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July 9, 2018

Abstract

We study scheduling problems on a machine with varying speed. Assuming a known
speed function we ask for a cost-efficient scheduling solution. Our main result is a PTAS
for minimizing the total weighted completion time in this setting. This also implies a
PTAS for the closely related problem of scheduling to minimize generalized global cost
functions. The key to our results is a re-interpretation of the problem within the well-
known two-dimensional Gantt chart: instead of the standard approach of scheduling in the
time-dimension, we construct scheduling solutions in the weight-dimension.

We also consider a dynamic problem variant in which deciding upon the speed is part of
the scheduling problem and we are interested in the tradeoff between scheduling cost and
speed-scaling cost, which is typically the energy consumption. We observe that the optimal
order is independent of the energy consumption and that the problem can be reduced to
the setting where the speed of the machine is fixed, and thus admits a PTAS. Furthermore,
we provide an FPTAS for the NP-hard problem variant in which the machine can run
only on a fixed number of discrete speeds. Finally, we show how our results can be used to
obtain a (2+ε)-approximation for scheduling preemptive jobs with release dates on multiple
identical parallel machines.

Key words: scheduling, speed-scaling, power-management, generalized cost functions, non-
availability periods, energy-aware

1 Introduction

In several computation and production environments we face scheduling problems in which the
speed of resources may vary. We distinguish mainly two types of varying-speed scenarios: one
in which the speed is a given function of time and another dynamic setting in which deciding
upon the processor speed is part of the scheduling problem. The first setting occurs, e.g., in
production environments where the speed of a resource may change due to overloading, aging, or
in an extreme case it may be completely unavailable due to maintenance or failure. The dynamic
setting finds application particularly in modern computer architectures, where speed-scaling is an
important tool for power-management. Here we are interested in the tradeoff between the power
consumption and the quality-of-service. Both research directions—scheduling on a machine with
given speed fluctuation as well as scheduling including speed-scaling—have been pursued quite
extensively, but seemingly separately from each other.

The main focus of our work and the main technical contribution lie in the setting with a
given speed function. We consider the problem of scheduling to minimize the sum of weighted
completion times

∑

j wjCj , a standard measure for quality-of-service. We present a PTAS for
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this problem which is best possible unless P=NP. In addition, we draw an interesting connection
to the dynamic model which allows us to transfer some of our techniques to this setting.

Very useful in our arguments is the well-known geometric view of the min-sum scheduling
problem in a two-dimensional Gantt chart, an interpretation originally introduced by Eastman,
Even, and Isaacs [13]. Crucial to our results is the deviation from the standard view of scheduling
in the time dimension and switching to scheduling in the weight dimension. This dual view allows
us to cope with the highly sensitive speed changes in the time dimension which prohibit standard
rounding, guessing, and approximation techniques.

Previous work

Research on scheduling on a machine of given varying speed has mainly focused on the special
case of scheduling with non-availability periods, see e.g. [12,20,21,26]. Despite a history of more
than 30 years, only recently the first constant approximation for min

∑

wjCj was derived by
Epstein et al. [14]. In fact, their (4+ ε)-approximation computes a universal sequence which has
the same guarantee for any (unknown) speed function. For the setting with release dates, they
give an approximation algorithm with the same guarantee for any given speed function. If the
speed is only non-decreasing (and the release dates are trivial), there is an efficient PTAS [28].
In this case the complexity status remains open, whereas for general speed functions the problem
is strongly NP-hard, even when for each job the weight and processing time are equal [31].

The problem of scheduling on a machine of varying speed is equivalent to scheduling on an
ideal machine (of constant speed) but minimizing a more general global cost function

∑

wjf(Cj),
where f is a nondecreasing function. In this identification, f(C) denotes the time that the
varying-speed machine needs to process a work volume of C [16]. The special case of only non-
decreasing (nonincreasing) speed functions corresponds to concave (convex) global cost functions.
In a recent work, Höhn and Jacobs [16] give a formula for computing tight guarantees for Smith’s
rule for any convex or concave function f . They also show that the problem for increasing piece-
wise linear cost function is strongly NP-hard even with only two different slopes, and so is our
problem when the speed function takes only two distinct values.

Even more general min-sum cost functions have been studied, where each job may have its
individual nondecreasing cost function. For this setting, the currently best known approximation
factor is 4+ε [11,23]. For the more complex setting with release dates, Bansal and Pruhs [5] give a
randomized O(log log(nmaxj pj))-approximation algorithm. Clearly, these results translate also
to the setting with varying machine speed.

Scheduling with dynamic speed-scaling was initiated by Yao, Demers, and Shenker [32] and
became a very active research field in the past fifteen years. Most work focuses on scheduling
problems where jobs have deadlines by which they must finish. Thus, the speed scaling problem
is a single-objective minimization problem. We refer to [2, 17] for an overview. Closer to our
setting is the work initiated by Pruhs, Uthaisombut, and Woeginger [25] where they obtain a
polynomial algorithm for minimizing the total flow time given an energy budget if all jobs have
the same work volume. This work is later continued by many others; see, e. g., [3, 6, 9] and
the references therein. Most of this literature is concerned with online algorithms to minimize
total (or weighted) flow time plus energy. The minimization of the weighted sum of completion
times plus energy has been considered recently. Angel, Bampis, and Kacem [4] derive constant
approximations for non-preemptive models with unrelated machines and release dates. Carrasco,
Iyengar, and Stein [8] obtain similar results even under precedence constraints.

For the general objective of speed-scaling with an energy budget as considered in this paper,
Angel, Bampis, and Kacem [4] also show a randomized (2+ ε)-approximation slightly exceeding
the energy budget for non-preemptive scheduling on unrelated machines with release dates. The
bounds given for scheduling cost and the budget excess are satisfied only in expectation.

Our results

We give several best possible algorithms for problem variants that involve scheduling to minimize
the total weighted completion time on a single machine that may vary its speed.
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Our main result is an efficient PTAS (Section 3) for scheduling to minimize
∑

wjCj on a
machine of varying speed (given by an oracle). This is best possible since the problem is strongly
NP-hard, even when the machine speed takes only two distinct values [16]. Our results generalize
recent previous results such as a PTAS on a machine with only non-decreasing speeds [28] and
FPTASes for only one non-availability period [18, 19].

Standard scheduling techniques rely on delaying jobs or rounding processing requirements.
Such approaches typically fail on varying-speed machines. The reason is that the slightest error
introduced by rounding might provoke an unbounded increase in the solution cost. Similarly,
adding any amount of idle time to the machine might be fatal. Our techniques completely avoid
this difficulty by a change of paradigm. To explain our ideas it is helpful to use a 2D-Gantt
chart interpretation [13]; see Section 2. As observed before, e.g., in [15], we obtain a dual
scheduling problem by looking at the y-axis in a 2D-Gantt chart and switching the roles of the
processing times and weights. In other words, a dual solution describes a schedule by specifying
the remaining weight of the system at the moment a job completes. This simple idea avoids
the difficulties on the time-axis and allows to combine old with new techniques for scheduling
on the weight-axis. We remark that this result translates directly to the equivalent problem
1| |
∑

j wjf(Cj) (with f non-decreasing).
In case that an algorithm can set the machine at arbitrary speeds, we show in Section 4 that

the optimal scheduling sequence is independent of the available energy. This follows by analyzing
a convex program that models the optimal energy assignment for a given job permutation. A
similar observation was made independently by Vásquez [30] in a game-theoretic setting. We
show that computing this universal optimal sequence corresponds to the problem of scheduling
with a particular concave global cost function, which can be solved with our PTAS mentioned
above, or with a PTAS for non-decreasing speed [28]. Interestingly, this reduction relies again
on a problem transformation from time-space to weight-space in the 2D-Gantt chart. For a
given scheduling sequence, we give an explicit formula for computing the optimal energy (speed)
assignment. Thus, we have a PTAS for speed-scaling and scheduling for a given energy budget.
We remark that the complexity of this problem is open.

In many applications, including most modern computer architectures, machines are only
capable of using a given number of discrete power (speed) states. We provide in Section 5 an
efficient PTAS for this complex scenario. This algorithm is again based on our techniques relying
on dual schedules. Furthermore, we obtain a (1 + ε)-approximation of the Pareto frontier for
the energy-cost bicriteria problem. On the other hand, we show that this problem is NP-hard
even when there are only two speed states. We complement this result by giving an FPTAS for
a constant number of available speeds.

In Section 6 we consider a more complex scheduling problem in the speed-scaling setting:
jobs have individual release dates and must be scheduled preemptively on m identical parallel
machines. We notice that our PTAS results can be utilized to obtain a (2+ε)-approximation for
scheduling preemptive jobs with non-trivial release dates on identical parallel machines. Here,
we apply our previous results to solve a fast single machine relaxation [10] combined with a
trick to control the actual job execution times. Then, we keep the energy assignments computed
in the relaxation and apply preemptive list scheduling on parallel machines respecting release
dates. We remark, that our deterministic algorithm guarantees that any solution it obtains has
cost within a factor of 2 + ε and it meets the energy budget. This cannot be guaranteed in the
previous non-preemptive result for our objective function with energy budget in [4].

This paper expands considerably the extended abstract that appeared in the proceedings of
ICALP ’13 [22]. Among others, this new version contains complete proofs, full presentation
of our techniques, and new approximation results for more general scheduling problems with
release dates and identical parallel machines (Section 6).
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2 Model, definitions, and preliminaries

2.1 Problem definition

We consider two types of scheduling problems. In both cases we are given a set of jobs J =
{1, . . . , n} with work volumes (i.e., processing time at speed 1) vj ≥ 0 and weights wj ≥ 0. We
seek a schedule on a single machine, described by a permutation of jobs, that minimizes the sum
of weighted completion times. The speed of the machine may vary—this is where the problems
distinguish.

In the problem scheduling on a machine of given varying speed we assume that the speed
function s : R+→ R+ is given implicitly by an oracle. Given a value v, the oracle returns the
first point in time when the machine can finish v units of work. That is, for a speed function s
the oracle returns the value

f(v) := inf

{

b > 0 :

∫ b

0

s(t) ≥ v

}

. (1)

Here we are implicitly assuming that s is integrable. Using the oracle, we can compute for a
given order of jobs the execution and completion times and thus the total cost of the solution.
We additionally must ensure that the numbers returned by the oracle can be handled efficiently.
To avoid extra technical difficulties, we call an algorithm efficient if it runs in time polynomial
in the input size and the largest encoding size of a number returned by the oracle.

