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Higher Order Dynamic Mode Decomposition*

Soledad Le Clainche and José M. Vegal

Abstract. This paper deals with an extension of dynamic mode decomposition (DMD), which is appropriate to
treat general periodic and quasi-periodic dynamics, and transients decaying to periodic and quasi-
periodic attractors, including cases (not accessible to standard DMD) that show limited spatial
complexity but a very large number of involved frequencies. The extension, labeled as higher order
dynamic mode decomposition, uses time-lagged snapshots and can be seen as superimposed DMD
in a sliding window. The new method is illustrated and clarified using some toy model dynamics,
the Stuart—Landau equation, and the Lorenz system. In addition, the new method is applied to
(and its robustness is tested in) some permanent and transient dynamics resulting from the complex
Ginzburg-Landau equation (a paradigm of pattern forming systems), for which standard DMD is
seen to only uncover trivial dynamics, and the thermal convection in a rotating spherical shell subject
to a radial gravity field.

Key words. dynamic mode decomposition, Koopman operator, delayed snapshots, nonlinear dynamical sys-
tems, transient dynamics, quasi-periodic attractors, complex Ginzburg-Landau equation, thermal
convection in spherical shells
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1. Introduction. Dynamic mode decomposition (DMD) is closely related to (and inspired
by) Koopman-operator analysis [36, 43], initiated by Koopman [31] in 1931. DMD itself was
developed by Schmid [48], and has become a useful tool for postprocessing massive spatio-
temporal data in numerical and experimental fluid mechanics [49, 50, 51, 52, 32] and other
fields [28, 40]. The ability of DMD to extract relevant patterns makes this method potenti-
ally useful in identifying nonlinear dynamics in many physical systems, but this application
requires some care since the standard DMD may give completely spurious results. The main
goal of this paper is to analyze the application of DMD to general (both low-dimensional
and infinite-dimensional) dynamical systems, which will require a nontrivial extension of the
method.

In order to fix ideas, DMD applies to spatio-temporal data organized in K equispaced
J-dimensional snapshots as

(1.1) vy =v(ty) €R? forty =t; + (k- 1)At withk=1,..., K.

Thus, the spatial and temporal dimensions of the given data are J and K, respectively. Stan-
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dard DMD relies on the following Koopman assumption:
(1.2) Vpy1 =Rvy fork=1,... K—1

for a certain J x J-matrix R, which can be called the Koopman matriz (or operator). For
simplicity in the exposition, this equation is assumed at the moment to be satisfied exactly,
though it will only hold approximately in most applications (see below). The assumption
(1.2) implies that the snapshots lie in the invariant subspace under the action of the Koopman
group [58, 11], generated by R. This assumption leads to the following DMD representation
of the snapshots:

M
(1.3) v(ty) = Z AUy O Hm)(B=DAL o | — 1 K,

m=1

where the exponents appear in complex conjugate pairs when the snapshots are real. This is
a Fourier-like expansion that involves, not only the frequencies w,,, but also the growth rates
Om -

The linear time invariant (LTT) [60] system (1.2) is not assumed to be the actual physical
model that has produced the snapshots. In other words, the role of the linear system (1.2)
is only instrumental in this context, as a means to compute the modes u,,, amplitudes a,,,
growth rates d,,, and frequencies w,, appearing in the Fourier-like expansion (1.3). Instead,
the underlying physical model may well be nonlinear, and the snapshots (1.1) satisfying (1.2)
may be particular outcomes of the system for a periodic (if 6, = 0 and the frequencies w,, are
commensurable) or quasi-periodic (if §,, = 0 and the frequencies w,, are incommensurable)
attractor of the system, or for a transient approaching a periodic or quasi-periodic attractor
(if 6, < 0).

Since any terms in (1.3) with the same exponents may be collected into a single term by
summing their coefficients, we assume (without loss of generality) that the various exponents
in (1.3) are distinct. In this case, the number of involved modes, M, can be called the spectral
complexity, while the dimension of the subspace generated by the M DMD-modes, namely

(1.4) N = dim (span{ui,...,up}) < min{M, J},

is the spatial complexity. The spatial complexity can be elucidated via either truncated proper
orthogonal decomposition (POD) [16] or truncated singular value decomposition (SVD) [25],
which allows reducing the dimension of the snapshots set and, combined with the pseudo-
inverse, also permits computing the Koopman matrix R. Once R has been calculated, the
growth rates and frequencies appearing in (1.2) are related to the nonzero eigenvalues of R,

/’Lma as
1

Om + iw, = Az

log i,

while the modes u,,, are the associated eigenvectors; the amplitudes a,, can be computed by
various means (see below). At the moment, it is convenient to note that, if (1.2) and (1.3) are
consistent with each other, then
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e The DMD modes appearing in (1.3) are linearly independent, as eigenvectors of a
matrix associated with different eigenvalues.
e The number of terms appearing in (1.3), namely the spectral complexity M, cannot
be larger than the spatial complexity N, which, invoking (1.4), means that M = N.
In fact, if M = N and conditions (1.2) and (1.3) are exact, then these conditions are equivalent.
This is a fundamental limitation of standard DMD [48]. More general expansions (1.3), with
M > N, cannot be obtained via standard DMD, which gives spurious results, even in the
simplest case in which the snapshots are identically of the form (1.3) (see the examples in
section 3.1). Instead, according to Theorem D in Appendix A, the expansion (1.3) is consistent
(always, for general M and N) with the following higher order Koopman assumption:

(1.5) Vird = R1 v+ Rovg1 + ...+ RgVktd—1 fork=1,...,K —d,

where d > 1 is tunable. Summarizing, although the assumption (1.2) leads to the DMD
expansion (1.3), the converse is not true, namely not all expansions of the form (1.3) can
be calculated from the assumption (1.2). The more general assumption (1.5), instead, is
equivalent to (1.3).

It must be noted that the spectral complexity M is larger than the spatial complexity
N in dynamical systems of scientific and industrial interest. For instance, N = 3 in the
Lorenz system (considered in section 3.2), which exhibits chaotic dynamics (infinite spectral
complexity) and also periodic attractors with very large spectral complexity M. On the other
hand, M may be larger than NV in dissipative, infinite-dimensional systems modeled by partial
differential equations. For example,

e The weakly nonlinear theory near a Hopf bifurcation in these systems is described
by a Stuart-Landau equation [26]. As further explained in section 3.3, the weakly
nonlinear theory predicts transient dynamics involving a large number M of decaying
modes that are approximately contained in the two-dimensional center manifold built
around the steady state, meaning that N =3 < M.

e Similarly, weakly nonlinear descriptions of quasi-periodic phenomena in these systems
(see [2] and references therein) may involve few spatial modes.

e Fully nonlinear dynamics can behave similarly in these systems since, for large ¢,
the solution of many infinite-dimensional systems converges to a nonlinear, finite-
dimensional inertial manifold [22], contained in a generally larger (but finite-dimensional,
according to the Whitney embedding theorem [27]) N-dimensional linear manifold.
The dynamics in this manifold may well be chaotic (e.g., transitional flows) and also
exhibit attractors with large M (> N). A very clear example with finite-dimensional
inertial manifold where fairly complex dynamics occur is the complex Ginzburg—
Landau equation, which will be considered in section 4. This is a very convenient
pattern forming system to illustrate the methods in this paper because (i) it exhibits
fairly complex dynamics, (ii) it is a “normal form” that applies to a variety of oscilla-
tory bifurcations in infinite-dimensional systems [19, 26], and (iii) it is simple enough
as to allow for fast numerical simulation. Also, this application suggests that higher
order dynamic mode decomposition (HODMD) may be very useful to analyze perio-
dic and quasi-periodic phenomena in pattern forming systems. Let us note here that
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identifying and computing quasi-periodic attractors in infinite-dimensional systems is
a subtle matter [45, 46].

The counterpart of standard DMD using the assumption (1.5) will be labeled as HODMD,
and will be seen in this paper to be a fairly precise and robust means to compute the expansion
(1.3) for sets of snapshots resulting from general periodic and quasi-periodic dynamics, namely
consistent with (1.3), with arbitrary finite values of the spectral and spatial complexities. In
any event, irrespective of whether the correct DMD expansion is calculated using standard
DMD (which can be seen as a particular case of HODMD) or HODMD, the continuous ex-
tension of (1.3),

M
(1.6) V(t) = Yty O T for 4y <t <ty

m=1

may be used to reconstruct (very general, transient, or permanent) nonlinear dynamics. For
permanent dynamics (when all d,, = 0), (1.6) can be seen as interpolation in the time variable,
while for transient dynamics (with d,, < 0), skipping in (1.6) those terms with J,, < 0 permits
anticipating the final attractor for ¢t > 1 from transient behavior, which involves extrapolation
and, as noticed elsewhere [3], may be used to reduce the CPU time required to approach
the final attractors using numerical simulation; this CPU time may be huge near bifurcation
points.

The good performance of HODMD can be attributed to the fact that, according to Theo-
rem D in Appendix A, the assumption (1.5) is general enough as to allow for general spatio-
temporal behaviors of the form (1.3). Another explanation of the improved performance of
HODMD follows by interpreting (1.5) as a modified form of (1.2) containing also time-lagged
snapshots. Namely, (1.5) can also be written as

(1.7) Dpy1 = Ry,

where the modified snapshots vy, and the modified Koopman matriz R are defined as

Vi 0 I 0o ... 0 0
Okt 0o 0o I ... 0 0
(1.8) O = ., R=\| ... ... ... ... .. 1.
Vk+d—2 0 0 0 I 0
Vftd—1 Ry, R, R; ... Rj 1 Ry

with I = the J x J unit matrix. In fact, the algorithm presented in this paper to perform
HODMD, which will be called the DMD-d algorithm, roughly consists of applying standard
DMD to the enlarged snapshots defined in (1.8). The good performance of the computations
based on (1.7) could be seen as consistent with the use of sliding windows in the improvement
of the fast Fourier transform (FFT) known as power spectral density (PSD) [38]. A more
relevant explanation follows noting that if the spatial complexity of the original snapshots is
smaller than the spectral complexity, including the time-lagged snapshots in (1.8) recovers
the missing degrees of freedom and increases the spatial complexity in the enlarged snapshots
as to make it equal to the spectral complexity. This is consistent with the method of delay-
coordinate embedding for state space reconstruction of an attractor using time-series of a
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limited number of observables (even scalar observables). In this method, the number of
observables is increased by using time-lagged observables (see also [58, 59] for alternative
ways of extending the space of observables); delayed information has also been recently used
in model identification [12]. The method of delay-coordinate embedding relies on seminal
ideas by Packard et al. [37], which were formalized by Takens [54] in his delay-embedding
theorem (see also [44] for extensions of this theorem), and further pursued by Broomhead
and King [10]. In this sense, HODMD can be seen as a synergic combination of standard
DMD and Takens’ delay embedding and could be useful for the delay-embedding community,
which is very interested in forecasting. However, most of the current forecasting methods
are restricted to stationary time-series, which are analyzed using classical techniques such as
the method of analogs [34] and local linear forecasting [21, 13]. These methods have been
recently revisited, combined with diffusion maps [62, 9] and the Koopman operator [24], and
generalized to a probabilistic framework for stochastic systems [42, 7, 8]. In contrast to these
local linear methods, HODMD is a global linear method that provides all involved frequencies
and growth rates simultaneously. Moreover, by its own nature, the outcomes of HODMD may
involve nonzero decaying rates in (1.6), which permits extrapolation (and thus dealing with
nonstationary time series) while the delay-embedding methods mentioned above are all based
on interpolation on stationary time series.

Although, for simplicity in the presentation, (1.2), (1.3), and (1.5) were assumed above to
be exact, these equations are usually only approximate in typical applications, due to either
the presence of noise or the fact that only a limited accuracy is sought. In the latter case, the
spatial complexity M and the spectral complexity N depend on the required accuracy. In fact,
the accuracy may be an issue [61, 29] when calculating the DMD expansion (1.3). Concerning
noise, this is filtered out by the preliminary application of SVD (whose ability to filter out
noise is well known [53]), which is performed as the previous step to dimension-reducing
the snapshots set and reinforced through the use of delayed snapshots (whose insensitivity
to noise is well documented [6]). In this context, it is necessary to robustly capture the
spatio-temporal redundancies, which requires having enough data in both space and time.
Concerning the selected snapshots, the sampling frequency must be somewhat large compared
to the largest frequency appearing in (1.3) and the sampled timespan be somewhat large
compared to 27 /wmin, where wpiy is the smallest frequency in (1.3). These conditions imply,
in particular, that K should be such that

(1.9) K> M.

