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Abstract

A “metastable solution” to a differential equation typically refers to a family of solutions for which solu-
tions with initial data near the family converge to the family much faster than evolution along the family.
Metastable families have been observed both experimentally and numerically in various contexts; they are
believed to be particularly relevant for organizing the dynamics of fluid flows. In this work we propose a can-
didate metastable family for the Burgers equation with periodic boundary conditions. Our choice of family
is motivated by our numerical experiments. We furthermore explain the metastable behavior of the family
without reference to the Cole—Hopf transformation, but rather by linearizing the Burgers equation about
the family and analyzing the spectrum of the resulting operator. We hope this may make the analysis more
readily transferable to more realistic systems like the Navier—Stokes equations. Our analysis is motivated by

ideas from singular perturbation theory and Melnikov theory.

1 Introduction

In the study of differential equations one often is interested in understanding the long-term asymptotic behavior
of solutions; the long term behavior could include, for example, convergence to a periodic orbit or a steady-state.
One typical approach is to prove the existence of a particular solution and then to argue that nearby initial
data converge to that solution; in the case of a steady-state or periodic orbit, such arguments often involve
computations of the linear spectrum.

In this work we address a slightly different question, which arises when the asymptotic state only emerges after a
“long” time; in this case, it may be that the intermediate transient behavior of the system is physically relevant.
In other words, we are not interested in what the asymptotic state is, but how solutions with a wide class of
initial data approach it. To address this question we analyze what are known as “metastable” solutions. The
term metastable solution often refers to a family of profiles with the following properties: (1) a profile within
this family evolves within the family and tends asymptotically toward the long-time asymptotic state (which
is typically a boundary point of the metastable family); (2) solutions with “nearby” initial data remain near
the family for all forward times; and (3) the timescale on which solutions with nearby initial data approach the
family is much faster than the evolution within the family towards the asymptotic state. Property (3) is what

makes metastable solutions of physical interest.

Metastable solution families are of particular interest in fluid dynamics. For example, in the Navier—Stokes



equation with periodic boundary conditions

Ol = VAU — @ - VU + Vp, V-4=0, ieR? vl
w(z,y,t) = d(z + 2m,y,t), and uU(x,y,t) =u(z,y+ 2m,t), (1.1)

which describes two-dimensional viscous fluid flows, metastable vortex pairs known as “dipoles” were numerically
observed [I1, 20]; the dipoles emerge quickly and persist for long times before eventually converging to the trivial
state. The metastable states described in [IT], 20] are characterized in terms of their vorticity w, defined as
w:=V x 4. In [20] a second metastable family known as “bar” states—solutions with constant vorticity in
one spatial direction and periodic vorticity in the other—were observed; which of the two candidate metastable

families dominates the dynamics depends on the initial data.

A related context in which metastability has been observed and studied is Burgers equation. Although the
Burgers equation is unphysical, it is nevertheless relevant to fluid dynamics since it is, in some sense, the
one-dimensional simplified analog of the Navier-Stokes equation. Thus, one often uses the Burgers equation
as a test case for Navier—Stokes: one hopes that by first observing and analyzing some phenomenon in the
Burgers equation, that insight can be translated into an understanding of related phenomena in Navier—Stokes.
Metastable solutions in Burgers equation were observed numerically in the viscous Burgers equation on an

unbounded domain [§] in the so-called “scaling variables”
1
Orw = vOiw + 585(&0) — wwg weR, v«l. (1.2)

The scaling variables

T
1+t

&= ) T=In(t+1), and u(z,t)=

1 T
w ,n(1 4+ ¢
Vitt (\/1+t ( ))
have been defined so that a diffusion wave—a strictly positive triangular profile which approaches zero for |z| —
oo—is a steady state solution to ([1.2) (otherwise, all solutions to Burgers equation in the unscaled variables
dyu = v02u — uu, approach the zero solution as t — +00). In [§] the authors observe that “diffusive N-waves”—
profiles with a negative triangular region immediately followed by a positive triangular region so that the profile

resembles a lopsided backwards “N”—quickly emerge before the solution converges to a diffusion wave.

Burgers equation is much more amenable to analysis than the Navier-Stokes equation and there has been a
fair amount of theoretical work to explain the observations of [§]. Already in [§], the authors used the Cole-
Hopf transformation to derive an analytical expression for the diffusive N-waves. In [I], the authors provide
a more dynamical systems motivated explanation of metastability. First they constructed a center-manifold
for (1.2) consisting of the diffusion waves, denoted A/(¢), which is parametrized by the solution mass. Each
of these diffusion waves represents the long-time asymptotic state of all integrable solutions with initial mass
M and they are also fixed points in the scaling variables. Through each of these fixed points there is a one-
dimensional manifold, parameterized by 7, consisting of exactly the diffusive N-waves. Then, using the Cole-Hopf
transformation, the authors show that solutions converge toward the manifold of N-waves on a time scale of order
7 = O(|Inv|]), that solutions remain near wy (£, 7) for all future times, and that the evolution along wxy (&, 7)
towards Aps(€) is on a time scale of the order 7 = O(1/v). In particular, convergence to the family is faster than
the subsequent evolution along the family. We emphasize that their analysis makes strong use of the Cole-Hopf
transformation.

In [2] the authors proposed an explanation of the metastability of the bar-states of as follows. They first
propose as candidates for the metastable family the exact solutions of the Navier-Stokes equations with vorticity
distribution

Wz, y,t) =e cos(m

t

L Alternatively, the bar state could be ﬁb(x,y, t) = e “!sin(z), or the solution could instead be periodic in the y direction and

constant in the z direction.



which is again parametrized by time. Solutions in this family converge to the long-time limit (which is the zero
solution in this case) on the viscous time scale ¢ ~ L. In order to understand the convergence of solutions with
nearby initial data to the metastable family, the authors linearize the vorticity formulation of (L.1))

0w = vAw — 1 - Vw, i = (—0y,A 'w, 0, A w). (1.3)
about w®(z,y,t). The linearization results in a nonlocal time-dependent linear operator
L(t) = vA —ae " sinzd, (1 + A™H).

Using hypercoercivity techniques motivated by the work of Villani [I6] and Gallagher, Gallay, and Nier [7],
the authors show that solutions to a modified operator £*(t) = vA — ae™"'sinz?d,, which differs from L(t)
by removing the non-local, but relatively compact, term, decay with rate at least e~ V¥%. Additionally, they
provide numerical evidence that the real part of the least negative eigenvalue for the nonlocal operator L£(t) is
proportional to 4/v. These arguments, in combination with the fact that the rate of decay of solutions to
to zero is given by the much slower viscous time scale provides a mathematical explanation for the metastable

behavior of the family of bar states.

What is notable is that the mechanism for metastability as well as the relevant time scales are different in each
case [I] versus [2]. Thus, the goal of this work is to re-visit the Burgers equation, albeit with periodic boundary
conditions so that the boundary conditions are more similar to those of , in order to devise a mathematical
explanation for metastability which is more easily transferable to Navier—Stokes. To that end, we intentionally
avoid the Cole-Hopf transformation and instead use spectral analysis from the linearization about the candidate
metastable family. We find that the spectrum, to leading order, does not depend on the viscosity v, even though
our analysis depends on the presence of the viscosity term in the equation (and thus the calculations below do
not apply to the inviscid equation). This is in contrast to the results from [2] for the Navier-Stokes equation
in which the rate of approach toward the metastable solutions occurs at a v dependent rate, albeit a much
faster rate than the v dependent time of approach toward the final asymptotic state. More generally, the linear
operator that we analyze is not self-adjoint. Such operators arise frequently, for example, in weakly viscous fluid
dynamics and we hope that the methods develop in this work could be applied to wide class of non-self-adjoint

spectral problems.

From a technical perspective, the linearization about the metastable states leads to a singularly perturbed
eigenvalue problem, in which the perturbation parameter is the viscosity v. Our strategy is to construct the
eigenfunction-eigenvalue pairs in each of two spatial scaling regimes (denoted the “slow” and “fast” scales) and
then to glue the eigenfunction pieces together in an appropriate “overlap” region (see Figure [4] for a schematic
representation). We show, in fact, that the eigenvalues are given, to leading order, by the slow-scale eigenvalues;
the rigorous “gluing” of the fast and slow solutions is done with the aid of a Melnikov-like computation which
gives the first order correction of the eigenvalues. The use of such Melnikov-like computations for piecing together
solutions has a long tradition, generally called Lin’s method [9], which has been applied to the construction of
eigenfunctions in, for example, [I4]. The idea of piecing together slow and fast eigenfunctions in a singularly

perturbed eigenvalue problem follows, for example, from [6].

It is worth noting another context in which singularly perturbed eigenvalue problems have arisen in connection
with a slightly different type of metastability, including in variants of Burger’s equation. In [I5] [I8] metastability
refers to the very slow motion of internal layers in nearly steady states of reaction diffusion equations and diffu-
sively perturbed conservation laws. While different in details and physical context, the notion of metastability
in these papers is similar in spirit to our discussion in that it also describes the slow motion along a family
of solutions (in this cases, solutions in which the internal layer occurs at different positions) before the system
reaches its final state. The motion of those internal layers is explained by an exponentially small shift in the

zero eigenvalue of the operator describing the equation linearized about a stationary state. In contrast, in our



problem, the zero eigenvalue is unchanged, regardless of which member of the family of metastable solutions
we linearize around, but the remaining eigenvalues (or at least the four additional eigenvalues that we compute

here) undergo exponentially small shifts.

Another recent study of metastability in the Navier—Stokes equation, which is similar to our work in context, but
very different in methods is the study of the inviscid limit of the Navier—Stokes equations in the neighborhood
of the Couette flow, by Bedrossian, Masmoudi and Vicol [4] (see also [3]). In this paper the authors prove
an enhanced stability of the Couette flow by using carefully chosen energy functionals. They prove that for
times less than O(Rel/ 3), the system approaches the Couette flow in a way governed by the inviscid limit (i.e.
the Euler equations) while for time scales longer than this viscosity effects dominate; here Re is the Reynold’s
number of the flow. Since our results show that our metastable family attracts nearby solutions at a rate which
is, to leading order, independent of the viscosity, we believe that they are analogous to the initial phase of the
evolution analyzed in [4] in which inviscid effects dominate. It would be interesting to see if the transition to

viscosity dominated evolution could be observed in this Burgers equation context as well.

2 Set-up and statement of main results

In this section we discuss our candidate family of metastable solutions, denoted W (z, t; v, Az, ¢), to the viscous

Burgers equation with periodic boundary conditions

Oru :V(?iu—uuz v«l, zeR, teR"
u(x,0) =uo(z) ug € Hy,([0,2m))
u(x + 2m,t) =u(x,t). (2.1)

We also present numerical and analytical justification for our choice. The analytical justification given in Sec-
tion [2.2] relies, again, heavily on the Cole-Hopf transformation. Thus, although it provides powerful evidence
for the behavior of solutions near W (x,t; v, Az, ¢), the result provides no insight into techniques one might use
to analyze Navier—Stokes. Thus we provide an alternative explanation which relies on information about the
spectrum of the linear operator obtained from linearizing about the metastable family W(z,t; v, Az, ¢);
the statement and discussion of these results can be found in Sections 2.4] and 2.5l In what follows we make
the technical assumption that the primitive of (ug(x) — @) attains a unique global maximum on [0, 27), where
=5 Sgﬂ ug(x)dz. We remark that this assumption is generic since if the primitive of ug(z) does not attain a
global maximum on [0, 2) then for all € > 0 there exists a function v(z) with |v[m =< e such that the primitive

of up(z) + v(x) does attain a global maximum, where

Wiy, = [ (@2 + @] ds

per

is the usual periodic H' norm.

2.1 Family of metastable solutions

It is well known, using the Cole-Hopf transformation, that

2(2,1
w(z, t) = —2 2@ (2.2)
Y(z, )
is a solution to Burgers on the real line if ¢(x, t) satisfies the heat equation
Wy =ga v«l,zeR, teR". (2.3)



A family of periodic solutions to (2.3) can be constructed by placing heat sources on the real line spaced 2w
apart centered at x = 7(2n — 1)

o ati) = e S { et r o) ] (24)

neZ

Then every function in the family

W, YW 1 2nez(® + 7 — 2nm) exp [—<w++2mr>2]
e K (2.5)
AT e
ZTLEZ exp I:T:I

is 2m-periodic and hence a solution to (2.1)). We have denoted solutions (2.5)) by Wy to indicate the fact that one
can find them in, for example, the classic text by G.B. Whitham [T9] §4.6]. Using formula (2.5) one can check
that Wy(nm,t;v) = 0 and that Wy is an odd function about nx, for n € Z.

The family of solutions ([2.5)) is parametrized by ¢. We can extend the family to include two additional parameters
as follows. Firstly, we can replace x by x — Az, effectively shifting the origin of the x-axis. Next, suppose u(x,t)
is a solution to (2.1). Then u.(z,t) := ¢ + u(x — ct, t) solves (2.1)) as well since

Oty = Opt — COxu = V&guc — (e — €)0zUe — COpu = V@fguc — Ue(Ue) -

Thus we define an extension of (2.5) by W(x,t;v, Ax,c) := ¢ + Wy(z — Az — ct, t;v). We remark that if ¢(x, t)
is periodic,
f —2v0,0(x, t)dr =0

and thus, since

W (z,t;v, Az, c)dx = 27e,

—T

W (x,t;v, Az, ¢) can not be obtained via the Cole-Hopf transformation of a periodic function unless ¢ = 0.

