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Abstract. The definition of partial differential equation (PDE) models usually involves a set of
parameters whose values may vary over a wide range. The solution of even a single set of parameter
values may be quite expensive. In many cases, e.g., optimization, control, uncertainty quantifica-
tion, and other settings, solutions are needed for many sets of parameter values. We consider the
case of the time-dependent Navier-Stokes equations for which a recently developed ensemble-based
method allows for the efficient determination of the multiple solutions corresponding to many pa-
rameter sets. The method uses the average of the multiple solutions at any time step to define a
linear set of equations that determines the solutions at the next time step. To significantly further
reduce the costs of determining multiple solutions of the Navier-Stokes equations, we incorporate
a proper orthogonal decomposition (POD) reduced-order model into the ensemble-based method.
The stability and convergence results for the ensemble-based method are extended to the ensemble-
POD approach. Numerical experiments are provided that illustrate the accuracy and efficiency of
computations determined using the new approach.

Key words. Ensemble methods, proper orthogonal decomposition, reduced-order models,
Navier-Stokes equations.

1. Introduction. Computing an ensemble of solutions of fluid flow equations for
a set of parameters or initial/boundary conditions for, e.g., quantifying uncertainty or
sensitivity analyses or to make predictions, is a common procedure in many engineer-
ing and geophysical applications. One common problem faced in these calculations
is the excessive cost in terms of both storage and computing time. Thanks to recent
rapid advances in parallel computing as well as intensive research in ensemble-based
data assimilation, it is now possible, in certain settings, to obtain reliable ensemble
predictions using only a small set of realizations. Successful methods that are cur-
rently used to generate perturbations in initial conditions include the Bred-vector
method, [30], the singular vector method, [5], and the ensemble transform Kalman
filter, [4]. Despite all these efforts, the current level of available computing power
is still insufficient to perform high-accuracy ensemble computations for applications
that deal with large spatial scales such as numerical weather prediction. In such ap-
plications, spatial resolution is often sacrificed to reduce the total computational time.
For these reasons the development of efficient methods that allow for fast calculation
of flow ensembles at a sufficiently fine spatial resolution is of great practical interest
and significance.

Only recently, a first step was taken in [22, 23] where a new algorithm was pro-
posed for computing an ensemble of solutions of the time-dependent Navier-Stokes
equations (NSE) with different initial condition and/or body forces. At each time
step, the new method employs the same coefficient matrix for all ensemble members.
This reduces the problem of solving multiple linear systems to solving one linear sys-
tem with multiple right-hand sides. There have been many studies devoted to this
type of linear algebra problem and efficient iterative methods have been developed to
significantly save both storage and computing time, e.g., block CG [10], block QMR
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[11], and block GMRES [12]. Even for some direct methods, such as the simple LU
factorization, one can save considerable computing cost.

Because the main goal of the ensemble algorithm is computational efficiency, it is
natural to consider using reduced-order modeling (ROM) techniques to further reduce
the computational cost. Specifically, we consider the proper orthogonal decomposition
(POD) method which has been extensively used in the engineering community since
it was introduced in [27] to extract energetically coherent structures from turbulent
velocity fields. POD provides an optimally ordered, orthonormal basis in the least-
squares sense, for given sets of experimental or computational data. The reduced
order model is then obtained by truncating the optimal basis.

Research on POD and its application to the unsteady NSE has been and remains
a highly active field. Recent works improving upon POD have dealt with the combi-
nation of Galerkin strategies with POD [3, 8], stabilization techniques [1, 7, 29], and
regularized/large eddy simulation POD models for turbulent flows [32, 33].

In this paper, we study a Galerkin proper orthogonal decomposition (POD-G-
ROM) based ensemble algorithm for approximating solutions of the NSE. Accordingly,
our aim in this paper is to develop and demonstrate a procedure for the rapid solution
of multiple solutions of the NSE, requiring only the solution of one reduced linear
system with multiple right-hand sides at each time step.

1.1. Previous works on ensemble algorithms. The ensemble method given
in [22] is first-order accurate in time and requires a CFL-like time step condition to
ensure stability and convergence. Two ensemble eddy viscosity numerical regulariza-
tions are studied in [23] to relax the time step restriction. These two methods utilized
the available ensemble data to parametrize the eddy viscosity based on a direct calcu-
lation of the kinetic energy in fluctuations without further modeling. They both give
the same parametrization for each ensemble member and thus preserve the efficiency
of the ensemble algorithm. The extension of the ensemble method to higher-order
accurate ensemble time discretization is nontrivial. For instance, the method is not
extensible to the most commonly used Crank-Nicolson scheme. Making use of a spe-
cial combination of a second-order in time backward difference formula and an explicit
second-order Adams-Bashforth treatment of the nonlinear term, a second-order accu-
rate in time ensemble method was developed in [19].Another second-order ensemble
method with improved accuracy is presented in [20]. The ensemble algorithm was
further used in [21] to model turbulence. By analyzing the evolution of the model
variance, it was proved that the proposed ensemble based turbulence model converges
to statistical equilibrium, which is a desired property of turbulence models.

2. Notation and preliminaries. Let Ω ⊂ Rd, d = 2, 3, denote an open reg-
ular domain with boundary ∂Ω and let [0, T ] denote a time interval. Consider J
Navier-Stokes equations on a bounded domain, each subject to the no-slip boundary
condition, and driven by J different initial conditions uj,0(x) and body force densities
f j(x, t), i.e., for j = 1, . . . , J , we have


ujt + uj · ∇uj − ν4uj +∇pj = f j(x, t) ∀x ∈ Ω× (0, T ]

∇ · uj = 0 ∀x ∈ Ω× (0, T ]

uj = 0 ∀x ∈ ∂Ω× (0, T ]

uj(x, 0) = uj,0(x) ∀x ∈ Ω,

(2.1)
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where ν denotes the given constant kinematic viscosity of the fluid and uj(x, t) and
pj(x, t) respectively denote the velocity and pressure of the fluid flow.

We denote by ‖ · ‖ and (·, ·) the L2(Ω) norm and inner product, and denote by
‖ · ‖Lp and ‖ · ‖Wk

p
the Lp(Ω) norms and the Sobolev W k

p (Ω) norms respectively. The

space Hk(Ω) is the Sobolev space W k
2 (Ω), equipped with norm ‖ · ‖k. The space

H−1(Ω) denotes the dual space of bounded linear functionals defined on H1
0 (Ω) =

{v ∈ H1(Ω) : v = 0 on ∂Ω}; this space is endowed with the norm

‖f‖−1 = sup
06=v∈X

(f, v)

‖∇v‖
∀f ∈ H−1(Ω).

The solutions spaces X for the velocity and Q for the pressure are respectively
defined as

X :=[H1
0 (Ω)]d = {v ∈ [L2(Ω)]d : ∇v ∈ [L2(Ω)]d×d and v = 0 on ∂Ω}

Q :=L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0
}
.

Let ‖ · ‖0 denote the usual L2 norm. For a function v(x, t) that is well defined on
Ω× [0, T ] we define the norms

‖|v|‖2,s :=
(∫ T

0

‖v(·, t)‖2sdt
) 1

2

and ‖|v|‖∞,s := ess sup[0,T ]‖v(·, t)‖s.

The subspace of X consisting of weakly divergence free functions is defined as

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} ⊂ X.

A weak formulation of (2.1) is given as follows: for j = 1, . . . , J , find uj : (0, T ]→
X and pj : (0, T ]→ Q that, for almost all t ∈ (0, T ], satisfy

(ujt , v) + (uj · ∇uj , v) + ν(∇uj ,∇v)− (pj ,∇ · v) = (f j , v) ∀v ∈ X
(∇ · uj , q) = 0 ∀q ∈ Q
uj(x, 0) = uj,0(x).

(2.2)

Conforming velocity and pressure finite element spaces based on a regular trian-
gulation of Ω having maximum triangle diameter h are respectively denoted by

Xh ⊂ X and Qh ⊂ Q.

