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Abstract

This paper is a continuation of the previous results on the stripping number of

a random uniform hypergraph, and the maximum depth over all non-k-core vertices.

The previous results focus on the supercritical case, whereas this work analyses these

parameters in the subcritical regime and inside the critical window.

1 Introduction

Given a hypergraph H and a positive integer k, the parallel k-stripping process on H is the
sequence H0, H1, H2, . . . such that H0 = H and for every i ≥ 1, Hi is obtained form Hi−1 by
removing all vertices with degree less than k in Hi−1 together with their incident hyperedges.
The process terminates with the k-core of H : the maximum subgraph of H with minimum
degree at least k. Note that the k-core of H can be empty. Let sk(H) denote the number of
iterations this process takes and we call sk(H) the k-stripping number of H . As k is fixed
in this paper, we often drop k from the above notation.

We will study s(Hr(n,m)), where Hr(n,m) is a uniformly random hypergraph on n
vertices and m hyperedges, each of size r. The only interesting range of m for this study
is m = Θ(n). For m in other ranges the stripping number can be easily estimated with
little effort. We write m = cn throughout this paper, where c is bounded from both above
and below by some absolute positive constants. Another closely related random hypergraph
model is Hr(n, p) where each hyperedge in

(
[n]
r

)
appears independently with probability p.

By conditioning on the number of hyperedges in Hr(n, p), properties holding asymptotically
almost surely (a.a.s.) in Hr(n, cn) usually translate immediately to Hr(n, r!c/n

r−1).
The stripping number of Hr(n, cn) is known to be small if c is a constant and is not equal

to cr,k, the k-core emergence threshold (given in (1)). It was proved [1] that the stripping
number is O(logn) in this case. For c > cr,k + ǫ, this bound is proved to be tight [14]. For
c < cr,k− ǫ, an improved upper bound O(log logn) is given in [14, 8]. However, the stripping
process can get very slow as c → cr,k. It was shown [9] that if c = cr,k + n−δ (0 < δ < 1/2)
then the stripping number becomes Θ(nδ/2 log n), whereas if c = cr,k−n−δ then the stripping
number is bounded by Ω(nδ/2) from below. The formal statement is as follows.
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Theorem 1 ([9]). Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed. For any arbitrarily small ǫ > 0:

(a) if c ≥ cr,k + n−1/2+ǫ, then a.a.s. s(Hr(n, cn)) = Θ(logn/
√
ξ), where ξ = |c− cr,k|.

(b) if |c− cr,k| ≤ n−1/2+ǫ, then a.a.s. s(Hr(n, cn)) = Ω(n1/4−ǫ/2).

(c) if c ≤ cr,k − n−1/2+ǫ, then a.a.s. s(Hr(n, cn)) = Ω(1/
√
ξ), where ξ = |c− cr,k|.

One of the main contributions in this paper is to prove that the lower bound in Theo-
rem 1(c) is almost tight. We will also provide an upper bound for s(Hr(n, cn)) when c is
inside the critical window |c− cr,k| ≤ n−1/2+ǫ.

A k-stripping sequence v1, v2, . . . is a sequence of vertices, which can be deleted from the
hypergraph in the order of the sequence, such that each vertex has degree less than k at the
moment of its removal. If v is a vertex not contained in the k-core, then the depth of v is the
minimum integer i such that there is a stripping sequence with vi = v. In other words, the
depth of v is the minimum number of steps required to remove v from H among all stripping
sequences.

For constant c 6= cr,k, it is proved [1] that the maximum depth of the non-k-core vertices in
Hr(n, p = r!c/nr−1) is bounded by O(logn) and the same result easily translate to Hr(n, cn).
For c = cr,k+n−δ, the maximum depth is raised to nΘ(δ), proved by Molloy and the author [9],
as follows.

Theorem 2 ([9]). Assume r, k ≥ 2, (r, k) 6= (2, 2) are fixed. There are constants a = a(r, k)
and b = b(r, k) such that for any 0 < ξn < 1/ log7 n and c = cr,k + ξn, a.a.s. the maximum
depth of all non-k-core vertices of Hr(n, cn) is between ξ−a

n and ξ−b
n .

In this paper, we will prove that the same statement holds for c = cr,k − ξn.
Before proceeding to the statements of our main results, we briefly discuss the motivation

of studying these two parameters, which has been addressed in [9]. Several applications of
the parallel stripping process was given in [14], such as parity-check codes and hash-based
sketches. However, a major motivation for studying the particular critical case where c→ cr,k
is to investigate the solution clustering in random XORSAT. Research on the solution space of
many random constraint satisfaction problems (CSPs) was started in statistical physics, and
has received great attention in recent years in many broad areas such as physics, computer
science, and combinatorics. Due to the discovery of the physicists, the solution space of
a random CSP instance undergoes several phase transitions before its density reaches the
satisfiability threshold. These phase transitions include clustering, variable freezing and
condensation. See [10] for a brief introduction, and the references in [10] for the literature
in this blossoming area. Understanding these phase transitions and the geometric properties
of the solution space in each phase has been crucial in several recent achievements in the
study of random CSPs, including solving the famous k-SAT conjecture (for large k) [7].
Clustering of random r-XORSAT was analysed independently in [3] and [17], with some key
arguments missing. The rigorous arguments determining the clustering threshold for random
r-XORSAT were given independently in [1, 11]. Random r-XORSAT clustering coincides
with the appearance of a non-empty 2-core of a random r-uniform hypergraph (r ≥ 3). To
bound the connectivity parameter of each cluster, the key arguments in [1] are to link this
parameter to the maximum depth of all non-2-core vertices. For constant c 6= cr,2, this
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parameter is bounded by O(logn) [1]. In order to charactersie how XORSAT-clusters are
born, and how the cluster connectivity parameter transits around clustering, we need to
estimate the maximum depth of the non-2-core vertices of Hr(n, cn) for c → cr,2, especially
for c = cr,2 +n−δ and c = cr,2−n−δ for some sufficiently small δ > 0. The birth of XORSAT-
clusters will be studied in a following paper, whereas a preliminary version has been available
in [10] (for c = cr,2 + n−δ).

All asymptotics in this paper refers to n → ∞. For two sequences of real numbers (fn)
and (gn), we say fn = O(gn) if there is a constant C > 0 such that |fn| ≤ C|gn| for every
n ≥ 1. We write fn = o(gn) if limn→∞ fn/gn = 0; fn = Ω(gn) if fn > 0 and gn = O(fn). We
use fn = Θ(gn) if fn > 0, fn = O(gn) and gn = O(fn).

2 Main results

The k-core emergence threshold was pursued by several authors [5, 15, 16] before its deter-
mination, and was first determined by Pittel, Spencer and Wormald [20] for random graphs
G(n,m). This threshold was further determined in other random graph models and ran-
dom hypergraphs [18, 13, 12, 6]. Recall that cr,k denotes the k-core emergence threshold of
Hr(n, cn); then

cr,k = inf
µ>0

µ

r
[
e−µ

∑∞
i=k−1 µ

i/i!
]r−1 . (1)

Our main result of the stripping number of Hr(n, cn) is the following.

Theorem 3. Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed integers and ǫ > 0 be a constant.

(a) If c ≤ cr,k − n−1/2+ǫ, then a.a.s. s(Hr(n, cn)) = O(ξ−1/2 log(1/ξ) + log logn), where
ξ = |cr,k − c|.

(b) If |c− cr,k| ≤ n−1/2+ǫ, then a.a.s. s(Hr(n, cn)) = O(n3/4+ǫ).

Remark. Note that if cr,k−c is bounded below by a positive constant, then the upper bound
becomes O(log log n), which agrees with the upper bound in [14, 8]. If c ≤ cr,k − n−1/2+ǫ,
then the upper bound differs from the lower bound (c.f. Theorem 1(c)) by at most a constant
factor of logn. For ξ = O(n−1/2+ǫ), the upper bound does not match the existing lower bound
(c.f. Theorem 1(b)). The difficulty of obtaining tight bounds inside the critical window lies
in the uncertainty of the existence of a non-empty k-core.

The next theorem bounds the maximum depth of the non-k-core vertices in Hr(n, cn) for
c < cr,k.

Theorem 4. Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed integers. There exist two constants
a = a(k, r) > 0 and b = b(k, r) > 0 such that for any 0 < ξn < 1/ log7 n and c = cr,k − ξn,
a.a.s. the maximum depth of the non-k-core vertices in Hr(n, cn) is between ξ−a

n and ξ−b
n .

Remark. If we write ξn = n−δ, Theorem 4 states that the maximum depth of the non-k-core
vertices is nΘ(δ). Since the depth of each non-k-core vertex is bounded trivially by n, the
upper bounds in Theorems 4 and 2 are non-trivial only for ξ = n−δ where δ > 0 is sufficiently
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small. Same as in [9], the condition ξn < 1/ log7 n can possibly be weakened and we did not
try to optimise the power of the logarithm. This is because the most interesting applications
of this theorem, e.g. XORSAT clustering, are for c = cr,k − n−δ with some small constant
δ > 0.

Our analysis focuses mainly on iterations of the parallel stripping process where the
number of vertices is very close to some critical value. To describe this, we start by defining

ft(λ) = e−λ
∑

i≥t

λi

i!
;

h(µ) = hr,k(µ) =
µ

fk(µ)r−1
.

Note that ft(λ) is the probability that a Poisson variable with mean λ is at least t. Now for
any r, k ≥ 2, (r, k) 6= (2, 2), we define µr,k to be the value of µ that minimizes h(µ); i.e. the
(unique) solution to:

cr,k = h(µr,k)/r. (2)

Define

α = αr,k = fk(µr,k) (3)

β = βr,k =
1

r
µr,kfk−1(µr,k). (4)

For ease of notation, we drop most of the r, k subscripts. For any c ≥ cr,k, we define µ(c)
to be the larger solution to

c = h(µ)/r.

Then, µr,k = µ(cr,k). Define

α(c) = fk(µ(c)), β(c) =
1

r
µ(c)fk−1(µ(c)).

Let Ck(H) denote the k-core of H . The following result on the k-core emergence threshold
can be easily deduced from [13] (see the discussion above [9, Lemma 7]).

Theorem 5. Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed and ǫ > 0 be an arbitrary constant.

(a) If c ≤ cr,k − n−1/2+ǫ, then a.a.s. Ck(Hr(n, cn)) is empty.

(b) If c ≥ cr,k +n−1/2+ǫ, then a.a.s. Ck(Hr(n, cn)) has α(c)n+O(n3/4) vertices and β(c)n+
O(n3/4) hyperedges.

When the parallel stripping process is applied to Hr(n, cn) where c = cr,k + o(1), the
vertices are stripped off fast in the beginning; in each round there are a linear number of
vertices being removed. This continues until the number of vertices gets close to αn. Our
analysis will start from there.
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3 The allocation-partition model

It is not easy to analyse random processes such as the parallel stripping process when applied
to Hr(n,m), due to the dependency between the hyperedges. Instead we consider the follow-
ing alternative model, called the allocation-partition model (AP-model). Take rm points and
uniformly at random (u.a.r.) allocate the points into a set of n bins. Then, take a uniform
partition of the rm points so that each part has size exactly r. We call the resulting prob-
ability space APr(n,m) and each element in APr(n,m) a configuration. Each configuration
in APr(n,m) corresponds to a multi-hypergraph by representing each bin as a vertex and
each part in the partition as a hyperedge. In this paper we call bins as vertices for simplicity.
Each part in the partition is an r-tuple of points, which we may call a hyperedge when there
is no confusion. The degree of a vertex u in a configuration is the number of points that
u contains. Note that the AP-model is similar to the configuration model of Bollobás [2],
except that in the configuration model, the degree sequence is specified initially whereas in
the AP-model, the degree sequence is a random variable determined by the allocation of the
points into the bins. A simple counting argument shows that each hypergraph in Hr(n,m)
corresponds to the same number of configurations in APr(n,m). Therefore, APr(n,m) gen-
erates the hypergraphs in Hr(n,m) uniformly by conditioning on the resulting hypergraph
being simple. For m = O(n), following a result by Chvátal [5] that the probability that a
configuration in APr(n,m) corresponds to a simple hypergraph is bounded away from zero
(the proof in [5] is for r = 2 but easily extends to general r ≥ 2), the following corollary
allows one to translate a.a.s. properties of APr(n,m) to Hr(n,m).