In the problem scheduling with speed-scaling an algorithm determines not only a schedule for
the jobs but will also decide at which speed s ≥ 0 the machine will run at any time. Running
a machine at certain speed requires a certain amount of power. Power is typically modeled as
a monomial (convex) function of speed, P (s) = sα with a small constant α > 1. Given an
energy budget E, we ask for the optimal power (and thus speed) distribution and corresponding
schedule that minimizes

∑

j wjCj . More generally, we are interested in quantifying the tradeoff
between the scheduling objective

∑

j wjCj and the total energy consumption, that is, we aim for
computing the Pareto curve for the bicriteria minimization problem. We consider two variants
of speed-scaling: If the machine can run at an arbitrary speed level s ∈ R+, we say that we are
in the continuous-speed setting. On the other hand, if that machine can only choose among a
finite set of speeds {s1, . . . , sκ} we are in the discrete-speed environment.

In both of our settings our solution concept is a permutation of jobs. Notice that this is no
restriction since preemption or idle times cannot reduce the cost of the solution.

2.2 From time-space to weight-space

For a schedule S, we let Cj(S) denote the completion time of j and we let WS(t) denote the total
weight of jobs completed strictly after t. Note that by definition WS(t) is right-continuous, i. e.,
if Cj(S) = t, the weight of j does not count towards the remaining weight WS(t). Whenever S
is clear from the context we omit it. It is not hard to see that

∑

j∈J

wjCj(S) =

∫ ∞

0

WS(t)dt. (2)

Our main idea is to describe our schedule in terms of the remaining weight function W . That
is, instead of determining Cj for each job j, we will implicitly describe the completion time of a
job j by the value of W at the time that j completes. We call this value the starting weight of the
job j, and denote it by Sw

j . Similarly, we define the completion weight of j as Cw
j := Sw

j + wj .
This has a natural interpretation in the two axes of the 2D-Gantt chart (see Figure 1a): A
typical schedule determines completion times for jobs in time-space (x-axis), which is highly
sensitive when the speed of the machine may vary. We call such a solution a time-schedule.
Describing a scheduling solution in terms of remaining weight can be seen as scheduling in the
weight-space (y-axis), yielding a weight-schedule.

In weight-space the weights play the role of processing times. All notions that are usually
considered in schedules apply in weight-space. For example, we say that a weight-schedule is
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(b) New situation after decreasing the completion
weight of Job 2.

Figure 1: 2D-Gantt chart. The x-axis shows a schedule, while the y-axis corresponds to the
remaining weight function W (·) plus the idle weight (hatched) in the corresponding weight-
schedule.

feasible if there are no two jobs overlapping, and that the machine is idle at weight value w if
w 6∈ [Sw

j , C
w
j ] for all j. In this case we say that w is idle weight (like, for example, the hatched

interval in Figure 1a). A non-preemptive weight-schedule immediately defines a non-preemptive
time-schedule by ordering the jobs by decreasing completion weights.

Consider a weight-schedule S with completion weights Cw
1 ≥ . . . ≥ Cw

n , and corresponding
completion times C1 ≤ . . . ≤ Cn. To simplify notation let Cw

n+1 = 0. Then we define the cost
of S as

∑n
j=1(C

w
j −Cw

j+1)Cj . It is easy to check, even from the 2D-Gantt chart, that this value

equals
∑n

j=1 x
S
j C

w
j , where xS

j is the execution time of job j (in time-space). Moreover, the last
expression equals Equation (2) if and only if the weight-schedule does not have any idle weight.
In general, the cost of the weight-schedule can only overestimate the cost of the corresponding
schedule in time space, given by (2).

On a machine of varying speed, the weight-schedule has a number of technical advantages.
For instance, while creating idle time can increase the cost arbitrarily, we can create idle weight
without provoking an unbounded increase in the cost. This gives us flexibility in weight-space
and implicitly a way to delay one or more jobs in the time-schedule without increasing the cost.
More precisely, we have the following observation that can be seen in the 2D-Gantt chart.

Observation 1. Consider a weight-schedule S with enough idle weight so that decreasing the
completion weight of some job j, while leaving the rest untouched, yields a feasible weight-
schedule. This operation does not increase the cost of the weight-schedule S. Indeed, notice
that job j is the only job for which its completion time might increase. However, this does not
increase the cost of the weight-schedule since the extra cost is dominated by the area induced by
the idle weight in the original schedule.

Consider Figure 1a as an example. Here Job 2 fits in the idle weight between Jobs 4
and 5 (hatched area). A new solution obtained by moving Job 2 to this idle weight is shown
in Figure 1b. This operation delays Job 2 in the time-schedule, while it schedules Jobs 3 and 4
earlier. However, the total cost of the weight-schedule, i.e., the area under the curve, decreases.

3 A PTAS for scheduling on a machine with given speeds

In what follows we give a PTAS for minimizing
∑

j wjCj on a machine with a given speed
function. In order to gain structure, we start by applying several modifications to the instance
and optimal solution. Consider 0 < ε < 1/2. First we round the weights of the jobs to the next
integer power of 1 + ε, which increases the objective function by at most a factor 1 + ε.

Additionally, we discretize the weight-space in intervals that increase exponentially. That is,
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we consider intervals Iu = [(1+ ε)u−1, (1 + ε)u) for u ∈ {1, . . . , ν} where ν := ⌈log1+ε

∑

j∈J wj⌉.

We denote the length of each interval Iu as |Iu| := ε(1 + ε)u−1.
We will apply two important procedures to modify weight-schedules. They are used to create

idle weight so to apply Observation 1, and they only increase the total cost by a factor 1+O(ε).
Similar techniques, applied in time-space, were used by Afrati et al. [1] for problems on constant-
speed machines.

1. Weight Stretch: We multiply by 1 + ε the completion weight of each job. This creates
an idle weight interval of length εwj before the starting weight of job j. This operation
increases the cost by a 1 + ε factor.

2. Stretch Intervals: We delay the completion weight of each job j with Cw
j ∈ Iu by |Iu|,

so that Cw
j belongs to Iu+1. Then |Iu+1| − |Iu| = ε2(1 + ε)u−1 = ε|Iu+1|/(1 + ε) units

of weight are left idle in Iu+1 after the transformation, unless there was only one job
completely covering Iu. By moving jobs within Iu+1, we can assume that this idle weight
is consecutive. This transformation increases the cost by at most a factor (1+ε)2 = 1+O(ε).

3.1 Dynamic program

We now show our dynamic programming (DP) approach to obtain a PTAS. We first describe
a DP table with exponentially many entries and then discuss how to reduce its size. Recall
that our schedules in time-space do not use idle time. Therefore we can uniquely describe a
schedule by specifying a non-preemptive weight-schedule and ordering the jobs accordingly in
the time-axis.

Consider a subset of jobs S ⊆ J and a partial schedule of S in the weight-space. In our
dynamic program, S will correspond to the set of jobs at the beginning of the weight-schedule,
i. e., if j ∈ S and k ∈ J \ S then Cw

j < Cw
k . A partial weight-schedule S of jobs in S implies a

schedule in time-space with the following interpretation. Note that the makespan of the time-
schedule is completely defined by the total work volume

∑

j vj . We impose that the last job of
the schedule, which corresponds to the first job in S, finishes at the makespan. This uniquely
determines a value of Cj for each j ∈ S, and thus also its execution time xS

j . The total cost of

this partial schedule is
∑

j∈S xS
j C

w
j .

Consider Fu := {S ⊆ J : w(S) ≤ (1 + ε)u}. That is, a set S ∈ Fu is a potential set of jobs
whose completion weight belongs to Iu′ with u′ ≤ u. For a given interval Iu and set S ∈ Fu,
we construct a table entry T (u, S) with a (1 + O(ε))-approximation to the optimal cost of a
weight-schedule of S subject to Cw

j ≤ (1 + ε)u for all j ∈ S.
Consider now S ∈ Fu and S′ ∈ Fu−1 with S′ ⊆ S. Let S be a partial schedule of S where

the set of jobs with completion weight in Iu is exactly S \ S′. We define APXu(S
′, S) = (1 +

ε)u
∑

j∈S\S′ xS
j , which is a (1 + ε)-approximation to

∑

j∈S\S′ xS
j C

w
j , the partial cost associated

to S \ S′. We remark that the values
∑

j∈S\S′ xS
j and APXu(S

′, S) do not depend on the whole

schedule S, but only on the total work volume of jobs in S′.
We can compute T (u, S) with the following formula,

T (u, S) = min{T (u− 1, S′) + APXu(S
′, S) : S′ ∈ Fu−1, S

′ ⊆ S}.

The set Fu can be of exponential size, and thus also this DP table. In the following we show
that there is a polynomial size set F̃u that yields (1+ ε)-approximate solutions. We remark that
the set F̃u will not depend on the speed of the machine. Thus, the same set can be used in the
speed-scaling scenario.

3.2 Light jobs

We structure an instance by classifying jobs by their size in weight-space. This classification
allows us to determine the schedule of part of the jobs greedily, which will help to define F̃u

properly.
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Definition 2. Given a schedule and a job j with starting weight Sw
j ∈ Iu, we say that j is light

for Sw
j if wj ≤ ε2|Iu|. A job that is not light is heavy for Sw

j .

To simplify notation, we say that a job is light or heavy when the starting weight Sw
j is clear

from the context.
Given a weight-schedule for heavy jobs, we give a greedy algorithm to schedule light jobs

that increases the cost by a 1 + O(ε) factor. Consider any weight-schedule S. First, remove
all light jobs. Then we move jobs within each interval Iu, such that the idle weight in Iu is
consecutive. Clearly, this can only increase the cost of the solution by a factor 1 + ε. Then,
we apply a preemptive greedy algorithm to assign light jobs, namely, Smith’s rule [27]. More
precisely, for each idle weight w we process the job j that maximizes vj/wj among jobs that
are not completely processed yet and wj ≤ ε2|Iu|. (Here we give priority to jobs with smallest
weight to work volume ratio, which is the opposite as to normal Smith’s rule; intuitively, this
is because in weight-space jobs are scheduled in reversed order as in time-space.) To remove
preemptions, we apply the Stretch Interval subroutine1, creating an idle weight interval in Iu of
length at least ε|Iu|/(1 + ε) ≥ ε|Iu|/2 ≥ ε2|Iu| (since ε ≤ 1/2). This gives enough space in each
interval Iu to completely process the (unique) preempted light job with starting weight in Iu.
The algorithm returns this last schedule, called S ′. Summarizing, the algorithm is as follows.

