shown in the
last subfigure of the second row of Figure 5.2, by using more slices, the gain in
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Table 5.5
Averaged statistics across slices for different slice numbers, for the 3D discrete Laplacian ex-

ample with φ = 0.8.

#slices deg iter
Matvecs CPU Time (sec.)

#/slice Time/slice Total/slice Total
2 34.5 9284.5 328832.0 681.74 11817.35 23634.69
5 88.0 3891.8 347704.6 715.98 2126.97 10634.85
10 177.2 2065.4 365758.8 747.69 1116.91 11169.13
15 266.1 1351.9 361809.0 746.04 911.54 13673.12
20 356.8 1081.7 392083.3 807.46 909.62 18192.45

computational time per slice will be eventually offset by the higher degree of the
polynomial filters. We found that a general rule of thumb is to have roughly 200 to
300 eigenvalues per slice.
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Fig. 5.2. Trend plot of computed results in Table 6.1 weighted by the number of slices.

5.2. Matrices from electronic structure calculations. In this section we
compute eigenpairs of five Hamiltonian matrices from electronic structure calculations.
These matrices are part of the PARSEC set of the University of Florida Sparse Matrix
Collection and come from real space discretizations of Hamiltonians. The matrix size
n, the number of nonzeros nnz, the range of the spectrum [a, b], the target interval
[ξ, η] as well as the exact number of eigenvalues inside this interval are reported in
Table 5.6. Each [ξ, η] is selected to contain the interval [0.5n0, 1.5n0], where n0
corresponds to the Fermi level of each Hamiltonian [6].

The Hamiltonians under consideration have roughly 70 nonzero entries per row
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Table 5.6
Hamiltonian matrices from the PARSEC set in the University of Florida Sparse Matrix Col-

lection.

Matrix n nnz [a, b] [ξ, η] #eig
Ge87H76 112, 985 7, 892, 195 [−1.214, 32.764] [−0.64,−0.0053] 212
Ge99H100 112, 985 8, 451, 295 [−1.226, 32.703] [−0.65,−0.0096] 250

Si41Ge41H72 185, 639 15, 011, 265 [−1.121, 49.818] [−0.64,−0.0028] 218
Si87H76 240, 369 10, 661, 631 [−1.196, 43.074] [−0.66,−0.0300] 213

Ga41As41H72 268, 096 18, 488, 476 [−1.250, 1300.9] [−0.64,−0.0000] 201

and are much denser compared to the 3D Laplacian example. In fact, the number of
nonzeros in their LU factors is around n2/5 rendering the classical Shift-and-invert
Lanczos algorithm very ineffective. We then ran the experiments with FiltLanTR fol-
lowing the same settings as in the Laplacian example and reported the computational
results in Table 5.7.

Table 5.7
Numerical results for matrices in the PARSEC set with φ = 0.8.

Matrix deg iter matvecs
CPU Time (sec.) Residual
matvec Total Max Avg

Ge87H76 26 1431 37482 282.70 395.91 9.40×10−9 2.55×10−10

Ge99H100 26 1615 42330 338.76 488.91 9.10×10−9 2.26×10−10

Si41Ge41H72 35 1420 50032 702.32 891.98 3.80×10−9 8.38×10−11

Si87H76 30 1427 43095 468.48 699.90 7.60×10−9 3.29×10−10

Ga41As41H72 202 2334 471669 8179.51 9190.46 4.20×10−12 4.33×10−13

Since these Hamiltonians are quite dense, the computational cost from matrix-
vector products accounts for a large portion of the overall cost even when low degree
filters are in use. This is illustrated in the first four tests. In addition, FiltLanTR
selects a much higher degree polynomial filter for the Hamiltonian Ga41As41H72 as
compared to the others. This is because the target interval [−0.64, 0.0] is quite narrow
relative to the range of its spectrum [−1.2502, 1300.93]. For this kind of problems,
it is better to reduce the polynomial degree by increasing the value of φ slightly. For
example, as shown in Table 5.8, when φ increases to 0.9, the matrix-vector product
time drops by 30.45% and the total iteration time drops by 18.04% for Ga41As41H72.
However, the performance for the other four Hamiltonians deteriorates significantly.
Therefore, it is only beneficial to lower the degree of the filter for problems with
expensive matrix-vector products and a high degree polynomial filter constructed by
FiltLanTR.