We will need the following estimates of W, and its derivatives.
Proposition 2.1 Fizv >0, 0 <gg < 1. Then there exists 0 < C(eg) < oo such that

1 C

sup |Wo(z,t;v) — [m—ﬁtanh(ﬂx)]‘ < (78())6_1/%
|| <7 t vt t

1 72 T C(e0)
sup |0, Wo(z, t:v) — = |1 — 2—s h2(—> < ~1/vt
(ol oz, tv) - 3 [ ot \out 2

1 T T o /7T C(e0) _1/01
\iFspw OWo(z,t;v) — o) [—x + 7 tanh (ﬂ) + ﬂsech (2yt>” < 3 eV (2.6)

for all 0 < vt < g.

We remark that since Wy (z,t;v) is periodic, these L™ estimates can be converted into L? . estimates for any
1<p<o.

Proof. Due to the fact that Wy(z,t;v) is an odd function centered about 2 = 0, we prove the estimates for
€ [0, 7]. Define

—(TT+T—2nTT 2
2ZneZneXp [%]

Setivy= ot Y ez OXP [7,(%&2@2]
so that
Wo(z,t;v) % — gS(;v,t;u)
0xWo (2, t; V) % %Sx(x,t; v)
oWo(z, t;v) = — t% + t%S(amt;u) - %St(;v,t;u).



Thus it remains to estimate S(z,¢; v) and its derivatives. We factor exp[—(z+m)?/4vt] out of both the numerator

and denominator, define

eXP[M] S n=0

exp[m] . n<0

vt

exp,, (z;t,v) := exp [—7w[—nz + n’r — nr]/vt] = , (2.7)

and rearrange to get

_—exp [SE2] + exp [2£] + exp [ 52£] Yinz0.1(2n —1)exp, (z;t,v)
exp [ 57 ] +exp [ 55 ] + exp [ F2F] 2,201 €xPy (2351, 1)
—tanh( Vt) + R(z;v,t)

where

exp [ 2ut ] Znsﬁo,l [2 — 1 —tanh (21/25)] expn(x; t’ l/)
exp [ 52 ] Xez exPy (231, V)

R(z;v,t) :=

Define r := exp [—7r2/1/t]; we have that 0 < r < 1 for all 0 < vt < gg. Then, using |i we see that for all
€ [0, 7]
exp,, (z;t,v) < rinl Vn #0,1,2

- —r(dm —3 —r?
exp [m] expy(x;t, V) = exp [M] < exp [ﬂ-] =7/,

2vt 2vt vt

and

Using the fact that the denominator of R is greater than or equal to one since it is a sum of positive terms and

the leading term

—Tx T
- . >
exp [ 51 ] exp, (z;v,t) = exp [2 t] 1 Va € [0, 7],

we find

IR (x;v,t)| <4r'/? + exp [_mj] Z 2(|n| + 1)l
[ PP
r(2—r)
2"

(1=7)

Thus, there exists 0 < C(go) < o0 such that |R(x; v, )| < Ceg)e™™ /2t for all 0 < vt < g9 and z € [0,7]. The

same transformations and estimates give

<4rt? g4

0 T Cl(eo) _15, T Cleo) _14
Sgc(sc,t;y)—ﬂsech2 (ﬂ)’ < (to)e Urt and  |Si(x,t; V)—i-ﬁsech2 (ﬂ)‘ < 2(520)6 Lt

after potentially making C(g¢) larger. ]

2.2 Solutions via the Cole-Hopf transformation

Based on our numerical simulations (see Section , we anticipate that solutions to rapidly approach a
profile in the family W (x,t;v, Az, c), and that the specific member in the family that the solution approaches
depends on the initial data ug(z). In Section[2.1] we discussed the Cole-Hopf transformation but did not take the
initial data into account; we address the initial value problem now and show how the initial data can be used to
determine which specific profile W (x, t; v, Az, ¢) the solution is expected to approach.



A solution u(z,t) given by the Cole-Hopf transformation (2.2) will satisfy the Burgers equation on the real line
with initial data ug(z) provided (x,t) satisfies the initial value problem

Uy =gy v«l zeR, teRt

T

P(x,0) = o(x) ez Flwiuo) F(x;up) := —J uo(s)ds. (2.8)

0

Solutions to (2.8)) can be expressed as a convolution with the heat kernel G; : R — R*

As was argued in [I2], if one additionally assumes that S(Q)W ug(s)ds = 0 then () is 2m-periodic, and hence so
are ¥ (x,t) and

V¢1($>t) 1S exp[ ( (z—y)” y) + F(y,uo))] dy
Y(w,t) t Siooc exp [% (—% + F(y; UO))] dy .

Thus u§H (2,t;v,up) is a solution to the periodic problem (2.1 with initial data u§ (z,t; v, ug) = ug(z). We

assume that F'(y;ug) has a single global maximum in the interval y € [—m, 7) located at y = yo

y
Yo = argmax <—f uo(s)ds> .
ye[—m, 7] 0

can be estimated as

uSH (z,t;0,u0) 1= —2

Then the solution u§*

uSH (z,t;v,up) = % [ac—yo — 1 — 7 tanh (W) +0 <ﬁ+ 1)] , (2.9)

which can be seen by using, for example, Laplace’s method; since the goal of this work is to get away from
the Cole-Hopf transformation, we leave the details to the reader. Comparison of with indicates that
solutions to will asymptotically approach Wy(x,t; v, Az), and that Az is close to yo + 7, where yo depends
on the initial data. If ¢ := ;- Ssﬂ up(s)ds # 0 then

CH

uCH (z,t;v,u9, ¢) = ¢ + u§

(x — ct, t;v,ug — ).

2.3 Numerical results

The discussion in Sectionsandindicates that W (z, t; v, Ax, ¢) should be our candidate metastable solution.
Numerical simulations indicate the same result. We numerically computed solutions to (2.1) in Python using
Gudonov’s scheme for conservative PDEs. Letting h = dx and k = dt, the CFL condition is

k= min{m,m?}

for A < 1. We used A = 0.5. The initial condition u(z,0) was given by

m
u(z,0) = ag + 2 [an sin(jz) + by, cos(jx)],
n=1
where m is the number of modes and the coefficients a,, were randomly generated. Due to the symmetry of the
modes for j > 1, the mean of u(x,0), denoted u(zx,0), is given by ag; furthermore, due to the periodic boundary

conditions the mean of any solution is preserved since

au = J_W wdr = J_ﬁ[uum — uug]de = [Vug; - U ]

us

I
e

—T



The time series for a solution with ag = 0 is shown in Figure We find that u(z, t) rapidly approaches a solution

Wo(z — Az, t;v), defined in ([2.5)); for all future times, the solution converges to zero in a manner resembling the

behavior of Wy(x — Az, t;v). When ag # 0 we find that the solution is vertically centered around ag moves to

the left for ag < 0 and to the right for ag > 0; consistent with the solution

Wz, t;v, Az, a0) = ag + Wy(z — Ax — apt, t; V)

defined immediately before Proposition Although we show only one sample time series here, we ran multiple

experiments with different initial conditions; our results indicate that the evolution of a wide class of initial data

evolve in a qualitatively similar fashion to that shown in Figure
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Figure 1: A numerically computed solution to with v = 0.008 and random initial data. Solution computed
= 2m/350, CFL constant A = 0.5, m = 20 modes for the random
—2.53. We find that u(x,t) rapidly

approaches a solution Wy (x, t; v, Ax) and then converges to 0 in a manner consistent with the time evolution of

in Python using Gudonov’s method with h
initial data, u(z,t) = ao = 0, and yo := argmax,.;_, . §" u(y,0)dy ~

Wo(z —yo—m,t;v). Our computations are consistent with the discussion in Sections and which indicates
that Az should be near yo + m = 0.611. The scale for (a-d) is not the same as for all other figures. Numerical
experiments with different initial data evolved in a qualitatively similar fashion to that shown here.

2.4 Statement of the main results

Our main result concerns the spectrum of the linearization of the viscous Burgers equation about one of the

solutions W (x, to; v, zo, ¢) at some time ¢ = ¢ fixed. We show that the spectrum is such that solutions of (2.1))



which, at t = ¢ fixed, are near a member of the metastable family W (z, to; v, 2o, ¢) can be expected to approach
the family at a much faster rate than the solutions W (x,t; v, Az, c) themselves evolve in time. Although the
linearized evolution is non-autonomous, and thus a rigorous verification of the expected approach rate does not
follow directly from the spectral information we derive, we explain why we feel that such rates can nevertheless
be expected in Section below and in more detail in the discussion Section

The linearization about W (x, t; v, Az, ¢) in the moving frame © — Ax — ¢t — x takes the form
v = Vg — (Wo(z, t;v)0),, (2.10)
and the resulting eigenvalue problem is
Ly, t)p =Xp, L, 1) 1= vpae — (Wo(z,t;0)9)e, (2.11)

where L£(v,t) is considered as an operator L(v,t) : H2,, ([, 7)) — L2,,.([-7, 7)) for every fixed v and t. We

per per

use the standard inner product on L2, ([—7, 7))

{u, vy := f_: u(z)v(x)da

and norm H“”igw = (u,u). Motivated by the discussion of the solutions W (z,t; v, Az, c) and u“H (x,t; v, ug, c)
above we define the small parameter 2 := 2vt. Then our main result is as follows.

Theorem 1 There exists €9 > 0 such that for all v, t such that 0 < € < €y with € = \/2uvt, the spectrum
for consists entirely of ordered eigenvalues with \g = 0 and the remaining eigenvalues contained on the

negative real-axis. In particular,

M=—-1/t+0 (51/2e_1/52) , A ==2/t+0 (E_Qe_l/‘Ez) ,

A= —3/t+0 (5*7/%*1/62) L M= 4/t+ 0 (576e71/52> . (2.12)
and A\p, < Ay for all j > 4.

Denoting the eigenfunction associated with A\, by ¢, (z — Az — ct;t,v) we also show

Theorem 2 Fiz vy < 1 and let u(x,t;v) be a solution to with mean u(x,t;v) = ¢ so that at some fived
time t = to u(w,to;v) = W(z,to; v, xo, ¢) + vo(w;to, xo;v) with |vollnz, = v < y0. Then there exists xy and ty
such that the projection of vy (x;ty, Ts;v) 1= u(x, to;v) — W(x,ty; v, T4, ¢) onto the space spanned by the first
three eigenfunctions for 18 zero:

Qg (T3, Ta; V), Y (T — Ty — Cly; by, v))y =0 for n=0,1,2,
where 1, are the unique functions satisfying L), = A\piby and LT is the adjoint of L.

See Figure [2| The inner product (v, w) is the standard periodic L? inner product.

Remark 2.2 The discussion in Section[2.9 indicates that the condition u(z, to;v) = W (z, to; v, 2o, ¢)+vo(; to, 2o, ¢; V)
with [vollmy,, « 1 holds for most initial data provided that v,1/t « 1.

Remark 2.3 Since preserves the mean, by choosing ¢ in W (x, to; v, xg,c) so that u(x,t;v) = ¢, we ensure

that Bo(x; tg, xo;v) = 0 for all time. In the proof of Theorem@ we will show that this implies

<U*($§t*ax*§ V)a¢0(73 — Ty — Ct*§t*7’/)> =0

independently of T, and ty.

2.5 Justification of W as a family of metastable solutions

Finally, we discuss why the combination of Theoremsand justifies our identification of the states W (z, t; v, Az, ¢)
as a metastable family. If we attempt to analyze the dynamics of solutions near the metastable family of solu-
tions with the aid of the linearized equation (2.10)), then the resulting linear equation is non-autonomous and,



»‘ VV(I‘(), t())

0o

Ax

Figure 2: u(z,t;v) is a solution to which at a fized time to is known to be close to a solution W (z, to; v, xo, ¢).
We show that by adjusting the parameters (to,xo) slightly we can also write u(z,to;v) = W(x, ty;v, s, c) +
Vs (T b, Toe; V) where the projection of vy onto the subspace spanned by the first three eigenfunctions for

18 zero.

in general, knowledge about the spectrum of a non-autonomous linearized operator is not sufficient to conclude
anything about the linearized evolution. However, there are examples of parabolic non-autonomous partial dif-
ferential equations with sufficiently well-behaved nonlinearities for which the “freezing” method allows one to
estimate the decay rate of solutions in terms of the spectrum of the equations linearized about a solution at a
fixed time [I3, [I7]. While we have not proven that the freezing method applies to Burgers equations, we feel
our results are a first step in rigorously verifying that the frozen time spectrum can serve as a mechanism for
understanding the metastable behavior of the family W (x,t; v, Az, ¢) for time of order O(1). See the discussion
in Section [5| for more details on why we feel the frozen spectrum provides insight into the evolution in this

case.