The good performance of the standard DMD and HODMD methods requires testing the
accuracy of the reconstructed snapshots via the approximation (1.3) obtained by these met-
hods. However, the aim is not using DMD-like methods as a data-processing tool, just to
obtain good data-reconstructions, but to uncover the underlying dynamics. The difference
between both goals will be made clear in this paper (see section 3.1) noting that high-order
(namely, exhibiting very small amplitudes a,,) DMD modes in (1.3) may be useful to obtain
good data reconstructions, but still be associated with “errors” resulting from the finite sam-
pled timespan, the finite sampling frequencies, and/or noise. In other words, these small
amplitude modes could be dynamically spurious. Thus, accuracy is not enough, but robust-
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ness (against changes in the sampling frequency, the sampled time interval, and the index d)
is also necessary to identify the dynamically relevant DMD modes.

On the other hand, HODMD may be used to recover the relevant frequencies in periodic
and quasi-periodic dynamics using a very limited amount of noisy data. This is because, as
already mentioned, HODMD takes advantage, not only of the spatial redundancies (via the
truncated SVD step that is performed at the outset), but also of the temporal redundancies
(through the time-lagged snapshots). This is of interest to, e.g., minimizing the number of
sensors in experimental tests (e.g., of accelerometers in aeroelastic wind tunnel and flight
tests [30]). In fact, standard DMD is somewhat similar to the so-called autoregressive moving
average (ARMA) method [35], which is already used in aeroelasticity. It would be interesting
to know how the time-lagged snapshots considered in the HODMD method improves ARMA,
though this application is well beyond the scope of this paper.

The examples and applications below are performed using MATLAB. Sufficient details are
given in all cases, allowing the reader to reconstruct and check results.

The remainder of this paper is organized as follows. The HODMD method is introduced in
section 2, and the new method is developed in the context of the standard DMD method. The
new ideas and the performance of the method are illustrated in section 3, where several exam-
ples are considered that include both simple toy models (in section 3.1 and low-dimensional
systems (in sections 3.2 and 3.3). In particular, for the Lorenz system considered in section
3.2, HODMD will be used to recover the final attractors from transient dynamics. The more
complex periodic and quasi-periodic attractors appearing in the complex Ginzburg—Landau
equation (CGLE) will be considered in section 4, where the ability of HODMD to recover the
relevant frequencies in complex dynamics using a limited amount of noisy data will also be
tested and compared with FFT and PSD. The HODMD method will be applied in section 5
to the three-dimensional thermal convection in a rotating spherical shell subject to a radial
gravity field, a problem that is of fundamental interest in geophysical and astrophysical fluid
dynamics [17]. This paper ends with some concluding remarks in section 6.

2. Higher order dynamic mode decomposition. For convenience, the standard DMD
method is first revisited and reformulated in the spirit of this paper. Then the standard DMD
is extended using delayed snapshots, which gives the HODMD method. Below, we consider se-
veral snapshot matrices (whose columns are snapshots), denoted as V’,jf = [Uky s Vkyt1s- - 5 Uky)-
For instance, the full snapshot matrix is

V{{ = [vl,...,vk].

The aim is to calculate the DMD expansion
M
(2.1) v ~ vPMP = Z AmumedmHom)(E=DAL g — 1 K,
m=1
in a robust and precise way.

2.1. Standard DMD revisited and reformulated: The DMD-1 algorithm. Standard
DMD relies on the assumption (1.2), namely

(2.2) Vg1~ Rvp fork=1,...,K —1,
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which can be written in matrix form (in terms of snapshot matrices) as
(2.3) VE ~ RVE-L

These approximate equations, and many other appearing below, could be written as exact
equations with a residual. For instance, (2.4) could be written as V& = U X T" + R, where
the residual depends on the neglected singular values, 012\, 411, and associated modes, and

is readily seen to exhibit a Frobenius norm ||R|lfo = /0341 + -+ Likewise, the norm of

the residual in the remaining approximate equations could be estimated noting that these
equations are obtained upon direct application of truncated SVD (for which well known error
estimates are available [25]) or the pseudoinverse (which also relies on SVD). Moreover, these
estimates could be used to obtain an a priori error estimate for the snapshots reconstruction
via the DMD expansion (2.1). However, none of these will be done below to avoid both a too
involved analysis and fairly messy equations, which would divert from the main focus of the
paper. In any event, standard DMD and HODMD are both postprocessing methods, and the
actual reconstruction error can well be calculated a posteriori.

The (somewhat straightforward and fairly similar to the method proposed by Schmid [48])
method to calculate the standard DMD expansion is now described. The method proceeds in
three steps, considered in the following subsections.

2.1.1. Step 1: Dimension reduction. This step is performed by applying truncated SVD
(implemented in the MATLAB command “svd”, option “econ”) to the full snapshot matrix,
as

(2.4) VE~UST", withU'U=T"T =the N x N unit matrix,

where 3 is the diagonal matrix containing the retained SVD singular values sorted in decre-
asing order, o1, 09,...,0n, and the (orthonormal) columns of the J x N matrix U and the
K x N matrix T are the spatial and temporal SVD-modes, respectively. Invoking well known
SVD formulae [25], the number N of retained modes is selected in terms of the rank of the
snapshots matrix, R < min{J, K}, to be such that

(2.5) EE (N) =

where EE (V) is the relative root mean square (RMS) error of the approximation (2.4). The
threshold e; is tunable and can be selected in view of the singular values distribution, using
the error estimate (2.5). The default value could be e = 1078.

Now, (2.4) can also be written as

A K
(2.6) vE~UVy,
where the reduced snapshot matriz is defined as

(2.7) Vi =TT (=UTVE),
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" K
The rows of the N x K-matrix V| are proportional to the SVD temporal modes and can
thus be seen as rescaled temporal modes. Rescaling is important to get consistent results

in the dimension-reduced formulation; see below. The columns of V{( will be called the
reduced snapshots and exhibit a much smaller dimension than the original snapshot matrix if
N < J (the usual case when simulating infinite-dimensional systems). Thus, it is this reduced
snapshot matrix that will be used below in all computations. In particular, (2.6) implies that
the snapshots and reduced snapshots are such that

(2.8) v ~ U vy.

Similarly, the counterpart of the DMD expansion (2.1) for the reduced snapshots is
M .
(2.9) bp ~ OPMP = ) Al o)A o =1 K,
m=1
with

Uy, = U .

2.1.2. Step 2: Computation of the reduced Koopman matrix and the DMD modes.
Premultiplying (2.2) and (2.3) by UT and invoking (2.8) yields

(2.10) bp1~Ro, or Vi ~RV] ' with R=UTRU.

The N x N-matrix R will be called the reduced K oopman matriz and is calculated using the

~ K1
pseudoinverse, as follows. Standard (no truncation) SVD applied to the matrix V; ~ leads
to

(2.11) Vit —ousT',

where, assuming that N < K —1 (see (1.9)), the N x N matrix U and the (K —1) x N matrix

- N NN ~ T

T are such that U U = UU = unit matrix, T T = unit matrix, and the NV x N diagonal
matrix 3 is nonsingular and (because of the rescaling (2.7)) is very close to its counterpart
n (2.4), 3. Substituting (2.11) into (2.10) and postmultiplying the resulting equation by

Tﬁ_ll}'—r leads to
R=ViTs U,

Now, once the reduced snapshot matrix R has been calculated, its eigenvectors q,,,, rescaled
as

(2.12) lall/ VT =1,

and eigenvalues p,, readily yield the modes, growth rates, and frequencies appearing in the
DMD expansions (2.1) and (2.9) as

N . 1
(2.13) Um =q,,, Um=Uq,,, Omn+iw, = Kthng'
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The rescaling (2.12) means that the RMS of the modes is 1, which makes the mode amplitudes
a.n as independent as possible from J. The amplitudes a,, are left aside at the moment.

Now, this calculation is readily seen to differ from that in [48, p. 9] only in one point.
The projection matrix U is calculated here in (2.4) by applying SVD to the whole snapshot
matrix V&, while Schmid [48] calculates U by applying SVD to the smaller snapshot matrix
V{( ~! (ignoring the last snapshot). If the number of snapshots K > 1 (the usual case), then
both calculations give very similar results. In fact, the method in [48, p. 9] gives almost
identical results as DMD-1 in all calculations performed in this paper and will not be further
considered.

2.1.3. Step 3: Computation of the DMD mode amplitudes. The DMD amplitudes are
now calculated using the reduced DMD expansion (2.9), which, invoking (2.13), can also be
written as

M
(2.14) U ~ Z @t fork=1,... K.

m=1

Since the dimension of the (known) reduced snapshots vy, is N (= M in the present case) and
the eigenvectors g,,, are linearly independent, each of these equations uniquely determines the
amplitudes a,,. The whole system of equations, instead, is highly overdetermined if K > 1
(the usual case), but can be solved using the pseudoinverse, which represents a minimization
of the least-squares-error in the approximation (2.14) and is essentially equivalent to the so-
called optimized DMD method [18]. This step is performed by rewriting (2.14) in matrix form
as

(2.15) La=b,

where the (NK x M)-matrix L, the unknown amplitudes vector a, and the forcing term b
are defined as

Q ai 1
(2.16) L=| @M | | 2| s | ™
QMK ay Vg

Here, L is exactly the observability matriz for a linear system with observation given by
the M x M-matrix Q@ = [qy,-..,q,] (formed by the eigenvectors) and dynamics given by
the M x M diagonal matrix M (formed by the associated eigenvalues, pi,...,unr). The
pseudoinverse is calculated by applying standard SVD (no truncation) to the matrix L as

(2.17) L=U30,,
with the (NK x M)-matrix U; and the M x M-matrix Uj such that

(2.18) f];f]l = f];f]g =U, f]; = the M x M unit matrix.
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Substituting (2.17) into (2.15), premultiplying the resulting equation by U 22_10?, and
invoking (2.18) yields

(2.19) a=U,5"'0] b.

As a final step, the mode amplitudes are all set > 0 by changing sign in both a,, and g,,, when
needed in the expansion (2.14). This completes the calculation of the amplitudes, which is
usually the most computationally expensive step if K > 1 (the usual case).

Finally, the DMD modes can be reordered sorting the mode amplitudes in decreasing
order, and a smaller number of modes, M, may be selected imposing that

(2.20) aM+1/a1 <eg,

for some tunable (small) threshold e.

2.1.4. Summary of the DMD-1 method. Summarizing, the following algorithm has been
developed to apply standard DMD to the snapshots (1.1). As a first step, truncated SVD is
applied to the snapshot matrix (see (2.4)), with the number of retained terms as defined in

(2.5), for some tunable threshold e;. Then, the reduced snapshot matrix Vf is calculated
using (2.6)—(2.7). The M eigenvectors q,, and eigenvalues i, of R and the pseudoinverse
solution of (2.16) (with the additional truncation of the DMD modes performed using (2.20))
yield the ingredients of the DMD-expansion (2.1) using (2.13) and (2.19).

For convenience, this algorithm will be labeled as the DMD-1 algorithm. Since this algo-
rithm relies on the assumption (2.10) (which is typically not known a priori), consistency of
the results requires that

(2.21) va . RVf‘1H2/HV§H2 < 1.
If this condition does not hold, then standard DMD gives a spurious approximation and the

more general HODMD method, considered in the next subsection, should be used.

2.2. The higher order dynamic mode decomposition: DMD-d algorithm with d > 1.
As anticipated in the introduction, HODMD relies on the higher order Koopman condition
(1.5), namely

(2.22) Vitd ~ Rivp + Rovgy1 + -+ Rgvgyg1 fork=1,... K —d.
This more general condition is now treated in a similar way as we did with the assumption
(2.2) in section 2.1, in three steps described in the following subsections.

2.2.1. Step 1: Dimension reduction. To begin with, we perform exactly the same dimen-
sion reduction developed in step 1 of the DMD-1 method (see section 2.1.1), using (2.4)—(2.7)
with a convenient threshold e1, which yields exactly the same projection equation, namely
(2.8). This is rewritten here for convenience as

(2.23) vy, = U by,
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Using this, the counterpart of (2.22) in the reduced linear manifold is
(2.24) Vg = Rl Vi + RQ Vpy1+ -+ Rdi’k—i-d—l fork=1,..., K —d.

As anticipated in the introduction, this equation can be seen as a modified Koopman equation
and written as

Vi1 =~ Ry,

where the modified snapshots v, and the modified Koopman matrix R are

o o I 0 ... 0 0

Dot 0o 0 I ... 0 0

(2.25) o = ., R=| ... o
Vitd—2 0 0 o ... I 0

Vktd—1 Ri Ry Ry ... Ry Ry

Here, I and 0 are the N x N unit and zero matrices, respectively. Note that the modified snaps-
hots ¥, are of dimension dN and the modified Koopman matrix R is a (dN x dN)-matrix,
which may be fairly large but still reasonable. In fact, this matrix will not be calculated
below because the set of snapshots v, will be further dimension-reduced in the next step.
Because d and K are usually fairly large, this step is usually fairly computationally expensive.
Nonetheless, the spatial dimension reduction performed above (see (2.23)) has been essential
because if this were not performed, the dimension of the counterpart of the modified snapshot
matrix (see (2.26)) would be a (Jd x Jd) x (K — d + 1)-matrix. For typical applications in
spatially three-dimensional fluid flows, J ~ 107. Since K ~ 1000 and d ~ 100 for typical
quasi-periodic dynamics in infinite-dimensional systems (see below), the method would be
absolutely impractical without the spatial dimension reduction. In addition, the spatial di-
mension reduction will not permanently remove information since Takens’ delay-embedding
theorem guarantees that the full state can be reconstructed from any generic observable. So,
introducing the lagged snapshots in the next section will reconstruct the variables necessary
to reconstruct the state.

