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Abstract
Finding inclusion-minimal hitting sets for a given collection of sets is a fundamental combinatorial

problem with applications in domains as diverse as Boolean algebra, computational biology, and data
mining. Much of the algorithmic literature focuses on the problem of recognizing the collection of minimal
hitting sets; however, in many of the applications, it is more important to generate these hitting sets. We
survey twenty algorithms from across a variety of domains, considering their history, classification, useful
features, and computational performance on a variety of synthetic and real-world inputs. We also provide
a suite of implementations of these algorithms with a ready-to-use, platform-agnostic interface based on
Docker containers and the AlgoRun framework, so that interested computational scientists can easily
perform similar tests with inputs from their own research areas on their own computers or through a
convenient Web interface.

1 Introduction
Fix a family S of sets S1, S2, . . . . A hitting set T of S is a set which intersects each of the sets Si; T is a
minimal hitting set (hereafter “MHS”) if no proper subset of T is a hitting set of S.

The problem of generating the collection of MHSes for a given set family is of interest in a wide variety
of domains, and it has been explicitly studied (under a variety of names) in the contexts of combinatorics
(Section 2.1, [1]), Boolean algebra (Section 2.2, [2, 3, 4]), fault diagnosis (Section 2.3, [5, 6, 7, 8, 9, 10, 11]),
data mining (Section 2.5, [12, 13, 14, 15]), and computational biology (Section 2.4, [16, 17, 18, 19, 20, 21]),
among others. While some interesting results have been obtained for the associated decision problem, the
computational complexity of this problem is currently unknown. Nevertheless, there is an extensive literature
of algorithms to generate minimal hitting sets.

In this paper, we survey the state of the art of algorithms for enumerating MHSes, with particular
attention dedicated to publicly-available software implementations and their performance on problems derived
from various applied domains. We begin in Section 2 with discussion of the cognate problems that emerge in
several applied domains, including explanations of how each can be translated back to our MHS generation
problem. In Section 3, we survey what is known about the complexity of the problem, both in general and in
specialized tractable cases.

The bulk of the paper is dedicated in Section 4 to surveying the history of some twenty algorithms for
enumerating MHSes. For each algorithm, we discuss its structure, relevant properties, any known bounds on
its complexity, and information about available software implementations.

In Section 5, we present the results of extensive benchmarks run on the available implementations of these
algorithms, focusing on running time for large examples derived from specific applications. Additionally, we
provide these implementations in a unified, ready-to-use framework of Docker images based on the AlgoRun
framework, which are available to download or to use through a Web interface. Interested readers and
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computational scientists may use these containers to try out the algorithms on their own input data and
incorporate them into processing pipelines.

We conclude in Section 6 with an overview of our results and the state of the art in MHS generation
algorithms.

2 Cognate problems
There are many important problems in numerous domains that can be reduced or translated to MHS problems.
We survey a few of them here, organized by domain.

2.1 Combinatorics
Transversal hypergraph problem Given a set V of vertices and a set E of sets E1, E2, · · · ⊆ V of
hyperedges, the pair H = (V,E) is a hypergraph. H is finite if V , E, and all the Ei are finite sets. A
hypergraph is simple if none of its edges is a subset of any other edge. The hypergraph H = (V,E) can
naturally be identified with the set family E, so the theory of hypergraphs is similar to that of set families.
Readers interested in the full theory of hypergraphs should consult Berge’s 1984 monograph [22] on the
subject.

In the finite hypergraph setting, a (minimal) hitting set of E is called a (minimal) transversal of H. The
collection of all transversals of H is its transversal hypergraph TrH. TrH is also sometimes called the dual of
H because, in the case that H is simple, Tr(TrH) = H. (More generally, Tr(TrH) = minH, the hypergraph
obtained from H by removing all non-inclusion-minimal edges.)

There is an extensive literature on the problem of determining whether two hypergraphs H1 and H2 are
transversal of each other. We will consider a number of algorithms developed for this purpose in Section 4.
Interested readers can consult the recent survey of Eiter [1] and Ph.D. thesis of Hagen [2] for more details
about this subject.

Set cover problem Fix a hypergraph H = (V,E). A set cover of H is a set E′ ⊆ E of edges of H with
the property that every vertex in V is in some edge in E′. Of course, E is a set cover, but there may be
others, and it is of particular interest to compute the inclusion-minimal ones.

We can construct a new hypergraph G whose vertex set is E and whose edge set is V (that is, with a
vertex in G for every edge of H and an edge in G for each collection of edges in H with a common vertex).
Then the MHSes of G are exactly the minimal set covers of H. Thus, an algorithm for generating MHSes can
be used to enumerate minimal set covers, and vice versa.

Independent set problem Fix a hypergraph H = (V,E). An independent set of H is a set V ′ of vertices
of H with the property that no edge of H is a subset of V ′. Of course, the empty vertex set ∅ is a set cover,
but there may be others, and it is of particular interest to compute the inclusion-maximimal ones. It is easy
to show that an independent set is the complement of a hitting set and thus that a maximal independent
set is the complement of a minimal hitting set. Thus, we can enumerate maximium independent sets of H
simply by applying some algorithm for MHS generation and then taking complements.

2.2 Boolean algebra
Definition 2.1. A Boolean function is a function f = f(x1, x2, . . . , xk) : Bk → B, where B = {0, 1} and k
is a non-negative integer.

A k-ary Boolean function is described by an algebraic expression, called a Boolean expression or Boolean
formula, which consists of the binary variables x1, . . . , xk, the binary conjunction operator ∧ (often written
and), the binary disjunction operator ∨ (often written or), and the unary negation operator ¬ (often written
not).

If a Boolean function f has the property that f(X) ≤ f(Y ) (resp. f(X) ≥ f(Y )) for any inputs X ≤ Y , we
say that f is positive (resp. negative). A function which is either positive or negative is monotone. Monotone
Boolean functions appear in a wide variety of formal and applied settings. (See [23] for an extensive survey.)
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We can easily ensure that this property holds by restricting the formulas considered:

Definition 2.2. A formula for a Boolean function is monotone if it contains only variables, conjunctions,
and disjunctions (i.e. no negations).

Theorem 2.3. Any monotone formula gives a monotone Boolean function.

However, representation in these propositional formulas is not unique; the same function may be given by
many formulas, even after commutativity is considered. Accordingly, restrictions are often placed on the
formulas to ensure uniqueness.

Definition 2.4. A formula for a Boolean function is in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals and disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.

Example 2.5. The formula (x1 ∨ x2) ∧ x3 is in CNF, while (x2 ∧ x3) ∨ (x1 ∧ x3) is in DNF.
Both normal forms are of great interest for computational applications because they are easy to decompose

and compare. In addition, a given monotone Boolean function has exactly one each of CNF and DNF formulas
satisfying an irredundancy condition.

If two given formulas C in CNF and D in DNF represent the same function, we say they are dual. Deciding
whether this is true of a given pair (C,D) is widely studied in the literature of complexity theory; see the
excellent survey in the Ph.D. thesis of Hagen [2], which gives this problem the picturesque name monet. We
may also consider the generation problem mongen, which asks for the DNF formula D equivalent to a given
CNF formula C.

Surprisingly, mongen is computationally equivalent to the MHS generation problem. To illustrate
why, consider the function (x2 ∨ x3) ∧ (x1 ∨ x3), which is evidently in CNF. Its clauses (i.e. the disjunctive
components) are formed from the variable sets {x2, x3} and {x1, x3}. Since these clauses are conjoined, to
satisfy the formula we must satisfy each clause, which means we must set to 1 at least one variable in each
clause; for example, we might take x2 and x1 or take x3 alone.

Indeed, this is exactly equivalent to finding hitting sets of the set family {{2, 3}, {1, 3}}. Moreover, the
irredundancy requirement for a DNF is equivalent to requiring the hitting sets to be minimal. The collection
{{2, 1}, {3}} of MHSes corresponds to the DNF (x2 ∧ x1) ∨ x3 of the function.

2.3 Model-based fault diagnosis
Modern engineered systems may involve incredible numbers of interconnected components; for example, the
recently-retired NASA Space Shuttle reportedly had over 2.5 million moving parts. When such a system
fails to perform as intended, it is infeasible to check or replace every part and connection; thus, diagnostic
procedures are needed to narrow attention to some subset of components which may have caused the observed
failure. In a celebrated 1987 paper [5], Reiter developed the foundation for a formal theory of model-based
diagnosis (MBD), which we will introduce briefly.

Consider a system made up of some finite set V of components, each of which may be either active or
inactive during any given transaction or activity. We make a series of observations of transactions of the
system, recording which components are active and whether the behavior is normal or anomalous. If any
of the observed transactions are anomalous, we assume this is due to one or more faulty components. A
diagnosis of the faulty system is a set D of components which, if all are faulty, would explain all the anomalous
transactions. Under a parsimony restriction, the interesting diagnoses are those which are inclusion-minimal
or irredundant. (Reiter only applies the term “diagnosis” to these minimal examples.)

Let F be the set of faulty transactions, where each such transaction is represented as the set of components
involved. A diagnosis is then a hitting set of F , and the parsimonious diagnoses are exactly the MHSes of
F . Thus, any algorithm for generating MHSes is directly applicable to fault diagnosis. Reiter proposed an
algorithm for exactly this purpose; we will discuss it and its successors in Section 4.