If we think of the spectral picture of the linearized equation ([2.10))
0w = L(v,t0)v = vz, — (Wo(z, to;v)v), ,

(where Wy(z,to;v) is now evaluated at a fixed time tp), then at first glance it looks as if the solutions don’t
tend toward the family at all, since due to the zero eigenvalue of L(v, () the linear evolution is not contractive.
However, the point of Theoremis that by choosing the parameters x, and t, of W(x,ty; v, x4, ¢) appropriately,
the projection of a solution near Wy(x, tp;v) onto the subspace spanned by the corresponding eigenfunctions
on(x — x4 — cty;ty,v) for n = 0,1,2 is zero. Thus, we expect that the linear evolution will result in the
perturbation decaying toward W (x, t4; v, ., ¢) with a rate governed by third non-zero eigenvalue, which according

to Theorem [I] satisfies 5

5
See Figure |3 Thus, if we write ¢t = tg + 7 with ¢y » 1 fixed large enough that ||vg| is small as discussed in
Remark[2.2]and 7/ty « 1), and then define p(7) so that the solution to (2.1) is u(to+7) = W (®, ts; v, z«, ¢) +p(7),
then the size of the perturbation p(7) will decay like

)\3%

_3
[p(T)Le ~ e "

Since
1 1 e—31n(1+% e—%7+(’)(7—2/t3)
(bo+ 73~ WP+t (0)* ()P
for 7/tp small enough we have
1
o)l ~ 7

Since the evolution along the family behaves like 1/¢, as can be seen from equation ([2.6)

Wo(z, t;v) = % [x — mtanh (%) + 0 (e_l/ut)] ,

10



solutions approach the family at a rate that is much faster than the evolution along the family justifying our

characterization of these states as metastable.

W (24, ts)

Span{‘ﬁn (x*a t*)}n:O,l,Q

u(z,t)

Figure 3: A schematic representation for why Theorems and@ indicate that W(x,t;v, Az, c) is a metastable
family for Burgers equation . In particular, choosing the initial condition to have projection zero onto the

span of {po, 1, P2}, the evolution of the semi-flow generated by L(v,to) will contract toward this subspace with a

—37/tg

rate e For a discussion of why we believe this reflects the decay of the actual linearized evolution, see the

discussion in Section @

3 Eigenvalue problem

In this section we prove Theorems|[l|and [2 In order to aid understanding of our arguments we have summarized
our notation in Tables in Appendix [Al Without loss of generality we let ¢ = 0 and Az = 0 (otherwise make
the substitution y =  — Az — ¢t). If we consider the eigenvalue equation for the linear operator with
A =0 we have
P20 = 1 (Wolz,t)g0)s = 0.

Integrating this equation twice we find

C
[ (,t;v)]”
is an exact eigenfunction for with A\ = 0, where the function "V (z,;v) was defined in . To find the
rest of the spectrum we define the transformation

wo(z;t,v) :=exp [11/ Jaj Wo(s, t; V)ds] = (3.1)

_c
YW (z,t;v)

Without loss of generality we choose C =1 A straightforward computation shows that A is an eigenvalue

o(z;t,v) =T (z;t,v)p(x;t,v) where T (x;t,v) :=exp [211/J‘ Wo(s,t; V)ds] = (3.2)

for (2.11]) with associated eigenvector ¢(x;t,v) if, and only if, A\ is an eigenvalue for the self-adjoint problem

B3)

1 1
LW, t)g =g, LW, 1)@ :=vPry — 3 [GIWO(a:,t; v)+ 5W02(J;, t; 1/)] "] (3.3)

with associated eigenfunction ¢ given by 1] where we again consider z(u, t) as an operator

Z(y, t): B2, ([-7, 7)) — L2, .([-7, 7))

per per

for every fixed v and t. In particular, since the transformation ¢ — ¢ is bounded with bounded inverse, the
spectra of £ and L are identical. Owing to Sturm-Liouville theory for periodic self-adjoint scalar eigenvalue
problems (c.f. [I0, Thm 2.1, 2.14]), the eigenvalues for are ordered A\g > Ay = Ao > A3 = A\g > ...
Furthermore, the eigenfunctions @a,—1 and @, have exactly 2n zeros in x € [—m, 7); since the transformation
is strictly positive, the eigenfunctions ps,_1 and s, for have exactly 2n zeros in x € [—m,7) as
well. From we see that ¢o(z;t,v) > 0 has no zeros in © € [—m,7) since W is continuous; hence, all
other eigenvalues A, are contained on the negative real axis. The following Proposition completes the proof of
Theorem [
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Proposition 3.1 Let € := +/2vt. There exists 0 < g9 < 1 such that for all € < g¢ the next four eigenvalues for
after A\g = 0 are
AM=—-1/t+0 (51/2e_1/52) , A ==2/t+0 (E_Qe_l/‘Ez) ,
Ag::——3/t+—C)(5*7ﬂe*1k2), A4=:-—4/t+-67(5*6e*1ﬁ2). (3.4)

Furthermore, defining I,(¢) := [€%/2,21 — 3/2], I;(e) := [—€%/2,&%/2], there emists 0 < C(eg) < 0 such that the

following estimates of the first two associated eigenfunctions hold for all € < gg

N st&”WM%@mW+ﬂ<amﬁﬂ . zel(e)
p1 -
sup, %e“z/% sech (%) @1 (w3 t,v) — [bechz( Z) (1 + 252 + =% ) - %] < Cleg)e®? : mels(e)
(3.5a)
2 2
sup,, z%e(w—w) 1287 By (25, v) + 1‘ < C(go)e o xelg(e)
ZE (3.5b)
sup, |5-e” *f2e? P2 (x;t,v) — [sinh (ZF) + ZFsech (7%5)]’ e+ xelf(e)

See Figure 4] for a representation of I,(¢) and I¢(e). These intervals I, ; arise naturally from the fact that Lisa
singularly perturbed operator and we will discuss them in more detail in Section In Section we provide
intuition for Proposition [3.1] through a formal matched asymptotic argument. We compute the eigenfunctions
©n(x;t,v) associated with each A, and show that ¢ 2(z;t,v) have two zeros in « € [—7, 7) and @3 4(x; ¢, v) have

four zeros in x € [—m, 7). For the interested reader we make these arguments rigorous in Section

Estimates (3.5) can then be transformed into estimates on the adjoint eigenfunctions for via as
follows. Let LT represent the adjoint of £ and 1), its eigenvector associated with A, so that £, = A\,1,,. Using
the fact that ¢, = T3, as described in equation (3.2), £ = 7~1LT and that the operators £, T, and 7 are all
self-adjoint we find that TLIT '3, = A\.@n, or, in other words, ¥, = T~'@,. We remark that since T (x;t, )
is even, 1, (x;t,v) has the same parity as @,(x;t,v). In particular, we will show that v, and @, are even for
n = 0,1 and odd for n = 2.

Using the same types of computations as were used to derive (2.6) we can derive analogous estimates on the

transformation function 7 (x;t,v) = (")~ (z,t; v), namely

sup, [e@=™/2* =1 (g 1) — 1‘ < Olgg)e Ve oz e Ii(e)

T
sup,, ‘%ex2/2€2e”2/252sech (Z%) T~ Ha;v,t) — 1‘ <Cleg)e e ¢ ze It(e)

Thus, the following Proposition is an immediate corollary to Proposition and the fact that

- 1
Go(z;t,v) = ”

) =T (z;v,t).

Proposition 3.2 Let e := \/21/ There exists 0 < g « 1 and 0 < C(gg) < o0 such that for all € < eq the first
three eigenfunctions for are

1
) = 3.6
wo(l' V) m ( a)
. (z—m)2/e2 . 3/2 .
sup,, |ee vy (zst,v) + 1‘ < Cleg)e . xelg(e)
Uy : e (3.6b)
sup,, |g=e” /€% gr"/2e wl(z;t,y)fl)éo(eo)s : xelf(e)

< Cleg)e o xelg(e)

3 2
sup,, | ;=€ Yo(x;t, V)

(3.6¢)
%e“Q/EZemZ/Qszsech (Z%) tho(w;t,v) — [sinh (ZF) + ZEsech (%)]‘ <Cleg)e : zelf(e)

Py

sup,

12



We remark that in going from Proposition to Proposition we have introduced a scaling constant which
make the Implicit Function Theorem argument in the proof below as simple as possible. We recall that the
eigenfunctions in Proposition[3.2]are given in the moving frame x — Az —ct — x; thus to get eigenfunctions for the

linearization about W (x, to; v, xg, ¢) in a stationary frame we replace = in Proposition with x — Ax —ct.
Using Proposition [3.2] we prove Theorem

Proof. (of Theorem [2)) We first consider the inner product with g (z;t,v). Since (2.1)) preserves the mean of
solutions and the mean of W (z,t; v, Az, c) = c it is true that the mean Ty = 0 for all time. Next, using the fact

that vy is given by
V(T by, Ty v) 1= W, to; v, o, ¢) + vo(x;to, xo; V) — W, ty; v, T4 ),
we find
1 us
<U*($§t*ax*§1/)»¢0($ — Ty — Clyity, V) :E f_w Vs (T3 g, T v)d
=+ 271y = 0.

It remains to consider the inner products with 11 and 9. Let Q c H2_., I; c R, I, c R such that 0 € Q, z¢ € I,

per>

and ty € Ir. We apply the Implicit Function Theorem to F :  x I; x Iy — R?

<U*($§t*ax*§ V)>¢1($ — Ty — Ct*;t*,y)>
f(vo;x*,t*; v, C) =

<U*(~T§t*a$*§ V)ﬂ/’Q(»T — Ty — ct*;t*,u)>

Wo(x — g — cto, to; V) — Wo(x — @y — Cly, ta; V), Y1 (T — Ty — Clyi by, V)

<W0(QZ' — Ty — Ct07t0; V) - WO(:L' — Ty — Ct*,t*;l/),d)z(w — Ty — Ct*;t*,l/)>

<UO($7 t07 Zo; V)a ¢1($ — Ty — Ct*7 t*7 V)>

(uo(@, o3 205 V), V2 (@ — T — ctyi by, )
and show that F(vo; T4, ts; V) = 0 near (vo; T4, tsx) = (0;0,t0) for every € := /2ty small enough. We will show
that F is uniformly bounded in ¢, so that the subspaces €2, I, and Is can be chosen independent of ¢.

Due to Cauchy-Schwartz

(vol@s to, o3 1), Yn (@ — Tx — clas by, v)) < JvollLz,, [¥n] < fvofu

per per
Thus, F(vg; xg, to; v, ¢) = 0 for vy = 0. In order to show that the matrix

dF dF
dw* dt*
| | (z4,t%;v0)=(20,t0;0)

is invertible we use the facts that

d
£<Wo(x — o — clo, to; V) — Wo(x — Ty — Cly, ty; V), (T — Ty — Cly; ty, V)>|(:L’*,t*)=(x0,t0)
*
= {[0:Wo] (z — ¢ — cto, to; V), Yn(x — 20 — cto; to, ))
d
J<W0(m — Ty — CtO;tO; V) - WO(:E — Ty — Ct*at*; V)Mﬁn(x — Ty — Ct*;t*v I/)>‘(m*,t*):(x0,to)
*

= [0 Wo] (x — w0 — cto, to; V), Yn(x — 2o — ctosto, V7))
—L[o:Wo] (x — 2o — cto, to; V), Yn(x — x — ctos to, v)).
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Since 0, Wy(x,t;v) and ¢ (x;t,v) are even functions and ;Wy(z, t;v) and 1s(x;t, v) are odd functions centered

about x = nm, n € Z we have that

0 = (W] (y,to;v), ¥1(y; o, v))
= <[0IW] (y7 tO; V)a 77[12(1% th V)>
= (1, ¥a(y; to, v))

where y := x — x¢ — cty. In fact,

since, integrating the eigenfunction equation (2.11)) from y = —7 to 7w and using periodicity we get

us

0= )\n 1/Jn(y,t07’/)dy»

—T

where \,, = 0 only for n = 0. Finally, using the asymptotic expansions for the derivatives of Wy (z, t; ), equations

2:9).

1 2 1
0:Wo(z, t;v) = [1 T sech? (E> +0 (tel/”t)]

2vt 2vt
oy 1 ™ T2z 5 [ TX Ly
atWO(SC,t, V) _ﬁ |:CC + 7 tanh (ﬂ) + ﬂsech (ﬂ) + O (te >:| (37)
we get that
10eW5) 0.t ) a3 10,0 = = Y [140 (92)]  ana
0

NG
([oeWo] (y, to; v), b2 (yi o, v)) =58 [1+0(e)] (3.8)

0

where € = /2vty. We claim that the same scaling holds for the inner products with vy so that F is indeed

uniformly bounded for all small €, which we show at the end of this proof.

Additionally, using the fact that v € H._. and integrating by parts we have

per

dx,

<U0($,t0;$0; V)7’(/}n(l‘ — Ty — Ct*;t*a V)> = - <’U0($,t0; Zos V)? aaﬂﬁn(x — Ty —

Cly;te, V)

={0300(, to; 03 V), Yn (@ — Ty — Cly; by, V)

< Jlvo [l

per

<[ 0zvol|Lz

per

and similarly for the t, derivative. Thus

dF dF
d:C* dt*
| | (T, t5;v0)=(20,t0;0)

2 Wol )1 () (e[2:Wo] (u) — [ Wo] (v), 1 (1)
(2Wo) (). 2(v)) e [2:Wh] (v) — [2Vo] (9), ()
SVE[140(32)] —9E 140 (692)]

0 —YT 1+ 0 (e)]

2
22

=: A(e)
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which is invertible since det(A(e)) = 575 [1 + O (¢)] which, for all ¢ sufficiently small, is not equal to zero. We

o

observe, in particular, that det(A(e)) = O(1), which implies that the difference |vy, — vg| is small for all € « 1.