Corollary 1. If m = O(n) and property Q holds a.a.s. in APr(n,m), then Q holds a.a.s.
in Hr(n,m).

Running the parallel stripping process on a configuration of the AP-model is a natural
extension. In the rest of the paper, we will study s(H) and the maximum depth of the non-
k-core vertices of H for H ∈ APr(n, cn). We note here that Theorem 5 holds for APr(n, cn)
as well, as claimed in [4].

4 Proof of Theorem 3

We bound s(APr(n, cn)) in this section. Without loss of generality, we assume ξ :=
|c − cr,k| = o(1) throughout the paper as the case ξ = Ω(1) has already been verified in
previous works, e.g. [1, 8, 14]. Recall that H0, H1, H2, . . . is the parallel stripping process
with H0 ∈ APr(n, cn). Let Si (i ≥ 0) denote the set of light vertices (vertices with degree less
than k) in Hi, i.e. the set of vertices removed during the (i + 1)-th iteration of the parallel
stripping process. Thus, Si = V (Hi) \ V (Hi+1).

4.1 Proof outline

Rather than starting our analysis with H0 in the parallel stripping process, we would start
our analysis from some Hi (or some configuration “close to” Hi), where i is chosen so that
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the number of vertices in Hi is very close to αn. The choice of i relies on a coupling of two
random configurations APr(n, cn) and APr(n, c

′n). Let ξ′ = c′− cr,k. Throughout Section 4,
we always choose c′ satisfying the following conditions (recall that ξ = |c − cr,k| = o(1) is
assumed):

ξ′ = O(c′ − c) = o(1), c′ − c = o(
√
ξ′), c′ ≥ cr,k + n−1/2+ǫ for some constant ǫ > 0. (5)

We do not repeat this assumption in all statements of lemmas. We will describe the coupling
in Section 4.2. The value of c′ is chosen differently in the proofs of part (a) and part (b) of
Theorem 3.

We use the coupling to start our analysis from some Hi, or more precisely some configu-
ration G0 (defined in Section 4.2) close to Hi, such that (a), the number of light vertices in
G0 is of order n(c′−c); (b), i = O(log(1/ξ′)/

√
ξ′). In Section 4.4 we analyse properties of G0.

In Section 4.8 we prove part (a). We will choose some c′ > cr,k such that ξ and ξ′ are of the
same asymptotic order. Then we specify two iterations I0 and I1 in the parallel process such
that, by iteration I0, |Si| decreases in each iteration; whereas starting from I1, |Si| increases
in each iteration until reaching a linear size; then |Si| keeps of linear size until the number
of remaining vertices in the configuration is at most σn, for some small constant σ > 0 (σ is
specified in Section 4.7). We will analyse closely the critical iterations from I0 to I1 during
which the growth rate of |Si| changes from negative to positive, and we will bound I1 − I0
by O(1/

√
ξ). Then, we will bound the growth rate of |Si| from below for each iteration after

I1, which allows us to bound the number of iterations needed until the number of remaining
vertices is at most σn. In Section 4.7, we show that it takes O(log log n) steps to strip off all
vertices when there are at most σn vertices left.

In Section 4.9, we prove part (b). We will choose c′ = cr,k + n−1/2+2ǫ in this case. We
prove that within n3/4+ǫ iterations, either the parallel stripping process has terminated with
a non-empty k-core; or |Si| becomes reasonably large and it will grow in each iteration until
reaching a linear size. In the latter case, with a similar argument as for part (a), we can
bound the number of remaining iterations until all vertices are removed.

4.2 Coupling

We will couple two random configurations (H ′, H) as follows. Let H ′ ∈ APr(n, c
′n) where

c′ > c and c′ > cr,k +n−δ′ for some constant 0 < δ′ < 1/2 (this ensures that a.a.s. APr(n, c
′n)

has a non-empty k-core by Theorem 5). Generate a random configuration H by uniformly at
random removing (c′ − c)n r-tuples in H ′. This resulting H has the distribution APr(n, cn)
and moreover H ⊆ H ′. Run the parallel stripping process on H ′ which yields a sequence
(H ′

t)t≥0 with H ′
0 = H ′. Recall that S ′

i = V (H ′
i) \ V (H ′

i+1). Let B > 0 be a large constant to
be specified later. Define

τ ′(B) = min{t ≥ B : |S ′
t| ≤ nξ′}. (6)

Now we define a coupled process (Ĥ ′
t, Ĥt)t≥0 as follows. Let Ĥ ′

0 = H ′ and Ĥ0 = H . For

each 1 ≤ t ≤ τ ′(B), define Ĥ ′
t = H ′

t and Ĥt to be the configuration obtained from Ĥt−1

by removing all vertices in V (H ′
t−1) \ V (H ′

t) together with their incident r-tuples. Since
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Ĥ0 ⊆ Ĥ ′
0 = H ′

0, the set of vertices removed in each step of (Ĥt)
τ ′(B)
t=0 has degree less than

k. Hence, (Ĥt)
τ ′(B)
t=0 can be viewed as a slowed-down version of the parallel stripping process

on Ĥ0 = H . In other words, if we let H ′′ denote the configuration obtained by removing
all light vertices in Ĥτ ′(B), then H ′′ must be a configuration Hi that appears in the parallel
stripping process H0, H1, . . . for some i ≤ τ ′(B) + 1. Then,

s(H) ≤ τ ′(B) + 1 + s(H ′′) ≤ τ ′(B) + s(Ĥτ ′(B)) + 1, (7)

since s(H ′′) ≤ s(Ĥτ ′(B)) as H ′′ ⊆ Ĥτ ′(B) by definition. It only remains to specify B, and to

bound τ ′(B) and s(Ĥτ ′(B)).

Specifying B and bounding τ ′(B)

The behaviour of (|S ′
i|)i≥0 has been well studied in the prior paper [9] (recall that for H ′

we have c′ ≥ cr,k + n−1/2+ǫ, assumed in (5)). We cite here the relevant parts of [9, Lemma
49(a–c)], which enables us to bound τ ′(B), and will be useful for later use.

Lemma 2. There exist positive constants B, Y1, Y2 and Z1 dependent only on r and k,
such that a.a.s. for every i ≥ B with |S ′

i| ≥ (1/ξ′) log2 n, we have

(a) if |S ′
i| ≥ nξ′ then (1 − Y1

√
|S ′

i|/n)|S ′
i| ≤ |S ′

i+1| ≤ (1 − Y2
√

|S ′
i|/n)|S ′

i|;

(b) if |S ′
i| < nξ′ then (1 − Y1

√
ξ′)|S ′

i| ≤ |S ′
i+1| ≤ (1 − Y2

√
ξ′)|S ′

i|;

(c)
∑

j≥i |S ′
j| ≤ (Z1/

√
ξ′)|S ′

i|.

Let B be a constant chosen to satisfy Lemma 2; this completes the definition of τ ′(B)
in (6). Since |S ′

i| > nξ′ for all B ≤ i ≤ τ ′(B)− 1, recursively applying Lemma 2(a), we have

nξ′ < |S ′
τ ′(B)−1| ≤ (1 − Y2

√
ξ′)τ

′(B)−1−B |S ′
B| ≤ n exp

(
− Y2

√
ξ′(τ ′(B) − 1 − B)

)
.

This immediately yields that

τ ′(B) = O

(
log(1/ξ′)√

ξ′

)
. (8)

By (7), It only remains to bound s(Ĥτ ′(B)). By Lemma 2(c) with i = τ ′(B), it follows
that

|H ′
τ ′(B)| − |Ck(H ′)| = O(nξ′/

√
ξ′) = O(n

√
ξ′). (9)

Generation of Ĥτ ′(B)

Note that H is generated from H ′ by removing u.a.r. (c′ − c)n r-tuples in H ′. Let

E = E(H ′) \E(H) and let X denote the number of r-tuples in E that are in Ĥ ′
τ ′(B) = H ′

τ ′(B).
Then, these X r-tuples are uniformly distributed among all the r-tuples in H ′

τ ′(B). Hence,

Ĥτ ′(B) can be generated by removing X r-tuples uniformly at random in H ′
τ ′(B).

We bound X in the following lemma (the proof is deferred).

Lemma 3. A.a.s. X = Θ((c′ − c)n).
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To analyse s(Ĥτ ′(B)), it is more convenient to use a slowed-down version of the parallel
stripping process, called SLOW-STRIP (which is also used in [9]), defined as follows. It
iteratively deletes an r-tuple incident with a light vertex. We will use a queue Q to store all
light vertices.

SLOW-STRIP
Input: A configuration G.
Initialize: t := 0, G0 := G, Q is the set of light vertices in G.
While Q 6= ∅:

Let v be the next vertex in Q.
If v contains no points then remove v from G and from Q.
Otherwise:

Remove one point x in v, and the r − 1 points in the same part as x.
If some other vertex u becomes light then add u to the end of Q.

Gt+1 is the resulting configuration; t := t+ 1.

Define
G0 = Ĥτ ′(B) (10)

and Gt to be the resulting configuration after t steps of SLOW-STRIP applied to G0. We
use L(G) to denote the total degree of the light vertices in G. For simplicity, let Lt = L(Gt).
We will analyse (Lt)t≥0, starting with L0.

Lemma 4. A.a.s. L0 = Θ((c′ − c)n).

The proofs of Lemmas 3 and 4 are simple and are deferred to Section 4.4 where we will
have a close study of G0. To close this subsection, we discuss several key parameters that
will be used throughout the proof. Let N(G) and D(G) denote the number of heavy vertices
and the total degree of the heavy vertices of a configuration G. Define

ζ(G) =
D(G)

N(G)
. (11)

For simplicity, we use Nt, Dt and ζt for N(Gt), D(Gt) and ζ(Gt).
When SLOW-STRIP is applied to a random configuration, the algorithm does not expose

the partition initially. When a point x in v is chosen to be deleted in a step, SLOW-STRIP
exposes the r-tuple that contains x by u.a.r. choosing another r−1 points from the remaining
points. These r points are removed in that step of SLOW-STRIP. The partition of the
remaining points remains unexposed and is uniformly distributed.

We use Gt to denote the random configuration obtained after t steps of SLOW-STRIP,
even though the r-tuples in Gt have not been exposed yet, nor the allocation of all of the
points in Gt. Let Ft = (Lt, Nt, Dt). The only information exposed after step t is Ft, and
the set of vertices in Q as well as the points they contain. By the definition of the AP-
model, conditioning on the exposed information, Gt is a random configuration obtained by
uniformly allocating the Dt points to the Nt heavy vertices, subject to each of these vertices
receiving at least k points, and u.a.r. partitioning the Lt +Dt points.
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Definition 5. Define p̄t = p̄t(Ft) to be the probability that a given point is allocated to a
bin containing exactly k points, in a uniform allocation of Dt points into Nt bins, subject to
each bin receiving at least k points.

If we choose u.a.r. a point x from the heavy vertices of Gt, then p̄t is the probability that
x is contained in a vertex with degree k. Analysing p̄t is a key part of the analysis. We
briefly explain why this parameter is important.

In each step of SLOW-STRIP, one point in a given light vertex is removed, together with
another r − 1 points u1, . . . , ur−1 u.a.r. chosen from all the remaining points. For each of
these r− 1 points, if it is contained in a vertex with degree k, then the removal of this point
results in a new light vertex and Lt will increase by k − 1. If we conditional on that the
point is in a heavy vertex, then this probability is approximately p̄t.

We will restrict our analysis for steps t such that the number of heavy vertices in Gt is
at least σn for some constant σ > 0 to be specified in Section 4.7. Let Bt = Lt +Dt; i.e. Bt

denotes the total degree of Gt. Then, we may assume that Bt ≥ kσn. At step t+ 1, for each
point ui (1 ≤ i ≤ r − 1) that are removed in this step, the probability that it lies in a light
vertex is Lt/Bt +O(1/n). Then, if Lt > 0,

E(Lt+1 − Lt | Ft) = −1 + (r − 1)

(
−Lt

Bt

+

(
1 − Lt

Bt

)
(k − 1)p̄t

)
+O(n−1), (12)

where O(n−1) above accounts for errors from two cases: (a), when deleting ui, the total
degree of the light vertices is Lt + O(1) and the total degree is Bt + O(1); (b), more than
one of ui’s are contained in the same vertex that becomes light after step t+ 1.