2.4 Computational biology
Minimal hitting sets have appeared as an important combinatorial motif in numerous problems in computa-
tional biology. We survey four of them here.
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Minimal cut sets in metabolic networks A metabolic reaction network is the system by which metabolic
and physical processes that determine the physiological and biochemical properties of a cell, are represented.
As such, these networks comprise the chemical reactions of metabolism, the metabolic pathways and the
regulatory interactions that guide these reactions. In its graph representation, a metabolic network is a
directed hypergraph in which each of m vertices represents a metabolite and each of n directed hyperedges
represents a biochemical reaction. Information about the reactions can be encoded in a stoichiometric matrix
M in which each row represents a metabolite, each column represents a biochemical reaction, and the entry
Si,j represents the coefficient of metabolite i in reaction j. If the coefficient Si,j is positive, metabolite i is
produced by reaction j; if the coefficient is negative, the metabolite is consumed; and if the coefficient is zero,
the metabolite is not involved in the reaction at all and thus is not in its hyperedge. An m-dimensional vector
may be employed to represent concentrations of metabolites, while an n-dimensional vector may represent
rates of reactions.

It is typically assumed that some internal metabolites are at steady state and thus must have a net zero
rate of change in the system. Such a steady state corresponds to an n-dimensional flux vector ~x with the
property that S~x = ~0; we call a vector satisfying this condition an admissible flux mode. We call such a flux
mode elementary if its support (the set of reactions with nonzero fluxes) is inclusion-minimal.

The notion of elementary flux modes (“EFMs”) was introduced by Schuster and Hilgetag in [24]; subsequent
work has developed numerous techniques from linear algebra and computational geometry to find the EFMs.
see the recent surveys [25, 26] for overview of the problem, the methods and software which are used to solve
it, and various applications.

One important area of applications of metabolic network analysis is metabolic engineering, in which the
metabolic network of an organism is modified to adjust its production. In [27], Klamt and Gilles focus on
blocking a target reaction through cut sets, which they define as a set of reactions whose removal from the
network leaves no feasible balanced flux distribution involving the target reaction. To do this, they first
compute all the elementary flux modes which involve the target reaction. They then construct a set family
whose elements are the reactions of the original network and whose sets are the relevant elementary flux
modes. Finally, they compute the minimal hitting sets of this family. Subsequently, Haus et al. developed in
[28] a specialized version of the FK-A algorithm (cf. Section 4.2.2) which greatly improves on other methods
available at the time.

Optimal combinations of interventions in signal transduction networks Signal transduction de-
scribes the process of conversion of external signals to a specific internal cellular response, such as gene
expression, cell division, or even cell suicide. This process begins at the cell membrane where an external
stimulus initiates a cascade of enzymatic reactions inside the cell that typically includes phosphorylation of
proteins as mediators of downstream processes. A signal transduction network is represented as a signed
directed graph in which each of the vertices is a signaling component (such as a protein, gene in a cell) and
each edge represents an interaction which the source induces in the target (either positive-signed activation
or negative-signed inhibition). Biological signaling networks typically [29] exhibit a natural decomposition
into input, intermediate, and output nodes; engineering and control of these networks then typically depends
on adjusting the input and intermediate layers to obtain some outcome at the outputs. As an analogous of
elementary flux modes (“EFMs”) in metabolic networks, in [30], Wang and Albert introduced the notion of
elementary signaling modes (ESMs). ESMs are minimal sets of signaling components which can perform
signal transduction from inputs to outputs; ESMs are the natural analogues of EFMs for signal transduction
networks. They also provide algorithms for generating the ESMs of a given network.

Once the topology and ESMs of a signal transduction network are known, it may be of interest to control
how signal flows from a given set of source nodes to a given set of targets, perhaps avoiding interfering with
certain side effect nodes along the way. Vera-Licona et al. introduced the OCSANA framework to study this
problem in [16]. They begin by computing the ESMs which pass from the specified sources to the specified
targets. They then construct a set family whose elements are the signalling components and whose sets
are these ESMs. They next compute MHSes of this family, which they term combinations of interventions
(CIs). Finally, they apply their “OCSANA” scoring, which encodes heuristics about control of the targets
and influence on the side effects, and use the results to identify the most promising CIs.

Since discovery of hitting sets is a crucial step in the algorithm, the authors of [16] performed an
experimental comparison. In particular, they tested Berge’s algorithm (cf. Section 4.1.1) and an approach
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similar to MTMiner (cf. Section 4.3.1) which incorporates the OCSANA score into the generation process.
They found their new algorithm to improve substantially on Berge’s algorithm.

Reverse-engineering biological networks from high-throughput data In some situations, the net-
work structure itself is not known. In this case, it is useful to reconstruct the network from experimental
data through reverse engineering. Broadly, the biological reverse-engineering problem is that of “analyzing a
given system in order to identify, from biological data, the components of the system and their relationships”
[31]. This may result in either a topological representation of the network structure (typically expressed as
an enriched graph) or a full dynamic model (in terms of a mathematical model). Numerous approaches to
the topological reverse-engineering problem have been introduced, including at least two which use MHS
generation techniques. See [31] for a comparative survey of these two approaches and the relative performance
of the specialized algorithms developed for each; we give here only a brief overview of each.

Ideker In 2000, Ideker et al. introduce a method to infer the topology of a network of gene regulatory
interactions in [21]. They first perform a series of experiments in which various genes in the system are forced
to high or low expression and use standard microarray techniques to measure the expression of the other
genes. For each gene i, they then consider all pairs {a, b} of experiments for which that gene’s expression
values differ, then find the set Sa,b of all other genes whose expression values also changed.

Under their assumptions, one or more genes in Sa,b must cause the change in i between experiments a
and b. A set of genes which intersects all the sets Sa,b is a candidate to explain the observed variation in i
over the whole suite of experiments, and thus to be the set of genes connected to i in the regulatory network.
Thus, they generate a collection of hitting sets for the family Sa,b; in particular, they develop an algorithm
based on the standard branch and bound optimization technique which gives sets of minimal cardinality. Since
this collection may be large, they use an entropy-based approach to iteratively generate new experiments
which will discriminate among the candidates and re-apply the algorithm to the enlarged data set to improve
the accuracy of the predicted networks.

Jarrah In 2007, Jarrah et al. introduce another method to infer the topology of a gene regulatory
network in [19] which focuses on time series data within a single experiment. They associate to each gene i a
variable xi from some finite field k, then represent each time point t in the experiment as an assignment xt.
For a given gene i, they then consider how the values of xt determine the value xt+1

i for each t.
Under their assumptions, if xi is observed to take different values at times t1 and t2, it must be due to

some other variables being different at times t1 − 1 and t2 − 1. Thus, for each pair t1 6= t2 with xt1i 6= xt2i ,
they construct a set St1,t2 = {j|j 6= i, xt1−1

j 6= xt2−1
j } which encodes the variables which may be responsible

for the observed change in xi. Like Ideker et al., they then compute minimal hitting sets of this collection,
but their algorithm is formalized in terms of computational algebra and gives a complete enumeration of the
family of MHSes. (We discuss this approach in Section 4.5.1.) They also present a heuristic scoring function
which may help to select the most viable model from the generated hitting sets.

Drug cocktail development Many widely-used antibiotics are effective against some bacterial strains
but ineffective against others. Thus, in cases where more than one strain may be present or the specific strain
is unknown, it is necessary to deploy a “cocktail” of several drugs to increase the number of strains covered.
A similar situation applies in cancer chemotherapy, where different chemotherapeutic agents are known to be
effective only against certain cell lines. In either case, it is desirable to minimize the number of drugs used at
once, to minimize the cost of the therapy and the risk of emergent multiple-drug-resistant strains.

Given a set of drugs (say, antibiotics) and a set of targets (say, bacterial strains), we can assign to each
target the set of drugs that are effective against it. A (minimal) hitting set of this set family is then a
(minimal) cocktail of drugs that, taken together, affects all the targets.

This application has been studied in detail by Vazquez in [17], using a greedy algorithm to search for very
small effective combinations from the NCI60 collection ([32]) of 45334 drugs and 60 cancer cell lines. He is
then able to recommend some of these small MHSes as targets for further research.
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2.5 Data mining
A number of problems in data mining can be formalized in terms of MHS generation. We survey two of them
here.

(In)frequent itemset discovery One fundamental problem in data mining, introduced by Agrawal et
al. in [33] and developed further in [34], is the discovery of frequent itemsets in a database of transactions.
We adopt the formal setting of the problem presented by Boros et al. in [35]. Fix a finite set A of m
transactions, each of which is a finite subset of a set I of n items. Fix an integer threshold 1 ≤ t ≤ m. A
set C of items is t-frequent if at least t transactions are supersets of C and t-infrequent if no more than
t transactions are supersets of C. The maximal frequent (resp. minimal infrequent) itemset problem is to
enumerate inclusion-maximal (resp. inclusion-minimal) sets C which are t-frequent (resp. t-infrequent).

Let Ft denote the hypergraph whose edges are maximal t-frequent itemsets in A and It denote the
hypergraph whose edges are minimal infrequent itemsets in A. (Both have the common vertex set I.) Any
element of It must intersect the complement of every element of Ft, and in fact as hypergraphs we have that
It = Tr(Ft{) exactly. Thus, if either It or Ft is known, the other can be computed using any algorithm for
MHS generation. This connection is explored by Manilla and Toivonen in [36]; more algorithmic details are
given by Toivonen in [37]. An application of these ideas to database privacy is given by Stavropoulos et al.
in [38].

Furthermore, so-called “joint-generation” algorithms inspired by the FK algorithms of Fredman and
Khachiyan [4] (cf. Section 4.2.2) can generate It and Ft simultaneously. This is developed by Gunopulos et
al. in [39] and its complexity implications explored by Boros et al. in [40].

Emerging pattern discovery Another important data mining problem is the discovery of emerging
patterns, which represent the differences between two subsets of the transactions in a database. We adopt the
formal setting of the problem introduced by Bailey et al. in [13]. Consider two sets A and B of transactions,
where each transaction is itself a set of items. A minimal contrast is an inclusion-minimal set of items which
appears in some transaction in A but no transaction in B. Fix a transaction a ∈ A and construct a set
family whose underlying elements are the items in a and with a set a \ b for each b ∈ B. Then the minimal
contrasts supported by a are exactly the minimal hitting sets of this set family. Thus, any algorithm for
MHS generation can be applied to emerging pattern discovery. Indeed, two of the algorithms we study, DL
(Section 4.1.4, [12]) and BMR (Section 4.1.5, [13]), were developed for this purpose.