Algorithm Smith in Weight-Space

Input: A weight-schedule S.

1. Remove all light jobs in S and move the remaining jobs within each interval Iu, such that
the idle weight in Iu is consecutive.

2. Reverse Smith’s rule: For u = 1, . . . , ν and each idle weight w ∈ Iu, process at w a job j
maximizing vj/wj among all available jobs with wj ≤ ε2|Iu|.

3. Apply the Stretch Intervals subroutine.

4. For each u move the unique preempted light job with starting weight in Iu (if any) so that
it is completely processed within Iu.

5. Return the constructed schedule S ′.

We now show that the cost of the schedule S ′ returned by the algorithm is at most a factor
of 1 +O(ε) larger than the cost of S. To do so we need a few definitions.

Definition 3. Given a weight-schedule S, its remaining volume function is defined as

V S(w) :=
∑

j:Cw
j ≥w

vj .

Consider now the function f(v) corresponding to the earliest time by which the machine
can have processed a work volume of v, i.e., the function defined in Equation (1). It is easy
to see—even from the 2D-Gantt chart—that

∫∞

0
f(V S(w))dw corresponds to the cost of the

weight-schedule S. Also, notice that f(v) is non-decreasing, so that V S(w) ≤ V S′

(w) for all
w ≥ 0 implies that the cost of S is at most the cost of S ′.

Definition 4. For a given w, let Ij(w) be equal 1 if the weight-schedule processes j at weight
w, and 0 otherwise. Then, χj(w) := (1/wj)

∫∞

w Ij(w
′)dw′ corresponds to the fraction of job j

processed after w. The fractional remaining volume function of a weight-schedule S is defined
as

V S
f (w) :=

∑

j:j is light

χj(w) · vj +
∑

j:j is heavy,Cw
j ≥w

vj for all w ≥ 0.

1The Stretch Interval procedure also applies to preemptive settings by interpreting each piece of a job as an
independent job.
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Intuitively, this function is similar to the (non-fractional) remaining volume function with the
difference that it treats light jobs as “liquid”. Also, notice that V S

f (w) ≤ V S(w) for all w ≥ 0.

Lemma 5. Let S be a weight-schedule and S ′ be the output of Algorithm Smith in Weight-Space
on input S. Then the cost of S ′ is at most a factor 1 +O(ε) larger than the cost of S.

Proof. Let Si be the schedule constructed after Step i of the algorithm for each i ∈ {1, 2, 3, 4}.
In particular, S1 schedules only heavy jobs and S4 = S ′. First we observe that for any given

w ≥ 0, V S2

f (w) is a lower-bound on V Ŝ
f (w) for any schedule Ŝ that coincides with S2 on the

heavy jobs. This follows by a simple exchange argument, since the greedy Smith-type rule in
Step 2 chooses the job that packs as much volume as possible in the available weight among all
light jobs. We conclude that V S2

f (w) ≤ V S
f (w) for all w.

Observe that applying Stretch Intervals can delay any piece of a job by at most a factor
(1 + ε)2. Therefore V S3

f (w) ≤ V S2

f ((1 + ε)−2w). Also, in Step 4 pieces of jobs are only moved

backwards and thus V S4

f ≤ V S3

f . Finally, we notice that each light jobs in S4 is processed

completely within an interval Iu, and thus V S4(w) ≤ V S4

f ((1 + ε)−1w).
Combining all of our observations we obtain that

V S4((1+ε)3w) ≤ V S4

f ((1+ε)2w) ≤ V S3

f ((1+ε)2w) ≤ V S2

f (w) ≤ V S
f (w) ≤ V S(w) for all w ≥ 0.

Taking the function f(·) and integrating implies that
∫ ∞

0

f(V S4((1 + ε)3w))dw ≤

∫ ∞

0

f(V S(w))dw.

Finally, the right hand side of this inequality is the cost of S, and a simple change of variables
implies that the left hand side is (1 + ε)−3 times the cost of S ′ = S4. The lemma follows.

The next corollary follows directly from our previous result.

Corollary 6. At a loss of a factor 1+O(ε) in the objective function, we can assume the following.
For a given interval Iu, consider any pair of jobs j, k whose weights are at most ε2|Iu|. If both
jobs are processed in Iu or later and vk/wk ≤ vj/wj, then Cw

j ≤ Cw
k .

3.3 Localization

The objective of this section is to compute, for each job j ∈ J , two values rwj and dwj so that
job j is scheduled completely within [rwj , d

w
j ) in some (1 +O(ε))-approximate weight-schedule.

We call rwj and dwj the release-weight and deadline-weight of job j, respectively. Crucially, we
need that the length of the interval [rwj , d

w
j ) is not too large, namely that dj ∈ O(poly(1/ε)rj).

Such values can be obtained by using Corollary 6 and techniques from [1]. The release- and
deadline-weights will help us finding a compact set F̃u.

We consider an initial value for rwj and then increase its value iteratively. We will restrict
ourselves to values of rwj that are integer powers of 1+ε. Consider an arbitrary weight-schedule.
Recall that for a job with completion weight Cw

j , the Weight Stretch subroutine increases the
completion weight (1+ε)Cw

j and hence the starting weight to Sw
j = εCw

j . Applying the procedure
twice we get a solution that satisfies Sw

j ≥ ε(1 + ε)Cw
j ≥ ε(1 + ε)wj . Thus, we can safely define

rwj as εwj rounded up to an integer power of 1 + ε.
We now show how to adapt techniques from [1] used for time-schedules. Let Ju be the set

of all jobs with rwj equal to (1 + ε)u−1. We partition Ju into light and heavy jobs, depending

if their weight is smaller or larger than ε2|Iu|. Note that a heavy job in Ju can have weights w
with ε2|Iu| < w ≤ 1/ε(1 + ε)u−1, where the last inequality follows since rwj ≥ εwj . Therefore,
since we are assuming that the weights of jobs are integer powers of 1 + ε, for a fixed u we only
need to consider heavy jobs with weights

w ∈ Ωu :=

{

(1 + ε)i : ε2|Iu| < (1 + ε)i ≤
(1 + ε)u−1

ε
, where i ∈ Z

}

.

Crucially, note that |Ωu| ∈ O(log1+ε 1/ε) ⊆ O(1/ε · log 1/ε). Based on this we give the
following decomposition of the set of jobs with a given release-weight.

8



Definition 7. Given release-weights for each job, we define Ju = {j : rwj = (1 + ε)u−1}.

Additionally, we decompose Ju into a set of light jobs Lu := {j ∈ Ju : wj ≤ ε2|Iu|}, and sets
Hu,w = {j ∈ Ju : wj = w} of heavy jobs of weight w for each w ∈ Ωu.

Now we consider all jobs in Lu. If w(Lu) is larger than (1+ ε2)|Iu| then some jobs in Lu will
have to start in Iu+1 or later. By Corollary 6 we can choose the set of possible jobs with starting
weight in Iu greedily, and increase the release-weight of the rest. Similarly, since the weight of
each job in Hu,w is the same, we can always give priority to jobs with the largest work volume.
With this idea we can show the following lemma.

Lemma 8. We can compute in polynomial time release-weights rwj for each job j such that
there exists a (1 +O(ε))-approximate weight-schedule respecting the release-weights and for any
interval Iu we have that w(Ju) ∈ O(1/ε

3 · log 1/ε · |Iu|). And this weight-schedule satisfies the
property of Corollary 6.

Proof. Initialize rwj as εwj rounded up to an integer power of (1+ ε) and let Ju, Lu and Hu,w be
defined as above. By Corollary 6 we know that within an interval Iu we can order light jobs and
process first the job with largest vj/wj ratio. Thus, if the total weight of jobs in Lu is larger
than (1 + ε2)|Iu| we increase the release-weight of a job j∗ ∈ argminj∈Lu vj/wj to (1 + ε)u.
Note that after doing this j∗ does not belong to Lu anymore. We iterate this procedure until
w(Lu) ≤ (1 + ε2)|Iu|.

We do a similar technique for jobs in Hu,w. If w(Hu,w) > |Iu|+w and |Hu,w| contains more
than one job, then we can delay the release-weight of a job j∗ ∈ Hu,w with smallest vj . This
follows by a simple interchange argument, since if there are two jobs with the same weight then
the one with smallest work has smaller (larger) completion time (weight) in an optimal solution.
After modifying the release date of j∗ this job does not belong to Hu,w anymore.

This way we obtain a set Hu,w with

w(Hu,w) ≤ |Iu|+ w ≤ |Iu|+
1

ε
(1 + ε)u−1 ∈ O(1/ε2) · |Iu|.

We execute the two procedures described above for each u = 0, . . . , ν where ν = ⌈log1+ε

∑

j∈J wj⌉
until the following property holds: for all u ∈ {0, . . . , ν} and w ∈ Ωu we have that w(Lu) ≤
(1 + ε2)|Iu| and w(Hu,w) ∈ O(1/ε

2) · |Iu|. The result follows since |Ωu| ∈ O(1/ε · log 1/ε).

We use the previous lemma to define the deadline-weights by using the following idea. For s
large enough (but constant), Stretch Intervals creates enough idle weight in Iu+s to fit all jobs
released at (1 + ε)u that have not yet finished by (1 + ε)u+s+1. This allows us to apply Obser-
vation 1.

Lemma 9. We can compute in polynomial time values rwj and dwj for each j ∈ J such that: (i)
there exists a (1 +O(ε))-approximate weight-schedule that processes each job j within [rwj , d

w
j ),

(ii) there exists a constant s ∈ O(log(1/ε)/ε) such that dwj ≤ rwj · (1 + ε)s, (iii) rwj and dwj are
integer powers of (1 + ε), (iv) within each Lu jobs are processed following Reverse Smith’s rule,
and (v) the values rwj an dwj are independent of the speed of the machine.

