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DISJOINT SPREAD SYSTEMS AND FAULT LOCATION∗

CHARLES J. COLBOURN† , BINGLI FAN‡ , AND DANIEL HORSLEY§

Abstract. When k factors each taking one of v levels may affect the correctness or performance
of a complex system, a test is selected by setting each factor to one of its levels and determining
whether the system functions as expected (passes the test) or not (fails). In our setting, each test
failure can be attributed to at least one faulty (factor, level) pair. A nonadaptive test suite is a
selection of such tests to be executed in parallel. One goal is to minimize the number of tests in a
test suite from which we can determine which (factor, level) pairs are faulty, if any. In this paper,
we determine the number of tests needed to locate faults when exactly one (or at most one) pair
is faulty. To do this, we address an equivalent problem, to determine how many set partitions of a
set of size N exist in which each partition contains v classes and no two classes in the partitions are
equal.
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1. Introduction. Determining the presence and location of faults in complex
systems encompasses a wide variety of problems. When many factors affecting cor-
rectness or performance are present, each having a variety of possible options or levels,
combinatorial test suites have been widely studied to reveal the presence of faults aris-
ing from interactions that result from a small set of factors being set to specific levels
[22, 23, 33]. Combinatorial test suites that guarantee that every such interaction
appears in a test are known as covering arrays. Covering arrays provide a method
to reveal the presence of faults [13, 23], but they are inadequate to determine which
interaction(s) account for the faulty behaviour. Colbourn and McClary [16] extended
covering arrays to provide sufficient information to identify all faults when few faults,
each involving few factors, are present.

Formally, there are k factors F1, . . . , Fk. Each factor Fi has a set of si possible
values (levels) Si = {vi1, . . . , visi}. A test is an assignment, for each i with 1 ≤ i ≤ k,
of a level from vi1, . . . , visi to Fi. A test, when executed, can pass or fail. For any
t-subset I ⊆ {1, . . . , k} and levels σi ∈ Si for i ∈ I, the set {(i, σi) : i ∈ I} is a t-way
interaction, or an interaction of strength t. Thus a test on k factors contains (covers)
(

k
t

)

interactions of strength t. A test suite is a collection of tests; the outcomes are the
corresponding set of pass/fail results. A fault is evidenced by a failure outcome for a
test. A fault is rarely due to a complete k-way interaction; rather it is the result of
one or more faulty interactions of strength smaller than k covered in the test. Tests
are executed concurrently, so that testing is nonadaptive or predetermined.

We employ a matrix representation. An array A with N rows, k columns, and
symbols in the ith column chosen from an alphabet Si of size si is denoted as an
N × k array of symbol type (s1, . . . , sk). A t-way interaction in A is a choice of
a set I of t columns, and the selection of a level σi ∈ Si for i ∈ I, represented
as T = {(i, σi) : i ∈ I}. For such an array A = (axy) and interaction T , define
ρA(T ) = {r : ari = σi for each i ∈ I}, the set of rows of A in which the interaction is
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covered. For a set of interactions T , ρA(T ) =
⋃

T∈T ρA(T ).
Let It be the set of all t-way interactions for an array of symbol type (s1, . . . , sk),

and let It be the set of all interactions of strength at most t. Consider an interaction
T ∈ It of strength less than t. Any interaction T ′ of strength t that contains T
necessarily has ρA(T

′) ⊆ ρA(T ); a subset T ′ of interactions in It is independent if
there do not exist T, T ′ ∈ T ′ with T ⊂ T ′. Some interactions are believed to cause
faults. To formulate arrays for testing, we assume limits on both the number of
interactions causing faults and their strengths.

As in [16], this leads to a variety of arrays A for testing a system with N tests
and k factors having (s1, . . . , sk) as the numbers of levels, defined in Table 1. It
defines mixed covering arrays (MCAs), covering arrays (CAs), locating arrays (LAs),
and detecting arrays (DAs). When all factors have the same number of levels v, we
replace (s1, . . . , sk) with v in the notation.

Array Definition

Covering Arrays: ρA(T ) 6= ∅ for all T ∈ It
MCA(N ; t, k, (s1, . . . , sk))
CA(N ; t, k, v) also v = s1 = · · · = sk

Locating Arrays: ρA(T1) = ρA(T2) ⇔ T1 = T2 whenever...
(d, t)-LA(N ; k, (s1, . . . , sk)) T1, T2 ⊆ It, |T1| = d, and |T2| = d

(d, t)-LA(N ; k, (s1, . . . , sk)) T1, T2 ⊆ It, |T1| ≤ d, and |T2| ≤ d
(d, t)-LA(N ; k, (s1, . . . , sk)) T1, T2 ⊆ It, |T1| = d, |T2| = d, and T1 and T2 are

independent

(d, t)-LA(N ; k, (s1, . . . , sk)) T1, T2 ⊆ It, |T1| ≤ d, |T2| ≤ d, and T1 and T2 are
independent

Detecting Arrays: ρA(T ) ⊆ ρA(T ) ⇔ T ∈ T whenever...
(d, t)-DA(N ; k, (s1, . . . , sk)) T ∈ It, T ⊆ It, and |T | ≤ d
(d, t)-DA(N ; k, (s1, . . . , sk)) T ∈ It, T ⊆ It, |T | ≤ d, and T ∪ {T } is indepen-

dent
Table 1

Arrays for determining faults

Detecting arrays may permit faster recovery than locating arrays because faulty
interactions can be found by simply listing all interactions that appear only within
failed tests. Locating arrays have been utilized in applications to measurement and
testing [3], but few constructions are known. Mart́ınez et al. [30] develop adaptive
analogues and establish feasibility conditions for a locating array to exist. In [36] and
[37] the minimum number of rows in a locating array is determined when the number
of factors is quite small. Recursive constructions when (d, t) = (1, 2) are given in [14].

Even when (d, t) = (1, 1), so that we are locating one faulty level of one factor,
the smallest locating and detecting arrays are not known. In this paper, we focus
on locating arrays of strength 1. We determine the smallest number of rows N in
a (1, 1)-LA(N ; k, v). To do this, we treat the equivalent problem of determining, for
given N and v, the largest k for which a (1, 1)-LA(N ; k, v) exists. This maximum is
denoted LAK(1,1)(N, v).

Because we focus on the case (d, t) = (1, 1), we are locating one faulty member
in a finite population (consisting of the (factor, level) choices). Hence our problem
belongs to the province of combinatorial search [2], search theory [1], or combinatorial
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group testing [18]. These are well-researched topics, and a complete treatment is not
possible here. Among variants closest to the one that we examine, Rényi [34] and
Katona [26] consider tests in which elements are partitioned into v classes, and the
tester is told which class, if any, contains the faulty item; for more recent work, see
[7, 17, 32]. Unlike our situation, these locate a factor, not a factor and a level; and
each test has v outcomes, not two.

