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OVERCOMING ORDER REDUCTION IN DIFFUSION-REACTION

SPLITTING. PART 2: OBLIQUE BOUNDARY CONDITIONS

LUKAS EINKEMMER∗ AND ALEXANDER OSTERMANN∗

Abstract. Splitting methods constitute a well-established class of numerical schemes for the time
integration of partial differential equations. Their main advantages over more traditional schemes are
computational efficiency and superior geometric properties. In the presence of non-trivial boundary
conditions, however, splitting methods usually suffer from order reduction and some additional loss
of accuracy. For diffusion-reaction equations with inhomogeneous oblique boundary conditions, a
modification of the classic second-order Strang splitting is proposed that successfully resolves the
problem of order reduction. The same correction also improves the accuracy of the classic first-order
Lie splitting. The proposed modification only depends on the available boundary data and, in the
case of non Dirichlet boundary conditions, on the computed numerical solution. Consequently, this
modification can be implemented in an efficient way, which makes the modified splitting schemes
superior to their classic versions. The framework employed in our error analysis also allows us to
explain the fractional orders of convergence that are often encountered for classic Strang splitting.
Numerical experiments that illustrate the theory are provided.

Key words. Strang splitting, diffusion-reaction equation, oblique boundary conditions, Neu-
mann boundary conditions, Robin boundary conditions, mixed boundary conditions, order reduction
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1. Introduction. For the numerical solution of evolution equations, splitting
methods have attracted much attention in recent years. The main advantage of split-
ting methods over more traditional time integration schemes is the fact that the par-
tial vector fields in the splitting can usually be integrated more efficiently, sometimes
much more efficiently, compared to applying a numerical method to the full problem.
Moreover, splitting methods have, in general, better geometric properties [10]. As a
typical example, we mention splitting of the Schrödinger equation [6] into the kinetic
and the potential part. The former is integrated in frequency space using the fast
Fourier transform, whereas the latter can often be integrated exactly. This requires
considerably less computational effort compared to directly applying, for example, an
implicit Runge–Kutta method to the Schrödinger equation.

In this paper, we will consider a splitting approach for diffusion-reaction equa-
tions. In our problem, the diffusion is modelled by a linear elliptic differential operator
and the reaction by a nonlinear smooth function. Such a splitting into a linear elliptic
problem, which can be solved efficiently by fast Poisson techniques [17], and a non-
linear ordinary differential equation, which is simply solved pointwise in space, has
attracted much attention in the literature (see, e.g., the articles [1, 3, 5, 8, 11] and
the monograph [14]).

Although splitting methods are widely used in multiphysics problems, a rigorous
error analysis is still missing for many important applications. For instance, the con-
vergence analysis of splitting methods is often carried out either for periodic boundary
conditions or for full space problems. On the other hand, it is known from numerical
experiments that non-trivial boundary conditions lead to order reduction (see, e.g.,
the experiments in [4, 12]).

In order to avoid such an order reduction, the splitting must be modified in such
a way that the internal steps of the splitting become compatible with the prescribed
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boundary conditions. For reaction-diffusion equations with Dirichlet boundary con-
ditions, we presented such a correction in our recent paper [4]. Here, we propose a
modification of that idea which, on the one hand, is easier to implement, and on the
other hand can be extended to more general oblique boundary conditions. The latter
comprise Dirchlet, Neumann, Robin, and mixed boundary conditions.

To illustrate the underlying ideas of our approach, we consider for a moment the
semilinear heat equation

(1.1) ∂tu = ∆u+ f(u), αu+ β∂nu|∂Ω = b.

Depending on the choice of α and β, it is equipped with Dirichlet, Neumann, Robin,
or a mixture of these boundary conditions.

The problem of order reduction in splitting methods has the following origin.
When the right-hand side of the differential equation (1.1) is split into the two parts
∆u and f(u), the nonlinearity f(u) does not satisfy, in general, the homogeneous
boundary conditions αu + β∂nu|∂Ω = 0 with f(u) in place of u. However, these
boundary conditions are essential as they characterize the domain of the Laplacian
∆, which plays a paramount role in the error analysis. The noncompliance of the
nonlinearity with the homogeneous boundary conditions is the main source of order
reduction.

We therefore look for a function q that satisfies the boundary conditions of the
nonlinearity f(u), that is

(1.2) αq + β∂nq|∂Ω = αf(u) + βf ′(u)∂nu|∂Ω,

and define the splitting

(1.3)
∂tv = ∆v + q, αu + β∂nu|∂Ω = b

∂tw = f(w) − q

with the help of this correction. Then ∂tw satisfies the desired boundary conditions.
Note that q still depends on the value of u and ∂nu on the boundary. We can

eliminate ∂nu from the relation by using β∂nu|∂Ω = b − αu|∂Ω. This then yields

αq + β∂nq|∂Ω = αf(u) + f ′(u)(b− αu)|∂Ω.

It is instructive to consider a few special cases. For Dirichlet boundary conditions
(α = 1, β = 0) we obtain the familiar relation

q|∂Ω = f(b)

which, in the notation of our previous paper [4] constitutes two steps. First, we
compute an extension z of the boundary data, i.e. z|∂Ω = b, and then q = f(z) which
(on the boundary) yields the same result. Note that q is independent of u and can be
precomputed (for time independent boundary data b) in this case.

For Neumann boundary conditions (α = 0, β = 1) we obtain

∂nq|∂Ω = f ′(u)b.

