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Abstract. In this paper, we study the proximal gradient algorithm with extrapolation for
minimizing the sum of a Lipschitz differentiable function and a proper closed convex function. Under
the error bound condition used in [Ann. Oper. Res., 46 (1993), pp. 157-178] for analyzing the
convergence of the proximal gradient algorithm, we show that there exists a threshold such that if
the extrapolation coefficients are chosen below this threshold, then the sequence generated converges
R-linearly to a stationary point of the problem. Moreover, the corresponding sequence of objective
values is also R-linearly convergent. In addition, the threshold reduces to 1 for convex problems, and
as a consequence we obtain the R-linear convergence of the sequence generated by FISTA with fixed
restart. Finally, we present some numerical experiments to illustrate our results.
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1. Introduction. In this paper, we consider the following optimization problem:

(1.1) min F(z) := f(z) + g(x),

zER™
where ¢ is a proper closed convex function and f is a possibly nonconvex function
that has a Lipschitz continuous gradient. We also assume that the proximal operator
of ug, i.e.,

1
u +— arg min {g(x) + —|lx— u||2}
TER™ 2”

is easy to compute for all p > 0 and any u € R", where arg min denotes the unique
minimizer. We also assume that the optimal value of (1.1) is finite and is attained.
Problem (1.1) arises in many important contemporary applications including com-
pressed sensing [8, 13], matrix completion [7], and image processing [9]. Since the
problem instances are typically of large scale, first-order methods such as the prox-
imal gradient algorithm [17] are used for solving them, whose main computational
efforts per iteration are the evaluations of the gradient of f and the proximal map-
ping of pg. For the proximal gradient algorithm, when f is in addition convex, it is
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known that

k : 1
F(zx )—Ilen]gnF(x) =0 (E) ,
where {z*} is generated by the proximal gradient algorithm; see, for example, [32,
Theorem 1(a)]. However, the proximal gradient algorithm, in its original form, can
be slow in practice; see, for example, [12, section 5].

Various attempts have thus been made to accelerate the proximal gradient al-
gorithm. One simple and often efficient strategy is to perform extrapolation, where
momentum terms involving the previous iterations are added to the current iteration.
A prototypical algorithm takes the following form:

yk — xk 4 Bk(xk _ $k71)7

P! = argmin {(Vf(yk),x> + i”x —y*|12 + g(x)} ,
TER™

(1.2)

where g > 0 is a constant that depends on the Lipschitz continuity modulus of V f,
and the extrapolation coefficients Sy satisfy 0 < B < 1 for all k. A recent example
is the fast iterative shrinkage-thresholding algorithm (FISTA) proposed by Beck and
Teboulle [2], which is based on Nesterov’s extrapolation techniques [22, 23, 24, 206]
and is designed for solving (1.1) with f being convex and ¢ being continuous. Their
analysis can be directly extended to the case when g is a proper closed convex function.
The same algorithm was also independently proposed and studied by Nesterov [25].
FISTA takes the form (1.2) and requires {0} to satisfy a certain recurrence relation.
It was shown in [2, 25] that this algorithm exhibits a faster convergence rate than
that of the proximal gradient algorithm, which is

k . 1
Fla >—;££nF—O<ﬁ) !
where {z*} is generated by FISTA. Many accelerated proximal gradient algorithms
based on Nesterov’s extrapolation techniques have been proposed since then, and
we refer the reader to [4, 5, 32] and the references therein for an overview of these
algorithms.

The faster convergence rate of FISTA in terms of objective values motivates sub-
sequent studies on the extrapolation scheme (1.2); see, for example, [1, 10, 12, 16, 33].
Particularly, O’Donoghue and Candeés [12] proposed an adaptive restart scheme for Sy
based on FISTA for solving (1.1) with f being convex and g = 0. Specifically, instead
of following the recurrence relation of Sy in FISTA for all k, they reset 8 = 5y every
K iterations, where K is a positive number. They established global linear conver-
gence of the function values when f is strongly convex if K is sufficiently large. Their
algorithm is robust against errors in the estimation of the strong convexity modulus of
f; see the discussion in [12, section 2.1]. Later, Chambolle and Dossal [10] established
the convergence of the whole sequence generated by (1.2) for solving (1.1) when f is
convex and f = % for any fixed o > 3, which was later extended in [1] to allow
errors in gradient computation. More recently, Tao, Boley, and Zhang [33] established
local linear convergence of FISTA applied to the LASSO (i.e., f is a least squares loss
function and g is a positive multiple of the ¢; norm) under the assumption that the
problem has a unique solution that satisfies strict complementarity. Johnstone and
Moulin [16] considered (1.1) with f being convex and showed that the whole sequence
generated by (1.2) is convergent by assuming that the extrapolation coefficients S
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satisfy 0 < B, < B for some 3 < 1. Moreover, by imposing uniqueness of the opti-
mal solution, together with a technical assumption, they showed that the sequence
generated by (1.2) is locally linearly convergent when applied to the LASSO for a
particular choice of {8;}.

Despite the rich literature, we note that the local linear convergence of (1.2) is
only established for a certain type of convex problem with unique optimal solutions
for some specific choices of {3k}, which can be restrictive for practical applications.
Thus, in this paper we further study the behavior of the sequence {z*} generated by
(1.2). Specifically, we discuss local linear convergence under more general conditions
in the possibly nonconvex case.

In detail, under the same error bound condition used in [19] for analyzing con-
vergence of the proximal gradient algorithm, we show that there is a threshold 5
depending on f so that if sup, Bx < f3, then the sequence {x*} generated by (1.2)
converges R-linearly to a stationary point of (1.1), and the sequence of the objective
value {F(z*)} is also R-linearly convergent. In particular, if f is in addition convex,
then B reduces to 1, and we can conclude that the sequence {z*} generated by FISTA
with fixed restart is R-linearly convergent to an optimal solution of (1.1); see section
3.3. The error bound condition is satisfied for a wide range of problems including the
LASSO, and hence our linear convergence result concerning (1.2) with a fixed p is
more general than those discussed in [16].