It remains to show that there exists a C' < o such that |[(vg,¥1(y;t,v))| < C and |[(vo, ¥2(y;t,v))| = C. The
first estimate follows from the fact that
U vwdz f wdz

and the expansion for 1 in Proposition For the second estimate, we first decompose vy = v

< v

0

0 .
even + Vodd mto

its even an odd components. We note that this is possible since vg is periodic; in fact

Woen(®) = 3 (00(@) + v0(2m —2))  and oag(z) = 3 (v0(a) — vo(2m ).

Then

<U03 1;[}2 (ya tv V)> = <vgvena 7/}2 (y7 t7 V)> + <U(())dd7 1/)2 (y7 tv V)> = <U2dd7 1/}2 (ya tv V)>

Using the expansion for 15 given in Proposition [3.2] which in particular shows it is exponentially localized near
r =+ 2nm, we find that there exists a C' < oo such that

0 om (N2 a0
(aaastalyitovp] < € |alD] | [TIEZTE ommititgy) < & o)
T—T |po |Jo 15 T =T |

for some appropriate C. Using the fact that

0 Z / d
Wgal@)  Lwg(z) —wo2m—x) 1§, vo(y)dy - ,
=5 =5 <C w < C
-7 2 T—T 2 T —x lvollL HUOHngr

we obtain the desired estimate. [}

Thus it remains to prove Proposition 3.1] We give a formal asymptotic analysis argument in Section [3.I] which

provides the intuition behind the relevant scaling. In Section [4] we prove the proposition rigorously.

3.1 Overview and formal asymptotics

In this section we give a formal asymptotic analysis argument to provide intuition for our proof of Proposition (3.1
and the form of the eigenfunctions . The rigorous proof makes up the majority of this work and is given in
Section We focus on the n = 1, 2 cases since all of the technical difficulties arise in these cases. Let © € [—m, 7);
then, using estimates , the definition €2 := 2ut, and formally dropping the higher order (’)(e_l/ vt terms,
the eigenfunction problem is

- 2 T 1 TN\ 2| o -
€200 Pn — [1 - 8—236(:h2 (5—2) + = (z — mtanh (;)) ] Pn = 2tA,Dn. (3.9)

Let /A\,, = 2t\,; rescaling space as ( := x/e (which, for reasons which will become clear shortly, we call the “slow
scale”) regularizes the problem, so that (3.9) becomes

2 2 R
OccPn — [1 — 7€T—25ech2 (ﬂf) + (C — gtanh <7;C>> 1 Bn = An@n. (3.10)

The functions tanh(-) and sech(-) have highly localized derivatives with

sech (y) = O(e™) and tanh(ty) =41+ 0(e™Y) for |y| ~ 0.
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Thus, for [¢| € [/, 7/e], the terms lsech(n(/c) and 2[£1 — tanh(r(/e)] are O(1e™V/VE). Then formally taking
the limit ¢ — 0 of (3.10)) results in the limiting eigenvalue problem
OccPn — [1+ (C +7/2)]Pn =AnBn, for (<0 and
OccPn — (14 (C = 7/e))Pn =AnBrn, for ¢ > 0.
We re-center the problem by defining & := ¢ — m/e and the fact that @, (x — 27) = @, (x) to get
for £ € [~m/e + /€, m/e — /€] (which corresponds with z € I,(¢) in Proposition [3.1). Equation (3.11) has explicit

eigenvalues \,, = —2n with associated eigenfunctions

Pn() =Hp1(€)e¢ /2

where H,,(§) are the physicist’s Hermite polynomials, the first few of which are
Ho(y) =1, Hi(y) =2y, Ha(y)=2(2y" -1), Hs(y) =4y(2y’ - 3).

The slow variables, however, do not capture the behavior of the eigenfunctions for || « 4/ where the terms
Lsech(w¢/e) and 1[+1 — tanh(w&/e)] are non-negligible. On the other hand, introducing the faster space scale
z := x/e? (which we henceforth refer to as the “fast scale”), equation (3.3 becomes

0s2Pn — [62 + % — 2n%sech? (nz) + e*2? — 2we?2z tanh (72)] &n = EQXng\én. (3.12)

Hence, for z € [—1/4/¢,1/4/€] (which corresponds with = € I;(e) in Proposition , the terms €2z are O(£%/?).

Again formally taking the limit ¢ — 0 results in the limiting eigenvalue problem
0z2Pn + m2[2sech® (12) — 1)@, =0. (3.13)
Equation has two linearly independent solutions
P(z) =sech(rz) and Q(z) = sinh(7wz) + mzsech(rz).

We set @a(z; Xn) = Q(z), anticipating that the fast eigenfunction does not depend, to leading order, on the
eigenvalues /A\,L. As we will show below, however, the matching occurs on the terms which exponentially grow
like €™*; thus, since sech(rz) is exponentially decaying, for ¢; we need to include the O(g?) correction so that
$1(2:An) = P(2) + £2Pi(2; A,) where

~

2

Pi(z; \n) = % cosh(mz) + <Z2 + c) sech(rz)

solves

02 Py (2 M) + w2 [2sech®(72) — 1] Py (23 An) = [1 +Ap — 272 tanh(wz)] P(zA).

Py (x) now includes the exponentially growing term cosh(wz). The fast variables are complementary to the slow
variables in the sense that now they do not capture the behavior of the eigenfunctions for |z| » 1/4/e where the

terms €2z and £%2? are non-negligible.

Our decomposition of the interval [—&%2, 2 — e%2] = I (e) U I(g) now becomes clear. For x € I,(¢), we expect
the slow-variable eigenfunctions @ to give a good approximation to @, whereas for x € Iy(e) we expect the

fast-variable eigenfunctions ¢ to give a good approximation. See Figure

We formally construct eigenfunctions @, (z) for (3.9) by pasting a slow and a fast solution together; due to
symmetry considerations, we glue @, ((x — 7)/e) with @1 (x/e%;\,) for n odd and to $a(2;A\,,) for n even. The
formal asymptotic analysis procedure is as follows. We add the formal eigenfunctions for (3.10) and (3.12))
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with relative scaling C,. We determine C,, by requiring @, ((z — 7)/¢) = Cn@n(x/c?) in the overlap region

|x| ~ €32, We then subtract the overlap at the matching point = €*2; we define the overlap function

On 1= On(vE — /) = Cppn(1/+/€). We consider z € [0, 7]; the analysis for x € [—m, 0] is completely analogous
by symmetry. The resulting eigenfunctions are of the form

2 2
. (p—m)2/2e? x 5 T\ € T\
&1 (st v) =e™* 2T oy [1 + 522 +e c] sech (—52 Ci = cosh = b1

xr—T

~ _ —(z—m)2/2e? i T T T\
Go(m;t,v) = e~ (=725 4 (0, sinh (§ +C25—Qsech = P2

€

We define the spatial variable
z ¢
775:37/2:7:\/52’

which captures the behavior of @, in the overlap region. Then, for 0 < n = O(1), the matching conditions
Cnfn(z/c) = Pn(x/c?) are

2 2
—72/262 /B g—en’ /2 _ en” 2 o ( /v —7”7/\/5>
e e e Cy (1+ > ) eIE £ o e 0127r2 e +e
(m +even) o= /26% N/ /Eg—en? /2 _1 (efrn/x/g _ e—wn/\/g) + o, 2 _
e 2 VE eTIVE + oV

which to leading order becomes

2
TR mIVE _ 0y & gmiVE ang Temnl2et gimivE oy Lomnive
272 € 2

and is satisfied by C; = _552 e~ ™/2¢% and Cy = 2?”6_”2/252 with overlap

—m2/2¢e? eﬂ'x/s2 —m2/2¢e? eﬂw/ez

v v T
p1=e and @y = —e
€

We emphasize that the matching for both eigenfunctions was done using the coefficients in front of the exponen-
tially growing terms "V and is why we needed to include the first order correction term in @1(z). Putting

everything together, and subtracting the overlap we get

2 2
~ o _—(e-m)?/2e® _ —m?/2e? 2T x 9 (ﬂ'x) B (’/Tl’) R P R
o1(x;t,v) =e e {52 1+ 222 + e“c| sech = 2 cosh = e e

1
Po(x;t, V) =2 [(:U — 7r)e*(I77r)2/252 + 2me~™ /2" ginh (g) — 7re*7r2/252e”/52] .

The analysis for z € [—,0] is completely analogous and the results can be extended to x € R by periodicity.
The asymptotic results agree with . A schematic of the resulting eigenfunctions @; through @4 is shown in
Figure [

We make a few observations. First, to leading order, the eigenvalues A\, = Xn/Qt = —n/t are given by the
slow eigenvalue problem . Secondly, the contribution to @,(x) from the fast eigenfunctions @, (x/e?)
is exponentially smaller than the contribution from the slow eigenfunctions @, (z/¢). However, as we have
already remarked, undoing transformation , which is exponentially localized in x € If(e), the behavior of
eigenfunctions for in z € Iy(e) becomes relevant. Thus it is essential that we carefully construct the
eigenfunctions in both the slow and the fast variables.

In Sections we make the above formal arguments rigorous by computing the eigenfunctions for .
In Sections and we rigorously compute the eigenfunction in each of the spatial regimes, I;(¢) and If(e)
respectively, using the spatial scaling motivated by the arguments above. We then rigorously match these
solutions at the overlap point z = +¢%?2 in Section
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—27 2w

1 fast solution 2 fast solution

(a) @1 (w;¢) where $1(€) ~ e~/ and (b) Ba(z; ) where $a(€) ~ £e~¢/2 and
F1(z; M) ~ P(2) + € Pi(z; —2) P2(2;A2) = Q(2)
P3 slow solution Iy (e) I(¢) P4 slow solution If( o)

) 19(6)n
1 P

—2 : f : Jw {/J—;w

2 fast solution

1 fast solution

(c) P3(x;€) where P3(€) ~ (262 — 1)6752/2 and (d) Ba(z;€) where §4(€) ~ £(28% — 3)6752/2 and
1(2;Xs) ~ P(2) + &7 Py (2 —6) Ba(2: 1) ~ Q(2)

Figure 4: Figenfunctions for constructed by gluing a slow solution P, to a fast solution @,. Due to
symmetry considerations, we glue @n, to @1 for n odd and to @2 for n even. Figures not drawn to scale; in fact,

the magnitude of @, s exponentially small relative to the magnitude of @.,.

4 Rigorous analysis of the eigenvalue problem

In Section [3.1] we provided a formal matched asymptotic analysis argument which gives the intuition behind
Proposition the key proposition for the proof of Theorems [I] and [2] We anticipate that many readers will
find the formal arguments sufficient. However, for the interested reader we provide in this section the rigorous
analysis which shows that the results in Proposition [3.1] are indeed valid. The proof of this result is technical
and relies on many notations. In order to aid understanding of our arguments we have summarized our notation
in Tables in Appendix [A]

4.1 Slow variables

In this section we compute the eigenfunctions for (3.3)) for z € I5(¢). Motivated by the formal asymptotic analysis
in Section [3.1] we define the slow variable £ := (z — m)/e. We call the eigenfunctions in these coordinates @, (£);
they are defined for ¢ € [~7/e +¢'/2,1/e — ¥/?] =: fs(s) and satisfy

OcePn — [@(&6) +W( E)] $r = AnPn (4.1)

where \,, := 2t)\,, and for any t € Rt

W({;s) :ZEWO(Ef + 7, tv) = [g _ QIZ%Z né&’n(fﬁ)] ’

€ ZneZ &T)n(§7 E)

Wé(f;E) =t [0, Wo] (e€ + m,t;v) = L — 4z <Zn€Z n*exp,, (§;¢) B (ZnEZ ”e/XBn(f;g))Q)] ;

ET ZneZ e/XT)n (57 6) ZnEZ @n (g’ 5)
— _ 2 .
nd . (6:0) ::{ exp[—2nm(nm —e€)/e*] : n=0 (42)
exp[2nm(—nm +€£)/e?] + n<0

The form of exp,,(§;€) follows from the same type of computations as for (2.7) in Proposition
— 21 — 2nm)? —(e& -2 —1))2 —£2 —27(— -1 —1)2
o [FEE 220 [ ) [ [t s 0]

2e2 2e2 2 g2
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factoring out the dominant mode exp[—¢&?2/2] from the numerator and denominator and shifting n. We remark
that even though We(&;¢e) is determined by an appropriate transformation of 6, Wy(x,;v), it is also true that
0eW (&;€) = We(&; €); hence our notation.