Note that in this case q depends on u|∂Ω. However, we can substitute u by the
numerical solution at the beginning of the time step and still obtain a second-order
approximation, see section 4.2.
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In the general case, the continuation q will thus be constraint by

(1.4) αq(tn) + β∂nq(tn)|∂Ω = αf(un) + f ′(un)(b − αun)|∂Ω,

where un denotes the numerical solution at time tn.
The outline of the paper is as follows. In section 2 we present our model problem,

a semilinear parabolic equation subject to oblique boundary conditions. The numeri-
cal scheme is explained in section 3. With the help of a correction q that has to satisfy
a certain boundary condition, we define a so-called boundary-corrected splitting. Sec-
tion 4 addresses the error analysis of our modified splitting schemes. The convergence
properties of the Lie splitting are analyzed in section 4.1, that of the Strang splitting
in section 4.2. The main result in this context is Theorem 4.5 which proves second
order convergence of the modified Strang splitting under natural assumptions on the
data. The order reduction, which is observed for the classic Strang splitting, is fur-
ther discussed and rigorously explained in section 4.3. Some representative numerical
results in one and two space dimensions are given in sections 5 and 6, respectively.
Issues of efficient implementation are finally discussed in section 7.

We conclude this section by some remarks on the employed notation. The letter C
always denotes a generic constant. It may take on different numeric values at different
occurrences. Most functions in our paper depend on time t and space x. Whenever
convenient, however, we suppress the second variable in the notation and simply write
g(t) instead of g(t, ·). Further, we denote gn(s) = g(tn + s) for tn = nτ , where τ is
the time step size of the numerical method. The very exception to this rule is the
exact solution of the problem, denoted by u. Here, the symbol un always denotes the
numerical approximation to u(t) at time t = tn.

2. Model problem. The purpose of this section is to present a model problem
for which a rigorous error analysis of Lie and Strang splitting will be provided. On
the one hand, the problem should be simple enough so that all steps in the proof can
be presented in detail. On the other hand, it should be sufficiently general to contain
interesting problem classes. We choose a class of semilinear parabolic problems subject
to oblique boundary conditions.

Let Ω ⊂ R
d be an open, bounded subset with smooth boundary ∂Ω. We consider

a second-order elliptic differential operator

(2.1) D =

d∑

i,j=1

dij(x)∂ij +

d∑

i=1

di(x)∂i + d0(x)I

with smooth coefficients. The matrix (dij(x)) is assumed to be symmetric and uni-
formly positive definite on Ω. Further, we consider the first-order boundary operator

(2.2) B =

d∑

i=1

βi(x)∂i + α(x)I

with sufficiently smooth coefficients. The operator B is assumed to satisfy the uniform
non tangentiality condition

(2.3) inf
x∈∂Ω

∣∣∣
∑d

i=1 βi(x)ni(x)
∣∣∣ > 0.

Here, n(x) denotes the outer normal of Ω at x ∈ ∂Ω. We further assume that f is a
sufficiently smooth real function. For more details concerning the functional analytic
framework, we refer to [16, Sect. 3.1].
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Henceforth, we consider the following semilinear parabolic problem with oblique
boundary conditions

∂tu = Du+ f(u)(2.4a)

Bu|∂Ω = b(2.4b)

u(0) = u0(2.4c)

as the model problem in our analysis. The nonlinearity f , the inhomogeneity b and
the initial data u0 are assumed to be sufficiently smooth. Depending on the choice of
coefficients in B, different boundary conditions are modelled. For example, the choice

β1 = . . . = βs = 0

gives a Dirichlet problem, whereas the choice

α = 0, βi(x) =
∑d

j=1 dij(x)nj(x), 1 ≤ i ≤ d

corresponds to a Neumann problem. Note that (2.3) is satisfied in both of these cases.

3. Description of the numerical method. We next describe how to carry
out one splitting step in the time interval [tn, tn+1] of length τ . As motivated in the
introduction, we choose as correction a smooth function q that satisfies the boundary
conditions of f(u). Actually, it is sufficient to require (as we will see later)

(3.1) Bqn(0)|∂Ω = Bf(u(tn))|∂Ω +O(τ).

Since our numerical methods converge at least with order one, we can simply take

(3.2) Bqn|∂Ω = αf(un) + f ′(un)
(
bn − αun

)
|∂Ω,

as this choice then satisfies (3.1). With this correction qn at hand, we consider the
boundary-corrected splitting

∂tvn = Dvn + qn, Bvn|∂Ω = bn(3.3a)

∂twn = f(wn)− qn,(3.3b)

and solve it on the time interval [tn, tn+1] by the standard Lie or Strang approach.
In the case of Lie splitting, for a given initial value un, we first

1 solve (3.3b) with
initial value wn(0) = un to obtain wn(τ). Then, we integrate (3.3a) with initial value
vn(0) = wn(τ) and finally define the numerical solution un+1 at time tn+1 as

(3.4) un+1 = Lτun = vn(τ).

Henceforth, the numerical scheme (3.4) with operator Lτ will be referred to as the
modified Lie splitting step of size τ .

In the case of Strang splitting, for a given initial value un, we first solve (3.3a)
with initial value vn(0) = un to obtain vn(

τ
2 ). Next, we integrate (3.3b) with initial

value wn(0) = vn(
τ
2 ) to obtain wn(τ). Finally, we integrate once more (3.3a), but this

time with initial value vn(0) = wn(τ), and define the numerical solution un+1 at time
tn+1 as

(3.5) un+1 = Sτun = vn(
τ
2 ).