The rest of this paper is organized as follows. Section 2 presents some basic
notation and preliminary materials. In section 3, we establish linear convergence of
the iterates generated by the proximal gradient algorithm with extrapolation under
the same error bound condition used in [19]. Linear convergence of the corresponding
sequence of function values is also established. FISTA with restart is discussed in
section 3.3. In section 4, we perform numerical experiments to illustrate our results.

2. Notation and preliminaries. Throughout this paper, we use R” to denote
the n-dimensional Euclidean space, with its standard inner product denoted by (-, -).
The Euclidean norm is denoted by || - ||, the £; norm is denoted by || - ||1, and the £
norm is denoted by || - [[co. The vector of all ones is denoted by e, whose dimension
should be clear from the context. For a matrix A € R™*", we use AT to denote its
transpose. Finally, for a symmetric matrix A € R™*"™, we use Amax(A4) and Apin(A)
to denote its largest and smallest eigenvalue, respectively.

For a nonempty closed set C C R™, its indicator function is defined by

0 if zeC,
66(96)_{ +oo if z ¢C.

Moreover, we use dist(z,C) to denote the distance from x to C, where dist(z,C) =
infycc | — y||. When C is in addition convex, we use Projs(z) to denote the unique
closest point on C to x.

The domain of an extended-real-valued function h : R™ — [—00, o0] is defined as
dom h = {z € R": h(z) < +o0}. We say that h is proper if it never equals —oo and
dom h # @. Such a function is closed if it is lower semicontinuous. A proper closed
function A is said to be level bounded if the lower level sets of h are bounded, i.e.,
the set {x € R™: h(z) <r} is bounded for any r € R. For a proper closed convex
function h : R™ — R U {oc}, the subdifferential of h at 2 € dom h is given by

Oh(z) ={€eR": h(u) — h(z) — ({,u—x) >0 Vu e R"}.
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We use Proxp,(v) to denote the proximal operator of a proper closed convex function
h at any v € R", i.e.,

1
Prox,(v) = arg min {h(x) + |z — v|2} .

We note that this operator is well defined for any v € R™, and we refer the reader to
[27, Chapter 1] for properties of the proximal operator.

For an optimal solution & of (1.1), the following first-order necessary condition
always holds, thanks to [29, Exercise 8.8(c)]:

(2.1) 0€ Vf(E)+ dg(a),

where Vf denotes the gradient of f. We say that & is a stationary point of (1.1)
if & satisfies (2.1) in place of Z; in particular, any optimal solution & of (1.1) is a
stationary point of (1.1). We use X' to denote the set of stationary points of F.

Finally, we recall two notions of (local) linear convergence, which will be used in
our convergence analysis. For a sequence {z* }, we say that {z*} converges Q-linearly
to z* if there exist ¢ € (0,1) and kg > 0 such that

|2Ftt — 2*|| < ¢||a® — =¥ Vk > ko,
and we say that {z*} converges R-linearly to z* if

lim sup [|2* — x*H% <1
k—o0
We state the following simple fact relating the two notions of linear convergence,
which is an immediate consequence of the definitions of Q- and R-linear convergence.
We will use this fact in our convergence analysis.

LEMMA 2.1. Suppose that {a} and {by} are two sequences in R with 0 < by, < ag,
for all k, and {ay} is Q-linearly convergent to zero. Then {by} is R-linearly convergent
to zero.

3. Convergence analysis of the proximal gradient algorithm with ex-
trapolation. In this section, we present the proximal gradient algorithm with
extrapolation for solving (1.1) and discuss the convergence behavior of the sequence
generated by the algorithm.

We recall that in our problem (1.1), the function g is proper closed convex, and f
has a Lipschitz continuous gradient; moreover, inf F' > —oo and X’ # (). Furthermore,
we observe that any function f whose gradient is Lipschitz continuous can be written
as f = f1 — fo, where f; and f5 are two convex functions with Lipschitz continuous
gradients. For instance, one can decompose f as

C C
F(@) = 1) + Sl — £l
—_— Y~
fi(=) fa(x)

for any ¢ > Ly, where Ly is a Lipschitz continuity modulus of V f. It is then routine
to show that both f; and fs5 are convex functions with Lipschitz continuous gradients.

Thus, without loss of generality, from now on, we assume that f = f; — fo for some
convex functions f1 and fo with Lipschitz continuous gradients. For concreteness, we
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denote a Lipschitz continuity modulus of Vf; by L > 0 and a Lipschitz continuity
modulus of Vf; by | > 0. Moreover, by taking a larger L if necessary, we assume
throughout that L > [. Then it is not hard to show that V f is Lipschitz continuous
with a modulus L.

We are now ready to present our proximal gradient algorithm with extrapolation.

Algorithm 1: Proximal gradient algorithm with extrapolation

Input: 2° € dom g, {#} C [O, W/LL-H] Set ! = 0.
for k=0,1,2,... do

yk — $k +ﬁk($k _ $k_1),

(3.1) LA Prox,, (yk _ %Vf(yk)) .

end for

We shall discuss the convergence behavior of Algorithm 1. We note first that it
is immediate from the definition of the proximal operator that the z-update in (3.1)
is equivalently given by

(32) P41 = argmin {(VF().0) + Flle — ¥ + ()}

This fact will be used repeatedly in our convergence analysis below. Our analysis also
relies heavily on the following auxiliary sequence:

(3.3) Hi o :F(xk)—i—aka —xk_lﬂz

for a fixed o € [%BQ, %] with 3 := supy, 8k, where {z*} is generated by Algorithm 1.
We study the convergence properties of {Hy o} in section 3.1. The results will then
be used in subsequent subsections for analyzing the convergence of {z*} and {F(z*)}.
The auxiliary sequence (3.3) was also used in [1, 10, 16] for analyzing (1.2).