It appears that the search problem arising from locating arrays of strength one,
while in some ways similar to problems in the literature, has not been studied. We
can reformulate questions about certain covering, detecting, and locating arrays as
follows:

Proposition 1.
1. A CA(N ; 2, k, v) is equivalent to a set of k partitions of {1, . . . , N}, each

partition having v classes, such that each class in each partition has non-
empty intersection with every class of every other partition.

2. A (1, 1)-detecting array on v symbols with N rows and k columns is equivalent
to a set of k partitions of {1, . . . , N}, each partition having v classes, such
that none of the kv classes is a subset of another.

3. A (1, 1)-locating array on v symbols with N rows and k columns is equivalent
to a set of k partitions of {1, . . . , N}, each partition having v (possibly empty)
classes, such that no two of the kv classes are equal.

4. A (1̄, 1)-locating array on v symbols with N rows and k columns is equivalent
to a set of k partitions of {1, . . . , N}, each partition having v classes, such
that none of the kv classes is empty and no two of the kv classes are equal.

Proof. Each column of an N × k array on v symbols forms a partition of the row
indices into v classes. For column γ and symbol σ, ρ({(γ, σ)}) is a class of the partition
formed from column γ. The statement that each class in each partition has non-empty
intersection with every class of every other partition is equivalent to the requirement
that all 2-way interactions be covered. The statement that none of the kv classes
is a subset of another is the same as the statement that ρ({(γ, σ)}) * ρ({(γ′, σ′)})
when (γ, σ) 6= (γ′, σ′). The statement that no two of the kv classes are equal is the
same as the statement that ρ({(γ, σ)}) 6= ρ({(γ′, σ′)}) when (γ, σ) 6= (γ′, σ′). The
statement that none of the kv classes is empty is the same as the statement that
ρ({(γ, σ)}) 6= ∅ = ρ(∅).

Two cases in Proposition 1 have been studied. The partitions from CA(N ; 2, k, v)s
have been studied as “qualitatively independent partitions” [35]. Given N , the largest
k for which a CA(N ; 2, k, v) exists is known only when v = 2 [27, 28], although
useful bounds are known for all v ≥ 3 [15]. By Proposition 1, the (1,1)-detecting
arrays are equivalent to the so-called Sperner partition systems [29, 31]; the maxi-
mum k for specified N is determined only within certain congruence classes for N
modulo v. Qualitatively independent partitions and Sperner partition systems yield
(1,1)-locating arrays, but in general permit far fewer factors. The problem for (1,1)-
locating arrays appears to be more tractable, because only distinctness of the classes
is required. Indeed in the remainder of the paper, we provide a complete solution for
existence for (1,1)-, (1̄, 1)-, (1, 1̄)-, and (1̄, 1̄)-locating arrays. Our main result is as
follows.

Theorem 2. Let N and v be integers such that 2 ≤ v ≤ N + 1. Let f = ⌊N+1
v ⌋,

d = (f + 1)v −N , and

Λ(N, v) =
⌊

1
d

∑f
i=f−d+2(f + 1− i)

(

N
i

)⌋

+
∑f−d+1

i=0

(

N
i

)

.
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Then LAK(1,1)(N, v) = Λ(N, v).

Observe that if v ≥ N + 2, then a (1, 1)-LA(N ; k, v) cannot exist for k > 0 because
no partition of {1, . . . , N} into v distinct classes exists.

An overview of the remainder of the paper follows. In Section 2 we generalize
a theorem of Baranyai, in order to reduce the construction of locating arrays on
N rows to the existence of certain sets of integer partitions of N . In Section 3
we specify precisely the integer partitions employed to realize the bound. In order
to establish that these integer partitions are indeed feasible, in Section 4 we derive
some technical lemmas giving inequalities on sums of binomial coefficients. Then in
Section 5 we use the binomial inequalities to establish that the partitions of Section
3 are feasible, thereby completing the proof of Theorem 2. In Section 6 we give a
complete solution for (1̄, 1)-locating arrays (Theorem 18) and for (1, 1̄)- and (1̄, 1̄)-
locating arrays (Theorem 19). We conclude in Section 7 with a brief discussion of the
asymptotic differences between (1,1)-locating arrays and covering arrays of strength
two.

2. Partial Spreads and Disjoint Spread Systems. Let X be a set of size N .
Let P(X) be the set of all subsets of X , the powerset of X . Let S ⊆ P(X); sets in S
are termed blocks. A partial spread in S is a subset C ⊆ S so that whenever C,C′ ∈ C,
either C ∩C′ = ∅ or C = C′. It is a spread when, in addition,

⋃

C∈C C = X . When a
partial spread contains precisely v blocks, it is a v-partial spread.

Two partial spreads C1 and C2 are disjoint if whenever C1 ∈ C1 and C2 ∈ C2, we
have C1 6= C2. A partition of S into partial spreads {Ci : 1 ≤ i ≤ k} is a disjoint
partial spread system; when each partial spread is a spread, it is a disjoint spread
system.

A shape is a multiset of nonnegative integers {a1, . . . , aℓ} for which
∑ℓ

i=1 ai ≤ N ;
it is a v-shape if it contains exactly v entries. For a shape S, we denote the number
of entries of S that are equal to x by µS(x). A type is a multiset of shapes; it is a
v-type if every shape in it is a v-shape. Any partial spread C has shape {|C| : C ∈ C}.
A disjoint partial spread system has a type that consists of the shapes of its partial
spreads.

Baranyai [6] proved a remarkable theorem, implying that when |X | = uv and S
consists of all subsets of X of size u, there always exists a disjoint spread system on
S; each spread in the system is an v-spread. In order to address existence of locating
arrays, we treat a more general situation. To formulate the question precisely, fix a
set X = {1, . . . , N}. Let k be a nonnegative integer. For 1 ≤ i ≤ k, let Mi be a
shape. We are to determine whether there exists a disjoint partial spread system on
a set S ⊆ P(X) having type {M1, . . . ,Mk}.

A type {M1, . . . ,Mk} is realizable when there is a disjoint partial spread system
of that type on some S ⊆ P(X). A type {M1, . . . ,Mk} is admissible when

k∑

i=1

µMi
(x) ≤

(

N

x

)

for 0 ≤ x ≤ N,

and is full when we have equality in each of these inequalities. In a realizable type,
the inequalities hold because no set in P(X) can appear in more than one partial
spread.

Proposition 3.
1. There exists a (1, 1)-locating array on v symbols with N rows and k columns

if and only if there exists a realizable v-type on {1, . . . , N} consisting of k
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shapes.
2. There exists a (1̄, 1)-locating array on v symbols with N rows and k columns

if and only if there exists a realizable v-type on {1, . . . , N} consisting of k
shapes such that no shape contains a 0.

