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Abstract. We study two specific measures of quality of chemical reaction networks, Precision
and Sensitivity. The two measures arise in the study of sensory adaptation, in which the reaction
network is viewed as an input-output system. Given a step change in input, Sensitivity is a measure
of the magnitude of the response, while Precision is a measure of the degree to which the system
returns to its original output for large time. High values of both are necessary for high-quality
adaptation.

We focus on reaction networks without dissipation, which we interpret as detailed-balance, mass-
action networks. We give various upper and lower bounds on the optimal values of Sensitivity and
Precision, characterized in terms of the stoichiometry, by using a combination of ideas from matroid
theory and differential-equation theory.

Among other results, we show that this class of non-dissipative systems contains networks with
arbitrarily high values of both Sensitivity and Precision. This good performance does come at a
cost, however, since certain ratios of concentrations need to be large, the network has to be exten-
sive, or the network should show strongly different time scales.

Key words. Sensory adaptation, reaction network, dissipation, matroid.

1. Introduction

1.1. Dissipation and adaptation. It has been known at least since Szilard [Szi29] and Lan-
dauer [Lan61] that practical information processing requires the dissipation of free energy. In
recent years interest has arisen in the application of this idea to chemical and biochemical sys-
tems, and studies have been made of the role of dissipation in decision making [QR05], con-
centration sensing [Tu08, MS12, SNMW13, GtW13], signal transduction [LHW08, BS13], be-
haviour of oscillators [WXW08, XZWW13, CWOT15], error correction [MHL12], sensory adap-
tation [LSN+12, LT13, SGLH14, Lan15, BDGC15], and various others.

A common theme in these works is a focus on the relationship between the quality of the pro-
cessing on one hand and the magnitude of the dissipation on the other; in most cases the conclusion
is that dissipation ‘improves the situation’, in the sense of leading to higher accuracy, speed, or
reliability. However, much of the current literature is based on single examples, in which simplified
models are studied, and often the tuning of the amount of dissipation amounts to a single scalar
parameter.

In fact, given an arbitrary chemical reaction system, there appear to be multiple definitions of
the ‘amount of dissipation’ at a given parameter point, which differ in whether they apply only
to a stationary point or also to dynamic states, whether they include stochastic fluctuations, and
whether they operate at a macroscopic or a microscopic level. This makes it difficult to compare
results and make clear statements.

As a first step towards such clear statements, in this paper we approach the problem from the
other end: we consider dissipation-free systems, and ask the question to which extent these can
or can not process information. We do this with the information-processing example of sensory
adaptation.
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Adaptation is best explained with the example of the bacterium E. coli. As part of its food-
finding strategy, E. coli propels itself in a straight line through its environment, while monitoring
the concentration of e.g. glucose outside the cell. Depending on whether this concentration increases
or decreases during this ‘run’, it will continue to move for longer or shorter in that direction; upon
stopping, it turns to a random new direction, and starts a new run. This stochastic motion has a
bias in the direction of increasing concentration, and this is how the bacterium finds its food.

In order to behave in this way, the bacterium has to convert small changes in concentration (a
few percent up or down) into large changes in behaviour: ie. it has to show large Sensitivity, in the
terminology that we define below. At the same time the sensing mechanism has to ‘reset’ or ‘zero
itself’ after such a change, in order to be ready for the next change in concentration: a simplified
version of this will be called Precision below. Most chemical reaction systems do not show this
combination of Sensitivity and Precision, but when they do, we call them adaptive.

In this paper we study such adaptive systems, and more precisely, we ask the question

Q. To which extent can a non-dissipative system perform such adaptation?

This question is not only inspired by the general link between dissipation and functionality, already
mentioned above. In recent work, Lan, Tu, and co-authors conclude that adaptive systems are
necessarily dissipative [LSN+12, LT13]. If that is the case, then the answer to the question above
should be ‘not at all’.

In fact, the situation turns out to be different, and surprising: we will see that a non-dissipative
system is in fact perfectly capable of adaptation, in the sense that Sensitivity and Precision can
both be arbitrarily high. However, there are strong limitations, as we shall also see: such good
performance requires an extreme setup, in the sense that (a) certain ratios of steady-state concen-
trations have to be large, (b) time-scale separation has to be significant, or (c) large networks are
required.

1.2. Content of this paper. In order to discuss what ‘non-dissipative’ systems can or can not
do, one needs a proper definition of this class of systems. In this paper we define ‘non-dissipative’
systems as chemical reaction networks with mass-action kinetics satisfying detailed balance. This
is a delicate issue, however, and we discuss it in more detail in Section 7.

Given this class, question Q above asks for the ‘most adaptive’ behaviour that such a system
can perform. To structure this discussion, we will consider the structure of the network—the
stoichiometry—to be given, and ask to which extent variation of the kinetic parameters allows the
system to have large Precision and Sensitivity (which we define below).

We start the development in Section 2 by defining the various objects and concepts. In Section 3
we investigate the Precision, and specifically prove bounds on the minimal Precision, or maximal
inverse Precision. Although we are interested in systems with large Precision, not small Precision,
the concept of maximal inverse Precision plays a role in the study of Sensitivity in Section 4.
There we show that we can make systems with large Precision and Sensitivity, by choosing the
stoichiometry and the kinetic parameters in the right way.

The proof of Theorem 3.2, a combinatorial characterization of minimal Precision, is inspired by
matroid theory, and in Section 5 we explain this connection. In Section 6 we give an example
of a dissipative system with high Sensitivity and Precision that is small and has only moderate
concentration ratios. We conclude with a discussion of the results.

2. Setup

In this section we give mathematical definitions of the objects that we will be considering.
2



2.1. Chemical reaction networks. A chemical reaction network is a set of reactions between
chemical species Xs, s ∈ S,

∑
s∈S

αsrXs �
∑
s∈S

βsrXs.

Here αsr and βsr are the stoichiometric coefficients, which we assume to be non-negative numbers.
This leads to the following definition.

Definition 2.1 (Systems). A system is a triple (S,R,N ), where

• S is a finite set of species;
• R is a finite set of reactions;
• N = α−β, α, β ≥ 0, is a stoichiometric matrix, an S ×R matrix of real numbers such that
Nsr is the relative increase or decrease of species s under reaction r.

A kinetic system is a quadruple (S,R,N ,K), where K is a function that gives, for each set of
concentrations c = (cs)s∈S of the species, and for each reaction r ∈ R, the net rate of transformation
Kr(c) in that reaction.

For any kinetic system, the evolution of the concentrations of the species is given by the ordinary
differential equation1

ċs = −
∑
r∈R
NsrKr(c) or ċ = −NK(c). (1)

Example A. Consider the following reactions between species X1, X2, and X3:

2X1

k+1


k−1

X2 +X3, X2

k+2


k−2

X3.

For this system the species set S is {1, 2, 3}, the reaction set R is {1, 2}; the stoichiometric
matrix N and the kinetic function K are

N =

 2 0
−1 1
−1 −1

 , K(c) =

(
k+

1 c
2
1 − k

−
1 c2c3

k+
2 c2 − k−2 c3

)
=:

(
K1

K2

)
.

The dynamics of this reaction network is described by the ODE (1), which reads for this system

d

dt

c1

c2

c3

 =

 −2K1

K1 −K2

K1 +K2

 =

 −2k+
1 c

2
1 + 2k−1 c2c3

k+
1 c

2
1 − k

−
1 c2c3 − k+

2 c2 + k−2 c3

k+
1 c

2
1 − k

−
1 c2c3 + k+

2 c2 − k−2 c3

 . (2)

1All quantities in this paper can be considered dimensionless, if necessary by non-dimensionalization against
standard SI units.
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Figure 1. A solution of equation (2), with parameters k+
1 = 0.044, k−1 = 1,

k+
2 = 0.1, k−2 = 0.01, and c(0) = (5, 5, 16)T . The system reaches a steady state
c = (15, 10, 1)T . The same solution is plotted both against linear time (left)
and logarithmic time (right). The evolution contains multiple time scales; in the
right figure the behaviour at these different time scales is easier to recognize,
and for this reason we mostly use logarithmic time axes below.

2.2. Mass-action and detailed balance.

Definition 2.2 (Mass-action, detailed-balance kinetics). Given a system (S,R,N ,K), mass-action
detailed-balance kinetics is given by functions Kr of the form2

Kr(c) = kr

[(c
c

)αr
−
(c
c

)βr]
, (3)

where we write αr, βr for the column vector of α and β corresponding to reaction r, and the
notation cαr stands for the monomial

∏
s∈S c

αsr
s . The function (3) is characterized by the parameters

(c, k) ∈ RS+ × RR+ .

We often write (S,R,N , (c, k))3 for the kinetic system generated by this pair (c, k). Note that
c = c is a stationary point for (3), but there typically are other stationary points. This is related
to the fact that when range(N ) is a strict subspace of RS , then the evolution (1) takes place in a
subset, a simplex:

Definition 2.3 (Stoichiometric simplex). Let W = range(N ). For any γ ∈ RS+, the stoichiometric
simplex is the relatively open simplex

G(γ) :=
(
γ +W

)
∩ RS+.