It is convenient to define

θt = −1 + (r − 1)(k − 1)p̄t. (13)

Then (12) can be rewritten as

E(Lt+1 − Lt | Ft) = θt − (θt + r)
Lt

Bt
+O(n−1). (14)

4.3 Useful lemmas from [9] and other related works

In this section, we state several lemmas in the literature that are useful for our analysis.
Most of them have appeared in the prior work [9]. In Section 4.2 we defined G0, which is
close to Ck(APr(n, c

′n)), since G0 is obtained by removing a small number of r-tuples in
H ′

τ ′(B), whereas H ′
τ ′(B) is close to Ck(APr(n, c

′n)) by (9).
We mentioned in Section 4.2 that we will keep track of p̄t, or correspondingly θt. Note

that θt is a function of Ft. Next, we specify this function.
Given positive integers n, m and k ≥ 0 such that m ≥ kn, define Multi(n,m, k), the

truncated multinomial distribution, to be the probability space consisting of integer vectors
X = (X1, . . . , Xn) with domain Ik := {d = (d1, . . . , dn) :

∑n
i=1 di = m, di ≥ k, ∀i ∈ [n]},

such that for any d ∈ Ik,

Pr(X = d) =
m!

nmΨ

∏

i∈[n]

1

di!
=

∏
i∈[n] 1/di!∑

d∈Ik

∏
i∈[n] 1/di!

,
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where

Ψ =
∑

d∈Ik

m!

nm

∏

i∈[n]

1

di!
.

It is well known that the degree distribution of the heavy vertices of Gt, conditional on Ft,
follows Multi(Nt, Dt, k) (see e.g. [4] for more details). The truncated multinomial variables
can be well approximated by independent truncated Poisson random variables. We formalise
this in the following proposition whose proof can be found in [4, Lemma 1].

Proposition 6. Given integers k, N and D with D > kN , assume X ∼ Multi(N,D, k).
For any j ≥ k, let ρj denote the proportion of components in X that equals j. Then, for any
ǫ > 0, with probability 1 − o(N−1),

ρj = e−λ λj

fk(λ)j!
+O(N−1/2+ǫ), (15)

where λ satisfies λfk−1(λ)/fk(λ) = D/N .

Let λ(x) be the root of λfk−1(λ) = xfk(λ), and define

ψ(x) =
e−λ(x)λ(x)k−1

fk−1(λ(x))(k − 1)!
. (16)

Recall from (11) that ζt is the average degree of the heavy vertices of Gt. By definition,
p̄t = kρk/ζt, where ρk is the proportion of vertices with degree k. Thus p̄t is approximately
ψ(ζt) by (16) and Proposition 6. With some elementary calculations (e.g. see [9, Lemma 30])
it is easy to show that ψ(x) is decreasing on (k,∞). Thus, we have the following lemma of
the approximation of p̄t and θt.

Lemma 7. Assume Nt = Ω(n). With probability 1 − o(n−1),

p̄t = (1 +O(n−1/2 log n))ψ(ζt),

θt = −1 + (k − 1)(r − 1)ψ(ζt) +O(n−1/2 log n).

Moreover, ψ(x) is a strictly decreasing function on x > k; i.e. ψ′(x) < 0 for every x > k.

In the analysis for (Lt)t≥0 and several other sequences of parameters, we frequently apply
the following lemma, which is a simple application of the Hoeffding-Azuma inequality.

Lemma 8. Let an and cn ≥ 0 be real numbers and (Xn,i)i≥0 be random variables with
respect to a random process (Gn,i)i≥0 such that

E(Xn,i+1 | Gn,i) ≤ Xn,i + an,

and |Xn,i+1 − Xn,i| ≤ cn, for every i ≥ 0 and all (sufficiently large) n. Then, for any real
number j ≥ 0,

Pr(Xn,t −Xn,0 ≥ tan + j) ≤ exp

(
− j2

2t(cn + |an|)2
)
.

10



Proof. Let Yn,i = Xn,i − ian. Then,

E(Yn,i+1 | Yn,i) = E(Xn,i+1 | Xn,i) − (i+ 1)an ≤ Xn,i − ian = Yn,i.

Thus, (Yn,i)0≤i≤t is a supermartingale. Moreover, |Yn,i+1 − Yn,i| ≤ cn + |an|. By Hoeffding-
Azuma’s inequality,

Pr(Yn,t − Yn,0 ≥ j) ≤ exp

(
− j2

2t(cn + |an|)2
)
.

This completes the proof of the lemma.

Recall the definition of α and β in (3) and (4). As we mentioned before, our analysis
focuses on a range of t, such that Gt contains (α+ o(1))n vertices. Hence, many parameters
of Gt are very close to certain critical values. For instance, ζt will be very close

ζ :=
rβ

α
. (17)

By Lemma 7 and (17), p̄t will be very close to p̄ := ψ(ζ). A simple calculation (see [9,
Lemmas 24 and 25] for a detailed proof) leads to

ψ(ζ) = 1/(r − 1)(k − 1) and therefore p̄ =
1

(r − 1)(k − 1)
. (18)

A non-trivial inequality with ζ is stated below, which will be useful in our proof. The proof
can be found in [9, Lemmas 34].

k < ζ < r(k − 1). (19)

In order to analyse G0 = Ĥτ ′(B), which is obtained by removing a few r-tuples in H ′
τ ′(B),

we need information on how much ζ(H ′
τ ′(B)) deviates from ζ . The following lemma, proved

in [9, Corollary 9], estimates how much ζ(Ck(H ′)) deviates from ζ .

Lemma 9. For fixed r, k ≥ 2, (r, k) 6= (2, 2), there exist three positive constants K1 =
K1(r, k), K2 = K2(r, k) and K3 = K3(r, k) such that: if c ≥ cr,k + n−δ for some constant
0 < δ < 1/2 and ξ := c−cr,k = o(1), then a.a.s. Ck(APr(n, cn)) has αn+K1

√
ξn+O(ξn+n3/4)

vertices, βn+K2

√
ξn+O(ξn+n3/4) r-tuples, and average degree rβ/α+K3

√
ξ+O(ξ+n−1/4).

By Lemma 9, a.a.s. ζ(Ck(H ′)) = ζ + Θ(
√
ξ′). Then, by [9, Lemma 52(a)], which states

that a.a.s. ζ(H ′
τ ′(B)) ≥ ζ(Ck(H ′)) + O(logn/n) ≥ ζ + Θ(

√
ξ′). On the other hand, by (9),

H ′
τ ′(B) differs from Ck(H ′) by O(n

√
ξ′) vertices, which affects the average degree of the

heavy vertices (there are a.a.s. Ω(n) of them) by O(
√
ξ′). So we must have ζ(H ′

τ ′(B)) =

ζ(Ck(H ′)) +O(
√
ξ′) = ζ +O(

√
ξ′). It follows then that

ζ(H ′
τ ′(B)) = ζ + Θ(

√
ξ′). (20)

11



4.4 Properties of G0

Recall that H ′ ∈ APr(n, c
′n). By Theorem 5, a.a.s. Ck(H ′) contains approximately αn

vertices and βn r-tuples. We first prove Lemma 3.

Proof of Lemma 3. Let E1 denote the set of r-tuples in H ′
τ ′(B) and E2 = E(H ′) \ E1. Now

H is obtained by u.a.r. removing (c′ − c)n r-tuples from E(H ′) = E1 ∪ E2. By definition, X
is the number of these deleted r-tuples that were in E1. By Theorem 5, a.a.s. |E1| = Ω(n).
Conditional on that, X stochastically dominates Bin((c′ − c)n, C) for some constant 0 <
C < 1. So a.a.s. X = Θ((c′ − c)n), as (c′ − c)n→ ∞ by (5).

Recall that G0 = Ĥτ ′(B), which is obtained by u.a.r. removing X r-tuples from H ′
τ ′(B).

Equivalently, G0 is the configuration obtained by u.a.r. removing Xr points from Ĥτ ′(B),
whereas the remaining vertices are uniformly partitioned. The following proposition follows
by the uniformity of the allocation of points to bins in the AP-model.

Proposition 10. Conditional on N , the number of heavy vertices in G0, and D, the total
degree of the heavy vertices, and the set S of light vertices, G0 is a random configuration
uniformly drawn from the space where D points are u.a.r. allocated to N bins subject to each
bin receiving at least k points, and all points in the N + |S| bins are uniformly partitioned
into parts with size r.

Now we bound L0, the total degree of the light vertices in G0.

Proof of Lemma 4. By the construction of G0,

L0 = O(|S ′
τ ′(B)| +X). (21)

By (6) and Lemma 2(a), |S ′
τ ′(B)| = Θ(nξ′). By Lemma 3, a.a.s. X = Θ((c′ − c)n), and thus

a.a.s. L0 = O((c′ − c)n) by (21) and (5). It remains to prove the lower bound.
Remove the X r-tuples one by one. By Proposition 6, a.a.s. in every step the number

of vertices with degree k is Θ(n). So there is a constant γ0 > 0 such that for each r-
tuple that is removed, the probability that it is incident with a vertex with degree k is at
least γ0. Hence, the number of vertices becoming light after removing X random r-tuples
stochastically dominates Bin(X, γ0) and thus is a.a.s. Θ(Xγ0) = Θ(n(c′−c)). It only remains
to show that not many of these new light vertices are created with degree zero. The expected
number of vertices having degree drop from at least k to zero is at most

∑

j≥0

n

(
rX

j + 1

)
·O
((

k + j

n

)j+1
)

= o((c′ − c)n),

where n is an upper bound for the number of vertices with degree k+ j,
(
rX
j+1

)
is the number

of ways to pick j+ 1 points from a set of rX points, and O(((k+ j)/n)j+1) is the probability
that j + 1 u.a.r. chosen points are contained in a given vertex with degree k + j. It follows
then that a.a.s. L0 = Θ((c′ − c)n).

Recall that θ0 = −1 + (r − 1)(k − 1)p̄0 by definition. We estimate θ0 in the following
lemma.
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Lemma 11. There are constants C1 > C2 > 0 such that a.a.s.

−C1

√
ξ′ ≤ θ0 ≤ −C2

√
ξ′; C2

√
ξ′ ≤ ζ0 − ζ ≤ C1

√
ξ′

Proof. By (20), ζ(H ′
τ ′(B)) − ζ = Θ(

√
ξ′). By Lemma 3, a.a.s. X = Θ((c′ − c)n). It follows

then that a.a.s.,
ζ0 = ζ(H ′

τ ′(B))(1 +O(c′ − c)) = ζ + Θ(
√
ξ′).

This is because the number of heavy vertices and their total degree change by O(X) =
O((c′−c)n) from H ′

τ ′(B) to G0, whereas a.a.s. the number of heavy vertices in H ′
τ ′(B) ⊇ Ck(H ′)

is Ω(n). The error O(c′ − c) is absorbed by Θ(
√
ξ′) as c′ − c = o(

√
ξ′) by (5).

Now, by Lemma 7 and (18) and by taking the Taylor expansion of ψ(x) at x = ζ (note
that ζ > k by (19)), a.a.s.

p̄0 = (1 +O(n−1/2 log n))ψ(ζ0) = (1 +O(n−1/2 logn))(ψ(ζ) − Θ(
√
ξ′))

=
1

(r − 1)(k − 1)
− Θ(

√
ξ′),

where the error O(n−1/2 logn) is absorbed by −Θ(
√
ξ′), as ξ′ ≥ n−1/2+ǫ. Now, θ0 = −Θ(

√
ξ′)

follows by (13).

4.5 Evolution of ζt

In order to analyse (Lt)t≥0, we need to keep track of θt that appears in (14). Since θt
is a function of ζt by Lemma 7, we only need to investigate how ζt = Dt/Nt evolves in
SLOW-STRIP. Note that ζt would change in a step only if a point contained in a heavy
vertex is removed. However, in a single step, the number of such points varies between zero
and k(r− 1). In each step, aside from the point contained in the light vertex in the front of
Q, there are r− 1 other points removed, each u.a.r. chosen from all of the remaining points.
We say an occurrence of event H takes place if such a u.a.r. chosen point is contained in
a heavy vertex. In order to trim off the effect of uncertainties, it is convenient to study an
auxiliary process, defined below, in which exactly one occurrence of H takes place in each
step.