3.1. Auxiliary lemmas. We start by showing that {Hj o} is nonincreasing and
convergent.

LEMMA 3.1. Let {z*} be a sequence generated by Algorithm 1 and o € [ 3% L]
Then the following statements hold:

(i) For any z € dom g, we have

L
(3-4) P < P(2) + =z =" I* = S lla"*" — 2]

(ii) It holds that for all k,

L L+1 _
(35) Hk+1,a_Hk,a < <—§ —|—a> ||33k+1—12k|2—|—( 5 BI% —Oé) H$k—$k 1H2'

(i) The sequence {Hy o} is nonincreasing.

Proof. We first prove (i). Fix any z € dom g. Using the definition of z**! in

(3.2) and the strong convexity of the objective in the minimization problem (3.2), we
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obtain upon rearranging terms that

9@ < g(z) + (=VF("), 2" = 2) + S|z = *|
(3.6)
L”karl _ yk||2 _ L

5 5 karl _ Z||2

On the other hand, using the fact that Vf is Lipschitz continuous with a Lipschitz
continuity modulus L, we have

(3.7) FEF) < FWF) + (VR a5 — by + gl\x’““ — "2

Summing (3.6) and (3.7), we see further that

FEE) + 9@ < FM) +g(z2) + (V) 2 — oF)

L L
2l =) - Sl - )

(3.8)

Next, recall that f = f; — fo. Hence, we have

FOE + (V) 2 =)
= AW") — ")+ (VAW 2 =) = (Va(y"), 2 — yF).

Since f; and fo are convex and their gradients are Lipschitz continuous with moduli
L and [, respectively, the following two inequalities hold:

AW+ (VAW 2 =% < fi(2),

Fo2) = )~ (V)2 — ) < 5l — oI

(3.9)

Combining these relations with (3.9) and recalling that f = f; — fo, we see further
that

(3.10) PR+ (V1) 2 ) < 7+ gz~ v )P

Summing (3.8) and (3.10), and recalling that F' = f + g, we obtain (3.4) immediately.
This proves (i).

We now prove (ii). We note first from the definition of the y-update in (3.1) that
yk — aF = Bip(a* — 2¥~1). Using this and (3.4) with z = 2*, we obtain that
L

A ]

L+1
2

F(zM1) — F(aF) < okt — k)2,

From this and the definition of Hy, o from (3.3), we see further that

Hisr,0 — Heo = F(@") 4 al|a™ — 282 — F(a*) — af2® — 251
Lo w1 k2, LHI

L L+1 _
(—— T a) Jk T a2 4 ( 8- a) ok — 12,

IN

Brlla® — Y2 + alla™t = 2P — afja® — 2"

2 2
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which is just (3.5). This proves (ii). Finally, since LT” B2 <a< é by our assumption,
we have

|
L+1

2

L+1-
ﬂ,%—agT—'_ﬁ2—a§0 Vk.

—g—l—aSO and

Consequently, Hy1+1,0 — Hi,o < 0; i.e., {Hg,o} is nonincreasing. This completes the
proof.

The following result is an immediate consequence of Lemma 3.1.

COROLLARY 3.2. The sequence {x*} generated by Algorithm 1 is bounded if F is
level bounded.

Proof. From Lemma 3.1, the sequence {H, k%} is nonincreasing. This, together
with the definition of Hy, L, implies that

k
F(IE )SHk)L SH@% < oo.

2
Since F is level bounded by assumption, we conclude that {z*} is bounded. O

LEMMA 3.3. Let {2*} be a sequence generated by Algorithm 1 and o € [%BQ, %]
Then the following statements hold:

(i) The sequence {Hy o} is convergent.
(i) YpZole— HHBR )2 — 2M)? < 0.

Proof. Recall that inf F > —oo. Hence, Hy, = F(zF) + afz* — 2712 is
bounded from below. This, together with the fact that {H} o} is nonincreasing from
Lemma 3.1, implies that { Hx o} is convergent. This proves (i).

We now prove (ii). Since —% + o < 0, we have from (3.5) that

L+1 _
(3.11) Hio = Hio < = (a= ZH5R) [ - a2,

Summing both sides of (3.11) from 1 to N, we see further that

al L+1 al
(312) 0< > (a - 6,%) ¥ —a* M * < (Hpa—His1.0) = Hio—Hy i1,
k=1 k=1

where the nonnegativity follows from the fact that o > %32 > %ﬂz for all k.
Since {Hy,} is convergent by (i), letting N — oo in (3.12), we conclude that the
infinite sum exists and is finite, i.e.,

> L+1 _
5 (o 55 0R) Ik - ot <

k=1

This completes the proof. a

In the next lemma, we show that when {8} is chosen below a certain threshold,
then any accumulation point of the sequence {z*} generated by Algorithm 1, if it
exists, is a stationary point of F. This result has been established in [16] when the
function f is convex. Indeed, in the convex case, it was shown in [16, Theorem 4.1]
that the whole sequence {z*} is convergent. However, the following convergence result
is new when the function f is nonconvex.
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LEMMA 3.4. Suppose that B < 1/% and {z*} is a sequence generated by Algo-

rithm 1. Then the following statements hold:
(1) Sopo 2™+ — ¥ |? < oo.
(i) Any accumulation point of {z*} is a stationary point of F.

JERE 2
a for all k, and the conclusion in (i) follows immediately from Lemma 3.3(ii).
We next prove (ii). Let & be an accumulation point. Then there exists a subse-
quence {x¥} such that lim; ,., 2% = z. Using the first-order optimality condition of
the minimization problem (3.2), we obtain

Proof. Since < y/+%=, one can choose a € (%”32, L), Then LT”ﬁ,% < LTHB2 <

—L(z"H —yM) € V(Y™ + og(a" ).

Combining this with the definition of y*:, which is y*¥ = 2% 4 By, (zF — 2% 71), we
see further that

(3.13) = L@ = ) = B, (0 — 2B ] € V() + Dg(a ).

Passing to the limit in (3.13) and invoking ||z**! — z¥i|| — 0 from (i) together with
the continuity of Vf and the closedness of dg (see, for example, [6, p. 80]), we have

0€ Vf(z)+ dg(z),
meaning that Z is a stationary point of F'. This completes the proof. a

Let Q be the set of accumulation points of the sequence {z*} generated by Algo-
rithm 1. Then, from Corollary 3.2 and Lemma 3.4(ii), we have ) # Q C X when F is
level bounded. We prove in the next proposition that F' is constant over Q if {8} is
chosen below a certain threshold. Since F' is only assumed to be lower semicontinu-
ous, this conclusion is nontrivial when F' has stationary points that are not globally
optimal.