We assume that the pair of spaces (Xh, Qh) satisfy the discrete inf-sup (or LBBh)
condition required for stability of finite element approximation; we also assume that
the finite element spaces satisfy the approximation properties

inf
vh∈Xh

‖v − vh‖ ≤ Chs+1 ∀v ∈ [Hs+1(Ω)]d

inf
vh∈Xh

‖∇(v − vh)‖ ≤ Chs ∀v ∈ [Hs+1(Ω)]d

inf
qh∈Qh

‖q − qh‖ ≤ Chs ∀q ∈ Hs(Ω)

for a constant C > 0 having value independent of h. The total number of finite element
degrees of freedom is given by dimXh + dimQh. A concrete example for which the
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LBBh stability condition approximation estimates are known to hold is the family of
Taylor-Hood P s-P s−1, s ≥ 2, element pairs [13, 14]. For the most commonly used
s = 2 Taylor-Hood element pair based on a tetrahedral grid, dimXh + dimQh is
roughly equal to three times the number of vertices plus twice the number of edges.

Further, in this paper we will need to solve the NSE (2.1) using a second order
time stepping scheme (e.g., Crank Nicolson). We will assume the FE approximations
satisfy the following error estimates:

‖u− uh‖ ≤ C(hs+1 + ∆t2) (2.3)

‖∇(u− uh)‖ ≤ C(hs + ∆t2). (2.4)

The subspace of Xh consisting of discretely divergence free functions is defined as

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} ⊂ X.

Note that in most cases, and for the Taylor-Hood element pair in particular, Vh 6⊂ V ,
i.e., discretly divergence free functions are not divergence free.

As is common to do, we define the explicitly skew-symmetric trilinear form intro-
duced by Temam given by

b∗(w, u, v) :=
1

2
(w · ∇u, v)− 1

2
(w · ∇v, u) ∀u, v, w ∈ [H1(Ω)]d.

This form satisfies the bounds, [25]

b∗(w, u, v) ≤ C‖∇w‖‖∇u‖(‖v‖‖∇v‖)1/2 ∀u, v, w ∈ X, (2.5)

b∗(w, u, v) ≤ C(‖w‖‖∇w‖)1/2‖∇u‖‖∇v‖ ∀u, v, w ∈ X. (2.6)

Moreover, we have that b∗(u, u, v) = (u · ∇u, v) for all u ∈ V, v ∈ X so that we
may replace the nonlinear term (uj · ∇uj , v) in (2.2) by b∗(uj , uj , v). The advantage
garnered through the use of b∗(w, u, v) compared to (w · ∇u, v) is that b∗(w, u, u) = 0
for all u,w ∈ X whereas (w · ∇u, v) = 0 only if w ∈ V .

Definition 2.1. Let tn = n∆t, n = 0, 1, 2, . . . , N , where N := T/∆t, denote a
partition of the interval [0, T ]. For j = 1, . . . , J and n = 0, 1, 2, . . . , N , let uj,n(x) :=
uj(x, tn). Then, the ensemble mean is defined, for n = 0, 1, 2, . . . , N , by

< u >n:=
1

J

J∑
j=1

uj,n.

For j = 1, . . . , J , let uj,0h (x) ∈ Xh denote approximations, e.g., interpolants or
projections, of the initial conditions uj,0(x). Then, the full space-time discretization
of (2.1), or more precisely of (2.2), we consider is given as follows: given, for j =
1, . . . , J , uj,0h (x) ∈ Xh and f j(x, t) ∈ [H−1(Ω)]d for almost every t ∈ (0, T ], find, for

n = 0, 1, . . . , N−1 and for j = 1, . . . , J , uj,n+1
h (x) ∈ Xh and pj,n+1

h (x) ∈ Qh satisfying
(uj,n+1

h − uj,nh
∆t

, vh
)

+ b∗(< uh >
n, uj,n+1

h , vh)+b∗(uj,nh − < uh >
n, uj,nh , vh)

−(pj,n+1
h ,∇ · vh) + ν(∇uj,n+1

h ,∇vh) = (f j,n+1, vh) ∀vh ∈ Xh

(∇ · uj,n+1
h , qh) = 0 ∀qh ∈ Qh.

(2.7)
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We refer to this discretization as En-full-FE indicating that we are referring to an
ensemble-based discretization of (2.2) using a high-dimensional finite element space.
This ensemble-based discretization of the NSE is noteworthy because the system (2.7)
is not only linear in the unknown functions uj,n+1

h (x) and pj,n+1
h (x), but because of

the use of ensembles, we also have that the coefficient matrix associated with (2.7)
is independent of j, i.e., at each time step, all members of the ensemble can be
determined from J linear algebraic systems all of which have the same coefficient
matrix. On the other hand, the linear system can be very large because in practice
dimXh + dimQh can be very large. This observation, in fact, motivates interest in
building reduced-order discretizations of the NSE.

Because Xh and Qh are assumed to satisfy the LBBh condition, (2.7) can be
more compactly expressed as follows: given, for j = 1, . . . , J , uj,0h (x) ∈ Xh and
f j(x, t) ∈ [H−1(Ω)]d for almost every t ∈ (0, T ], find, for n = 0, 1, . . . , N − 1 and for
j = 1, . . . , J , uj,n+1

h (x) ∈ Vh satisfying

(uj,n+1
h − uj,nh

∆t
, vh
)

+ b∗( < uh >
n, uj,n+1

h , vh) + b∗(uj,nh − < uh >
n, uj,nh , vh)

+ ν(∇uj,n+1
h ,∇vh) = (f j,n+1, vh) ∀vh ∈ Vh.

(2.8)

Note that in general it is a difficult matter to construct a basis for the space Vh so
that in practice, one still works with (2.7). We introduce the reduced system (2.8) so
as to facilitate the analyses given in later sections.

3. Proper orthogonal decomposition (POD) reduced-order modeling.
The POD model reduction scheme can be split into two main stages: an offline por-
tion and an online portion. In the offline portion, one collects into what is known as
a snapshot set the solution of a partial differential equation (PDE), or more precisely,
of a discrete approximation to that solution, for a number of different input functions
and/or evaluated at several time instants. The snapshot set is hopefully generated in
such a way that it is representative of the behavior of the exact solution. The snap-
shot set is then used to generate a POD basis, hopefully of much smaller cardinality
compared to that of the full finite element space, that provides a good approximation
to the data present in the snapshot set itself. In the online stage, the POD basis is
used to generate approximate solutions of the PDE for other input functions; ideally
these will be accurate approximations achieved much more cheaply compared to the
use of a standard method such as a standard finite element method.

In the rest of this section, we delve into further detail about the generation of the
snapshot set, the construction of the POD basis in a finite element setting, and how
the POD basis can be used to construct a reduced-order model for the NSE in the
ensemble framework. This section will focus on the framework specific to this paper;
for more detailed presentations about POD, see, e.g., [9, 15, 16, 31].

3.1. Snapshot set generation. The offline portion of the algorithm begins with
the construction of the snapshot set which consists of the solution of the PDE for a
number of different input functions and/or evaluated at several different time instants.
Given a positive integer NS , let 0 = t0 < t1 < · · · < tNS

= T denote a uniform
partition of the time interval [0, T ]. Note that this partition is usually much coarser
than the partition of [0, T ] into N intervals, introduced in Definition 2.1, which is used
to discretize the PDE, i.e., we have NS � N . We first define the set of snapshots
corresponding to exact solutions of the weak form of the NSE (2.2). For j = 1, . . . , JS ,
we select JS different initial conditions uj,0(x) and denote by uj,mS (x) ∈ X the exact
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velocity field satisfying (2.2), evaluated at t = tm, m = 1, . . . , NS , which corresponds
to the initial condition uj,0(x). Then, the space spanned by the JS(NS+1) so obtained
snapshots is defined as

XS := span{uj,mS (x)}JS ,NS

j=1,m=0 ⊂ X. (3.1)

In the same manner, we can construct a set of snapshots uj,mh,S (x) ∈ Xh, j = 1, . . . , JS ,
m = 0, 1, . . . , NS , of finite element approximations of the velocity solution deter-
mined from a standard finite element discretization of (2.2). Note that one could
also determine, at lesser cost but with some loss of accuracy, the snapshots from the
ensemble-based discretization (2.7). We can then also define the space spanned by
the JS(NS + 1) discrete snapshots as

Xh,S := span{uj,mh,S (x)}JS ,NS

j=1,m=0 ⊂ Vh ⊂ Xh. (3.2)

Note that S = dimXh,S ≤ JS(NS + 1). The snapshots are finite element solutions so
the span of the snapshots is a subset of the finite element space Xh. Additionally, it is
important to note that by construction, the snapshots satisfy the discrete continuity
equation so that the span of the snapshots is indeed a subspace of the discretly
divergence free subspace Vh ⊂ Xh.