Proof. Consider the release-weights given by the previous lemma and consider the associated
sets Ju for each u. Then, since w(Ju) ∈ O(1/ε

3 · log 1/ε · |Iu|), there exists an integer s ∈
O(log1+ε(1/ε

4 · log 1/ε)) ⊆ O(log(1/ε)/ε) such that w(Ju) ≤ ε|Iu+s−1|/(1 + ε).
Consider now the (1+O(ε))-approximate solution obtained from the previous lemma (which,

by construction, also satisfies the property of Corollary 6). By construction of rwj , we can assume
that the starting weight of j in this schedule is at least rwj . Now we apply Stretch Intervals.
This creates ε|Iu+s−1|/(1+ε) idle weight in interval Iu+s−1, unless there was one job completely
covering Iu+s−1. If that is not the case, then we can move all jobs in Ju with starting weight in
Iu+s or larger to be completely processed inside Iu+s−1. By Observation 1, doing this can only
increase the objective function by a 1 + O(ε) factor. Similarly, if there was a job k completely
covering Iu+s−1, then the idle weight that Iu+s−1 should have contained can be considered to
be just before the starting weight of k. In this case we can move all jobs in Ju that were being
processed after Iu+s−1 to just before Sw

k .

9



In either case we constructed a solution where each job in Ju is completely processed in
[(1+ε)u−1, (1+ε)u+s−1). Properties (i)-(iii) in the lemma follows by defining dwj = (1+ε)u+s−1 =
rwj (1+ε)s for each job j ∈ Ju. Also property (iv) follows since our original schedule satisfies the
property of Corollary 6 and our modification does not change the relative order of jobs in Ju.
Finally (v) follows since while defining rwj and dwj we never used the speed of the machine.

3.4 Compact Search Space

Given the job classification and localization in the previous subsections, we are now ready to
reduce the running time of the dynamic program in Section 3.1 to polynomial time. To that end,
recall the definition of families of job sets Fu. We will define a polynomial-size version of it, F̃u.
Instead of describing a set S ∈ F̃u, we describe R = J \ S, that is, the jobs with completion
weights in Iu+1 or later. That is, we define a set Du that will contain the complements of sets
in F̃u. In order to define Du we use the release- and deadline-weights given by Lemma 9. If
R ∈ Du, then R must contain all jobs j ∈ R := {k ∈ J : rwk ≥ (1 + ε)u}.

Observation 10. Each set R ∈ Du is of the form R′ ∪ R, where every job j ∈ R′ has rwj ≤

(1 + ε)u−1.

Thus we only need to describe all possibilities for R′. For a job j ∈ R′ we can assume
that dwj ≥ (1 + ε)u+1. Therefore, by Lemma 9, we have that rwj ≥ (1 + ε)u+1−s, where s ∈
O(log(1/ε)/ε).

Observation 11. Each set R = R′ ∪ R ∈ Du is of the form

(

u
⋃

v=u+2−s

R′
v

)

∪ R, where R′
v :=

{j ∈ R′ : rwj = (1 + ε)v−1}.

Then, we aim to find a collection of subsets that can play the role of R′
v. If the size of this

collection is at most a polynomial number k, we could conclude that |Du| ≤ ks−1 = kO(log(1/ε)/ε).
In order to do so, recall that Jv denotes the set of all jobs with release-weights equal to

(1+ ε)v−1, and that we can write Jv = Lv ∪ (
⋃

w Hv,w) where w ∈ Ωv and |Ωv| ∈ O(log1+ε 1/ε).
Thus, defining R′

v,w := R′
v ∩Hv,w we can further decompose R′

v as (R′
v ∩Lv)∪ (

⋃

w R′
v,w). Now

notice that R′
v,w is a subset of Hv,w which, as seen in the proof of the next observation, has a

very simple structure.

Observation 12. Without loss of generality, we can restrict ourselves to consider sets R′
v,w

among O(1/ε2) distinct options.

Proof. Let w ∈ Ωv. Each job in Hv,w has weight w and, as seen in the proof of Lemma 8, we have
that w(Hv,w) ≤ |Iv|+w. Thus Hv,w contains at most 1+|Iv|/w many jobs. Since by definition of
Hv,w we have that w ≥ ε2|Iv|, we obtain that |Hv,w| ∈ O(1/ε

2). Moreover, all jobs in Hv,w has
the same weight w and the same release-weight. Therefore, we know that these jobs are ordered
by their work volume in an optimal solution. Thus, we can restrict ourselves to sets R′

v,w that
respect this order. The observation follows since there are at most |Hv,w|+ 1 ∈ O(1/ε2) many
sets that respect this order.

Given v, the index w ranges over |Ωv| ∈ O(log(1/ε)/ε) many values. Thus the following
holds.

Observation 13. For each v the set
⋃

w R′
v,w can be chosen over (1/ε2)O(log(1/ε)/ε) = 2O(log(1/ε)2/ε)

many alternatives.

We use a similar argument for R′
v ∩ Lv. Indeed, as seen in the proof of Lemma 8, w(Lv) ≤

(1 + ε2)|Iv| and jobs in Lv will be processed as light jobs (by Lemma 9). We now show that we
can group light jobs together in order to diminish the possibilities for Lv. This is done as follows.
Set jobs in Lv in a list ordered by Reverse Smith’s rule, as in Algorithm Smith in Weight-Space.
Then we greedily find groups of jobs in Lv by going through the list of jobs from left to right
such that each group has total weight in [ε2|Iv|, 2ε

2|Iv|] (except from the last group that might
have smaller total weight). Recalling that w(Lv) ∈ (1 + ε2)|Iv|, we obtain that this procedure
creates at most O(1/ε2) groups. Let Lv,i be the i-th of these groups.
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Lemma 14. There exists a (1 + O(ε))-approximate weight-schedule such that: (i) it satisfies
the release- and deadline-weights of Lemma 9, (ii) in each group Lv,i all jobs are processed
consecutively, and (iii) within each set Lv jobs are processed following Reverse Smith’s rule.

Proof. Consider the schedule given by Lemma 9, and thus within each Jv jobs follow Reverse
Smith’s rule. Let us fix an interval Iv′ . Within this interval, the schedule can only process jobs
in Jv with v ≤ v′. Within a given Jv we follow Reverse Smith’s rule, thus there is at most two
sets Lv,i that are partially processed in Iv′ . They require at most 4ε2|Iv| extra weight within
Iv′ in order to be completely processed in Iv′ . Summing over all v ≤ v′, we obtain that in total
we require

4ε2
∑

v≤v′

|Iv| = 4ε3
∑

v≤v′

(1 + ε)v ∈ O(ε|Iv′ |)

extra space in Iv′ . The result follows since we can create enough idle time within Iv′ by applying
O(1) times the procedure Stretch Intervals. We remark that the procedure described works
simultaneously for all intervals Iv′ .

With this lemma, we can find a compact description to R′
v ∩Lv. Indeed, to specify R′

v ∩Lv,
i. e., the jobs in Lv that are processed in Iu+1 or later, we just need to determine the index i
such that jobs in Lv,k with k ≥ i are in R′

v and jobs in Lv,k with k < i are not in R′
v. Since i

ranges over O(1/ε2) many options, we obtain the following.

Observation 15. The set R′
v ∩ Lv can be chosen over O(1/ε2) different options.

Combining this last observation and Observation 13, we obtain that R′
v can take at most

k ≤ 2O(log2(1/ε)/ε) many different options. By Observation 11, we conclude that R′ belongs to
a set of size at most ks−1 ≤ 2O(log3(1/ε)/ε2). With this and Observation 10, we can define Du

having size at most 2O(log3(1/ε)/ε2). Finally, we define F̃u = {R : Rc ∈ Du} for each u.

Lemma 16. We can construct in polynomial time a set F̃u for each u that satisfies the following:
(i) there exists a (1+O(ε))-approximate weight-schedule in which the set of jobs with completion
weight at most (1 + ε)u belongs to F̃u for each interval u, (ii) the set F̃u has cardinality at most

2O(log3(1/ε)/ε2), and (iii) the set F̃u is completely independent of the speed of the machine.

With this lemma and the discussion at the beginning of this section we obtain a PTAS,
which is best possible from an approximation point of view, since the problem is known to be
strongly NP-hard [16].

Theorem 17. There exists an efficient PTAS for minimizing the weighted sum of completion
times on a machine with given varying speed.

Proof. It remains to argue that the described algorithm is efficient. It is easy to see that the time
for creating sets F̃u is dominated by the time needed to solve the dynamic program. Moreover,
the number of entries of the table is 2O(log3(1/ε)/ε2) · log(

∑

j wj), and the time needed to fill

each entry is 2O(log3(1/ε)/ε2) · n. Therefore the running time2 is 2O(log3(1/ε)/ε2) · log(
∑

j wj) ·

2O(log3(1/ε)/ε2) · n = 2O(log3(1/ε)/ε2) · log(
∑

j wj) · n.

4 Speed-scaling for continuous speeds

We now consider the dynamic speed-scaling setting in which the machine can run at any non-
negative speed s, and it is part of the scheduling problem to decide upon the speed. Running the
machine at speed s implies a power consumption rate of P (s) = sα for some constant α ≥ 1. The
total energy consumed is the power consumption integrated over time. We study the problem
of minimizing

∑

j wjCj for a given amount of available energy E.

2We remark that in this expression we consider arithmetic operations to take time O(1), and thus we neglect
the size of the numbers output by the oracle. However considering this effect can only add a polynomial term on
the maximum encoding size of a number output by the oracle. Recall that we allow efficient algorithms to be of
that form.
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In this setting, we may assume that an optimal solution executes each job at a uniform
speed. This follows directly from the convexity of the power function [32]. Let sj be the speed
at which job j is running. Then j’s power consumption is pj = sαj , and its execution time

is xj = vj/sj = vj/p
1/α
j . The energy that is required for processing j is Ej = pj · xj =

pj · vj/sj = sα−1
j · vj = vαj /x

α−1
j .

Let π be a sequence of jobs in a schedule, where π(j) is the index of the j-th job in the
sequence. We can compute the optimal energy assignment for all jobs in a given sequence π
using a total amount of energy E by a convex program. We rewrite the objective function as
∑n

j=1 wjCj =
∑n

j=1 wπ(j)

∑j
k=1 xπ(k) =

∑n
j=1 xπ(j)

∑n
k=j wπ(k) and define Wπ

π(j) =
∑n

k=j wπ(k).