PROPOSITION 3.5. Suppose that B < LLH and that {z*} is a sequence gener-

ated by Algorithm 1 with its set of accumulation points denoted by Q. Then ¢ =
limy_ 00 F(2*) exists and F = ¢ on Q.

Proof. Fix any o € (432, L), which exists because § < ,/ 7=7. Then, in view of

Lemmas 3.3 and 3.4, the sequence {Hy , } is convergent and ||z¥T! —2*|| — 0. These,
together with the definition of Hy, o, imply that limy_, o F (2F) exists. We denote this
limit by (.

We now show that F' = ¢ on Q. If Q = ), then the conclusion holds trivially.
Otherwise, take any # € Q. Then there exists a convergent subsequence {z*:} with
lim; o0 ¥ = &. From the lower semicontinuity of F' and the definition of ¢, we have

(3.14) F(i) < liminf F(z*) = ¢.
1— 00
On the other hand, using the definition of z*: as the minimizer in (3.2), we see that
. _ L, . _ L. S
(3.15) g(@™) +(VF(5 ), 2" = @) + St = ym TP < g(@) + Sl - BT

Adding f(z%') to both sides of (3.15), we obtain further that
(3.16)

. : S L, S : . L. S
P49 )+ R0, 2t =it =y T < F @) +e(@)+ 5 la—yt T
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Next, recall that y*i—1 = zki—1 4 B, (z%~1 — 2*¥=2). Thus, we have

e — b = flob = bt = By (2 - k)|

3.17 _
1 < flas — b Bkt - ),

In addition, we also have

R R

(3.18) T
< [1d = ko) 4 ks — .

Since [|zFT! — 2*|| — 0 and lim;_, o, 2% = %, it follows from (3.17) and (3.18) that

o —y* " =0 and & —y" | =0,
and hence Vf(y*~1) — Vf(2). From these and (3.16), we obtain that
(3.19) ¢ = limsup F(z") < F(&).
i—»00
Thus, F (%) = lim; o F(2%) = ¢ from (3.14) and (3.19). Since & € Q is arbitrary,
we see that F' = ( on 2. This completes the proof. d

3.2. Linear convergence of {x*} and {F(z*)}. In this subsection, we es-
tablish local linear convergence of {z*} and {F(z*)} under the following assumption.

ASSUMPTION 3.1.
(i) (error bound condition). For any & > infyecgrn F(x), there exist € > 0 and

7 > 0 such that

1
dist(z, &) < 7 ||Proxs, (a: - sz(x)) —x

whenever |[Proxy,(z — 1V f(z)) —z|| <€ and F(z) < €.
(ii) There exists § > 0, such that ||z — y|| > 0 whenever x,y € X, F(x) # F(y).
The above assumption has been used in the convergence analysis of many al-
gorithms, including the gradient projection and block coordinate gradient descent
methods, etc.; see, for example, [3, 18, 19, 20, 30, 31, 32] and the references therein.
The assumption consists of two parts: the first part is an error bound condition,
while the second part states that when restricted to X', the isocost surfaces of F' are
properly separated. Under our blanket assumptions on F', Assumption 3.1 is known
to be satisfied for many choices of f and g, including the following:
e f(x) = h(Ax), and g is a polyhedral function, where h is twice continuously
differentiable on R™ with a Lipschitz continuous gradient, and on any compact
convex set, h is strongly convex; see [18, Theorem 2.1] and [31, Lemma 6].
This covers the well-known LASSO.
e f is a possibly nonconvex quadratic function, and g is a polyhedral function;
see, for example, [31, Theorem 4].
The first example is convex, while the second one is possibly nonconvex. We refer the
reader to [31, 32, 34] and the references therein for more examples and discussions on
the error bound condition.
We next show that {Hy o} is Q-linearly convergent under Assumption 3.1. Our
analysis uses ideas from the proof of [31, Theorem 2], which studied a block coordinate
gradient descent method.
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LEMMA 3.6. Suppose that < 1/#, a € (LTﬂﬁz, %) and that Assumption 3.1

holds. Let {x*} be a sequence generated by Algorithm 1. Then the following statements
hold:

(1) limg_ o dist(z¥, X) = 0.

(ii) The sequence {Hg o} is Q-linearly convergent.

Proof. First, we prove (i). Observe that

(3.20) < ‘

1
k k k
Prox., <x —ZVf(x ))—x

Proxi, (xk - %Vf(fk)> — Proxy, <yk - %Vf(yk)) H

"

1
Proxy, (yk - EVf(y’“)) — ¢

We now derive an upper bound for the first term on the right-hand side of (3.20).
To this end, using the nonexpansiveness property of the proximal operator (see, for
example, [28, p. 340]), we have

7

(3.21) <

Proxy, (= 956N - Prosy, (1 - 1956 |

ok = VSR — o+ 1Y)

1
<lla® =yl + ZIVFE") = VWO < 202" ]

where the last inequality follows from the fact that V f is Lipschitz continuous with
modulus L. Combining (3.20) and (3.21) and invoking the definition of x*+! in
Algorithm 1, we see further that

< 3l =yt + =y

Proxi, (xk — %Vf(xk)) —azF

e I e e [ E el |

(3.22) ‘

where the last inequality follows from the definition of * in (3.1) and the definition
of 8. Since ||z*+! — 2*|| — 0 by Lemma 3.4, we conclude from (3.22) that

(3.23) ‘ 0.