1We note that the order of the two partial flows can also be interchanged. The resulting scheme
can be analyzed in a similar way, see also Lemma 4.6 below.
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The numerical scheme (3.5) with operator Sτ will be referred to as the modified Strang
splitting step of size τ henceforth.

Note that the classic Lie and Strang splitting schemes can formally also be an-
alyzed in the above framework, simply by setting qn = 0. We will make use of that
later on. For the choice qn = 0, however, condition (3.1) is not satisfied, in general.

4. Error analysis. The purpose of this section is to give a thorough error anal-
ysis of Lie and Strang splitting applied to (2.4). Our analysis will be based on the
framework of analytic semigroups, see [18, 13, 16]. For the purpose, we first have to
transform the partial differential equation (2.4) to homogeneous boundary conditions.
Note, however, that this transformation is only employed in the proof and will not
affect our numerical methods.

Let z denote a smooth function that fulfills the boundary conditions

(4.1) Bz|∂Ω = b,

and let û = u− z. Then û satisfies the abstract initial value problem

(4.2) ∂tû = Aû+ f(û+ z) +Dz − ∂tz, û(0) = u(0)− z(0),

where A is the infinitesimal generator of an analytic semigroup on the Banach space
Lp(Ω). Its domain

D(A) = {ψ ∈ W 2,p(Ω) | Bψ|∂Ω = 0} ⊂ Lp(Ω)

incorporates the homogeneous boundary conditions of the problem. For functions
ψ ∈ D(A), the action of A is defined by Aψ = Dψ. For details, we again refer to [16,
Sect. 3.1].

For later use we recall that analytic semigroups enjoy the parabolic smoothing
property, i.e.

(4.3) ‖etA(−A)γ‖ ≤ Ct−γ , γ ≥ 0

for all t ∈ (0, T ]. Without any loss of generality, we assumed here that A is invertible
with a bounded inverse. This can always be achieved by an appropriate scaling of u.

Let ϕk denote the entire functions, recursively defined by

ϕk+1(z) =
ϕk(z)−

1
k!

z
, k ≥ 0, ϕ0(z) = ez .

From the integral representation

(4.4) ϕk(z) =

∫ 1

0

e(1−s)z sk−1

(k − 1)!
ds, k ≥ 1,

we infer that the operators ϕk(tA) are uniformly bounded for 0 ≤ t ≤ T . Moreover,
the following relation holds

(4.5) eτA − ϕ1(τA) = τA
(
ϕ1(τA) − ϕ2(τA)

)
,

which will be employed later.
We still have to formulate an appropriate framework to include the nonlinearity

f . For simplicity, we want to use the same norm for the analysis of (3.3a) and (3.3b).



6 L. EINKEMMER, A. OSTERMANN

This, however, implies that f must be considered as a smooth function on Lp(Ω),
defined in a neighborhood of the exact solution with values in Lp(Ω). This seems
to be quite a restrictive assumption. However, we can use the well-known fact that
the norm is differentiable in Lp(Ω) \ {0} for 1 < p < ∞ and twice differentiable
for 2 ≤ p < ∞, see [19, Sect. 2.2]. Therefore, f(u) can be replaced in the analysis
by χ(‖u‖)f(u), where χ is a suitably chosen real smooth cut-off function. Without
further mention, we will follow this approach.

Still another possibility would be to consider f : V → Lp(Ω), where V denotes
the fractional power space V = D((−A)γ) for some 0 ≤ γ < 1. This framework is
used often in the literature, for example in [13]. For simplicity, however, we will not
consider it further here.

The exact solution of the abstract problem (4.2) can be expressed by the variation-
of-constants formula

û(t) = eτAû(0) +

∫ t

0

e(t−s)A
(
f(û(s) + z(s)) +Dz(s)− ∂tz(s)

)
ds.

This allows us to express the exact solution of (2.4) at time tn+1 = tn + τ in the
following way:

(4.6)

u(tn+1) = zn(τ) + eτA
(
u(tn)− zn(0)

)

+

∫ τ

0

e(τ−s)A
(
f(u(tn + s)) +Dzn(s)− ∂tzn(s)

)
ds,

where zn(s) is a smooth function satisfying the boundary condition Bzn(0)|∂Ω = b(tn).
For example, we can take zn(s) = z(tn + s).

The convergence analysis is quite similar to that one carried out in our previous
paper [4] in the Dirichlet case. The main difference comes from the fact that the
correction q is now solution dependent, in general.

4.1. Lie and modified Lie splitting. We commence this section by studying
the local error of Lie splitting applied to (2.4). For this purpose, we start the numerical
solution at time tn with the initial value ũn = u(tn) on the exact solution. We first
carry out a substep of size τ with the vector field (3.3b), which gives

(4.7) wn(τ) = ũn + τ
(
f(ũn)− qn(0)

)
+O(τ2),

and then conclude the Lie step by integrating (3.3a) with initial value vn(0) = wn(τ)
up to time τ . This provides the sought-after numerical solution

(4.8)

Lτ ũn = zn(τ) + eτA
(
wn(τ)− zn(0)

)

+

∫ τ

0

e(τ−s)A
(
qn(s) +Dzn(s)− ∂tzn(s)

)
ds.