2.2.2. Step 2: Computation of the DMD modes. The DMD-d method proceeds by
applying steps 1 and 2 in the DMD-1 method (see sections 2.1.1 and 2.1.2, respectively) to
the modified snapshot matrix (with vy as defined in (2.25))

- K—d+1 . -
(226) Vl = [’Ul, ey vK—d—i—l]a
which is of order (dN) x (K —d+1). Note that when step 1 in the DMD-1 method is applied
to this snapshot matrix, then a dimension reduction results, which is an additional dimension
reduction to that performed in step 1 above and is made using the counterpart of (2.5), namely

2 2
(2.27) BE (N) = 22+ R

<e¢e; with R = min{dN,k —d+ 1}.

The threshold e; may coincide with its counterpart in the first dimension reduction performed
in step 1 above (see section 2.2.1) or not. The outcome of DMD-1, step 2 (using (2.13)) is a set
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of DMD modes, q,,, growth rates, é,,, and frequencies w,,. Consistently with the definition
(2.25) of the modified snapshots to whom DMD-1 has been applied, the N first components

of q,, (rescaled as indicated in (2.12)) give the reduced DMD-modes q,,, for the reduced DMD
expansion

M
(2.28) o ~ 0PMP = Z A0 Hm)E=DAL o — 1K,

m=1

which is the counterpart of (2.1). The growth rates and frequencies are precisely those com-
puted in the application of the DMD method to the modified snapshot matrix (2.26).

2.2.3. Step 3: Computation of the DMD mode amplitudes. Once the reduced DMD
modes, g,,, growth rates d,, and frequencies w,, have been calculated, the DMD amplitudes
a.m, are calculated precisely as we did for the DMD-1 algorithm in section 2.1.1. Namely, the
amplitudes in (2.28) are calculated by rewriting (2.28) in the form (2.14) and calculating the
amplitudes vector via the pseudoinverse of the matrix L. A further truncation using (2.20) is
also performed. This completes the derivation of the reduced DMD expansion (2.28). As in
the DMD-1 method, this is usually the most computationally expensive step.

2.2.4. Summary of the DMD-d method, with d > 1. Summarizing the above, given a
set of snapshots vy and an index d > 1, the snapshots are dimension reduced as explained in
step 1 (see section 2.2.1), which gives the reduced snapshots vy defined in (2.23). The reduced
modes q,,, growth rates d,,, and frequencies w,, appearing in the reduced DMD expansion
(2.28) are calculated as explained in section 2.2.2 and the mode amplitudes a,,, as explained
in section 2.2.3. Premultiplying the reduced expansion (2.28) by the projection matrix U
appearing in (2.23) yields the DMD expansion (2.1), with u,, = Ug,,.

2.3. Practical implementation and calibration of the DMD-d algorithm. The DMD-1
and DMD-d algorithms developed above are straightforwardly implemented in MATLAB. In
fact, as developed, the methods (and all formulae) are applicable to both real and complex
data, as automatically performed in MATLAB by using the command ’ for the transpose '.
As anticipated, these algorithms can be used, in principle, either (i) to reconstruct the set of
given snapshots (using the method as a data processing tool) or (ii) to uncover the underlying
dynamics, which is more subtle. The goal (ii) requires identifying the right damping rates and
frequencies and permits extrapolating the identified dynamics for large t.

Whatever the goal, these methods exhibit various tunable parameters, namely, the sampled
time interval, the number of snapshots K, the threshold ¢; used in SVD truncation (see
(2.5)), the threshold ¢ defining the retained modes (see (2.20)), and the index d for the
DMD-d method, which should be chosen in each particular application. Note that condition
(2.21) is a very useful means to elucidate whether the standard method is appropriate or not.
When DMD-1 is not appropriate, the calibration of the index d > 1 deserves some attention.
Obviously, d must not be too close to 1. On the other hand, when applying the DMD-d
method, the modified snapshots matrix (2.26) contains K — d modified snapshots (of size
dN), meaning that d > 1 must not be too close to K, to avoid that only a small number of
modified snapshots are really used by the method. As a consequence, d must be chosen in
an appropriate interval that, fortunately, is usually fairly wide, as it will be repeatedly seen
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below. The appropriate values of d obviously depend on the involved dynamics, the sampled
time interval, and the sampling frequency. For a given dynamics and sampled interval, d scales
with the sampling frequency, namely with the number of snapshots K for a given sampled
timespan. In other words, if K is doubled, d should be doubled, too. This conclusion is further
justified in Appendix A.

If the method is to be used as a purely data processing tool, the reconstruction error
should be made as small as possible. The accuracy of the reconstruction will be measured
below in terms of the relative RMS error, defined as

1/2
S [Jow — oMl

K 2
2=t llvrllz

If, instead, the method is used to capture the relevant dynamics, then it must be ensured
that the approximation captures well the dynamically relevant modes, which could, of course,
be identified beforehand by other means (i.e., physical relevance). However, in the absence of
a priori information, the relevant modes can be identified elucidating the consistency of the
results when the parameters of the method are varied. In particular, consistency requires that
the retained frequencies and growth rates be stable when the sampled time interval is shifted
or enlarged and the index d is varied. In other words, the DMD-d parameters can be tuned
using standard statistical cross-validation methods. This will be the means to distinguish
between the relevant and spurious modes below. It must be kept in mind that spurious modes
are to be expected due to the unavoidable errors, which in practice come from two sources:

e Numerical and experimental errors that are already present in the snapshots. If the
RMS level of these errors is known beforehand, then they can be filtered out by an
appropriate selection of the threshold €1 appearing in (2.5), taking advantage of the
well known [57] error-filtering ability of POD/SVD. If, instead, the error level is not
known, but the errors are uncorrelated with the physically meaningful data, then they
will promote a change of tendency in the usual semilogarithmic plot of the singular
values of the primary SVD performed in (2.5) versus the retained number of modes.
This change of tendency can help to identify the error level; see Figure 1.

e Errors that are promoted by the method itself, such as round-off or truncation errors,
finite-sampled-timespan errors, finite-sampling-frequency errors, and errors resulting
from the various pseudoinverse calculations above. Because of these errors, the ap-
propriate number of retained DMD modes in the DMD expansions will not generally
coincide with its maximum possible number. It is precisely because of this that the
last truncation (2.20) was performed. The threshold € in this truncation should be
selected attending to the robustness of the results when the various parameters of the
method are varied, as explained above.

Once the dynamically relevant modes have been identified, they naturally provide the
structure of the attractor in permanent dynamics. Also, in transient dynamics, the relevant
DMD-expansion (1.3) can be used to extrapolate to t > 1, which gives an approximation of
the final attractor. The extrapolation is performed by just ignoring in (1.3) those DMD modes
with negative d,,,, which generally gives a smaller number of asymptotic modes, M. It must
be noted that, because of errors, some relevant asymptotic modes may exhibit a small-but-

(2.29) RRMSE =
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nonzero |d,,|. Thus, a threshold ey < 1 is defined and the growth rate of those modes with
|0m| < £2 is set to zero before performing extrapolation. When comparing two extrapolations,
a relative time-shift g may be present, which must be dealt with as explained in the next
paragraph.

Consistency between DMD-d reconstructions of attractors using different snapshots sets
is problematic because of the possible time-shifts that naturally appear. In other words, two
DMD reconstructions can only be required to be close to each other up to a time shift. For
periodic dynamics, the shift must be smaller than the period and it can be calculated upon
(nonlinear) least squares fit. For quasi-periodic attractors, instead, the time shift can be
extremely large and the least square fit be impractical. Thus, in these more involved cases,
the comparison will be made below only in terms of the DMD amplitudes and frequencies.

3. lllustration of the HODMD method. Let us now illustrate the HODMD method in
both several toy model dynamics and two low-dimensional systems: the Lorenz system and
the Stuart-Landau equation.

3.1. Some toy model dynamics. A simple but quite illustrative application of the met-
hods proceeds as follows: Select randomly N orthonormal complex vectors of dimension

J >N, w;y,...,wy, and construct M > N linear combinations,
N

(31) Uy, = Za]‘w]',
j=1

with randomly selected coefficients «;, such that the Euclidean norm of the vectors u,, is VI
(see (2.12)). Here, we are assimilating the various components of u as “spatial coordinates.”
With these, construct the following toy-model dynamics:

M .
u(t) = Z A U™,
m=1

with the amplitudes a,, and the frequencies wy,, selected below. Because of the random
character of this example (which has been included to avoid any bias in the example), the
performance of the methods will slightly vary from one run to another, but the results will
be essentially consistent. Now, K > M equispaced snapshots are selected in the interval
0 <t < 1. Note that these J x K data are a “simple” instance of the DMD expansion (2.1)
that, by construction, exhibits spatial and spectral complexities exactly equal to N and M,
respectively. Once the various random selections above have been fixed, several interesting
cases to illustrate the methods will be considered by appropriately varying the integers J, K,
M, and N.

To begin with, we set J = 100, K = 1000, M = N = 10 (i.e., equal spectral and spatial
complexities), and select the amplitudes and frequencies as

(3.2) am =10"""% w,, =10m form=1,..., M.

Note that the sampling frequency is K = 1000, namely ten times larger than the largest
frequency, wy = 100. Since M = N, the spectral and spatial complexities coincide and the
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standard DMD-1 algorithm should do a good job. In fact, setting
(3.3) e1=10"% =105,

the DMD-1 algorithm calculates the frequencies with a relative error 107! and reconstructs
the snapshots with relative RMS error, as defined in (2.29), RRMSE ~ 10712, The algorithm
DMD-d provides slightly better results for d in the range 1 < d < 400.

Now, we maintain the parameters of the method, (3.3), the spectral complexity M = 10,
and the amplitudes and frequencies defined in (3.2), but decrease the spatial complexity to
N = 5. Since N =5 < M = 10, the algorithm DMD-1 is only able to recognize five modes,
with frequencies

wi =55.85, wy =48.28, wy=27.40, w;=93.03, ws=66.69,

which compared with (3.2) are seen to be spurious; the reconstruction relative error RRMSE
is ~ 1072, Applying the HODMD algorithm DMD-d, with d = 50 (which is somewhat optimal
for this case), instead, recovers both the M = 10 frequencies defined in (3.2) with a relative
error ~ 10713 and the snapshots within a relative error RRMSE~ 10713, Slightly increasing
and decreasing d (to, e.g., 80 and 20, respectively) the very small reconstruction errors are
essentially maintained.

Let us now add some noise to the data. Specifically, we add uniformly distributed positive
noise (using the MATLAB command rand) with size eppise = 5 - 10~7. Note that the noise is
positive and thus exhibits a nonzero mean. Repeating the two cases considered above to this
noisy data, with e = ¢ = 107% (both two times larger than the noise), the following results
are obtained:

a. For the case M = N = 10, the relative RMS reconstruction (comparing with the clean
solution) is RRMSE ~ 10~* and ~ 10~7 using the algorithms DMD-1 and DMD-300
(note that now the convenient value of d is larger than in the clean case), respectively.
Thus, both the standard DMD and HODMD are able to filter errors out (despite the
fact that the errors are positive), though HODMD gives much better results.

b. For the case M = 10, N = 5, DMD-1 fails, as above, since it only recognizes five modes
and reconstructs the solution with RRMSE ~ 1072, DMD-300 (note that d is larger
now than for clean data), instead, recovers the ten frequencies with a relative error
~ 107 and reconstructs the solution with RRMSE ~ 10~7 (which is fairly smaller
than the added noise!). Again, HODMD is quite robust in connection with varying
the index d, and the results improve if the sampled interval and/or the number of
snapshots is increased.

As expected, the noise reduces the performance of both methods, but the new HODMD
method gives far more robust estimates and reconstructions. This is because, as anticipated,
HODMD takes full advantage of both the spatial and temporal redundancies in the given data.
Note that the threshold € = 107% has been chosen as somewhat larger than the error level,
5-1077. If the latter were not known in advance, then it could be guessed from the singular
value distribution in the SVD that is performed in the method. For instance, in the two cases
(a and b) considered above, using DMD-1 and DMD-300, the singular value distributions are
plotted in Figure 1. As can be seen, a change of tendency occurs in a region below 1076,
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Figure 1. The error estimate EE(N) defined in (2.5) and (2.27) versus the retained number of modes N
when applying DMD-1 (dashed lines) and DMD-300 (solid lines), respectively, to the noisy databases considered
in items a, with M = N (left) and b, with M < N (right) above.

meaning that the selected threshold was a reasonable choice.