1
Proxi, <xk - sz(a:k)) —a®

Let & = Hp,o. Since {Hp o} is nonincreasing by Lemma 3.1, we must have Hy o < &
for all k, and consequently F(z*) < ¢ for all k. In view of this, (3.23), and Assumption
3.1(i), we see that for £ = Hy o, there exist 7 > 0 and a positive integer K so that for
all k > K, we have

(3.24) dist(z*, X) < 7

Proxs, <xk — %Vf(x%) —zF

Thus, from (3.23) and (3.24) we immediately obtain the conclusion in (i).
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We now prove (ii). Take an arbitrary z € X. We have from (3.4) that

L+1 L
M) < F()+ Sz — b2 = S e — 22

L+1 k2
< F(2) 4+ =]z —
5 < F()+ <l =3l

L+1

= F(2) + Iz = a* + 2 -y
< F(2) + (LA Dz = 2* + (L + Dla* - y*|I*.

Choose 2 in (3.25) to be an ¥ € X so that ||7% — 2%|| = dist(2*, &'). Then we obtain
(3.26) F(a"*h) — F(z%) < (L + D)dist? (2%, X) + (L + 1)||2* — y¥||>.

In addition, recall that ||x**1 — z¥|| — 0 by Lemma 3.4. This, together with (3.23)
and (3.24), shows that ||zF+! — || — 0. In view of this and Assumption 3.1(ii), it
must then hold true that F(z*) = ¢ for some constant ¢ for all sufficiently large k.
Thus, for all sufficiently large k£ we have from (3.26) that

(3.27) F(af Yy — ¢ < (L + Ddist? (2%, X) + (L + 1)||2* — o2

On the other hand, since Z* is a stationary point of (1.1) so that —V f(z*) € dg(z*),
we have for all £ that

g(@*) — g(a*) < (=Vf(@"), T8 — 2F).
Using this and the definitions of I, Hy o, and ¢, we see that for all sufficiently large
k,
¢ = Hio = F(3¥) = F(a") - afla® — 2*~1|?

= (@) + 9(#") — f(a*) —g(a*) — e — 2t

< f(@E) = f@*) + (-V ("), 2 —2*) —all2b — 2P
= —f( M) = [=f@")] = (=Vf(@"), 2" — 2") — alja” — 2712
—Hx | [

where the last inequality follows from the Lipschitz continuity of —V f. Using this, the
fact that ||z*+! —2*|| — 0 by Lemma 3.4, and the fact that ||z% —2*| = dist(2*, &) —
0 by (i), we deduce that

(3.28) ¢ < lim Hy o =inf Hy o,
k—o0 k

where the equality follows from Lemma 3.1(iii).
Now, from (3.22), (3.24), and (3.27), we see that for all sufficiently large k,

F(zF Y — ¢ < (L + Ddist? (2%, X) + (L + 1)||z* — 3|2
< (L 2Bl — 5 [ P (L Dl — P
< (L+ D72 (Blle* — 71+ 2™+ — 28 )? + (L + DBk — oF 12
< O(lla® = &M+ [l = 2®)?)
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for some positive constant C', where the third inequality follows from the definition
of y* in (3.1) and the definition of 3. Combining this with the definition of Hy ., we
obtain further that

(3.29) 0 < Hypra =€ < nlla” — a2 4 |2t —ab)?),

where 7 = C + a, and the nonnegativity is a consequence of (3.28). On the other
hand, let 6 = min{% —a, o — LT”ﬁ2}. Then § > 0, and we see from (3.5) that

(3.30) (Hitra =) = (Hia — Q) < =0(|2" T —a® | + [la* — 2" ~H|?).
Combining (3.30) and (3.29), we obtain further that

(3.31) (Hipro —¢) — (Hio — O) < —%(Hk+1,a 0.

Reorganizing (3.31), we see that for all sufficiently large k,

0<Hpi10— (< (Hi,o =€),

5
L+ 5
which implies that the sequence {Hy o} is @-linearly convergent. This completes the
proof. a

We are now ready to prove the local linear convergence of the sequences {z*} and
{F(2*)} by using the Q-linear convergence of { H, q }
THEOREM 3.7. Suppose that < ,/LLH and that Assumption 3.1 holds. Let {z*}
be a sequence generated by Algorithm 1. Then the following statements hold:
(i) The sequence {z*} is R-linearly convergent to a stationary point of F.
(ii) The sequence {F(z*)} is R-linearly convergent.

Proof. Fix any o € (£ 3%, L), which exists because 8 < 4/ 7=7. Then, in view of

Lemma 3.6, the sequence {Hy, o} is Q-linearly convergent. For notational simplicity,
we denote its limit by ¢. Let § = min{Z —a,a — £H3?}. Then § > 0, and we
obtain from (3.5) that

1 1 1
(3:32) & = 2b)* < 5(Ha = O) = 5(Hrra = ) < 5(Hia = O);

where the last inequality follows from the fact that the sequence { Hy o} is nonincreas-
ing and convergent to (, thanks to Lemmas 3.1 and 3.3. Using the above inequality
and the fact that the sequence { Hy o} is Q-linearly convergent, we see that there exist
0 <c<1and M > 0 such that

(3.33) 2"t — 2k < M

for all k. Consequently, for any my > mq > 1, we have

mz—l
lz™s =™ < Y ettt k| <

k:ml

Mc™
1—c¢’

showing that {z*} is a Cauchy sequence and hence convergent. Denoting its limit by

Z and passing to the limit as ms — oo in the above relation, we see further that
Mc™

< .

T 1l-c

[l — &
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This means that the sequence {z*} is R-linearly convergent to its limit, which is a
stationary point of F' according to Lemma 3.4. This proves (i).

Next, we prove (ii). Notice that for any k > 1, we have from the definition of
Hj, o that

|F(@*) = ¢ = [Hia — ¢ = alla® = 2" ° < Hia = C+ afja® — 2"

< Hk,a —(+ %(Hk—l,oz - C)a

where the first inequality follows from the triangle inequality and the fact that the
sequence {Hj o} is nonincreasing and convergent to ¢ according to Lemmas 3.1
and 3.3, and the second inequality follows from (3.32). This, together with the Q-
linear convergence of {Hj .} and Lemma 2.1, implies the R-linear convergence of
{F(z®)}. 0

3.3. FISTA with restart: A special case of Algorithm 1. In this sub-
section, we discuss FISTA with restart. Restart schemes for FISTA were proposed
recently in O’Donoghue and Candes [12], where they adopted as a heuristic an adap-
tive restart technique and established global linear convergence of the objective value
when applying their method to (1.1) with f being strongly convex and g = 0. The
restart techniques have also been adopted in the popular software TFOCS [5]. While
O’Donoghue and Candes did not prove any linear convergence results for convex
nonsmooth problems such as the LASSO, they stated that for the LASSO, “after a
certain number of iterations adaptive restarting can provide linear convergence”; see
[12, p. 728]. In this subsection, we will explain that FISTA equipped with the afore-
mentioned restart schemes is a special case of Algorithm 1. Moreover, when both of
their restart schemes are used for the LASSO, both sequences {z*} and {F(2*)} are
R-linearly convergent.