Proof.
1. By Proposition 1(3), a (1, 1)-LA(N ; k, v) is equivalent to a disjoint partial

spread system on some S ⊆ P(X) that consists of k spreads (note that the
condition in Proposition 1 that no two of the kv classes are equal implies in
particular that at most one of the kv classes is the empty set). Such a spread
system exists if and only if there exists a realizable v-type on {1, . . . , N}
consisting of k shapes.

2. By Proposition 1(4), a (1̄, 1)-LA(N ; k, v) is equivalent to a disjoint partial
spread system on some S ⊆ P(X) \ {∅} that consists of k spreads. Such
a spread system exists if and only if there exists a realizable v-type on
{1, . . . , N} consisting of k shapes such that no shape contains a 0.

We show that admissible types are realizable.

Lemma 4. If every full admissible type is realizable, then every admissible type is
realizable.

Proof. If {M1, . . . ,Mk} is not full, adjoining Mk+1 = {ℓ} if
(

N
ℓ

)

>
∑k

γ=1 µMγ
(ℓ)

produces an admissible type; if {M1, . . . ,Mk+1} is realizable, so is {M1, . . . ,Mk}.
Iterating this, we can restrict our attention to the case when {M1, . . . ,Mk} is full.

Let M = {M1, . . . ,Mk} be an admissible full type for the set X = {1, . . . , N}, in
which Mγ is the shape {mγ,1, . . . ,mγ,pγ

} for 1 ≤ γ ≤ k. A realization of M would
consist of spreads {Sγ,1, . . . , Sγ,pγ

} for 1 ≤ γ ≤ k where |Sγ,i| = mγ,i for 1 ≤ i ≤ pγ
and 1 ≤ γ ≤ k. We construct M by sequentially assigning the elements 1, . . . , N of
X to the sets Sγ,i. Let Xτ = {1, . . . , τ} for 0 ≤ τ ≤ N . The next definition describes
the assignments of the elements of Xτ to the sets Sγ,i that obey the obvious necessary
condition to be completable to a realization of M. A τ-realization of M is a collection
of sets {Sτ

γ,j ⊆ Xτ : 1 ≤ γ ≤ k, 1 ≤ j ≤ pγ} such that for every subset S ⊆ Xτ , and
for every 0 ≤ ℓ ≤ N ,

|{(γ, j) : Sτ
γ,j = S and mγ,j = ℓ}| =

(

N−τ
ℓ−|S|

)

.

When (M1, . . . ,Mk) is an admissible full type, setting S0
γ,j = ∅ for 1 ≤ γ ≤ k, 1 ≤

j ≤ pγ gives a 0-realization. We adapt an elegant method of Brouwer and Schrijver
[11] to show:

Lemma 5. If the full admissible type M = {M1, . . . ,Mk} has a τ-realization and
τ < N , then M has a (τ + 1)-realization.

Proof. Counting all occurrences of elements of X in a putative realization of M,

T =
k∑

γ=1

pγ∑

j=1

mγ,j =
N∑

ℓ=0

ℓ
(

N
ℓ

)

= N2N−1.

Let χ = k − T
N = k − 2N−1, which is an integer. Each element of X is to appear in a

block of 2N−1 partial spreads, and so must be omitted in χ partial spreads.
Suppose that M has the τ -realization {Sτ

γ,j ⊆ Xτ : 1 ≤ γ ≤ k, 1 ≤ j ≤ pγ}. Form
a directed multigraph D with vertices {s, t, x} ∪ {y1, . . . , yk} ∪ {(S, ℓ) : S ⊆ Xτ , |S| ≤
ℓ ≤ N}. The arcs of D are:
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1. {(s, yγ), (yγ , x) : 1 ≤ γ ≤ k};
2. {aγ,j = (yγ , (S, ℓ)) : 1 ≤ γ ≤ k, 1 ≤ j ≤ pγ when S = Sτ

γ,j and mγ,j = ℓ};
3. {((S, ℓ), t) : S ⊆ Xτ and |S| ≤ ℓ ≤ N}; and
4. {(x, t), (t, s)}.

Now we place a flow f on the arcs of D. Set

f(a) =























































1 if a = (s, yγ) for 1 ≤ γ ≤ k;

k − 2N−1 if a = (x, t);

k if a = (t, s);
(

N−1−τ
ℓ−1−|S|

)

if a = ((S, ℓ), t);

mγ,j−|Sτ
γ,j|

N−τ if a = aγ,j = (yγ , (S, ℓ));

1−
∑pγ

j=1
[mγ,j−|Sτ

γ,j|]

N−τ if a = (yγ , x).

Now we verify that flow f is a circulation (inflow equals outflow at every vertex).
Flow at s: Inflow and outflow both equal k.
Flow at t: Outflow is k. Inflow is k − 2N−1 +

∑

S⊆Xτ

∑N
ℓ=|S|

(

N−1−τ
ℓ−1−|S|

)

. Outflow

minus inflow is

2N−1 −
∑

S⊆Xτ

∑N
ℓ=|S|

(

N−1−τ
ℓ−1−|S|

)

= 2N−1 −
∑τ

σ=0

(

τ
σ

)
∑N

ℓ=σ

(

N−1−τ
ℓ−1−σ

)

= 2N−1 − 2N−1−τ
∑τ

σ=0

(

τ
σ

)

= 2N−1 − 2N−1 = 0.

Flow at x: Outflow is k − 2N−1. Inflow is

k
∑

γ=1

[

1−

∑pγ

j=1[mγ,j − |Sτ
γ,j|]

N − τ

]

= k −
T

N − τ
+

1

N − τ

k∑

γ=1

pγ∑

j=1

|Sτ
γ,j|.

Because the collection is a τ -realization, for every S ⊆ Xτ , there are
(

N−τ
ℓ−|S|

)

pairs (γ, j) for which Sγ,j = S and ℓ = mγ,j. Hence

∑k
γ=1

∑pγ

j=1 |S
τ
γ,j| =

∑N
ℓ=0

∑τ
σ=0 σ

(

τ
σ

)(

N−τ
ℓ−σ

)

=
∑τ

σ=0 σ
(

τ
σ

)
∑N

ℓ=σ

(

N−τ
ℓ−σ

)

= 2N−τ
∑τ

σ=0 σ
(

τ
σ

)

= τ2N−1.

Thus the inflow is

k −
T

N − τ
+

1

N − τ

k∑

γ=1

pγ∑

j=1

|Sτ
γ,j | = k −

N2N−1

N − τ
+

τ2N−1

N − τ
= k − 2N−1.

Flow at yγ , 1 ≤ γ ≤ k: Inflow and outflow at yγ both equal 1.