The local error δn+1 = Lτ ũn − u(tn+1) is obtained by inserting (4.7) into (4.8) and
subtracting (4.6). This gives the following representation of the local error

(4.9)

δn+1 = τeτA
(
f(ũn)− qn(0)

)

+

∫ τ

0

e(τ−s)A
(
qn(s)− f(u(tn + s))

)
ds+O(τ2).

Expanding

qn(s)− f(u(tn + s)) = qn(0)− f(ũn) +O(τ)
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we get

(4.10)
δn+1 = τ

(
eτA − ϕ1(τA)

)(
qn(0)− f(ũn)

)
+O(τ2)

= τ2A
(
ϕ1(τA) − ϕ2(τA)

)(
qn(0)− f(ũn)

)
+O(τ2),

where we used (4.4) and (4.5). Henceforth, we will employ the following assumption
on the data of (2.4).

Assumption 4.1. Let the domain Ω, the differential operators D and B, and
the inhomogeneity d satisfy the assumptions of section 2, let f be differentiable, and
assume that u0 is smooth and satisfies the boundary conditions.

Under these assumptions A generates an analytic semigroup [16, Sect. 3.1]. More-
over, Proposition 7.1.10 in [16] shows that the solution u of (2.4) is continuously
differentiable.

Theorem 4.2 (Convergence of the classic Lie splitting). Under Assumption 4.1,
the classic Lie splitting is convergent of order τ |log τ |, i.e., the global error satisfies
the bound

‖un − u(tn)‖ ≤ Cτ(1 + |log τ |), 0 ≤ nτ ≤ T,

where the constant C depends on T but is independent of τ and n.
Proof. The global error en = un − u(tn) satisfies the recursion

(4.11) en+1 = Lτun − Lτ ũn + δn+1

which, by (4.7) and (4.8), can be brought into the following form:

(4.12) en+1 = eτA
(
en + τ

(
f(un)− f(ũn)

))
+ δn+1 +O(τ2).

Solving this recursion, using the local Lipschitz continuity of f , the very form of the
local errors (4.10) with qn = 0, and the parabolic smoothing property (4.3), we get

‖en‖ ≤ C‖e0‖+ Cτ

n−1∑

k=0

‖ek‖+ Cτ2
n−1∑

k=1

1

kτ
+ Cτ.

Note that the third term on the right-hand side can by estimated by Cτ(1 + |log τ |).
This, together with Gronwall’s inequality and ‖e0‖ = 0 gives the desired bound.

Under the slightly stronger assumption

(4.13) qn(0)− f(u(tn)) ∈ D((−A)γ) for some 0 < γ ≤ 1,

the log τ term in the above theorem can be omitted. This follows at once from the
representation of the local errors

δn+1 = −τ2(−A)1−γ
(
ϕ1(τA) − ϕ2(τA)

)
(−A)γ

(
qn(0)− f(u(tn))

)
+O(τ2).

For the oblique boundary conditions considered in this paper, we can choose any
γ < 1

2p , see [9].

In particular, for the modified Lie splitting (which is equivalent to setting γ = 1
in (4.13)) we get the following result.

Theorem 4.3 (Convergence of the modified Lie splitting). Under Assump-
tion 4.1, the modified Lie splitting with qn satisfying (3.2) is convergent of order
one.



8 L. EINKEMMER, A. OSTERMANN

4.2. Strang and modified Strang splitting. In order to study the conver-
gence properties of Strang splitting and its modifications, we again first analyze its
local error when applied to (2.4). For this purpose, we consider one step of the nu-
merical solution, starting at time tn with the initial value ũn = u(tn) on the exact
solution. The first half step of the modified Strang splitting (see (3.3a)) is then given
by

(4.14)

vn(
τ
2 ) = zn(

τ
2 ) + e

τ

2
A
(
ũn − zn(0)

)

+

∫ τ

2

0

e(
τ

2
−s)A

(
qn(s) +Dzn(s)− ∂tzn(s)

)
ds,

where zn denotes a sufficiently smooth function that satisfies the boundary condition
Bzn(0)|∂Ω = bn(0). We use here the same function zn as in (4.6). The subsequent
full step with the vector field (3.3b) then has the representation

(4.15) wn(s) = vn(
τ
2 ) + t

(
f(wn(

s
2 ))− qn(

s
2 )
)
+O(s3), 0 ≤ s ≤ τ.

Note that we have employed a symmetric expansion based on the midpoint of the
interval [0, s]. Therefore, the O(s2) term does not show up in the expansion. Carrying
out again one half step of (3.3a) with starting value wn(τ) provides one step of Strang
splitting

(4.16)

Shũn = zn(τ) + e
τ

2
A
(
wn(τ) − zn(

τ
2 )
)

+

∫ τ

2

0

e(
τ

2
−s)A

(
qn(

τ
2 + s) +Dzn(

τ
2 + s)− ∂tzn(

τ
2 + s)

)
ds.

Inserting (4.15) and (4.14) into (4.16) finally gives the following representation of the
numerical solution

(4.17)

Shũn = zn(τ) + eτA
(
ũn − zn(0)

)
+ τeτA

(
f(wn(

τ
2 ))− qn(

τ
2 )
)

+

∫ τ

0

e(τ−s)A
(
qn(s) +Dzn(s)− ∂tzn(s))

)
ds+O(τ3).