To proceed, we first present FISTA [2, 25] for solving (1.1) with f being in addition
convex.

FISTA Input: 2° € dom g, §_; =6y = 1. Set 2~ = 20,
for k=0,1,2... do

O -1
= Hk ,
yk — $k +ﬁk($k _ $k_1),

1
P = Proxy, (g/~C - EVf(yk)) )

1+ /14467
5 .

Opr1 =

end for

As one of the many variants of Nesterov’s accelerated proximal gradient algorithms,
FISTA uses a specific choice of {fr}. According to the formula for updating S8 in
FISTA above, it holds that 0 < By < 1 for all k.!' On the other hand, since f is

ISince Ok+1 = (1 +4/1+ 49% )/2 and 0_1 = 0p = 1 in FISTA, by induction, it is routine to

show that 0 > % and 0 _1 — 1 < 0 whenever k > 1. Combining these with the definition of §j in

FISTA, we see that 0 < 8, < 1 for all k.
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convex, we can choose | = 0 and thus ,/LLH = 1 in Algorithm 1. Consequently,

FISTA can be viewed as a special case of Algorithm 1.

FISTA with restart (see, for example, [5, 12]) is based on FISTA. Here, we adopt
the same restart schemes as in [12]: fixed restart and adaptive restart. In the fixed
restart scheme, we choose a positive integer K and reset 0,1 = 0 = 1 every K
iterations, while in the adaptive restart (gradient scheme),? we reset 6 = 01 = 1
whenever (y* — z*+1 gkl — 2F) > 0; see [12, eq. 13]. Clearly, whenever the fixed
restart scheme is invoked, we will have 3 < 1. Thus, we have the following immediate
corollary of Theorem 3.7.

COROLLARY 3.8. Suppose that f in (1.1) is convex and that Assumption 3.1 holds.
Let {x*} be a sequence generated by FISTA with the fized restart scheme or both fized
and adaptive restart schemes. Then

(i) {z*} converges R-linearly to a globally optimal solution of (1.1), and

(i) {F(2*)} converges R-linearly to the globally optimal value of (1.1).

From the discussion following Assumption 3.1, we see that the objective function
in the LASSO satisfies Assumption 3.1. Thus, by Corollary 3.8, when the fixed restart
scheme or both fixed and adaptive restart schemes is/are used for the LASSO, both
sequences {z*} and {F(2*)} are R-linearly convergent.

Before ending this subsection, we would like to point out two crucial differences
between our Corollary 3.8 and the conclusion in [12]. First, O’Donoghue and Candes
concluded global linear convergence of function values for a special case of (1.1) where
f is strongly convex and g = 0, while we obtain local linear convergence for (1.1) for
both {z*} and {F(z*)} with f being convex. Second, their global linear convergence
is only guaranteed if K is chosen sufficiently large; see [12, eq. (6)]. On the other
hand, we do not have any restrictions on the number K, the width of the restart
interval.

4. Numerical experiments. In this section, we conduct numerical experiments
to study Algorithm 1 under different choices of {8;}. We consider the following three
different types of problems: the ¢ regularized logistic regression problem, the LASSO,
and the problem of minimizing a nonconvex quadratic function over a simplex. The
first two problems are convex optimization problems, while the third problem is pos-
sibly nonconvex. We consider three different algorithms for each class of problems.
For the convex problems, we consider Algorithm 1 with 5, = 0 (proximal gradient
algorithm), B; chosen as in FISTA, and i chosen as in FISTA with both fixed and
adaptive restart schemes. On the other hand, for the nonconvex problems, we con-

sider Algorithm 1 with 8y = 0 (proximal gradient algorithm) and 8; = 0.98 LLH
We also consider FISTA as a heuristic.

All numerical experiments are performed in MATLAB 2014b on a 64-bit PC with
an Intel Core i7-4790 CPU (3.60GHz) and 32GB of RAM.

4.1. £; regularized logistic regression. In this subsection, we consider the ¢,
regularized logistic regression problem,

(4.1) v, = min Z log(1 + exp(—b;(a;  + x0))) + A|Z||1,
=1

log FER™,zo€R
1

2There is also another scheme based on function values. It was discussed in [12, section 3.2] that
the two schemes perform similarly empirically and that the gradient scheme has advantages over the
function value scheme. Thus, in this paper we focus on the gradient scheme.
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where a; € R, b; € {-1,1},4 = 1,2,...,m, with b; not all the same, m < n, and
A > 0 is the regularization parameter. It is easy to see that (4.1) is in the form of
(1.1) with

(4.2) f@) = log(1+exp(—b;i(Dx);)), glx) = |1,
=1

where x := (%,29) € R*"!, and D is the matrix whose ith row is given by (a; 1).
Moreover, one can show that V f is Lipschitz continuous with modulus 0.25\pax (DT D).
Thus, in our algorithms below we take L = 0.25\nax(D " D) and [ = 0.