The stoichiometric simplex is the set of positive concentrations that can be reached by starting
from γ and assigning arbitrary rates to each of the reactions. It is invariant under the evolution (1).

2Mass-action kinetics are of the form

Kr(c) = k+r c
αr − k−r cβr

and the structure (3) follows from the detailed-balance assumption that there exists a stationary state c at which all

reactions are in equilibrium. See e.g. [ÉT89].
3This 4-tuple does not completely determine α and β, only N = α − β, and therefore does not contain enough

information to characterize the full kinetics (3). The linearization of (3) at a stationary point only depends on
N = α− β, however, and since the Sensitivity and Precision are defined in terms of this linearization, this contains
the necessary information for our purposes.
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Example A (continued). For Example A, the range of N is the set (1, 1, 1)⊥, implying
that the ODE (2) admits the conservation law c1 + c2 + c3 = constant. Consequently, the
stoichiometric simplices are the sets

{ (c1, c2, c3) ∈ R3
+ : c1 + c2 + c3 = constant }.

Lemma 2.4 (Stationary states). For given (c, k) ∈ RS+ × RR+ , there exists exactly one stationary
point of (1) in each simplex G(γ), and each solution in G(γ) converges to it for large time. We
indicate this stationary point by ĉ[γ]. The mapping γ 7→ ĉ[γ] is a smooth mapping from RS+ to RS+;
ĉ is the unique solution of the equations

N T log
ĉ[γ]

c
= 0, ĉ[γ] ∈ G(γ). (4)

Proof. The existence, uniqueness, and attraction properties are well-known in the field of chemical
reaction theory; see e.g. [HJ72, Th. 6A]. The equation (4) can be verified by inspecting (3) or
by using the fact that free energy decreases along a solution [HJ72, MM]. Finally, the smooth
dependence follows from applying the implicit function theorem to (4). �

Remark 2.5 (Modifying c). Below we will consider systems described by parameters (c, k), and
concentrate on linearizations at some stationary point ĉ[γ], which a priori need not be equal to c.
However, without loss of generality we can assume that the stationary point equals c, by describing

the same system by a new but equivalent set of parameters (ĉ[γ], k̃), where

k̃r := kr

( ĉ[γ]

c

)N+
r

= kr

( ĉ[γ]

c

)N−r
.

The equations (1)-(3) are identical for (c, k) and (ĉ[γ], k̃). We will therefore always assume that
the stationary point under consideration is c. �

Remark 2.6 (Independence of k). As long as k is a vector with strictly positive components, ĉ[γ]
is independent of k, as can be recognized from the absence of k from (4). (If one of the components
of k vanishes, however, this amounts to removing a column from N , which modifies (4) and leads
to a different equation. We will use this idea below.) �

2.3. Precision and Sensitivity for detailed-balance reaction networks. We now think of a
chemical reaction network as an input-output system, and we restrict ourselves to detailed-balance,
mass-action kinetics networks. The input and output variables are concentrations, indicated by
i, o ∈ S, i 6= o.

The rest of this paper is based on the following setup.

The adaptation experiment. Prepare the system in a steady state c; at time zero,
instantaneously add an amount of the input species to the system, thus increasing ci;
observe the evolution of the output variable co (see Figure 2).

In this situation, the Sensitivity is defined4 as a normalized measure of the strength of the
response of co to the change in ci:

4This terminology follows [MTES+09]. Note however that the term ‘sensitivity’ also may refer to the variation
of a stationary state under variation of a parameter, as in ‘parameter sensitivity’ [HS96] or more generally as the
depedence of a model prediction on the assumptions and parameters [SRA+08].
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addition of Xi

time

small when Precision is large

large when

Sensitivity is large

co

Figure 2. The adaptation experiment. The system starts in steady state, and the
output co is constant. At time zero a small amount of species Xi is added, leading
to a small increase in concentration ci. The system is no longer in steady state,
and it evolves towards a new steady state. Sensitvity is a measure of the maximal
deviation along the time course, and Precision is a measure of the degree to which
the new steady state is close to the previous one.

Definition 2.7 (Sensitivity). Given a detailed-balance, mass-action system (S,R,N , (c, k)), and
given a choice of input and output species i, o ∈ S, the Sensitivity is defined as

S := lim
ε→0

log sup
t≥0

cεo(t)− log co

log cεi (0)− log ci
= lim

ε→0

log sup
t≥0

cεo(t)− log cεo(0)

log cεi (0)− log c0
i

, (5)

where cε(t) is the solution of (1) with initial datum cε(0) = c+ εei.

This could also be written in shorthand notation as

S =
d log supt≥0 co(t)

d log ci(0)
.

High Sensitivity indicates that small increases in input concentration ci lead to large swings in
output co. The appearance of the logarithms both for ci and for co means that relative changes
are measured. This is related to the fact that mass-action kinetics makes the response to absolute
changes dependent on the reference value. (There is recent interest in networks providing exact
fold-change responses, which are sensitive to relative changes, but otherwise independent of the
reference value (e.g. [GSKA09]). This corresponds to the Sensitivity above being independent of
the parameter point c at which it is measured.) Logarithmic derivatives are also used in Metabolic
Control Analysis [HS96, Fel97].

The Precision, on the other hand, refers to the degree to which the output settles back to the
original value at long times:

Definition 2.8 (Precision, [MTES+09]). In the same context as Definition 2.7, the Precision P is
defined through its inverse,

P−1 := lim
ε→0

log cεo(+∞)− log co
log cεi (0)− log ci

= lim
ε→0

log cεo(+∞)− log cεo(0)

log cεi (0)− log c0
i

. (6)

High Precision indicates that the stationary output changes little when the parameter point
changes—again, both measured in relative magnitudes.

Since both Precision and Sensitivity are defined in terms of small-perturbation limits, they have
equivalent definitions in terms of a linearized version of equation (1). Because of the logarithmic
derivatives, the most convenient form of this equation arises by perturbing the stationary state c
multiplicatively: if we set cε(t) = (1 + εu(t))c, then to leading order the function u solves the
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equation

u̇ = Au, Ass′ = − 1

cs

∑
r∈R
NsrkrNs′r. (7)

(This equation can also be found by linearizing (1) in the usual way, and transforming to new
coordinates, scaled by c). For given u(0), the solution of this equation is u(t) = etAu(0).

Lemma 2.9 (Alternative formulations of Precision and Sensitivity). Again in the same context,
let t 7→ u(t) be the solution of (7) with initial data u(0) = ei. The Precision and Sensitivity then
have the alternative formulations

P−1 = lim
t→∞

uo(t) = lim
t→∞

(etA)oi and S = sup
t≥0

uo(t) = sup
t≥0

(etA)oi. (8)

In addition, recalling the notation ĉ[γ] for the stationary state in the stoichiometric simplex con-
taining γ, we have

P−1 =
ci
co

lim
ε↓0

1

ε

(
ĉ[c+ εei]− c

)
o
. (9)

Proof. These formulas follow by direct manipulation. �

Example A (continued). First we demonstrate an adaptation experiment for a small but
finite ε. Fix (c, k) in (2). We perturb the system by adding ε of X1 to the system. The evolution
is shown in Figure 3. Next, in the limit of small perturbations, the matrix A in (7) is found to
be

A =



−4k1

c1

2k1

c1

2k1

c1

2k1

c2
−k1 + k2

c2

k2 − k1

c2

2k1

c3

k2 − k1

c3
−k1 + k2

c3


.

The expressions (8) for Precision and Sensitivity imply that the we can obtain these two quanti-
ties by plotting the time trajectory of the corresponding entry in the matrix exponential (etA)oi.
In this example we take X1 to be the input and we plot the three entries in the first column of
(etA) in Figure 4.
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Figure 3. The solution of (2) in linear time (left) and in logarithmic time
(right) using the same parameters as in Figure 1, c = (15, 1, 10) and k = (10, 0.1).
The initial condition is c(0) = c+ εe1 with ε = 0.1.
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S ≈ 1.44

P−1 ≈ 0.58

Figure 4. The solution of the equation u̇ = Au, u(0) = (1, 0, 0)T , for the
rescaled linearized concentrations u1, u2, u3 of the species X1, X2, X3. The pa-
rameters are the same as in Figure 1, c = (15, 1, 10) and k = (10, 0.1).

In the graph above one can read off the Sensitivity and Precision: choosing X2 as output,
the Sensitivity is the maximal value of u2 over all time (about 1.44), and the Precision is the
limiting value of u2 as time tends to infinity (0.58). Note that the choice of input variable i = 1
is encoded in the initial data for u, and the choice of output variable o = 2 means that we
measure u2.