Let M be a configuration obtained by u.a.r. allocating D̂ points into N̂ bins, subject to
each bin receiving at least k points. Let M0 = M. For every t ≥ 1, Mt is obtained from
Mt−1 by removing a point u.a.r. chosen from all points; if it results in a bin containing less
than k points, remove that bin together with all points inside it. Note that if we choose N̂ and
D̂ to be the number of heavy vertices and their total degree of G0, then (Mt)t≥0 encodes
the degree sequence of the heavy vertices of (Gt′)t′≥0. To distinguish from parameters in

G0, G1, . . ., we add a hat to each corresponding parameter (like N̂t, D̂t, θ̂t, ζ̂t etc.) for the

sequence M0,M1, . . .. We study parameters ζ̂t and θ̂t in this subsection, and will link them
to ζt and θt in Section 4.6.

Parameters D̂ and N̂ in M0 will eventually be chosen to coincide with D0 and N0 in
G0. Thus, by Lemma 11, we will assume the following conditions, which we omit in the
statements of lemmas in this subsection.

ζ̂0 = ζ + Θ(
√
ξ′), where n−1/2+ǫ ≤ ξ′ = o(1). (22)
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By Lemma 7 and (18), it is easy to see that

θ̂0 = −Θ(
√
ξ′) (23)

which is negative (this is also indicated in Lemma 11).
Fix a constant 0 < σ < 1 (the value of σ will be determined in Section 4.8). Define

τ1 = τ1(σ) to be the maximum integer t such that N̂t ≥ σn. Obviously, for all t ≤ τ1(σ),

ζ̂t − ζ̂0 = O(t/n), θ̂t − θ̂0 = O(t/n), (24)

because N̂t and D̂t changes by O(1) in each step.

Lemma 12. There exist constants C1 > C2 > 0 such that

(a) for all 0 ≤ t ≤ τ1(σ),

− C1/n ≤ E(ζ̂t+1 − ζ̂t | Mt) ≤ −C2/n; (25)

(b) a a.a.s. for all log2 n ≤ t ≤ τ1(σ), −C1t/n ≤ ζ̂t − ζ̂0 ≤ −C2t/n;

(c) a.a.s. for all 0 ≤ t ≤ τ1(σ), C2t/n+O(n−1/2 log n) ≤ θ̂t − θ̂0 ≤ C1t/n+O(n−1/2 log n).

Proof. We first prove parts (a,b) for 0 ≤ t ≤ ǫ0n, for some proper ǫ0 > 0. It was shown in [9,

Lemma 36] (below eq. (30)) that (25) holds as long as ζ̂t < r(k − 1) − ǫ1 for some constant

ǫ1 (and C1, C2 in (a) depends only on ǫ1). We have ζ̂0 = ζ + o(1) by (22) and immediately

we have ζ̂t = ζ+O(ǫ0) for all 0 ≤ t ≤ ǫ0n by (24). Therefore, by (19), there exist sufficiently

small constants ǫ1, ǫ0 > 0 such that ζ̂t < r(k − 1) − ǫ1 for all 0 ≤ t ≤ ǫ0n.
By Lemma 8 (with an = −Θ(1/n), cn = Θ(1/n) and j = tan), a.a.s. for all log2 n ≤

t ≤ ǫ0n, ζ̂t − ζ̂0 ≤ −Θ(t/n). Applying Lemma 8 again to (−ζ̂t)t≥0 (with an = Θ(1/n),

cn = Θ(1/n) and j = −tan/2), a.a.s. for all log2 n ≤ t ≤ ǫ0n, ζ̂t − ζ̂0 ≥ −Θ(t/n). It follows

then that a.a.s. for all log2 n ≤ t ≤ ǫ0n, ζ̂t − ζ̂0 = −Θ(t/n).

Next, we discuss ǫ0n ≤ t ≤ τ1(σ). We have shown that a.a.s. ζ̂ǫ0n − ζ̂0 = −Θ(ǫ0), i.e.

ζ̂ǫ0n < ζ̂0 and so the condition ζ̂t < r(k− 1)− ǫ1 holds for all ǫ0n ≤ t ≤ 2ǫ0n. With the same
argument, parts (a,b) hold for all t in this range. Inductively, claims in parts (a,b) hold for
all t ≤ τ1(σ), as there are only O(1/ǫ0) = O(1) inductive steps.

For part (c), note that ζ0 > k since ζ0 = ζ +O(ǫ0), and ζ > k by (19) and that ǫ0 can be
chosen sufficiently small. By Lemma 7 and by the union bound, we have that a.a.s. for all
0 ≤ t ≤ τ1(σ),

θ̂t = −1 + (k − 1)(r − 1)ψ(ζt) +O(n−1/2 log n).

By Lemma 7 and part (b), and by taking the Taylor expansion of ψ(x) at x = ζ0, we have

θ̂t = −1 + (k − 1)(r − 1)(ψ(ζ0) + Θ(t/n)) +O(n−1/2 log n) = θ̂0 + Θ(t/n) +O(n−1/2 log n),

for all log2 n ≤ t ≤ τ1(σ). The case t < log2 n easily follows from (24) by noting that
O(log2 n/n) is absorbed by O(n−1/2 logn).
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Corollary 13. A.a.s. for all 0 ≤ t ≤ τ1(σ), θ̂t ≥ 2θ̂0.

Proof. By Lemma 12(c), for all t ≤ n1/2 log2 n, we have θ̂t = θ̂0 + O(t/n + n−1/2 logn) =

θ̂0 + O(n−1/2 log2 n). By (23) and (22), θ̂0 < 0 and |θ̂0| = Ω(n−1/4). It follows then that

θ̂t ≥ 2θ̂0 for all t ≤ n1/2 log2 n. By Lemma 12(c), there is a constant C > 0 such that a.a.s.

θ̂t ≥ θ̂0 + Ct/n ≥ 2θ̂0 for all n1/2 log2 n < t ≤ τ1(σ).

Define t0(K) = Kn
√
ξ′, where K > 0 is a large constant. Note that ξ′ = o(1) implies

t0(K) = o(n). The following corollary states when θ̂t becomes positive (recall that θ̂0 < 0).

Corollary 14. Assume that K > 0 is a sufficiently large constant. A.a.s. there are
constants C1, C2 > 0 such that for every t0(K) ≤ t ≤ τ1(σ), C1t/n ≤ θ̂t ≤ C2t/n.

Proof. By Lemma 12(c) and (22), and noting that n−1/2 log n = o(t0(K)/n) by (22), a.a.s.

for any t0(K) ≤ t ≤ τ1(σ), θ̂t ≥ −C√ξ′ + Y t/n for some constants C, Y > 0. Choosing

K ≥ 2C/Y we have that a.a.s. θ̂t ≥ (Y/2)t/n for all t0(K) ≤ t ≤ τ1(σ). The upper bound

of θ̂t follows by (24) and the fact that θ̂0 < 0.

This immediately yields the following corollary.

Corollary 15. For any constant ǫ > 0, a.a.s. θ̂t = Ω(ǫ) for all ǫn ≤ t ≤ τ1(σ).

4.6 Relating θ̂t to θt

Recall that G0, G1, . . . is the process produced by SLOW-STRIP. To analyse θt using θ̂t
in Section 4.5, let N̂ and D̂ in the definition of M0 in Section 4.5 take the same values as
the corresponding parameters in G0. Therefore, ζ̂0 = ζ0 and θ̂0 = θ0. By Lemma 11, a.a.s.
θ0 = −Θ(

√
ξ′) and ζ0 − ζ = Θ(

√
ξ′). This verifies the assumption (22).

Corresponding to τ1(σ), define

τ2(σ) = max{t : Nt ≥ σn}. (26)

The following lemma allows us to establish a relation between θt and θ̂t.

Lemma 16. There is a constant C > 0: for any log2 n ≤ t ≤ τ2(σ), a.a.s. the number of
occurrences of H by step t is at least Ct.

Proof. Let ht denote the number of occurrences of H by step t. By our definition of τ2(σ),
the number of heavy vertices in every step is at least σn and thus, there is a constant σ′ > 0
(depending on σ) such that for every point that was u.a.r. chosen, the probability that it
was contained in a heavy vertex is at least σ′. In every step, there are r− 1 ≥ 1 such points
being chosen. Hence, for all t ≤ τ2(σ), we always have

E(ht | Gt−1) ≥ ht−1 + σ′.

Our claim follows by applying Lemma 8 to (−ht) (with an = −σ′, cn = r − 1 and j =
(σ′/2)t).

Noting that at most r − 1 occurrences of H can take place in a single step, this imme-
diately gives the following corollary.
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Corollary 17. There is a constant 0 < C < 1 such that a.a.s. for all log2 n ≤ t ≤ τ2(σ),

θt = θ̂t′ for some Ct < t′ ≤ (r − 1)t.

Another corollary follows easily from Corollaries 14 and 17 (recalling that n
√
ξ′ = Ω(n3/4)

by (5)).

Corollary 18. Let K > 0 be a sufficiently large constant. There exist two constants
C1, C2 > 0 such that a.a.s. for all Kn

√
ξ′ ≤ t ≤ τ2(σ), C1t/n ≤ θt ≤ C2t/n.

4.7 Specifying σ

The key lemma we use to specify the constant σ is the following.

Lemma 19. Assume c = cr,k+o(1) and consider the parallel k-stripping processH0, H1, H2, . . .
with H0 ∈ APr(n, cn). There is a constant σ0 > 0 such that a.a.s. if Hi has at most σ0n
vertices for some i > 0 then every component of Hi+1 contains O(logn) vertices.

We will use the following two lemmas to prove Lemma 19. The first lemma is from [18,
Lemma 7].

Lemma 20. Assume c < cr,k − ǫ0 for some constant ǫ0 > 0 and consider the parallel
k-stripping process H0, H1, H2, . . . with H0 ∈ APr(n, cn). Then, there are positive constants
(γi)

∞
i=0 with limi→∞ γi = 0 such that, a.a.s. for every fixed i ≥ 0, |Hi| ∼ γin.

Let ρi(j) denotes the proportion of vertices with degree j in Hi. Part (a) of the following
lemma is from [1, Section 8], whereas part (b) is from [19, Theorem 1].

Lemma 21. Assume c < cr,k − ǫ0 for some constant ǫ0 > 0 and H0 ∈ APr(n, cn).

(a) For any constant K > 0, there is a constant I > 0 such that for all i ≥ I,

ρi(1) > K
∑

j≥2

(
(k − 1)j(j − 1) − j

)
ρi(j). (27)

(b) A.a.s. a random hypergraph with degree sequence satisfying (27) for some constant
K > 1 has the property that each component has size O(logn).

Note that Lemmas 20 and 21 were stated for Hr(n, r!c/n
r−1) in the original papers.

However, the proofs use the configuration model, which is the AP-model conditioned to
“typical” degree sequences. Hence, these results also hold a.a.s. for APr(n, cn).

Proof of Lemma 19. Fix a small ǫ0 > 0 and let c′′ = cr,k − ǫ0. Couple H ′′
0 ⊆ H0 in the same

way as described in Section 4.2 such that H ′′
0 ∈ APr(n, c

′′n); i.e. we generate H ′′
0 by removing

u.a.r. (c− c′′)n r-tuples in H0. Let E denote this set of r-tuples. Applying Lemma 21 to H ′′
0 ,

there is a sufficiently large constant I such that (27) is a.a.s. satisfied with K = 2. Let (γi)
be the sequence in Lemma 20 for (H ′′

i ), and let σ0 := γI/2.
Consider the parallel stripping process H0, H1, . . .. Let i − 1 denote the first iteration

after which there are at most σ0n vertices remaining, if the process has not terminated by
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then. Define i to be n if no such iteration exists. Note that i is not (necessarily) a.a.s.
bounded by a constant, since we have c = cr,k + o(1).

Let Ĥ be the random configuration obtained by removing all the r-tuples in E from Hi−1.
Since |E| = (c− c′′)n, the number of r-tuples removed is at most (c− c′′)n = O(ǫ0n), and so
the number of new light vertices created by the removal of the r-tuples in E is O(ǫ0n). Let

Ĥ ′ be the graph obtained from Ĥ by removing all light vertices in Ĥ . Then, Hi and Ĥ ′ differ
by at most O(ǫ0n) r-tuples. Moreover, as we have discussed before, Ĥ ′ would have occurred

in the parallel stripping process starting with H ′′
0 , i.e. there is some j such that H ′′

j = Ĥ ′.