Flow at (S, ℓ), S ⊆ Xτ , |S| ≤ ℓ ≤ N : Outflow at (S, ℓ) is
(

N−1−τ
ℓ−1−|S|

)

. Now Sτ
γ,j =

S when ℓ = mγ,j for
(

N−τ
ℓ−|S|

)

choices of (γ, j) because we have employed a

τ -realization. Thus the inflow at (S, ℓ) is ℓ−|S|
N−τ

(

N−τ
ℓ−|S|

)

=
(

N−1−τ
ℓ−1−|S|

)

.
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Hence f is a circulation. By the integer flow theorem [19, 20], there is an integer-valued
circulation g in which |g(a)− f(a)| < 1 for every arc a. Form the (τ + 1)-realization
by setting Sτ+1

γ,j = Sτ
γ,j∪{τ +1} when g(aγ,j) = 1, and Sτ+1

γ,j = Sτ
γ,j when g(aγ,j) = 0.

Because yγ has outflow 1, the sets within a group remain disjoint. Because (S, ℓ) has

outflow
(

N−1−τ
ℓ−1−|S|

)

, the number of sets in the (τ + 1)-realization equal to S ∪ {τ + 1}

is
(

N−(τ+1)
ℓ−(|S|+1)

)

, as required. Because Sτ
γ,j = S when ℓ = mγ,j exactly

(

N−τ
ℓ−|S|

)

times,

and of these exactly
(

N−1−τ
ℓ−1−|S|

)

have τ + 1 adjoined, Sτ+1
γ,j = S when ℓ = mγ,j exactly

(

N−τ
ℓ−|S|

)

−
(

N−1−τ
ℓ−1−|S|

)

=
(N−(τ+1)

ℓ−|S|

)

times, as required.

An N -realization is a realization. So we have proved:

Theorem 6. Type M is realizable if and only if it is admissible.

Proof. Every realizable type is admissible. So suppose that M is admissible. By
Lemma 4 we can assume that M is full. Then form a 0-realization, and apply Lemma
5 N times to form an N -realization of M.

This method is constructive, explicitly producing the disjoint partial spread sys-
tem of the desired type. Often a very special case of Theorem 6 is called Baranyai’s
theorem:

Corollary 7. Let N , u, and v be positive integers with uv ≤ N . Write
(

N
k

)

=
αv + β with 0 ≤ β < v. Then the set of all k-subsets of an N -set can be partitioned
into α partial spreads each containing v u-subsets, and (when β > 0) one partial
spread containing β.

Theorem 6 is one of many variants of Baranyai’s theorem. Brouwer and Schri-
jver [11] survey a broad class of generalizations incorporating results from [6, 8, 9].
While most such generalizations focus on partitions into blocks of size u, disjoint
spread systems with all blocks of size at most u have also been examined [10, 12, 24].
More recently, Bahmanian [5] develops “detachment” techniques for such problems;
Theorem 6 can also be deduced from the proof of his Theorem 6.4.

3. Maximal admissible v-types. In light of Proposition 3 and Theorem 6, our
task for a given N and v is to find the maximum number of shapes in an admissible
v-type on a set of size N . We first establish an upper bound. We then construct
examples of v-types that meet this bound.

Lemma 8. Let N and v be integers such that 2 ≤ v ≤ N + 1, let f = ⌊N+1
v ⌋,

and let d = (f + 1)v −N . Let M be an admissible v-type for a set of size N . Then
|M| ≤ Λ(N, v).

Proof. Each shape in M is a multiset of v nonnegative integers that sum to N ,
and N = (f + 1)v − d < (f + 1)v. So any shape in M must contain entries less than
f + 1. We quantify this more precisely as follows. Define the defect of an entry x of
a shape in M to be max(f + 1− x, 0) and the defect δ(M) of a shape M in M to be
the sum of the defects of its entries. Then each shape in M has defect at least d. We
can use this fact to bound |M| based on the number of times integers with positive
defect can appear in shapes in M.

LetM′ be the multiset of all shapes inM whose smallest entry is at most f−d+1,
and let M′′ = M\M′. Then |M′| ≤

∑f−d+1
i=0

(

N
i

)

because M is admissible. Also,

d|M′′| ≤
∑

M∈M′′

δ(M) ≤
f∑

i=f−d+2

(f + 1− i)
(

N
i

)

,
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where the first inequality follows because each shape in M′′ has defect at least d and
the second inequality is obtained by summing the defects of the entries of the shapes
in M′′. The result now follows because |M| = |M′|+ |M′′|.

In what follows, we often take f = ⌊N+1
v ⌋ and d = (f + 1)v − N . Note that

2 ≤ d ≤ v when N 6≡ v− 1 (mod v) and that d = v+1 when N ≡ v− 1 (mod v). For
each N and v, we now define a v-type that we subsequently show is admissible and
meets the bound given by Lemma 8.

Definition 9. Let N and v be integers such that 2 ≤ v ≤ N +1, let f = ⌊N+1
v ⌋,

and let d = (f + 1)v − N . For 0 ≤ i ≤ f , define Li(N, v) to be the unique v-shape
whose smallest entry is equal to i and whose remaining entries differ by at most 1. If
v ≥ 3 and N ≡ v − 1 (mod v), define L∗(N, v) to be the v-shape that has two entries
equal to f − 1, v − 3 entries equal to f and one entry equal to f + 1. Define L(N, v)
to be the v-type constructed from an empty multiset as follows.

1. Add
(

N
i

)

copies of Li(N, v) for 0 ≤ i ≤ f − 2.

2. If N 6≡ v− 1 (mod v), then add
(

N
f−1

)

copies of Lf−1(N, v) and ⌊ 1
d (
(

N
f

)

− s)⌋

copies of Lf(N, v), where s =
∑f−1

i=f−d+2(d− f − 1 + i)
(

N
i

)

.

3. If N ≡ v − 1 (mod v), then add
(

N
f−1

)

− 2⌈ s′

v+1⌉ copies of Lf−1(N, v) and

⌈ s′

v+1⌉ copies of L∗(N, v), where s′ =
∑f−2

i=f−v+1(v − f + i)
(

N
i

)

.

It is not immediately apparent that ⌊ 1
d(
(

N
f

)

− s)⌋ and
(

N
f

)

− 2⌈ s′

v+1⌉ are nonnega-

tive. We show this in Section 5, where we also show that the type L(N, v) is admissible.
To assist with those tasks we require some elementary inequalities involving binomial
coefficients which we establish in Section 4.

The size of the type L(N, v) meets the bound of Lemma 8:

Lemma 10. Let N and v be integers such that 2 ≤ v ≤ N + 1, let f = ⌊N+1
v ⌋,

and let d = (f + 1)v −N . Then |L(N, v)| = Λ(N, v).