Motivated by the formal analysis we re-write as
Oeen — [1+ € + N(§9)| &n = (~20+ K)o
with A,, 1= A, +2n and J\A/(f; €)= I//T\/g (&e) —H//I\/Q(f; £)—(1+&2), which is equivalent to the first order system
Uy = An()Un + Ny (Un, & 6, A,) (4.3)
where U, = (gﬁn,&n)T with 1@1 1= 0¢Pn,
0 1 ~ 0

A\n = , and ﬁn(@n>"z}\n>§§53An) = N N
1+ -2 0 (FEo) +Ra) 2

Lemma 4.1 Fiz 2, > 0. There exists 0 < C(81) < o0 such that for all ¢ < &, and & € I,(e),

(6 o) < C5Y expl /2] expl( — €)%/ exple? (442)
<Y expl2m/vE) (44b)

Proof. Define r := exp[—27(7 — ¢|¢|)/e?]. Then, due to (4.2)), 0 < &xp,,(&;¢) < /"l with r < exp[—27/4/€] < 1;
furthermore, since expy(§;e) = 1 for all £ and €, Y, _, €xp,,(§;€) = 1. Thus there exists 0 < C(€1) < o such
that for all € <&

‘/\7(6;6)’ = ‘Wm(g;g) e - (1 +§2))

87’”2 <ZnEZ ne/XT)n (ga 5) ) ? _ 47,”2 Znez nZQ/ﬁ)n(Sv 6) _ % ZneZ ne/ﬁ)n(g; 6)
52 ZnEZ &T)n (57 E) 62 ZnEZ &T)n (E? E) € ZnGZ G/ﬂ)n (ga 5)

m
[ V)

2
4
<= |2 <Z |n|7“"> + Z n?rinl 4 elg| Z |n|r™

nez nez nez

<A [ () e
<6<S>r _ C“(i) expl—27? /2] exp[2ré /e]
_ 551) exp[—2/e2] exp[—(r — £€)2/e?] exp[€?]
<5f ) exp[—2m/v/e],
using the fact that e|¢| < m — £%/2, )

For n € {1,2,3,4} the leading-order evolution equation 85\7n = /Tn(f)f/n has the two linearly independent
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solutions Vn’j (&), 7 € {1,2}, where

~ —€%/2 ~ YIS
Vii(§) = ¢ ] Tha(6) ::% ﬁe2 erfi(€) 2
—ge=€/2 [—ﬁfe—f erfi(€) + 2] o622
N /2 ) L e o] o2
Vo,1(§) = &e Da(e) = | [ Vrée S er (5)] e
(1= e s/ —&+/m(& 1)e_5zerﬁ(f)] et’/2
~ 262 1 —£2/2 R % + 17252 _g? fi(e €2/2
R Psale) =1 v ve e N ) ,
£(5—26%)e¢ /2 [4 — 282 + /(262 — 5)5675 erﬁ(f)] o&2/2
~ 262 _ 3 —£2)2 R 2722+ 22 _ 3 _¢? 6 €2/2
Vii(§) == e ) . Vi2(€) :=é [ &+ vmi( Joo er (f)]c 2
(_254 + 952 — 3)6*5 /2 [25(52 _ 4) + ﬁ(_2£4 + 952 o 3)675 erﬁ(f)] e§ /2

as can be verified by explicit computation. We solve (4.3) for € € I,(¢) := [—7/z + /&, 7/ — \/2]. We expect
©n(€) is close to the formal eigenfunction Hn,l(é)e*g/ 2. thus, owing to symmetry considerations, we assume
that ﬁn(O) € span {17711(0)} We then parametrize the corresponding solution to 1' at the matching point
x = +&%?2 which corresponds with & = F(r/e — \/2) =: F&o.

Proposition 4.2 Define for every € the norm |u(-)|. = SUD¢e7 (o) [u(€)|; also define

o 1 ~ . 1 ~ o 1 ~ v 1 ~
A= —efgl\l, Ay = —seggAg, As = —56355/\37 and A4 = —76ng4.
o & & &
Then there exist constants £g,p1,p2 > 0 such that for all 0 < e < &y the set of all solutions to with
[u()e < p1, Un(0) = d,, V3 1(0) and |dy,], |Ay| < P2 are given by

~

pi(&e, M) = 1+ O(e72e72"/Vene + |A,]) et

bi(&e,h)=—d 1+ O(e 2 2"/Velne + |/U\1|)_ ge= ¢/

Po(€ie,hs) = o1+ O(e2e2Ve Ine + |Ky|)| €062

Da(€ie,ho) = — do |1+ O(e 2 27VE Ine + |Ko|)| (€2 — 1)e=¢/2,
Ps(&ie,Rs) = ds [14 0272 Ve Ine + |Ry)) | (262 — 1)e €72

D€, Rs) = — dy [ 1+ O 2727/ VE Ine + |A4))] €(262 — 5)e¢"/2

PalEieha) = di|1+ O 2 2VeIne + |Ky|)| €(262 — 3)e=€12

Da(€e,Re) = — du [1+ 0202V e + |Ra))| (264 — 9€2 + 3)e €12 (4.5)

where the coefficients in front of A, at the matching point & = &y are

Br ? [1+ 0] A U —? [1+ 0] A
Po : g [1+0(?)] Ay Py : —g [1+0(e?)] Az
P : g [1+ 0] A B3 : —% [1+ 0] A
@4 : % [1 + 0(52)] AQ ’(24 : —% [1 + 0(82)] 7\2. (46)
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Furthermore,

~

P& = B&),  Pa(=&)=—(a(&0),  Ba(=&) (&)
Di(=&) = —01(&0),  a=E) = Wal&),  ds(=&0) ;- ba(—€) = ha(&;0).

@3 , 954(—& ) == @4(& )
—3(&: ),

We remark that the definition of A,, implies that the eigenvalues for are exponentially close to the eigenvalues
for . This is consistent with our numerical simulations; we will show why this is a valid assumption in
Section Note further that shows that the eigenfunctions @, are close to the formal eigenfunctions
Hn,l(g)e_gz/ 2 as expected from the formal calculations in Section

Proof. All solutions to 1) with initial data U, (0) = c?n\A/nl(O) satisfy the fixed point equation

A~

~ ~ ~ & ~ o~ ~ ~ & __ o~ ~
0, (6) =4,V (€) + U (6) f (W (D), Ky (T (7), 75, R ydr + T () f (W), KT (7), 75, Ry

(4.7)
where
N - € arfi(€) + 2| e£7/2 . —£%/2
T~ [—vree € erti(e) + 2] e T [
— /e~ 2erfi(€) e¢/2
A ¢ + r(1 — £2)e=Eerfi(€) ] e62/2 N 1 — £2)e—¢7/2
o) [ L€ VA= e (©)]e Foser o [ A7)
|1 - Ve eri(g) | o2 ~ge /2
- 262 — 4+ /7(5 — 262)¢e S erfi(€) | e€7/2 _ 5 — 2¢2)e=€"/2
(6 - | VG — 26hge et >]2e AL
[25 + /(1 — 262)e¢ erﬁ(f)] £/ (1— 262)e€/2
- 26(€2 — 4) + /m(—26* + 962 — 3)eFerfi(6)]et /2| - 264 — 962 4 3)e ¢ /2
R [ et I (]
|262 = 2+ V(3 — 26%)eE erfi(g) | o'/ £(26? — 3)e €
are two linearly independent solutions to the associated adjoint equation ﬁ\/f’l = —ﬁ;‘;(ﬁ)ﬁn, which have been

normalized so that <XA/7“, Wn j>R2 = d;5. Equation is linear and defined for £ € R; thus solutions exist and are
bounded on any finite interval. However, they may not be uniformly bounded in ¢ since the interval of integration
fs(e) grows like 1/e. Our first goal, therefore, is to show that the constant bounding the higher order terms in
does not grow with I,(¢). Motivated by the formal analysis we use the ansatz 3, (&) = Hy_1(£)e™ /20, (€)
and &n(g) = d% [Hn_l(f)e*52/2] U (&) to solve . We focus on n = 1, 2, since all of the technical difficulties

arise in these cases; the n = 3, 4 cases can be proven completely analogously. The resulting evolution equations
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for u,, and v,, are

v ~ E 2 A~ ~ o
a1 e, Ky) =dy — VT [Fr erfi(r) (N(T;s) n Al) f1(rse, Ay)dr

= ﬁl,u(al; g, C’l\lv‘//il) (48&)

) ~ 3 2 A~ ~ v
g by =d~ T [ e ertitr) (Rre) + A ) (s, Anyar
0

3 N . .
- % [2e5 ﬁgerﬁ(g)] L e ( (rie) + A1> fi(rse, Ay)dr
=Z.7:1 v(ul;s &\1,7&1) (48b)

s (&;¢, As) =d; +J [1 — /e T erﬁ(T)] (A7(T;E) + 7&2) Ty (rie, Ag)dr

~z [e5 — /méerfi(€ )]L

= ﬁg’u(ag;nE,C/l\Q,KQ) (48C)

- (/V(r; e) + 7\2) Ga(r:6, Ao)dr

All terms in (4.8a))-(4.8¢) are well defined for all £ since for £ small we have

3 ) 53 3 3
J e " d7=§—§+0(£5) and J 2e TdT—g—i—O(&S)
0

0

For 19(§) we fix & > 1 and make the ansatz

e 62y (¢5e, Ay) C <&
e (e ho) + (1= @)aleie )] 16126

where ¥y is defined for [¢] < & and 75 is defined for |£| > & and

¢2(§1 g, AZ) =

o ¢ ] - u
Bal6ie Ra) —do(1—€3) + (1- €2) L 71— e Terfi(r)] (A (ri2) + Ro) a(ri =, Aa)dr

+ [5652 — (€2 - 1)erﬁ(§)] JE 27T (/\7(7’;5) + IAXg) Ty (136, Ay)dr

0

Da(&e,Ay) = 51 522 + f 7 [1 —V/mre Terfi(r)] (J\Af(r; ) + KQ) Ty (r3e, Ay)dr
2 f 2 ~ ~ 9
- gi - [ee® — V(e —eri(o)] L e (R(ri) + R fa(ric, Ro)ar
= :-7-,:2,1)(172;57&\271/§2>‘ (48d)

Now #5(€) is clearly uniformly bounded with
By(&56,Ry) = da(1 — €2) + O(e 2 2 Velne + |Ay]) for [¢] <&

and ﬁgﬂ, is well-defined for all £ > &. Define D.(p) := {u € C°(I,(¢)) : |ul- < p}. Our goal is to show there
exists p1, p2, €9 < 1 small enough such that

Foj(@6,dn, Ky) : De(pr) x {e < o} x {|dnl, [An| < 2} = De(pr)  with j € {u, v},

whence 1, (&; ¢, Ay, ) and 9,(&; e, A,,) will be uniformly bounded in I,(¢). Using (4.4al) to bound the nonlinearity
when multiplied by an exponentially small integrand ~ e~ and |i to bound the nonlinearity when multiplied
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by an algebraic integrand ~ e_TQerﬁ(T), and Claim below, there exists a 0 < C3(&1) < oo such that for all
u; € ﬁg(p) and € < &y,

3
| Fr (@i e, dy, Eoe™ 6 41)]- <lda| + fp[ < (2 ) eT2m/VE + /EQeQ“/\/EZUh) J Ue*Tzerﬁ(T)dT
€ 0
CEr) e © ey —e2 o
tg e FefiG) | e dr + o S Ayerfi() | e dr
0 0

<‘81| + ﬁpg’?(a) [ <C(§1)e2ﬂ/\/5 + iew2/€2@2ﬂ/ﬁfv\1> lne + ——~= C(A ) e~ 2m/VE 4 R ]

g2 €

It is now straightforward to show that there exist constants p1, p2 > 0 and 0 < &y < &3 such that ]A-'n(ﬂn, e,dy, e 5 A,) e
D.(py) for all 4, € ﬁ;(ﬁl) |d [, |A | < /1, and £ < &. We remark that the coefficients in A; is O(1) as a conse-
quence of our choice of scaling of Al.

A completely analogous argument holds for .7?1,1,, .7?2,", and ]'/:2’1,, with the following modification
(i) For ]?271, we use the function space D.(p) := {u e C°([¢&1,&]) : |ul. < p).
(ii) For ﬁz,u, in order to get the specific form of the O(~2e~2"/VE In¢e + |A,|) we need

argmax
fEIAs (e)

= argmax = +¢&.

gels(e)

%eg [1 — ﬁfefﬁzerﬁ(f)] Jg 2 T dr

0

fﬁ T [1 - \/%7'677261'{1(7')] dr

0

In other words, we need to keep the minus signs and still show that the argmax occurs at the end of the
interval I4(e). But this is true for all € small enough by using the asymptotic expansions shown in Table
to get

lim [1 ~ Ve arfi(r)] = i [;m <1> + 0(1)] o —oo

§—0 Jo £—0 g
. T dr — VT
glingog [ — /méerfi(¢ )]J;) dr = gh_)noloe o [_8 + (’)(1/52)] — —00,

and noting that the expressions are bounded on any bounded interval.
(iii) A similar issue as (ii) arises in .7?27”; a completely analogous argument gives the desired result.