Since H ′′
j = Ĥ ′ ⊆ Hi−1, we have |H ′′

j | ≤ σ0n. Hence, we must have j ≥ I, since σ0 = γI/2
by definition and |H ′′

I | ∼ γIn by Lemma 20.

By Lemma 21(a) and the choice of I, a.a.s. H ′′
j = Ĥ ′ satisfies (27) with K = 2. But Hi

and H ′′
j = Ĥ ′ differ by only O(ǫ0n) r-tuples as we discussed before. It follows immediately

that the degree sequence of Hi will satisfy (27) with K = 3/2 as long as we choose ǫ0 > 0
sufficiently small. By Lemma 21(b), a.a.s. every component in Hi has size O(logn).

In the rest of the paper, we choose σ to be the constant that satisfies Lemma 19 and this
fixes the definitions of τ1(σ) in Section 4.5 and τ2(σ) in Section 4.6.

Recall the definition ofG0 in Section 4.2. Let Ĝ0, Ĝ1, Ĝ2 . . . denote the parallel k-stripping
process with Ĝ0 = G0. With a slight abuse of notation, we use (Si) to denote the set of

light vertices associated with (Ĝi); i.e. Si = V (Ĝi) \ V (Ĝi+1). Recall that L(Ĝi) is the total

degree of Si in Ĝi.
Define

Iσ := max{i : |Ĝi| ≥ σn}. (28)

Then, |ĜIσ+1| < σn and so by Lemma 19, every component of ĜIσ+2 has size O(logn).

It is easy to bound s(ĜIσ+2) by O(log log n) (see the end of Section 4.8). Thus, in order
to bound s(G0), it is sufficient to bound Iσ. We often need to relate an iteration in the
parallel stripping process to the step in SLOW-STRIP corresponding to the beginning of
that iteration (recall that the process generated by SLOW-STRIP is denoted by G0, G1, . . .
and Lt denotes the degree of light vertices in Gt). To do so, we define t(i) to be the step in
SLOW-STRIP that the first vertex removed at the i-th iteration of the parallel process is
pushed to the front of the queue Q. Therefore,

L(Ĝi) = Lt(i) for each i ≥ 0. (29)

In particular, L(Ĝ0) = L0.

4.8 Subcritical: proof of Theorem 3(a)

Now let ǫ > 0 be an arbitrary constant and we assume that c ≤ cr,k − n−1/2+ǫ. Without
loss of generality, we may assume that ǫ is sufficiently small. Let 0 < ς < 1 be a sufficiently
small constant to be specified later; define c′ = cr,k+ςξ; this fixes c′ introduced in Section 4.2.
Clearly, all conditions in (5) are satisfied. By Lemma 11, a.a.s. θ0 = −Θ(

√
ςξ) and ζ0 =

ζ + Θ(
√
ςξ).
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Recall that L0 denotes the total degree of the light vertices in G0. By Lemma 4, a.a.s.
L0 = Θ(nξ). Recalling (7) and (10), our goal in this section is to bound s(G0).

Lemma 22. Suppose ς > 0 is sufficiently small. There is a constant C > 0 and an integer
i < C/

√
ξ such that a.a.s. t(i) = Θ(n

√
ξ), θt(i) = Θ(

√
ξ) and Lt(i) = Θ(nξ).

Proof. We have θ0 ≥ −Y2
√
ςξ for some constant Y2 > 0 (note that Y2 is independent of ς),

since ξ′ = c′ − cr,k = ςξ. By Corollary 18, there is a constant Y3 > 0 (depending on Y2 and
the constant in Corollary 18, but not on ς) such that a.a.s. θt0 ≥

√
ςξ for t0 := Y3n

√
ςξ.

By (14), if Lt > 0,

E(Lt+1 − Lt | Ft) =

(
1 − Lt

Bt

)
θt − r

Lt

Bt
+O(n−1). (30)

By Corollary 13 and 17, a.a.s. θt ≥ −2Y2
√
ςξ for all 0 ≤ t ≤ t0. Hence, (1 − Lt/Bt)θt ≥

−2Y2
√
ςξ. Note that the number of vertices in G0 is a.a.s. (α + o(1))n by the construction

of G0 and by Theorem 5. This is true for all Gt where 0 ≤ t ≤ t0 as t0 = o(n) by definition.
If Lt < x := (αY2/r)n

√
ςξ, then rLt/Bt ≤ Y2

√
ςξ since a.a.s. Bt ≥ k(α + o(1))n ≥ αn. So

for all 0 ≤ t ≤ t0 with Lt > 0 and Lt < x,

E(Lt+1 | Ft) ≥ Lt − 3Y2
√
ςξ.

Applying Lemma 8 to (−Lt) (with an = 3Y2
√
ςξ, cn = kr and j = 3Y2t

√
ςδ), we immediately

have that a.a.s. for all log2 n ≤ t ≤ t0, we have Lt ≥ L0− 6Y2t
√
ςξ. Hence, for all 0 ≤ t ≤ t0,

Lt ≥ L0 − 6Y2t0
√
ςξ = L0 − 6Y2Y3nςξ = Ω(nξ) because L0 = Ω(nξ) and ς can be chosen

sufficiently small (noting that the above inequality holds trivially for t < log2 n). Thus, we
have shown that there is a constant Y4 > 0 such that a.a.s. Lt ≥ Y4nξ for all 0 ≤ t ≤ t0.

Next, we prove that Lt = O(nξ) for all 0 ≤ t ≤ t0, which then will imply that Lt = Θ(nξ)
for all 0 ≤ t ≤ t0. By Lemma 12(c), Corollary 17 and (24), a.a.s. there are constants
Y ′
5 , Y5 > 0: θt ≤ θ0 + Y ′

5t0/n+O(n−1/2 log n) ≤ Y3Y5
√
ςξ for all 0 ≤ t ≤ t0. Then by (14),

E(Lt+1 | Ft) ≤ Lt + Y3Y5
√
ςξ

and thus by Lemma 8, a.a.s. for all log2 n ≤ t ≤ t0, Lt ≤ L0 + 2Y3Y5t0
√
ςξ and therefore,

a.a.s. for all 0 ≤ t ≤ t0, Lt = O(nξ) (the equation holds trivially for t ≤ log2 n).
Let I1 (which will be the integer i in the statement of this lemma) be the minimum

integer that t(I1 + 1) ≥ t0. We have shown that Lt ≥ Y4nξ for all 0 ≤ t ≤ t0. So, the total
degree of vertices in each Si, i ≤ I1, is at least Y4nξ. Thus, for each i ≤ I1, the i-th iteration
of the parallel stripping process is consist of at least (Y4/r)nξ steps of SLOW-STRIP, since
at most r points contained in Si are deleted in every step of SLOW-STRIP. It follows then
that I1 = O(t0/Y4nξ). Hence, I1 = O(1/

√
ξ) as t0 = Y3n

√
ςξ.

We have shown that a.a.s. Lt = Θ(nξ) for all 0 ≤ t ≤ t0. We also have t(I1) < t0 by our

definition of I1. So, a.a.s. L(ĜI1) = Lt(I1) = Θ(nξ).
We have shown that θt0 = Θ(

√
ξ). By the definition of I1, t(I1) ≤ t0 ≤ t(I1 + 1). Since

a.a.s. L(ĜI1) = Lt(I1) = Θ(nξ), by (24), we have θt(I1) = θt0 + O(L(ĜI1)/n) = Θ(
√
ξ) as

ξ = o(
√
ξ).

18



Finally, t(I1) ≤ t0 = Y3n
√
ςξ by our definition of I1. We also have t(I1) ≥ t0 − L(ĜI1) =

Θ(t0) since L(ĜI1) = Lt(I1) = O(nξ) = o(t0). This shows that t(I1) = Θ(n
√
ξ) as required

and this completes our proof of the lemma by letting i = I1 in the statement of the lemma.

Let I1 be the integer specified in Lemma 22; so a.a.s. θt(I1) = Θ(
√
ξ), Lt(I1) = Θ(nξ) and

I1 = O(1/
√
ξ).

Lemma 23. Suppose ǫ > 0 is sufficiently small. There are constants Y1, Y2 > 0 such that
a.a.s. for all t(I1) ≤ t ≤ ǫn, Y1t

2/n ≤ Lt ≤ Y2t
2/n.

Proof. Let t0 = t(I1). We will first prove the upper bound. It certainly holds a.a.s. for t = t0,
as a.a.s. t0 = Θ(n

√
ξ), θt0 = Θ(

√
ξ) and Lt0 = Θ(nξ) by Lemma 22. By Lemma 12(c),

Corollary 17 and the fact that a.a.s. θt0 = Θ(
√
ξ), a.a.s. C1t/n ≤ θt ≤ C2t/n for some

constants C1, C2 > 0 for all t0 ≤ t ≤ ǫn. By (30), a.a.s. for every t0 ≤ t ≤ ǫn (noting that
θt > 0 in this range),

E(Lt+1 − Lt | Ft) ≤ θt +O(n−1) ≤ 2C2t

n
.

Then by Lemma 8, for all t0 + log2 n ≤ t ≤ ǫn, a.a.s. Lt ≤ Lt0 + 4C2t(t− t0)/n ≤ Y2t
2/n by

choosing sufficiently large Y2. For all t between t0 and t0+log2 n, Lt = Lt0+O(log2 n) and thus
the upper bound trivially holds for sufficiently large Y2, since Y2t

2/n ≥ Y2t
2
0/n = ω(log2 n).

Next, we prove the lower bound. Clearly, it holds a.a.s. for t0 for some constant Y1 = Y .
Up to step ǫn, at most (r − 1)ǫn heavy vertices can be removed, and the number of heavy
vertices in G0 is (α+ o(1))n, as we have discussed before. Hence, the total degree, Bt, of Gt,
for any t ≤ ǫn, is at least k(α − rǫ)n. Now, by the upper bound we have just shown, a.a.s.
for all t0 ≤ t ≤ ǫn, Lt ≤ Y2t

2/n and hence for all t in this range,

rLt

Bt

≤ rY2t
2/n

k(α− rǫ)n
≤ (rY2ǫ/α)

t

n
< (C1/4)

t

n
<

1

4
,

by choosing ǫ > 0 sufficiently small. Then, by (30), a.a.s. for every t0 ≤ t ≤ ǫn,

E(Lt+1 − Lt | Ft) ≥
3

4
θt − (C1/4)

t

n
+O(n−1) ≥ (C1/3)

t

n
, (31)

as θt ≥ C1t/n for all t in this range.
We split the range t0 ≤ t ≤ ǫn into intervals, each with length t0 (hence the j-th interval

is from (j−1)t0 to jt0) and the last interval is simply the remainder. Similar to our analysis
in Lemma 22, for the j-th interval, the probability that Lt < L(j−1)t0 + (C1/4)((j − 1)t0/n) ·
(t − (j − 1)t0) is at most n−2 for all (j − 1)t0 + log2 n ≤ t ≤ jt0, and we always have
Lt = L(j−1)t0 +O(t− (j − 1)t0) for all (j − 1)t0 ≤ t ≤ (j − 1)t0 + log2 n.

Since t0 = Θ(n
√
ξ), the total number of intervals is O(1/

√
ξ). So, a.a.s. for every interval

j,

L(j−1)t0+d ≥ L(j−1)t0 +
C1(j − 1)

4n
t0d, if d ≥ log2 n

L(j−1)t0+d = L(j−1)t0 +O(d), if d < log2 n.
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It is easy to verify that by choosing Y ′ = min{Y, C1/12}, a.a.s. Lt ≥ Y ′t2/n for all t0 ≤ t ≤ ǫn
except for the first log2 n numbers in each interval. But then the inequality must hold by
choosing Y1 = Y ′/2 since t20/n is ω(log2 n). This completes the proof for the lower bound.

Suppose ǫ > 0 is chosen to satisfy Lemma 23. Define

I2 = max{i : t(I) ≤ ǫn}. (32)

In the following lemma, we bound I2.

Lemma 24. A.a.s. I2 = O(ξ−1/2 log(1/ξ)).