The local error is given by δn+1 = Shũn − u(tn+1). Taking the difference of the
numerical (4.17) and the exact solution (4.6), we get

(4.18)

δn+1 = τe
τ

2
A
(
f(wn(

τ
2 ))− f(u(tn + τ

2 ))
)
+ τe

τ

2
A
(
f(u(tn + τ

2 ))− qn(
τ
2 )
)

+

∫ τ

0

e(τ−s)A
(
qn(s)− f(u(tn + s))

)
ds+O(τ3)

= 1©+ 2©+ 3©+O(τ3).

This error representation is composed of three terms and a remainder. In order to
bound the first term in (4.18), we use the Lipschitz continuity of f and the bound

(4.19) ‖wn(
τ
2 )− u(tn + τ

2 )‖ ≤ Cτ2,

which holds uniformly in n and τ on compact time intervals (see Lemma 4.6 below).
This shows that 1© is of size O(τ3).

The remaining terms 2© and 3© are treated together. Employing the Peano kernel
representation of the error of the midpoint rule

(4.20)

∫ τ

0

ψ(s) ds = τψ( τ2 ) +

∫ τ

2

0

s2

2
ψ′′(s) ds+

∫ τ

τ

2

(τ − s)2

2
ψ′′(s) ds



OVERCOMING ORDER REDUCTION IN SPLITTING METHODS II 9

with

ψ(s) = e(τ−s)Aψ̂(s), ψ̂(s) = qn(s)− f(u(tn + s))

shows that we just have to estimate the two integral remainder terms on the right-
hand side of (4.20). The term ψ′′(s) consists of three different terms

ψ′′(s) = Ae(τ−s)AAψ̂(s)− 2Ae(τ−s)Aψ̂′(s) + e(τ−s)Aψ̂′′(s).

The leftmost A in the first two terms can be compensated by parabolic smoothing in
exactly the same way as for Lie splitting (see also the proof of Theorem 4.5 below).
Therefore, the only term that requires attention is

(4.21) χ(s) = e(τ−s)AAψ̂(s) = e(τ−s)AA
(
q̂n(0)− f(ũn)

)
+ ρn.

Due to the parabolic smoothing property, the remainder ρn satisfies the bound

‖ρn‖ ≤ Cτ(τ − s)−1

uniformly in n. This together with (3.1) shows that χ is uniformly bounded, and
proves the following representation of the local error

(4.22) δn+1 = Aδ̂n+1 +O(τ3), δ̂n+1 = O(τ3).

We will employ the following assumption on the data of (2.4).
Assumption 4.4. Let the domain Ω, the differential operators D and B, and the

inhomogeneity d satisfy the assumptions of section 2, let f be twice differentiable, and
assume that u0 and Du0 are smooth and satisfy the boundary conditions.

We are now in the position to state the convergence result for the modified Strang
splitting.

Theorem 4.5 (Convergence of the modified Strang splitting). Let qn satisfy
(3.2). Then, under Assumption 4.4 the modified Strang splitting scheme is convergent
of order τ2 |log τ |, i.e., the global error satisfies the bound

‖un − u(tn)‖ ≤ Cτ2(1 + |log τ |), 0 ≤ nτ ≤ T,

where the constant C depends on T but is independent of τ and n.
Under the assumption

qn(0)− f(u(tn)) ∈ D((−A)1+γ) for some 0 < γ ≤ 1,

which is slightly stronger than (3.2), the log τ term in the above theorem can be
omitted. This follows in the same way as the corresponding result for Lie splitting,
discussed above. For the oblique boundary conditions considered in this paper, we
can choose again any γ < 1

2p , see [9].

Proof of Theorem 4.5. The global error en = un − u(tn) satisfies the recursion

(4.23) en+1 = Sτun − Sτ ũn + δn+1

which, by (4.17) and (4.15), can be brought to the following form

(4.24) en+1 = eτA
(
en + τE(un, ũn)

)
+ δn+1 +O(τ2),
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Table 1
Expected orders of convergence for classic Strang splitting in various norms.

boundary type L1 L2 L∞

β1 = . . . = βd = 0 1.50 1.25 1.00

∃j with βj 6= 0 2.00 1.75 1.50

where E satisfies the bound ‖E(un, ũn)‖ ≤ C‖en‖ uniformly in n. Using the repre-
sentation (4.22) of the local errors δn+1, we can proceed from here on literally as in
the proof of Theorem 4.2.

The following Lemma was used for the proof of Theorem 4.5. It also shows that
modified Lie splitting, carried out with the flows interchanged, has the same order of
convergence.

Lemma 4.6. Let qn satisfy (3.2). Then, under the assumptions of Theorem 4.2,
the following bound holds

(4.25)
∥∥wn(

τ
2 )− u(tn + τ

2 )
∥∥ ≤ Cτ2

with a constant C that can be chosen independently of n and τ on compact time
intervals 0 ≤ tn = nτ ≤ T .

Proof. From (4.15) with t = τ
2 we infer that

wn(
τ
2 ) = vn(

τ
2 ) +

τ
2

(
f(wn(0))− qn(0)

)
+O(τ2)

with vn(
τ
2 ) given by (4.14). Using again the notation ψ̂(s) = qn(s)− f(u(tn + s)), we

have

wn(
τ
2 )− u(tn + τ

2 ) =
τ
2

(
f(wn(0))− qn(0)

)
+

∫ τ

2

0

e(
τ

2
−s)Aψ̂(s) ds

= τ
2

(
f(wn(0))− f(ũn)

)
+

∫ τ

2

0

∫ s

0

e(
τ

2
−ξ)A(Aψ̂(ξ) + ψ̂′(ξ)) dξ ds.