2.4. Maximization over parameters. As we mentioned in the introduction, in much of this
paper we take the position that the stoichiometry (S,N ,R) of a system is given, and we ask within
which bounds we can make Sensitivity and Precision vary by the freedom of choosing coefficients c
and k. This leads to the following three numbers:

maxS(S,N ,R) := sup{S : (c, k) ∈ RS+ × RR+
}
,

maxP(S,N ,R) := sup{P : (c, k) ∈ RS+ × RR+
}
,

maxInvP(S,R,N ) := sup
{
P−1 : (c, k) ∈ RS+ × RR+

}
.

The maximal inverse Precision plays a role in characterizing maximal Sensitivity (see Section 4.3).

Example B (Arbitrarily large S and P ). We generalize Example A by replacing 2X1 with
nX1 for some n ∈ N and a choice of X1 for input and X3 for output.

nX1

k+1


k−1

X2 +X3, X2

k+2


k−2

X3.

We want to explore the values of Precision and Sensitivity. Since the system is small we are able
to explicitly calculate the Precision directly from Definition 2.8 as follows. The stoichiometric
matrix enforces that 2c1 +nc2 +nc3 is constant along time trajectory of concentrations in every
stoichiometric simplex. Therefore 2c1 +nc2 +nc3 = a, where a is a positive constant. Let cε be
the perturbed steady state when ε is added to X1 and then 2cε1 + ncε2 + ncε3 = a+ 2ε. For both
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steady states we have K(c) = K(cε) = (0, 0)T . With these relations the calculation of inverse
Precision is straightforward:

P−1 =
c1

c3

dcε3
dε

∣∣∣∣
ε=0

=
2n

4 + n2
c2

c1
+ n2

c3

c1

. (10)

We observe that by choosing the ratio (c2 + c3)/c1 large enough, one can have arbitrarily high
Precision, i.e. maxP =∞.

This example is able to show Sensitivity arbitrarily close to n, i.e. maxS = n. It is an easy
exercise to show that the first reaction, as a subsystem, has P−1 = n/(1+ c3/c2 +n2c3/c1), and
consequently maxInvP = n. If we choose (c, k) in such a way that the first reaction happens
much faster than the second, then u3 can rise arbitrarily close to n and after some time that
the second reaction takes place, it comes down arbitrarily close to 0. Figure 5 shows the plot
of u3 for three values of n.
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Figure 5. Plot of u3 from the solution of the equation u̇ = Au, u(0) = (1, 0, 0)T

for three values of n. The parameters are c = (102, 105, 10−2) and k = (10, 0.1).

3. Results: Properties of the Precision

As described above, the aim of this paper is to explore the degree to which detailed-balance,
mass-action systems can have large Sensitivity and large Precision. In this section we focus on the
Precision, and prove two main results. The first is an explicit formula for homogeneous systems;
the second is a characterization of the minimal Precision in terms of the stoichiometry, which will
be of use in Section 4.

We choose a system (S,R,N , (c, k)), and we fix an input species i ∈ S and an output species
o ∈ S.

In some cases the Precision can be calculated explicitly. Example B above is an instance of this;
another instance is the class of homogeneous systems. A reaction network is called homogeneous of
order κ if for κ ∈ N fixed, all the reactions are of the type

κXs

k+j


k−j

κXs′ .

9



Each column of N in such reaction network consists of two nonzero elements with values κ and −κ.
Therefore (1, . . . , 1)N = 0, which implies that

∑
s cs is constant in each stoichiometric simplex.

Below we derive an explicit formula for the Precision of homogeneous systems.

Theorem 3.1 (Precision for homogeneous systems). If a reaction network is homogeneous of some
order κ, then for any input and output

P =

∑
s cs
ci

. (11)

Example C. Unimolecular reactions are a good example of a homogeneous reaction network.
Below we present a reaction diagram between four species. Letting X1 be the input, the inverse
Precision for the three other species is P−1 = 20/91 ≈ 0.22 (see (11)).
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Figure 6. Solution of u̇ = Au (left) with u(0) = (1, 0, 0, 0)T , c =
(20, 50, 1, 20)T , and k = (5, 0.01, 5, 30, 0.1)T . The reaction diagram (right).

Proof. Fix the parameters (c, k). Equation (3) implies that at any steady state c̃, for a reaction
involving species s and s′, the ratio c̃s/c̃s′ equals cs/cs′ and thus is the same for each steady state.
This implies that all steady states are multiples of each other. On the other hand we have a
conservation law

∑
s cs = a for some positive constant a. In view of the definition of Precision

(following the notation of Section 2.3) we have
∑

s c
ε
s(∞) = a+ ε. This can be written as

cεo(∞) =
a+ ε∑
s

cεs(∞)

cεo(∞)

,

in which the denominator is a sum of constant steady state ratios, hence independent of ε. Finally
the inverse Precision is

P−1 = lim
ε→0

log cεo(∞)− log co
log cεi (0)− log ci

=
ci
co

dcεo(∞)

dε

∣∣∣
ε=0

=
ci∑
s cs

.

�

Note that the Precision for such a homogeneous network is always larger than one, and can be
made arbitrarily large by tuning c—specifically, by making the stationary concentration of the input
variable small with respect to the other concentrations. This might seem like a good thing; however,
we will see below that such a choice makes it difficult to have high Sensitivity, and therefore ‘good’
systems do not choose this route.
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In fact, as we shall see in Section 4, there is a strong suggestion that having high Sensitivity
requires low Precision for a subsystem. Because of this reason, it is interesting to consider lower
bounds on Precision, or equivalently, upper bounds on inverse Precision. In the rest of this section
we characterize the maximal inverse Precision for a given system (S,R,N ),

maxInvP(S,R,N ) := sup
{
P−1 : (c, k) ∈ RS+ × RR+

}
,

in terms of the stoichiometry of the system, ie. in terms of N .

The support of a vector x ∈ RS is supp(x) := {s ∈ S : xs 6= 0}. Considering a linear space
W ⊆ RS , we say that a vector w ∈W is elementary if w is nonzero and supp(w) is minimal in W ,
i.e. there exists no nonzero w′ ∈W with suppw′ $ suppw. The orthogonal complement of W is

W⊥ := {u ∈ RS : u ⊥ w for all w ∈W}.
In the following theorem, maximal inverse precision is characterized in terms of elementary vectors
of W and W⊥, where W := range(N ). Observe that if u ∈ W⊥ and c, c′ ∈ G(γ), then c′ − c ∈ W
and hence uT c− uT c′ = uT (c− c) = 0; so each u ∈ W⊥ describes an invariant linear combination∑

s∈S uscs of the stoichiometric simplex G(γ).

Theorem 3.2 (Sharp upper bounds on inverse Precision). Fix a system (S,R,N ) and input and
output species i, o ∈ S, and let W := range(N ). Then:

maxInvP := sup
{
P−1 : (c, k) ∈ RS+ × RR+

}
= sup

{
uo : u− ei = diag

(1

c

)
w, c ∈ RS+, w ∈W, u ∈W⊥

}
(12a)

= max{uo : u elementary in W⊥ with ui = 1, or u = 0} (12b)

= max{wi : w elementary in W with wo = −1, or w = 0} (12c)

Recall Example A, where we already observed that W = range(N ) = (1, 1, 1)⊥, and
W⊥ = span{(1, 1, 1)}. Therefore all elementary vectors in W⊥ are multiples of (1, 1, 1), and
the characterization (12b) reduces to the maximum over two elements:

max
{
u2 : u ∈ {(1, 1, 1), (0, 0, 0)}

}
= 1.

For (12c), the space W has three elementary vectors, up to scalar multiples, which are (1,−1, 0),
(0, 1,−1), and (1, 0,−1). Recall that the input variable is 1, and the output variable 2; therefore
of these three directions, the third does not appear in the maximum, since it can not be rescaled
to have wo = w2 = −1. The maxmimum in (12c) then reduces to

max
{
w1 : w ∈ {(1,−1, 0), (0,−1, 1), (0, 0, 0)}

}
= 1.

Example D. As an example where the alternative options u = 0 and w = 0 are relevant,
consider the single reaction

X1 +X2 � X3, i = 1, o = 2.

Here N = (1, 1,−1)T , W = span{(1, 1,−1)}, and W⊥ = (1, 1,−1)⊥; therefore W has only the
elementary vector (1, 1,−1), up to scalar multiplication, and (12c) reduces to

max
{
w1 : w ∈ {(−1,−1, 1), (0, 0, 0)}

}
= 0.
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In this case W⊥ has elementary vectors (1,−1, 0), (1, 0, 1), and (0, 1,−1), so that (12b) becomes

max
{
u2 : u ∈ {(1,−1, 0), (1, 0, 1), (0, 0, 0)}

}
= 0.

Indeed, the reaction has negative Precision for all positive values of c (since increase in X1

always leads to decrease in X2.) Therefore the max inverse Precision can reach zero, but can
not be positive.

The maxima (12b) and (12c) may be evaluated by enumerating the elementary vectors of a linear
space. We will describe an algorithm for this in Section 5.