Using the uniform bounds on u, we get estimates (4.5). Plugging these estimates back into (4.8]), again using
Claim and the asymptotic expansions shown in Table|l| we can explicitly integrate the terms multiplying A,
to leading order at £ = & since d,, is a constant. We obtain lb

The symmetries then follow from the symmetry of the nonlinear term N (&;¢) which is an even function in &
since W (x;¢) is odd and W, (z;¢) is even in z, as we noted in Section Hence, for all even functions 1, (),

Fop(in; ) is even. Thus 4, (&) and 9, (€) are even and the symmetries for 3,, and ¥y, follow from the symmetries
of H,(£)e /2, "

It remains to prove the following claim.
Claim 4.3 Fiz £, as in Lemma . Then there exists 0 < éQ(gl) < o0 such that

o ~ o ~
f e " erfi(r)dr < Cy(61)Ine  and erﬁ(gO)J e T dr < Cy(8y)ee™ e 2m/IVE
0 0

and, moreover, such that

o - . e
erﬁ(fO)J e "=/ dr < Co(8y)ze™ /e MIVE,
0
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erfi(€) e2ﬁ|:1+2%+0(§i4 ]
Se"dr e k1= gk + 0 ()]
§sr2e " dr vE o€ [2 +&+0 (g%)]
§orie"dr WE e €824 340 (5%)]
§S e dr Vr _o-¢78 [2 +&+0 (é)]
Vr §S e erfi(r)dr ~in(3) - 3O (3) + 0 (%)

(€ 7[1 — y/are " erfi(r)]dr Jin (1) + 300 (<3) + 0 (&)

P — are " erfi(r)]dr ~§+3m(3) + O (-3 + 0 ()

ST - yare Terfi(r)ldr  —SEE 4 LB (1) + 0O (<3) + 0 ()

Table 1: The asymptotic behavior of all terms in for &€ » 1 and n €
{1,2,3,4}. The integrals and asymptotic expansions were computed using Mathemat-
ica. YO (z) is the digamma function, where ©(1/2) = —y — In(4), ¥ (=1/2) =
2 -y —In@), ¥(=3/2) = § —v-I(4), ¥V(-5/2) = £ — 7 - In4), and
v = limn—o (ZZ:1 % —In n) is the Euler-Mascheroni constant.

Proof. The claim follows from the asymptotic expansions in Table [T} the facts that

o]

EO 2 2 © 2 2 2
J e (m=em) /e qr <J e (T qr = J e T dr =47
0 —0 —0

due to symmetry, and the small argument approximation Sa/g e dr = Ve[l +0(e)].

4.2 Fast variables

In this section we compute the eigenfunctions for (3.3)) for z € I;(¢) := [—e%?2,£%2]. Motivated by the formal
asymptotic analysis in Section we define the fast variable z := 2/e2. We call the eigenfunctions in these

coordinates @, (2); they are defined for z € [—1/4/g,1/4/2] =: ff(s) and satisfy

Do B — [Wz(z; €) + WQ(Z;s)] Bn = E2AnFn

where for any ¢t € Rt

I\/I//(z;e) =tWo (%2, t;v),
Wz(z;s) =te? [0, Wo] (€22, t;v),

We remark that even though I\/I//z (z;¢€) is obtained through an appropriate transformation of 0, Wy (z,t;v), it is

also true that Wz(z, €)= 82,1\/1//(2; ¢); hence our notation.

Motivated by the formal analysis we re-write (4.9) as

OrzPr — [w2 — 2712sech®(72) +J\v/(2; 8)] Pn = EQXME”

with N (z;€) := WI(Z7 )+ W2 (z;€) — w2[1 — 2sech?(72)], which is equivalent to the first order system

~ ~ ~ ~

az(\jn = »An(z)Un +Nn(Un7Z;5aAn)
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where ﬁn = (an,llJ/n)T with Jn = 0. 0n, Xn = —2n + IAXn from Section

o 0 1 - o ~ 0
An = 3 and Nn(¢n7wnvz;57An) = - ~
72[1 — 2sech?(r2)] 0 (M (z0) +£230) B

~

Lemma 4.4 Define /\vfalg(z; g) := &2[1 — 2nztanh(wz)] +e*2? and /\vfexp(z; €) i= N(z;e) — Mg (z;€). Then there
exists 51 > 0 and 0 < C'(Z}) < o0 such that for all ¢ < | and z € ff(e),

Wop(252)| < CEn)e /e
Thus, for all € < &1, N (z;¢) is exponentially close to ./\v/alg(z;a). In particular, there exists a constant 0 <
C1(£1) < oo such that for all ¢ < & and z € ff(s)
’/\7(2,5)’ < Cy(F)e%?
Proof. The result follows from the definitions of W and V\Vz in terms of W and estimates ([2.6]). ]

The leading order evolution equation 0,V = ./T(z)‘v/ has the two linearly independent solutions ‘v/n(z), je{1,2},

where
o —sech(7z) o 1 sinh(7z) + mzsech(nz
Vi(z) := and Va(z) =g () ,
wsech(7z) tanh(72) T [ cosh(mz) + sech(mz) — mzsech(mz) tanh(7z)]

as can be verified by explicit computation. Observe that the leading order terms no longer depends on n. Due
to symmetry considerations we construct purely even or purely odd eigenfunctions; thus we assume that either
U, (0) € span {171(0)} or span {172(0)} We then parametrize the corresponding solution to at the matching
point z = +£%2, which corresponds with z = +1/4/ =: +2.

Proposition 4.5 Define for every e the norm |[u(-)[c = sup .y, . [u(2)[. Then for each for n € N there exist
constants €q,p1,p2 > 0 such that for all 0 < € < g9 the set of all solutions to with Xn = —2n + Kn, and
which satisfy |u(-)|le < p1, with |dy], |/A\n| < 2 and Uy, (0) = d, V3 (0) are given by

2,2 2 2
£z ne ne ~
2 + 7_‘_2) + ? + On(65/2 + 52An)] COSh(Tl'Z)7

P1(z; e, /A\n) =d, [—sechZ(wz) (1 +

- ~ €2z €222 pe? > ne

U1 (216, An) =dpm [seChQ(wz) <1 - coth(mz) + 5 =y =y

2 ~
+ 0, (%2 + 52|An|)] sinh(7z) (4.11a)

and for U, (0) = Jnf/g(()) are given by

~ v 1 ~
Ba(z16,An) =dae [1 +Onle + 53/2|An|)] [sinh(r2) + mzsech(nz)],
Do (218, An) :Jn% [1 + Op(e + 63/2|/A\n|)] [cosh(mz) + sech(nz) — wzsech(nz) tanh(7z)]. (4.11b)

Furthermore, $1(—2) = $1(2), $1(—2) = —$1(2), $2(—2) = —P2(2), and 9a(—2) = P (2).

We remark that for all 0 < N < oo, it is possible to choose gy and ps small enough (where ps was chosen in the
proof of Proposition i such that |1A\n| < P> whenever A, < p» for all n < N. We also remark that, unlike in
the analogous proposition for the slow variables, Proposition [£.5] where we computed a different eigenfunction
associated with each eigenvalue Xn ~ —2n, here we have only two functions @1 and @y, which now take Xn as a
parameter. This difference is in accord with the formal analysis which indicates that, at least to leading order,

we expect that the fast eigenfunctions to solve the eigenvalue-independent equation

G- + m2[2sech®(12) — 1]@ = 0.
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Proof. The argument is completely analogous to Proposition so we abbreviate the proof. The symmetries
follow from the same argument as in Proposition For the other claims we set up the fixed point equation on
the space of bounded functions

D.(p) = {u e C°((e)) : lul- < p}.

using the Variation of Parameters formula, the normalized adjoint eigenfunctions

1 [ == cosh(rz) + sech(wz) — wzsech(rz) tanh(7z)] wsech(7z) tanh(72)

Wi(2) = and  Wa(z) 1=
T sinh(7z) + mzsech(nz) sech(rz)
and the ansatz
~ ~ ~ 1 ~
P1(z;e, A\n) =cosh(mz)ty (256, An),  P2(z;€, A\n) == [sinh(7z) + wzsech(7wz)] Ua(z; €, An),

27
- ~ ~ o ~ 1 ~
1(z;e, \p) =msinh(7wz)01 (258, A\n),  a2(z;€, \n) =5 [cosh(mz) + sech(mz) — wzsech(wz) tanh(7wz)] U2 (z; €, An ).

We emphasize that 4 exponentially grows in z, rather than exponentially decaying as the linear eigenfunction
sech(mz) might suggest. This ansatz is motivated by the formal asymptotic analysis. Owing to Claim below
the following expressions are well defined and bounded on any bounded interval

~

Ur(z;8,An) = — c?lsechQ(ﬂz)

+ ; [ — sech?(nz) J

Q 0

z

[sinh(77) cosh(mT) + 77] (./\V/(T; ) + 52Xn) U1(T5€, A )dr

+ [tanh(72) + mzsech? (72)] f (J\V/'(T; ) + EQXn> U1 (75, Xn)dT:|
0
= .7\:/'17u(’l\21;€,6\l/1,—2n+1/§n) (4.12&)

U1(z;e, Xn) =c718ech2(7rz)

+ % [sechQ(m) J

z
~

[sinh(7T) cosh(mT) + 77] ( (T5¢) + 523\7@) Ur(T5€, Ap)dr

0
1 MV ~ ~
h o h2 . 2 n N . n d
+ [cot (rz) — wzsech”(mz) + COSh(ﬂ'Z)SiIlh(?TZ)] L (N(T,E) +e°A )ul(T,e,)\ ) 7']
= fl,v(ﬂl;ga(\{h*?n‘i’xn) (412b)

fz [sinh(77) + mrsech(x7)]? (/\V/(T; g) + 523\71) Uo (752, Ay )dr
0

1 1
T on [ ~ cosh(rz) sinh(7z) + 72

+ Jz sech(wr7) [sinh(77) + wrsech(n7)] (J\V/(T; g) + 523\71) Ua(Tse, 3\n)dT]

[}

= j:-Q,u(/EQ; €, J27 —2n + K”) (412C)

~ ~

52(2;57 )\n) =d2

1 tanh(7z) . 9 [~ 22\ o
- h h 5 n 1€y An
+ o [coshg(wz) 1z tanh(n2) L [sinh(77) + wrsech(7z)] (N(T,s) + e\ ) U (15, A\p)dT

+ J sech(77) [sinh(77) + wrsech(77)] ( V
0
= Fou(ligse, dy, —2n + Ay). (4.12d)

(t;¢) + 62:\n> Us(T; e, Xn)dr]
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Thus (¢, Jn) satisfies dj if, and only if, %, and ¥,, satisfy dj Using Lemma and Claim below we
find that for all %, € D.(p), z ff(s) there exists 0 < C5(%;) < o0 such that

H}V_Lu(ﬁu e,dy,—2n + /A\n)He

<|di| + % (61(51)53/2 +e2(—2n + Kn))

sech?(7z) f

0

z
X

[sinh(7r7) cosh(n7) + 77] d7 + [tanh(72) + wzsech? (72)] J dr
0

€

<|di| + % (él(gl)s 432 (—2n ¢ Kn)) Co(E) (Ve +1)

It is now stralghtforward to show that there exists constants g1, po > 0 and 0 < &y < &7 such that ) u(un, €, dn, A n) €
DE (p1) for all @, € D6 (7), |dn|, |An| < p1, and € < &. A completely analogous argument holds for F v Fo s
and }\ﬁgﬂ). Using this uniform bound on %, in |j and again Claim |4.6| we get the expansmni

1
(26, —2n + Ap) = [ sech?(m2) + Op(e + £52|R,, |)] Ta(zie,—2n + Ap) = 277 [1+(9 (e + 328, |)]
Ui (26, —2n + Ay) =dprr [fsechQ(ﬂz) + Onle + 53/2|Kn|)] . a(zie,—2n+ Ay) :dn5 [1 +On(e + 53/2|Kn|)] .

We observe that the leading order terms for #;(z) and ¥1(z) at the matching point z = +2z are the O(g) terms
since sech®(m29) = O(e~2™/VE). Thus we compute the next order terms by plugging the expansion for #; (z) back
into 1) and integrating explicitly using the form of Nalg and

J [sinh(77) cosh(n7) 4+ 7] sech?(77)dr = 2 tanh(7z2)
0

f [sinh(77) cosh(n7) 4+ 7] sech? (n7)277 tanh(7w7)dr = 722 tanh?(7z)
0

[ miter) coshar) + el see?er)an
0

=33 <67rzL12( ~2m2) 4 3Lig(—e 2™F) — 21323 — 67222 In(1 + e 2™) + 37323 tanh(nz) + 9C4(3))

i 1
J sech?(77)dr = — tanh(nz)
0 ™

z 1
J sech?(77)277 tanh(77)dr = = (tanh(7z) — ﬂ'zsech2(7rz))
0 ™

z 1 2
f sech?(r7)r2dr = = (Lig(—e_%z) — 71222 = 2rzIn(1 4+ e ?™) + 1?22 tanh(72) + 711'2>
0 ™

where ((z) is the Riemann zeta function. We get (4.11)). ]

It remains to prove the following claim.