If we denote by ~uj,mS the vector of coefficients corresponding to the finite element

function uj,mh,S (x). With K = dimXh, we may also define the K×JS(NS+1) snapshot
matrix A as

A =
(
~u1,0
S , ~u1,1

S , . . . , ~u1,NS

S , ~u2,0
S , ~u2,1

S , . . . , ~u2,NS

S , . . . , ~uJS ,0S , ~uJS ,1S , . . . , ~uJS ,NS

S

)
,

i.e., the columns of A are the finite element coefficient vectors of the discrete snapshots.
To construct a reduced basis that results in accurate approximations, the snapshot

set must contain sufficient information about the dynamics of the solution of the PDE.
In our context, this requires one to not only take a sufficient number of snapshots
with respect to time, but also to select a set of initial conditions that generate a set
of solutions that is representative of the possible dynamics one may encounter when
using other initial conditions. In the POD framework for the NSE, the literature on
selecting this set is limited. One of the few algorithms which has been explored in the
ensemble framework is the previously mentioned Bred-vectors algorithm given in [30].
Further exploration of this and other approaches for the selection of initial conditions
is a subject for future research.

3.2. Construction of the POD basis. Using the set of discrete snapshots, we
next construct the POD basis {ϕi(x)}Ri=1. We define the POD function space XR as

XR := span{ϕi}Ri=1 ⊂ Xh,S ⊂ Vh ⊂ Xh.

There are a number of equivalent ways in which one may characterize the problem
of determining XR; for a full discussion see [6, Section 2]. For example, the POD
basis construction problem can be defined as follows: determine an orthonormal ba-
sis {ϕi}Si=1 for Xh,S such that for all R ∈ {1, . . . , S}, {ϕi}Ri=1 solves the following
constrained minimization problem

min

JS∑
k=1

NS∑
l=0

∥∥∥uk,lh,s − R∑
j=1

(uk,lh,s, ϕj)ϕj

∥∥∥2

subject to (ϕi, ϕj) = δij for i, j = 1, . . . , R,

(3.3)
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where δij is the Kronecker delta and the minimization is with respect to all orthonor-
mal bases for Xh,S . We note that by defining our basis in this manner we elect to
view the snapshots as finite element functions as opposed to finite element coefficient
vectors.

Define the JS(NS + 1)×JS(NS + 1) correlation matrix C = ATMA, where M de-
notes the Gram matrix corresponding to full finite element space. Then, the problem
(3.3) is equivalent to determine the R dominant eigenpairs {λi,~ai} satifying

C~ai = λi~ai, |~ai| = 1, ~aTi ~aj = 0 if i 6= j, and λi ≥ λi−1 > 0, (3.4)

where | · | denotes the Euclidean norm of a vector. The finite element coefficient
vectors corresponding to the POD basis functions are then given by

~ϕi =
1√
λi

A~ai, i = 1, . . . , R. (3.5)

Alternatively, we can let M = STS, and define Ã = SA so that C = ATMA = ÃT Ã
and then determine the singular value decomposition of the modified snapshot matrix
Ã; the vectors ~ai, i = 1, . . . , R are then given as the first R left singular vectors of Ã
which correspond to the first R singular values σi =

√
λi.

3.3. POD reduced-order modeling. We next illustrate how a POD basis is
used to construct a reduced-order model for the NSE within the ensemble framework.
The discretized system that defines the POD approximation mimics that for the full
finite element approximation, except that now we seek an approximation in the POD
space XR having the basis {ϕi}Ri=1. Specifically, for j = 1, . . . , J , we define the

POD approximate initial conditions as uj,0R (x) =
∑R
i=1(uj,0, ϕi)ϕi(x) ∈ XR and then

pose the following problem: given uj,0R (x) ∈ XR, for n = 0, 1, . . . , N − 1 and for

j = 1, . . . , J , find uj,n+1
R ∈ XR satisfying(uj,n+1

R − uj,nR
∆t

, ϕ
)
+b∗(< uR >

n, uj,n+1
R , ϕ) + b∗(uj,nR − < uR >

n, uj,nR , ϕ)

+ ν(∇uj,n+1
R ,∇ϕ) = (f j,n+1, ϕ) ∀ϕ ∈ XR.

(3.6)

We refer to this discretization as En-POD indicating that we are referring to an
ensemble-based discretization of (2.2) using a low-dimensional POD space. Note
that because XR ⊂ Vh, i.e., the POD approximation is by construction discretely
divergence free, the pressure term in the POD-discretized NSE (3.6) drops out and
we are left with a system involving only the POD approximation to the velocity. One
further point of emphasis is that the J initial conditions used in (3.6) are different
from the JS initial conditions used to construct the snapshot set, i.e., we use JS initial
conditions to solve the full finite element system (2.7) to determine the snapshots, and
now solve J additional approximations of the NSE by solving the much smaller POD
system (3.6).

As was the case for (2.7), the POD system (3.6) is linear in the unknown uj,n+1
R

and the associated coefficient matrix does not depend on j, i.e., it is the same for all
realizations of the initial condition. On the other hand, (3.6) is a system of R equations
in R unknowns whereas (2.7) involves dimXh+dimQh equations in the same number
of unknowns, where R and dimXh + dimQh denote the total number of POD and
finite element degrees of freedom, respectively. Thus, if R� dimXh+dimQh, solving
(3.6) requires much less cost compared to solving (2.7). In this way the offline cost of
constructing the POD basis can be amortized over many online solves using the much
smaller POD system. We address the assembly costs related to (3.6) in Section 6.
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4. Stability analysis of En-POD. We prove the conditional, nonlinear, long-
time stability of solutions of (3.6).

The L2(Ω) projection operator ΠR: L2(Ω)→ XR is defined by

(u−ΠRu, ϕ) = 0 ∀ϕ ∈ XR. (4.1)

Denote by ‖| · ‖|2 the spectral norm for symmetric matrices and let MR denote the
R × R POD mass matrix with entries [MR]i,i′ = (ϕi, ϕ

′
i) and SR denote the R × R

matrix with entries [SR]i,i′ = [MR]i,i′ + ν(∇ϕi,∇ϕi′), i, i′ = 1, . . . , R. It is shown in
[24] that

‖∇ϕ‖ ≤
(
‖|SR‖|2‖|M−1

R ‖|2
)1/2‖ϕ‖ ∀ϕ ∈ XR. (4.2)

As XR ⊂ Xh, we have the following lemma, see of [22, page 276] for proof.
Lemma 4.1. For any uR, vR, wR ∈ XR,

b∗(uR, vR, wR) =

∫
Ω

uR · ∇vR · wR dx+
1

2

∫
Ω

(∇ · uR)(vR · wR) dx.

Theorem 4.2. [Stability of En-POD] For n = 0, . . . , N − 1 and j = 1, . . . , J , let
uj,n+1
R satisfy (3.6). Suppose the time-step condition(

Cν−1‖|SR‖|1/22 ‖∇(uj,nR − < uR >
n)‖2

)
∆t ≤ 1 for j = 1, . . . , J (4.3)

holds. Then, for n = 1, . . . , N ,

1

2
‖uj,nR ‖

2 +
1

4

n−1∑
n′=0

‖uj,n
′+1

R − uj,n
′

R ‖
2 +

ν∆t

4
‖∇uj,nR ‖

2 +
ν∆t

4

n−1∑
n′=0

‖∇uj,n
′+1

R ‖2

≤
n−1∑
n′=0

∆t

2ν
‖f j,n

′+1‖2−1 +
1

2
‖uj,0R ‖

2 +
ν∆t

4
‖∇uj,0R ‖

2 for j = 1, . . . , J.