Note that xj =
(

vαj /Ej

)1/(α−1)
, and that Wπ

j is the total remaining weight just before j is
completed in any schedule concordant with π. Then the problem can be formulated as

min







n
∑

j=1

Wπ
j ·

(

vαj
Ej

)1/(α−1)

:
n
∑

j=1

Ej ≤ E, and Ej ≥ 0 ∀j ∈ {1, . . . , n}







. (3)

This program has linear constraints and a convex objective function. Such programs can be
solved in polynomial time up to an arbitrary precision [24] with the Ellipsoid method. However,
the well-known Karush-Kuhn-Tucker (KKT) [7] conditions yield a explicitly formula for the
optimal energy assignment.

The problem in (3) is clearly feasible, for example, choose Ej = 0 for each j ∈ {1, . . . , n}.
Moreover, an optimal solution satisfies the first constraint with equality. Indeed, we allow
arbitrary non-negative speeds and thus arbitrary energy assignments, and the smallest increase
in the assigned energy decreases the total cost. For the same reason and with a positive energy
budget, an optimal solution never assigns zero energy to any job; hence Ej > 0 for each job j.
With these observations the KKT conditions reduce to the following.

Lemma 18 (KKT conditions). A vector (E1, . . . , En) is an optimal solution to the convex
program in (3) if and only if

(a) (E1, . . . , En) is feasible and satisfies
∑n

j=1 Ej = E and Ej > 0 for all j, and

(b) there exists a parameter λ ≥ 0 such that ∇g(E1, . . . , En) + λ · 1 = 0,

where 1 denotes a vector with ones in each coordinate and g is the objective function in (3).

Theorem 19. The optimal solution to (3) is given by

Ej = vj ·
(

Wπ
j

)(α−1)/α
·
E

γπ
, where γπ =

n
∑

j=1

vj ·
(

Wπ
j

)(α−1)/α
.

Proof. Since we fix a permutation π, we omit the extra script in Wπ
j and γπ during the rest of

this proof. Let (E1, . . . , En) be an optimal solution to (3). By Lemma 18(b), there is a λ ≥ 0
such that for every job j ∈ {1, . . . , n} holds

Wj · v
α/(α−1)
j ·

−1

α− 1
·E

−α/(α−1)
j + λ = 0 ,

which is equivalent to

Ej = vj ·W
(α−1)/α
j ·

(

1

(α− 1)λ

)(α−1)/α

. (4)

To determine the Lagrange multiplier λ we use Lemma 18(a),

E =

n
∑

j=1

Ej =

n
∑

j=1

vj ·W
(α−1)/α
j ·

(

1

(α− 1)λ

)(α−1)/α

= γ ·

(

1

(α− 1)λ

)(α−1)/α

.

Then, we can express the values Ej in (4) independently of λ and conclude that Ej = E · vj ·

W
α−1

α

j /γ.
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Using this optimal energy assignment (Theorem 19), the scheduling problem at hand reduces
to finding the permutation π that minimizes

n
∑

j=1

wjCj(E) =

n
∑

j=1

Wπ
j ·

(

vαj
Ej

)
1

α−1

=
1

E
1

α−1

·





n
∑

j=1

vj ·
(

Wπ
j

)
α−1

α





α
α−1

, (5)

where the last equation comes from the definition of γπ (see Theorem 19) and standard trans-
formations. Interestingly, the optimal job sequence is independent of the energy distribution,
and furthermore it is independent of the overall energy budget. In other words, one scheduling
sequence is universally optimal for all energy budgets. As we will see this sequence is obtained
by solving in weight-space a (standard) scheduling problem with a cost function that depends
on the power function. A similar observation was independently made by Vásquez [30].

Theorem 20. Given a power function P (s) = sα, there is a universal sequence that minimizes
∑

j wjCj for any energy budget. The sequence is given by reversing an optimal solution of the

scheduling problem 1| |
∑

wjC
(α−1)/α
j (on a single machine of unit speed).

Proof. Equation (5) implies that the optimal job sequence is independent of the available energy
budget E since it only plays a role in the factor outside the sum, which is independent of the
permutation. Since the exponent α/(α − 1) is constant, the problem of finding the optimal
sequence under an optimal energy-distribution reduces to finding the sequence that minimizes

n
∑

j=1

vj ·
(

Wπ
j

)(α−1)/α
.

Now recall the reinterpretation that the 2D-Gantt chart view offers (see Section 2). Then Wπ
j is

the completion weight of job j in a schedule that follows sequence π in time-space (and the reverse
order in weight-space). We conclude that this problem is equivalent to the scheduling problem
in weight-space with varying speed on the weight-axis or general cost function in the weight-
space. This problem can be directly translated into minimizing the total weighted completion
time on a machine with varying speed (or the desired form with a generalized cost function) by
re-interpreting weight-space as time-space. We simply define a new problem in time-space with
processing times v′j = wj and weight w′

j = vj , where the objective is to find a permutation of jobs

minimizing
∑n

j=1 w
′
π(j) · f

(

∑j
k=1 v

′
π(k)

)

, for f : x→ x(α−1)/α. This is a problem of the desired

type. By Section 2 it is easy to see that a solution π′ to the new problem in time-space, has a
corresponding solution π in the weight-space with same total cost; π is the reverse of π′.

Thus, the scheduling part of the speed-scaling scheduling problem reduces to a problem which
can be solved by our PTAS from Section 3. Since the cost function f(x) = x(α−1)/α is concave
for α > 1, the specialized PTAS in [28] also solves it. Combining Theorems 19 and 20 gives the
main result.

Theorem 21. Let α ≥ 1 be a (constant) rational number. There is a PTAS for the continuous
speed-scaling and scheduling problem with a given energy budget E for continuous speed and
power function P (s) = sα. Indexing jobs in this order, the (1 + ε)-approximate pareto curve
describing the approximate scheduling cost as a function of the available energy is given by the
right-hand-side of Equation (5).

Proof. The previous theorem argues that our energy problem is equivalent to 1| |
∑

wjC
(α−1)/α
j

in terms of optimal solutions. However, approximation factors are not exactly preserved: as can

be seen from Equation (5), a solution with cost Z for 1| |
∑

wjC
(α−1)/α
j corresponds to a solution

of cost Z
α

α−1 for the speed-scaling problem. Hence, a β-approximation algorithm for the static-
speed problem yields an approximation factor of βα/(α−1) for the dynamic-speed problem. Since
α ≥ 1 is a constant, taking β = (1+ε) yields an approximation factor of (1+ε)α/(α−1) = 1+O(ε)
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for the speed-scaling problem (for small enough ε > 0). Therefore it suffices to give a PTAS

for 1| |
∑

wjC
(α−1)/α
j .

To apply Theorem 17 it suffices to specify the oracle function f . In our case f(x) = x(α−1)/α

might yield irrational numbers. However, since we aim for a PTAS it suffices to define a polyno-
mial time oracle f̃ that approximates f within a 1 + ε factor. This can be done with standard
techniques from numerical analysis, e.g., Newton’s method [29].

5 Speed-scaling for discrete speeds

In this section we consider a more realistic setting, where the machine speed can be chosen from
a set of κ different speeds s1 > . . . > sκ > 0. We also allow to run the machine at zero speed,
which we assume to induce zero power consumption. For this problem we resolve the complexity
status and show that it is NP-hard even when κ = 2. For arbitrarily many speed states we give
a PTAS, and if κ is constant an FPTAS.

5.1 A PTAS for discrete speeds

To derive our algorithm, we adapt the PTAS for scheduling on a machine with given varying
speed (Section 3) and incorporate the allocation of energy. Fortunately, many of the techniques
to derive that PTAS, in particular the computation of sets F̃u, are independent of the speed of
the machine. Thus we can use them without modifications.

Consider the power function P (s) to be an arbitrary computable function. We adopt the
same definitions of weight intervals Iu and sets Fu as in Section 3. For a subset of jobs S ∈ Fu

and a value z ≥ 0, let E[u, S, z] be the minimum total energy necessary for scheduling S such
that all completion weights are in interval Iu or before and the scheduling cost is at most z, i.e.,
∑

j∈S xj · C
w
j ≤ z where xj is the execution time under some feasible speed assignment. The

recursive definition of a state is as follows:

E(u, S, z) = min{E(u− 1, S′, z′) + APXu(S \ S
′, z − z′) : S′ ∈ Fu−1, S

′ ⊆ S}.

Here APXu(S \ S
′, z− z′) is the minimum energy necessary for scheduling all jobs j ∈ S \ S′

with Cw
j ∈ Iu, such that their partial (rounded) cost

∑

j∈S\S′ xj(1 + ε)u is at most z − z′.

Lemma 22. The value APXu(S \ S
′, z − z′) can be computed in polynomial time.

Proof. We set an LP computing APXu(S \ S
′, z − z′). Let the solution variable ℓi ≥ 0, i ∈

{1, . . . , κ}, denote the length of the time interval in which the machine is running at speed si.
Consider the following LP,

min

κ
∑

i=1

ℓi · P (si)

κ
∑

i=1

ℓi · si =
∑

j∈S\S′

vj , (6)

κ
∑

i=1

ℓi · (1 + ε)u ≤ z − z′, (7)

ℓi ≥ 0.

Here (6) guarantees that the total processing volume v(S′ \ S) can be completed, and (7) that
the total scheduling cost does not exceed z − z′.

We let the DP fill the table for u ∈ {0, . . . , ν} with ν = ⌈log1+ε

∑

j∈J wj⌉ and z ∈ [1, zUB] for

some upper bound such as zUB =
∑

j∈J wj

∑j
k=1 vj/sκ. Then among all end states [ν, J, · ] with

value at most the energy budget E we choose the one with minimum cost z. Then we obtain
the corresponding (1 + ε)-approximate solution for energy E by backtracking.
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This DP has an exponential number of entries. However, we can apply results from Section 3
and standard rounding techniques to reduce the running time.

Theorem 23. There is an efficient PTAS for minimizing the total scheduling cost for speed-
scaling with a given energy budget.

Proof. The DP computes a (1+ε)-approximation in exponential time. In Lemma 16, we showed
how to reduce the exponential number of subsets in Fu to a polynomial number at the cost of
a factor 1 +O(ε) in the total scheduling cost. Recall that the sets F̃u given by that lemma are
independent of the speed of the machine. Therefore we can use these sets directly in our setting.