Proof. We have shown in (31) that a.a.s. for all t0 ≤ t ≤ t(I2), where t0 = t(I1),

E(Lt+1 − Lt | Ft) ≥ C1t0/n ≥ C2

√
ξ,

for some constant C1, C2 > 0. Recalling (29) and by Lemma 8, this immediately gives that
a.a.s.

Lt(i+1) ≥ (1 + (C2/2)
√
ξ)Lt(i), for all I1 ≤ i ≤ I2 − 1.

Since Lt(I1) = Θ(nξ) by Lemma 22 and Lt(I2) = O(n), it follows immediately that I2 − I1 =
O(ξ−1/2 log(1/ξ)). The lemma follows as I1 = O(1/

√
ξ) by Lemma 22.

Recall from (26) that τ2(σ) is the last step after which Nt ≥ σn (c.f. τ1(σ) for the sequence
(Mt), defined in Section 4.5).

Lemma 25. There is a constant ǫ0 > 0 such that a.a.s. Lt ≥ ǫ0n for all t(I2) ≤ t ≤ τ2(σ).

Proof. We first prove that a.a.s. there is t1 ≤ t(I2) such that Lt1 = Θ(n). By Lemma (23),
for all t(I1) ≤ t ≤ ǫn,

Y1t
2/n ≤ Lt ≤ Y2t

2/n, (33)

for some constants Y1, Y2 > 0. Let ǫ0 = ǫ/(1 + Y2). Then, ǫ0 < ǫ and so Lǫ0n ≤ Y2ǫ
2
0n. Let

i1 = max{i : t(i) ≤ ǫ0n}. Then, t(i1) ≤ ǫ0n < t(i1 + 1). Moreover t(i1 + 1) ≤ ǫ0n + Lǫ0n ≤
ǫ0n + Y2ǫ

2
0n ≤ ǫ0(1 + Y2)n = ǫn. Let t1 = ǫ0n. Then t1 ≤ t(i1 + 1) ≤ I2 by (32); moreover,

Lt1 satisfies (33). So, Lt1 = Θ(n).
By Corollaries 15 and 18, there is a constant ǫ1 > 0 such that a.a.s. θt ≥ ǫ1 for all

t1 ≤ t ≤ τ2(σ). We may assume ǫ1 < 1. For all t ≤ τ2(σ) we have Bt ≥ kσn.
Let η = min{(Y1/2)ǫ20, (ǫ1kσ/12r)}. Next, we prove a.a.s. for all t1 ≤ t ≤ τ2(σ), Lt ≥ ηn.

For t = t1, this is true since a.a.s. Lt1 ≥ 2ηn by (33). Let At be the event that Lt ≥ 2ηn−kr
and Lt′ < 2ηn for all t ≤ t′ ≤ t + ηn/kr. Since Lt changes by kr in each step, if Lt′ ≤ ηn
for some t1 ≤ t′ ≤ τ2(σ), then At must occur for some t1 ≤ t ≤ t′ − ηn/kr. Next, we
bound the probability of At. We may assume 2ηn− kr ≤ Lt < 2ηn since otherwise At does
not hold. Since Lt changes by kr in each step, we have Lt′ ≤ 3ηn ≤ (ǫ1kσ/4r)n for all
t ≤ t′ ≤ t + ηn/kr. Then, rLt/Bt ≤ ǫ1/4. Then by (14), for all t ≤ t′ ≤ t+ ηn/kr,

E(Lt+1 − Lt | Ft) ≥ ǫ1/2.

By Lemma 8,

Pr(At) ≤ Pr(Lt+ηn/kr < 2ηn | Lt ≥ 2ηn− kr) = o(n−1).
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By the union bound, the probability that At occurs for some t is o(1) and thus, a.a.s. Lt ≥ ηn
for all t1 ≤ t ≤ τ2(σ).

Now we complete the proof of Theorem 3(a). By the definition of Iσ in (28), ĜIσ+1

contains less than σn vertices. By Lemma 19, every component in ĜIσ+2 has O(logn)
vertices. It was proved in [8] that each of such components has stripping number O(log log n)
(the basic idea there is that, a.a.s. every subgraph of APr(n, cn) (for any c = Θ(1)) with
size O(logn) is so sparse that, when the parallel stripping process is applied to it, a positive
proportion of vertices are stripped off in each round, and thus a total of O(log log n) iterations
is sufficient). Hence, a.a.s. s(G0) ≤ Iσ + 2 + O(log log n). By Lemma 25, a.a.s. |Si| =
Ω(Lt(i)) = Ω(n) for every I2 ≤ i ≤ Iσ, and so a.a.s. Iσ − I2 = O(1). By Lemmas 24, a.a.s.

I2 = O(ξ−1/2 log(1/ξ)). Recall that G0 = Ĥτ ′(B) by definition (10). It follows then that a.a.s.

s(Ĥτ ′(B)) = s(G0) = O(ξ−1/2 log(1/ξ) + log log n). Then Theorem 3(a) follows by (7), (8)
and Corollary 1.

4.9 Inside the critical window: proof of Theorem 3(b)

Now we fix a constant ǫ > 0, and consider c such that |c − cr,k| ≤ n−1/2+ǫ. Again, we
may assume that ǫ is sufficiently small. Let c′ = cr,k + n−1/2+2ǫ. By Theorem 1(a), a.a.s.
τ(H ′) = O(n1/4−ǫ log n). Since c′ satisfies all conditions in (5), all lemmas and corollaries in
Sections 4.5 and 4.6 hold. However, we note here that ξ and ξ′ are no longer of the same
order, and so we cannot replace ξ′ by ξ in any asymptotic expression. By Lemma 11 we have
ζ0 = ζ + Θ(n−1/4+ǫ) and θ0 = θ − Θ(n−1/4+ǫ).

Let G0 be as defined in (10). Recall that G0, G1, . . . is the sequence produced by SLOW-
STRIP. Let τ̂ denote the step when SLOW-STRIP terminates. Since c is inside the critical
window cr,k +O(n−1/2+ǫ), whether Gτ is empty or not is not a.a.s. certain.

Let K > 0 be a constant to be determined later; define t1 = Kn3/4+ǫ (i.e. t1 = Kn
√
ξ′).

Lemma 26. Assume K > 0 is sufficiently large and ǫ is sufficiently small. Then, a.a.s.
either τ̂ ≤ t1/2; or there is t ≤ t1 that Lt = Ω(n1/2+2ǫ).

Proof. Since t1 = Kn
√
ξ′, by Corollary 18 , provided K > 0 is sufficiently large, we have

a.a.s. either τ̂ ≤ t1 or C1t/n ≤ θt ≤ C2t/n for some constants C1, C2 > 0 and for all
t1/2 ≤ t ≤ τ2(σ).

Let Y3 > 0 be a constant to be specified later. Define τ3 to be the minimum integer
t ≥ t1/2 such that Lt+1 ≥ Y3n

3/4+ǫ. If no such integer t exists, then define τ3 = n. Define
T1 = min{t1, τ3, τ2(σ)}. Then, for all t1/2 ≤ t ≤ T1, we have Lt < Y3n

3/4+ǫ and Bt ≥ kσn.
Therefore, Lt/Bt ≤ (Y3/kσ)n−1/4+ǫ. Hence 1 −Lt/Bt ≥ 2/3 and rLt/Bt ≤ (rY3/kσ)n−1/4+ǫ.
By (30), for all t1/2 ≤ t ≤ T1,

E(Lt+1 − Lt | Ft) ≥ (2C1/3)
t

n
− (rY3/kσ)n−1/4+ǫ +O(n−1) ≥ (C1K/4)n−1/4+ǫ,

by choosing Y3 < kσC1K/12r, since t ≥ t1/2 = (K/2)n3/4+ǫ.
We may assume that τ3 ≥ t1 since otherwise there is t1/2 ≤ t ≤ t1 such that Lt ≥ Y3n

3/4+ǫ

and so claim of the lemma is verified. By the definition of τ2(σ), we have τ(σ) > t1 always,
as τ2(σ) is linear in n. Hence, we may assume that T1 = t1.
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Applying Lemma 8 to (Lt)
t1
t=t1/2

(with an = −(C1K/4)n−1/4+ǫ, cn = kr and j = −tan/2),

we have a.a.s. Lt1 ≥ (C1K/8)n−1/4+ǫ(t1/2) = (C1K
2/16)n1/2+2ǫ. This means that a.a.s.

either τ̂ ≤ t1/2, or there is t1/2 ≤ t ≤ t1 such that Lt ≥ Y3n
3/4+ǫ (i.e. τ3 ≥ t1), or

Lt1 = Ω(n1/2+2ǫ). In each case, the claim of the lemma is verified (as Y3n
3/4+ǫ > n1/2+2ǫ by

taking ǫ < 1/4).

We may assume that there is a t1/2 ≤ t0 ≤ t1 such that Lt0 ≥ n1/2+2ǫ, since otherwise
τ̂ ≤ t1 by Lemma 26 and so s(G0) ≤ t1 = O(n3/4+ǫ). Next, we prove that the parallel
stripping process does not take long from Gt0 .

Lemma 27. Assume Lt0 ≥ n1/2+2ǫ for some t1/2 ≤ t0 ≤ t1. Then, a.a.s. s(Gt0) = O(n1/2).

Proof. Since t0 ≥ (K/2)n3/4+ǫ = (K/2)n
√
ξ′, by Corollary 18, provided that K > 0 is

sufficiently large, we have θt ≥ 2Ct/n ≥ CKn−1/4+ǫ for all t0 ≤ t ≤ τ2(σ), for some constant
C > 0. We will prove that a.a.s. there is no t0 ≤ t ≤ τ2(σ) such that Lt < n1/2. Let At be the
event that Lt ≥ 2n1/2−kr, and Lj < 2n1/2 for all t ≤ j ≤ t+n1/2/kr. Since |Lt+1−Lt| ≤ kr
always, Lt0 ≥ n1/2+2ǫ, if i is the first step after t0 such that Li < n1/2, then, there must be
some i′ ≤ i − n1/2/kr such that Ai′ occurs. Hence, it is sufficient to prove that a.a.s. there
is no t0 − n1/2/kr ≤ i ≤ τ2(σ) − n1/2/kr for which Ai occurs.

Since Lt0 ≥ n1/2+2ǫ, Ai cannot occur for any t0 − n1/2/kr ≤ i ≤ t0 by definition of Ai.
Next, for each t0 < i ≤ τ2(σ) − n1/2/kr, we bound the probability of Ai. We may assume
that 2n1/2 − kr ≤ Li < 2n1/2 since otherwise, Ai does not hold by definition. Let T be the
minimum integer such that T > i and LT+1 ≥ 2n1/2. Define T = n if no such integer exists.
Now, for all i ≤ t ≤ T , Lt < 2n1/2 and so Lt/Bt = o(n−1/4+ǫ). By (30) and the fact that
θt ≥ CKn−1/4+ǫ for all t0 ≤ i ≤ t ≤ τ2(σ),

E(Lt+1 − Lt | Ft) ≥ (1/2)θt + o(n−1/4+ǫ) ≥ (CK/2)n−1/4+ǫ. (34)

Now,
Pr(Ai) ≤ Pr(T ≥ i+ n1/2/kr) = Pr(Lt < 2n1/2, ∀i ≤ t ≤ i + n1/2/kr).

However, since Li ≥ n1/2 by assumption, by applying Lemma 8 to (34), with probability
1 − o(n−1), we must have Li+n1/2/kr ≥ Li + Ω(n1/4+ǫ) > 2n1/2. Hence, Pr(Ai) = o(n−1)

for every i. This confirms that a.a.s. Lt ≥ n1/2 for all t0 ≤ t ≤ τ2(σ). Therefore, a.a.s.
the total degree of the configuration decreases by at least n1/2 in each iteration of the
parallel stripping process applied to Gt0 , until there are at most σn vertices remaining. Now
s(Gt0) = O(n/n1/2 + logn) = O(n1/2) by Lemma 19.

Now we complete the proof of Theorem 3(b). If SLOW-STRIP terminates by step t1,
then s(G0) = O(n3/4+ǫ). Hence, s(H) ≤ τ ′(B) + 1 + s(G0) = O(n3/4+ǫ) by (7), (10) and (8).
If not, by Lemma 26 we may assume that there is a step t0 ≤ t1 such that Lt0 ≥ n1/2+2ǫ. By
Lemma 27, a.a.s. s(Gt0) = O(n1/2). Hence, a.a.s. s(H) ≤ τ ′(B)+1+ t1 +s(Gt0) = O(n3/4+ǫ).
This implies part (b) of Theorem 3.