The dynamics considered in (3.2) are periodic, but the conclusions above stand for quasi-
periodic dynamics, involving incommensurable frequencies and defining a linear flow in a torus.
For instance, replacing the frequencies and amplitudes defined in (3.2) by

A = 1079730y =30 (mq — 1) + 7V3 (2ma — 1),

with mi,ms = 1,2,... chosen such that w; < wy < w3z < .... Except for using these new
frequencies, the application is identical to the above application for the periodic flow and the
results are completely similar, even quantitatively. In particular, setting J = 100, K = 1000,
and M = N = 10, and selecting the thresholds (3.3), both the standard algorithm DMD-1
and DMD-d, with 1 < d < 400 recognize the ten involved frequencies with a relative error
10~"3 and reconstruct the snapshots with a relative RMS error RRMSE ~ 10712, If, instead,
we set M = 10 and N = 5, DMD-1 gives five frequencies that are spurious, but DMD-50 still
recovers the ten involved frequencies and reconstructs the snapshots with RRMSE ~ 10712,
Also, adding noise of the same size as above, for the case M = N = 10, the algorithms DMD-1
and DMD-300 reconstruct the snapshots with RRMSE ~ 1076 and ~ 1077, respectively, while
for the noisy snapshots with M = 10 and N = 5, the reconstruction errors using DMD-1 and
DMD-300 is RRMSE ~ 107! and ~ 1079, respectively. In summary, quasi-periodic dynamics
is not more demanding than periodic dynamics for the DMD-d algorithm with appropriate d.

Decaying/growing dynamics are treated similarly. As it happens with standard DMD
(when the method works because the spatial complexity equals the spectral complexity),
HODMD works equally well in the decaying case for arbitrary spatial and spectral complexi-
ties.

The dynamics outcome (3.1) somewhat mimics linear dynamics. Let us now turn to the
fully nonlinear case, considering one-dimensional data, namely with J = 1, which is not
accessible to standard DMD. Fully nonlinear driving very easily leads to a large number of
frequencies, which is now illustrated in the following cases, in which HODMD can be seen as
a very advantageously alternative to FFT. The advantages are that the method determines
growth rates (in addition to frequencies) and that the sampled timespan can be comparable to
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Figure 2. The function defined in (3.4) (thin solid lines) in the indicated time intervals. The reconstruction
using DMD-270 in 0 < ¢t < 8 (left) and extrapolation (right) are plotted thick dashed lines, and the spurious
reconstruction using DMD-1, with thin dashed line.

the largest period (which does not need to be known in advance) without introducing sideband
artifacts. These examples are also used to get some insights on the calibration of the methods.
We consider the fully nonlinear 27-periodic function

(3.4) F) =4/1+ %sint

and take K = 1000 snapshots in the sampled time interval 0 < ¢ < 8 (slightly larger than one
period). Setting e; = 107!% and € = 1073, the HODMD algorithm DMD-270 identifies seven
frequencies with a relative error ~ 10~* and reconstructs the data with RRMSE = 2.5-107%.
Thus, the DMD-270 reconstruction is plot-indistinguishable from its exact counterpart, as
seen in Figure 2-left, where the DMD-1 reconstruction is also plotted for reference. It is
also interesting to note that the extrapolation of the DMD-270 expansion to the interval
180 <t < 200 (Figure 2-right) is also plot-indistinguishable from its exact counterpart, since
the RRMSE is 6.19 - 1073. Concerning robustness, it turns out that decreasing € increases
the number of identified frequencies and the accuracy of the reconstruction, as expected. The
index d = 270 is somewhat optimal though decreasing it by 50 does not affect the outcome
of the method much. On the other hand, doubling the number of snapshots to K = 2000
also doubles the optimal value of d, but does not produce a significant benefit. Similarly,
dividing K by 2, the optimal value of d is also divided by two and does not improve the
results either. Still, doubling the sampled timespan (to 0 < ¢ < 16), the accuracy of the seven
frequencies that are identified improves significantly, although the reconstruction only slightly
improves (recall that only seven modes are retained). Shifting the sampled time interval
produces essentially the same results, which was to be expected for consistency. On the other
hand, dividing the sampled interval by 2, to 0 < ¢ < 4 (smaller than a period), the method
only identifies five modes, which are spurious since they exhibit the following frequencies and
damping rates:

61 +iwr = 0.18, 52’3 + iw273 = —0.039 +10.53,
Sy +iwg = —1.60, &5 + iws = 1.36,

but the reconstruction is fairly good, with RRMSE = 1.8-10~%. The fact that these frequencies
are spurious may be ensured by shifting and/or enlarging the sampled time interval and getting
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Figure 3. Counterpart of Figure 2 for the quasi-periodic function defined in (3.5).

completely different frequencies. This ill-functioning of the method is very interesting and
illustrates the capacity of DMD-like methods (both DMD and HODMD) to fit given data in a
given timespan, without a good approximation of the “true dynamics,” which is what allows
for safely extrapolating the fitted approximation. This is why consistency and robustness is
emphasized in all examples and applications below.

Let us consider the fully nonlinear, quasi-periodic function

(3.5) £(t) = \/ 1+ 2 sintsin(va),

which exhibits the incommensurable frequencies w = 1 and w = V2, thus defining a nonlinear
flow in a torus. Now, we consider a larger timespan, 0 < ¢t < 32 and extract K = 2000
equispaced snapshots. These values of the parameters of the method are somewhat optimal.
We now set 1 = 10719, ¢ = 107%, and d = 800 (four times larger than in the previous case).
The method identifies 27 correct (not spurious) frequencies and reconstructs the snapshots
with RRMSE= 2.5-10"%. As in the former example, the reconstruction (Figure 3-left) is plot
indistinguishable from its exact counterpart, as is the extrapolation (Figure 3-right) to the
interval 180 < t < 200, whose RRMSE is = 2.8 - 1073. Note that, for a similar precision, the
sampled timespan and the index d both need to be larger than for the periodic function (3.4),
as could be expected, and the number of required frequencies is much larger. If the tunable
parameters of the method are varied, the method behaves quite as it did in the periodic case.
In particular, shifting and/or enlarging the sampled time interval produces essentially the
same results (in particular, the same frequencies), as required for consistency.
As a third example, we consider the decaying toy model dynamics (cf (3.5))

—1/32
f(t) = \/1 + eXp(2/) sin ¢ sin(v/2¢),
for which, using exactly the same values for the parameters of the method as in the previous

case, 29 modes with negative damping rates are identified, giving a RRMSE= 1.3 - 1074,

3.2. Periodic attractors in the Lorenz system. The necessity of DMD-d, with d > 1,
and the essence of the method are clearly seen considering the well known third-order system
(spatial dimension: N = 3)

(3.6) v =0 (vg —v1), vh=wv(r—uvs)—ve, v5=viv2—bus,
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Figure 4. The Lorenz system. Left: vi versus t for the considered periodic orbit (solid), its monochromatic
counterpart (dashed), and the reconstructions using DMD-1 (dotted) and DMD-20 (circles); the vertical line at
t = 20.6 indicates the upper limit of the sampled interval. Right: RRMSE (as defined in (2.29)) of the DMD-d
reconstruction (solid) and the DMD-d extrapolation (dot-dashed), error in the frequency w (dashed), and the
number of identified harmonics (dotted line) m versus d. In the right plot, the various errors correspond to the
left scale and the number of identified modes, to the right scale.

first derived by Lorenz [33] as a rough approximation of atmospheric terrestrial convection.
As a paradigm of chaos, this system exhibits fairly complex periodic orbits [20], such as that
for o = 10, r = 350, and b = 8/3, whose precise representation requires a large number
of harmonics (M > N = 3); see Figure 4-left, where to appreciate the nonmonochromatic
character of the orbit, its monochromatic counterpart, asin(wt + d), with appropriate a and
4, is also plotted.

To apply DMD, we integrate (3.6) with initial condition (vi,ve,v3) = (0,0.1,0), using
MATLAB “ode45” (with relative and absolute tolerances both equal to = 10~8) and consider
K = 60 equispaced snapshots in the interval 20 < ¢ < 20.6, which is comparable to 1.5 times
the period of the orbit. It is to be noted that the solution in this interval corresponds to
a transient behavior, with the dominant mode exhibiting a damping rate § ~ 1072, Thus,
identifying the attractor from these snapshots involves extrapolation.

Standard DMD, using the algorithm DMD-1 produces just three modes, which give a poor
approximation (plotted with dotted line in Figure 4-left), while the DMD-d produces a quite
good reconstruction (plotted with circles). After some calibration, the tunable parameters of
the DMD-d method as set as e; = ¢ = 10~® for all d, which means that the same threshold,
€1, i1s used in the SVDs that are needed at steps 1 and 2 of the DMD-d method. The
resulting RMS errors of the reconstructions/extrapolations and the error in the frequency
are as plotted versus d in Figure 4-right; the extrapolation errors are calculated comparing
with the numerical solution in the interval 19990 < ¢ < 20000. Note that DMD-d is fairly
robust when increasing d. At d = 20, the method identifies m = 35 DMD harmonics and the
relative RMS error reaches its minimum at RRMSE ~ 10~7, which is comparable to both the
tolerance of the numerics and the SVD-threshold chosen above (~ 107%), meaning that the
decomposition is somewhat optimal. Beyond that value of d, the outcomes worsen, namely
the RRMSE increases and the number of identified frequencies decreases. This is consistent
with the expected behavior as d increases, anticipated in section 2.3.

Additional calculations, not shown here, demonstrate that (as could be expected) main-
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taining the timespan 20 < ¢ < 20.6 but increasing K by a factor (of, say, 10), d must be
consistently increased by the same factor to obtain similar results. And, obviously, increasing
the sampled interval (maintaining both the sampling frequency and d), the method improves.

3.3. On the application to the Stuart—Landau equation. Let us now consider the Stuart—

Landau equation [26], which conveniently rescaled is written in terms of a complex amplitude
A as

(3.7) A = p(1+iv)A - (1+iB)|A]?A,

where the bifurcation parameter ;1 measures departure from the bifurcation point and v is the
rescaled detuning. This equation applies in the vicinity of Hopf bifurcation [26] in autonomous
dynamical systems. The state vector is approximated as

(3.8) v(t) ~ v+ [VA®)e! + c.cl,

where higher order harmonics are ignored, V is an eigenvector of the linearized problem at
threshold, and iwg is the associated eigenvalue. Thus, this equation is relevant at the onset of
vortex shedding in the two-dimensional cylinder wake, considered in this context by Bagheri

[5]-

Equation (3.7) is solved in closed-form setting
(3.9) A= Re,
which yields

Vi R(0)

N AT LA O

(3.10) R(t) ~

It is interesting to note that, even though the Stuart-Landau equation itself is associated
with weakly nonlinear dynamics in the underlying physical problem, (3.10) represents fully
nonlinear dynamics of the Stuart—Landau equation, namely A is not slowly varying. For
t > 1/(2u), R(t) can be expanded in powers of e 2#! < 1, which requires a large number of
terms if e "2 is only moderately small. Substituting this expansion into the second expression
in (3.10), integrating in ¢, and substituting the resulting expansions for R and 6 into (3.9) and
the resulting expression for A(t) into (3.8) yields a DMD expansion of the form (1.3), where
the number of required terms M (namely, the spectral complexity) may be quite large. The
spatial complexity, instead, is N = 3 to the approximation (3.8) (namely, sufficiently close
to the bifurcation point). In other words, standard DMD may not give good descriptions of
transient dynamics near the Hopf bifurcation, and HODMD should be safely used instead.
On the other hand, even though the Stuart-Landau equation may also apply beyond the Hopf
bifurcation (not close to threshold) in, e.g., the von Karman instability [41], departure from
the bifurcation point may increase the spatial dimension, which could make the difference
between standard DMD and HODMD less dramatic.
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4. Application to the CGLE. Let us consider the CGLE for the complex independent
variable u,

O = (14 i0)ppu + pu — (1 +iB)|u>u, with ,u=0at z=0,1,

which depends on the real parameters « and 3, which account for dispersion and nonlinear
detuning, respectively, and p, which measures departure from marginal instability and is
usually taken as a bifurcation parameter. This equation is invariant under the D; x SO(2)
group generated by the actions z — 1 — z and u — wel®, where ¢ is a constant. Because
of the stabilizing cubic term, the solutions to this equation are globally bounded, namely
both uw and the spatial derivatives of u are bounded for all ¢. The CGLE is a well known
paradigm of pattern forming systems that can be considered as a normal form for extended
dissipative systems modeled by partial differential equations near the onset of oscillatory
instabilities. The equation itself is a simple nonlinear equation that exhibits intrinsically
complex dynamics [4], due to the modulational instability if a5 < —1 (Newell’s condition)
and p exceeds a threshold value. It must be noted that as p increases, the complexity of the
attractors does not necessarily increase, as seen in the bifurcations diagram given in Figure 5.
Also note that if 1 > 1, then the solution must show fast spatio-temporal oscillations because
of the spatial and temporal steepness scale with