(4.4)

Proof. The proof is provided in Appendix A.
Remark 4.3. In the time-step condition, the constant C is dependent on the

shape of the domain and the mesh as a result of the use of inverse inequality in the
proof. For a fixed mesh on a fixed domain, C is a generic constant that is independent
of the time step ∆t, the solution uj and viscosity ν.

5. Error analysis of En-POD. We next provide an error analysis for En-POD
solutions.

Lemma 5.1. [L2(Ω) norm of the error between snapshots and their projections
onto the POD space] We have

1

JS(NS + 1)

JS∑
j=1

NS∑
m=0

∥∥∥uj,mh,S − R∑
i=1

(uj,mh,S , ϕi)ϕi

∥∥∥2

=

JS(NS+1)∑
i=R+1

λi (5.1)

and thus for j = 1, . . . , JS,

1

NS + 1

NS∑
m=0

∥∥∥uj,mh,S − R∑
i=1

(uj,mh,S , ϕi)ϕi

∥∥∥2

≤ JS
JS(NS+1)∑
i=R+1

λi. (5.2)
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Proof. The proof of (5.1) follows exactly the proof of [31, Theorem 3]; (5.2) is
then a direct consequence of (5.1).

Lemma 5.2. [H1(Ω) norm of the error between snapshots and their projections
in the POD space] We have

1

JS(NS + 1)

JS∑
j=1

NS∑
m=0

∥∥∥∇(uj,mh,S − R∑
i=1

(uj,mh,S , ϕi)ϕi

)∥∥∥2

=

JS(NS+1)∑
i=R+1

λi‖∇ϕi‖2 (5.3)

and thus for j = 1, . . . , JS,

1

NS + 1

NS∑
m=0

∥∥∥∇(uj,mh,S − R∑
i=1

(uj,mh,S , ϕi)ϕi

)∥∥∥2

≤ JS
JS(NS+1)∑
i=R+1

λi‖∇ϕi‖2. (5.4)

Proof. The proof of (5.3) follows exactly the proof of [18, Lemma 3.2]; (5.4) is
then direct consequence of (5.3).

Lemma 5.3. [Error in the projection onto the POD space] Consider the partition
0 = t0 < t1 < · · · < tNS

= T used in Section 3.1. For any u ∈ H1(0, T ; [Hs+1(Ω)]d),
let um = u(·, tm). Then, the error in the projection onto the POD space XR satisfies
the estimates

1

NS + 1

NS∑
m=0

‖um −ΠRu
m‖2

≤ inf
j∈{1,...,JS}

2

NS + 1

NS∑
m=0

‖um − uj,mS ‖
2 + C

(
h2s+2 +4t4

)
+ 2JS

JS(NS+1)∑
i=R+1

λi

(5.5)

1

NS + 1

NS∑
m=0

‖∇ (um −ΠRu
m) ‖2

≤ inf
j∈{1,...,JS}

2

NS + 1

NS∑
m=0

(
‖∇(um − uj,mS )‖2 + ‖|SR‖|2‖um − uj,mS ‖

2
)

+ (C + h2‖|SR‖|2)h2s + (C + ‖|SR‖|2)4t4 + 2JS

JS(NS+1)∑
i=R+1

‖∇ϕi‖2λi.

(5.6)

Proof. The proof is provided in Appendix B.
To bound the error between the POD based approximations and the true solu-

tions, we assume the following regularity for the true solutions and body forces:

uj ∈ L∞(0, T ;Hs+1(Ω)) ∩H1(0, T ;Hs+1(Ω)) ∩H2(0, T ;L2(Ω)),

pj ∈ L2(0, T ;Hs(Ω)), and f j ∈ L2(0, T ;L2(Ω)).

We assume the following estimate is also valid as done in [18].
Assumption 5.4. Consider the partition 0 = t0 < t1 < · · · < tNS

= T used in
Section 3.1. For any u ∈ H1(0, T ; [Hs+1(Ω)]d), let um = u(·, tm). Then, the error in
the projection onto the POD space XR satisfies the estimates
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‖∇ (um −ΠRu
m) ‖2

≤ inf
j∈{1,...,JS}

2

NS + 1

NS∑
m=0

(
‖∇(um − uj,mS )‖2 + ‖|SR‖|2‖um − uj,mS ‖

2
)

+ (C + h2‖|SR‖|2)h2s + (C + ‖|SR‖|2)4t4 + 2JS

JS(NS+1)∑
i=R+1

‖∇ϕi‖2λi.

(5.7)

Let ej,n = uj,n − uj,nR be the error between the true solution and the POD approxi-
mation, then we have the following error estimates.

Theorem 5.5 (Error analysis of En-POD). Consider the method (2.8) and the
partition 0 = t0 < t1 < · · · < tNS

= T used in Section 3.1. Suppose that for any
0 ≤ n ≤ NS, the following conditions hold

C4t‖|SR‖|1/22

ν
‖∇(uj,nR − < uR >

n)‖2 < 1 , j = 1, ..., J. (5.8)

Then, for any 1 ≤ N ≤ NS, there is a positive constant C such that

1

2
‖ej,N‖2 + C∆t

N−1∑
n=0

ν‖∇ej,n+1‖2

≤ C

(
∆t2 + h2s + ∆t‖|SR‖|−1/2

2 + ‖|SR‖|2∆t4 + ‖|SR‖|2h2s+2

+ ‖|SR‖|−1/2
2 h2s∆t−1 + ‖|SR‖|1/22 h2s+2∆t−1 + ‖|SR‖|1/22 ∆t3

+ (1 +NS ‖|SR‖|−1/2
2 )

(
inf

j∈{1,...,JS}

1

NS

NS∑
m=1

(‖∇(um − uj,mS )‖2

+ ‖|SR‖|2‖um − uj,mS ‖
2) + JS

JSNS∑
i=R+1

‖∇ϕi‖2λi
))

(5.9)

Proof. The proof is provided in Appendix C.

6. Numerical simulations. We investigate the efficacy of our algorithm via
the numerical simulation of a flow between two offset circles [22]. Before we discuss
the examples and the numerical results, we briefly discuss the computational costs
associated with the En-POD algorithm and how they compare to those of the En-
full-FE algorithm.

6.1. Computational costs. As stated in Section 3, we can split the computa-
tional cost of our algorithm into offline and online portions. In the offline portion,
we generate the snapshot matrix A by solving the Navier-Stokes equations for JS
perturbations. Using A, we then generate a reduced basis to be used in our online
calculations. It is fair to assume that the cost of creating the snapshot matrix will
dominate the cost of generating the reduced basis associated with the eigenvalue prob-
lem (3.4), especially when we consider that there exist very efficient techniques [17]
for determining the partial SVD of matrices.

Turning to the cost of solving the Navier-Stokes equation, the discrete systems
that arise from a FEM discretization have been studied at great length. Whereas it is
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possible to use a nonlinear solver such as Newton’s method or a nonlinear multigrid
iteration, these methods often suffer from a lack of robustness. Instead, it is more
popular to linearize the system and then to use the Schur complement approach. This
allows for the use of a linear multigrid solver or Krylov method such as GMRES to
solve the problem. For full details, see, e.g., [28]. Unfortunately, there are a number
of factors such as the mesh size, the value of the Reynolds number, and the choice of
pre-conditioner which make it very difficult to precisely estimate how quickly these
methods converge.

Estimating the online cost of the En-POD method, however, is much easier. Be-
cause the POD discrete system is small and dense and the ensemble method has J
right-hand sides, the most efficient way to solve this problem is, at each time step, to
do a single LU factorization and a backsolve for each right-hand side. Denoting again
by R the cardinality of the reduced basis, the online cost of the En-POD method is

RBonline = NO(R3) +NJO(R2). (6.1)

We note that this process is highly parallelizable. For example, if we have access to
J total processors, then we can remove the factor J in the second term.

It is important to note that the assembly of the low-dimensional reduced basis
system requires manipulations involving the reduced basis which, as we have seen, are
finite element functions so that, in general, that assembly involves computational costs
that depend on the dimension of the finite element space. Thus, naive implementations
of a reduced basis method involve assembly costs that are substantially greater than
solving costs and which, given the availability of very efficient solvers, do not result in
significant savings compared to that incurred by the full finite element discretization.
For linear problems the stiffness matrix is independent of the solution so that one
can assemble the small reduced basis stiffness matrix during the offline stage. For
nonlinear problems, the discrete system changes at each time step (and generally at
each interrogation of a nonlinear solver) so that, in general, it is not an easy matter
to avoid the high assembly costs. However, because the nonlinearity in the Navier-
Stokes system is quadratic, the assembly costs can again be shifted to the offline stage
during which one assembles a low-dimensional third-order tensor that can be reused
throughout the calculations.