2.6 Minimal Sudoku puzzles
The Sudoku family of puzzles is widely published in newspapers and magazines and is played by millions
worldwide. An instance of Sudoku is a 9× 9 grid of boxes, a few of which already contain digits (“clues”)
from the range 1–9; a solution is an assignment of digits to the remaining boxes so that each of the nine 3× 3
subgrids and each row and each column of the whole puzzle contains each digit exactly once. An example
with seventeen clues is shown in Fig. 1.

Of course, not every possible placement of clues into the grid yields a valid puzzle. There may be inherent
contradictions, such as two identical clues in the same column, so that the puzzle has no solutions. There
may also be ambiguities, in which more than one solution is possible. A mathematical question of particular
interest, then, is: what is the smallest number of clues in an unambiguous valid Sudoku puzzle? Many such
puzzles with 17 clues are known, but none with 16 have ever been identified. In [41], McGuire et al. show
that an exhaustive search for such puzzles can be formulated in our terms by constructing set families that
represent the effects of clues in solved puzzles and then searching for hitting sets of size 16 or less. They ran
this search on a supercomputing cluster and proved conclusively that there are no 16-clue Sudoku puzzles.
They use an algorithm similar to HST from [8], discussed in detail in Section 4.1.3; for speed, they modify the
algorithm to essentially build the set families and their hitting sets simultaneously.
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8 1
4 3

5
7 8

1
2 3

6 7 5
3 4

2 6

Figure 1: An example Sudoku puzzle with 17 clues

3 Complexity results
3.1 Asymptotic complexity
Before considering specific algorithms for MHS generation, we should consider the current state of knowledge
about the asymptotic complexity of the problem. It has been known since Karp’s seminal 1972 paper [42]
that the problem of determining whether a given set family has a hitting set of size no greater than some k is
NP-complete. However, we are more concerned with the collection of all hitting sets than with the existence
of a single one. We therefore consider two other separate but related problems.

3.1.1 Recognition problem

Much of the literature on complexity analysis focuses on “decision problems”, which must have a “yes” or
“no” answer. The natural decision variant of the MHS problem is recognition: given two hypergraphs H
and G, to decide whether H = TrG. Fredman and Khachiyan present in [4] an algorithm (discussed in
Section 4.2.2) which tests this in time no(logn) (for n the sum of the number of hyperedges in F and G). This
time bound is notable in that it is quasi-polynomial—it is worse than a polynomial bound, but better than
an exponential bound or even certain sub-exponential bounds. The BM algorithm introduced by Boros and
Makino in [43] improves on this bound in parallel cases. It is a long-standing open problem to determine
whether recognition is possible in polynomial time.

3.1.2 Generation problem

For many applications, however, we need to generate the MHSes of a given set family rather than recognize
them. It is straightforward to show that no algorithm can do this in time polynomial in the size of the input.
Consider the example of the matching graph Mn = {(1, 2), (3, 4), . . . , (2n− 1, 2n)} as a set family. A minimal
hitting set contains a choice of one of the two elements of each edge; thus, there are evidently 2n of them.
Simply writing out this result therefore requires at least o(2n) time, so no algorithm can in subexponential
time in general. This is not necessarily to say that the MHS generation problem is intractable; rather, it
suggests that it is inappropriate to analyze its complexity input-polynomiality solely in terms of input size.

Johnson et al. introduced a formalism to deal with this issue in [44]. Instead of considering only the
size of the input to the problem, we can incorporate the size of the output as well. If a given set family
S has n sets and m MHSes, an algorithm for generating those MHSes is said to be output-polynomial (or
to run in polynomial total time) if its running time is o(poly(n+m)). Unfortunately, this is not known to
be achieved by any current algorithm, and Hagen showed in [45] that several important algorithms are not
output-polynomial.

If we shift our attention to incremental generation, we may instead ask whether an algorithm can generate
one MHS at a time with reasonable delay between outputs. Johnson et al. introduced two suitable formalisms
in [44]. First, a generation algorithm may run in incremental-polynomial time; in this case, given a set family
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and a set of MHSes for it, it should yield a new MHS in time polynomial in the combined size of both of these
inputs. Second, the algorithm may run with polynomial delay; this stronger variant of incremental-polynomial
time requires that the time required depend only on the size of the set family and not on the number of
MHSes already known. Crucially, if an algorithm runs with polynomial delay, it is guaranteed to run in
output-polynomial total time, but incremental-polynomial time gives no such guarantee ([44]).

Incremental time analysis is of particular interest in some classes of applications, where we may wish
to generate only some MHSes or to perform further processing on each one as it emerges. No algorithm is
known to solve the MHS generation problem in incremental polynomial time (much less with polynomial
delay) in general, but there are some interesting special cases, considered in Section 3.2.1.

3.2 Tractable cases
Crucially, the complexity results in Section 3.1 concern the performance of algorithms in general, which is
to say, for the class of all possible hypergraphs or set families. Another thread of research has focused on
demonstrating that, in such restricted cases, much better complexity results are possible.

3.2.1 Fixed-parameter tractability

In some cases, algorithms are available which “factor out” some of the complexity of the problem with respect
to a particular parameter of the hypergraphs. Specifically, letting k be the parameter of interest and n be the
number of edges of the hypergraph, we may find an algorithm that generates all MHSes in time f(k) · nO(1)

for some arbitrary function f (which is to say, the time is polynomial in n once k is fixed, though it may
depend arbitrarily on k). In this case, we say that the problem is fixed-parameter tractable (“FPT”) with
respect to that parameter k, since fixing k yields a complexity function that depends polynomially on n.

Fixed-parameter tractability results have been obtained for the transversal hypergraph recognition problem
with a wide variety of parameters, including vertex degree parameters ([46, 3, 47, 48, 47]), hyperedge size or
number parameters ([49, 48, 50]), and hyperedge intersection or union size parameters ([51, 48]). For a more
complete survey, the interested reader may consult [2, §4, §7].

3.2.2 Acyclicity

A graph is acyclic if it contains no cycles—that is, if no non-self-repeating path in the edges leads back
to where it starts. Beeri et al. introduced in [52] a notion of acyclicity in hypergraphs, now known as
α-acyclicity, in the context of the study of relational database schemes. Fagin subsequently introduced in
[53] the notions of β-acyclicity and γ-acyclicity, which are successively more restrictive and correspond to
desirable tractability problems in databases. Eiter showed that the transversal recognition is solvable in
polynomial time for β-acyclic hypergraphs in [54] and for α-acyclic hypergraphs in [49].

3.3 Limited nondeterminism
Another important line of inquiry for studies of complexity is how its solution improves with nondeterminism—
that is, if the algorithm is allowed access to some “free” information. The crucial question is how many
nondeterministic bits are required to achieve a better solution. Kavvadias and Stavropoulos showed in [55]
that the recognition problem is in the class co-NP[log2 n] for n the total number of edges in H and TrH,
meaning that only O

(
log2 n

)
nondeterministic bits are required to demonstrate that two hypergraphs are not

transversals of each other. Since log2 n is subpolynomial, this suggests that the recognition problem is not as
hard as the well-known NP-complete problems.

4 Existing algorithms
A wide array of algorithms have been developed to generate MHSes (either explicitly or in the language of
various cognate problems). If we strip away the details of the various domains and applications by casting
all the algorithms in the language of MHS generation, we find that they fall naturally into a few high-level
categories:
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set iteration appproaches which work through the input set family one set at a time, building MHSes as
they go;

divide and conquer approaches which partition the input family into disjoint subfamilies, find their
MHSes separately, and then combine them;

MHS buildup approaches which build candidate MHSes one element at a time, keeping track of un-hit
sets as they go; and

full cover approaches which improve on the divide-and-conquer approach with a technical hypergraph
lemma that allows more efficient recombination.

We survey these categories, including discussions of a few published algorithms for each. A summary of
these algorithms, giving their taxonomic classifications, original problem domains, and relevant characteristics
is presented in Table 1. Whenever possible, we use the terminology of set families and minimal hitting sets,
since this language is typically the most straightforward to understand.

It can be shown (cf. [56]) that an algorithm for the transversal hypergraph recognition problem (cf. Sec-
tion 2.1) can be used to generate MHSes of a given set family with a number of runs that is polynomial in
the size of the transversal hypergraph. This conversion is possible because, if the input hypergraphs H and
G are not transversals of each other, any recognition algorithm must return a “witness” of this, which can
be translated into an edge which must be added to either H or G. Thus, beginning with some given set
family S and an empty collection T of MHSes, we can interpret S as a hypergraph and apply any recognition
algorithm to find a new MHS to add to T , then repeat until eventually the complete collection is generated
and the algorithm confirms S = TrT . As a result, we will consider algorithms for both recognition and
generation interchangeably.

For nearly all of these algorithms, software implementations are available to perform the calcula-
tions on a computer. We have collected eighteen of these implementations into a public repository at
github.com/VeraLiconaResearchGroup/MHSGenerationAlgorithms. Source code and information about
the implementations are available there. In addition, we provide a ready-to-use Docker container for each
using the AlgoRun framework (cf. [57]) and a Web interface to instances of the software running on the
AlgoRun project’s servers at algorun.org. This framework is used for experimental benchmarks which are
presented in Section 5.

4.1 Set iteration approaches
One type of approach to computing hitting sets of a set family S is to begin with a small subfamily of S′ ( S,
find the MHSes for S′, and then iteratively add more sets to S′ and update the MHS collection. The methods
in this section all follow this approach; they differ in how they select the subfamilies S′ and in the details of
how they update the MHS collection.