1/y/uw and 1/p,

respectively. For varying u, the attractors can be periodic, quasi-periodic, and chaotic. In
particular, the equation exhibits attractors with very large spectral complexity, which are not
accessible to standard DMD. The state variable can be written as
U(.%', t) = UO(CC, t) el’Yta

where 7 can be seen as a (real) frequency shift, which allows for classifying the attractors [55]
as follows:

e Type I: Monochromatic, spatially uniform, periodic solutions if ug is constant.

e Type II: Monochromatic, spatially nonuniform, periodic solutions if ug = ug(z).

e Type III: Quasi-periodic solutions if uy = ugp(x,t) is time periodic, with a frequency

wp incommensurable with v (which is generically expected).
e Type IV: Quasi-periodic solutions, with three involved frequencies if ug = ug(z,t) is
quasi-periodic, with basic frequencies wé and w%, both incommensurable with ~.
Thus, type I and II attractors are monochromatic and exhibit just one spatial mode. In
type III attractors, the relevant frequencies are of the form w = mwgy + =, for appropriate
integers m, which correspond to the retained frequencies of the periodic function wug shifted
by the second frequency . In type IV attractors, the relevant frequencies are of the form
w = mlwé + mgwg + =, for appropriate integers mj and meo. Note that in these four cases
lu| = |ug| is (I) steady and spatially uniform, (II) steady and spatially nonuniform, (III) time
periodic, and (IV) quasi-periodic, respectively.
The attractors of type IV were not considered in [55], where no inexpensive method

to identify these attractors was available. Here, instead, HODMD gives us a very efficient



22 SOLEDAD LE CLAINCHE AND JOSE M. VEGA

means to ascertain the nature of these attractors. On the other hand, the nature of these
attractors will be guessed (not ascertained) below by plotting |u(3/4,t)| versus |u(1/4,t)|. For
a given accuracy, these attractors exhibit finite spectral and spatial complexities and, thus,
they can be identified using DMD and HODMD. The CGLE also exhibits chaotic attractors,
with finite spatial complexity (for a given accuracy) but arbitrarily large spectral complexity.
These attractors cannot be approximated using DMD-like approximations, but they can be
identified as chaotic using these methods, see below.

The snapshots for the various applications of DMD and HODMD below will be numerically
calculated by using a standard Crank—Nicolson plus Adams—Bashforth scheme [14], using a
time step At = 107° and discretizing spatial derivatives by centered finite differences in a
uniform grid of 1000 points. The initial condition will be

u=/p(1+1i).

After discarding the transient behavior in 0 < ¢t < tg, the snapshots are calculated in the
interval ¢y < t < t;1, meaning that we have (t; — tg)/At snapshots at our disposal, but we
shall consider a smaller number of snapshots below. Concerning the J spatial points, these
will all be used in the first set of applications of the DMD-like methods considered in the
next subsection. However, the performance of the HODMD method using a limited number
of spatial points will also be addressed in section 4.2.

4.1. Analysis of the attractors using all spatial data. The snapshots sets will consist of
K-equispaced snapshots in an interval g < t < t1, and denoted as

K
S[to,tﬂ‘

On the other hand, in order to get comparable results, the thresholds
(4.1) e1=10"% and e=10"°

will be taken in all applications below for the various truncations mentioned in sections 2.1.1—
2.1.3 for DMD-1 and in sections 2.2.1-2.2.3 for DMD-d, with d > 1.

Taking the above into account, we now proceed with several representative attractors of
the CGLE. To begin with, we consider the case

a=-10, B=10

for various values of p. The bifurcation diagram for varying g is given in Figure 5. As
further explained in [56], this bifurcation diagram is obtained by plotting |u(3/4,t)| for the
intersections of an orbit in the attractor with the Poincaré hypersurface fol[(l + i) Ozpu +
pu — (1 +iB)|ul|?u]udz = 0. The considered values of o and 3 mean, since |a| = 10 and
|B] = 10 are both large, that the equation is almost conservative (dispersion and nonlinear
detuning somewhat large compared to diffusion and nonlinear damping, respectively), namely
the equation is somewhat close to the conservative cubic Schrodinger equation [1], which is
fairly demanding from the computational point of view. This case was considered in [56] to
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Figure 5. The bifurcation diagram for the CGLE for a = —10, 8 = 10, and 0 < p < 100. Courtesy of Dr.
Filippo Terragna.

illustrate the construction of bifurcation diagrams for varying p using an adaptive reduced
order model.

For p = 4 and 25, the attractors are of types I and II, respectively. The snapshots set
is taken as 5[12205:20.125]. In this case, the spatial and spectral complexities are both equal to
1, meaning that standard DMD solves the problem. Thus, DMD-1 gives a unique frequency,
which is w = —40 and —45.29 for i = 4 and 25, respectively. The attractors are reconstructed
with a RRMSE ~ 1072 and damping rate ~ 1072 in both cases. HODMD does not improve
this reconstruction. The remaining attractors considered below exhibit a spectral complexity
larger than the spatial complexity and thus require using HODMD.

For = 15 and 35 (Figure 6), the attractors are both type III, with v ~ —127 and 56,
respectively, exhibiting spectral complexities that are larger than the spatial complexities,
meaning that the standard DMD yields spurious approximations: using DMD-1 in the snaps-
hots set 5[12205720.125], the RRMSE defined in (2.29) errors are O(1) and O(0.1) for p = 15 and
35, respectively, and the (10 and 14 for p = 15 and 35, respectively) selected frequencies and
amplitudes plotted in red in Figure 6 are spurious. HODMD, instead, gives very accurate,
consistent, and robust results, since using the thresholds (4.1), the snapshots sets and the
values of the index d (chosen after some calibration) indicated in the caption of Figure 6, all
give RRMSE~ 1079 using the same number of almost identical frequencies and amplitudes,
which are 25 for ; = 15 and 21 for p = 35. These are the spectral complexities within this
approximation, while the spatial complexities coincide with their counterparts using DMD-1
and are smaller, namely 10 and 14 for p = 15 and 35, respectively; the numbers of SVD
modes (see section 2.2.2) retained by DMD-30 and DMD-150 for x4 = 15 are both equal to
33, while their counterparts using DMD-50 and DMD-250 for 4 = 35 are both equal to 28.
Note that, to the considered approximations, the retained amplitudes decay spectrally. The
damping rates vary, in all cases, from ~ 107!0 for the smallest frequencies to ~ 10™* for
the largest frequencies, meaning that the considered snapshots are well within the attractor.
The results above are fairly insensitive to the considered value of d, since essentially the same
results are obtained for g = 15 in the ranges 20 < d < 40 and 80 < d < 200 using 125 and
625 snapshots, respectively, and for u = 35 in the ranges 5 < d < 100 and 20 < d < 500
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Figure 6. The CGLE for o = —10, f = 10, and p = 15 (top) and 35 (bottom). Left: |u(3/4,t)]

versus |u(1/4,t)|. Right: The DMD modes amplitudes am (as calculated in section 2.2.3) versus the associated
frequencies wm, as obtained using standard DMD for the whole snapshots set 5[12205’20‘125] (red circles) and using
DMD-30 and DMD-50 for i = 15 and 35, respectively, considering the snapshots sets 5[1220?20'125] (black circles),
5[12205-875,21] (black crosses), and DMD-150 and DMD-250 for p = 15 and 35, respectively, using 5&205720‘125] (blue
circles) and 5[6220?875721] (blue crosses). Black and blue symbols are plot indistinguishable.

using 125 and 625 snapshots, respectively. Decreasing or increasing d outside these ranges the
accuracy decreases and, in fact, increasing d too much (i.e., d > 500 when 625 snapshots are
considered), the method diverges.

For = 50, the attractor is also type III, with v ~ —150, but more complex than in the
former cases. The counterpart of Figure 6 is given in Figure 7, where it can be seen that,
again, standard DMD (red circles), which selects 21 DMD modes, gives completely spurious
results; as above the RRMSE is O(1). The snapshots sets are indicated in the caption; the
sampled timespans are comparable to the period of ug(z,t). Also, to the intended accuracy:

e The lowest sampling frequency (black symbols) is not enough since it only gives con-
sistently a part of the relevant frequencies, namely those 65 frequencies with mode
amplitudes larger than 10~%. The spatial complexity is 21, the total number of SVD
modes selected by DMD-70 is 141, and the number of retained frequencies is 104.
Retaining these 104 modes, the reconstruction shows a RRMSE ~ 1076 and plot-
indistinguishable amplitudes and frequencies, both using the snapshots sets 5[2250(?20.25]

3[2250975 21 (black circles and crosses, respectively) and the associated values of d indi-

cated in the caption. However, only the first 65 DMD modes correspond to a type II1
solution since the remaining 104 — 65 = 39 frequencies would suggest that the solution
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Figure 7. Counterpart of Figure 6 for u = 50, doubling the intervals where the snapshots are calculated and
maintaining the sampling frequency. Thus, in the right plot, DMD-1 is applied to the snapshots set 5[22%0,20'25] (red

circles), DMD-70 is applied to the snapshots sets 5[22500’2025] (black circles), 3[22%975’21] (black crosses), and DMD-
400 applied to 5[122()%30_25] (blue circles), and 5[12205'(;5721] (blue crosses). Blue symbols are plot indistinguishable

is type IV and, furthermore, they do not coincide with their counterparts calculated
with the larger sampling frequency considered in the next item. In other words, the
39 spurious frequencies are not associated with the actual dynamics of the system,
but with the inappropriate, sampling frequency, which is too small for the intended
accuracy.

e With the largest sampling frequency (blue symbols) using DMD-400 instead, the plot-
ted 104 frequencies are given consistently, since results for the snapshots sets and the
values of d indicated in the caption coincide. Moreover, these 104 frequencies also
coincide with their counterparts (not plotted in Figure 7) calculated with an even
larger sampling frequency, using, e.g., DMD-600 or DMD-800 in the snapshots sets
5[2250(380.5} and 5[22%9321]. The spatial complexity is again 21 (as both, in DMD-1 and in
the results using the smaller sampling frequency), the number of SVD modes selected
by DMD-400 is 144 and, retaining the available 104 modes, which are all correct, the
reconstruction shows a RRMSE ~ 1079, It is interesting to note that this value of
RRMSE essentially coincides with its counterpart (retaining 104 modes also) calcula-
ted with the smallest sampling frequency considered in the previous item. However,
the number of considered and reconstructed snapshots is four times larger in the pre-
sent case, meaning that the new snapshots promote the identification of the correct
frequencies w,,, with 65 < m < 104. Note that the amplitudes of the relevant 104 mo-
des decay spectrally. The damping rates vary from ~ 10710 for the lowest frequencies
to 107 for the largest frequencies.

As in the previously considered cases, the results are quite insensitive to the index d, since
essentially the same results as in Figure 7 are obtained in the ranges 40 < d < 100 and
150 < d < 800 using 250 and 1250 snapshots, respectively.

Let us now turn into the quasi-periodic attractor for p = 40, which is type IV with
v ~ 67. Since the approach to the attractor is slower than in the former cases considered
above, we discard a larger transient stage, 0 < ¢t < 40, before calculating the snapshots,
which are taken in the time interval 40 < ¢t < 42. Also, the sampled time intervals and the
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Figure 8. Counterpart of Figure 7 for p = 40, with new snapshots sets: in the right plot, DMD-1 is applied
to the snapshots set 5[14%(?21] (red circles), DMD-200 is applied to the snapshots sets S@%‘fiu (black circles),

5[14010’22] (black crosses), and DMD-1000 applied to S&%ﬁiu (blue circles), and S&OBZQ] (blue crosses).

sampling frequencies are both larger. As a consequence, for the lowest sampling frequency, the

considered snapshots sets 5[14%?21] and 5[1401(?02] are treated using DMD-200, while 5[5400(?21] and

5[5401022] require using DMD-1000. For the intended accuracy (see (4.1)), the spatial complexity

is 18. The counterpart of Figure 7 is given in Figure 8. The results are similar to those obtained
for the previous cases. As expected, DMD-1 gives a completely spurious solution. Using the
smallest sampling frequency (black symblols) does not solve the problem to the given accuracy.
Specifically, the number of SVD modes retained by DMD-200 is 626 and the total number of
retained frequencies, 481; the reconstruction error retaining all modes is RRMSE ~ 5 - 1076,
However, only the first 157 frequencies (namely, those showing modes amplitudes > 10~%) are
dynamically meaningful, as seen comparing with the results obtained from the snapshots set
using the largest sampling frequency (blue symbols). In this case, the number of SVD modes
retained by DMD-1000 (larger than with the smaller sampling frequency) is 705 and the total
number of retained frequencies is 440 (smaller than with the smaller sampling frequency). The
reconstruction error retaining all modes is RRMSE ~ 5 - 1076, comparable to its counterpart
using the smaller sampling frequency, but now the 440 modes are dynamically relevant, which
has been tested comparing with the results (omitted here) obtained by multiplying both the
sampling frequency and the index d by 2. The damping rates vary from ~ 1077 for the
lowest frequencies to 1072 for the largest frequencies. Note that, as anticipated, for the same
required accuracy, the number of relevant frequencies is much larger here than in the periodic
cases considered above, as seen comparing the number of blue symbols in Figure 8 with its
counterparts in Figures 6 and 7. As in the formerly considered cases, the results are quite
insensitive to the index d, since essentially the same results as in Figure 8 are obtained in the
ranges 180 < d < 300 and 900 < d < 1300 using 1000 and 5000 snapshots, respectively.
Finally, for 4 = 7, the attractor is chaotic, which means that the Fourier expansion of
the orbits are broadband and, moreover, each orbit is unstable. This means that no method
can be able to produce consistent and robust (i.e., coinciding in shifted sampled intervals)
DMD expansions with a finite number of modes, as those obtained above for periodic and
quasi-periodic orbits. Namely, the obtained amplitudes and frequencies strongly depend on
the sampled interval because the orbit is chaotic and visits different regions of the attractor
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Figure 9. Counterpart of Figure 8 for u = 7, considering the snapshots sets using DMD-600: S@%?ZM,