Turning to the computational cost for the FEM ensemble method, as mentioned
previously, the most efficient way to solve the resulting systems is a block solver (e.g.,
block GMRES). In trying to estimate the computational cost, we run into the same
problem as we do for estimating the cost of solving the standard FEM discretization
of the Navier-Stokes problem; specifically, it is very difficult to precisely determine
how quickly any block solver converges.

Due to the difficulties outlined above in a priori estimation of the computational
costs for both our algorithms we omit any CPU time comparison in the numerical
experiments. Instead, we focus on the accuracy of our En-POD method, demon-
strating that it is possible to achieve similar results as those given by the En-full-FE
method. A more rigorous and thorough analysis comparing the computational cost
of the En-POD and En-full-FE method is a subject of future research.

6.2. Flow between two offset circles. For the numerical experiment we ex-
amine the two-dimensional flow between two offset circles with viscosity coefficient
ν = 1

200 . Specifically, the domain is a disk with a smaller offset disc inside. Let
r1 = 1, r2 = 0.1, c1 = 1/2, and c2 = 0; then the domain is given by

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2}.
11



No-slip, no-penetration boundary conditions are imposed on both circles. All compu-
tations are done using the FEniCS software suite [26]. The deterministic flow driven
by the counterclockwise rotational body force

f(x, y, t) =
(
− 4y(1− x2 − y2) , 4x(1− x2 − y2)

)T
displays interesting structures interacting with the inner circle. A Kármán vortex
street is formed which then re-interacts with the inner circle and with itself, generating
complex flow patterns.

For our test problems, we generate perturbed initial conditions by solving a steady
Stokes problem with perturbed body forces given by

fε(x, y, t) = f(x, y, t) + ε
(

sin(3πx) sin(3πy), cos(3πx) cos(3πy)
)T

with different perturbations defined by varying ε. We discretize in space via the P 2-P 1

Taylor-Hood element pair. Meshes were generated using the FEniCS built-in mshr
package with varying refinement levels. An example mesh is given in Figure 6.1.

Fig. 6.1. Mesh for flow between offset circles resulting in 16,457 total degrees of freedom for
the Taylor-Hood element pair.

In order to generate the POD basis, we use two perturbations of the initial condi-
tions corresponding to ε1 = 10−3 and ε2 = −10−3. Using a mesh that results in 16,457
total degrees of freedom and a fixed time step ∆t = .025, we run a standard full finite
element code1 for each perturbation from t0 = 0 to T = 5. For the time discretization

1We also generated snapshots using the En-full-FE method. We found that we obtained exactly
the same results as those reported here if instead we use a standard finite element method.
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we use the Crank-Nicolson method and take snapshots every 0.1 seconds. In Figure
6.2, we illustrate the decay of the singular values generated the snapshot matrix.

Fig. 6.2. The 40 largest singular values of the snapshot matrix.

6.3. Example 1. The purpose of this example is to illustrate our theoretical
error estimates and to show the efficacy of our method in a “data mining” setting,
i.e., to show that we can accurately represent the information contained in the En-
full-FE approximation which requires the specification of 16,457 coefficients by the
En-POD approximation that requires the specification of a much smaller number of
coefficients, in fact, merely 10 will do. Thus, we determine the En-POD approximation
using the same perturbations, mesh, and time step as were used in the generation of
the POD basis. We verify at each time step that condition (4.3) is satisfied. In order
to illustrate the accuracy of our approach, we provide, in Figure 6.3, plots of the
velocity field of the ensemble average at the final time T = 5 for both the En-full-
FE and En-POD approximations. We also provide in Figure 6.4 (left) the difference
between the two ensemble averages at the final time T = 5. In addition, in Figure
6.5, we plot, for 0 ≤ t ≤ 5 and for both methods, the energy 1

2‖u‖
2 and the enstrophy

1
2ν‖∇ × u‖

2.
We need 10 POD basis functions to reproduce the flow with a reasonable level

of accuracy. This is seen in Table 6.1(a) which shows a small discrete L2 error cor-
responding to 10 basis vectors and, as the number of basis vectors increases beyond
that, the error appears to decreases monotonically. Visual confirmation is given by
comparing the two plots in Figure 6.3 as well as Figure 6.4 (left); at time T = 5 the
En-POD method appears to produce a flow which is very similar to that for the En-
full method. Additionally, in Figure 6.5, we plot the energy and enstrophy of En-POD
with varying cardinalities for the POD basis and for the En-full-FE method. It can be
seen that as the number of POD basis vectors increases our approximation improves
with the En-POD energy and enstrophy becoming indistinguishable from that for the
En-full-FE for 10 or more POD basis functions.

6.4. Example 2. Of course, the approximation of solutions of PDEs using
reduced-order models such as POD are used not in the context of Section 6.3, but,
in our setting, for values of the perturbation parameter ε different from those used
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Fig. 6.3. For Example 1, the ensemble average of the velocity field at the final time T = 5 of
the En-full-FE (left) approximation and the En-POD approximation with 10 reduced basis vectors
(right).

Fig. 6.4. For Example 1, The difference between the ensemble average of the velocity field at
the final time T = 5 of the En-full-FE (approximation and the En-POD approximation with 10
reduced basis vectors.

to generate the reduced-order basis. Thus, we consider the problem described in Sec-
tion 6.2 except that now we apply the En-POD method, using the basis generated as
described in Section 6.2, for the two ensemble values ε1 = 0.1 and ε2 = 1.0, both of
which are different from the values used to generate the snapshots used to construct
the POD basis. For comparison purposes, we also determine the En-full-FE approxi-
mation for this ensemble. Note that these two values of ε take us to an extrapolatory
setting, i.e., these values are outside of the interval [−10−3, 10−3] bracketed by the
values of ε used to generate the POD basis. Using a reduced-order method in an
extrapolatory setting is usually a stern test of its efficacy.

The results for this ensemble are given in Table 6.1(b) and Figures 6.6, 6.7, and
6.8. The discussion in Section 6.3 corresponding to Example 1 carries over to this
example except that the magnitude of the error is slightly larger; compare Table 6.1(a)
and Table 6.1(b).
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Table 6.1
F for Examples 1 and 2, the L2 relative error ||uave

h − uave
R ||2,0 vs. the dimension R of the

POD approximation.

(a) Example 1 (b) Example 2

R error R error
2 0.042157 2 0.042418
4 0.019224 4 0.019347
6 0.035701 6 0.035804
8 0.064799 8 0.064946
10 0.004741 10 0.004923
12 0.003565 12 0.003803
14 0.002979 14 0.003217
16 0.002490 16 0.0028368
18 0.001952 18 0.002430
20 0.001035 20 0.001610

Fig. 6.5. For Example 1 and for 0 ≤ t ≤ 5, the energy (left) and enstrophy (right) of the
ensemble determined for the En-full-FE approximations and for the En-POD approximation of
several dimensions.

Fig. 6.6. For Example 2, the ensemble average of the velocity field at the final time T = 5 of
the En-full-FE (left) approximation and the En-POD approximation with 10 reduced basis vectors
(right).
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Fig. 6.7. For Example 2, the difference between the ensemble average of the velocity field at the
final time T = 5 of the En-full-FE (approximation and the En-POD approximation with 10 reduced
basis vectors.
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Fig. 6.8. For Example 2 and for 0 ≤ t ≤ 5, the energy (left) and enstrophy (right) of the
ensemble determined for the En-full-FE approximations and for the En-POD approximation of
several dimensions.

7. Concluding remarks. In this work, an ensemble-proper orthogonal decom-
position method for the nonstationary Navier-Stokes equations is proposed and an-
alyzed. This method is built on a recently developed ensemble method that allows
for the efficient determination of the multiple solutions of NSE. By incorporating the
proper orthogonal decomposition technique, the ensemble-POD method introduced
here significantly reduces the computational cost compared with that for the original
ensemble method.