Since qn satisfies the boundary conditions of f(ũn), the above integrand fulfills the
bound

(4.26) ‖e(
τ

2
−ξ)A(Aψ̂(ξ) + ψ̂′(ξ))‖ ≤ C

and the double integral is appropriately bounded. Further, since f is locally Lipschitz
continuous, it remains to estimate the difference

wn(0)− ũn = vn(
τ
2 )− ũn

= zn(
τ
2 ) + e

τ

2
A
(
ũn − zn(0)

)
− ũn

= τ
2Aϕ1(

τ
2A)

(
zn(0)− ũn

)
+O(τ).

But both, zn(0) and ũn satisfy the boundary conditions. Therefore, their difference
zn(0)− ũn lies in the domain of A. This gives at once the required bound (4.25).

4.3. Explanation of the encountered fractional orders of convergence.

We are now in the position to explain the order reduction which is encountered in our
experiments with the classic Strang scheme. Under the relaxed assumption (4.13), we
get instead of (4.26) the weaker bound

(4.27) ‖e(
τ

2
−ξ)A(Aψ̂(ξ) + ψ′(ξ))‖ ≤ C( τ2 − ξ)γ−1.
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This is again achieved by employing the parabolic smoothing property (4.3). Conse-
quently, we get

∫ τ

2

0

∫ s

0

e(
τ

2
−ξ)A(Aψ̂(ξ) + ψ′(ξ)) dξ ds = Cτγ+1,

which shows that the assertion of Lemma 4.6 still holds under the assumption (4.13)
with the weaker bound

∥∥wn(
τ
2 )− u(tn + τ

2 )
∥∥ ≤ Cτγ+1.

Next, we rewrite (4.21) as

(4.28) χ(s) = e(τ−s)A(−A)1−γ · (−A)γ
(
q̂n(0)− f(ũn)

)
+ ρn

and use again (4.3). This gives the bound

‖χ(s)‖ ≤ C(τ − s)γ−1 + Cτ(τ − s)−1.

Inserting this into (4.20) shows that

(4.29) δn+1 = Aδ̂n+1 +O(τ3), δ̂n+1 = O(τγ+2).

The classic Strang splitting under assumption (4.13) thus converges with order 1+ γ.
The value of γ depends on the type of boundary condition and the chosen norm in
which the error is measured. Table 1 gives some typical values, see [7, 9].

5. Numerical results in one space dimension. In this section we will present
a number of numerical results for the diffusion-reaction problem (1.1) with f(u) = u2

on Ω = [0, 1]. The Laplacian is discretized by classical centered second-order finite
differences, and we use the CVODE library [2] to compute the partial flows given by
(3.3). In all the simulations we will refer to the classical splitting approach by Lie
and Strang, respectively, while we refer to the schemes introduced in section 3 by Lie
(modified) and Strang (modified), respectively.

Example 5.1 (Neumann boundary conditions). For this problem we prescribe
inhomogeneous Neumann boundary conditions (α = 1, β = β1 = 0) with b0 = 0
and b1 = 1. From the boundary conditions an admissible correction in accordance
with condition (3.2) is easily determined. It does not depend on time and is given by
qn(s, x) = x2un(1). As initial condition we have chosen u0(x) = −2/π cos(12πx). The
numerical results are shown in Table 2. We observe the expected reduction to order
1.5 (infinity norm) and order 1.75 (discrete L2 norm) for the classic Strang splitting
scheme. On the other hand, the modified Strang splitting scheme is seen to be second
order convergent. In addition, the error constants are improved by approximately a
factor of two in case of the modified Lie splitting.

Example 5.2 (Mixed boundary conditions). For this problem we prescribe
Dirichlet boundary conditions on the left boundary (with b0 = 1) and Neumann on the
right boundary (with b1 = 1). From these boundary conditions the correction is easily
determined to satisfy qn(s, x) = 1 + 2xun(1). As initial condition we have chosen
u0(x) = 1 + 2

π
− 2

π
cos(12πx). The numerical results are shown in Table 3. We ob-

serve the expected reduction to order approximately 1 (infinity norm) and order 1.25
(discrete L2 norm) for the classic Strang splitting scheme. On the other hand, the
modified Strang splitting scheme is seen to be second order convergent with greatly
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Table 2
Diffusion-reaction equation with inhomogeneous Neumann boundary conditions and 500 grid

points. The error in the discrete infinity and L2 norm, respectively, is computed at t = 0.5 by
comparing the numerical solution to a reference solution computed with the modified Strang splitting
using τ = 1 · 10−4.

Lie Strang Strang

step size l∞ error order l∞ error order l2 error order

3.125e-02 2.951e-01 – 1.806e-01 – 8.733e-02 –
1.562e-02 1.741e-01 0.76 2.211e-04 9.67 2.130e-05 12.00
7.812e-03 1.237e-03 7.14 7.684e-05 1.52 6.364e-06 1.74
3.906e-03 6.315e-04 0.97 2.638e-05 1.54 1.895e-06 1.75
1.953e-03 3.202e-04 0.98 8.897e-06 1.57 5.612e-07 1.76

Lie (modified) Strang (modified) Strang (modified)

step size l∞ error order l∞ error order l2 error order

3.125e-02 1.381e-01 – 8.752e-02 – 5.471e-02 –
1.562e-02 8.962e-02 0.62 1.495e-05 12.51 3.931e-06 13.76
7.812e-03 7.543e-04 6.89 3.868e-06 1.95 9.773e-07 2.01
3.906e-03 3.788e-04 0.99 1.002e-06 1.95 2.428e-07 2.01
1.953e-03 1.898e-04 1.00 2.603e-07 1.94 6.023e-08 2.01

Table 3
Diffusion-reaction equation with mixed Dirichlet/Neumann boundary conditions and 500 grid

points. The error in the discrete infinity and L2 norm, respectively, is computed at t = 0.2 by
comparing the numerical solution to a reference solution computed with the modified Strang splitting
using τ = 5 · 10−5.