5 Bounding the maximum depth

Let H0 ∈ APr(n, cn) where c = cr,k − ξn, and let H0, H1, . . . , denote the parallel stripping
process. For simplicity, we write ξn as nδ (δ may depend on n). Our goal is to show that the
maximum depth of all the non-k-core vertices of APr(n, cn) is a.a.s. nΘ(δ).
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Recall that Si is the set of light vertices in Hi. Let Imax denote the last iteration of
the parallel stripping process; i.e. Imax = s(H0). Let v be a vertex in SImax−1. Then every
stripping sequence ending with v must contain at least one vertex in each Si, 1 ≤ i ≤ Imax−1.
Hence, the depth of v is at least Imax − 1, which is a.a.s. Ω(nδ/2) by Theorem 1(b,c). This
verifies the lower bound in Theorem 4. The main challenge of this section is to prove the
upper bound.

Let Ψ = v1v2 · · · be a stripping sequence that contains all non-k-core vertices of a hy-
pergraph H . Let D(Ψ) be a digraph constructed as follows. The set of vertices in D(Ψ) is
V (H). At the moment vi is removed from the hypergraph H , consider each hyperedge x
that is incident with vi before the removal of vi, add a directed edge u → v to D(Ψ), for
each of the other r − 1 vertices u ∈ x. For any vertex v ∈ H , we define R+

Ψ(v) to be the set
of vertices reachable from v in D(Ψ). Clearly, R+

Ψ(v) forms a stripping sequence ending with
v and so |R+(v)| is an upper bound of the depth of v. We will prove the following stronger
statement than the upper bound in Theorem 4.

Theorem 6. Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed and assume c = cr,k−n−δ where nδ ≥ log7 n
(here δ can depend on n). Then, a.a.s. there is a stripping sequence Ψ of Hr(n, cn) containing
all non-k-core vertices such that

|R+
Ψ(v)| = nO(δ) for all v ∈ Ψ. (35)

It was shown in [9] that (35) a.a.s. holds if c = cr,k +n−δ. The analysis for the subcritical
case is analogous to the supercritical case. Thus, we summarise the approach in [9] and
sketch a proof for Theorem 6 by pointing out how the arguments in [9] should be adapted.

Let H ∈ APr(n, cn) and run SLOW-STRIP on H . This produces a stripping sequence
Ψ. Let D = D(Ψ) be the digraph associated with Ψ. This defines R+

Ψ(v) for any non-k-core
vertex v. For simplicity, we drop the subscript Ψ from the notation.

Definition 28. For each 0 ≤ j ≤ Imax − 1, define Sj to be a graph with vertex set Sj and
edge set {f ∩ Sj : f ∈ E(Hj)}.

Take an arbitrary vertex v ∈ Si; set R′
i = R′

i(v) := {v} and for each j = i to 0:

(a) We set Rj = Rj(v) to be the union of the vertex sets of all components of Sj that
contain vertices of R′

j .

(b) We set R′
j−1 to be the set of all vertices v ∈ Sj−1 that are adjacent to ∪j

ℓ=iRℓ.

Define R(v) = ∪i
j=0Rj .

Note that ∪j≤iRj contains all vertices reachable from v and therefore |R+(v)| ≤ ∪j≤i|Rj|.
The definition of Rj(v) makes it easier (compared with |R+(v)|) to bound |Ri|, given |Rj|
(j > i).

5.1 Proof outline for the supercritical case [9, Section 5]

Starting with a vertex v ∈ Si, we explore the hyperedges from v to other vertices in Si and
Si−1, and then onwards; recursively, we will bound |Rj| for each j ≤ i. We need randomness
to allow such analysis; but we can expose v ∈ Si only after we expose all vertices in Sj, j < i
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and their incident hyperedges, and that has killed all the randomness. A solution to this
obstacle is given in [9]. Basically, we will expose all vertices in each Si, 0 ≤ i ≤ Imax − 1,
as well as some degree information. For instance, we need information on the number of
total neighbours Si has in Si−1, etc. This procedure is called EXPOSURE. Then we will
generate uniformly a random configuration that agrees with the exposed information. This
procedure is called EDGE-SELECTION (similar to the configuration model). See [9, Section
5.1] for details. It was proved ([9, Lemma 46]) that EDGE-SELECTION generates the
random configuration with the correct distribution, conditional on the information exposed
in EXPOSURE.

Now, conditional on the set of parameters exposed in EXPOSURE, we can recursively
bound |Ri|, given |Rj|, j > i, as EDGE-SELECTION defines a probability space that is easy
for such analysis. Analysing SLOW-STRIP allows us to prove a.a.s. properties of the set of
parameters exposed in EXPOSURE. This gives [9, Lemma 49(a–i)], where the first three of
these properties have been stated in Lemma 2. We will state the corresponding properties
for the subcritical case in Section 5.2.

We first introduce two lemmas that allow us to focus our analysis on Rj(v) for j such
that the number of vertices in Hj is close to αn. The first lemma is proved in [9, Lemma
15], with c = cr,k +n−δ for some 0 < δ < 1/2; but exactly the same proof gives the following
statement with all c = cr,k + o(1).

Lemma 29. Assume c = cr,k + o(1). Given any constant ǫ > 0, there is a constant
B = B(r, k, ǫ) > 0 such that after B rounds of the parallel stripping process are applied to
APr(n, cn), the number of vertices remaining in HB is (α +O(ǫ))n.

Given a set of vertices A, let N s(A) denote the set of vertices with distance at most s
from A. The following lemma is from [1, Lemma 34].

Lemma 30. Assume s, c > 0 are O(1). A.a.s. for every subset of vertices A in APr(n, cn)
such that A induces a connected subgraph, |N s(A)| = O(|A| + logn).

In the supercritical case, H0, H1, . . . , HImax
is the parallel stripping process with H0 ∈

APr(n, cn), where c ≥ cr,k + n−δ. Fix an ǫ > 0. By Lemma 29, there is a constant B > 0
such that the number of vertices in HB is at most (α + ǫ)n. Assume we have successfully
bounded

∑
B≤j≤i |Rj(v)| for some v ∈ Si; then, by Lemma 30, a.a.s.

|R+(v)| ≤
∑

0≤j≤i

|Rj| = O

(
logn +

∑

B≤j≤i

|Rj|
)
. (36)

Therefore, in order to bound |R+(v)|, it is sufficient to bound |Rj(v)| for every B ≤ j ≤ i.
Let Ei denote the set of r-tuples incident with Si in Hi; i.e. it is the set of hyperedges

to be deleted in the (i + 1)-th iteration. For each v ∈ Si+1, define d−(v) to be the number
points in v that are contained in an r-tuple in Ei. In the case r = 2, d−(v) is simply the
number of neighbours of v in Si in Hi. Naturally, we have d−(v) ≥ 1 for every v ∈ Si+1, since
otherwise, v would not be deleted in the (i+ 1)-th iteration. Define D−(X) =

∑
v∈X d

−(X).
Then, |Rj(v)| ≤ D−(Rj(v)). A major part of the work in [9, Section 5] is to recursively
bound D−(Rj(v)), using the random configuration generated by EDGE-SELECTION, and
a set of a.a.s. properties in [9, Lemma 49], as follows.
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Lemma 31. If all properties in [9, Lemma 49(a–i)] hold then there are constants B =
B(r, k), Z = Z(r, k) > 0 such that for all j ≥ B: If |Sj | ≥ nδ log2 n then:

D−(Rj(v)) ≤ D−(Rj+1(v)) + Z
|Sj|
n

j+1∑

ℓ=i

D−(Rℓ(v)) + log14 n. (37)

Solving this recurrence, together with (36) produces |R+(v)| = nO(δ) for all non-k-core
vertices v.

5.2 Sketch of the proof of Theorem 6

It only remains to prove the upper bound. We may assume that c = cr,k − n−δ for some
δ < 1/2 since for the case that δ ≥ 1/2, the upper bound in the theorem is trivial, as
discussed in the remark below Theorem 6. The approach is the same as in the supercritical
case. The same set of a.a.s. properties (c.f. [9, Lemma 49(a–i)] for the supercritical case)
are exposed in EXPOSURE. Properties in [9, Lemma 49(d–i)] carry to the subcritical case,
as the proof of these properties only requires c = Θ(1). The proof of Lemma 31 depends
mainly on these properties, as well as the restriction that |Si|/n is sufficiently small. Hence,
we will have the same recursive bound as in Lemma 31 for most iterations in the subcritical
case. However, |Si| behaves in a different manner in the subcritical case, which results in a
different argument in solving the recurrence (37). The behaviour of |Si| in the supercritical
case is characterised in Lemma 2 (which is [9, Lemma 49(a–c)]). This changes significantly
in the subcritical case, as below.

Lemma 32. There exist positive constants B, Y1, Y2 dependent only on r, k, and integers
I0 < I1 < B′ as growing functions of n, such that a.a.s. for every B ≤ i < B′:

(a) if i ≤ I0, then (1 − Y1
√

|Si|/n)|Si| ≤ |Si+1| ≤ (1 − Y2
√

|Si|/n)|Si| and |Si| = Ω(n1−δ);

(b) if i ≥ I1, then (1 + Y2
√

|Si|/n)|Si| ≤ |Si+1| ≤ (1 + Y1
√

|Si|/n)|Si| and |Si| = Ω(n1−δ);

(c) I1−I0 = O(nδ/2) and for every I1 ≤ i ≤ I2, (1−Y1n−δ/2)|Si| ≤ |Si+1| ≤ (1+Y1n
−δ/2)|Si|

and |Si| = Θ(n1−δ);

Proof of Lemma 32. The proof of Lemma 12 only requires that |ζ̂0 − ζ | < ǫ for some suf-
ficiently small constant ǫ > 0 (the value of ǫ depends on the gap between ζ and r(k − 1)
in (19)). Fix a small constant ǫ′ > 0. By Lemma 29, there is a sufficiently large constant
B = B(r, k, ǫ′) > 0, such that the number of vertices in HB is at most (α + ǫ′)n. By Theo-
rem 5(b), a.a.s. |ζ(HB) − ζ | = O(ǫ′). Hence, by choosing ǫ′ > 0 sufficiently small (and thus
B sufficiently large), the evolution of θt is well depicted by Lemma 12, when SLOW-STRIP
is applied to HB. This fixes the constant B in the lemma. Comparing with the analysis in
Section 4, now we start our analysis from a configuration, HB, that appears earlier than G0

in SLOW-STRIP applied to H . Thus, all results in Section 4 hold, except for a shift of the
subscript t in all parameters such as θt.

Let Iσ denote the first iteration in the parallel stripping process that the number of
vertices becomes at most σn. By Lemma 25, there is an integer B′ (corresponding to I2 in
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Lemma 25), such that Lt(B′) ≥ ǫn for all t(B′) ≤ t ≤ t(Iσ − 1), provided that ǫ was chosen
sufficiently small. This fixes the integer B′ in the lemma.

By Lemma 22, we can specify two iterations I0 and I1 (corresponding respectively to iter-
ations 0 and I2 in Lemma 22, due to a shift of the subscript) in the parallel stripping process
such that the value of θ(Hi) changes from −Θ(n−δ/2) to Θ(n−δ/2). Moreover, Lemma 22
states that a.a.s. I1 − I0 = O(nδ/2), and both Lt(I0) and Lt(I1) are Θ(n1−δ). This fixes the
integers I0 and I1 in the lemma and verifies the first claim of part (c).

It only remains to prove that |Si| changes in a rate described in parts (a,b,c). This part
of the proof is similar to the approach in [9, Sections 6.2 and 6.3] (θt was denoted by brt
in [9]) so we briefly sketch the idea.

For (b): Consider t(i) ≤ t ≤ t(i + 1) for some I1 ≤ i ≤ B′. By Lemma 23 and
Corollary 18, we may assume that Lt = Θ(t2/n) and θt = Θ(t/n). Thus, we may assume
that θt = Θ(

√
Lt/n) for all t. Hence, by (30)

E(Lt+1 − Lt | Ft) = Θ(
√
Lt/n) +O

(
Lt

n

)
,

which is Θ(
√
Lt/n) as long as Lt/n bounded by some sufficiently small constant ǫ1 > 0.