The method presented herein only works with low Reynolds number flows be-
cause the stability condition degrades quickly as the Reynolds number increases. To
handle high Reynolds number flows, one has to consider incorporating regularization
techniques. For single Navier-Stokes solves, there is existing in vast literature in this
regard, but, in the ensemble setting, regularization has barely been studied. The only
existing works are in [19, 23]. The study of regularization methods in the ensemble
and ensemble-POD setting is a focus of our current research.

We also note that in certain applications it may be desirable to construct a reduced
basis for the pressure. We did not consider this in this work; doing so would require
some sort of stabilization, such as the supremer stabilization introduced in [2], to
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compensate for the newly introduced LBB type condition. The incorporation of this
type of method into the framework developed in this paper is also a subject of future
research.
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Appendix A. Proof or Theorem 4.2.

As the only difference is the choice of basis functions, we follow closely the proof
of [22, Theorem 1 (Stability of BEFE-Ensemble)]. Setting ϕ = uj,n+1

R in (3.6) and
applying the Cauchy-Schwarz and Young inequalities to the right-hand side yields

1

2
‖uj,n+1

R ‖2 − 1

2
‖uj,nR ‖

2 +
1

2
‖uj,n+1

R − uj,nR ‖
2 + ν∆t‖∇uj,n+1

R ‖2

+ ∆tb∗(uj,nR − < uR >
n, uj,nR , uj,n+1

R − uj,nR )

≤ ν∆t

2
‖∇uj,n+1

R ‖2 +
∆t

2ν
‖f j,n+1‖2−1.

(A.1)

Next, we bound the trilinear term using the Poincaré inequality, Lemma 4.1 and the
inverse inequality (4.2):

−b∗(uj,nR − < uR >
n, uj,nR , uj,n+1

R − uj,nR )

≤ C‖∇(uj,nR − < uR >
n)‖‖∇uj,nR ‖

√
‖uj,n+1

R − uj,nR ‖‖∇(uj,n+1
R − uj,nR )‖

+
1

2
C‖∇ · (uj,nR − < uR >

n)‖‖uj,nR · (u
j,n+1
R − uj,nR )‖

≤ C‖∇(uj,nR − < uR >
n)‖‖∇uj,nR ‖

√
‖uj,n+1

R − uj,nR ‖‖∇(uj,n+1
R − uj,nR )‖

+
1

2
C‖∇ · (uj,nR − < uR >

n)‖‖∇uj,nR ‖
√
‖uj,n+1

R − uj,nR ‖‖∇(uj,n+1
R − uj,nR )‖

≤ C‖∇(uj,nR − < uR >
n)‖‖∇uj,nR ‖‖|SR‖|

1/4
2 ‖|M

−1
R ‖|

1/4
2 ‖u

j,n+1
R − uj,nR ‖

+
1

2
C‖∇(uj,nR − < uR >

n)‖‖∇uj,nR ‖‖|SR‖|
1/4
2 ‖|M

−1
R ‖|

1/4
2 ‖u

j,n+1
R − uj,nR ‖.

(A.2)
By construction, the POD basis functions are orthonormal with respect to the L2(Ω)
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inner product so that ‖|MR‖|2 = ‖|M−1
R ‖|2 = 1. Then, (A.2) reduces to

−b∗(uj,nR − < uR >
n, uj,nR , uj,n+1

R − uj,nR )

≤ C‖∇(uj,nR − < uR >
n)‖‖∇uj,nR ‖‖|SR‖|

1/4
2 ‖u

j,n+1
R − uj,nR ‖.

Using Young’s inequality again results in

−∆tb∗(uj,nR − < uR >
n, uj,nR , uj,n+1

R − uj,nR )

≤ C∆t2‖|SR‖|1/22 ‖∇(uj,nR − < uR >
n)‖2‖∇uj,nR ‖

2 +
1

4
‖uj,n+1

R − uj,nR ‖
2.

Combining with (A.1) and then adding and subtracting ν∆t
4 ‖∇u

j,n
R ‖2 results in

1

2
‖uj,n+1

R ‖2 − 1

2
‖uj,nR ‖

2 +
1

4
‖uj,n+1

R − uj,nR ‖
2 +

ν∆t

4

{
‖∇uj,n+1

R ‖2 − ‖∇uj,nR ‖
2
}

+
ν∆t

4

{
‖∇uj,n+1

R ‖2 +
(
1− C∆tν−1‖|SR‖|1/22 ‖∇(uj,nR − < uR >

n)‖2
)
‖∇uj,nR ‖

2
}

≤ ∆t

2ν
‖f j,n+1‖2−1.

Assuming that the restriction (4.3) holds, we have

ν∆t

4

(
1− C∆tν−1‖|SR‖|1/22 ‖∇(uj,nR − < uR >

n)‖2
)
‖∇uj,nR ‖

2 ≥ 0.

Combining the last two results then yields

1

2
‖uj,n+1

R ‖2 − 1

2
‖uj,nR ‖

2 +
1

4
‖uj,n+1

R − uj,nR ‖
2

+
ν∆t

4

{
‖∇uj,n+1

R ‖2 − ‖∇uj,nR ‖
2
}

+
ν∆t

4
‖∇uj,n+1

R ‖2 ≤ ∆t

2ν
‖f j,n+1‖2−1.

Summing up the above inequality results in (4.4).

Appendix B. Proof of Lemma 5.3.
By (4.1) and the Cauchy-Schwarz inequality, we have

‖um −ΠRu
m‖2 = (um −ΠRu

m, um −ΠRu
m)

= (um −ΠRu
m, um − ϕ) + (um −ΠRu

m, ϕ−ΠRu
m)

= (um −ΠRu
m, um − ϕ) ≤ ‖um −ΠRu

m‖‖um − ϕ‖ ∀ϕ ∈ XR

so that

‖um −ΠRu
m‖ ≤ ‖um − ϕ‖ ∀ϕ ∈ XR.

We rewrite um − ϕ = (um − uj,mS ) + (uj,mS − uj,mh,S ) + (uj,mh,S − ϕ) for all j = 1, . . . , JS .

Setting ϕ = ΠRu
j,m
h,S =

∑R
i=1(uj,mh,S , ϕi)ϕi and using the triangle inequality as well as

Lemma 5.1, we have, for j = 1, . . . , JS ,

1

NS + 1

NS∑
m=0

‖um −ΠRu
m‖2

≤ 1

NS + 1

NS∑
m=0

(‖um − uj,mS ‖+ ‖uj,mS − uj,mh,S‖+ ‖uj,mh,S −ΠRu
j,m
h,S‖)

2

≤ 2

NS + 1

NS∑
m=0

‖um − uj,mS ‖
2 + C

(
h2s+2 +4t4

)
+ 2JS

JS(NS+1)∑
i=R+1

λi
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from which (5.5) easily follows. Similarly, by using Lemmas 4.2 and 5.2, we have

1

NS + 1

NS∑
m=0

‖∇(um −ΠRu
m)‖2

≤ 1

NS + 1

NS∑
m=0

(
‖∇(um − uj,mS )‖+ ‖∇(uj,mS − uj,mh,S )‖

+ ‖∇(uj,mh,S −ΠRu
j,m
h,S )‖+ ‖∇(ΠRu

j,m
h,S −ΠRu

m)‖
)2

≤ 2

NS + 1

NS∑
m=0

‖∇(um − uj,mS )‖2 + C
(
h2s +4t4

)
+ 2JS

JS(NS+1)∑
i=R+1

‖∇ϕi‖2λi

+ 2‖|SR‖|2
1

NS + 1

NS∑
m=0

(
‖ΠRu

j,m
h,S −ΠRu

j,m
S ‖

2 + ‖ΠRu
j,m
S −ΠRu

m‖2
)

≤ 2

NS + 1

NS∑
m=0

‖∇(um − uj,mS )‖2 + C
(
h2s +4t4

)
+ 2JS

JS(NS+1)∑
i=R+1

‖∇ϕi‖2λi

+ 2‖|SR‖|2
1

NS + 1

NS∑
m=0

(
‖uj,mh,S − u

j,m
S ‖

2 + ‖uj,mS − um‖2
)

≤ 2

NS + 1

NS∑
m=0

‖∇(um − uj,mS )‖2 + C
(
h2s +4t4

)
+ 2JS

JS(NS+1)∑
i=R+1

‖∇ϕi‖2λi

+ 2‖|SR‖|2
(
h2s+2 +4t4

)
+ ‖|SR‖|2

2

NS + 1

NS∑
m=0

‖um − uj,mS ‖
2

from which (5.6) easily follows.