It remains to reduce the number of possible values of cost z ∈ [0, zUB]. At the cost of a
factor 1 + ε, we may round up in each state the scheduling cost to next integer power of 1 + δ
with δ = (1 + ε)1/ν − 1. In each state transition of the DP, we loose up to a factor 1 + δ in the
scheduling cost, which amounts to at most a factor (1 + δ)ν = 1 + ε under ν state transitions.
When restricting to powers of 1+δ then the number of different values in z ∈ [0, zUB] is bounded
by O(log1+δ zUB) = O(ν · log zUB/ε). Thus, the number of states in the table is polynomial. We
conclude that the algorithm runs in polynomial time.

5.2 Speed-scaling with discrete speeds is NP-hard

We show that speed-scaling for discrete speeds is NP-hard. We provide a reduction based
on the problem of minimizing the total weighted tardiness of jobs with a common due date,
1|dj = d|

∑

wjTj , which is known to be NP-hard [33]. Here, Tj = max{Cj − d, 0} denotes the
tardiness of job j. We use the following generalization of this result for our reduction.

Lemma 24. The problem of minimizing
∑

wjf(Cj) on a single machine of unit speed is NP-
hard even when f is increasing, convex and piecewise linear with only one breakpoint.

Proof. Let ε ≥ 0 and define the cost function

fε(x) =

{

ε · x if 0 ≤ x < d,

x− d+ εd if d ≤ x.

Note that Tj = f0(Cj) is the tardiness of job j. Now we show that, for ε > 0 small enough,
minimizing

∑

j wjTj is equivalent to minimizing
∑

j wjfε(Cj).
Let k ∈ N, and assume that wj , pj and d are natural numbers for all j. It is known that the

problem of deciding whether there exists a schedule with
∑

j wjTj ≤ k is NP-hard [33]. Now
notice that

∑

j

wjfε(Cj) =
∑

j:Cj<d

wjεCj +
∑

j:Cj≥d

(Cj − d+ εd)wj

= ε ·





∑

j:Cj<d

wjCj +
∑

j:Cj≥d

dwj



+
∑

j

wjf0(Cj).

Defining ε = 1/(d
∑

j wj) ≤ 1 (which can be described with polynomially many bits) we obtain
that

0 ≤
∑

j

wjfε(Cj)−
∑

j

wjf0(Cj) = ε ·





∑

j:Cj<d

wjCj +
∑

j:Cj≥d

dwj



 < εd
∑

j

wj ≤ 1.

Therefore
∑

j wjf0(Cj) ≤ k if and only if
∑

j wjfε(Cj) ≤ k + 1. We conclude that minimizing
∑

j wjfε(Cj) is NP-hard, where ε ≤ 1 is considered as part of the input.

Now we can prove the main result.
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Theorem 25. The problem of minimizing
∑

j wjCj on a single machine for discrete speeds is
NP-hard, even if the number of available power levels is 2.

Proof. The problem with k > 2 speed states can be reduced to the case with 2 speed states, by
adding dummy states of arbitrarily slow speed. Therefore, we prove hardness of the case of two
speeds s1 > s2.

Consider a scheduling instance on a unit-speed processor with the objective of minimizing
∑

j wjfε(Cj), where fε is defined in the proof of the previous lemma. We define an equivalent
scheduling instance for minimizing

∑

j wjCj on a machine with two possible speed states. In the
new instance, the job set is the same and the values wj and vj for each job j are also preserved.
Let s1 = 1/ε and s2 = 1. The total energy budget is E = V +d(1/εα−1−1), where V denotes the
total work volume,

∑

j vj . A simple interchange argument shows that in an optimal solution the
machine runs at decreasing speeds. The time point when the speeds changes is uniquely defined
by the energy budget and the total work volume. In this case, the machine runs at speed s1
until τ = εd and then it runs at speed s2. Also, the total work volume finished by τ is τ · s1 = d.

Consider now a schedule without idle time on a machine with the speed profile just described.
Assume that by relabeling the jobs the completion times satisfy that C1 < C2 < . . . < Cn.
Consider scheduling the jobs in a unit speed machine using the same permutation of jobs.
In this new schedule the completion times are C′

j =
∑

k≤j vk for all j. If it easy to check
that fε(C

′
j) = Cj . We conclude that the problem of minimizing

∑

j wjfε(C
′
j) is equivalent to

minimizing
∑

j wjCj on a machine that has speed 1/ε in interval [0, εd] and speed 1 afterwards
until all jobs are done. By Theorem 24 both problems are NP-hard, wich concludes the proof.

5.3 FPTAS for a constantly many discrete speed-states

Consider the setting where the number of different (non-zero) speeds κ is constant. We give an
FPTAS for this case. Again we will use the dual scheduling view and construct a solution in
weight-space. Notice that in this problem setting, jobs may run at more than one speed. We
call those jobs split jobs. Our approach is as follows: We first use enumeration to determine
split jobs, their position in the weight-axis, and the speeds at which they shall run. Then we
design an exponential-time dynamic program that fills the remaining jobs running at a single
speed into the gaps left between the split jobs. We show then how to reduce the running time of
this method to polynomial time by rounding and state-cleaning and loosing only a small factor
in the scheduling cost.

Using a standard scaling argument, we may assume w.l.o.g. that all job weights have integer
values.

5.3.1 Guessing split jobs and partition of the weight-axis

Recall that in any optimal solution the speed of the machine is decreasing over time. Thus there
are at most κ − 1 many split jobs each running at a constant number of different speeds. We
show that by restricting the set of possible completion weights to a polynomial size, we may
guess in polynomial time the subset of split jobs, the speeds at which each of them is running,
and their completion weights at an affordable loss in the total cost. The placement of split jobs
in the weight-axis leads naturally to a partition of the weight-axis into (at most) κ intervals to
which the remaining non-split jobs shall be assigned.

Lemma 26. By increasing the scheduling cost by at most a factor 1 + ε, we may assume that
the completion weights of split jobs are integer powers of 1 + β for β = (1 + ε)1/n − 1.

Proof. This follows by multiplying the completion weight of each job by 1 + β as in the Weight
Stretch procedure; see Section 3. Each time we do this we can decrease the completion weight
of one split job to a integer power of 1 + β. This increases the total cost by a factor 1 + β each
time, which amounts to at most a factor (1+β)κ−1 < 1+ ε for at most κ− 1 < n split jobs.

Lemma 27. By loosing at most a factor 1+ ε in the scheduling cost, we can enumerate in time
O(n2κ−2 · νκ−1), with ν = ⌈log1+ε

∑

j∈J wj⌉, the set of split jobs, the speeds at which they run,
and their completion weight.

16



Proof. The speed of the machine is decreasing and jobs run non-preemptively. Hence, a split job
will run at two or more decreasing speeds si > si+1 > . . . si′ while there is no other job running
at speed sk with i < k < i′. However, not all available speeds might be used. There are O(nκ−1)
many choices for selecting the set of (at most) κ− 1 split jobs and the speeds at which each of
them is running.

Given a set of jobs we enumerate all possible completion weights for split jobs. Thereby,
we restrict to powers of 1 + β loosing at most a factor 1 + ε in the cost (Lemma 26). There
are ⌈log1+β

∑

j wj⌉ = ⌈log(1+ε)1/n
∑

j wj⌉ ∈ O(n · ν) many possible completion weights per job.

Thus, in total we have to consider O(nκ−1 ·(nν)κ−1) many choices for split jobs with their speeds
and positions in the weight-axis.

Consider a fixed choice for split jobs j1, . . . , jκ−1 and their completion weights Cw
j1

< Cw
j2

<
. . . < Cw

jκ−1
. For convenience we add dummy jobs with zero-weight and -work volume if there

are less than κ − 1 split jobs. The set of κ − 1 split jobs partitions the weight-space into κ
subintervals I1, . . . , Iκ of idle weight between the placed split jobs. More precisely, Ii = [ai, ai+1−
wji ] where ai = Cw

ji−1
, for i ∈ {2, . . . , κ}, and a1 = 0. Let the last interval Iκ be bounded from

above by
∑

j∈J wj − aκ. Intervals may also be empty.
To obtain a schedule, we have to fill the remaining jobs non-preemptively in these idle-weight

intervals (keeping the split jobs where they are). All jobs in one subinterval will run at the same
speed. Again, recall that the speeds are only decreasing in time which means that they are
increasing in weight-space. We simply guess the uniform speed s′i associated with Ii such that
s′1 ≤ s′2 ≤ . . . ≤ s′κ in accordance with the speeds of the split jobs between intervals. I.e., each
speed s for a split jobs ji separating intervals Ii and Ii+1 must satisfy s′i ≤ s ≤ s′i+1. Notice
that because of the dummy jobs there might be more than one interval with the same speed.

Corollary 28. By losing at most a factor 1 + ε in the scheduling cost we can reduce in time
O(κκ · n2κ−2 · νκ−1) the speed-scaling problem to non-preemptive scheduling in weight-space in a
given set of available idle-weight intervals I1, I2, . . . , Iκ and speed s′i for jobs being assigned to Ii.

5.3.2 Dynamic program

We construct a DP that finds a partition of the set of non-split jobs into κ subsets each of which
is assigned to an individual interval Ii. The jobs in each individual set are scheduled according
to Reversed Smith rule in weight-space, that is, in non-decreasing order of ratios wj/vj . Let all
jobs be indexed in this order.

The dynamic program generates a state [k, z, y1, . . . , yκ] if there is a feasible schedule of
jobs 1, . . . , k, in which the total weight scheduled in interval Ii (excluding the split job) is yi.