Proof. If N 6≡ v − 1 (mod v), then

|L(N, v)| =
⌊

1
d

(

(

N
f

)

−
∑f−1

i=f−d+2(d− f − 1 + i)
(

N
i

)

)⌋

+
∑f−1

i=0

(

N
i

)

=
⌊

1
d

(

(

N
f

)

+
∑f−1

i=f−d+2(f + 1− i)
(

N
i

)

)⌋

+
∑f−d+1

i=0

(

N
i

)

=
⌊

1
d

∑f
i=f−d+2(f + 1− i)

(

N
i

)

⌋

+
∑f−d+1

i=0

(

N
i

)

.

If N ≡ v − 1 (mod v), then d = v + 1 and

|L(N, v)| =
(

N
f−1

)

−
⌈

1
v+1

∑f−2
i=f−v+1(v − f + i)

(

N
i

)

⌉

+
∑f−2

i=0

(

N
i

)

=
(

N
f−1

)

+
⌊

1
v+1

∑f−2
i=f−v+1(f + 1− i)

(

N
i

)

⌋

+
∑f−v

i=0

(

N
i

)

=
⌊

1
v+1

∑f
i=f−v+1(f + 1− i)

(

N
i

)

⌋

+
∑f−v

i=0

(

N
i

)

,

where the last equality follows because
(

N
f

)

= (v − 1)
(

N
f−1

)

(noting that f = N+1
v )

and hence
(

N
f−1

)

= 2
v+1

(

N
f−1

)

+ 1
v+1

(

N
f

)

.

We conclude this section by establishing that the type L(N, v) is well-defined and
admissible when v ∈ {2, N,N + 1}. This allows us to restrict our attention to cases
in which 3 ≤ v < N for the remainder of the paper.
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Lemma 11. Let N and v be integers such that 2 ≤ v ≤ N+1. If v ∈ {2, N,N+1},
then the type L(N, v) is well-defined and admissible.

Proof. Applying the definition of L(N, v) we have the following. If v = 2 and
N is odd, then L(N, v) consists of exactly

(

N
i

)

copies of the shape {i, N − i} for

0 ≤ i ≤ N−1
2 . If v = 2 and N is even, then L(N, v) consists of exactly

(

N
i

)

copies

of the shape {i, N − i} for 0 ≤ i ≤ N−2
2 and exactly 1

2

(

N
N/2

)

copies of the shape

{N
2 ,

N
2 }. If v = N and v ≥ 3, then L(N, v) consists of exactly one copy of the v-shape

{0, 1, . . . , 1, 2}. If v = N + 1 and v ≥ 3, then L(N, v) consists of exactly one copy of
the v-shape {0, 1, . . . , 1, 1}. In each case L(N, v) is admissible.

4. Binomial inequalities. In this section, we establish certain inequalities on
binomial coefficients, and on sums of binomial coefficients. Although some appear in
the literature ([25], for example), and some are certainly folklore, we prove them here
for completeness.

Lemma 12. Let N and v be integers such that 3 ≤ v < N . Then
1.

(

N
a−1

)

= a
N−a+1

(

N
a

)

for any 0 ≤ a ≤ N ;

2.
(

N
a−i

)

≤
(

a
N−a+1

)i
(

N
a

)

for any 0 ≤ a ≤ N and 0 ≤ i ≤ a;

3.
(

N
a+1

)

≥ N(v−1)
N+v

(

N
a

)

for any 0 ≤ a ≤ N
v ; and

4.
∑a−1

i=0

(

N
i

)

< 1
v−2

(

N
a

)

for any 1 ≤ a ≤ N
v .

Proof.
1. This follows from a simple calculation.
2. We have

(

N
a−i

)/(

N
a

)

=
i∏

j=1

((

N
a−j

)/(

N
a−j+1

))

.

Because
(

N
a−j

)

/
(

N
a−j+1

)

≤
(

N
a−1

)

/
(

N
a

)

for 1 ≤ j ≤ i, the result follows from

(1).
3. This follows from (1) because a+ 1 ≤ N

v + 1.

4. Note a
N−a+1 < 1

v−1 because a ≤ N
v . Thus, using (2), we have

a−1∑

i=0

(

(

N
i

)/(

N
a

)

)

<
a−1∑

j=1

(

1
v−1

)j

<
∞∑

j=1

(

1
v−1

)j

= 1
v−2 .

Lemma 13. Let N and v be integers such that 3 ≤ v < N , and let a = ⌊N
v ⌋. Then

(v − 1)
a−1∑

i=0

(

N
i

)

<
(

N
a+2

)

.

Proof. If N
2 < v ≤ N , then a = 1 and it is easy to confirm that the inequality

holds. So we may assume that 3 ≤ v ≤ N
2 and hence that N ≥ 6. Furthermore,

the inequality holds if v = 3 and N ∈ {6, . . . , 13}, so we may assume that N ≥ 14 if
v = 3.

By Lemma 12(4),
∑a−1

i=0

(

N
i

)

< 1
v−2

(

N
a

)

. By Lemma 12(3),
(

N
a+1

)

≥ N(v−1)
N+v

(

N
a

)

and, by Lemma 12(1),
(

N
a+2

)

≥ Nv−N−v
N+2v

(

N
a+1

)

because a+2 ≤ N
v +2. Thus it suffices

to show that v−1
v−2 ≤ (N(v−1)

N+v )(Nv−N−v
N+2v ) or equivalently that 1

v−2 ≤ N(Nv−N−v)
(N+v)(N+2v) .

This holds when v = 3 and N ≥ 14, so we may assume that v ≥ 4. Because v ≤ N
2 ,
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(N + v)(N + 2v) ≤ 3N2, so N(Nv−N−v)
(N+v)(N+2v) ≥ 2v−3

6 and it is clear that 1
v−2 ≤ 2v−3

6 for
v ≥ 4.

Lemma 14. Let N , v be integers such that 4 ≤ v < N , and let a = ⌊N
v ⌋. Then

v−2
2

(

N
a

)

+ (v − 1)
a−1∑

i=0

(

N
i

)

<
(

N
a+1

)

.

Proof. If N
2 < v ≤ N − 1, then a = 1 and it is routine to confirm that the

inequality holds, so we may assume that 4 ≤ v ≤ N
2 and hence that N ≥ 8. Similarly,

if N
3 < v ≤ N

2 , then a = 2 and it is routine to confirm that the inequality holds for

N ≥ 8, so we may assume that 4 ≤ v ≤ N
3 and hence that N ≥ 12. Furthermore,

the inequality holds if v = 4 and N ∈ {12, . . . , 19}, so we may assume that N ≥ 20 if
v = 4.

By Lemma 12(4),
∑a−1

i=0

(

N
i

)

< 1
v−2

(

N
a

)

and, by Lemma 12(3),
(

N
a+1

)

≥ N(v−1)
N+v

(

N
a

)

.

Thus it suffices to show that v−2
2 + v−1

v−2 ≤ N(v−1)
N+v . This holds when v = 4 and N ≥ 20,

so we may assume that v ≥ 5. Because v ≤ N
3 ,

N(v−1)
N+v ≥ 3(v−1)

4 and it is clear that
v−2
2 + v−1

v−2 ≤ 3(v−1)
4 for all v ≥ 5.