Appendix C. Proof of Theorem 5.5.
For j = 1, · · · , J , the true solutions of the NSE uj satisfies

(
uj,n+1 − uj,n

∆t
, ϕ) + b∗(uj,n+1, uj,n+1, ϕ) + ν(∇uj,n+1,∇vh)− (pj,n+1,∇ · ϕ) (C.1)

= (f j,n+1, ϕ) + Intp(uj,n+1;ϕ) , for any ϕ ∈ XR ,

where Intp(uj,n+1;ϕ) is defined as

Intp(uj,n+1;ϕ) = (
uj,n+1 − uj,n

∆t
− ujt (tn+1), ϕ) .

Let

ej,n = uj,n − uj,nR = (uj,n −ΠRu
j,n) + (ΠRu

j,n − uj,nR ) = ηj,n + ξj,nR , j = 1, ..., J ,

where ΠRu
n
j ∈ XR is the L2 projection of uj,n in XR. Subtracting (3.6) from (C.1)

gives

(
ξj,n+1
R − ξj,nR

∆t
, ϕ) + ν(∇ξj,n+1

R ,∇ϕ) + b∗(uj,n+1, uj,n+1, ϕ)

−b∗(< uR >
n, uj,n+1

R , ϕ)− b∗(uj,nR − < uR >
n, uj,nR , ϕ)− (pj,n+1,∇ · ϕ) (C.2)
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= −(
ηj,n+1 − ηj,n

∆t
, ϕ)− ν(∇ηj,n+1,∇ϕ) + Intp(uj,n+1;ϕ) .

Set ϕ = ξj,n+1
R ∈ XR and rearrange the nonlinear terms. By the definition of the L2

projection, we have (ηj,n+1 − ηj,n, ξj,n+1
R ) = 0. Thus (C.2) becomes

1

∆t
(
1

2
‖ξj,n+1
R ‖2 − 1

2
‖ξj,nR ‖

2 +
1

2
‖ξj,n+1
R − ξj,nR ‖

2) + ν‖∇ξj,n+1
R ‖2

= −b∗(uj,n+1, uj,n+1, ξj,n+1
R ) + b∗(uj,nR , uj,n+1

R , ξj,n+1
R )

−b∗(uj,nR − < uR >
n, uj,n+1

R − uj,nR , ξj,n+1
R ) + (pj,n+1,∇ · ξj,n+1

R ) (C.3)

−ν(∇ηj,n+1,∇ξj,n+1
R ) + Intp(uj,n+1; ξj,n+1

R ) .

We rewrite the first two nonlinear terms on the right hand side of (C.3) as follows

−b∗(uj,n+1,uj,n+1, ξj,n+1
R ) + b∗(uj,nR , uj,n+1

R , ξj,n+1
R )

= −b∗(ej,n, uj,n+1, ξj,n+1
R )− b∗(uj,nR , ej,n+1, ξj,n+1

R )

− b∗(uj,n+1 − uj,n, uj,n+1, ξj,n+1
R )

= −b∗(ηj,n, uj,n+1, ξj,n+1
R )− b∗(ξj,nR , uj,n+1, ξj,n+1

R )

− b∗(uj,nR , ηj,n+1, ξj,n+1
R )− b∗(uj,n+1 − uj,n, uj,n+1, ξj,n+1

R ).

Using the same techniques as in the proof of Theorem 5 of [22], with the assumption
that uj ∈ L∞(0, T ;H1(Ω)), we have the following estimates on the nonlinear terms

b∗(uj,n+1 − uj,n, uj,n+1, ξj,n+1
R )

≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖∇(uj,n+1 − uj,n)‖2‖∇uj,n+1‖2

≤ ν

64
‖∇ξj,n+1

R ‖2 +
C∆t

ν
(

∫ tn+1

tn
‖∇ujt‖2dt) ,

(C.4)

and

b∗(ηj,n,uj,n+1, ξj,n+1
R ) ≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖∇ηj,n‖2. (C.5)

Using Young’s inequality, (2.6) and the result (4.4) from the stability analysis, i.e.,
‖∇uj,nR ‖2 ≤ C, we have

b∗(uj,nR ,ηj,n+1, ξj,n+1
R )

≤ ‖∇uj,nR ‖
1/2‖uj,nR ‖

1/2‖∇ηj,n+1‖‖ξj,n+1
R ‖

≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖∇uj,nR ‖‖∇η
j,n+1‖2.

(C.6)

Using the inequality (2.6), Young’s inequality and uj ∈ L∞(0, T ;H1(Ω)), we have

b∗(ξj,nR ,uj,n+1, ξj,n+1
R )

≤ C‖∇ξj,nR ‖
1
2 ‖ξj,nR ‖

1
2 ‖∇uj,n+1‖‖∇ξj,n+1

R ‖

≤ C(ε‖∇ξj,n+1
R ‖2 +

1

ε
‖∇ξj,nR ‖‖ξ

j,n
R ‖)

≤ C(ε‖∇ξj,n+1
R ‖2 +

1

ε
(δ‖∇ξj,nR ‖

2 +
1

δ
‖ξj,nR ‖

2)

≤ (
ν

64
‖∇ξj,n+1

R ‖2 +
ν

8
‖∇ξj,nR ‖

2) +
C

ν3
‖ξj,nR ‖

2,

(C.7)
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We next rewrite the third nonlinear term on the right-hand side of (C.3):

b∗(uj,nR − < uR >
n, uj,n+1

R − uj,nR , ξj,n+1
R )

= −b∗(uj,nR − < uR >
n, ej,n+1 − ej,n, ξj,n+1

R )

+ b∗(uj,nR − < uR >
n, uj,n+1 − uj,n, ξj,n+1

R )

= −b∗(uj,nR − < uR >
n, ηj,n+1, ξj,n+1

R )

+ b∗(uj,nR − < uR >
n, ηj,n, ξj,n+1

R )

+ b∗(uj,nR − < uR >
n, ξj,nR , ξj,n+1

R )

+ b∗(uj,nR − < uR >
n, uj,n+1 − uj,n, ξj,n+1

R ) .

(C.8)

Following the same steps as in the proof of Theorem 5 of [22], we have the following
estimates on the above nonlinear terms

b∗(uj,nR − < uR >
n, ηj,n+1, ξj,n+1

R )

≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖∇uj,nR − < uR >
n ‖2‖∇ηj,n+1‖2 ,

(C.9)

b∗(uj,nR − < uR >
n, ηj,n, ξj,n+1

R )

≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖∇uj,nR − < uR >
n ‖2‖∇ηj,n‖2 .

(C.10)

By skew symmetry, Lemma 4.1, inequality (2.5) and the inverse inequality (4.2), we
have

b∗(uj,nR − < uR >
n, ξj,nR , ξj,n+1

R )

≤ C‖∇uj,nR − < uR >
n ‖‖∇ξj,n+1

R ‖
√
‖ξj,n+1
R − ξj,nR ‖‖∇(ξj,n+1

R − ξj,nR )‖

+ C‖∇ · (uj,nR − < uR >
n)‖‖ξj,n+1

R · (ξj,n+1
R − ξj,nR )‖

≤ C‖∇(uj,nR − < uR >
n)‖‖∇ξj,n+1

R ‖
√
‖ξj,n+1
R − ξj,nR ‖‖∇(ξj,n+1

R − ξj,nR )‖

≤ C‖∇(uj,nR − < uR >
n)‖‖∇ξj,n+1

R ‖‖|SR‖|1/42 ‖ξ
j,n+1
R − ξj,nR ‖

≤ 1

44t
‖ξj,n+1
R − ξj,nR ‖

2 +
(
C4t‖|SR‖|1/22 ‖∇u

j,n
R − < uR >

n ‖2
)
‖∇ξj,n+1

R ‖2.