The rest of this section is devoted to the proof of this theorem, through a series of lemmas. The
first lemma provides the connection between inverse Precision on one hand and the vectors u and w
that appear in Theorem 3.2.

Lemma 3.3. For given c ∈ RS+, the conditions

u ∈W⊥, w ∈W, u = ei + diag
(1

c

)
w, (13)

uniquely determine the pair (u,w). Then

P−1 = uo. (14)

As a consequence,

maxInvP = sup

{
uo : u− ei = diag

(1

c

)
w, u ∈W⊥, w ∈W, c ∈ RS+

}
.

Proof. The existence of a u satisfying (13) will follow from the argument in the next paragraph;
here we show that u satisfying (13) is unique. If not, then there are distinct u, u′ satisfying (13).
Then v := u− u′ is a nonzero vector such that v ∈ W⊥ and v ∈ diag(1

c )W , so that diag(c)v ∈ W ,
and consequently v ⊥ diag(c)v. Since c has strictly positive components, this implies v = 0, a
contradiction.

We now show (14). For each ε > 0, write cε := ĉ[c + εei] for the unique stationary state in the
same stoichiometric simplex as c+ εei. By Lemma 2.4, cε is a smooth function of ε; we write ċε :=
dcε/dε

∣∣
ε=0

, which is the vectorial rate of change of the stationary state as we add component Xi.

Again by Lemma 2.4, N T log(cε/c) = 0, and by differentiating we find N T (ċε/c) = 0. From
ĉ[γ] ∈ γ + W follows ĉ[c + εei] − c ∈ εei + W , and therefore we find that ċε satisfies the two
equations

N T ċε
c

= 0, ċε ∈ ei +W.

Defining u = ci(ċε/c) = ci diag(1/c)ċε these can be rewritten as

N Tu = 0, u ∈ ci diag
(1

c

)
(ei +W ) = ei + diag

(1

c

)
W,

which is equivalent to (13). This also proves the existence of a solution to (13). The fact that
P−1 = uo (equation (14)) is then a direct consequence of (9). �

Remark 3.4 (Chemical interpretation of u and w). The proof of this lemma illustrates the chemical
interpretation of u and w. Both are defined in terms of a curve of stationary states cε = ĉ[c+ εei]
generated by perturbing the system by adding small amounts of Xi:

(1) u can be interpreted as the derivative of the vector function ε 7→ ci log cε at ε = 0, i.e. ci
times the rate of change of the vector of chemical potentials of the species;

12



(2) w can be interpreted as the (infinitesimal) stoichiometrically admissible perturba-
tion that connects the non-stationary point c+εei with the stationary point cε = ĉ[c+εei]:
w = ci limε→0 ε

−1(ĉ[c+ εei]− c− εei).
�

In the following lemmas we characterize the maximal inverse precision, where the maximum is
taken over all c ∈ RS+, in terms of elementary vectors in W and W⊥. Lemmas 3.5, 3.7, and 3.8
together conclude the proof of Theorem 3.2.

Lemma 3.5.

sup

{
uo : u− ei = diag

(1

c

)
w, u ∈W⊥, w ∈W, c ∈ RS+

}
≤ max{uo : u elementary in W⊥ with ui = 1, or u = 0}

Proof. The condition

u− ei = diag
(1

c

)
w for some w ∈ RS+ (15)

implies for s 6= i that if ws > 0, then us > 0; if ws < 0, then us < 0; and if ws = 0, then us = 0.
Moreover, if ui(ui − 1) > 0, then

0 < uici(ui − 1) +
∑
s 6=i

uscsus = uT diag(c)(u− ei) = uTw = 0,

a contradiction. Hence 0 ≤ ui ≤ 1. Summarizing, we find that (15) implies

us


∈ [0, 1] if s = i
≥ 0 if ws > 0, s 6= i
≤ 0 if ws < 0, s 6= i
= 0 if ws = 0, s 6= i

(16)

So for fixed w ∈W , if wo = 0, then uo = 0 and the result is trivial. Otherwise the supremum

sup

{
uo : u− ei = diag

(1

c

)
w, u ∈W⊥, c ∈ RS+

}
(17)

is bounded from above by
sup{uo : u ∈W⊥, u satisfies (16)}. (18)

This is a linear optimization problem. To complete the proof of this lemma, we will argue that
for each fixed w ∈W , (18), and hence (17), is bounded from above by

max{uo : u elementary in W⊥ with ui = 1, or u = 0}.
If the supremum in (18) equals +∞, then there exist u and v such that u+ λv ∈W⊥ satisfies (16)
for all λ > 0, with vo > 0 and vi = 0. But then wT v =

∑
swsvs ≥ wovo > 0, contradicting that

v ⊥ w. So the value of (18) is finite, and hence the optimum is attained. Let u∗ be an optimal
solution such that | supp(u∗)| is as small as possible.

We show that u∗ = 0 or u∗ is an elementary vector. If not, then u∗ 6= 0 and there is a nonzero
vector v ∈ W⊥ so that supp(v) $ supp(u∗), by the definition of an elementary vector. We may
assume that vo = 0; otherwise replace v with u∗ov − vou∗. Then

max{uo : u = u∗ + εv, ε ∈ R, u satisfies (16)}
is attained by an optimal solution u∗∗ which satisfies one of the inequalities in (16) with equality,
such that u∗∗s = 0 where u∗s 6= 0 for some s. Since supp(u∗∗) ⊆ supp(u∗) ∪ supp(v) ⊆ supp(u∗) and
u∗∗o = u∗o + εvo = u∗o, that would contradict the choice of u∗ as an optimal solution of (18) with
minimal support.
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So u∗ is elementary, and it remains to show that u∗i = 1. If u∗i = 0, we have 0 = wTu∗ =∑
s 6=iwsu

∗
s, and hence u∗ = 0. Hence 0 < u∗i ≤ 1. If u∗i < 1, then for a sufficiently small ε > 0, the

vector (1 + ε)u∗ is a feasible solution of (18) with ((1 + ε)u∗)o > u∗o, contradicting the optimality
of u∗. Hence u∗i = 1, as required. �

We need the following, essentially combinatorial fact on elementary vectors. For any S ′ ⊆ S and
R′ ⊆ R, let N [S ′,R′] denote the submatrix of N spanned by the rows and columns in S ′ resp. R′.

Lemma 3.6. Let u∗ be elementary in W⊥. Then there exist a set S ′ ⊆ S, elementary vectors
ws ∈W for s ∈ S ′, and elementary vectors us ∈W⊥ for s ∈ S \ S ′, such that

• i 6∈ S ′, and supp(u∗) ⊆ S ′ ∪ {i};
• supp(ws) ⊆ (S \ S ′) ∪ {s} for each s ∈ S ′, and wss = 1; and
• supp(us) ⊆ S ′ ∪ {s} for each s ∈ S \ S ′, and uss = 1.

Proof. Consider the set U := supp(u∗)\{i}. The rows of N [U ,R] are independent, for if there were
a linear dependency among these rows, then there would exist a nonzero vector u′ ∈ ker(N T ) = W⊥

with supp(u′) ⊆ U , contradicting our assumption that u∗ is elementary vector of W⊥.
Pick any maximal set S ′ ⊆ S so that U ⊆ S ′ and so that the rows ofN [S ′,R] are still independent.

Then the rows of N [S ′,R] form a basis of the rowspace of N . Let R′ ⊆ R be such that the columns
of N [S,R′] are a basis of W . Then by applying column operations to N [S,R′] (as in standard
Gaussian elimination) we may obtain a matrix N ′ ∼ N [S,R′] of the form

(R′
S ′ I
S ′′ X

)
.

That is, N ′[S ′,R′] = I, and as column operations do not change the column space, range(N ′) =
range(N ) = W . For each s ∈ S, let ws denote the unique column of N ′ with a 1 in the s-th row.
Then wss = 1 and supp(ws) ⊆ (S \ S ′) ∪ {s} by construction, and moreover ws is elementary: any
w ∈ W is a linear combination of the columns of N ′, so that if supp(w) ⊆ supp(ws), then w must
be a scalar multiple of ws.

To obtain the vectors us, we construct the matrix N ′′ as

(
S ′ −XT

S ′′ I

)
,

using the matrix X := N ′[S ′′,R′]. Since (N ′)TN ′′ = 0 and rank(N ′)+rank(N ′′) = |S ′|+|S ′′| = |S|,
the columns of N ′′ span W⊥. For each s ∈ S \ S ′, let us denote the unique column of N ′′ with a 1
in the s-th row. Then uss = 1, supp(us) ⊆ S ′ ∪ {s}, and us is elementary as before. �

We comment on the relation with matroid theory in Section 5.