Sfi%(?go] and using DMD-4000: 5[2400(?22], and Sﬁ&?g&.

in different timespans. However, DMD-d, with appropriate d is able to give approximations
in individual sampled intervals, while DMD-1 is not. Since the dynamics are slower (because
u is smaller than in the former case), the sampled time intervals are chosen larger than in
the previous cases, as indicated in the caption of Figure 9. The various HODMD applications
(namely, those plotted in Figure 9 and many others, in different sampled time intervals, with
even larger sampling frequencies and sampled timespans) give different results, which is a
good indication that the dynamics in this case are more complex than quasi-periodic. In spite
of the lack of robustness, DMD-600 is able to reconstruct the chaotic orbit in each of the
sampled intervals considered in Figure 9 reasonably well: the RRMSE of the reconstruction
is RRMSE ~ 102 for both sampled intervals, while DMD-1 produces completely spurious
results. In other words, for chaotic dynamics, DMD-d, with appropriate d is able to fit data
in given timespans, but (contrary to what happens for periodic and quasi-periodic dynamics),
the results are not consistent when comparing one sampling interval to another, as expected.

Additional calculations, not given here for the sake of brevity, show that for chaotic
dynamics at, e.g., p = 1000 (see [55]), the performance of the methods is similar to that
illustrated in Figure 9. Namely, DMD-d gives (slightly accurate but) inconsistent results,
whatever the snapshots sets and the value of the index d. Similarly, the HODMD method
has been tested for the bifurcation diagrams that are encountered for other values of o and
B. For instance, for « = —10 and 8 = 1 the system is still highly dispersive though no longer
almost conservative, but the system still exhibits fairly complex periodic and quasi-periodic
attractors (see [55]). In these additional computations, not shown here for the sake of brevity,
performance of the HOSVD method is as good as in the various cases considered above. The
standard DMD, instead, provides accurate and consistent results for the simplest periodic
attractors only.

Summarizing the above, in contrast to standard DMD, the new HODMD method, using
the developed DMD-d algorithm for appropriate snapshots sets in reasonable sampled time
intervals (comparable to the 27/w, where w is the smallest involved frequency), is a very
useful means to identify general periodic and quasi-periodic attractors in complex dynamical
systems. The method calculates well the involved frequencies/amplitudes (in fact, a quite large
number of them for quasi-periodic attractors) and reconstructs well the snapshots. Moreover,
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the dynamically relevant modes are identified by comparing the obtained results using various
snapshot sets. It must be noted that, since we had a very large number of snapshots at
our disposal (from the numerical computations) no attempt has been made to minimize the
snapshots number, K. Instead, we have taken K sufficiently large to reconstruct the solution
with RRMSE ~ 107%, which has required identifying fairly large frequencies. If, instead, only
a RRMS ~ 1073 were sought, then the required numbers of snapshots in Figure 6 would have
been 85 with d = 5 (instead of 125 with d = 30) and 25 with d = 5 (instead of 125 with
d = 50) for p = 15 and 35, respectively. Similarly, the numbers of snapshots in Figures 7
and 8 would have been 140 with d = 10 (instead of 250 with d = 70) and 700 with d = 100
(instead of 1000 with d = 200), respectively. On the other hand, chaotic attractors can be
identified from the ill-functioning of the method. As done for the Lorenz system in section
3.2, decaying dynamics may be used to identify the large time attractors via extrapolation,
but this application has not been illustrated in this section for the sake of brevity.

4.2. Recovering the relevant modes amplitudes and frequencies using a limited amount
of noisy data. As anticipated in the introduction and illustrated in some toy-model examples
in section 3.1, the HODMD algorithm DMD-d, with appropriate d, takes full advantage of
both the spatial and temporal redundancies in periodic and quasi-periodic dynamics of the

type
M .
(4.2) v~ Z T T
m=1

which has a potential interest to do the following:

e Recover the relevant mode amplitudes and frequencies using a limited amount of spa-
tial data.

e Filter out small errors.

On the other hand, as DMD-1 applied to time periodic and quasi-periodic flows is related
to FFT [18], DMD-d can be compared to PSD [39], where the number of segments used in
PSD is the counterpart of the index d in the DMD-d algorithm. All these are the object of
the present section. For the sake of brevity, to avoid defining a new dynamical system, this
illustration relies in the CGLE considered in this section.

Before proceeding further, some remarks are in order:

e When comparing results obtained using different numbers of spatial points, comparison
of the relevant frequencies is straightforward, but comparison of the mode amplitudes
is more tricky. Scaling the modes u,, appearing in (4.2) as we have done in this
paper (see (2.12)), namely such that |Ju,,|| = v/J , where J is the spatial dimension
of the given data, makes the mode amplitudes a,, as independent as possible from J.
However, when comparing data from two quite different values of J (e.g., J = 1000
and 1), the two sets of amplitudes will only coincide if the data is spatially uniform.
Otherwise, only the frequencies can be safely compared.

e For J = 1, the scaling (2.29) yields ||u,,| = 1, namely the mode amplitudes exactly
coincide with their counterparts in PSD and FFT calculations.

e After some calibration for the CGLE, it has been found that HODMD also recovers
the mode amplitudes if the considered number of spatial data is comparable to the
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spatial complexity.
e The following advantages of HODMD can be anticipated in periodic dynamics:

— As illustrated in the last section, HODMD gives good results in arbirary sam-
pled time intervals whose length is comparable to the period. FFT and PSD,
instead, produce artifacts unless the sampled timespan either is sufficiently
large or coincides with the period.

— For slightly decaying dynamics, HODMD identifies both the frequencies and
the (small) damping rates, which in principle gives good reconstructions wit-
hout any additional treatment. Moreover, setting to zero the damping rates
produces a good approximation of the final attractors. Instead, the nonzero
damping rates produce undesirable sideband artifacts when using FFT and
PSD.

These two observations are even more evident when treating quasi-periodic dynamics.

In what follows, several cases will be considered in which the following calculations will
be compared:

e DMD-d-full: DMD-d calculations using all spatial data (as already done in the last
section). These will be taken as reference.
e DMD-d-N: DMD-d calculations using a number of spatial points equal to the spatial
complexity.
e DMD-d-1: DMD-d calculations using just one spatial point, namely = = 1/4.
e PSD-d: PSD calculations using d segments (and just one spatial point).
e FFT: FFT calculations (for just one spatial point).
It must be noted that the mode amplitudes appearing in the DMD-expansions involving
different spatial points need not coincide because the spatial modes are generally different.
In the application of DMD-d to the various cases below, the index d will be taken as that
calibrated in the last section. The HODMD thresholds will also be taken identical to those
used in the last section, namely as defined in (4.1). The same threshold ¢ = 1076 will also be
used for PSD and FFT truncation.

To begin with, we address the case a = —10, § = 10, and p = 15, already considered
in Figure 6. The results applying the five methods indicated above are depicted in Figure
10. As can be seen in this figure, DMD-150-full, DMD-150-10 (note that 10 is the spatial
complexity), and DMD-500-1 all give very similar results, since the identified frequencies
coincide though, as anticipated there are some differences in the associated mode amplitudes.
In fact, both, DMD-150-10 and DMD-500-1 (with the sampled timespan doubled) correctly
identify the 25 and 24 relevant (to the given accuracy) frequencies, respectively. On the other
hand, the results are very insensitive to the index d since, e.g., DMD-d-1, with 450 < d < 800
yields essentially the same result as that plotted in Figure 10. Instead, both PSD and FFT
only approximately identify the first 20 frequencies, which, moreover, do not show the largest
amplitudes. This is in spite of the fact that the sampled time interval used by DMD-500-1
has been multiplied by 240 and 720 for PSD and FFT, respectively (because using the same
sampled interval as when using DMD-500-1, the results are completely spurious).

The ill-functioning of both FFT and PSD is due to the artifacts introduced by these
methods when the sampled interval is not commensurable with the period of the solution. By
its own nature, these artifacts are not present in HODMD (and neither in standard DMD when
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Figure 10. Counterpart of Figure 6-top-right constructed by applying DMD- 150-full (blue triangles) and
DMD-150-10 (blue circles) in the snapshots set SFQQ()5720125], DMD-500-1 in the snapshots set 8[122057(2)0‘250] (blue

crosses), applying PSD-100 (red asterisks) in the snapshots set 5[32‘3%50], and FFT (black asterisks) in the snaps-

hots set 5[12'3"2183] .

this method is effective because the spatial complexity is larger than the spectral complexity).
Thus, this example illustrates well both the power of HODMD to identify the frequencies using
just one spatial point and the advantages of this method compared to Fourier-like methods.
The comparison is even more advantageous to HODMD in the remaining applications below,
but this is already clear from the present example and, thus, it will only be HODMD that will
be used below. Moreover, in order to illustrate how robust the HODMD method is against
noise (even using a limited number of spatial data), the snapshots are contaminated in the
remaining applications with a uniformly distributed, positive random error (as given by the
MATLAB command “rand”) of size 10~7. Note that this noise level is somewhat smaller than
the parameter ¢ = 1076 that is being used to truncate the mode amplitudes, according to
(4.1).

The simple type III attractor considered in Figure 10 and the more complex type III
attractor in Figure 7 are addressed in Figure 11. As can be seen comparing with the blue
symbols corresponding to DMD-d-full applied to the clean snapshots, which are taken for
reference, the performance of DMD-d-1, DMD-d-N, and DMD-d-full are consistent, precise,
and robust, since the identified frequencies very approximately coincide though, as anticipated,
the associated amplitudes show differences when different spatial data are considered. In
particular, the results with noise coincide with their counterparts for the clean snapshots,
meaning that the methods efficiently clean the errors out. DMD-d-1 correctly identifies 24 of
the 25 frequencies in the left plot and 87 of the 104 relevant frequencies in the right plot. The
remaining frequencies are not identified because they exhibit amplitudes that are smaller than
the threshold e = 1075; decreasing this threshold helps to identify some of the lost frequencies
but also introduces spurious frequencies associated with the noise. As in the previous cases,
the method is fairly insensitive to the index d (for, e.g., 400 < d < 900 in DMD-d-1).

The counterpart of the plots in Figure 11 for the more complex type IV attractor already
considered in Figure 8 would be very confusing because of the extremely large number of



HIGHER ORDER DYNAMIC MODE DECOMPOSITION 31

102 : : : 102

£
] mE

®
1001 . 1 1001

1072 F 1 102 F
’ *0 #,
g +
s : # e
10 gg $ 107 ;‘
8 ° s
8+ ¢ £
6 g+ o+ 6 +
0 : : : 10° : ‘ ‘ : :
~1000 -500 0 500, 1000 -6000 -4000 -2000 O 2000 4000 6000

m m

Figure 11. Left: Counterpart of Figure 6-top-right (u = 15) constructed by applying DMD-150-full without
noise (blue circles), and with noise by applying DMD-150-full (blue crosses) and DMD-150-10 (red circles) in the
snapshots set 5[62205120'125], and DMD-500-1 (black crosses) in the snapshots set 5[1220520'250]. Right: Counterpart
of Figure T-right (1 = 50) constructed by applying DMD-400-full without noise (blue circles), and with noise
by applying DMD-400-full (blue crosses), DMD-700-21 (red circles) in the snapshots set 5[122057(2)0.250], and DMD-

700-1 (black crosses) in the snapshots set 5[2250(330250]4

involved frequencies. However, the method also performs very well since the 157 amplitudes
and frequencies in Figure 8 are recovered using the either DMD-1000-18 method in the snaps-

hots set S?990 . and the 157 frequencies are recovered using DMD-4000-1 in the snapshots set

20000 sl
S[40,44]'
Summarizing the above, DMD-d, with appropriate d, using appropriate snapshots sets

(defined in short sampled timespans), is able to capture very well the relevant frequencies in
periodic and quasi-periodic attractors, even using a very limited number of spatial data (just
one point in the applications to the CGLE). Moreover, even when the data are affected by
errors, the method still gives very good results.