(C.11)

For the last nonlinear term we have

b∗(uj,nR − < uR >
n, uj,n+1 − uj,n, ξj,n+1

R )

≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖∇(uj,nR − < uR >
n)‖2‖∇(uj,n+1 − uj,n)‖2

≤ ν

64
‖∇ξj,n+1

R ‖2 +
C∆t

ν
‖∇(uj,nR − < uR >

n)‖2(

∫ tn+1

tn
‖∇ujt‖2 dt) .

(C.12)
Next, consider the pressure term. Since ξj,n+1

R ∈ XR ⊂ Vh we have for qh ∈ Qh

(pj,n+1,∇ · ξj,n+1
R ) = (pj,n+1 − qn+1

h ,∇ · ξj,n+1
R )

≤ ν

64
‖∇ξj,n+1

R ‖2 + Cν−1‖pj,n+1 − qn+1
h ‖2 .

(C.13)
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The other terms, are bounded as

ν(∇ηj,n+1,∇ξj,n+1
R ) ≤ Cν‖∇ηj,n+1‖2 +

ν

64
‖∇ξj,n+1

R ‖2 . (C.14)

Finally,

Intp(uj,n+1; ξj,n+1
R ) = (

uj,n+1 − uj,n

∆t
− ujt (tn+1), ξj,n+1

R )

≤ ν

64
‖∇ξj,n+1

R ‖2 +
C

ν
‖u

j,n+1 − uj,n

∆t
− ujt (tn+1)‖2

≤ ν

64
‖∇ξj,n+1

R ‖2 +
C∆t

ν

∫ tn+1

tn
‖ujtt‖2dt .

(C.15)

Combining, we now have the following inequality:

1

∆t

(
1

2
‖ξj,n+1
R ‖2 − 1

2
‖ξj,nR ‖

2 +
1

4
‖ξj,n+1
R − ξj,nR ‖

2

)
+
ν

8

(
‖∇ξj,n+1

R ‖2 − ‖∇ξj,nR ‖
2
)

+
(ν

4
− C4t‖|SR‖|1/22 ‖∇(uj,nR − < uR >

n)‖2
)
‖∇ξj,n+1

R ‖2

≤ C

ν3
‖ξj,nR ‖

2 + Cν−1‖∇uj,nR ‖‖∇η
j,n+1‖2 + Cν−1‖∇ηj,n‖2

+
C∆t

ν

(∫ tn+1

tn
‖∇ujt‖2dt

)
+ Cν‖∇ηj,n+1‖2

+ Cν−1‖∇
(
uj,nR − < uR >

n
)
‖2‖∇ηj,n+1‖2 + Cν−1‖pj,n+1 − qn+1

h ‖2

+ Cν−1‖∇
(
uj,nR − < uR >

n
)
‖2‖∇ηj,n‖2 +

C∆t

ν

∫ tn+1

tn
‖ujtt‖2dt

+
C∆t

ν
‖∇
(
uj,nR − < uR >

n
)
‖2
(∫ tn+1

tn
‖∇ujt‖2dt

)
.

(C.16)

By the timestep condition ν
4 − C4t‖|SR‖|1/22 ‖∇(uj,nR − < uR >n)‖2 > 0. Take

the sum of (C.16) from n = 0 to n = N − 1 and multiply through by ∆t. Since

uj,0R =
∑R
i=1

(
uj,0, ϕi

)
ϕi, we have ‖ξj,0R ‖2 = 0 and ‖∇ξj,0R ‖2 = 0.

1

2
‖ξj,NR ‖

2 +
ν∆t

8
‖∇ξj,NR ‖

2 +

N−1∑
n=0

1

4
‖ξj,n+1
R − ξnj,R‖2 + C∆t

N−1∑
n=0

ν‖∇ξj,n+1
R ‖2

≤ ∆t

N−1∑
n=0

C

ν3
‖ξj,nR ‖

2 + ∆t

N−1∑
n=0

{
Cν−1‖∇uj,nR ‖‖∇η

j,n+1‖2 + Cν−1‖∇ηj,n‖2

+
C∆t

ν

(∫ tn+1

tn
‖∇ujt‖2dt

)
+ Cν‖∇ηj,n+1‖2 +

C∆t

ν

∫ tn+1

tn
‖ujtt‖2dt

+ C∆t−1‖|SR‖|−1/2
2 ‖∇ηj,n+1‖2 + Cν−1∆t−1||SR‖|−1/2

2 ‖∇ηj,n‖2

+ Cν−1‖pj,n+1 − qn+1
h ‖2 + C‖|SR‖|−1/2

2 (

∫ tn+1

tn
‖∇ujt‖2dt)

}
.

(C.17)
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Using the result (4.4) from the stability analysis, i.e., ∆t
∑N−1
n=0 ν‖∇u

j,n
R ‖2 ≤ C and

Assumption (5.4), we have

Cν−1∆t

N−1∑
n=0

‖∇uj,nR ‖‖∇η
j,n+1‖2 (C.18)

≤ Cν−2

(
inf

j∈{1,...,JS}

1

NS

NS∑
m=1

(‖∇(um − uj,mS )‖+ ‖|SR‖|2‖um − uj,mS ‖
2)2

+ (C + h2‖|SR‖|2)h2s + (C + ‖|SR‖|2)4t4 + JS

JSNS∑
i=R+1

‖∇ϕi‖2λi

)

Now applying Lemma 5.3 gives

1

2
‖ξj,NR ‖

2 +

N−1∑
n=0

1

4
‖ξj,n+1
R − ξj,nR ‖

2 +
ν∆t

8
‖∇ξj,NR ‖

2 + C∆t

N−1∑
n=0

ν‖∇ξj,n+1
R ‖2

≤ ∆t

N−1∑
n=0

C

ν3
‖ξj,nR ‖

2 +

(
Cν−2 + CNS4tν−1 + CNS‖|SR‖|−1/2

2

+ CNSν4t+ Cν−1NS‖|SR‖|−1/2
2

)
·

(
inf

j∈{1,...,JS}

1

NS

NS∑
m=1

(‖∇(um − uj,mS )‖2

+ ‖|SR‖|2‖um − uj,mS ‖
2) + (C + h2‖|SR‖|2)h2s + (C + ‖|SR‖|2)4t4

+ JS

JSNS∑
i=R+1

‖∇ϕi‖2λi

)
+ C∆t‖|SR‖|−1/2

2 ‖|∇ujt |‖22,0

+ C
h2s

ν
‖|pj |‖22,s +

C∆t2

ν
‖|ujtt|‖22,0 +

C∆t2

ν
‖|∇ujt |‖22,0.

(C.19)
The next step will be the application of the discrete Gronwall inequality (Girault and
Raviart [13], p. 176).

1

2
‖ξj,NR ‖

2 +

N−1∑
n=0

1

4
‖ξj,n+1
R − ξj,nR ‖

2 +
ν∆t

8
‖∇ξj,NR ‖

2 + C∆t

N−1∑
n=0

ν‖∇ξj,n+1
R ‖2

≤ exp
(CT
ν3

){(
Cν−2 + CNS4tν−1 + CNS‖|SR‖|−1/2

2

+ CNSν4t+ Cν−1NS‖|SR‖|−1/2
2

)
·

(
inf

j∈{1,...,JS}

1

NS

NS∑
m=1

(‖∇(um − uj,mS )‖2

+ ‖|SR‖|2‖um − uj,mS ‖
2) + (C + h2‖|SR‖|2)h2s + (C + ‖|SR‖|2)4t4

+ JS

JSNS∑
i=R+1

‖∇ϕi‖2λi

)
+ C∆t‖|SR‖|−1/2

2 ‖|∇ujt |‖22,0

+ C
h2s

ν
‖|pj |‖22,s +

C∆t2

ν
‖|ujtt|‖22,0 +

C∆t2

ν
‖|∇ujt |‖22,0

}
.

(C.20)
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Recall that ej,n = ηj,n + ξj,nR . To simplify formulas, we drop the second and third
term on the left hand side of (C.20). Then by the triangle inequality and Lemma 5.3,
absorbing constants, we have (5.9).
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