Lemma 15. Let N be an integer such that N ≥ 4, and let a = ⌊N
v ⌋.

1. If N ≡ 0 (mod 3), then
(

N
a−1

)

+ 2
(

N
a−2

)

+
(

N
a−3

)

<
(

N
a+1

)

.

2. If N ≡ 1 (mod 3), then 1
2

(

N
a

)

+ 2
(

N
a−1

)

+
(

N
a−2

)

<
(

N
a+1

)

.

Proof.
1. Because a = N

3 , by Lemma 12(1),
(

N
a+1

)

= 2N
N+3

(

N
a

)

, and by Lemma 12(2),
(

N
a−i

)

≤ ( N
2N+3 )

i
(

N
a

)

for i ∈ {1, 2, 3}. So
(

N
a+1

)

−
(

(

N
a−1

)

+ 2
(

N
a−2

)

+
(

N
a−3

)

)

≥
(

N
a

)

(

2N
N+3 − N

2N+3 + 2( N
2N+3 )

2 + ( N
2N+3 )

3
)

> 0, where the final inequality is

routine to verify.
2. Now a = N−1

3 . We have from Lemma 12(1) that
(

N
a+1

)

= 2N+1
N+2

(

N
a

)

and from

Lemma 12(2),
(

N
a−i

)

= ( N−1
2N+4)

i
(

N
a

)

. So
(

N
a+1

)

−
(

1
2

(

N
a

)

+ 2
(

N
a−1

)

+
(

N
a−2

)

)

≥
(

N
a

)

(

2N+1
N+2 − 1

2 (
N−1
2N+4 ) + 2( N−1

2N+4 )
2 + ( N−1

2N+4 )
3
)

> 0, where the final inequal-

ity is routine to verify.

5. Proof of the main result. Throughout this and the next section we take
s =

∑f−1
i=f−d+2(d− f − 1+ i)

(

N
i

)

and s′ =
∑f−2

i=f−v+1(v− f + i)
(

N
i

)

, as in Definition 9.
We frequently make use of the fact that, if N and v are integers such that 3 ≤ v < N
and f = ⌊N+1

v ⌋, then f = ⌊N
v ⌋ when N 6≡ v − 1 (mod v) and f − 1 = ⌊N

v ⌋ when
N ≡ v − 1 (mod v). We first establish that the types L(N, v) are well-defined.

Lemma 16. Let N and v be integers such that 3 ≤ v < N , let f = ⌊N+1
v ⌋, and

let d = (f + 1)v −N . Then
1. ⌊ 1

d(
(

N
f

)

− s)⌋ ≥ 0 when N 6≡ v − 1 (mod v); and

2.
(

N
f−1

)

− 2⌈ s′

v+1⌉ ≥ 0 when N ≡ v − 1 (mod v).

Proof. Suppose that N 6≡ v − 1 (mod v). Because d − f − 1 + i ≤ v − 2 for
f−d+2 ≤ i ≤ f−1, by Lemma 12(4) it follows that s <

(

N
f

)

. Thus ⌊ 1
d(
(

N
f

)

−s)⌋ ≥ 0.

Suppose N ≡ v − 1 (mod v). Then f ≥ 2 because N > v. Now v − f + i ≤ v − 2
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for f − v + 1 ≤ i ≤ f − 2 and so it follows from Lemma 12(4) that s′ <
(

N
f−1

)

. Thus

(

N
f−1

)

− 2
⌈

s′

v+1

⌉

≥
(

N
f−1

)

− 2
⌈

1
v+1

(

N
f−1

)

⌉

≥
(

N
f−1

)

− 2
⌈

1
4

(

N
f−1

)

⌉

≥ 0.

Next we show that the types L(N, v) are admissible.

Lemma 17. Let N and v be integers such that 3 ≤ v < N . Then L(N, v) is an
admissible v-type.

Proof. Throughout this proof we abbreviate Li(N, v) to Li and L(N, v) to L. Let
f = ⌊N+1

v ⌋ and d = (f + 1)v − N . For a shape L, recall that µL(x) denotes the
number of entries of L equal to x. Let σL(x) =

∑

L∈L µL(x). We must show that

σL(x) ≤
(

N
x

)

for 0 ≤ x ≤ N . We consider several cases depending on N and x.
N 6≡ v − 1 (mod v): Treat subcases as follows.

⌈N

2
⌉ < x ≤ N : Each entry of Li for 0 ≤ i ≤ f is at most ⌈N

2 ⌉, so σL(x) = 0.

f + 1 < x ≤ ⌈N

2
⌉: Then µLi

(x) ≤ v − 1 for 0 ≤ i ≤ f − 1 and µLf
(x) = 0.

By the definition of L, the fact that
(

N
f+2

)

≤
(

N
x

)

, and Lemma 13,

σL(x) ≤
(

N
x

)

.
x = f + 1, v ≥ 4: Then µLi

(f + 1) ≤ v − 1 for 0 ≤ i ≤ f − 1. Further,
µLf

(f + 1) ≤ v − 2 and there are at most 1
2

(

N
f

)

copies of Lf in L (note

that d ≥ 2). By the definition of L and Lemma 14, σL(f + 1) ≤
(

N
f+1

)

.

x = f + 1, v = 3, N ≡ 0 (mod 3): Then d = 3, µLi
(f + 1) = 0 for 0 ≤

i ≤ f − 4, µLf
(f + 1) = 0, µLi

(f + 1) = 1 for i ∈ {f − 3, f − 1}, and
µLf−2

(f +1) = 2. By the definition of L and Lemma 15(1), σL(f +1) ≤
(

N
f+1

)

.

x = f + 1, v = 3, N ≡ 1 (mod 3): Then d = 2, µLi
(f + 1) = 0 for 0 ≤

i ≤ f − 3, µLi
(f + 1) = 1 for i ∈ {f − 2, f}, and µLf−1

(f + 1) = 2. By

the definition of L and Lemma 15(2), σL(f + 1) ≤
(

N
f+1

)

.

x = f : Then d ≥ 2, µLi
(f) = 0 for 0 ≤ i ≤ f − d+1, µLi

(f) = d− f − 1+ i
for f − d+ 2 ≤ i ≤ f − 1, and µLf

(f) = d. By the definitions of L and

s, σL(f) = s+ d⌊ 1
d (
(

N
f

)

− s)⌋ ≤
(

N
f

)

.

0 ≤ x < f : Then µLi
(x) = 1 if i = x and µLi

(x) = 0 if i 6= x. So σL(x) =
(

N
x

)

.
N ≡ v − 1 (mod v): Treat subcases as follows.