5.3. Parallel results with OpenMP. As has been demonstrated on the 3D
Laplacian example in Section 5.1, FiltLanTR can be naturally utilized within the
divide and conquer strategy for computing a large number of eigenpairs. The abil-
ity to target different parts of spectrum independently opens an additional level of
concurrency, which can be efficiently exploited by modern parallel machines.

In this section, we demonstrate the scalability potential of this divide and conquer
approach by simply adding a naive OpenMP parallelization across different spectral
intervals. In each interval, FiltLanTR is invoked, so that different parts of spectrum
are handled independently by concurrent threads ran on different computational cores.
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Table 5.8
Numerical results for matrices in the PARSEC set with φ = 0.9.

Matrix deg iter matvecs
CPU Time (sec.) Residual
matvec Total Max Avg

Ge87H76 18 1981 36027 275.87 462.96 9.20×10−9 5.15×10−10

Ge99H100 19 2260 43346 351.68 603.72 7.10×10−9 2.83×10−10

Si41Ge41H72 24 1976 47818 679.19 971.19 8.10×10−9 3.17×10−10

Si87H76 21 3258 68865 760.71 1297.41 9.90×10−9 7.78×10−10

Ga41As41H72 140 2334 326961 5688.46 6703.93 1.20×10−10 2.03×10−12

As a test problem, we computed 1002 lowest eigenpairs of another matrix from
the PARSEC set discussed earlier. This is the matrix SiO which has a size n = 33, 401
and nnz = 1, 317, 655 nonzeros.
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Fig. 5.3. An OpenMP parallelization across 4 and 10 spectral intervals of a divide and conquer
approach for SiO matrix; n = 33, 401 and nnz = 1, 317, 655.

Figure 5.3 demonstrates parallel scaling of such a divide and conquer approach for
computing 1002 lowest eigenpairs using 4 and 10 spectral intervals. It can be seen that
solution time is decreased by roughly the same factor by which the number of OpenMP
threads (or, equivalently, computational cores) is increased, suggesting a near-optimal
scaling of the entire strategy. Note that our test only illustrates parallelism achieved
by independently treating different spectral regions. The second level of parallelism
available in the re-orthogonalization process and matrix-vector products as shown in
Figure 2.2 will be addressed in our future work.

As has been observed in Section 5.1, the choice of the number of intervals has
a strong impact on the overall performance of FiltLanTR, with the recommended
number of eigenvalues per slice around 200 to 300. The test in Figure 5.3 reaffirms
this finding. It shows that faster solution times are obtained if 4 intervals, with
approximately 250 eigenvalues per slice, are used as opposed to using 10 intervals
with roughly 100 eigenvalues in each sub-interval.

6. Conclusion. One of the critical components of a spectrum slicing algorithm
designed to compute many eigenpairs of a large sparse symmetric matrix is a proce-
dure that can be used to compute eigenvalues contained in a sub-interval [ξ, η]. We
developed an efficient way to accomplish this task. Our algorithm is based on com-
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bining polynomial filtering with a Thick-Restart Lanczos algorithm. Thick restarting
is employed to limit the cost of orthogonalization. The polynomial filter that maps
eigenvalues within [ξ, η] to eigenvalues with the largest magnitude of the transformed
problem, is obtained from a least-squares approximation to an appropriately centered
Dirac-δ distribution. Numerical experiments show that such a construction yields ef-
fective polynomial filters which along with a Thick-Restart Lanczos procedure enable
desired eigenpairs to be computed efficiently.

Acknowledgments. YS had stimulating discussions with Jared Aurentz which
lead to an improved scheme for locating the correct placement of the Delta Dirac
function in the interval [a, b].
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Appendix.

A. Balancing the filter via an eigenvalue problem . Another way to bal-
ance the filter is via the solution of an eigenvalues problem involving a k×k Hessenberg
matrix. Let tj = cos(jθγ) = Tj(γ), for j = 0, · · · , k − 1. Then the 3-term recurrence
of Chebyshev polynomials yields

2γ × tj =

{
2tj+1 if j = 0
tj+1 + tj−1 if j > 0

. (6.1)

For γ that is a solution of Equation (3.12) we have:

tk = −
k−1∑
j=0

βjtj , with βj =
gkj [cos(jθξ)− cos(jθη)]

gkk [cos(kθξ)− cos(kθη)]
. (6.2)

Thus, when j = k − 1 in (6.1) the following equation holds

2γ × tk−1 = −
k−1∑
j=0

βjtj + tk−2. (6.3)

As a result, denoting by t the vector with components tj , j = 0, . . . , k−1 relations
(6.1) and (6.3) can be expressed in the form:

Ht = 2γt, (6.4)

where

H =



0 2
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
−β0 −β1 . . . . . . 1− βk−2 −βk−1


.