Before applying Algorithm 1, we need to show that v, > —oco and that the
solution set X of (4.1) is nonempty. To this end, we first recall that the dual problem
of (4.1) is given by

m

(4.3) foetions d, (u) = — ;[_biui log(—biu;) + (1 + bju;) log(1 + biu;)]

st |ATul|ee <A, eTu=0,

where A is the matrix whose ith row is a; . It can be shown that the optimal values
of (4.1) and (4.3) are the same and that an optimal solution of (4.3) exists; see, for
example, [6, Theorem 3.3.5]. In addition, we note that because A > 0 and b; are not
all the same, the generalized Slater condition is satisfied for (4.3); i.e., there exists @
satisfying [[ATiljec < A, eT@ = 0, and —1 < b;@i; < 0 for i = 1,...,m. Hence, by
[28, Corollary 28.2.2], an optimal solution of (4.1) exists. Consequently, v, . > —o0,
and the solution set X of (4.1) is nonempty.

Thus, Algorithm 1 is applicable. In addition, from the discussion following
Assumption 3.1, Assumption 3.1 is satisfied for (4.2). Hence, one should expect
R-linear convergence of the sequences {z*} and {F(z*)} generated by FISTA with
restart, in view of Corollary 3.8.

We now perform numerical experiments to study Algorithm 1 under the following
three choices of {f}: Br = 0 as in the proximal gradient algorithm (PG), §j chosen
as in FISTA, and (5, chosen as in FISTA with both fixed and adaptive restart schemes,
where we perform a fixed restart every 500 iterations (FISTA-R500). We choose A = 5
in (4.1) and initialize all three algorithms at the origin. As for the termination, we
make use of the fact that for any z € X, Vp(DZ) is an optimal solution of (4.3) (see,
for example, [28, Theorem 31.3]). Specifically, we define

log

A
[ATVp(Dzb)]|

u* = min {1, | } Vp(Dz*)

and terminate the algorithms once the duality gap and the dual feasibility violation
are small, i.e.,

) T gt~ )] 50l y
{ max{(«%) + g(e). 1] ’max{||uk|,1}}<10 |

We also terminate the algorithms when the number of iterations hits 5000.

We consider random instances for our experiments. For each (m,n,s) =
(300, 3000, 30), (500, 5000, 50), and (800, 8000, 80), we generate an mxn matrix A with
i.i.d. standard Gaussian entries. We then choose a support set T' of size s uniformly

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/11/22 to 158.132.161.181 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PROXIMAL GRADIENT ALGORITHM WITH EXTRAPOLATION 139

at random and generate an s-sparse vector & supported on T with i.i.d. standard
Gaussian entries. The vector b is then generated as b = sign(AZ + ce), where c¢ is
chosen uniformly at random from [0, 1].

Our computational results are presented in Figures 1, 2, and 3. In part (a) of
each figure, we plot ||z¥ — 2*|| against the number of iterations, where x* denotes
the approximate solution obtained at termination of the respective algorithm, while
in part (b) of each figure, we plot |F(2*) — Fluin| against the number of iterations,
where Fiyn denotes the minimum of the three objective values obtained from the
three algorithms. We see that both {2*} and {F(2*)} generated by FISTA with both
fixed and adaptive restart schemes are R-linearly convergent, which conforms with
our theory. Moreover, compared with FISTA and the proximal gradient algorithm,
the algorithm with restart performs better.

4.2. LASSO. In this subsection, we consider the LASSO,

1
(4.4) v, = min S|z = b]* + Al

where A € R™*™ and b € R™. We observe that (4.4) is in the form of (1.1) with
1
(4.5) f@) = 5llAz=0|*,  g(z) = |-

It is clear that f has a Lipschitz continuous gradient and f + g has compact lower
level sets. Thus, we can apply Algorithm 1 to solving (4.4). Moreover, in view of
the discussion following Assumption 3.1, Assumption 3.1 is satisfied for (4.5). Hence,
according to Corollary 3.8, one should observe R-linear convergence of both sequences
{«*} and {F(2*)} generated by FISTA with restart. Finally, it is not hard to show
that Vf has a Lipschitz continuity modulus of A\yax(AT A). In view of this, in the
algorithms below, we take L = Apax(AT A) and [ = 0.

Before describing our numerical experiments, we recall that f(xz) = h(Az) =
1| Az — b||?, where h(v) = 3|lv — b||2. The conjugate function of & can then be easily
computed as h*(u) := sup,egm{u'v—"h(v)} = $|lul[*+b"u. Hence, the dual problem
of (4.4) is given by

1
max d_(u) = —=|ul|?-b"u
(4.6) u€R™ F 2

st [JATulleo < A

It can be shown that the optimal values of (4.4) and (4.6) are the same, and, moreover,
an optimal solution of (4.6) exists; see, for example, [6, Theorem 3.3.5]. This dual
problem will be used in developing termination criteria for our algorithms below.
Now we perform numerical experiments to study Algorithm 1 under the same
three choices of {81} as in the previous subsection. We choose A = 5 in (4.4), initialize
all three algorithms at the origin, and use the duality gap to terminate the algorithms.
Specifically, as in the previous subsection, we make use of the fact that for any optimal
solution Z of (4.4), Vh(AZ) is an optimal solution of (4.6). Hence, we define

u® = min 1, A
|ATVh(AzF)

and terminate the algorithms once the duality gap is small, i.e.,

F@*) 4 g(a®) —d@h)]
max{f(®) + g@@), 1} = 0

} Vh(Az"®)

oo
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We also terminate them when the number of iterations hits 5000.

The problems used in our experiments are generated as follows. For each (m, n, s) =
(300, 3000, 30), (500, 5000, 50), and (800, 8000, 80), we generate an m xn matrix A with
i.i.d. standard Gaussian entries. We then choose a support set T' of size s uniformly
at random, and generate an s-sparse vector & supported on T with i.i.d. standard
Gaussian entries. The vector b is then generated as b = Az 4 0.01€, where € has
standard i.i.d. Gaussian entries.