The total scheduling cost (including split jobs) is z :=
∑k

j=1 xjC
w
j , with xj = vj/s

′
i being the

execution time of a job j in interval i. The value of the state [k, z, y1, . . . , yκ] is the minimum
energy that is necessary for obtaining such a schedule. The dynamic program starts with the
states [0, z, 0, . . . , 0]. For each z-value a linear program computes the minimum energy that
is necessary to obtain this scheduling value when scheduling only the set of split jobs Js. It
determines the power assigned to each split job and thus their actual execution times. Let ℓji
be the amount of time that split job j ∈ Js is running at a valid speed s′i (given by Lemma 27).

min
∑

j∈Js

κ
∑

i=1

ℓjiP (s′i)

∑

j∈Js

Cw
j ·

κ
∑

i=1

ℓji ≤ z,

κ
∑

i=1

ℓjis
′
i = vj for all j ∈ Js,

ℓji ≥ 0 for all j ∈ Js, i ∈ {1, . . . , κ},

ℓji = 0 for all j ∈ Js, s
′
i not valid for j .
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After computing the starting states, the DP computes all states by moving from any state
[j− 1, z, y1, . . . , yκ] to at most κ new states [j, z′, y′1, . . . , y

′
κ] by assigning job j to intervals Ii for

i ∈ {1, . . . , κ}. Then

z′ = z +
vj
s′i
· (ai + yi + wj) and y′i = yi + wj and y′i′ = yi′ for i

′ 6= i , (8)

provided that y′i ≤ |Ii| − wji , where ji is the ith split job. The value of the new state is

E[j, z, y1, . . . , yκ] = E[j − 1, z, y1, . . . , yκ] +
vj
s′i
· P (s′i). (9)

If there exists another state with smaller energy value E′[j, z, y1, . . . , yκ] < E[j, z, y1, . . . , yκ] we
discard the new one with larger energy value.

An optimal schedule can be obtained by finding a state E[n, z, y1, . . . , yκ] ≤ E with minimum

z and backtracking from that state. Since the z-values are bounded by zUB :=
∑n

j=1 wj(
∑j

ℓ=1 vℓ/sκ)
and the yi-values are bounded by |Ii|, the running time of this dynamic programming algorithm
is O(n · zUB ·maxi |Ii|

κ).

5.3.3 Rounding

In a fully polynomial-time algorithm, we can neither afford to consider all possible objective
values z, nor can we consider all possible yi-values.

Consider first the number of possible values z of scheduling cost. We round them the same
way as we have done in the PTAS for an arbitrary number of discrete speeds in Theorem 23.
Given the upper bound on the cost, zUB =

∑n
j=1 wj(

∑j
ℓ=1 vℓ/sκ), we can reduce the number

of possible values in z ∈ [0, zUB] to O(ν · log zUB/ε) = O(ν · n/ε
2) by restricting to powers of

1 + δ with δ = (1 + ε)1/ν − 1 and lose only a factor 1 + ε in the scheduling cost. Recall that
ν = ⌈log1+ε

∑

j∈J wj⌉. Let DPz denote this dynamic program that rounds only the scheduling
cost.

We now take care of the y-values. The idea is to reduce the number of states by removing
those with the same (rounded) objective value and nearly the same total weight in all intervals Ii.
Among them, we store those that require the minimum amount of energy. To do so, we use
the same discretization of the weight-axis as for guessing the completion weights of split jobs
(Section 5.3.1). When the DP adds a job j to some interval Ii and updates the total weight y′i =
yi+wj (see Equation (8)) then we store only the information on y′i rounded down to the closest
integer power of 1 + β, with β = (1 + ε)1/n − 1. Now, among all states with the same rounded
values z, y1, . . . , yκ we store the one with minimum energy consumption. Let DPz,y denote the
modified dynamic program that rounds z and y-values.

Rounding down the yi-values will incur an error in the computation of scheduling cost; more
precisely, interpreting the solution of DPz,y as a job (weight) assignment to intervals, then the
y-values stored for describing a DP state underestimate the true weight assigned to an interval,
and thus, the DP also underestimates the total scheduling cost z. We have to show in the
following that this error is small compared to the true value of a feasible solution. We will
also show that the energy consumption computed by the DP corresponds to the exact energy
required in a feasible solution.

Lemma 29. Suppose that algorithm DPz on an instance with n jobs finds a chain of states3

[0, z∗0 , 0, . . . , 0], [1, z
∗
1 , y

∗
1,1, . . . , y

∗
κ,1], . . . , [n, z

∗
n, y

∗
1,n, . . . , y

∗
κ,n]. Then the algorithm DPz,y finds for

each j ∈ {1, . . . , n} a state [j, zj , y1,j , . . . , yκ,j] of energy value at most E[j, z∗j , y
∗
1,j, . . . , y

∗
κ,j] such

that
yi,j ≤ y∗i,j and zj ≤ z∗j . (10)

Proof. We give a proof by induction on the number of jobs j. For j = 0 the property is clearly
true since DPz,y and DPz have the same starting states.

3Chain of states means that, for j = 0, . . . , n − 1, state [j + 1, z∗
j+1

, y∗
1,j+1

, . . . , y∗
κ,j+1

] is obtained from

[j, z∗j , y
∗
1,j , . . . , y

∗
κ,j ] by adding job j + 1 according to (8).
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Suppose that the lemma is true for j jobs, and thus DPz,y obtains state [j, zj, y1,j , . . . , yκ,j ]
satisfying the properties of the lemma. Now consider state [j + 1, z∗j+1, y

∗
1,j+1, . . . , y

∗
κ,j+1] that

DPz obtained from [j, z∗j , y
∗
1,j, . . . , y

∗
κ,j] according to (8) by adding job j + 1 to interval Ii, for

some i ∈ {1, . . . , κ}. Similarly, starting from [j, zj , y1,j , . . . , yκ,j], Algorithm DPz,y considers a
state that inserts job j + 1 to interval Ii. This yields a new state [j + 1, zj+1, y1,j+1, . . . , yκ,j+1]
that satisfies zj+1 = zj + vj+1/s

′
i · (ai + yi,j + wj+1) and yi,j+1 as ȳi,j+1 = yi,j + wj+1 rounded

down to the nearest power of 1 + β, while it keeps yi′,j+1 = yi′,j for all i′ 6= i.
By inductive hypothesis, we have that yi,j ≤ y∗i,j and thus

zj+1 = zj + vj+1/s
′
i · (ai + yi,j + wj+1) ≤ z∗j+1.

Moreover, since we round down the value ȳi,j+1 to yi,j+1 we obtain that

yi,j+1 ≤ ȳi,j+1 = yi,j + wj+1 ≤ y∗i,j + wj+1 = y∗i,j+1.

It remains to argue on the value of the state, that is, the energy cost. According to Equa-
tion (9) the value of the state as computed by DPz,y is

E[j + 1, zj+1, y1,j+1, . . . , yκ,j+1] = E[j, zj , y1,j, . . . , yκ,j] +
vj+1

s′i
· P (s′i)

≤ E[j, z∗j , y
∗
1,j, . . . , y

∗
κ,j] +

vj+1

s′i
· P (s′i)

= E[j + 1, z∗j+1, y
∗
1,j+1, . . . , y

∗
κ,j+1].

We cannot guarantee that state [j + 1, zj+1, y1,j+1, . . . , yκ,j+1]survives. But in case it does
not then we have found another partial solution with the same objective value zj+1, the same
values yi,j+1, and an even smaller state value (energy). This concludes the lemma.

The Algorithm DPz,y computes an assignment of jobs to weight intervals but it underesti-
mates the total weight assigned to an interval and thus the scheduling cost. We show that the
true scheduling cost when scheduling according to the solution found by DPz,y is bounded.

Lemma 30. Suppose that algorithm DPz,y on an instance with n jobs finds a chain of states
[0, z∗0 , 0, . . . , 0], [1, z

∗
1 , y

∗
1,1, . . . , y

∗
κ,1], . . . , [n, z

∗
n, y

∗
1,n, . . . , y

∗
κ,n]. Then for each state [j, z∗j , y

∗
1,j , . . . , y

∗
κ,j ],

with j ∈ {1, . . . , n}, there exists a feasible partial schedule of split jobs and jobs 1, . . . , j using an
energy budget of at most E[j, z∗j , y

∗
1,j, . . . , y

∗
κ,j]. Moreover, if yi,j denotes the total weight of jobs

assigned to interval Ii in the partial schedule and zj is the scheduling cost, then

yi,j ≤ (1 + β)j · y∗i,j and zj ≤ (1 + β)j · z∗j . (11)

Proof. We give a proof by induction on j. By definition of the starting state [0, z∗0 , 0, . . . , 0]
there exists a partial schedule of the split jobs with cost at most z∗0 . Thus the base case of the
induction follows.

For a given j, assume that the DP obtains state [j + 1, z∗j+1, y
∗
1,j+1, . . . , y

∗
κ,j+1] by adding

job j + 1 to interval Ii. By induction hypothesis suppose that there exists a partial schedule
satisfying the claim for jobs 1, . . . , j. We construct the new schedule for jobs 1, . . . , j+1 by also
adding j + 1 to Ii. The total weight assigned to interval Ii in this solution is

yi,j+1 = yi,j + wj+1 ≤ (1 + β)j · y∗i,j + wj+1 ≤ (1 + β)j · (y∗i,j + wj+1).

Since DPz,y rounds down the y-value to the next integral power of 1 + β, we have that

y∗i,j+1 ≥
1

1 + β
·
(

y∗i,j + wj+1

)

.

And thus we conclude yi,j+1 ≤ (1 + β)j+1 · yi,j+1.
Consider now the total scheduling cost of the feasible schedule after adding job j + 1. In

principle it consists of the scheduling cost zj before adding job j+1 plus the cost for the new job.
However there is an possible extra source for error. Since the DP rounded down y-values, we
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cannot guarantee that the total weight assigned to an interval Ii actually fits into this interval.
(Recall, that these intervals are defined by the placement of the split jobs in the weight-axis
which is in principle flexible.) Thus, we may increase the completion weight of already assigned
jobs by at most a factor 1 + β which means increasing zj by this factor. Then, by again using
the induction hypothesis and the already proven first condition in (11) we get

zj+1 ≤ (1 + β) · zj + vj+1/s
′
i · (ai + yi,j + wj+1)

≤ (1 + β)j+1 · z∗j + vj+1/s
′
i · (ai + (1 + β)j · y∗i,j + wj+1)

≤ (1 + β)j+1 ·
(

z∗j + vj+1/s
′
i · (ai + y∗i,j + wj+1)

)

= (1 + β)j+1 · z∗j+1.

Concerning the energy estimation, recall that the DP determined the energy cost precisely
according to Equation (9). Thus, an inductive argument shows that the constructed schedule
incurs into the same energy consumption.

Now we can prove the main result.

Theorem 31. There is an FPTAS for speed-scaling with a given energy budget for min
∑

wjCj

on a single machine with constantly many discrete speeds.