Lemma 3.7.

sup

{
uo : u− ei = diag

(1

c

)
w, u ∈W⊥, w ∈W, c ∈ RS+

}
≥ max{uo : u elementary in W⊥ with ui = 1, or u = 0}

Proof. First, note that the supremum is necessarily nonnegative, since if (u,w) is feasible in com-
bination with some c ∈ RS+, then so is (αu,w) for any 0 < α < 1. So it remains to show that

if u∗ ∈ W⊥ is an elementary vector with u∗i = 1, then the supremum is at least u∗o. As we have
already established that the supremum is nonnegative, we may assume u∗o > 0.
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To prove that the supremum is at least u∗o, it suffices to show that for any ε > 0, there are
u ∈W⊥, w ∈W such that ‖u− u∗‖ < ε and

u− ei = diag
(1

c

)
w, u ∈W⊥, w ∈W, for some c ∈ RS+.

This condition is equivalent to

sign(us) = sign(ws) for all s 6= i, sign(ui − 1) = sign(wi), u ∈W⊥, w ∈W. (19)

We will construct such vectors u,w, using a set S ′ and vectors us and ws as in Lemma 3.6. Through-
out, we will preserve that

sign(us) = sign(ws) for all s ∈ S ′ ∩ supp(w) (20)

sign(us) = sign(ws) for all s ∈ (S \ S ′ \ {i}) ∩ supp(u) (21)

sign(ui − 1) = sign(wi), u ∈W⊥, w ∈W. (22)

In each step, we increase the cardinality of | supp(u)∩supp(w)|, until we attain supp(u) = supp(w).
Then, we necessarily have (19).

We initialise by setting

u← (1− δi)u∗ for a small δi > 0, and w ← u∗ow
o. (23)

To see that (20) holds for this initial u,w, note that S ′ ∩ supp(w) = S ′ ∩ supp(wo) = {o}, so that
we need only verify that sign(uo) = sign(wo). Since woo = 1, we have sign(wo) = sign(u∗ow

o
o) =

sign(u∗o) = sign(uo), as required. As supp(u) = supp(u∗) ⊆ S ′ ∪ {i}, condition (21) is vacuously
satisfied by u,w. It remains to show (22), that sign(ui − 1) = sign(wi). We have supp(u∗) ∩
supp(wo) = {i, o}, u∗ ⊥ wo, and hence u∗ow

o
o + u∗iw

o
i = 0; moreover u∗i = 1, u∗o > 0, and woo = 1, so

that woi < 0. So wi = u∗ow
o
i < 0, and as u∗i = 1, we have ui − 1 = −δ < 0. Hence sign(ui − 1) =

sign(wi), as required.
In the general step, if there is an s ∈ supp(w) \ supp(u), we put

u← u+ δsu
s

where δs ∈ R is chosen such that sign(δs) = sign(ws) and with |δs| sufficiently small to ensure
that for each s′ 6= s with us′ 6= 0, the sign of us′ is unaltered. Then after this step, we have
s ∈ supp(w)∩ supp(u), and (20), (21), and (22) are preserved. If there is an s ∈ supp(u) \ supp(w),
we similarly put

w ← w + δsw
s

with sign(δs) = sign(us) and |δs| sufficiently small.
Since each δs may be chosen arbitrarily close to 0, we can ensure that in the final stage

‖u− u∗‖ =

∥∥∥∥−δiu∗ +
∑

s∈S\S′\{i}

δsu
s

∥∥∥∥ < ε.

�

Lemma 3.8.

max{uo : u elementary in W⊥, ui = 1} = max{wi : w elementary in W, wo = −1}

Proof. We first prove ‘≤’. Let u attain the maximum on the left. By Lemma 3.6, there is a set
S ′ ⊆ S and vectors ws ∈ W so that i 6∈ S, and supp(u) ⊆ S ′ ∪ {i}, and supp(ws) ⊆ (S \ S ′) ∪ {s}
for each s ∈ S ′, and wss = 1. Pick w := −wo. Then wo = −1, and supp(u) ∩ supp(w) = {i, o}. As
w ⊥ u , we have

wi − uo = wiui + wouo =
∑
s

wsus = 0
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As w is elementary, w is a feasible solution of the maximum on the right. Hence ‘≤’. Interchanging
W with W⊥, and i with o, we obtain the converse inequality ‘≥’. �

This completes the proof of Theorem 3.2.

Example E. We illustrate the proof by considering a system with 6 species S = {X1, . . . , X6}
and reactions

X2 +X3 � X4, X2 + 2X5 � 2X3 +X6, 2X1 +X2 � X6.

The stoichiometric space W and its orthogonal complement W⊥ contain the following elemen-
tary vectors:

W X1 X2 X3 X4 X5 X6

w1 0 1 1 −1 0 0
w2 0 1 −2 0 2 −1
w3 2 1 0 0 0 −1
w4 3 0 0 1 −1 −1
w5 0 3 0 −2 2 −1
w6 0 0 3 −1 −2 1
w7 1 0 1 0 −1 0
w8 2 0 −1 1 0 −1
w9 1 −1 0 1 −1 0

W⊥ X1 X2 X3 X4 X5 X6

u1 1 −2 2 0 3 0
u2 1 0 0 0 1 2
u3 1 −2 0 −2 1 0
u4 1 −2 −1 −3 0 0
u5 1 1 −1 0 0 3
u6 0 1 0 1 0 1
u7 0 1 −1 0 −1 1
u8 1 0 −1 −1 0 2
u9 0 0 1 1 1 0

These lists are complete, that is, each elementary vector of W (resp. W⊥) is obtained by scaling
one of the vectors wk (resp. uk). With input i = X1 and output o = X5, inspection of both
tables reveals that the maxima

max{uo : u elementary in W⊥, ui = 1} = 3 = max{wi : w elementary in W, wo = −1} (24)

are attained by the elementary vectors u1 ∈W⊥ and w4 ∈W , respectively.
Using the algorithm of Lemma 3.7, we construct vectors u ∈ W⊥, w ∈ W , c which are

feasible in

sup

{
uo : u− ei = diag

(1

c

)
w, u ∈W⊥, w ∈W, c ∈ RS+

}
and such that uo is arbitrarily close to the maximum u1

o = 3.
The vector u1 has supp(u1) = {X1, X2, X3, X5}, and we use S ′ = {X1, X2, X3} in the

algorithm. In the initial step, we put u ← (1 − δ5)u1, w ← −3w4, where 0 < δ5 � 1. Then
supp(u) = {X1, X2, X3, X5}, supp(w) = {X1, X4, X5, X6}, and we have (uX1 − 1)wX1 > 0, and
uX5wX5 > 0. To repair that uX2 < 0 and wX2 = 0, we use the elementary vector w5 ∈W with
supp(w5) ⊆ {X2} ∪ S ′. We have w5

X2
= 3 > 0, so we put w ← w − δ2w

5 where 0 < δ2 � δ5.

Then, we consider that uX4 = 0 and wX4 < 0, and add a small multiple of u4 to compensate:
u ← u + δ4u

4 with 0 < δ4 � δ2. Next, we have uX3 > 0 and wX3 = 0, and so we add a small
multiple of w6 : w ← w + δ3w

6 where 0 < δ3 � δ4. Finally, we repair that uX6 = 0 whereas
wX6 > 0, and put u← u+ δ6u

5 with 0 < δ6 � δ3.
We end up with

u = (1− δ5)u1 + δ4u
4 + δ6u

5 and w = −3w4 − δ2w
5 + δ3w

6
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where 0 < δ6 � δ3 � δ4 � δ2 � δ5 � 1. Constructing c by setting cs = ws/us for s 6= i and
ci = wi/(ui − 1), we obtain the feasible triple w, u, c as follows:

X1 X2 X3 X4 X5 X6

w = −9 −3δ2 3δ3 −3 + 2δ2 − δ3 3− 2δ2 − 2δ3 3 + δ2 + δ3

u = δ′5 + δ4 + δ6 −2δ′5 − 2δ4 + δ6 2δ′5 − δ4 − δ6 −3δ4 3δ′5 3δ6

c ≈ 9δ−1
5

3
2δ2

3
2δ3 δ−1

4 1 δ−1
6

Here we abbreviated δ′5 := (1−δ5), and the approximation of c is based on the assumed relative
magnitudes of the δs. The objective value of u0 = 3 − 3δ5 tends to the maximum 3 as δ5 ↓ 0,
and at the same time c→ (∞, 0, 0,∞, 1,∞).

One way the construction of c above can be interpreted is as follows. The optimum in (24)
is achieved in u1 and w4. Focusing on the w-side of this characterization, first note that each
of the elementary vectors wi is uniquely characterized by its support, up to multiplication
by scalars, by the very definition of an elementary vector. Therefore the optimal vector w4 is
characterized by its zeros for coordinates X2 and X3. One can now force the system to follow w4

by choosing c such that c2 and c3 are much smaller than the other coordinates. Although in a
relative sense X2 and X3 participate in the reactions—as illustrated by the values in the table
above, which give u2 ≈ −2 and u3 ≈ 2—because of the low background concentrations they
play no role in terms of absolute concentrations (as illustrated by the low values of w). The
end result is that the system becomes similar to a single equation with stoichiometry w4, with
small perturbations of other reactions. The construction above makes this statement concrete.