5. The three-dimensional thermal convection in a rotating spherical shell. Let us now
consider a more computationally demanding three-dimensional problem, which has been se-
lected by requiring that it is physically relevant and involves periodic and quasi-periodic
dynamics that are easily illustrated for the reader. More complex dynamics (e.g., transitional
flows) are not easily illustrated in a few pages, which would penalize clarity in the exposition.
The selected test problem is the thermal convection in a rotating spherical fluid shell subject
to a radial gravity field, which is a basic problem in geophysical and astrophysical fluid dy-
namics [17]. In particular, the study of this configuration is useful to estimate the transport
of energy in the interior of planets and stars, and to determine their internal structure and
its influence on the patterns observed in the upper atmospheres of giant planets. All of these
provide models to fit to experimental observations of the drifting of these internal patterns,
which in turn is needed to, e.g., understand the generation of magnetic fields if coupled with
the induction equation. Identification of periodic and quasi-periodic azimuthal waves, which
appear for sufficiently large Rayleigh number, are of particular interest.

The problem is formulated in terms of the nondimensional velocity vector v, pressure II,
and the nondimensional perturbation of the temperature with respect to its conduction state
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profile, ©. The units of length, time, temperature, and pressure for nondimensionalization
are d, d*/v, v?/(aryd"), and pov?/d, respectively, were d = r} — r is the difference between
the (dimensional) outer and inner radii, v is the kinematic viscosity, yr} is the imposed radial
gravity at the inner radius, « is the thermal expansion coefficient, and pg is the density at
the reference temperature. Using a rotating Cartesian coordinate frame, with origin at the
common center of the inner and outer spheres, with the z axis along the rotation axis, the
nondimensional continuity, momentum, and energy equations governing the dynamics of the
fluid in the Boussinesq approximation are

V-v=0,
o+ (v-V)v+2E 'k x v = —VII + VZv + Or,
(00 +v-VO)=V?0+ Ryl —n) 2r3r. v,

where k is the vertical unit vector, r = (x,y,2z), n = r}/r} is the inner to outer radii ratio,
o = v/k is the Prandtl number (with x = thermal conductivity), F = v/(wd?) is the Eckman
number, and R = yaATd*/(vk) is the Rayleigh number. The boundary conditions are
homogeneous Dirichlet at both the inner and outer spheres. For nonzero rotation, the resulting
problem is invariant under the symmetry group SO(2) x Zz, generated by the rotations about
the vertical z axis and the up-down reflection with respect to the equatorial plane. Invariance
under rotation is essential to obtain rotating waves, most of which are also (instantaneously)
invariant under the up/down symmetry.

For convenience, the pressure and the continuity equation are both eliminated from the
formulation by taking the curl of the momentum equation and writing the (solenoidal) velocity
field as

v=Vx (¥r)+V xV x (®r),

where ¥ and ® are the toroidal and poloidal scalar potentials, respectively, first introduced by
Chandrasekhar [15]. The resulting problem is written in spherical coordinates (r, 6, ¢), where
0 and ¢ are the colatitude and longitude, respectively, in the rotating frame of reference
linked to the spherical shell. The non-dimensional temperature and the scalar potentials are
expanded in spherical harmonics, and spatially discretized using Gauss—Lobatto collocation
(with 25 x 64 x 128 collocation points in (7,60, ¢)). Several fairly subtle ingredients are used
for dealiasing and, especially, for continuation along the periodic and quasi-periodic branches;
see [23, 47] and references therein for further details.

The results considered below are concerned with the case ¢ = 0.1 and E = 10~*, which
somehow corresponds to the outer atmosphere of some planets such as Jupiter. It turns out
that, for the outer/inner radii ratio 1 in the range 0.32 < 1 < 0.35, the system exhibits a fairly
complex bifurcation diagram, which is quite efficiently calculated in [46] using continuation,
not only of periodic orbits but also of invariant tori (a fairly demanding problem). Generically,
the purely conductive state (nonuniform temperature distribution, with no convection) loses
stability in a Hopf bifurcation, where a new branch of periodic solutions is born, which is a
pure rotating wave (namely, a steady pattern in reference frame which is rotating in the already
considered rotating frame linked to the spherical shell). An example is given in Figure 12 that
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Figure 12. Sketch of a snapshot showing the contour levels of © in an intermediate spherical surface (left),
the equatorial plane (middle), and a meridian plane (right); courtesy of Professor Marta Net. The plotted
snapshot is rigidly rotating in the azimuthal direction. The horizontal segment plotted with thick solid line in
the right plot corresponds to the 15% outer part of the radial equatorial segment, which will be used in Figure
13.

shows an azimuthal wavenumber m = 8 and is rigidly rotating in the azimuthal direction with
a velocity ¢, meaning that the frequency of the associated periodic pattern is w = ¢/8. In other
words, concentrating for simplicity in the temperature field, the spatio-temporal structure of
the pattern is given by

N
5.1 O(r,0,6,t) =Y  O,(r,0)e"@t=80) 4 ¢
(5.1) (r,0,0,t) =>_ On(r,0) ,

n=1

which can be seen as the relevant DMD-expansion.

There are several branches of rotating waves, exhibiting different azimuthal wave-numbers
m in the range 3 < m < 8, which bifurcate from the conduction states at different critical
Rayleigh numbers, R ~ 10°. Some of these solution branches are stable but lose stability via
Neimark—Sacker bifurcations (complex Floquet multipliers; see [26]) that produce invariant
tori (quasi-periodic solutions). On the other hand, for some critical values of 7, two of the
periodic branches coalesce, namely the bifurcation points associated with two different values
of m occur at the same critical Rayleigh number, giving a (codimension-two) double Hopf
bifurcation that also produces invariant tori. For instance, at 7. = 0.33079 and R, = 2.0069 -
10°, a double Hopf bifurcation [26] takes place that involves the m = 5 and 6 modes; see [46]
for further details.

The cases analyzed in this article are two representative stable flows, one periodic and
another quasi-periodic. The spatio-temporal data that will be used for both have been provi-
ded to us by Professors Joan Sanchez and Marta Net, who obtained them using the algorithm
outlined above. Both flows are symmetric with respect to the meridional plane. Consequently,
DMD-d has been applied only to half of the three-dimensional domain (positive colatitude
0 > 0). For simplicity in the presentation, only the thermal field, O(r, 8, ¢, t) will be considered
below, both in the performed DMD computations and in all illustrations.

The considered periodic flow is the purely rotating wave illustrated in Figure 12, which
corresponds to R = 8 - 10° and shows that such flow is steady in a rotating (with the phase
velocity) reference frame. Such steady flow, in turn, is periodic in the azimuthal direction,
with a fundamental wavenumber equal to 8. Therefore, this is of the form (5.1), where N
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Figure 13. Mode amplitude (right) versus the frequency for the modes obtained by applying DMD-1 (red
crosses) and DMD-40 (blue circles) to a set of 100 equispaced snapshots, with a nondimensional time shift
between snapshots equal to 2.766 - 1072, considering the meridian plane ¢ = 0 (left) and the 85% outer part of
the radial line ¢ = @ = 0 (right).

is the number of modes to be retained and w = 45.3354 is the fundamental frequency. The
temporal structure of this three-dimensional flow is fairly simple and, moreover, the spatial
and temporal complexities of the associatd DMD expansion are both equal to the number
of retained frequencies, N. This is because, due to the factor e8¢ the spatial modes
O, (r,0)e 81" are obviously linearly independent (in fact, they are pairwise orthogonal with
the usual Ly inner product). Consequently, as emphasized in the paper, the advantages
of HODMD with respect to the standard DMD method are very weak in the whole three-
dimensional flow. In fact, retaining the mean flow and the four most energetic oscillatory
modes, both DMD-40 and DMD-1 give relative RMS errors RRMSE ~ 107°, comparable to
the truncation errors in the numerical scheme. Restricting to the meridian plane § = 0, the
restricted DMD expansion is (cf. (5.1))

N
(5.2) O(r,0,0,t) = Z O, (r, H)ei”“’t +ce, with rip <7 <rgu,0 <0 <7/2.

n=1

Using the restricted snapshots, the plots of the amplitudes versus the frequencies computed
by DMD-1 and DMD-40 are both very good and still plot indistinguishable, as seen in Figure
13-left, though DMD-40 slightly outperforms DMD-1, since the relative errors of the frequency
of the fourth harmonic (comparing with the three-dimensional computations) are ~ 1079 and
~ 1073, respectively. The advantages of using delayed snapshots are appreciated by drastically
reducing the number and quality of the observables. This is seen by considering only the last
six Gauss—Lobatto collocation points in the radial line § = ¢ = 0, which corresponds to the
outer 15% segment of this radial (plotted with a thick solid line in the right plot in Figure
12) and yields the restricted DMD expansion (cf. (5.1)—(5.2))

N
(5.3) O(r,0,0,t) = Z 0, (r)e™* + c.c.,  with 0.85 <7 — riy < Fout — Tin(= 1).

n=1

Note in Figure 12-right that the thermal activity in this small segment of the radial line is very
small. In spite of this, DMD-40 (see Figure 13-right) is still able to identify the mean flow and
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Table 1
Wavenumbers n1 and na and frequencies, as defined in (5.5), for the 12 most energetic modes in the quasi-
periodic attractor considering the whole amount of three-dimensional data (3D), the meridian plane 0 =0 (2D),
and the line ¢ =0 =0 (1D), as calculated by applying DMD-200 and DMD-1, as indicated.

3D 2D 1D
DMD-200 | DMD-200 | DMD-1 | DMD-200 | DMD-1

n1 n9 w

0 0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0 47.5890 47.5890 47.9306 47.5891 55.6587
0 1 239.8411 239.8412 | 240.8474 | 239.8408 —
-1 1 192.2520 192.2535 192.9154 | 192.2524 | 187.5543
2 0 95.1783 95.1744 96.0682 95.1749 —

1 1 287.4301 287.4285 | 287.7189 | 287.4288 | 280.4798
2 1 335.0192 335.0139 | 344.1997 | 335.0210 -

0 2 479.6822 479.6717 - 479.6807 -
—2 1 144.6444 144.1315 — 143.8763 —
-1 2 432.0838 432.0914 — 432.0938 -

1 2 527.2712 527.1714 — 527.2698 -

3 0 142.7519 142.4148 124.5031 144.9524 -

3 1 382.7911 382.4096 - 382.9238 | 351.8692

three oscillating modes and reconstruct the restricted snapshots with a relative RMS error
RRMSE~ 107?; also, DMD-40 the relative errors in the three identified frequencies is ~ 1074,
The fourth oscillating mode exhibits a too small amplitude in this restricted segment, smaller
than truncation errors in the numerical approximation, and cannot be identified. The very
good identification of the frequencies and the very small reconstruction error clearly illustrate
the advantages of using the delayed snapshots. DMD-1, instead, only recognizes the mean
flow and the first harmonic.

Let us now consider the quasi-periodic attractor that is obtained for R = 1.1 - 10%. This
attractor can be seen as resulting from the nonlinear interaction of two purely rotating waves,
with wavenumbers m = 6 and m = 8. Thus, the counterpart of (5.1) is

(5.4) O, 0,6,8) = 3 Oy (1, O)llm 1180 m2(at=69)] 4 ¢ (.

ni,n2

for some (incommensurable) fundamental frequencies w; and wg; the sum is extended to
a number of retained pairs of values of the integers n; and no. As in the periodic case, the
factor e~ 1(=(8n14+6n2)¢ makes the spatial modes fairly uncorrelated, which means that using the
whole amount of three-dimensional data, retaining a reasonable number of modes, HODMD
is not expected to dramatically outperform standard DMD. However, it is interesting to
note that both DMD-1 and DMD-200 (applied to a set of 500 equispaced snapshots, with a
nondimensional time-shift between snapshots equal to 5-10%) are able to identify quite well
the fundamental frequencies and the harmonics, defined as

(5.5) w = nijwi + Nawa,

which are displayed in Table 1 (third column) and will be used for reference below. As can
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Figure 14. Counterpart of Figure 13 for the quasi-periodic attractor.

be checked by the reader, these frequencies satisfy quite well the commensurability relation
(5.5).

As in the periodic case, restricting to the meridian plane # = 0 and the radial line 6§ =
¢ = 0, namely restricting (5.4) to

@ 7“ 0,0, t Z @nﬂlz T, 9 i(njwit+naws)t +cc.,

ni,n2

in rip <7 <rou,0 <0 <7/2and

O(r,0,0,t) Z Onyny (1 1(n1w1+n2w2)t 4+ c.c. with riy, <7 < rout,

ni,n2

respectively, decreases the spatial complexity. In particular, restricting to the meridian plane
@ = 0, Table 1 and Figure 14 show that while DMD-200 identifies all frequencies and re-
constructs the snapshots with great precision (RRMSE ~ 1073); DMD-1 gives much worse
results, since the reconstruction involves a larger error (RRMSE ~ 1072) and the frequencies
are identified with an error that increases as the amplitude of the mode decreases. More-
over, restricting to the radial line ¢ = 6 = 0, DMD-1 gives completely spurious results in
connection with both the identified frequencies (see Table 1) and the reconstruction (RRMSE
~ 0.4), but DMD-200 approximates the considered modes with a reasonable accuracy, since
RRMSE ~ 1073 and the frequencies are well identified (see Table 1). Thus, the advantages
of using delayed snapshots are clearly seen, for a given spectral complexity, as the number of
observables (and thus the spatial complexity) is decreased.