4.1.1 Berge (1984)

The first systematic algorithm for computing transversals of hypergraphs was presented by Berge in [22],
a monograph on the theory of hypergraphs. Although this algorithm is called the “Sequential Algorithm”
in some literature, we will refer to it as Berge. The core idea of the algorithm is proceed inductively over
the hyperedges of the hypergraph, alternately adding a new edge to the intermediate hypergraph under
consideration and extending the known transversals.

We first introduce three important operations on hypergraphs.

Definition 4.1. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Their vee H1 ∨ H2 is the
hypergraph with vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2. Their wedge H1 ∧H2 is the hypergraph
with vertex set V = V1 ∪ V2 and edge set E = {e1 ∪ e2|e1 ∈ E1, e2 ∈ E2}.

Definition 4.2. LetH be a hypergraph with vertex set V and edge set E. Its minimization (or simplification),
minH, is the hypergraph with vertices V and edges {e ∈ E|@f ∈ E \ e : e ⊂ f}. In other words, minH
retains exactly the inclusion-minimal edges of H. H is simple if H = minH.
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These two operations interact nicely with the transversal construction:

Lemma 4.3. Let H1 and H2 be hypergraphs. Then the following relations hold:

Tr(H1 ∨H2) = min(TrH1 ∧ TrH2) (1)

and
Tr(H1 ∧H2) = min(TrH1 ∨ TrH2). (2)

Algorithm Berge then proceeds as follows:

1. Let H be a hypergraph with edge set E = {e1, e2, . . . , en} (for an arbitrarily chosen ordering), and for
each i let Hi be the subhypergraph of H with all its vertices and its first i edges e1, . . . , ei.

2. For each i in order, compute TrHi inductively: TrH1 = {v|v ∈ e1}, and TrHi = min(TrHi−1 ∧ Tr ei) =
min{t ∪ {v}|t ∈ TrHi−1, v ∈ ei} by equation (1).

3. When the iteration is finished, TrHn = TrH by construction.

Pseudocode for the algorithm (in the lanugage of set families) is given in Algorithm 1.

Algorithm 1 Berge’s algorithm
Input: A finite set family S = {s1, s2, . . . , sn}
Output: The set of MHSes of S

1: function Berge(S)
2: T ← {{e}|e ∈ s1}
3: for all s ∈ S \ s1 do
4: T ← {t ∪ {e}|t ∈ T, e ∈ s}
5: T ← minT . Remove non-minimal elements of T
6: end for
7: return T
8: end function

As suggested in [18], Berge’s algorithm can be adapted to search only for MHSes of cardinality bounded
by some k by simply discarding candidates larger than k at Lines 4 and 5 in each stage of the algorithm.

This algorithm is straightforward to implement in code and to study theoretically. Unfortunately, it also
has the potentially to be extremely inefficient. The complexity is studied thoroughly by Boros et al. in [58].
In particular, for a set family S with n sets and a total of m underlying elements, if the sets are ordered so
that the collection T reaches maximum size k during the algorithm, the running time of this algorithm is
O(kmn ·min(m, k)).

Accordingly, it is clear that the ordering of the edges matters a great deal, since this determines the
value of k. Takata showed in [59] that there exists a family of hypergraphs for which no edge ordering yields
output-polynomial running time, and thus that Berge is not output-polynomial in general, even if the edge
ordering is optimal. Boros et al. demonstrate in [58], however, that the worst case is still sub-exponential.

We provide a C++ implementation of Berge which supports enumeration of small MHSes in the repository.

4.1.2 Reiter (1987) and Greiner et al. (1989)

As discussed in Section 2.3, Reiter introduced the formal theory of model-based diagnosis as an application
of MHS enumeration in [5]. His approach proceeds through a set family inductively, alternately picking a set
which is not yet hit and an element which hits it, until a hitting set for the whole family is found. It then
backtracks to the most recent step where another valid choice was available and repeats. The intermediate
data are stored in a structure Reiter calls a “hitting set tree”.

However, it was shown by Greiner et al. in [60] that this algorithm is incomplete; the hitting sets it
generates are guaranteed to be minimal, but in certain circumstances some MHSes may be missed. They
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repair the algorithm, but in the process they sacrifice the acyclicity of Reiter’s hitting set tree; the result is a
directed acyclic graph. We will refer to the algorithm as HS-DAG (for Hitting Set Directed Acyclic Graph). It
is straightforward to implement and is widely studied and cited in the MBD literature.

The authors are not aware of a formal complexity analysis of this algorithm.
It is possible to search only for hitting sets of bounded cardinality with HS-DAG simply by restricting the

depth of the search DAG.
A Python implementation of this algorithm by the authors of [7] is available in the repository.

4.1.3 Wotawa (2001)

Wotawa returned to Reiter’s approach in [8], reviewing the HS-DAG algorithm of [60] (see Section 4.1.2) and
adjusting it to reduce the number of set containment checks required. These improvements render the DAG
generalization unnecessary, so the underlying data structure is once again a hitting set tree as originally
envisioned by Reiter. We will refer to the algorithm as HST (for Hitting Set Tree).

The authors are not aware of a formal complexity analysis of this algorithm.
It is possible to search only for hitting sets of bounded cardinality with HST simply by restricting the

depth of the search tree.
A Python implementation of this algorithm by the authors of [7] is available in the repository.

4.1.4 Dong and Li (2005)

Dong and Li considered in [12] the “emerging patterns problem” discussed in Section 2.5. Although their
work was essentially independent of the literature on hypergraph transversals, they developed an algorithm
thematically very similar to Berge. Their algorithm incorporates some optimizations to the minimization
calculation in equation (2) to speed up the loop step. We will refer to the algorithm as DL (for its authors).

However, the running time of Berge is dominated by the need to search the intermediate transversals, not
the complexity of generating them, so the DL optimization should not be expected to improve the worst-case
behavior of Berge. Hagen shows in [2, 45] that Takata’s time bounds on Berge in [59] apply to DL as well,
so it is not output-polynomial. Nevertheless, for families with relatively few sets, DL performs well, so it is
useful as a subroutine to be used in base cases of other algorithms.

A C implementation of this algorithm by the authors of [61] is available in the repository.

4.1.5 Bailey et al. (2003)

Continuing with the study of emerging patterns, Bailey et al. developed in [13] an algorithm which decomposes
the input set family more carefully than Berge’s algorithm. Rather than simply considering one new set at a
time, their approach attempts to partition the set family into components with few sets, then use the DL
algorithm of [12] as a subroutine to compute their MHSes before combining them using equation (1). We will
refer to their algorithm as BMR (for Bailey, Manoukian, and Ramamohanarao).

Hagen shows in [2, 45] that BMR is not output-polynomial. Furthermore, he shows that its complexity is
nΩ(log logn), where the Ω indicates that this is a lower bound instead of the upper bound indicated by O and
where n = |H|+ |TrH|.

A C implementation of this algorithm by the authors of [61] is available in the repository.

4.1.6 Kavvadias and Stavropoulos (2005)

Returning to the explicit study of hypergraph transversals, Kavvadias and Stavropoulos introduced in
[62] another algorithm, which seeks to reduce the memory requirements of Berge with two optimizations.
First, they preprocess the input set family to combine elements which occur only in the same sets. Second,
they carefully reorganize the processing steps so that many intermediate MHSes can be forgotten without
jeopardizing the correctness of the algorithm, allowing them to output MHSes early in the algorithm’s run
and then discard them. We will refer to this algorithm as KS (for its authors).

The algorithm is designed to run in polynomial memory by avoiding regeneration of candidate hitting
sets. Hagen shows in [2, 45] that KS does not run in output-polynomial time. Furthermore, he shows that its
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complexity is nΩ(log logn), where n is the sum of the number of sets in the family and the total number of
minimal hitting sets that it admits.

The organization of the search routine in KS makes it possible to search for hitting sets of bounded
cardinality to save time. The authors are not aware of an implementation that offers this feature.

A Pascal implementation of this algorithm by the authors of [62] is available in the repository.

4.2 Divide and conquer approaches
Another type of approach to computing MHSes of a set family S is to partition S into several subfamilies,
find their MHSes separately (perhaps recursing until the subfamilies are sufficiently small), and then combine
the results. The algorithms in this section all follow this approach; they differ primarily in how they partition
S.

4.2.1 Lin and Jiang (2003)

Lin and Jiang return in [9] to the problem of model-based diagnosis. They cast the problem in the Boolean
algebra framework, but their algorithm is a straightforward example of the divide-and-conquer approach. We
will refer to this algorithm as BOOL (since Lin and Jiang call it the “Boolean algorithm”). Their recursive
decomposition algorithm proceeds as follows.

1. Let S be a finite set family. If |S| < 2, it is trivial to find the MHSes of S directly. Thus, we assume
that |S| ≥ 2.

2. If there is an element e which is present in every set s ∈ S, construct a new set family S′ = {s\ e|s ∈ S}.
Recursively find the MHSes of S′, add {e}, and return the result.

3. If there is a set s ∈ S with |s| = 1, let e be the unique element of s and construct a new set family
S′ = S \ s. Recursively find the MHSes of S′, add e to each, and return the result.

4. Otherwise, choose some e ∈
⋃
S arbitrarily. Let S1 = {s \ e|s ∈ S, e ∈ s} and S2 = {s|s ∈ S, e /∈ s}.

Recursively find the MHSes of S1 and S2. Add e to each MHS of S2, then take the union of the results
and return.

Pseudocode for the algorithm is given in Algorithm 2. They call this the “Boolean algorithm”; we will
denote it hereafter by BOOL.

The Boolean algorithm was subsequently optimized by Pill and Quaritsch in [11]. In particular, improved
its performance in cases that only MHSes of size bounded by some k are desired.

The authors are not aware of a formal complexity analysis of this algorithm.
If desired, this algorithm can search for hitting sets of bounded cardinality to save time.
A Python implementation of this algorithm by the authors of [7] is available in the repository.