4. Results: Properties of the Sensitivity

We now turn to the Sensitivity. In contrast to the Precision, the Sensitivity is a dynamic property,
that depends not only on the stationary state c but also on the dynamic rates k. Our aim is, as
before for the Precision, to find estimates from above and below on the Sensitivity that depend on
the stoichiometry but not on the parameters c and k.

4.1. Upper bounds. Our first result gives a very general upper bound on Sensitivity for all mass-
action, detailed-balance systems.

Theorem 4.1 (General upper bound on Sensitivity). Given a kinetic system (S,R,N , (c, k)), we
have the Sensitivity bound

S ≤
√
ci
co
.

Proof. Let u be the solution of (7) with initial datum ei. Set ys = us
√
cs. Then y solves the

equation

ẏ = Ayy, (Ay)ss′ = − 1√
cs

∑
r∈R
NsrkrNs′r

1√
cs′
, y(0) = ei

√
ci. (25)

Since Ay is symmetric and non-positive, it can be diagonalized with orthogonal matrices, Ay =
O−1ΛO, where Λ = diag(λ1, . . . , λI) is a diagonal matrix of non-positive eigenvalues, and OT =
O−1. Then etAy = O−1etΛO, and we calculate, writing ok for the k-th column vector of O,

(eAyt)ss′ = (es, e
Aytes′) = (es, O

−1eΛtOes′) = (Oes, e
ΛtOes′) = (os, eΛtos

′
).

Since the eigenvalues are non-positive, this latter expression is bounded in absolute value by

|os|
∣∣ eΛtos

′∣∣ =

(∑
σ∈S

e2tλσ |os′σ |2
)1/2

≤

(∑
σ∈S
|os′σ |2

)1/2

= |os′ | = 1.
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By this calculation the solution y of (25) satisfies

sup
t≥0
|yo(t)| =

√
ci sup

t≥0

∣∣(etAyei)o∣∣ =
√
ci sup

t≥0

∣∣(etAy)io∣∣ ≤ √ ci.
The result then follows from transforming back from y to u and applying (8). �

We will see in the examples below (e.g. Example G) that this bound is very far from being sharp.

Remark 4.2 (Upper bound for normal systems). If A in (7) is normal, it is orthogonally diagonaliz-
able. Therefore by the same argument for Ay in the previous theorem we have S = (etA)oi ≤ 1. �

Following the explicit formula for the Precision of homogeneous systems, one can also prove a
property of the Sensitivity of homogeneous systems:

Theorem 4.3 (Upper bound on Sensitivity for homogeneous systems). If the system (S,R,N , (c, k))
is homogeneous of some order κ, then S ≤ 1.

Proof. We begin by introducing

kss′ :=

{
kr if Xs and Xs′ react,

0 otherwise,

and we can assume without loss of generality that each reacting pair s, s′ is only connected by one
reaction. Each column of N has only two nonzero entries, which implies that the intersection of
supports of two different rows of N has at most one element. Thus the matrix A in (7) reads

Ass′ = − 1

cs

∑
r∈R
NsrkrNs′r =


−κ

2

cs

∑̀
∈S
ks` s = s′,

κ2kss′

cs
s 6= s′.

The matrix A has negative diagonal and nonnegative off-diagonal entries. Based on this observation
we proceed with the proof. Let I be the identity matrix, then for all t ≥ 0 there exists λ < 0 such
that tA−λI is element-wise nonnegative. We denote this property by tA−λI < 0. Powers of such
a matrix preserve the property. The matrix exponential etA−λI is an infinite sum of elementwise
nonnegative matrices, hence etA−λI < 0. On the other hand the two matrices λI and tA − λI
commute. By the properties of matrix exponentials we obtain

etA = eλIetA−λI = eλetA−λI < 0.

The matrix A has the property that the sum of the entries of each row is zero. Let 1 = (1, . . . , 1)T ,
then A1 = 0 which implies that etA1 = 1. Each row sum of nonnegative entries of etA is 1, therefore
(etA)ss′ ≤ 1 for all s, s′. The alternative formulation of Sensitivity (8) then completes the proof:

S = sup
t≥0

(etA)oi ≤ 1.

�

The value S = 1 is special, for the following reason. In some cases one can concatenate, or
‘daisy-chain’ systems, by feeding the output of one system into the input of another. We conjecture
that the sensitivity of the chain can never exceed the product of the sensitivities of the individual
components. If this is true, then the value S = 1 is critical; it only makes sense to daisy-chain
components with S > 1. Whether the conjecture is true or not, for some systems tuning of the
parameters allows one to approximately achieve product Sensitivity, as the next example shows.
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Example F (Daisy chaining) We extend Example A to the following set of reactions:

2X1
k1
� X2 +X3, 2X3

k2
� X4, 2X4

k3
� X5, X1

k4
� X2.

The parameters c and k are chosen to give rise to four separate timescales, as shown in Figure 7.
A perturbation in input X1 in the first reaction, which is the fastest, results in a quick rise in X3.
In the second reaction the species X3 behaves like an input and amplifies X4. Species X4 shows
a Sensitivity near 2 relative to X3, and near 2 · 2 = 4 relative to X1. This chaining is further
extended by feeding X4 to X5, obtaining a Sensitivity close to 2 · 2 · 2 = 8 for X5 relative to
input X1. The final reaction is the slowest one, and X2 acts as a buffer whose concentration is
considerably larger than the other species. At the slowest time scale, the last reaction reduces
the initial rise in X1 and pushes back all the species to a concentration very close to pre-stimulus
level, thus creating a large Precision.
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Figure 7. An example of routing the output of one system into the input
of a next system (‘daisy-chaining’), which in this case allows one to achieve
a total Sensitivity close to the product of the individual sensitivities. Here
c = (10, 10.000, 0.01, 0.01, 0.001) and k = (1000, 10, 0.01, 0.001).

4.2. Intermezzo: subsystems. In Theorem 4.5 below we construct lower bounds for the maximal
Sensitivity by using properties of a subsystem and exploiting the possibility of making the subsystem
dynamics much faster than the dynamics in the remainder of the system. We first study the relation
between optimal Precision and Sensitivity of a subsystem with that of the full system.

Definition 4.4 (Subsystems). (S,R1,N1) is a subsystem of (S,R,N ), notation (S,R1,N1) ⊂
(S,R,N ), if R1 ⊂ R and N1 is the restriction of N to the columns given by R1.

One can obtain a subsystem by setting the rates kr of some of the reactions to zero. Note that
this is different from setting them to nearly zero, since the stoichiometric freedom range(N ) is
different in the two cases, and therefore the stationary states are also different.

Theorem 4.5 (Precision and Sensitivity under taking subsystems). If (S,R1,N1) is a subsystem
of (S,R,N ), then

• The maximal Sensitivity of the subsystem is less than or equal to the maximal Sensitivity
of the full system, and
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• The maximal and minimal Precision of the subsystem may be smaller than, equal to, or
larger than in the full system.

Proof. For the purposes of Precision and Sensitivity, the two systems (the ‘system’ and the ‘sub-
system’) are both described by equations of the form (7). We can take the same set R of reactions
for both, if for the duration of this proof we allow some of the parameters kr for the subsystem to
be zero.

The behaviour of the Sensitivity now follows from the continuity properties of ordinary differential
equations. We write the solution of (7) with initial datum ei as u(t; c, k) to emphasize the choice
of parameters. For each ε > 0, we can find a parameter point (c1, k1) for the subsystem (which
implies that some of the k1

r are zero), and a time t1 ≥ 0, such that

u(t1; c1, k1) ≥ maxS(S,R1,N1)− ε.
On the finite time interval [0, t1 + 1], solutions depend continuously on parameters, implying that
we can find strictly positive parameter points (c2, k2) for the full system such that

sup
t∈[0,t1+1]

u(t; c2, k2) ≥ maxS(S,R1,N1)− 2ε.

Since ε > 0 is arbitrary, it follows that

maxS(S,R,N ) ≥ maxS(S,R1,N1).

A similar argument fails for the Precision, since the two limits t → ∞ and kr ↓ 0 need not
commute. As examples where the Precision of a system is larger or smaller than the Precision of a
subsystem, consider

• If we choose a system with finite Precision and a subsystem in which the input and output
species are no longer connected by any reactions, then the output concentration is inde-
pendent of the input concentration, implying an infinite Precision, which is therefore larger
than the Precision of the full system.
• In Example F the Precision of the full system is high, while some of the subsystems have

low Precision.

�

4.3. Properties of the Sensitivity: lower bounds. Since supt≥0 c
ε
o(t) ≥ cεo(+∞), the inequality

SP ≥ 1 always holds (compare the definitions of Sensitivity (5) and Precision (6)) and therefore
maxS ≥ maxInvP. The next theorem strengthens this property.

Theorem 4.6 (Maximal Sensitivity is bounded from below by the maximal inverse Precision over
all subsystems). Given a system (S,R,N ),

maxS(S,R,N ) ≥ max
{

maxInvP(S,R1,N1) : (S,R1,N1) ⊂ (S,R,N )
}
.