This shows that γ is an eigenvalue of the Hessenberg matrix H/2. We can take the
eigenvalue of H/2 that is closest to the value cos−1(θc) among those belong to [ξ, η]
as the center.

B. Additional numerical results for the 3D discrete Laplacian. Results
for a 3D Laplacian with 2, 5, 15 and 20 slices are tabulated in Table 6.1.
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Table 6.1
Numerical results for a 3D Laplacian with φ = 0.8 and different numbers of slices.

#slices deg iter matvecs
CPU Time(sec.) residual

matvecs total max avg

2
28 8263 233225 486.12 10857.38 3.70×10−9 2.99×10−11

41 10306 424439 877.36 12777.31 7.50×10−9 1.05×10−10

62 3376 210081 435.31 1657.48 9.90×10−9 1.90×10−10

76 4238 322975 667.70 2212.86 9.10×10−9 5.98×10−11

5 88 3396 299665 616.87 1865.45 7.50×10−9 8.32×10−11

100 4235 424452 872.03 2401.22 9.60×10−9 1.74×10−10

114 4214 481350 988.00 2497.86 5.70×10−9 5.14×10−11

170 1251 213074 440.03 592.20 7.30×10−9 1.23×10−10

185 1239 229654 474.06 626.68 7.50×10−11 7.43×10−13

198 1248 247529 511.41 660.84 4.30×10−12 1.42×10−13

215 1540 331780 684.47 872.09 4.60×10−11 2.99×10−13

229 1248 286260 590.86 743.51 5.20×10−9 8.91×10−11

238 1247 297264 612.96 765.26 3.80×10−9 4.40×10−11

250 1573 394002 812.99 1009.45 4.70×10−9 7.35×10−11

15 267 1246 333197 686.88 840.87 2.70×10−9 2.39×10−11

280 1250 350490 722.35 869.20 5.40×10−11 1.42×10−12

294 1573 463311 955.36 1154.58 5.40×10−11 1.42×10−12

304 1250 380523 784.04 933.47 1.60×10−9 2.82×10−11

313 1573 493227 1016.69 1213.15 5.80×10−9 4.99×10−11

323 1251 404615 834.10 983.25 2.00×10−9 2.61×10−11

333 1570 523746 1078.74 1279.77 8.90×10−9 1.40×10−10

392 1219 478463 985.61 1128.78 8.10×10−10 1.59×10−11

229 952 218422 456.02 545.01 8.80×10−9 1.69×10−10

243 954 232229 485.25 570.54 1.70×10−10 4.88×10−12

253 1188 301266 628.85 741.02 9.10×10−9 1.54×10−10

268 1009 270837 565.15 659.90 4.20×10−9 4.26×10−11

283 1186 336397 702.43 813.16 2.30×10−9 1.37×10−11

294 1218 358858 748.57 861.85 1.50×10−9 2.99×10−11

310 1016 315444 658.70 758.21 1.70×10−9 4.19×10−11

321 949 305134 636.30 724.47 4.10×10−10 6.14×10−12

333 1243 414780 865.01 986.00 6.10×10−9 7.71×10−11

20 345 984 339983 709.70 800.04 9.80×10−9 1.33×10−10

357 944 337564 703.77 792.95 9.80×10−9 1.33×10−10

369 983 363258 757.46 847.84 9.80×10−9 1.33×10−10

382 1207 462063 961.42 1081.01 2.40×10−9 1.69×10−11

395 982 388442 807.92 897.06 6.50×10−9 1.04×10−10

408 1174 480024 998.82 1110.60 5.20×10−10 1.22×10−11

422 1014 428491 891.10 987.13 5.90×10−10 1.11×10−11

426 1215 518630 1079.17 1193.59 6.60×10−9 9.95×10−11

440 1246 549306 1142.45 1262.09 6.60×10−9 6.67×10−11

455 1215 553931 1152.21 1268.52 3.20×10−9 3.50×10−11

603 955 576607 1198.94 1281.51 2.20×10−9 5.20×10−11
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