Then, by Lemma 8 we obtain the desired recursion in part (b), with |Si| replaced by Lt(i),
until Lt(i) reaches ǫ1n. We may choose B′ appropriately to ensure that a.a.s. Lt(B′) < ǫ1n
(e.g. choosing B′ to be the last step in the parallel stripping process after iteration I1, such
that the total degree of the light vertices is less than ǫ1n). It is easy to show that a.a.s.
|Si| = Θ(|Lt(i)|) for every i (e.g. see [9, eq. (98)]), and immediately part (b) follows.

For (a): The analysis in Section 4 only covers iterations in parts (b) and (c), as we started
our analysis from iterations close to I0 by the choice of G0. However, the evolution of Lt(i)

for B ≤ i ≤ I0 is “symmetric” to iterations from I1 to B′. By Lemma 12, θt increases with
a linear rate during all steps t(B) ≤ t ≤ t(B′). Then Lt and θt for t(B) ≤ t ≤ t(I0) can
be analysed in the same way as in Lemma 23, except that Lt decreases with a certain rate
(rather than increases), due to the fact that θt is negative for t(B) ≤ t ≤ t(I0).

For (c): Between iterations I0 and I1, we have in the proof of Lemma 22 that θt =
O(n−δ/2) and Lt = Ω(n1−δ). Similar to the argument in part (b), part (c) follows by Lemma 8.

In the subcritical case, a.a.s. the parallel stripping process (and SLOW-STRIP) termi-
nates with an empty graph. Hence, a.a.s. every vertex is a non-k-core vertex. Let Imax

denote the last iteration of the parallel stripping process. By Theorem 3(a), we may assume
that Imax = O(nδ/2 logn).

Let B and B′ be integers in Lemma 32. We first prove that a.a.s. for every v ∈ APr(n, cn),
|R+(v) ∩ HB′| = O(logn). Define Rj(v) as in Definition 28. We will actually show that
∪j≥B′Rj(v) ⊇ R+(v) ∩ HB′ contains O(logn) vertices. We may assume that v ∈ HB′ since
otherwise ∪j≥B′Rj(v) = ∅. By Lemma 25, a.a.s. for all B′ ≤ i ≤ Iσ, the total degree of
Hi decreases by Ω(n) in each iteration of the parallel stripping process. Therefore, a.a.s.
Iσ −B′ = O(1). By Lemma 19, every component in HIσ+2 has size O(logn). It follows then
that |∪j≥Iσ+2Rj(v)| = O(logn). Now by Lemma 30, |∪j≥B′Rj(v)| ≤ C log n for some constant
C > 0, since all vertices in ∪j≥B′Rj(v) are of distance O(1) from ∪j≥Iσ+2Rj(v) ⊆ HIσ+2.
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This allows us to focus on bounding Rj(v) for j ≤ B′. The same proof of Lemma 31
yields the same bound for D−(Rj(v)), as below.

D−(Rj(v)) ≤ D−(Rj+1(v)) + Z
|Sj|
n

j+1∑

ℓ=i

D−(Rℓ(v)) + log14 n, for all B ≤ j ≤ B′. (38)

Moreover, we have shown that | ∪j≥B′ Rj(v)| ≤ C log n.
Let i be the integer that v ∈ Si. Next, we will recursively define rj such that

D−(Ri−j(v)) ≤ rj ∀0 ≤ j ≤ i−B.

This approach is similar to the work in [9, Section 5.5]. Note that (44) holds only for j ≤ B′,
and thus, we need to specify rj differently depending on whether i ≤ B′ or i > B′. To cope
with that, define

j0 = max{0, i−B′} (39)

rj = n2δ ∀0 ≤ j ≤ j0. (40)

We first confirm that D−(Ri−j(v)) ≤ rj for all 0 ≤ j ≤ j0. It is easy to show that a.a.s. the
maximum degree of the original configuration H ∈ APr(n, cn) is O(logn) (see, e.g. the proof
of [9, Lemma 49(i)]). If i ≤ B′ then j0 = 0, and so D−(Ri(v)) = O(logn), which is less than
r0. If i > B′, then | ∪j≥B′ Rj(v)| ≤ C log n and so

j0∑

j=0

D−(Ri−j(v)) = O

(
log n

∑

j≥B′

|Rj(v)|
)

= O(log2 n) ≤ rj. (41)

Now, we have verified that D−(Ri−j(v)) ≤ rj for all 0 ≤ j ≤ j0. Define

rj = rj−1 + Z
|Si−j|
n

j−1∑

i=0

ri + nδ, ∀j0 + 1 ≤ j ≤ i−B. (42)

Inductively, we prove that D−(Ri−j(v)) ≤ rj for all j0 ≤ j ≤ i − B. We have proved the
base case. Assume it holds for j − 1. Then, for j, by (44) and induction,

D−(Ri−j(v)) ≤ D−(Ri−j+1(v)) + Z
|Si−j|
n

j−1∑

ℓ=0

D−(Ri−ℓ(v)) + log14 n

≤ rj−1 + Z
|Si−j|
n

j−1∑

ℓ=j0

rℓ + Z
|Si−j|
n

j0−1∑

ℓ=0

D−(Ri−ℓ(v)) + log14 n ≤ rj ,

by noting that Z
|Si−j |

n

∑j0−1
ℓ=0 D−(Ri−ℓ(v)) + log14 n = O(log14 n) ≤ n2δ by (41).

Now, rj bounds D−(Ri−j) ≥ |Ri−j|. It is convenient to define

tj =
∑

j0≤ℓ≤j

rj .
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Then, again by (41),

| ∪j≥B Rj(v)| ≤
i−B∑

j=0

D−(Ri−j(v)) =

i−B∑

j=j0

D−(Ri−j(v)) +

j0−1∑

j=0

D−(Ri−j(v)) ≤ ti−B +O(log2 n).

(43)
Noting that rj = tj − tr−1, (42) yields the following recurrence for tj:

tj − tj−1 = tj−1 − tj−2 + Z
|Si−j|
n

tj−1 + n2δ, ∀j ≥ j0 + 1, (44)

where tj0 = rj0 = n2δ and tj0−1 = 0. Same as in [9], we can find a sequence (aj , bj)j≥j0 such
that aj0 = bj0 = 1, bj ≤ 1 and aj ≤ 1 +D

√
|Si−j|/n for some constant D > 0 such that

tj − ajtj−1 = bj(tj−1 − aj−1tj−2) + n2δ, ∀j ≥ j0 + 1. (45)

See [9, eq. (64) and (65)] for the detailed construction of the sequence (aj, bj).
Let cj = tj − ajtj−1. Then (44) becomes

cj = bjcj−1 + n2δ ≤ cj−1 + n2δ ≤ c0 + jn2δ = r0 + jn2δ.

Since r0 = n2δ and j ≤ Imax = O(nδ/2 log n), we have

tj − ajtj−1 ≤ U := n3δ, ∀j ≥ j0 + 1. (46)

So far we have deduced a recurrence for tj , which is the same as in [9, eq. (66)]. The bound
on tj depends on the sequence (aj), which is a function of |Sj|/n. Since the evolution of |Sj|
is different in the subcritical case (comparing Lemma 32 with Lemma 2), the analysis is a
little different. Our eventual goal is to bound ti−B by nO(δ) by recursively bounding each tj ,
j ≤ i − B. We will break the analysis into three different stages and bound ti−I1 , ti−I0 and
ti−B in turn, where I0 and I1 are the integers stated in Lemma 32.

Stage 1: bounding ti−I1. We may assume that i > I1; otherwise we may skip this stage.
Recursively applying (46) for all j0 + 1 ≤ j < i− I1, we have

ti−I1 ≤ U

(
1 +

i−I1∑

h=j0+2

i−I1∏

j=h

aj

)
+ tj0

i−I1∏

j=j0+1

aj. (47)

Our goal is to bound ti−I1 by nO(δ). We first show that
∏i−I1

j=j0+1 aj = nO(δ) (this part of the
analysis is similar to the work in [9]; see [9, eq. (69)–(70)]).

Since aj ≤ 1 +D
√
|Si−j|/n for each j, we have

i−I1∏

j=j0+1

aj ≤ exp

(
D

i−I1∑

j=j0+1

√
|Si−j|
n

)
= exp

(
D

i−j0−1∑

j=I1

√
|Sj|
n

)
≤ exp

(
D

B′−1∑

j=I1

√
|Sj|
n

)
,

(48)
where the last inequality above holds by the definition of j0. By Lemma 32(b),

|SB′ | ≥ |SI1|
B′−1∏

j=I1

(
1 + Y2

√
|Sj|
n

)
≥ |SI1| exp

(
Y3

B′−1∑

j=I1

√
|Sj|
n

)
,
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for some constant Y3 > 0, as |Sj|/n is small for every j in this range. Again, by Lemma 32(b),
|SI1| ≥ C1n

1−δ for some constant C1 > 0. This implies that, using |SB′| ≤ n,

exp

(
Y3

B′−1∑

j=I1

√
|Sj|
n

)
≤ |SB′ |

|SI1|
≤ nδ

C1
.

Substituting this into (48), we have

i−I1∏

j=j0+1

aj ≤
(
nδ

C1

)D/Y3

= nO(δ).

Now (47) gives

ti−I1 = O

(
UImax

i−I1∏

j=j0+1

aj

)
+ tj0

i−I1∏

j=j0+1

aj = nO(δ). (49)

Stage 2: bounding ti−I0 . Using the same recursion (46) for j such that I0 ≤ i − j < I1,
we have

ti−I0 ≤ U

(
1 +

i−I0∑

h=i−I1+2

i−I0∏

j=h

aj

)
+ ti−I1

i−I0∏

j=i−I1+1

aj ≤ (UImax + ti−I1)

i−I0∏

j=i−I1+1

aj . (50)

Same as before, we have

i−I0∏

j=i−I1+1

aj ≤ exp

(
D

i−I0∑

j=i−I1+1

√
|Si−j|
n

)
= exp

(
D

I1−1∑

j=I0

√
|Sj|
n

)
.

By Lemma 32(c), there are constants C2, C3 > 0 such that |Sj|/n ≤ C2n
−δ for all I0 ≤ j ≤

I1 − 1 and I1 − I0 ≤ C3n
δ/2. This implies that

exp

(
D

I1−1∑

j=I0

√
|Sj|
n

)
≤ exp(DC3

√
C2),

and thus,
∏i−I0

j=i−I1+1 aj = O(1). This together with (50) and (49) implies

ti−I0 = nO(δ). (51)

Stage 3: bounding ti−B. Using (46) for j such that B ≤ i− j < I0, we have

ti−B ≤ U

(
1 +

i−B∑

h=i−I0+2

i−B∏

j=h

aj

)
+ ti−I0

i−B∏

j=i−I0+1

aj ≤ (UImax + ti−I0)

i−B∏

j=i−I0+1

aj. (52)

By Lemma 32(a),

|SI0| ≤ |SB|
I0−1∏

j=B

(
1 − Y2

√
|Sj|
n

)
≤ |SB| exp

(
−Y2

I0−1∑

j=B

√
|Sj|
n

)
.
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By Lemma 32(a), |SI0| ≥ C4n
1−δ for some constant C4 > 0. This implies that, using

|SB| ≤ n,

exp

(
Y2

I0−1∑

j=B

√
|Sj|
n

)
≤ |SB|

|SI0|
≤ nδ

C4

.

This gives
i−B∏

j=i−I0+1

aj ≤ exp

(
D

I0−1∑

j=B

√
|Sj|
n

)
≤
(
nδ

C4

)D/Y2

= nO(δ).

This together with (51) and (52) yields

ti−B = nO(δ). (53)

Now, we have shown, by (43), that
∑

j≥B |Rj(v)| ≤ ti−B+O(log2 n) = nO(δ). It follows im-

mediately that
∑

j≥0 |Rj(v)| = nO(δ) by Lemma 30. Hence, noting that |R+(v)| ≤ ∪j≥0|Rj|,
we have shown that a.a.s. |R+(v)| = nO(δ) for every v ∈ APr(n, cn). This proves Theorem 6
and therefore Theorem 4, by Corollary 1.
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