4.2.2 Fredman and Khachiyan (1996)

Fredman and Khachiyan introduced two iterative algorithms in [4] to study the recognition version of the
MHS problem in the Boolean algebra context. Like BOOL, these two algorithms both proceed by choosing one
element, considering sets that do and do not contain that element separately with recursive calls, and then
combining the results. However, they first apply several algebraically-motivated degeneracy tests. If the tests
fail, a new hitting set can be found very efficiently. If, however, they succeed, it guarantees that an element
can be found which is present in many (specifically, logarithmically many) sets but missing from many others.
Considering the sets which do and do not contain this element separately decomposes the problem into two
large disjoint sub-problems, which can be considered recursively; the large size of each subproblem ensures
that the recursion does not go too deep. This bound on the recursion depth allows Fredman and Khachian to
prove running-time bounds which are the strongest known on any sequential algorithm to date. We will refer
to these two algorithms as FK-A and FK-B (“FK” for the authors, who use the names A and B in [4]).

The first algorithm, FK-A, runs in time nO(log2 n) and is relatively straightforward to implement. The algo-
rithm is modified in [63] to improve its runtime slightly and adapt it to MHS generation. An implementation
in (compiled) C is provided by those authors and is available in the repository.
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Algorithm 2 The Boolean algorithm (BOOL)
Input: A finite set family S = {s1, s2, . . . , sn}
Output: The set of MHSes of S

1: function Bool(S)
2: E ←

⋃
s∈S s

3: if |S| = 0 then
4: T ← ∅
5: else if |S| = 1 then
6: let S = {s}
7: T ← s
8: else if there is some e ∈ E such that e ∈ s∀s ∈ S then
9: T ← {e} ∨Bool({s \ e|s ∈ S})
10: else if there is some s ∈ S such that |s| = 1 then
11: G ← s ∧Bool(S \ s)
12: else
13: choose e ∈ E . can be arbitrary
14: S1 ← {s \ e|s ∈ S, e ∈ s}
15: T1 ← Bool(S1)
16: S2 ← {s|s ∈ S, e /∈ s}
17: T2 ← {e} ∧Bool(S2)
18: T ← T1 ∪ T2
19: end if
20: return T
21: end function

The second algorithm, FK-B, runs in time nO(logn). (More exactly, its time bound is n4χ(n)+O(1) where
χ(n)χ(n) = n.) However, its implementation is significantly more complex than that of FK-A. As a result,
most authors (including [63]) have disregarded FK-B in comparative studies. However, analysis in [64] suggests
that this assumption may be inaccurate. The authors are aware of no publicly-available implementations of
FK-B.

If desired, both algorithms can search for hitting sets of bounded cardinality to save time. The authors
are not aware of an implementation that supports this feature.

The algorithms also allow for “joint generation” of a set family and its MHSes if subsets of both are
known. This can be advantageous in situations where the set family is not known a priori but it is possible
to check whether a given set is a member of the family. For example, Haus et al. apply this approach in [28],
as discussed in Section 2.4.

4.2.3 Abreu and Gemund (2009)

Model-based diagnosis often involves finding hitting sets of extremely large set families, so approximation
algorithms are particularly attractive in this field. Abreu and Gemund presented such an algorithm in [10].
They use a divide-and-conquer approach similar to that of BOOL, but which considers the elements in an
order determined by a statistical heuristic. They also define mechanisms to stop the algorithm early to obtain
a partial set of approximately minimal hitting sets. We will refer to this algorithm as STACCATO (the name
used by its authors in [10]).

The authors of [10] claim that, for a set family with N sets andM total elements, the algorithm guarantees
to find a hitting set of cardinality C in O

(
(M · (N + logM))C

)
worst-case time and O(C ·M) space, with

improved expected times based on their heuristic and tested experimentally.
If desired, this algorithm can search for hitting sets of bounded cardinality to save time.
A Python implementation of this algorithm by the authors of [7] is available in the repository.
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4.2.4 Leiserson et al. (2010)

Some recent research has focused on parallelizing the search for minimal hitting sets. Leiserson et al. cast
this issue in a very abstract setting in [65], developing a framework to parallelize any algorithm that searches
for minimal elements of a poset and then applying it to the lattice of hitting sets of a set family. We will
refer to this algorithm as ParTran (the name used by its authors in [65]).

Treated as a sequential algorithm by running it in a single execution thread, ParTran is similar to BOOL; its
primary distinction is that the two subfamilies S1 and S2 are carefully chosen to be of similar size to improve
parallel efficiency. The authors are not aware of a formal analysis of its complexity in either sequential or
parallel settings.

A Cilk++ implementation of this algorithm by the authors of [65] is available in the repository.

4.2.5 Knuth (2011)

Binary decision diagrams (BDDs) are a graph-based structure for representing boolean functions and
hypergraphs originally introduced by Bryant in [66]. Given a set family S, it is computationally expensive to
compress S into a BDD or to decompress that BDD back into S. Nevertheless, BDDs are a powerful data
structure for certain combinatorial algorithms. Many logical operations on hypergraphs, such as the ∧ and
∨ operations of Definition 4.1, are inexpensive to perform on their BDDs. In exercises 236 and 237 of [67,
§7.1.4], Knuth asks the reader to devise an algorithm for MHS generation using BDD operations, and in the
solutions he presents a simple one. We will refer to this algorithm as Knuth.

The authors are not aware of a formal complexity analysis of KNUTH, and Knuth asserts that the worst-case
runtime is unknown.

A C implementation of this algorithm by the author of [68] is available in the repository.

4.2.6 Toda (2013)

In 2013, Toda improved on the KNUTH algorithm in [68] by incorporating a variation on the BDD data
structure–the zero-suppressed binary decision diagram (ZDD). After compressing a given set family S into a
ZDD, Toda recursively applies a simple divide-and-conquer algorithm to obtain a BDD of all hitting sets of S.
He then uses a minimization algorithm to obtain a ZDD of the MHSes of S, which he finally decompresses.
We will refer to this algorithm as HTC-BDD (the name given to it by Toda).

Toda gives a formal complexity analysis of HTC-BDD in [68], but the resulting bounds are expressed in
terms of the intermediate BDD and ZDD data structures and are incommensurable with bounds like those
known for FK-A and FK-B. One important factor is that the decompression of the output from ZDD format
into a list of sets can be very time-consuming. Details are explored in Section 5.3. However, the ZDD
intermediate data structure makes it possible to determine the number of MHSes without decompressing,
which may be of interest for some applications.

A C implementation of this algorithm by the author of [68] is available in the repository.

4.2.7 Cardoso and Abreu (2014)

Cardoso and Abreu revisted the STACCATO approach in [6]. They present several optimizations to reduce
wasted computation. In addition, their new algorithm is distributed using the widely-used Map-Reduce
paradigm, so in principle it can be deployed over very large message-passing distributed computing systems.
It is also designed so that early termination will return a useful approximate result; a collection of hitting
sets will be obtained, although they may not be minimal and some may be missing. We will refer to this
algorithm as MHS2 (the name given to it by its authors).

The authors are not aware of a formal analysis of the complexity of MHS2.
A C++ implementation of the algorithm by the authors of [6] is available in the repository.

4.3 MHS buildup approaches
A third type of approach to computing MHSes of a set family S is to construct sets of elements which are
expected or guaranteed to be subsets of MHSes, then iteratively add elements until they are hitting sets.
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This approach fits into the standard scheme of “backtracking” combinatorial algorithms. The approaches
in this section all follow this approach; they differ primarily in the conditions used to identify candidate
sub-MHSes and the strategies used to avoid redundant calculation.

4.3.1 Hébert et al. (2007)

Hébert et al. take an approach in [69] that brings insights from data mining to bear on the MHS generation
problem. We follow the explanation of the algorithm in [70], which avoids the algebraic complexity of the
original. We will refer to this algorithm as MTMiner (the name given to its software implementation by its
authors); it is also called HBC (for Hébert, Bretto, and Crémilleux) in some literature (e.g. [70]).

Fix a set family S = {s1, s2, . . . , sn} with underlying element set E =
⋃
S = {e1, e2, . . . , em}. The

MTMiner algorithm is initialized with the set C1 = {{e}|e ∈ E} of element sets of size 1. At each step of the
algorithm, the set Ci of candidate hitting sets of size i is processed. First, any set in Ci which is a hitting
set is removed and outputted; as will be seen, it is guaranteed to be minimal. The remaining sets in Ci are
extended by combining all pairs (a, b) which overlap in i− 1 elements into their union a∪ b. For each of these
extended sets (of size i+ 1), the algorithm checks whether more sets are hit by a∪ b than by a or b. If so, a∪ b
is added to Ci+1. The algorithm terminates no later than i = n, by which time all MHSes have been output.

Pseudocode of the algorithm is given in Algorithm 3.

Algorithm 3 MTMiner algorithm
Input: A family of sets S = {s1, s2, . . . , sn}
Output: The set of MHSes of S

1: function MTMiner(S)
2: C1 ← ∅ . initial candidate set
3: for all e ∈

⋃
S do

4: if e ∈ s for all s ∈ S then
5: output {e}
6: else
7: C1 ← C1 ∪ {e}
8: end if
9: end for
10: i ← 1 . Size of candidates under consideration
11: while Ci 6= ∅ do
12: Ci+1 ← ∅ . candidates of size i+ 1
13: for all a, b ∈ Ci such that |a ∪ b| = i+ 1 do
14: c ← a ∪ b
15: if c \ {e} ∈ Ci and c \ {e} hits fewer sets than c for all e ∈ c then
16: if c is a hitting set of S then
17: output c
18: else
19: Ci+1 ← Ci+1 ∪ {c}
20: end if
21: end if
22: end for
23: i ← i+ 1
24: end while
25: end function

The authors claim a running time bound of O(2x · y) where x is the size of the largest hitting set and y is
the number of hitting sets of S. However, Hagen shows in [70] that this bound is incorrect. He shows that
MTMiner is not output-polynomial and that its complexity is nΩ(log logn), where n = |S|+ y.