The computational results are presented in Figures 4, 5, and 6. In part (a) of
each figure, we plot ||z* — z*|| against the number of iterations, where z* denotes the
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approximate solution obtained at termination of the respective algorithm; addition-
ally, in part (b) of each figure, we plot |F(2*) — Fyin| against the number of iterations,
where F,i, denotes the minimum of the three objective values obtained from the three
algorithms. As in the previous subsection, we see from the figures that both {z*} and
{F(2*)} generated by FISTA with both fixed and adaptive restart schemes are R-
linearly convergent, which conforms with our theory. Additionally, the algorithm with
restart performs better than FISTA and the proximal gradient algorithm.
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4.3. Nonconvex quadratic programming with simplex constraints. In
this subsection, we look at problems of the following form, which are possibly non-
convex:

min leAx —b'x
(4.7) z€R? 2
st. elz=s, x>0,

where A € R™*" is a symmetric matrix that is not necessarily positive semidefinite,
b € R”, and s is a positive number. This is an example of nonconvex quadratic
programming problems, which is an important class of problems in global optimization
[11, 14, 15, 21]. Notice that one can rewrite (4.7) in the form of (1.1) by defining

(4.8) fla) = 5aTAr 0T, g(r) = bs(e),

where S = {z € R": e'w =s, > 0}. Moreover, it is clear that f has a Lipschitz
continuous gradient and f + ¢ is level bounded. Hence, Algorithm 1 can be ap-
plied to solving (4.7). Furthermore, from the discussion following Assumption 3.1,
Assumption 3.1 is satisfied for (4.8). Consequently, according to Theorem 3.7, one
should expect to see R-linear convergence of both sequences {z*} and {F(z*)} gen-

erated by Algorithm 1 when § < |/+%. Finally, since A = A; — Ay, where A; and

—As are the projections of A onto the cone of positive semidefinite matrices and the
cone of negative semidefinite matrices, respectively, we see that f = fi1 — fa, where
fi(z) = 32T A1z — bT2 and fo(z) = 227 Asz. In view of this, in our experiments
below, we set L = max{Amax(A4), [Amin(A4)|} and I = [Amin(A)]| so that L and [ are the
Lipschitz continuity moduli of V f; and V fs, respectively, and L > .

Now we perform numerical experiments to study Algorithm 1 with two choices of

{Br}: Br =0 (PG) and 3y = 0.98 LLH (PGe). In addition, we also perform the same

experiments on FISTA.? We initialize all three algorithms at the origin and terminate

them when the successive changes of the iterates are small, i.e.,

k k—1

l=* ==+ e
max{||z* ||, 1}

We also terminate the algorithms when the number of iterations hits 5000.

Our test problem is generated as follows. We generate a 2000 x 2000 matrix D
with i.i.d. standard Gaussian entries. We then generate a symmetric matrix A =
D + DT. Finally, the vector b is generated with i.i.d. standard Gaussian entries, and
s is generated as max{1, 10t}, with ¢ chosen uniformly at random from [0, 1].

The computational results are presented in Figure 7. We plot ||z¥ — z*|| against
the number of iterations in Figure 7(a), where z* denotes the approximate solution
obtained at termination of the respective algorithm; in addition, we plot |F(z*)— Fiuin|
against the number of iterations in Figure 7(b), with Fi,;, being the minimum of the
three objective values obtained from the three algorithms. We can see from Figure 7(a)

that the sequence {z*} generated by Algorithm 1 with 3 = 0.98,/ LLH is R-linearly

convergent, which conforms with our theory. However, from Figure 7(b), one can see
that not all of the algorithms are approaching Fy,i,. This is likely because the iterates
generated by the algorithm got stuck at local minimizers.

3We would like to point out that FISTA applied to the nonconvex problem (4.7) is not known to
converge, unlike the other two algorithms which have convergence guarantee by our theory.
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F1G. 7. Nonconvex quadratic problem.

To further evaluate the quality (in terms of function values at termination) of the
approximate solution obtained by the algorithms, we perform a second experiment.
In this experiment, we generate random instances as follows: we generate an n X n
matrix D with i.i.d. standard Gaussian entries and symmetrize it to form A = D+DT;
moreover, we generate a vector b with i.i.d. standard Gaussian entries and generate
an s = max{1, 10t}, where ¢ is chosen uniformly at random from [0, 1].

In our test, for each n = 500, 1000, 1500, 2000, and 2500, we generate 50 random
instances as described above. The computational results are reported in Table 1,
where we present the number of iterations, averaged over the 50 instances for each n
(iter), and the function value at termination (fval), also averaged over the 50 instances.

One can see that while Algorithm 1 with 8, = 0.981/%” (i.e., PGe) is always the

fastest algorithm, the function values obtained can be slightly compromised for some
instances.

TABLE 1
Comparing PGe, FISTA, and PG on random instances.

PGe FISTA PG

n iter fval iter fval iter fval
500 120 | —56.02 || 175 | —56.90 || 322 | —57.96
1000 171 | —69.77 274 | —66.79 636 | —66.93
1500 166 | —66.29 270 | —63.71 560 | —65.29
2000 || 215 | —80.72 || 271 | —80.43 || 635 | —81.21
2500 284 | —81.70 359 | —80.13 813 | —83.81

5. Concluding remarks. In this paper, we study the proximal gradient
algorithm with extrapolation (3.1) for solving a class of nonconvex nonsmooth op-
timization problems. Based on the error bound condition, we establish the R-linear
convergence of both the sequence {z*} generated by the algorithm and the correspond-
ing sequence of objective values { F(z*)} if the extrapolation coefficients are below the

threshold 4/ LLH We further demonstrate that our theory can be applied to analyzing
the convergence of FISTA with the fixed restart scheme for convex problems.
Specifically, in the case when f in (1.1) is convex, our results imply that un-
der the error bound condition, the sequences {z*} and {F(2*)} generated by FISTA
with fixed restart are R-linearly convergent. In addition, since the proximal gradient

algorithm is a special case of (3.1), our linear convergence results also extend the
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corresponding results for the proximal gradient algorithm; see, for example, [18, 19,
20, 31]. However, we have to point out that the local convergence rates of the se-
quences {z¥} and {F(2*)} generated by FISTA for solving (1.1) with a convex f are
still unknown, even under the error bound condition. In addition, while the global
convergence rates (resp., O(1/k?) and O(1/k)) are both known in terms of objective
values when applying FISTA and the proximal gradient algorithm to solving (1.1)
with a convex f, such a rate is still unknown for FISTA with restart. These are
interesting questions for future research.
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