Lie Strang Strang

step size l∞ error order l∞ error order l2 error order

1.250e-02 1.185e+00 – 5.718e-03 – 5.815e-04 –
6.250e-03 2.745e-03 8.75 2.736e-03 1.06 2.379e-04 1.29
3.125e-03 1.430e-03 0.94 1.288e-03 1.09 9.652e-05 1.30
1.563e-03 7.356e-04 0.96 5.904e-04 1.13 3.855e-05 1.32
7.813e-04 3.750e-04 0.97 2.596e-04 1.19 1.499e-05 1.36

Lie (modified) Strang (modified) Strang (modified)

step size l∞ error order l∞ error order l2 error order

1.250e-02 3.618e-01 – 8.222e-05 – 2.567e-05 –
6.250e-03 9.110e-03 5.31 2.087e-05 1.98 6.426e-06 2.00
3.125e-03 4.579e-03 0.99 5.292e-06 1.98 1.609e-06 2.00
1.563e-03 2.295e-03 1.00 1.341e-06 1.98 4.031e-07 2.00
7.813e-04 1.149e-03 1.00 3.395e-07 1.98 1.009e-07 2.00

improved accuracy even for large time step sizes. In addition, the error constants are
improved by a factor of more than three in case of the modified Lie splitting.

Example 5.3 (Robin boundary condition). For this problem we prescribe Robin
boundary conditions (α = β = β1 = 1) and b0 = 0, b1 = 1 + 2/π. The correction,
determined accordance with (3.2), satisfies qn(s, x) = γ0 + γ1x, where

γ0 = −2(1 + 2
π
)un(1) + u2n(1)− 2u2n(0), γ1 = 2(1 + 2

π
)un(1) + u2n(0)− u2n(1).
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Table 4
Diffusion-reaction equation with Robin boundary conditions and 500 grid points. The error in

the discrete infinity and L2 norm, respectively, is computed at t = 0.25 by comparing the numerical
solution to a reference solution computed with the modified Strang splitting using τ = 5 · 10−5.

Lie Strang Strang

step size l∞ error order l∞ error order l2 error order

1.562e-02 5.618e-02 – 2.388e-04 – 2.294e-05 –
7.812e-03 9.115e-04 5.95 8.365e-05 1.51 6.913e-06 1.73
3.906e-03 4.690e-04 0.96 2.890e-05 1.53 2.072e-06 1.74
1.953e-03 2.393e-04 0.97 9.815e-06 1.56 6.174e-07 1.75
9.766e-04 1.213e-04 0.98 3.254e-06 1.59 1.826e-07 1.76

Lie (modified) Strang (modified) Strang (modified)

step size l∞ error order l∞ error order l2 error order

1.562e-02 3.232e-01 – 7.388e-06 – 4.741e-06 –
7.812e-03 4.716e-04 9.42 1.865e-06 1.99 1.200e-06 1.98
3.906e-03 2.370e-04 0.99 4.711e-07 1.99 3.040e-07 1.98
1.953e-03 1.188e-04 1.00 1.192e-07 1.98 7.717e-08 1.98
9.766e-04 5.947e-05 1.00 3.024e-08 1.98 1.969e-08 1.97

Table 5
Two-dimensional diffusion-reaction equation with mixed Dirichlet/Neumann boundary condi-

tions and 104 quadrilateral finite elements. The error in the discrete infinity norm is computed
at t = 0.1 by comparing the numerical solution to a reference solution computed with the modified
Strang splitting using τ = 1.5 · 10−3

Strang Strang (Dirichlet) Strang (modified)

step size l∞ error order l∞ error order l∞ error order

0.1 6.493e-01 – 1.203e-01 – 1.024e-01 –
0.05 2.906e-01 1.16 4.295e-02 1.49 2.568e-02 2.00
0.025 1.345e-01 1.11 1.639e-02 1.39 5.445e-03 2.24

0.0125 6.147e-02 1.13 5.455e-03 1.59 1.346e-03 2.02

As initial condition we have chosen u0(x) = −2/π cos(12πx) + 2/π. The numerical
results are shown in Table 4. Since Robin boundary conditions behave similarly as
Neumann boundary conditions we expect a reduction to order 1.5 (infinity norm) and
order 1.75 (discrete L2 norm), respectively. This is exactly what we observe for the
classic Strang splitting. On the other hand, the modified Strang splitting is second
order accurate. In addition, the error constants are improved by approximately a
factor of two in case of the modified Lie splitting.

6. Numerical results in two space dimensions. In this section we will con-
sider the diffusion-reaction problem (1.1) with f(u) = u2 on Ω = [0, 1]× [0, 1]. The
initial value is given by

u0(x) = 3 + e−5(y− 1

2
)2 cos(2π(x + y)).