It is possible to search only for MHSes of bounded cardinality with MTMiner by discarding any candidate
that is too large. The second author and collaborators apply this approach as a “greedy algorithm” in [16] to
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study minimal interventions in a biochemical signalling network. They take a different approach to element
search than that in Lines 13 and 14; they instead loop over all candidate sets a of a given size and consider
a ∪ {e} for every element e /∈ a which does not form a singleton hitting set. They also consider sets and
elements in orders determined by a heuristic score called OCSANA to optimize the quality of approximate
results in cases where complete enumeration is infeasible.

A C++ implementation of this algorithm by the authors of [69] is available in the repository.

4.3.2 Murakami and Uno (2014)

Murakami and Uno take a somewhat different approach in [61] in two new algorithms. We will refer to these
algorithms as MMCS and RS (the names given to them by their authors). Both rely on a crucial observation
which makes possible efficient bottom-up searches for minimal hitting sets.

First, we require two definitions. For a given family of sets S, a sub-MHS is a set M which is a subset of
some MHS of S. For a given set E of elements of S, an element e ∈ E is critical in E if there is at least one
set s ∈ S which contains e but no other elements of E.

Then we have the following proposition, appearing in various forms in cf. [69, 61]:

Proposition 4.4. A set M of elements of a set family S is a sub-MHS if and only if every m ∈M is critical
in M . In this case, we say that M satisfies the minimality condition.

Thus, the MHSes of a set family are exactly the maximal element sets satisfying the minimality condition.
Both algorithms MMCS and RS proceed by building up sets that satisfy the minimality condition until they
are hitting sets, making clever use of intermediate data structures to ensure that no redundant checks are
performed.

Let k = ‖S‖ be the sum of the sizes of the sets in a set family S. Then MMCS runs in O(k) time per
iteration of its main loop, but the authors of [61] do not give bounds for the number of iterations required.

For RS, each iteration also takes O(k) time, but the number of iterations can be bounded explicitly: it is
O(
∑
yi) for yi the number of MHSes of the subfamily S≤i = {s1, . . . , si}. Thus, the total running time is

O(k ·
∑
yi).

It is possible to search only for MHSes of bounded cardinality with MMCS or RS by simply discarding any
candidate that is too large. Furthermore, it is straightforward to parallelize the algorithm using the task
model. However, the shd program distributed by the authors of [61] does not support either of these modes.

A C implementation of MMCS and RS by the authors of [61] is available in the repository. A C++
implementation of the parallel versions pMMCS and pRS which supports efficient enumeration of small MHSes
is also included.

4.4 Full cover approaches
A fourth type of approach to computing the MHSes of a set family S is to decompose the underlying elements
into several subsets such that every set in S lies entirely in one of them. Formally, a full cover of S is another
set family C with the property that every s ∈ S is a subset of some c ∈ C.

For any dual cover, we have the following decomposition result, given in cf. [43, Lemma 3], which we
express in the algebraic language of hypergraphs:

Lemma 4.5. Let H be a simple hypergraph and let C be a full cover of H. Then the transversal hypergraph
TrH of H satisfies

TrH =
∧
c∈C

Tr(Hc). (3)

where ∧ is the wedge operation defined in Definition 4.1 and Hc is the subhypergraph of H containing only
the edges that are subsets of c.

Given a set family S and a full cover C of S, we can use equation (3) to break down the dualization
computation into several independent computations which can be run in parallel, then merge the results
using the hypergraph wedge operation. (Each of these computations can in turn be decomposed recursively.)
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There are two easy-to-find full covers of any set family S: the family S itself and the singleton family
{
⋃
S}. The approaches given below use more refined full covers to ensure that the recursion of Lemma 4.5 is

efficient.
Pseudocode of this approach is given in Algorithm 4 in the language of set families.

Algorithm 4 Full cover algorithm
Input: A set family S = {s1, s2, . . . , sn} and a full cover C of S
Output: The set of MHSes of S

1: function FullCoverDualize(S,C)
2: for all c ∈ C do . can be considered in parallel
3: Sc ← min({s|s ⊆ c})
4: Cc ← some full cover of Sc . details vary by algorithm
5: Tc ← FullCoverDualize(Sc, Cc)
6: end for
7: T ← min

(
{
⋃
c∈C tc|tc ∈ Tc}

)
. hypergraph wedge

8: return T
9: end function

Of course, the efficiency of this algorithm depends on the choice of full cover in Line 4. In particular, the
procedure to choose this full cover C should have three properties:

1. C should have many components, to spread the load over many processors;

2. the individual computations FullCoverDualize(Sc, Cc) should be substantially smaller in scale than
the full computation, so no one processor has too much work to do; and

3. the merge operation in Line 7 (and in particular the minimization step) should not be too complex, so
the sequential part of the algorithm does not dominate the running time.

Several published algorithms fit into this scheme; they differ primarily in how they approach the construc-
tion of C.

4.4.1 Khachiyan et al. (2007)

Khachiyan et al. introduced the full cover decomposition approach in [50, 46]. They focus on hypergraphs
with a curious property: the restriction of the hypergraph to any vertex subset V ′ admits a full cover with
the property that each covering edge has size less than (1− ε)|V ′| for a fixed threshold parameter 0 < ε < 1.
They show that using such a collection of full covers in Lemma 4.5 yields an efficient recursive algorithm.
They then are able to show that this procedure runs in polylogarithmic time on polynomially many processors,
with coefficients determined by the value of ε. We will refer to this algorithm as pKBEG (for the Parallel
algorithm of Khachiyan, Boros, Elbassioni, and Gurvich).

Of course, this analysis only applies if such a family of full covers can be found. They demonstrate
constructions (and give explicit values of ε) for several important families: hypergraphs with bounded edge
size (“dimension”), bounded “dual-conformality” (a condition related to intersections in the transversal), or
bounded edge-transversal intersection size.

The authors are not aware of a public implementation of this algorithm. Since it does not apply in
generality, we will not study it in Section 5.

4.4.2 Elbassioni (2008)

Following up on [50, 46], Elbassioni presents in [71] two parallel decomposition approaches for the transversal
recognition problem. The first is essentially a rearrangement of FK-B to make the search tree broader and
shallower so parallel computation is efficient. The second is a variant of a full-cover decomposition algorithm;
given a transversal T of a hypergraph H with vertex set V , it uses

C(T ) = {V \ {i}|i ∈ T} ∪ {T} (4)
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as a full cover of TrH to decompose the problem. (He also incorporates a special divide-and-conquer case
similar to the FK algorithms under certain circumstances.) We will refer to this algorithm as pELB (for the
Parallel algorithm of Elbassioni).

Elbassioni shows that this algorithm runs in polylogarithmic time on quasipolynomially many processors
in polynomial space for any hypergraph; in particular, letting n be the number of vertices, x be the number
of edges of H, and y be the size of TrH, the running time is bounded by both n2xo(log y) and n2yo(log x), so
any asymmetry in the sizes of H and TrH reduces the runtime. (The exact bounds are cumbersome to state
but may be found in [71].)

The authors are not aware of any public implementation of this algorithm.

4.4.3 Boros and Makno (2009)

Boros and Makino present in [43] a full cover algorithm which improves on the asymptotic complexity bounds
of [71] for transversal recognition. To do this, they introduce another full cover in addition to that in
equation (4), which they incorporate into an FK-like recursive duality-testing framework. Fix a hypergraph
H and an edge e ∈ H; then

C(e) = {(V \ f) ∪ {i}|f ∈ H, i ∈ f ∩ e} (5)

is a full cover of TrA. By carefully choosing when to use a full cover from equation (4) or equation (5), Boros
and Makino are able to obtain very strong bounds on parallel runtime. We will refer to this algorithm as pBM
(for the Parallel algorithm of Boros and Makino).

Fix a hypergraph H with n vertices and x edges for which TrH has y edges. Then pBM runs in
O(logn+ log x log y) time using O

(
nxy1+log x) processors.

A C++ implementation of this algorithm for MHS generation, written by the first author, is available in
the repository.

4.5 Other
Some authors have used approaches that translate the MHS generation problem into other domains for which
specialized algorithms already exist. We outline these below.

4.5.1 Primary decomposition of squarefree monomial ideals

The MHS generation problem can be translated into a problem in computational algebra. Fix a set family
S = {s1, s2, . . . , sn} with underlying element set E =

⋃
i si = {e1, . . . , em} To each element ei associate a

variable xi in a polynomial ring over Q. To each set si, associate a monomial mi =
∏
ej∈si

xj . (For example,
the set {1, 2, 5} becomes the monomial x1x2x5). We can then construct a monomial ideal IS generated by
the monimials ms, which encodes the set family algebraically. By construction, IS is squarefree. It then turns
out that the generators of the associated primes of IS correspond exactly to the minimal hitting sets of H.
We will refer to this approach as PrimDecomp.

This approach was used by Jarrah et al. in [19] for an application in computational biology. They calculate
the associated primes of IS using Alexander duality [72] as provided in Macaulay2 [73].

A container which uses Macaulay2 to perform this calculation is provided in the repository.

4.5.2 Integer programming

The MHS generation problem can be interpreted as an integer programming problem. Fix a set family
S = {s1, s2, . . . , sn} with underlying element set E =

⋃
i si = {e1, . . . , em} We declare n variables xi, each

of which may take values from {0, 1}. A subset T of the vertices then corresponds to an assignment x of
the x-variables. For each set si, we impose a constraint

∑
ej∈s xj ≥ 1; an assignment x corresponds to a

hitting set if it satisfies all these constraints. Enumeration of inclusion-minimal assignments that satisfy the
constraints is then exactly the MHS generation problem. (Indeed, it was shown by Boros et al. in [74] that
MHS generation is equivalent to the general problem of enumerating minimal solutions to the linear system
Ax = b for 0 ≤ x ≤ c where A is a binary matrix, x is a binary vector, and b and c are all-ones vectors.) We
will refer to this approach as IntProg.
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Because linear programming solvers are so diverse and many widely-used ones are proprietary, we do not
provide an implementation of this approach.