Proof. The FPTAS is as follows: We guess the split jobs, their speeds and positions which gives
us a partition of the weight-space into κ idle-weight intervals (see Section 5.3.1). Then we run
DPz,y and take as final solution the assignment of jobs to intervals that the DP computes.

Let OPT denote the scheduling cost of an optimal solution, and let z(A) denote the scheduling
cost of a solution computed by algorithm A. Lemma 29 guarantees that DPz,y finds a final state
of cost z(DPz,y) ≤ z(DPz). We can argue that z(DPz) ≤ (1+ε)2OPT because we lose one factor
1+ε when guessing the split jobs (Lemma 27) and another factor 1+ε when rounding the z-values
in DPz. Taking the assignment of jobs to intervals as computed by DPz,y, we obtain a feasible
scheduling solution of cost zn ≤ (1 + β)nz(DPz,y) ≤ (1 + ε)z(DPz,y), where β = (1 + ε)1/n − 1
(Lemma 30). Thus, we find a feasible solution of scheduling cost at most (1 + ε)3OPT.

Furthermore, Lemmas 29 and 30 guarantee that our final solution uses as much energy as an
optimal solution. Thus we stay within the energy bound.

It remains to show that the running time is polynomial in the input and 1/ε. By Lemma 27
the enumeration step leading to the partitioning of the weight-axis takes time O(κκ ·n2κ−2 ·νκ−1)
with ν = ⌈log1+ε

∑

j∈J wj⌉. The original (exponential time) dynamic program runs at time O(n·
zUB · maxi |Ii|) (see Section 5.3.2). Algorithm DPz,y rounds the z- and y-values and with the
argumentation in Section 5.3.3 it thus runs in time O(n · (ν ·n/ε2) · (n ·ν)) = O(n3/ε2 ·ν2). Since
we run the DP for each guess of split jobs, we obtain a total running time O(κκ ·n2κ+1/ε2 ·νκ+1)
which is polynomial in the input and 1/ε.

6 Speed-scaling with release dates on multiple machines

We can use our results obtained in the dynamic-speed setting to approximate the more general
problem of preemptively scheduling jobs with non-trivial release dates on identical parallel ma-
chines. We use the fact that we can handle jobs without release dates on a single machine and
apply a fast single machine relaxation [10]. For the relaxation, we assume that we have a single
machine that is m time faster than one of the original machines: at a power level p the single
machine runs at speed m · p1/α, while at the same power level one of the original machines runs
at speed p1/α. Thus, if an amount of energy Ej for job j implies a execution time of xj on an
original machine, then the same energy implies an execution time of xj/m on the fast single
machine.

After using our PTAS to solve the single machine relaxation without release dates, we keep the
energy assignments Ej computed in the relaxation and apply standard preemptive list scheduling
on parallel machines respecting release dates. However, the difficulty lies in bounding the actual
execution times xj in our final solution, since we do not have any information about the optimal
execution times x∗

j .
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The trick we use is as follows: Suppose we knew the total weighted value of execution times
in an optimal schedule

∑

j∈J wjx
∗
j = X∗. Then it is easy to verify that the fast single machine

relaxation with the additional constraint
∑

j∈J wjmx1
j ≤ X∗ on the weighted actual executions

times x1
j on the fast machine still gives a lower bound. Consider the problem of scheduling a

job set J (with release dates) on m parallel machines using an energy budget E. Let Z(X∗)
be the cost of an optimal schedule using energy E and

∑

j∈J wjx
∗
j = X∗. Consider an optimal

preemptive schedule with cost Z1(X
∗) for J without release dates on a single machine of speed m

with energy E and the additional constraint
∑

j∈J wjmx1
j ≤ X∗.

Lemma 32. Z1(X
∗) ≤ Z(X∗).

Proof. The proof goes along the same lines as in the non-energy setting in [10]. Using time
discretization, any parallel machine schedule can be converted into a feasible preemptive schedule
on a fast single machine without increasing the total cost and without changing the total energy
given to each job. Thus, an optimal single machine schedule gives a lower bound.

Given X∗, we can solve the restricted fast single machine relaxation using the PTAS from
Theorem 21 (continuous speeds) or Theorem 23 (discrete speeds), respectively. We can directly
implement the additional constraint of restricting the total weighted execution time by adding an
entry to the corresponding dynamic programming table which tracks this value for each partial
solution. To guarantee polynomial running time, we round the values to powers of 1 + ε at the
cost of an additional factor 1 + ε in approximation guarantee.

The solution of the fast single machine relaxation gives a priority ordering for the preemptive
list scheduling algorithm to obtain the final parallel machine solution. It remains the issue,
that we do not know X∗. Essentially, we run the algorithm (fast single machine relaxation plus
preemptive list scheduling) for every possible value X∗ ∈ [XL, XU ], for some upper and lower
bounds XL, XU that we define below, and we pick the best feasible solution. Again, to guarantee
a polynomial running time we choose only values that are powers of 1 + ε at the cost of a small
increase in the approximation guarantee.

A simple lower bound onX∗ is obtained by giving each job the maximum amount of energyE.
Recall that xj = (vαj /Ej)

1/(α−1). Thus,

X∗ =
∑

j∈J

wjx
∗
j ≥

∑

j∈J

wj

(

vαj
E

)
1

α−1

=: XL .

An upper bound can be obtained as follows: the optimal execution times x∗
j are bounded by

the completion times in an optimal solution, and thus, X∗ ≤ Opt. The value Opt obtained
on multiple machines is not larger than the optimal solution for the same job set and energy
using just a single machine. Now, for the cost of an optimal single machine solution we gave an
explicit expression in Equation (5). This expression used a solution-dependent remaining weight
parameter Wj which we crudely bound by n · wmax, with wmax := maxj∈J wj . We obtain

X∗ ≤ Opt ≤
1

E
1

α−1

·





n
∑

j=1

vj · (n · wmax)
α−1

α





α
α−1

=
n · wmax

E
1

α−1

·





n
∑

j=1

vj





α
α−1

=: XU .

A summary of the algorithm is given below.
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Algorithm Fast-Relax+List-Scheduling

Let ε′ := ε/2. For i = 0 to ⌈log1+ε′ XU/XL⌉ do

1. Let X = (1 + ε′)i.

2. Compute an energy assignment Ej and a scheduling solution π for the given job set J with
release dates set to 0 on a single machine running m times as fast as the original machines,
with energy budget E, and respecting the additional constraint that

∑

j∈J wj ·mvj/sj ≤ X .
If there is no solution, then i← i+ 1.

3. Keep the energy assignment and apply preemptive list scheduling according to π on m
machines respecting release dates, i.e., run at any time the m jobs with the highest priority
in π among the available (released, unfinished) jobs.

4. If the total cost of this solution is less than previous solutions then keep it, otherwise
disregard.

5. i← i+ 1.

Theorem 33. Fast-Relax+List-Scheduling is a factor 2 + ε approximation for continuous and
discrete speed-scaling when jobs have individual release dates.

Proof. Let X∗ be the total weighted execution time in an optimal parallel machine schedule
with cost Opt. Let ε′ := ε/2, and let X ′ satisfy X∗ ≤ X ′ ≤ (1 + ε′)X∗. The algorithm returns
the minimum cost solution over all weighted completion time bounds X . Thus, the cost of the
final solution is bounded by the total cost of the solution obtained based on X ′. We show that
the cost of this solution is at most 2(1 + ε′)Opt = (2 + ε)Opt.

Let Z1(X) denote the cost of an optimal solution to the fast single machine problem with
imposed constraint

∑

j∈J wj · mvj/sj ≤ X . Clearly, Z1(X
′) ≤ Z1(X

∗). Let C1
j (X

′) denote
the completion time of job j in a solution to the the fast single machine problem with imposed
constraint X ′ when applying a PTAS (Theorem 21 for continuous speeds or Theorem 23 for
discrete speeds, respectively). Lemma 32 and the observation above imply

∑

j∈J

wjC
1
j (X

′) ≤ (1 + ε′)Z1(X
′) ≤ (1 + ε′)Z1(X

∗) ≤ (1 + ε′)Opt .

Now consider the final list scheduling solution obtained for bound X ′, and let Cj denote the
completion time of a job j. Recall that the algorithm keeps the energy assignment from the
fast single machine relaxation; thus, the execution time of a job j is xj = m · x1

j , where x1
j is

the actual execution time of j on the fast single machine. By construction, a job j starts only
processing when the first machine becomes available after its release date and after starting all
jobs k with higher priority in π (denoted by k <π j). Thus, its completion time is bounded by
Cj ≤ rj +

∑

k<πj
xk/m+ xj . Thus, the total cost of the algorithms solution Alg is

Alg ≤
∑

j∈J

wjrj +
∑

j∈J

wj

∑

k<πj

x1
j +

∑

j∈J

wjxj

≤
∑

j∈J

wjrj +
∑

j∈J

wjC
1
j (X

′) +
∑

j∈J

wj ·mx1
j

≤
∑

j∈J

wjrj + (1 + ε′)Opt+
∑

j∈J

wj ·mx1
j .

Now, by construction we have that
∑

j∈J wj ·mx1
j ≤ X ′ ≤ (1 + ε′)X∗. Using, the obvious

lower bound Opt ≥
∑

j∈J wjrj +X∗, we conclude Alg ≤ 2(1 + ε′)Opt.
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7 Conclusion

In this paper we have demonstrated the power of a dual scheduling view for minimizing the total
weighted completion time—in particular, when scheduling on a machine that may change its
speed. Instead of the standard approach of scheduling along the time-axis, we schedule jobs in
the weight-axis of the well-known two-dimensional Gantt-chart. This change of concept allows
to handle the complexity of machine speed changes. We give several algorithms relying on dual
techniques and show that they guarantee nearly optimal solutions. Most of our results are best
possible in terms of approximation guarantees.

An interesting open question is how to incorporate release dates for the varying-speed sce-
nario and improve the (4 + ε)-approximation in [14]. While with our current technique we can
almost fully resort to the weight-space, release dates would require maintaining a correspondence
between weight- and time-space.

The most challenging open problem in this context concerns min-sum scheduling when each
job may have its own non-decreasing cost function fj . Any improvement of the recent 4-
approximation [11, 23] for 1| |

∑

fj would be of significant interest. Our PTAS on a machine
of varying speed translates into the equivalent setting of scheduling on a unit-speed machine to
minimize a general global cost function

∑

wjf(Cj) and thus give a tight result for this case.
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