Claim 4.6 All integrals in are well defined and bounded on any bounded interval. Furthermore, there
exists & > 0 such that the mazimum of each of the following integrals for |z| < zg occurs at z = +zp := +1/4/e
for alle < &5

(i) max|,|<., |[tanh(mz) + 7zsech®(nz)] {7 d7| = 20 + O(z3e2720)

(ii) max|,|<., [coth(ﬂz) — mzsech?(mz2) + ] 5o dT‘ = 20 + O(zde 27*0)

1
cosh(mz) sinh(7z)
(iii) max,,|<s, |§; tanh(77)dr| = 20 — 22 + O(e?720)
and so that the following integrals are bounded uniformly in zy

(iv) |sech®(mz) §; [sinh(77) cosh(rr) + w7] d7|

2The notation @, refers to the fact that the constant may depend on n.
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z—0 Z — 0

La(-e-?) B ) - w e B0 el O

Lig(-e2) 5@ ms m22) 4 22 00 e -1+ O )]

Ine~27 +1) In(2) — 7z + 75 + O(=7) o214 O(e=2%)
cosh(mz) 1+ % +0O(z%) L™ (14 O (e727%))
sinhy(rz) Tz EE 4 O(2) Lem (14 0 (e727))
tanh(mz) Tz — # +0(2%) 140 (e2m)
sech(m2) 1=+ 0(:) e (240 (7))
() L% +0() e 240 ()
coth(mz) L+ 224+ 0(2%) 1+ 0 (e27)

Table 2: The asymptotic behavior of relevant functions for the integrals in .
Lin(z) is the polylogarithm function and ((z) is the Riemann zeta function. Ezpan-

sions computed using Mathematica.

(v)
(vi)

Proof. To show that the integrals are well defined we need to check that they are finite for all z bounded.

cosh(mz) Sillh(ﬂ'z)-f—ﬂ'z S[Z) [Sinh2 (7TT) +7T ta‘nh(ﬂ-T)] dT‘

tanh(mz) ) §o [sinh?(7r7) + 77 tanh(7z)| dT’

cosh?(7z)+1—mztanh(mz

This is clear for (i), (iii) and (iv) since each of these expressions at z = 0 equals zero. For (vi) we observe that

cosh?(72) + 1 — wztanh(72) is never zero since cosh?(0) +1 — 0 - tanh(0) = 2 > 0 and at 7z = 2

% [cosh2 (72) + 1 — mz tanh(7z)| =7 |2 cosh(rz) sinh(7z) — tanh(rz) — 77zsech2(7rz)]

TZz=2 T2=2

=£ [sinh(47z) — 472] sech?(7z) >0

TZ=2
since sinh(z) —z > 0 for all 2 > 0 (this can be seen since sinh(0) = 0 and & sinh(z) = cosh(z) > 1). Thus it
remains to consider (ii) and (v), which may develop a singularity at z = 0.
(ii) We explicitly evaluate the integral to obtain fs(z) := [coth(rz) — mzsech? (12) + sech(rz)esch(mz)] 2. Using
the asymptotic expansions in Table [2| we get

. . 2 2 2
t o) = iy 2 004 - 2

(v) We explicitly integrate to obtain

1 z
sl2) = inh? tanh(7r)]d
[5(2) cosh(r2) s (2) + WZJ;) [sm (77) + 7T tan (71'7')] T
1 sinh(2r2) 2z«  Lig(—e 2™) 722 »
= e —— 1 Tz 1
cosh(mz)sinh(wz) + 7z [ A 9 94 o + 5 + zln(e +1)

where Lis(z) is the polylogarithm function. Using the expansions in Table 2| we find

1 2m223 5 1 nz2
=lim—— | =
[ 3 +O@)] ﬂ%1+0@%[3

+O@ﬂ}—0

ll—% fs(2) = ll—{% 2wz + O(23)
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Away from z = 0 we use the fact that each of the six expressions is even; thus, without loss of generality,
we assume z > 0. For (i)-(iii) we first show that the maximum occurs at z = 2y and then use the large
argument asymptotic expansion of the integral to evaluate the maximum. For (iv) - (vi) we explicitly compute
the expression in the limit z — o0 and it is bounded; thus, since we’ve already shown that each expression is

bounded for z = 0 and they are continuous, they are bounded for all z > 0.

(i) We explicitly evaluate the integral to obtain fi(z) := [tanh(m2) + mzsech®(72)] 2. Then
lim L(Z)

z—w0  Z

=1

so that fi(z) ~ z as z — o0; thus, since zp = 1/4/z < o0, there exists & such that

max f1(z) = fi(z0) = 20 (1 + @(zoe_Q’TZO))

0<2<zo
for all € < &, where f1(z9) was determined using the asymptotic expansions in Table
(ii) Follows exactly as (i).

(iii) The fact that the maximum occurs at z = zq is clear since tanh(mz) is monotone increasing. We integrate
explicitly and use the asymptotic expansion for In(1 +e~27%0) for 2o » 1 shown in Table 2] to get the asymptotic

expansion.

(iv) We explicitly integrate to obtain

. h2 -1 2
fa(z) :=sech? (WZ)J [sinh(77) cosh(n7) + 77] dT = sech®7z [COS(;Z) + ﬂ;]
. T
:i + 1 [71 + 7r222] sech’®rz
2 27 .

It is now clear that lim,_,4 f4(2) = 0.

(v) Using the expansions in Table 2| and f5(z) defined above, we find

i f ( ) i 4e727rz e?ﬂ'z N 0(1) . 1 1 n 0(672717) 1

11m = l1m = im ———— | — = —.

e A O(ze=272) | 8w z—0 14+ O(ze™272) | 27 2

(vi) Follows exactly as (v). [

At the matching point z = 1/4/¢, we will need the following improved estimates on @; and Jl, which can be
obtained by substituting back into one more time.

Proposition 4.7 Let €g,p1,02 > 0 be as in Proposition . Then the set of all solutions to with Xn =
—2n + A, [u(2)|le < p1, |dnl, |/A\n| < Pa and U,(0) = d,V1(0) are given at the matching point zo = 1/+/2 by

Brlaoie,An) = | 2 = 25 4 0u(e7% 4 2R, | o).
BrGaaieAa) =dor %5 = 55+ Ou(e72 4 2R, sinbrzo (4.13)

4.3 Gluing

Using the approximations to the eigenfunctions in the slow and fast variables, from Propositions and
respectively, we show that there exists a unique global eigenfunction for (3.3))

1 1
AMPr i= V0psPr — 3 [(%Wo(x,t; v) + 5W02(x,t; V)] Pn (4.14)

which can be constructed by gluing a fast eigenfunction to a slow eigenfunction at the overlap point z = £3/2.

Due to symmetry considerations, we glue @,, to @1 for n odd and to @y for n even. The matching conditions
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can be understood as follows. We need both that the functions @,, and @, are the same at the matching point

as well as their slopes

d@n((z —m)/e, )
dz

dgn (z/€%; )
dx

= é&n((x —7)/e;))  and = E%Jn(x/s% ).

Since (4.14]) is linear, any scalar multiple of ¢, (£;¢) and @, (z;¢) is an eigenfunction in the appropriate scaling
regime; thus, instead of matching the slopes directly we impose the condition that the ratio of the fast eigenfunc-

tion and its derivatives is equal to the ratio of the slow eigenfunction and its derivative at the matching point:

—0 (4.15a)

x=g3/2

f 1(A '6) 22 12)\71((1'_77)/5§57An) . 1z;mod(n,2)+1(‘r/i‘:2§57Xn) 1

5@”((‘27 - 7(-)/5;57‘7\1) 526mod(n,2)+1(x/€2;€axl)

where
Xl =2+ 606_58]\1, Xg = —4 4 686_581\/\2, X3 =—6+ 536_%]&3, and /):4 = —8 + 556_581‘4.

The factor €2 in front regularizes the problem and can be thought of as taking the z, rather than x, derivatives.
We observe that has no explicit dependence on the magnitude of the eigenfunctions. Using the Implicit
Function Theorem we will show that there exists a unique fixed point to near £ = A,, = 0. For this An,
we ensure that the magnitude of the slow and fast eigenfunction at the same at the matching point by showing

that there exists a unique C), such that

-0 (4.15b)

r=e3/2

f2(Co An();€) i= [Bul(e = m)/232, Ka) = Cufmoain 1 (2/2% 2, M)

which we will again show is true using the Implicit Function Theorem. We start with condition (4.15a)). Using

the expansions (4.5) and (4.11)) at the matching point = = %2 (equivalently, £ = (—7 + £%?)/c and z = 1//¢)
with coefficients in front of A, given by || we get

[1 — @/‘1 + O(E_QG_QW/‘/E Ine + €2|7X1|)] [1 + (’)(53/2)]

1 o
—fi1(Ag;e) = v X
T [1 + TN+ O(e2e727/VE Ine + 52\/\1\)]

[14 02 1 Lem ey )| [1 4 0(e2e5)|
[1 + O(e%2 + %e—(—ﬂ+a3/2)2/252‘]\1‘)] '

1 y [ — YT Ry + O(e72e72"/Ve Ine + ?[Ay)) ] [1+0(%%)]
—f21(Ag;e) =
& [1 ﬁAg + (’)(5*26*2”/\/g Ine + 2|As,)) ] [1+ 0(3/2)]
[1 + O + L (CmHYD2 R I>] [1 +0(L *2ﬂ/ﬁ)]
[1 + O(e + Jzem (omket)? /252|A2|)] [1 + O(fe‘%/‘[)]
1 5 [ — TRy 4+ O(e 22"/ Ve Ine + 62|A3|)] [1+0(%?)]
;f3,1(/\3;5) =

[1 + YTRs + O(e2e27/VeIne + g2|ix3|)] [1+0(c3/2)]
|14 0(32 4 Lot Ky ) | |14+ 0(e27/V5) |
v o o)
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1 ) [1 - %fu + O(e 2 2/Velne + €2|/V\4|)] [1+0(%%)]

*f4,1(A4;€) = = )
& [1 + TR, + O(e=2e727/VE Ine + 2|A4)) ] [1+ 0(3/2)]
O o T
[1 +O(e + 821\/567(77r+53/2)2/252|/’§4| ] [1 +O( 1o 27r/f)]
It is clear that f,,1(0;0) =0 and
dfn,l =~ 0
dAn |(A,56)=(0:0)

so that the hypotheses of the Implicit Function Theorem are satisfied. Expanding the unique function An(s) in
orders of ¢ we find

o 9 V)

A =0@EP?), RAy=0(@), A3=0(E?), and Ay = 0O(e).
Next we solve (4.15b)) using the expansions for A,,(¢) and obtain the expressions

018

2 9.2 1
eIV fia(Cr, O ) e) i= [1 4+ O(32) | e /2 eme2 - 2 1 = /24 O(72) | [2 + O(CMW)]

e IVE f25(Ca, O(e)s) -

o3

[+ @)1+ 0 e e - 211 0() B +0 (}m)

e_ﬂ-/ﬁf?,’Q(C'g, 0(63/2); E) =

mw‘ 3

s

|1+ 0] [2+ 0@E2) [ /2eeer2 w—‘?’f [1+0()] [; " O(e—%/ﬁ)]

3
NG . _ 3/2y| mn2/2e? —es2 _ G4 1 L o
eV f15(C1, 0(0):€) 1= I3 [1+0(e)] [ =2+ O(EY) | e/ e/ = 2 [14 0(e)] [2 +0 (\/ge .
We define
o y 4t o o
2m2C, = g2em /2 20y,  —4m2Cy = 5e”2/28265/2027 %03 = 54e”2/252e5/203, and —87%Cy := g3em /2 e20,
and

22

f12(Cy;e) (et 2e fi2 ( e T2 020 O(*?); 5)

o o A2 o
f272(02§5) ::Ee(ﬂ_€3/2)2/2€2f272 (_71'6_7r2/252€_s/2027 O(E);E)
e

VY 4t
f3,2(Cs;¢) 1:526(ﬂ_83/2)2/262f3,2 (We

o —7r2/252e—5/26”«3’ 0(63/2); 6)

o o 3/2\2 2 8 4 2 2 v
fa,2(Case) i=gBe(m=e¥?)?/2¢ fa2 (—;e“ 127 eme2¢y, O(s);s) .
Now it is clear that fvn,g (1;0) = 0 and
dfn
fn.2 20
Al (¢ni)=(1:0)
so that the hypotheses of the Implicit Function Theorem are again satisfied. Expanding the unique function
Ch(e) in orders of & we find Cp,(g) = 1+ O(e), and, in particular, Cy(g) = 1+ /2 + O(%/?).

Putting everything together, and recalling the definitions ¢ := 2uvt, I (c) = [¢¥2,2r — %], I;(e) :=
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[—%/2,%/?], we get that

M =g (24 060 $81)) = —1/t + O,
Ay _2% ( 4+ O(Ee S A,) ) Sy (9( *2671/52) ’

s 2%( 6+ O(¢le %8 As) ) - —3/t+(9( 7/2671/52)’

a 21t< $+0(ge Mh)) = —4/t+ 0 (1) (4.16)

are eigenvalues for (4.14]) with associated eigenfunctions @, (x;t, ) which can be expanded in the intervals I;(e)
and If(e) as follows:

N supx‘ (@=m)?/2* 3 (218, 1) + 1‘ (0)e/? o we li(e)
1
sup,. 28—;6”2/2528ech (%) Gu (a5t v) — [sech2 (%) (1 + 252 + QTrz) - %] < CO(eo)e®? + wely(e)
(4.172)
N sup,, | =52 Gy (st v) + 1‘ (20)e well) (4.17b)
P2 '
2 s ,0) [ (28) + Tt (2] < Clenle + a0
2 (z—m)?)2e? 3/2 :
sup e Pzt v) + 1‘ €0)e oz e Ii(e)
@,3 . Y|2(z— 7r)2 (4170)
sup, | 25e™ /2" sech (T2) @y (a3 t, v) — sech? (?2) <Cleo)e : wely(e)
. e® (z—m)%/2e2 . ' .
su e t,v)+ 1| < Clegle : xe€lie
B Py | o [2e—m)?322] Palz;tv) (%0) &) (4.17d)
wup, [ s () BuCast ) | < Cle)e + we 1y

Equations (.16 and (4.17) are expansions (3.4) and (3.5), respectively, in Proposition [3.1] Proposition [3.1] now

follows from following proposition and Sturm-Liouville theory for periodic boundary conditions (c.f. [I0, Thms
2.1, 2.14]), which states that the eigenvalues are strictly ordered \g > A1 = A2 > A3 = Ay > ... and that an
eigenfunction with exactly 2n crossings of zero in x € [—7, 7) is the eigenfunction associated either with As,—1
or with Ag,,.