Finally, the mean flow and the spatial modes associated with the two fundamental fre-
quencies are considered in Figure 15. As can be seen:

e The thermal activity mainly concentrates (for both the mean flow and the fundamental
modes) near the equator and also somewhat near the inner boundary of the spherical
shell for the 10-mode and 20-mode, but in more interior regions for both the mean
flow and the remaining two oscillatory modes.

e The real and imaginary parts of the oscillatory modes are not proportional to each ot-
her, meaning that these modes are not standing but progressive, namely the associated
activity oscillates back and forth in the meridian plane.
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Figure 15. The five most energetic modes obtained for the quasi-periodic attractor in the meridian plane
0 = 0, via DMD-200, considering the mean flow, and the real and imaginary parts of the oscillatory modes
associated with the two fundamental frequencies.

Summarizing, as anticipated, the considered dynamics is (on purpose) somewhat simple,
even in the quasi-periodic case, where the various DMD-modes are associated with purely
rotating waves, whose three-dimensional spatial structures are fairly uncorrelated (see (5.1)
and (5.4)). Thus, the advantages of using delayed snapshots are not appreciated when the
whole amount of three-dimensional data is used. However, as the data used is restricted
to the meridian plane and a radial line in the equatorial plane, the advantages of using
HODMD become clear. This is relevant keeping in mind the identification of the spatio-
temporal structures using a limited number of observables in the applications outlined at the
beginning of this section. Obviously, as it happened with the CGLE considered in section 4,
delayed snapshots are unavoidable in the analysis of fluid flows involving a larger temporal
complexity (and noise, when dealing with experimental data), but the analysis and description
of these flows is more involved and well beyond the scope of this paper.

6. Concluding remarks. A new HODMD method has been developed that generalizes
standard DMD by using the standard method with time-lagged snapshots. An algorithm
labeled as DMD-d, where d > 1 indicates the number of involved time-delayed snapshots, has
been derived that permits calculating the new decomposition in a robust and precise way.

The simplest algorithm, DMD-1, is very similar to the original DMD method developed by
Schmid [48]. There is a conceptual difference between both, however, since DMD-1 separates
calculations in two steps: the first SVD application to the whole snapshot matrix involves the
spatial truncation, which defines from the outset the spatial modes, the spatial complexity N,
and the reduced snapshots. The latter are used in the second step to calculate a DMD de-
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composition for the reduced snapshots, which is readily translated into a DMD decomposition
of the original snapshots by using the spatial modes.

For d > 1, the DMD-d algorithm is conceptually new and able to cope with cases (not
accessible to standard DMD) in which the DMD-modes associated with different frequen-
cies/growth rates are linearly dependent. The DMD-d algorithm turns out to be quite robust
in connection with varying d. Since, after identification of the temporal modes, the application
of DMD-d with large d is computationally inexpensive, a good strategy is to apply DMD-1
and DMD-d for several sample values of d and compare results to guess the appropriate value
of d.

The new method has been illustrated and tested in several toy models, the Stuart—-Landau
equation, the Lorenz system, and the CGLE. In particular, in the applications to noisy toy
models, it has been proven that the new HODMD method is much more precise and robust
than standard DMD in the presence of noise.

For a periodic attractor in the Lorenz system involving a large number of harmonics, the
new HODMD method quite efficiently identifies the correct basic frequency of the periodic
solution and the amplitude of the harmonics. In addition, using the method in transient
dynamics approaching the periodic attractor, the method is able to efficiently extrapolate to
the final attractor.

Concerning the CGLE considered in section 4, a battery of representative periodic and
quasi-periodic attractors has been considered. Except for trivial cases (namely, the attractors
labeled as type I and II in section 4), the standard DMD gives spurious results but the new
method correctly identifies the relevant frequencies and amplitudes to the precision that is
being sought. In addition, the method has been used to recover the relevant frequencies
considering a limited number of grid points, both for the clean databases and after adding
random noise. Again, the method performs quite well since, in particular, applying the method
with just one grid point, the results are much better than using FFT and PSD.

Concerning the more computationally demanding problem describing thermal convection
in a rotating spherical shell considered in section 5, the advantages of using the delayed
snapshots in the HODMD method have been illustrated in two representative attractors of the
system, namely one periodic consisting in a purely rotating wave, and another quasi-periodic
involving the nonlinear interaction between two rotating waves. Even though no intention
was made to deal with actual observational data (which bears its own difficulties due to the
unavoidable errors, whose treatment is well beyond the scope of this paper), the various tests
have kept in mind one important application of numerical simulations on this problem, namely
fitting observations and numerics. In this case, observations cannot cover a large amount of
three-dimensional data, but a limited amount concentrated in some regions. When the amount
of data is decreased too much, the analysis in section 5 illustrates that standard DMD may
give completely spurious results, while the HODMD algorithm DMD-d, with appropriate d,
always gives consistent results for general periodic and quasi-periodic dynamics, according to
Theorem B in Appendix A, with obvious limitations in connection with accuracy, the sampling
frequency (which must be somewhat large compared to the largest involved frequency), and the
sampled timespan (which must be larger than the largest involved period). Obviously, when
increasingly complex quasi-periodic phenomena is considered, the spatial complexity rapidly
increases (in, e.g., transitional flows) and the standard DMD method may give spurious results
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even using all available spatial data, as it happened with the CGLE. However, transitional
flows exhibit their own difficulties (already in connection with numerical simulation), which
once more are beyond the scope of this paper.

On the other hand, the DMD-d algorithm derived in the paper is also useful for other tasks,
which are relevant from both the purely scientific and industrial points of view. Namely:

e As already mentioned, obtaining the growth rates and frequencies (and thus elucida-
ting the dynamics type) using a limited amount of spatial data. In other words, the
method provides a means to substitute spatial data by temporal data in this context.
This is very useful to, e.g., calculating the natural frequencies from (wind tunnel or
flight tests) aeroelastic or aeroacoustic data using a limited amount of accelerators
(which decreases both cost and the experimental complexity). However, once more,
this application is well beyond the scope of this paper.

e Elucidating the nature (periodic or quasi-periodic) of a given attractor by calculating
the dimension of the attractor. It must be noted that, in practice, periodicity/quasi-
periodicity cannot be ascertained by identifying the fundamental frequencies and elu-
cidating whether they are incommensurable or not. As anticipated in the introduction,
the computation of quasi-periodic attractors in large scale systems is a highly nontri-
vial issue [45, 46].

These are open problems which invite further analysis.
In any event, we hope that the results in this paper are a step further to increase robustness
and flexibility of DMD in the many applications that can be envisaged.

Appendix A. Exact DMD-1 and DMD-d decompositions. Let us rewrite (1.3) as

M
(A.1) v = Z amUpmpE=t fork=1,... K,
m=1
with
(A.2) [, = O Hwm)AL for g — 1 M.
Moreover, we assume that (i) the complex scalars pq, ..., uy are nonzero and distinct from

each other (otherwise, those summands with the same p, are collected together), (ii) the
complex amplitudes a,, are nonzero, and (iii) K > M (in fact, the case of interest is K > M).
Note that no assumption is made in connection with the dimension of the snapshots, J, which
may well be smaller than M.

Now, the calculation of the DMD expansion (A.1) depends on whether the DMD modes
are linearly independent or not. The former case is considered in the following well-known
theorem, which is included here for completeness.

Theorem B. Under the assumptions above, the linearly independent complexr snapshots

v1,...,vx satisfy (A.1l) if and only if there is a diagonalizable matrix R, whose nonzero
eigenvalues and associated eigenvectors are iy, and wy, (form =1,..., M), respectively, such
that

(B.1) vk = Rvp fork=1,... K.
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Proof. If (A.1) holds, then all snapshots belong to the vector space V' = span{uq,...,ups}.
If the vectors aju1, ..., aprups are taken as a basis in V, then the coordinates of the snapshots
in this basis satisfy (B.1), with R = diagonal matrix whose elements are j1, ..., pas. This pro-
ves the direct statement. And conversely, if (B.1) holds, then we consider the M nonzero eigen-
values, p1, ..., pupr and the M linearly independent associated eigenvectors, uy, ..., wps, which
span a M-dimensional vector space, V. Equation (B.1) readily implies that the snapshots all
belong to V' and, taking wui,...,uy; as a basis for V, the matrix R is the diagonal matrix
whose diagonal elements are p1, ..., uar, which readily yields (A.1), witha; = - =ap = 1.1

If the DMD modes are linearly dependent, then for each d > 1, we consider the Jd-
dimensional modified snapshots and modified modes defined as

Vi Um
~d Vg+1 ~d _ HmUm
(BZ) Vg = y o Uy =
Vk+d—1 , U
+ T

fork=1,..., K —d+1land m=1,..., M. These allow for rewriting (A.1) as

M

(B.3) pitlad fork=1,..., K —d+1.

m=1

(41
EIY
Il

The counterpart of (B.1) would be
(B.4) Vpy1 = Rop fork=1,... K —d+1.
Now, the idea is that the modified modes defined in (B.2) are linearly independent if d is

sufficiently large, as proven in the following lemma.

Lemma C. Under the assumptions above, there is a minimum value of d, dy < M, such
that for each d > dy, the modified modes defined in (B.2) are linearly independent.

Proof. The aim is to prove that there is a minimum value of d < M such that the Jd x M
matrix

ui u2 upN

~d u u u

(C.l) U = Hiul H2u2 KA W
u‘li_lul Mg_IUQ - ,u‘]ivfluM

exhibits maximum rank, namely its rank is M. This is proven in two steps. First, if U?
exhibits a maximum rank for some d, then for larger d, U% obviously exhibits a maximum
rank, too. Second, we prove that UM exhibits maximum rank as follows. We note that
under the stated assumptions, the J-dimensional modes w1, ..., u;s span a vector space whose
dimension My < M < J. Then, there is a unit vector, wy, such that the orthogonal projections
of wy,...,up on w; are all nonzero. Completing this vector with another J — 1 unit vectors
to construct an orthonormal basis of C’, and referring the modes w,, to this new basis,
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we consider the M x M-submatrix of U M formed by the M rows associated with the first
components of u,,. Namely, this submatrix is formed by the first, (J + 1)th, (2J + 1)th, ...,
((d —1)J + 1)th rows, and reads

1 1 1

uy Uy e Upy
1 1 1
pu fouy ... iU
(C‘2) .. .1 .. .2 RS .. .M ’
M—1 M-1 M—1
p el ol v ul,
where, by construction, u,ln is the nonzero orthogonal projection of w,, on the first element
of the basis, wi. Now, dividing the mth column of this matrix by u} , for m =1,..., M, the
resulting matrix is a Vandermonde matrix, which is nonsingular because the scalars p1, ..., g

are all nonzero and different from each other, as assumed. Thus, the rank of the submatrix
(C.2) is M and so is the rank of the larger matrix UM (defined as in (C.1) with d = M),
which completes the proof. |

Using this, the case of linearly dependent modes is considered in the following theorem.

Theorem D. If (A.1) holds with the vectors {um}M_, not necessarily linearly independent
and the complex scalars 1, ..., un different among each other, then there exists a smallest
value of d, with 1 < dy < M, such that if d > dy, then

Vprg = Rivgrg 1+ -+ Rgv fork=1,... K—d+1
for appropriate matrices, Rq,..., Ry.

Proof. Let dp be as in Lemma C. Applying Theorem B, (B.3) holds if and only if there is
a matrix R such that (B.4) holds. Thus, we need only consider the J first rows in (B.3) and
(B.4) to complete the proof. [ ]

Note that the matrices appearing in (C.1) are not unique, especially when d > dy. A
trivial counterexample of this occurs when the modes are linearly independent, in which the
snapshots satisfy, e.g., Vpr1 = Rivk, Vpr1 = Rivp_1, and vjq; = (Rivy, + Rivj_1)/2.

The results above could be seen as theoretical foundations of the standard DMD and the
HODMD methods. However, this theorem applies to the case in which (A.1) is exact and
calculations are performed with infinite precision, which is not possible in practice. Thus,
some consequences from the above can be misleading in practical situations.

The proof of Lemma C suggests that, for a given index d, the complex scalars pu,, must
be sufficiently different among each other for a good performance of the HODMD methods.
Invoking (A.2), this condition implies that At¢ should not be too small, namely the sampling
frequency should not be too large for a given sampled timespan. On the other hand, the sam-
pling frequency should be sufficiently large. As further explained in this paper, the sampling
frequency must be somewhat larger than the largest frequency that is present in the DMD-
expansion. Solving these contradictory conclusions will require taking a sufficiently large value
of the index d, which will somehow scale with the sampling frequency.
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