⌈N

2
⌉ < x ≤ N : Each entry of Li for 0 ≤ i ≤ f − 1 and each entry of L∗ is

at most ⌈N
2 ⌉, so σL(x) = 0.

f + 1 < x ≤ ⌈N

2
⌉: Then µLi

(x) ≤ v − 1 for 0 ≤ i ≤ f − 2, µLf−1
(x) = 0

and µL∗
(x) = 0. By the definition of L, the fact that

(

N
f+1

)

<
(

N
x

)

, and

Lemma 13, σL(x) ≤
(

N
x

)

.

x = f + 1: Then µLf−1
(f + 1) = 0, µL∗

(f + 1) = 1 and there are ⌈ s′

v+1⌉
copies of L∗ in L. Using the definitions of L and s′,

σL(f + 1) =
∑f−2

i=0

(

N
i

)

µLi
(f + 1) +

⌈∑f−2

i=f−v+1

v−f+i
v+1

(

N
i

)

⌉

≤
⌈

(v − 1)
∑f−2

i=0

(

N
i

)

⌉

≤
(

N
f+1

)

.

The first inequality follows from µLi
(f+1) ≤ v−2 for i ∈ {0, . . . , f−2}\

{f − v}, µLf−v
(f +1) = v− 1, and v−f+i

v+1 < 1 for f − v+1 ≤ i ≤ f − 2.
The second inequality follows from Lemma 13.
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x = f : Then µLi
(f) = 0 for 0 ≤ i ≤ f − v, µLi

(f) = v− f + i for f − v+1 ≤
i ≤ f − 1, and µL∗

(f) = v − 3. Thus, using the definitions of L and s′,

σL(f) = s′ + (v − 1)
(

(

N
f−1

)

− 2
⌈

s′

v+1

⌉)

+ (v − 3)
⌈

s′

v+1

⌉

= (v − 1)
(

N
f−1

)

+ s′ − (v + 1)
⌈

s′

v+1

⌉

=
(

N
f

)

+ s′ − (v + 1)
⌈

s′

v+1

⌉

.

The final equality arises from Lemma 12(1) because f = N+1
v . So

σL(f) ≤
(

N
f

)

.

x = f − 1: Then µLi
(f) = 0 for 0 ≤ i ≤ f − 2, µLf−1

(f − 1) = 1, and

µL∗
(f − 1) = 2. By the definitions of L and s′, σL(f − 1) =

(

N
f−1

)

−

2⌈ s′

v+1⌉+ 2⌈ s′

v+1⌉ =
(

N
f−1

)

.

0 ≤ x < f − 1: Then µLi
(x) = 1 if i = x, µLi

(x) = 0 if i 6= x, and µL∗
(x) =

0. So σL(x) =
(

N
x

)

using the definition of L.

We can now prove our main result.

Proof (of Theorem 2). By Proposition 3(1), the existence of an (1, 1)-LA(N ; k, v)
is equivalent to the existence of a realizable v-type on {1, . . . , N} consisting of k
shapes, and by Theorem 6 this is equivalent to the existence of an admissible v-type
on {1, . . . , N} consisting of k shapes. Thus LAK(1,1)(N, v) is equal to the maximum
number of shapes in an admissible v-type on {1, . . . , N}. By Lemma 8, no such v-
type contains more than Λ(N, v) shapes. By Lemmas 10, 11, 16 and 17, L(N, v) is
an admissible v-type consisting of Λ(N, v) shapes.

6. (1̄, 1)-, (1, 1̄)-, and (1̄, 1̄)-locating arrays. For N rows and v symbols,
denote by LAK(1̄,1)(N, v) the largest number of columns in a (1̄, 1)-locating array;
by LAK(1,1̄)(N, v) the largest number of columns in a (1, 1̄)-locating array; and by
LAK(1̄,1̄)(N, v) the largest number of columns in a (1̄, 1̄)-locating array. Fortunately
these variants on (1,1)-locating arrays can be treated in the same framework. First
we treat the (1̄, 1) variant. Observe that if v ≥ N+1, then a (1̄, 1)-LA(N ; k, v) cannot
exist for k > 0 because no partition of {1, . . . , N} into v distinct nonempty classes
exists.

Theorem 18. Let N and v be integers such that 2 ≤ v ≤ N , let f = ⌊N+1
v ⌋ and

d = (f + 1)v −N . Then

• LAK(1̄,1)(N, v) = Λ(N, v) if d ≥ f + 2 and
∑f

i=0(f + 1− i)
(

N
i

)

≡ x (mod d)
for some x ∈ {f + 1, . . . , d− 1}; and

• LAK(1̄,1)(N, v) = Λ(N, v)− 1 otherwise.

Proof. Throughout this proof we abbreviate Li(N, v) to Li and L(N, v) to L. We
call a v-type (1̄, 1)-admissible if it is admissible and no shape in it contains a 0. By
Proposition 3(2), the existence of an LAK(1̄,1)(N, v) is equivalent to the existence of
a realizable v-type on {1, . . . , N} consisting of k shapes such that no shape contains
a 0. By Theorem 6 this is equivalent to the existence of a (1̄, 1)-admissible v-type
on {1, . . . , N} consisting of k shapes. Thus LAK(1̄,1)(N, v) is equal to the maximum
number of shapes in an (1̄, 1)-admissible v-type on {1, . . . , N}.
d ≤ f + 1: A very similar argument to that used in the proof of Lemma 8 establishes

that

LAK(1̄,1)(N, v) ≤
⌊

1
d

∑f
i=f−d+2(f + 1− i)

(

N
i

)⌋

+
∑f−d+1

i=1

(

N
i

)

= Λ(N, v)− 1.
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Furthermore, we can obtain a (1̄, 1)-admissible v-type on {1, . . . , N} with
Λ(N, v)− 1 shapes by removing the shape L0 from L(N, v).

d ≥ f + 2: Let x ∈ {0, . . . , d− 1} satisfy
∑f

i=0(f + 1− i)
(

N
i

)

≡ x (mod d). Now

⌊

1
d

∑f
i=0(f + 1− i)

(

N
i

)⌋

= Λ(N, v),
⌊

1
d

∑f
i=1(f + 1− i)

(

N
i

)⌋

=

{

Λ(N, v)− 1, if x ∈ {0, . . . , f};
Λ(N, v), if x ∈ {f + 1, . . . , d− 1}.