We impose Dirichlet boundary conditions on the top and bottom, and Neumann
boundary conditions on the left and right boundary. The value of the boundary
data b is determined in such a manner that the initial condition u0 is consistent with
the prescribed boundary data. The correction qn is computed by solving Laplace’s
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Table 6
Diffusion-reaction equation with Dirichlet boundary conditions and 500 grid points. The error

in the discrete infinity norm is computed at t = 0.1 with a step size τ = 1.25 · 10−3 by comparing
the numerical solution to a reference solution computed with the modified Strang splitting using
τ = 5 · 10−5.

method correction l∞ error

Lie none 2.31e-03
Lie (mod.) harmonic 1.20e-03
Lie (mod.) sinπx 2.43e-03
Lie (mod.) sin 10πx 3.21e-03

method correction l∞ error

Strang none 1.84e-03
Strang (mod.) harmonic 1.20e-06
Strang (mod.) sinπx 1.27e-06
Strang (mod.) sin 10πx 7.02e-05

equation with these boundary conditions. The space discretization is performed with
the libMesh software package [15] and quadrilateral finite elements of second order
are used.

The numerical results are shown in Table 5. We observe order reduction to
approximately order 1 (in the infinity norm) for the classic Strang splitting. On the
other hand, second order accuracy is observed for the modified Strang splitting. Let
us also emphasize that even for large time step sizes (i.e. a low tolerance) the modified
Strang splitting scheme is more accurate by approximately one order of magnitude
compared to the classic Strang splitting scheme.

Furthermore, we have displayed in Table 5 the result of only applying the cor-
rection developed in [4]. In this case the mixed nature of the boundary condition is
ignored and the whole boundary is treated as if Dirichlet boundary conditions had
been imposed. In this case we observe an order reduction to approximately 1.5. Thus,
some improvement can be obtained with this simplified approach. However, perform-
ing the full correction (as described in this paper) clearly offers superior accuracy.

7. Implementation. For oblique boundary conditions, an efficient implemen-
tation of the modified splitting schemes is more difficult to achieve than for the time
independent Dirichlet boundary conditions that were the focus of [4]. The reason
for this difficulty is that the correction qn now has to be updated once at each time
step and thus can not be precomputed. Note that this problem is shared by time
dependent Dirichlet boundary conditions.

Therefore, in order to provide an efficient implementation of the numerical scheme
described in this paper, we have to devise an efficient way to compute qn. So far,
this has been done exclusively by solving the corresponding elliptic problem. This
is a seductive approach as it eliminates the term Dz from (4.2). However, as the
convergence analysis carried out in section 4 shows, this is not the only possible
choice.

Let us investigate this issue further. Assume that we have a correction qn at our
disposal which satisfies the boundary conditions but is not harmonic (i.e., it does not
solve the elliptic problem). From the theoretical analysis we would still expect the
same order of convergence given that this correction is sufficiently smooth. Using nu-
merical simulations we investigate the dependence of the accuracy on the correction
used. In the numerical results presented in Table 6 we use Dirichlet boundary condi-
tions with b0 = 1 and b1 = 2 and a harmonic correction (i.e. qn = 1 + x), a smooth
correction (qn = 1+ x+sinπx) and an oscillatory correction (qn = 1+ x+sin 10πx),
respectively. We observe that the smooth correction gives results that are comparable
to the harmonic correction, while the oscillatory correction results in a significant loss
of accuracy. These results seem fairly robust both for Dirichlet as well as the more
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Algorithm 1 Numerical algorithm for computing qn
1. Using un we initialize a function q̂ that satisfies the boundary conditions

given in (3.2). Note that the function q̂ is not assumed to be differentiable
(or even continuous). This can be accomplished in O(N) operations, where
N is the number of degrees of freedom, by performing a linear interpolation
of the boundary data.

2. Apply a small number of weighted Jacobi iterations to q̂ in order to obtain qn.
The weighted Jacobi iteration is chosen here as its purpose (as in a multigrid
scheme) is to damp out the high frequencies and thus to produce a smoother
solution. The slow convergence of the weighted Jacobi iteration is not an
issue here since we only use it as a smoother and not to compute a solution
of the elliptic problem.

complicated boundary conditions considered in this paper.

We thus conclude that we can employ any correction as long as it satisfies the de-
sired boundary conditions and is smooth enough. Therefore, we propose Algorithm 1
to compute qn (which is done at the beginning of each time step). The run time of
this procedure is usually negligible compared to the effort required to solve the linear
systems of equations in the parabolic substep of the splitting algorithm. Thus, for
the vast majority of applications the run time of the modified Strang splitting and
the classic Strang splitting are comparable and we are thus justified in comparing the
accuracy of these schemes with an equal time step size.

8. Conclusion. We have introduced a modification of the Strang splitting scheme
that succeeds in overcoming the order reduction observed for inhomogeneous Neu-
mann, Robin, and mixed Dirichlet/Neumann boundary conditions. The present re-
sults are thus a generalization of our previous work [4] where similar results have
been obtained for Dirichlet boundary conditions. Thus, we have constructed a Strang
splitting method that is provably convergent of order two even in the presence of
non-trivial boundary conditions. In addition, a method to compute this modification
efficiently is proposed which implies (together with the numerical results obtained
in this paper) that significant gains in computational efficiency can be expected by
employing this method to diffusion-reaction problems.
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