Proof. The proof of this theorem is very similar to that of Theorem 4.5. For any (S,R1,N1) ⊂
(S,R,N ) and ε > 0, we choose a parameter point (c, k1) for (S,R1,N1) (i.e. with k1

r = 0 whenever
r ∈ R \ R1) such that

P−1(S,R,N , (c, k1)) = P−1(S,R1,N1, (c, k
1)) ≥ maxInvP(S,R1,N1)− ε.

We then choose t1 > 0 such that

u(t1; c, k1) ≥ maxInvP(S,R1,N1)− 2ε.

Finally, using continuous dependence on parameters we choose a strictly positive parameter point k2

such that
u(t1; c, k2) ≥ maxInvP(S,R1,N1)− 3ε.
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Therefore

maxS(S,R,N ) ≥ maxInvP(S,R1,N1)− 3ε,

and since ε > 0 and the subsystem (S,R1,N1) were arbitrary, the result follows. �

Example G (Sensitivity larger than maxInvP). We consider a chemical reaction network with 6
species and three reactions:

X1 +X3
k1
� X6, X1 +X4

k3
� X5, X2 +X6

k2
� X5.

Choosing X1 to be the input and X6 the output, Theorem 3.2 gives maxInvP = 1. Figure 8,
however, shows a value for the sensitivity of about 1.13, which therefore exceeds maxInvP. A
formal argument inspired by a numerical observation suggests that the Sensitivity is bounded
from above by 1 + e−2 ≈ 1.135, but proving this bound remains open.
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Figure 8. Solution of u̇ = Au with u(0) = e1 and parameters k = (0.1, 10, 104)
and c = (104, 10−2, 104, 103, 1, 10−4). Here S ≈ 1.13. Note that this number is

much smaller than
√
ci/co = 104.

5. Matroid theory and the proof of Theorem 3.2

5.1. Matroids and the combinatorics of the stoichiometric space. The proof of Theorem 3.2
was conceived with a certain matroid related to the stoichiometric matrix N in mind. Seeing that
the entire argument could be also stated in terms of linear algebra, we chose to avoid the use of this
concept in our presentation of the proof. We will give the matroid perspective here as an optional
service to the reader. We briefly describe the relevant matroid theory here, referring to the book
of Oxley [Oxl14] for a more detailed account and full proofs of the statements below.

Consider a finite set of vectors E ⊆ Rn and let

I := {X ⊆ E : X is linearly independent over R}.

Then I has the following three properties.

(I0) ∅ ∈ I
(I1) if X ∈ I and Y ⊆ X, then Y ∈ I
(I2) if X,Y ∈ I and |X| < |Y |, then there exists an e ∈ Y \X so that X ∪ {e} ∈ I.
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A matroid is any pair M = (E, I) where E is a finite set and I is a set of subsets of E satisfying
the above three axioms. In this more abstract setting, we also call a set X ⊆ E independent if
X ∈ I and dependent otherwise. A set B ⊆ E is called a basis if B is an inclusion-wise maximal
independent set, and C ⊆ E is a circuit if C is an inclusion-wise minimal dependent set.

Let M = (E, I) be a matroid, and let B be the set of bases of M . Then the set

B∗ := {E \B : B ∈ B}
is the set of bases of another matroid M∗, the dual of M .

Given this elementary result in matroid theory, the proof of the following statement is straight-
forward.

Lemma 5.1. If C0 is a circuit of M and e0 ∈ C0, then there is a basis B of M such that

• C0 \ {e0} ⊆ B, and e0 6∈ B;
• for each e ∈ B, there is a circuit D of M∗ such that D ⊆ (E \B) ∪ {e}; and
• for each e ∈ E \B, there is a circuit C of M such that C ⊆ B ∪ {e}.

Proof. As C0 is a circuit of M , the set I := C0 \{e0} is an independent set. Let B be any inclusion-
wise maximal set containing I. Then B is a basis of M . Since B is independent, the circuit C
cannot be fully contained in B, so e0 6∈ B. Since B is maximal, the set B ∪ {e} is dependent for
each e ∈ E \B, and hence contains a circuit C of M . By definition of the dual, E \B is a basis of
M∗. Since E \ B is a maximal independent set of M∗, the set (E \ B) ∪ {e} is dependent in M∗

for each e ∈ B, hence contains a circuit D of M∗. �

Given any r × E matrix A, define

IA := {X ⊆ E : the colums of A indexed by X are linearly independent}.
Then M(A) := (E, IA) is a linear matroid.

Lemma 5.2. Let A be an r×E matrix, and let M = M(A). Then C is a circuit of M if and only
if C = supp(x) for an elementary vector x ∈ ker(A).

Proof. A set X ⊆ E is dependent in M if and only if there is a linear dependency among the
columns of A pointed out by X, i.e. a nonzero vector x ∈ RE with Ax = 0 and supp(x) ⊆ X. �

The circuits of the dual of M(A) can be similarly characterized.

Lemma 5.3. Let A be an r × E matrix, and let M = M(A). Then D is a circuit of M∗ if and
only if D = supp(y) for an elementary vector x ∈ rowspace(A).

Now the stoichiometric matrix N is an S × R matrix, and thus the transpose matrix N T is
an R × S matrix. The matroid M = M(N T ) has ground set S and divides the subsets of S
in dependent and independent sets. With W := range(N ), the circuits of M are the minimal
supports of vectors u ∈ ker(N T ) = W⊥, and the circuits of M∗ are the minimal supports of vectors
w ∈ rowspace(N T ) = range(N ) = W .

Lemma 3.6 follows directly by applying Lemma 5.1 to M = M(N T ), C0 = supp(u∗), and e0 = i.

5.2. Computing the upper bound on the inverse precision. Let C be a circuit of the sto-
ichiometric matroid M = M(N T ). Finding a vector u ∈ W⊥ with C = supp(u) and ui = 1 is a
matter of elementary linear algebra. Computing the maximum

max{uo : u elementary in W⊥, ui = 1, or u = 0}
reduces to enumerating the collection of circuits of the stoichiometric matroid. In the same vein,
to determine

max{wi : w elementary in W, wo = −1, or w = 0},
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it suffices to enumerate the circuits of M∗.
The number of circuits of a matroid on n elements can be exponential in n, and so we cannot

expect to enumerate the full set of circuits in polynomial time. Boros et al. [BEGK03] describe a
simple algorithm which will enumerate the circuits of a matroid in incremental polynomial time.
That is, there exists a polynomial p(n, k) so that listing the first k circuits of a matroid M = (E, I)
takes their algorithm p(|E|, k) time. In a related paper [KBE+05], an algorithm is described which
will generate the circuits containing a fixed element in incremental polynomial time. For our
application, we would like to enumerate the circuits containing two fixed elements of the ground
set, but it appears to be an open problem whether this can be done in incremental polynomial
time. On the practical side, SAGE, the open-source computer algebra system, implements several
algorithms for enumerating the circuits of a matroid.

Given that there are two ways to determine the upper bound, whose running times will depend
on the number of circuits of M or M∗, one would like to estimate which one of these matroids has
the least number of circuits.

It is straightforward that in in a matroid, any two bases have the same cardinality. The rank of
a matroid M is the cardinality of any basis of M . A matroid of rank r on n elements may have as
many as

(
n
r+1

)
circuits, the maximum being attained by the uniform matroid of rank r.

The rank of the stoichiometric matrix M(N T ) equals r = rank(N ), and the rank of its dual
M(N T )∗ is n − r, where n = |S| is the size of the ground set. Taking the maximum number of
circuits of a matroid of rank r as a coarse estimate for the true number of circuits, we expect that
in general M(N T ) will have fewer circuits than M(N T )∗ while 2r ≤ n.

6. Non-detailed-balance chemical reaction networks

We now briefly comment on systems with mass-action kinetics but without the detailed-balance
assumption. In these systems the kinetic function K has the form

Kr(c) = k+
r c

αr − k−r cβr , (26)

where αr and βr are as in Definition 2.1, and k+
r and k−r are arbitrary non-negative coefficients.

The network is called reversible if k±r > 0.
In the case of detailed-balance systems, we chose to perturb the system by adding a small

amount of a certain species. Although in non-detailed-balance systems there are more choices for
perturbation, here we stick to the same method. Definitions 2.7 and 2.8 for Sensitivity and Precision
do not rely on the assumption of detailed balance, whereas in the alternative formulations (8), the
matrix A appears and this matrix owes its structure to the detailed-balance assumption. First we
provide an alternative formulation for non-detailed-balance systems.