A very similar argument to that used in the proof of Lemma 8 establishes
that LAK(1̄,1)(N, v) ≤

⌊

1
d

∑f
i=1(f + 1− i)

(

N
i

)⌋

.
x ∈ {0, . . . , f}: Again, we obtain a (1̄, 1)-admissible v-type on {1, . . . , N}

with Λ(N, v)− 1 shapes by removing the shape L0 from L(N, v).
x ∈ {f + 1, . . . , d − 1}, N 6≡ v − 1 (mod v): We claim that the v-type

L′ obtained from L by removing the shape L0 and adding one more
shape Lf is (1̄, 1)-admissible. The shapes L0 and Lf are as follows.

x 0 f f + 1
µL0

(x) 1 d− f − 1 v − d+ f
µLf

(x) 0 d v − d
Thus, σL′(0) = 0, σL′(f) = σL(f) + f + 1 and σL′(x) ≤ σL(x) for each
x 6= f . To show that L′ is (1̄, 1)-admissible, we show that σL(f)+f+1 ≤
(

N
f

)

. As in the proof of Lemma 17, σL(f) = s + d⌊ 1
d (
(

N
f

)

− s)⌋. Using
the definition of s,

(

N
f

)

− s ≡
f∑

i=0

(f + 1− i)
(

N
i

)

≡ x (mod d),

and so σL(f) =
(

N
f

)

− x. Thus σL(f) + f + 1 ≤
(

N
f

)

.

x ∈ {f + 1, . . . , d − 1}, N ≡ v − 1 (mod v): Then d = v + 1, so v ≥
f +1 and x ∈ {f +1, . . . , v}. Also, f ≥ 2 because N ≥ 2v− 1. We claim
that the v-type L′ obtained from L by removing the shape L0 and one
shape L∗ and adding two more shapes Lf−1 is (1̄, 1)-admissible. The
shapes L0 and L∗ and Lf−1 are as follows.

x 0 f − 1 f f + 1
µL0

(x) 1 0 v − f f − 1
µL∗

(x) 0 2 v − 3 1
µLf−1

(x) 0 1 v − 1 0
Thus, σL′(0) = 0, σL′(f) = σL(f) + f + 1 and σL′(x) ≤ σL(x) for each
x 6= f . To show that L′ is (1̄, 1)-admissible, we show that σL(f)+f+1 ≤
(

N
f

)

. As in the proof of Lemma 17, σL(f) =
(

N
f

)

+ s′ − (v + 1)⌈ s′

v+1⌉.

Using the definition of s′,

s′ ≡
∑f−2

i=0 (v − f + i)
(

N
i

)

(mod v + 1)

≡
∑f

i=0(v − f + i)
(

N
i

)

(mod v + 1)

≡ −
∑f

i=0(f + 1− i)
(

N
i

)

(mod v + 1)

≡ −x (mod v + 1)

where the second congruence follows because
(

N
f

)

= (v − 1)
(

N
f−1

)

by

Lemma 12(1) (noting that f = N+1
v ) and hence v

(

N
f

)

+ (v − 1)
(

N
f−1

)

≡
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0 (mod v + 1). It follows that σL(f) =
(

N
f

)

− x. Thus σL(f) + f + 1 ≤
(

N
f

)

.

To treat (1, 1̄) and (1̄, 1̄) variants, we also consider the unique 0-way interaction
⊔, the interaction containing no columns at all. For every N × k array A, ρA(⊔) =
{1, . . . , N}, the set of all rows. (By comparison, the set ∅ containing no interactions
has ρA(∅) = ∅.)

Theorem 19. Let N and v be integers such that 2 ≤ v ≤ N + 1. Then

1. LAK(1,1̄)(N, v) =

{

LAK(1,1)(N, v) if v ≥ 3
2N−1 − 1 if v = 2

2. LAK(1̄,1̄)(N, v) = LAK(1̄,1)(N, v) when v ≤ N .

Proof. First note that LAK(1,1)(N, 2) = 2N−1. It follows from the definitions
that every (1, 1̄)-LA(N, v) is a (1, 1)-LA(N, v) and that every (1̄, 1̄)-LA(N, v) is a
(1̄, 1)-LA(N, v).

Suppose that A is an array with N rows and v ≥ 2 symbols such that ρA(T ) =
{1, . . . , N} = ρA(⊔) for some 1-way interaction T . Then there are v − 1 other 1-
way interactions T1, . . . , Tv−1 involving the same column as T , and ρA(Ti) = ∅ for
1 ≤ i ≤ v − 1. Thus ρA(T1) = ρ(∅) and A is not a (1, 1̄)-LA(N, v). Also, if v ≥ 3,
then ρA(T1) = ρA(T2) and A is not a (1, 1)-LA(N, v). It follows that every (1̄, 1)-
LA(N, v) is a (1̄, 1̄)-LA(N, v) and LAK(1̄,1̄)(N, v) = LAK(1̄,1)(N, v). Also, if v ≥ 3,
every (1, 1)-LA(N, v) is a (1, 1̄)-LA(N, v) and LAK(1,1̄)(N, v) = LAK(1,1)(N, v).

Finally, when v = 2, a (1, 1)-LA(N, v) A with 2N−1 columns necessarily has a 1-
way interaction T with ρA(T ) = {1, . . . , N}, because there are 2N 1-way interactions
and each must have a distinct subset of {1, . . . , N} as its image under ρA. Hence
no (1, 1̄)-locating array can have 2N−1 columns. Removing the single column of A
containing the 1-way interaction T with ρA(T ) = {1, . . . , N} yields a (1, 1̄)-locating
array with 2N−1 − 1 columns.

7. Concluding remarks. We close with some remarks on the asymptotic sizes
of covering and locating arrays. In [16], covering arrays of strength t+ 1 are used to
construct (1, t)-locating arrays. Hence it is natural to compare strength two covering
arrays with (1,1)-locating arrays. For v fixed and k → ∞, the smallest number of
rows in a covering array with strength two is N = v

2 (log k)(1 + o(1)) [21]. (In this
section, all logarithms are base 2.) We consider (1,1)-locating arrays, the other three
variants being similar. For f = ⌊N+1

v ⌋ and k = LAK(1,1)(N, v), by Theorem 2,

1

v + 1

f
∑

i=0

(

N

i

)

− 1 ≤ k ≤

f
∑

i=0

(

N

i

)

.

The binary entropy function H(ℓ) = −ℓ log ℓ − (1 − ℓ) log(1 − ℓ). According to
Ash [4] setting ε = f

N we have

2H(ε)N

√

8Nε(1− ε)
≤

f
∑

i=0

(

N

i

)

≤ 2H(ε)N .

Combine these to get

2H(ε)N−1

(v + 1)
√

8Nε(1− ε)
≤

2H(ε)N

(v + 1)
√

8Nε(1− ε)
− 1 ≤ k ≤ 2H(ε)N .
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Take logarithms to get

H(ε)N − 1− log(v + 1)−
1

2
log[8Nε(1− ε)] ≤ log k ≤ H(ε)N.

As k → ∞ with v fixed, ε → 1
v and H(ε) → v log v−(v−1) log(v−1)

v . It follows that
N = v

v log v−(v−1) log(v−1) (log k) + O(log log k). Hence when v > 2, (1,1)-locating

arrays employ substantially fewer rows than do covering arrays of strength two.
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