4.6 Feature comparison
We summarize in Table 1 the salient features of the algorithms introduced in Section 4.

Table 1: Feature comparison of MHS generation algorithms

Algorithm Domain Published Eval.a Parallel Cutoffb

Set iteration
Berge (§4.1.1) Hypergraphs 1984 X X
HS-DAG (§4.1.2) Fault diagnosis 1989 X X
HST (§4.1.3) Fault diagnosis 2001 X X
BMR (§4.1.5) Data mining 2003 X
DL (§4.1.4) Data mining 2005 X
KS (§4.1.6) Hypergraphs 2005 X

Divide and conquer
FK-A (§4.2.2) Boolean algebra 1996 X
FK-B (§4.2.2) Boolean algebra 1996
BOOL (§4.2.1) Fault diagnosis 2003 X X
STACCATO (§4.2.3) Fault diagnosis 2009 X X
ParTran (§4.2.4) Poset theory 2010 X X
Knuth (§4.2.5) Boolean algebra 2011 X
HTC-BDD (§4.2.6) Boolean algebra 2013 X
MHS2 (§4.2.7) Fault diagnosis 2014 X X X

MHS buildup
MTMiner (§4.3.1) Data mining 2007 X X
MMCS (§4.3.2) Hypergraphs 2014 X Xc X
RS (§4.3.2) Hypergraphs 2014 X Xc X

Full covers
pKBEG (§4.4.1) Boolean algebra 2007 X
pELB (§4.4.2) Boolean algebra 2008 X
pBM (§4.4.3) Boolean algebra 2009 X X

Other
PrimDecomp (§4.5.1) Comp. algebra 2007 X
IntProg (§4.5.2) Optimization –

a Xindicates that an algorithm is evaluated in Section 5.
b Indicates that an algorithm can generate only small MHSs to save time
c Separate parallel implementation by the first author

4.7 Algorithm miscellany
A genetic algorithm for finding many (but not necessarily all) small (but not necessarily minimal) hitting sets
is studied by Li and Yunfei in [15]. Vinterbo and Øhrn study in [14] the more refined problem of finding
weighted r-approximate hitting sets, which are sets which hit some fraction 0 ≤ r ≤ 1 of the target sets
according to assigned weights; they also apply a genetic algorithm with promising results.

Jelassi et al. consider the efficacy of pre-processing methods in [75]. They find that, for many common
classes of set families, it is worthwhile to compute from the family S a new family S′ which combines elements
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which occur only in the same sets into so-called generalized nodes. (This optimization was also used by
Kavvadias and Stavropoulos in [62] for their algorithm KS.) Their algorithm Irred-Engine performs this
preprocessing, applies a known MHS algorithm (in their case, MMCS from [61]) to the resulting family S′, and
then expands the results into MHSes for the original S. We will not study this approach separately here, but
it may be of interest for applications where many vertices may be redundant.

5 Time-performance comparison of the algorithms
Numerous previous papers have included experimental comparisons of some algorithms, including [61, 65, 62,
69, 64, 12, 6, 13]. However, we find that there is need for a new, comprehensive survey for several reasons:

1. Each published comparison involves only a few algorithms, and differences in data sets and environment
make the results incompatible. Thus, it is not possible to assemble a systematic overview of the relative
performance of these algorithms.

2. Many existing comparisons overlook published algorithms in domains far from the authors’ experience.
An algorithm designed for monotone dualization may prove to be useful for data mining, for example,
but authors in that field may be unaware of it due to translational issues in the literature.

3. Most existing comparisons are not published alongside working code and do not provide methodological
details so that the results can be reproduced or extended. (Murakami and Uno’s work in [61] is a
notable exception, and indeed their publicly-available implementations are used for several algorithms
here.)

5.1 Methodology
We have assembled a repository of software implementations of existing algorithms. Each is wrapped in
a Docker container using the Algorun framework and using standardized JSON formats for input and
output. Details, code, and containers are available from https://github.com/VeraLiconaResearchGroup/
MHSGenerationAlgorithms, including complete instructions for reproducing the experimental environment
and running new experiments. These containers are easy to deploy on any computer supporting the Docker
container environment; they do not require compiling any code or downloading libraries. Interested readers
are encouraged to run similar experiments on their own data sets.

We have run each implemented algorithm on a variety of input set families (discussed in detail in
Section 5.2). Each was allowed to run for up to one hour (3600 s) before termination; at least one algorithm
ran to termination on every data set with this timeout. Algorithms which did not time out were run a total
of three times and the median runtime used for analysis, presented in Section 5.3. Algorithms which support
cutoff enumeration (that is, finding only hitting sets of size up to some fixed c) were run with c = 5, 7, and
10 as well as full enumeration. Algorithms which support multiple threads were run with t = 1, 2, 4, 6, 8, 12,
and 16 threads. All experiments were performed on a workstation with an Intel Xeon E5-2630v3 processor
with eight cores at 2.4 GHz (with Hyperthreading enabled, allowing 16 concurrent threads) and 32 GB of
ECC DDR4 RAM.

In all cases, the generated hitting sets were compared to ensure that the algorithms were running correctly.
This revealed errors in several published implementations, which are discussed in Section 4 and Table 1. In
cases where an algorithm’s results are only slightly incorrect, we have included its benchmark timing in
the results below, since we believe these still give a useful impression of the relative performances of these
algorithms.

5.2 Data sets used for time-performance comparison
We apply each algorithm to a variety of set families derived from real-world data. We briefly discuss each
data set here. We have focused on data sets that provide large, heterogenous set families, since these cases
highlight the performance differences among algorithms; for smaller families, the differences may be negligible
in practice.
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accident
Anonymized information about several hundred thousand accidents in Flanders during the period
1991–2000. Originally published in [76]. Converted by the authors of [61] into a set family whose
sets are the complements of maximal frequent itemsets with specified threshold 1000θ for θ ∈
{70, 90, 110, 130, 150, 200}; MHSes of this set family then correspond to minimal infrequent item-
sets. All of the set families have 441 underlying elements; numbers of sets range from 81 (for θ = 200)
to 10968 (for t = 70). This formulation was downloaded from [77].

ecoli
Metabolic reaction networks from E. coli. Reaction networks for producing acetate, glucose, glycerol,
and succinate, along with the combined network, were analyzed to find their “elementary modes” using
Metatool [78], which are given as set families. MHSes of these set families correspond to “minimal
cut sets” of the original networks, which are of interest in studying and controlling these networks.
Statistics for these set families are given in Table 2.

Table 2: Statistics for E. coli network data sets

Network elements sets avg. set size
Acetate 103 266 23.7
Glucose 104 6387 30.4
Glycerol 105 2128 27.2
Succinate 103 932 22.3
Combined 109 27503 30.6

ocsana
Interventions in cell signalling networks. Two cell signalling networks (EGFR from [79] and HER2+
from [20]) were analyzed to find their “elementary pathways” using OCSANA, which are given as set
families. MHSes of these set families correspond to “optimal combinations of interventions” in the
original networks, which are of interest in studying and controlling these networks. Each network has
been preprocessed to find these elementary pathways using three different algorithms of increasing
resolution: shortest paths only (SHORT), including “suboptimal” paths (SUB), and including all paths
up to length 20 (ALL). This results in six set families. Statistics for these families are given in Table 3.

Table 3: Statistics for OCSANA network data sets

Network Method elements sets avg. set size
EGFR SHORT 49 125 8.9

SUB 55 234 9.9
ALL 63 11050 16.5

HER2+ SHORT 122 534 15.2
SUB 171 2538 20.3
ALL 318 69805 19.1

These set families demonstrate particularly effectively the problem of combinatorial explosion in MHS
generation. For example, the HER2+.SHORT set family has just 122 underlying elements and 534 sets,
but we have computed that it has 128833310 MHSes. Even storing the collection of MHSes in memory
is difficult because of its size. As a result, none of the algorithms tested were able to complete the full
enumeration of MHSes for any of the HER2+ data sets. However, the cutoff enumeration is much more
manageable; for example, HER2+.SHORT has just 26436 MHSes of size c ≤ 7, which are found easily by
several of the algorithms under study.
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5.3 Results
We present below the results of the benchmarking experiments on the data sets described in Section 5.2. All
experiments were performed on a workstation with an Intel Xeon E5-2630v3 processor with eight cores at
2.4 GHz (with Hyperthreading enabled, allowing 16 concurrent threads) and 32 GB of ECC DDR4 RAM.
Each algorithm was allowed to run for up to 3600 s; algorithms that did not complete in this time are marked
with –, while algorithms that crashed due to memory exhaustion are marked with !.

5.3.1 Full enumeration

We first consider the general problem of enumerating all MHSes of a given set family. Timing results for the
full enumeration cases are given in Tables 4 to 6, with algorithms sorted in approximately increasing order of
speed.

5.3.2 Multithreaded full enumeration

Although many of the published algorithms are serial, a few can be parallelized. For the algorithms for which
multithreaded implementations were available, we have run tests with t ∈ {1, 2, 4, 6, 8, 12, 16} threads on our
workstation with eight true cores and Hyperthreading support. Timing results for selected full enumeration
cases with various numbers of threads are shown in Tables 7 and 8.

5.3.3 Cutoff enumeration

In many applications, only small MHSes are relevant. We consider here the enumeration of MHSes of size no
greater than some “cutoff” c; we have run benchmarks for c ∈ {5, 7, 10} using the algorithms which support
cutoff mode. Timing results for selected cutoff enumeration cases are given in Tables 9 and 10.