Lemma 6.1 (Alternative formulations of Precision and Sensitivity in non-detailed-balance sys-

tems). Let t 7→ u(t) be the solution of u̇ = Âu with

Âss′ = − 1

cs

∑
r∈R

(αsr − βsr)(αs′rk+
r c

αr − βs′rk−r cβr),

and initial data u(0) = ei. The Precision and Sensitivity then have the alternative formulations

P−1 = lim
t→∞

uo(t) = lim
t→∞

(etÂ)oi and S = sup
t≥0

uo(t) = sup
t≥0

(etÂ)oi. (27)

Proof. The proof is again a simple manipulation. �

One can ask what happens with the bounds on Precision and Sensitivity when detailed balance
does not hold. We start by obtaining a bound for reversible unimolecular reaction networks that
do not necessarily satisfy detailed balance.

23



Theorem 6.2. In a reversible unimolecular reaction network we have S ≤ 1.

Proof. Reactions in such a network are of the type

Xs

ks′s


kss′

Xs′ .

with both rate constants ks′s and kss′ strictly positive when Xs and Xs′ react with each other and
we assume them to be zero otherwise. This allows to write the following ODE for the evolution of
each species.

ċs =
∑
`∈S

ks`c` −
∑
`∈S

k`scs.

Let us(t) = (cs(t)− cs)/cs, then u solves u̇ = Âu where

Âss′ =


−
∑

` k`s s = s′,

cs′
cs
kss′ s 6= s′.

We note that Â has negative diagonal and nonnegative off-diagonal elements, moreover Â1 = 0.

Showing that S = (etÂ)oi ≤ 1 is similar to the argument in Theorem 4.3. �

Consider the following example of how a small system can achieve large Sensitivity and Precision.

Example H (Adaptation in non-detailed-balanced systems). Consider a receptor R, a ligand
L, a phosphate group p, complexes Rp, RL, RLp, and Y (all indexed from 1 to 7 respectively)
that participate in reactions depicted in Figure 9. Let L serve as input and RLp output of the
network. Figure 9 shows how in the absence of detailed balance a Sensitivity near 70 can be
achieved. Note that the detailed-balance version of the network has maxInvP = 1. In fact, if we
omit the last reaction, then with the same parameters an inverse Precision near 70 is achieved.
The last reaction acts as a feedback with delay and performs the adaptation step. One can
further increase the Precision by increasing the concentration of Y and making sure that the
last reaction is the slowest one.
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Figure 9. Plot of uL(t) and uRLp(t) obtained from solving u̇ =

Âu for u(0) = e2. Rate constants are k+ = (10−3, 104, 10−3, 10−3, 1)
and k− = (17.7, 104, 10−5, 105, 3 · 10−5) and the steady state c =
(0.03, 3481.5, 0.042, 3481.5, 6.85, 0.3, 104)T .
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7. Summary and Discussion

7.1. Summary. The analysis of this paper is sparked by the question we posed in the Introduction,
To which extent can a non-dissipative system perform adaptation? We investigated this question
by first defining ‘non-dissipative’ as ‘detailed-balance, mass-action’ and ‘performing adaptation’ as
‘having high Sensitivity and Precision’, and then deriving a number of rigorous results about such
systems.

Concretely, we prove that

(1) Unimolecular reactions can have high Precision (Theorem 3.1) but their Sensitivity is
bounded by one (Theorem 4.3), even if the detailed-balance restriction is relaxed (The-
orem 6.2);

(2) The maximal inverse Precision of a given system can be characterized in various combina-
torial ways (Theorem 3.2);

(3) The maximal Sensitivity of a given system is at least as large as the maximal inverse
Precision over all subsystems (Theorem 4.5) and can sometimes be larger (Example G).

(4) By modifying not only the coefficients but also the stoichiometry, Precision and Sensitivity
can be made arbitrarily large (Examples B and F).

In this way we show that non-dissipative systems can be arbitrarily adaptive. This does require
‘extreme’ systems however, in the sense of having large stoichiometry, large concentration ratios,
and/or large time scale ratios. Theorem 4.1 shows that large concentration ratios are necessary for
large Sensitivity. For the other two we have no rigorous characterization, but the examples suggest
that at least large stoichiometry (Example B) or large time scale ratios (Example F) are necessary
for good performance.

7.2. Discussion. We now comment on a number of aspects of this work.

Definition of ‘non-dissipative’ systems. Detailed-balance, mass-action systems are a natural
choice for ‘non-dissipative’ systems. They can be considered thermodynamically closed, and admit
a free-energy functional F that drives the evolution in a gradient-flow structure [GM13, MM]. In
this context, one can identify ‘dissipation’ with the instantaneous decrease of F , and the system is
therefore non-dissipative in the sense that at all stationary points F is constant.

Despite these nice properties, this family does contain some weird specimens, such as

X1 � 2X2, X2 � 2X1,

for which the stoichiometric subspace is the whole space of positive concentrations, and which
clearly can not be mass-conservative in the traditional sense. In our examples we avoided such
exotic species, and concentrated on systems that can be realized with actual chemical systems.

Relation between ‘adaptation’ and Precision and Sensitivity. In this paper we focus on Precision
and Sensitivity as proxies for a more elaborate concept of adaptation. A better concept of adapta-
tion might include (a) the persistence of ‘good’ behaviour across a range of input concentrations,
allowing for continuous tracking in the direction of increasing concentration, and (b) a measure of
‘temporary response’ that measures not the instantaneous maximum of a concentration (like our
Sensitivity) but some quality of a downstream machinery that acts on this concentration.

Role of matroid theory. The proof of the characterization of maximal inverse Precision, Theo-
rem 3.2, is formulated in linear-algebra terminology, but in fact the ideas are inspired by matroid
theory, as explained in Section 5. Matroid theory arises in this context through the maximization
over positive coefficients k and c, by which equality constraints become replaced by sign con-
straints (Lemma 3.5 is a good illustration of this). The framework of matroid theory provides
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a natural structure in which to connect different characterizations of the same object, as illus-
trated by Theorem 3.2, and for this reason has been used in other works on chemical reaction
networks [BBCQ04, MRS14, Rei14].

Role of definitions. The conclusion of this paper, that non-dissipative systems can perform
arbitrarily effective adaptation, serves as an illustration that the relationship between dissipation
and functionality that is often broadly claimed in the literature requires very careful consideration;
precise definitions are necessary, and at this stage it is not quite clear how to best choose these
definitions, in order to obtain the clearest statements and most useful insight.

7.3. Comparison with [LSN+12, LT13]. The results of this paper appear to be in contradiction
with remarks by Lan, Tu, and co-authors [LSN+12, LT13] that e.g. ‘adaptation is necessarily a non-
equilibrium process and it always costs (dissipates) energy’ [LSN+12] or ‘the I1-FFL (Incoherent
type-1 feed-forward loop) network always operates out of equilibrium’ [LT13].

The discrepancy stems from a difference in definitions: both papers assume a type of feedback
that only exists in non-equilibrium systems. Consider, as an example, the simple reaction A� B.
From one point of view, this reaction encodes only positive influence of A on B and vice versa, since
starting from equilibrium, increasing A leads to increase in B. From this point of view, a negative
feedback mechanism can not be built using equilibrium building blocks, since negative feedback
would require a negative influence. The systems of the present paper therefore fall outside of the
scope of [LSN+12, LT13].

However, in this simple reaction one can also observe negative influence, through the mechanism
of redistribution. Consider for instance the following quantitative version:

Ȧ = B − 10A, Ḃ = 10A−B.

(This corresponds to cA = 0.1, cB = 1, and k = 1 in the setup of this paper). If, starting from
equilibrium A = 0.1, B = 1, we increase both A and B by the same amount, then the reaction will
redistribute the total additional amount in the ratio 10 : 1, as illustrated in Figure 10. This has
the same qualitative effect as negative feedback of B on A would have, as illustrated by the figure.
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Figure 10. Effective negative feedback in the reaction A� B.

This simple example allows us to explain how the non-dissipative systems of this paper have an
effect very similar to the incoherent type-1 feed-forward loop (I1-FFL) studied in [LT13]. Consider
the following two systems:
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X1

X3

X2

(a)

2X1

X3

X2

∗

(b)

Figure 11. (a) The I1-FFL from [LT13]; (b) Example A, reformatted.

The system on the left is such an incoherent feed-forward loop, depicted using the traditional
biochemical notation for positive and negative influence, while the system on the right is that of
Example A of this paper, reformatted to resemble the system on the left. The basis for the adaptive
effect of the I1-FFL is the difference in time scale between the fast activation X1 → X3, which first
leads to increase of X3, and the slow inhibition X2 a X3, which reduces X3 again on a longer time
scale.

We can recognize the same working principle in the system of Example A on the right. An
increase in input X1 leads to an increase in both X2 and ‘output’ X3; on the slower time scale of
reaction ∗, the redistribution effect just described then reduces the value of X3.

To conclude, the apparent discrepancy between the results of Lan, Tu, and co-authors on one
hand and those of this paper can be traced back to a focus on different systems; the systems of this
paper lie outside of the scope of [LSN+12, LT13]. If the systems of this paper are taken into account,
then it is clear that ‘good adaptive performance’, in the sense of high Precision and Sensitivity, can
be achieved perfectly well in non-dissipative systems.
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