5.4 Discussion
As shown in Section 5.3, the algorithms MMCS and RS from [61] and HTC-BDD from [68] are far faster than
their competitors across a variety of input set families.

HTC-BDD is extremely fast on inputs for which it terminates, outperforming its closest competitors by
a factor of 4 to 10 on many inputs. However, it frequently exhausted the 32GB available memory on our
workstation. In addition, it does not support cutoff enumeration. Thus, we recommend HTC-BDD for situations
where all the MHSes of moderately-sized set families must be found quickly—for example, when many such
families must be processed. Since the core algorithm takes a ZDD representation of the input set family and
returns either a BDD or a ZDD of its hitting sets, it is also very suitable for processing pipelines where BDDs
are already used.

MMCS and RS are also very fast, and they support both cutoff1 and full enumeration. They have the
additional benefit of very low memory requirements—in principle, the space required for a run depends only
on the size of the input set family. This is especially useful for inputs like HER2+.SHORT where S is small (≈
500 sets) but has an enormous collection of MHSes (≈ 128 million). Thus, we recommend these algorithms
for situations where very large set families are studied or where only the small MHSes are required.

We note, however, that the provided implementations (both those by Murakami and Uno and by the
first author) store the result MHSes in memory before writing them to disk, which did result in memory
exhaustion for some inputs in our experiments. It would be straightforward to modify the implementations
of MMCS or RS to stream the result MHSes to disk rather than storing them in memory or to count them
without storing them at all, as we did to compute the number of MHSes of size ≤ 10 for HER2.short and
HER2.all in Table 9. In addition, the implementations mmcs and rs of Uno and pMMCS and pRS of the
first author varied dramatically in performance depending on the input, highlighting the importance of
implementation. Researchers planning to use any of these algorithms should certainly benchmark all the
available implementations on data drawn from their application before adopting one.

We also find that parallel algorithms for MHS generation can be highly effective. For example, the
MHS2 algorithm (cf. Section 4.2.7) of Cardoso and Abreu [6] shows a 2.33× improvement in running time

1Supported by the first author’s implementations pMMCS and pRS.
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Algorithm EGFR

short sub all

mmcs 0.01 0.05 1.34
rs 0.01 0.05 1.33
pMMCS 0.08 0.46 3.21
pRS 0.04 0.37 4.67
mtminer ! ! !
bmr 0.22 2.99 22.26
htcbdd 0.40 0.50 0.51
knuth 0.37 ! !
mhs2 – – !
dl 0.14 4.25 39.66
fka-begk 10.39 152.44 705.07
bool 12.18 3115.06 2865.42
hst – – !
primdecomp 1.01 10.00 13.91
hsdag – – !
berge 0.31 9.89 2065.67
partran 289.41 – –
pbm 1544.00 – –
staccato – – –
|vertices| 51 57 65
|edges| 125 234 11050
|MHSes| 1340 11765 13116

Table 5: Computation time (in s) to enumerate all MHSes for ocsana-egfr with the path-finding strategies
short, sub, and all

(– indicates timeout. ! indicates memory exhaustion.)
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Algorithm ecoli

acetate succinate glycerol glucose combined

mmcs 0.05 0.86 2.51 4.72 157.08
rs 0.06 0.75 2.46 4.51 155.63
pMMCS 0.07 0.46 1.13 4.43 202.65
pRS 0.33 3.95 15.49 26.31 1989.85
mtminer 149.86 682.34 ! ! !
bmr 0.56 12.13 33.20 26.74 2209.63
htcbdd 0.47 0.55 0.69 0.85 14.16
knuth ! ! ! ! !
mhs2 140.50 737.68 2447.53 – !
dl 3.15 225.51 1771.77 1749.88 !
fka-begk 25.80 514.18 1421.68 ! !
bool.iterative 5.11 438.79 – – !
hst – – – – !
primdecomp 3.46 22.42 53.24 62.57 !
hsdag 2945.19 – – – !
berge 52.90 – – – –
partran – – – – !
pbm – – – – –
staccato – – – – !
|vertices| 103 103 105 104 109
|edges| 266 932 2128 6387 27503
|MHSes| 3363 14136 25619 21001 275914

Table 6: Computation time (in s) to enumerate all MHSes for ecoli networks
(– indicates timeout. ! indicates memory exhaustion.)

Algorithm ecoli-acetate

t = 1 t = 2 t = 4 t = 6 t = 8 t = 12 t = 16
pMMCS 0.07 0.06 0.04 0.04 0.04 0.06 0.07
pRS 0.33 0.23 0.20 0.14 0.13 0.14 0.12
mhs2 140.50 90.99 62.52 61.36 60.60 60.85 58.90
pbm – – – – – – –

Table 7: Computation time (in s) to enumerate all MHSes with t threads for ecoli-acetate
(– indicates timeout. ! indicates memory exhaustion.)

Algorithm ecoli-combined

t = 1 t = 2 t = 4 t = 6 t = 8 t = 12 t = 16
pMMCS 202.65 118.70 72.05 60.01 50.76 49.16 51.58
pRS 1989.85 1072.64 591.16 431.82 364.22 348.78 334.61
mhs2 ! ! ! ! ! ! !
pbm – – – – – – –

Table 8: Computation time (in s) to enumerate all MHSes with t threads for ecoli-combined
(– indicates timeout. ! indicates memory exhaustion.)

25



A
lg
or
ith

m
HE

R2
sh

or
t

al
l

c
=

5
c

=
7

c
=

10
c

=
5

c
=

7
c

=
10

pM
M
C
S

0.
10

1.
08

!
5.

71
64
.8

9
!

pR
S

0.
08

2.
23

!
1.

88
94
.6

9
!

m
hs
2

64
9.

81
–

–
–

–
–

bo
ol

1.
23

42
.1

8
!

20
1.

71
!

!
hs
t

26
.9

3
–

–
10
.0

0
–

–
hs
da

g
0.

84
12

18
.2

3
–

2.
21

66
6.

13
–

be
rg
e

5.
18

–
–

42
.0

2
–

–
st
ac
ca
to

–
–

–
–

–
–

|v
er
tic

es
|

12
4

12
4

12
4

32
0

32
0

32
0

|e
dg

es
|

53
4

53
4

53
4

69
80
5

69
80
5

69
80
5

|M
H
Se

s|
88

26
43
6

87
44
33
3

40
18
92

28
53
02
6

Ta
bl
e
9:

C
om

pu
ta
tio

n
tim

e
(in

s)
to

en
um

er
at
e
al
lM

H
Se

s
up

to
siz

e
c
fo
r

oc
sa

na
-H

ER
2+

w
ith

pa
th
-fi
nd

in
g
st
ra
te
gi
es

sh
or

t
an

d
al

l
(–

in
di
ca
te
s
tim

eo
ut
.
!
in
di
ca
te
s
m
em

or
y
ex
ha

us
tio

n.
)

26



A
lg
or
ith

m
ec

ol
i

ac
et

at
e

co
mb

in
ed

c
=

5
c

=
7

c
=

10
c

=
5

c
=

7
c

=
10

pM
M
C
S

0.
01

0.
01

0.
03

0.
40

1.
90

17
.9

4
pR

S
0.

01
0.

03
0.

10
0.

27
4.

12
11

8.
49

m
hs
2

1.
32

12
.1

4
78
.9

3
87

0.
36

!
!

bo
ol

0.
02

0.
09

0.
73

21
.4

5
19

8.
68

!
hs
t

0.
02

8.
23

–
8.

92
!

!
hs
da

g
0.

02
0.

55
45
.9

4
6.

96
54

6.
50

!
be

rg
e

0.
20

0.
93

3.
80

28
0.

45
–

–
st
ac
ca
to

–
–

–
!

!
!

|v
er
tic

es
|

10
3

10
3

10
3

11
0

11
0

11
0

|e
dg

es
|

26
6

26
6

26
6

27
50
3

27
50
3

27
50
3

|M
H
Se

s|
39

19
5

73
5

93
7

92
12

49
06
1

Ta
bl
e
10
:
C
om

pu
ta
tio

n
tim

e
(in

s)
to

en
um

er
at
e
al
lM

H
Se

s
up

to
siz

e
c
fo
r

ec
ol

i
ne

tw
or
ks

ac
et

at
e
an

d
co

mb
in

ed
(–

in
di
ca
te
s
tim

eo
ut
.
!
in
di
ca
te
s
m
em

or
y
ex
ha

us
tio

n.
)

27



when passing from one thread to eight on the ecoli-acetate set family, while the first author’s parallel
implementation pMMCS of the MMCS algorithm (cf. Section 4.3.2) of Murakami and Uno [61] shows a 4.04×
speedup when passing from one thread to eight on the ecoli-combined set family. Unfortunately, the first
author’s implementation of the BM full-cover-based parallel algorithm (cf. Section 4.4.3) of Boros and Makino
[43] was too slow to yield useful results.

6 Conclusion
In this paper, we have surveyed the history and literature concerning the problem of generating minimal
hitting sets. The computational complexity of this task is a long-standing open problem. However, since
many applications (cf. Section 2) depend on generating MHSes, a variety of algorithms (cf. Section 4) have
been developed to solve it across numerous pure and applied research domains.

We have presented extensive benchmarks (cf. Section 5.3) comparing the computation time required
by nearly two dozen of these algorithms on a variety of inputs derived from real-world data. These
experiments consistently show that the MMCS and RS algorithms (cf. Section 4.3.2) of Murakami and Uno
[61] and the HTC-BDD algorithm (cf. Section 4.2.6) of Toda [68] are far faster than other available algorithms
across a variety of inputs. We have provided our benchmarking framework and code in easy-to-install
Docker containers (cf. Section 5.1), so researchers wishing to analyze the performance of these algorithms
on their own inputs can do so easily. Further details are available on our software repository at https:
//github.com/VeraLiconaResearchGroup/MHSGenerationAlgorithms.
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