Proposition 4.8 Fizx gy < 1 such that the eigenfunctions @, (x;t,v) are given as in (” for all0 < e < ¢
with € := /2vt. Then $1(x;t,v) and Fy(x;t,v) have evactly two zeros in the interval x € [—m, ) (md the
eigenfunctions @s(z;t,v) and Pu(x;t,v) have exactly four zeros in the interval x € [€%/2,2n — &%/2) for all
0<e<ep.

Proof. The n = 2,4 cases are clear since sinh(rz/e) = 0at . = 0 € If(e), =5

has a single zero at © = w € I5(e),
and 2 (9”_7”)2 — 3 has two zeros at * = 7w + £4/3/2 € I(¢), and by making ey potentially smaller so that
—140(gp) < 0. The result for n = 1,3 is then a direct consequence of Sturm-Liouville theory since A\g > A; > Ay
and Ao > A3 > 4. ]

5 Discussion

In this work we have proposed a candidate metastable family for Burgers equation with periodic boundary con-
ditions, which we denote W (x, t; v, 2o, ¢). The metastable family depends on space and time and is parametrized
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by three parameters: the spatial location zg, the “initial” time ¢y (so that ¢ = ¢ty + 7), and mean ¢o. Our choice
of metastable family was motivated by our numerical experiments, one example of which is shown in Figure
We furthermore proposed an explanation for the metastable behavior of W (x, t; v, zg, ¢) based on the spectrum
of the operator £ which results from linearizing the Burgers equation about W (x,ts; v, x4, cy). In particular,
we showed that a solution to the Burgers equation u(z,t;v) which is close at some time ¢y to a profile in the
metastable family (i.e. u(x,to;v) = W(z,to;v, xg, co) + vo(x;to, To, co; ¥) with |ug| small) can be written as a
perturbation from a (potentially different) profile W (x, ty; v, x4, ¢4) such that projection of the perturbation of
u(zx, to;v) from W(x, ty; v, 4, c4) onto the span of the first three eigenfunctions associated with the linearization
of the Burgers equation about W (x,ty; v, Ty, cy) is zero. These results are summarized in Theorems |1 and
From a technical perspective, we derived the first five eigenvalues for £ using Sturm-Liouville theory and ideas
from singular perturbation theory. In particular, we show that there are two relevant space regimes which we call
the “slow” and “fast” space scales; we construct the eigenfunctions in each regime separately and then rigorously

glue the functions together using a Melnikov-like computation.

As noted in Section [2.5] we regard these results as a first step toward showing that once solutions of Burgers
equation are close to the family of Whitham solutions, they subsequently evolve toward it at a rate much faster
than the motion along the family itself. The problem is that the linearized evolution operator in — is
non-autonomous and as is well known, in general, information on the spectrum of a non-autonomous, linear vector
field does not immediately lead to bounds on its evolution. Furthermore, even leaving aside the time dependence,
the operator in is highly non-self-adjoint which leads to further problems in deducing information about
the evolution just from spectral data. Such operators arise frequently in fluid mechanics and a number of different
approaches have been proposed to deal with these issues ([2], 4[5l [7].)

In the present case we feel that the spectral information is of greater use than is generally true for two reasons
- first, the transformation described in Section [3] which shows that there is a bounded and invertible change of
variables which conjugates the linearized operator to a self-adjoint operator, and second, the method of
“freezing coefficients” which shows that for linear, non-autonomous equations in which the time-change occurs
slowly, the spectral information does give good insight into the evolution of the solutions [I7]. In this case, the
slow change in the vector-field is a consequence of the slow evolution along the family of Whitham solutions.
To provide a few more details of why we feel the solutions of Burgers should evolve in a fashion similar to that
predicted by the spectral estimates established here, consider the linearized equation, written in self-adjoint form,
ie.

~

Uy = L(v,t)u , (5.1)
where % = T1u with 7 defined in (3.2), and £ defined in (3.3).
We have computed the first four eigenvalues in the spectrum of E(I/, t) for all ¢ sufficiently large, so fix ¢y and
set Lo = L(v, to) and define a(7) = L(v, to + 7) — L(v, to).

Then
Uy = L(v, )T = Lol + a(T)u , (5.2)

We can write the solution of this equation with the aid of DuHamel’s formula as

() = e bogi + f "= %0 (Vi) dor (5.3)
0

The leading order term is easy to estimate since we know (thanks to Theorem 2) that @ is orthogonal to the
eigenfunctions ¢~50, (El, and ¢~$2 (of Eo). In fact, thanks to fact that Burger’s equation (and also the linearized
equation ) preserve the mean value of the solution we can assume without loss of generality that %(7) is
orthogonal to 50 for all 7. Thus, let P be the orthogonal projection onto the span of ng, and q~52 and let Q) be its
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orthogonal complement. To analyze the integral term in (5.3]), we break it up as

JT e(T_”)an(a)ﬂ(U)da = JT e(r=o)Eo Pa(o)Pu(c)do + JT e(r=o)L0 Qa(0)Qu(o)do (5.4)
0 0

0

™ r
+J (r=o L”Pa( )Qu(o )da-i—f e(T_”)EOQa(U)PG(J)dJ. (5.5)
0 0

At this point, our current estimates are not sufficient to analyze all the terms in this expression in detail. However,
we believe that leading order contribution comes from the first term on the right-hand side of this expression.
For instance, the last two terms involve projections Pa(7)Q and Qa(7)P on complementary spectral subspaces
and hence are probably small, at least for 7 small. Likewise, the second term involves the evolution of the part of
the solution that lies in the spectral subspace complementary to the span of (EO, ¢~>1, and 52 and hence is expected
to decay like e T Thus, we focus on the first integral expression. We can write out the spectral projection P
in terms of inner products with (El, and (52 and we find

~

[ tpaopioras - ( [ e HGam. a(a))do) 5 (5.6)

~

-

# ([ B G alo) ) Bl )
0

Note that in this expression we have used the fact that cross terms involving q~51, and (Eg will vanish by sym-

metry, and we have made the approximation that the eigenvalues \; and A are exactly —1/ty and —2/ty for

simplicity.

Now consider the inner products ((Ej, a(a)aj) that occur in the integrands. From the perturbation theory for
linear operators, we know that if we perturb ENO by a(7), the first order shift in the eigenvalue A; should be given
by exactly this inner product. On the other hand, we know from our calculation of the spectrum that that the

shift in the eigenvalue is given by

J J it
O\ = — L ) 5.7
J to+ T * to t2 (5.7)

Thus, we expect the integrals in (5.6 to behave like

C (7 T—0 T~
z), ~% T (8, (o)) do (5.8)

Since ((Ej, %(0)) = 0 we expect that this inner product is bounded by Co||tg]|, at least for o small, and hence the
integrals in ([5.6]) are expected to behave like

C C U

HUOHJ (t—0) 2d H;;OHTS, (5.9)
0

for 7 small.

These estimates lead us to expect a bound on solutions of (5.3)) of the form

Clo| 5
t2 ’

li(r)] < Ce 07 + (5.10)
which for 7 small, but of order one, is much faster decay than the rate of motion along the family of Whitham
solutions. After some fixed time 7y, we stop the evolution with the “frozen” time operator E(to) and restart the
process of tracking solutions of by approximating E(t) by E(to + 79). However, now, the initial condition
for the equation will be much closer to the manifold of Whitham solutions than the original initial condition for
(5.1). We also note the similarity of this approach to the renormalization method of [I3] - see Fig. 2.2 of that
reference.
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Although our current estimates are not sufficient to rigorously establish the bounds in the previous paragraph,
which we leave as an open problem, we feel that ubiquity of the type of non-self-adjoint operators exemplified
by £ in fluid mechanics, along with the paucity of rigorous estimates of their spectral behavior makes the
results presented in this paper of interest, even though they do not conclusively prove that solutions approach
the Whitham family with the expected rate. In addition, we feel that the methods derived in this paper for
studying the behavior of multiple eigenvalues of singularly perturbed spectral problems may be of independent

interest.

It also is worth reiterating that our results show that the spectrum for L is, to leading-order, independent of
the viscosity v; this result is particularly interesting since our analysis is not valid for the inviscid equation.
Furthermore, our results are in contrast to [2], in which the authors proposed an analytical description of the
“bar” metastable family for the Navier—-Stokes equation with periodic boundary conditions which were observed
numerically in [20], denoted w®. In [2] the authors provided numerical evidence and analytical arguments which
indicate that the real part of the least negative eigenvalue for the operator obtained from linearizing the Navier—
Stokes equation about w® is proportional to /v; in other words, the metastable behavior of w’” does depend
on the viscosity. On the other hand, in [4], Bedrossian, Masmoudi and Vicol show that the solution behavior
for the Navier—Stokes equation in a neighborhood of the Couette flow depends on the time-regime: for small
enough time scales the solution behavior is governed by the inviscid limit of Navier—Stokes, whereas viscid effects
dominate after long enough times. Thus, our results raise the question about whether there is an even earlier
time regime for the Navier—Stokes with periodic boundary conditions than that studied in [2], and a potentially

different metastable family, in which convergence to a metastable family is independent of the viscosity.
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A Notation

Variable Description Defined in

YW (z,tv) A solution to the periodic heat equation. It is also used Equation (2.4
to define transformation l}

Wo(x, t;v) An exact solution to the periodic Burgers equation Equation lb
(2.1) constructed from " (x,t;v) via the Cole-Hopf
transformation.
Wz, t;v, Az, c) The family of metastable solutions, parametrized by Section

Az, t, and ¢, given by
Wz, t;v, Az, c) :== c+ Wo(z — Ax — ct, t;v)

L(v,t) The time-dependent linear operator obtained from Equation (2.11
linearizing lb about the solution family Wy(z, t;v)

E(V, t) The time-dependent self-adjoint linear operator Equation lb
associated with L£(v,t) after transforming the

eigenfunctions ¢, into @, via 1'

T (z;t,v) The transformation which maps eigenfunctions for Equation lb

~

L(v,t) into eigenfunctions for L(nu,t)

(Ans on(x;to,v)) Solutions to the frozen-time eigenvalue problem Equation (2.11
Anp = L(v,t0)on
(An, @n(x;t0,v)) Solutions to the associated frozen-time self-adjoint Equation |D Note: ¢y,
eigenvalue problem A\, @, = z(l/, t0)%n and @,, are related via

transformation Ii

Tg, to Initial parameter values such that the frozen time Theorem Section
solution u(z, to;v) to lb is near W (x, to; v, xo, ¢)

Ty, by Perturbed parameter values so that the frozen time Theorem Section
solution wu(z, to; V) to is near W(x,ty; v, x4, c) and
the projection of the perturbation onto the subspace
spanned by the eigenfunctions corresponding to the
first three eigenvalues is zero

€:=+/2ut Small parameter used in singular perturbation Section and again in
arguments Proposition
I(e), Ir(e) The spatial intervals where the slow equation and fast Proposition see also
equation dominate, respectively Figureﬁ

Table 3: General notation used throughout this work.
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Variable

Description

Defined in

€o

s
3

anl (5)6752/2

Slow spatial variable
The slow interval I4(¢) in terms of £
Wo(x,t;v) written in terms of £ and scaled by é
0:Wo(z, t; v) written in terms of £ and scaled by ¢
The eigenfunction @, (z) in terms of &
A transformation of the eigenvalue A,

Perturbation of the eigenvalue Xn from —2n, the
eigenvalue anticipated by the formal analysis of the
slow variables in Section @

2-component vector representation of the eigenfunction

®n, used to make the eigenvalue problem first order

A 2 x 2 non-autonomous real matrix giving the leading

order terms in the eigenvalue problem for l_?n

A 2 x 1 real vector giving the higher order terms in the

eigenvalue problem for U,

The part of ./\A/'n(lA]n, &g, /A\n) that comes from the
difference between the formal slow-variable potential
with ¢ = 0 (3.11)) and the potential in the slow-variable

eigenvalue problem lb

The point at which the eigenfunctions in each of the

scaling regimes will be matched at in terms of &

Exponential rescaling of the eigenvalue offset /A\n;

necessary for an Implicit Function Theorem argument

Eigenfunction solutions to the formal slow-variable
potential with e = 0 (3.11) with A, = —2n

Beginning of Section
Beginning of Section
Beginning of Section
Beginning of Section
Beginning of Section

Beginning of Section

4.1
4.1
4.1
4.1
4.1

4.1

Before Lemma 4.1

Before Lemma (4.

Before Lemma [4.1} pa

(]R[)

Before Lemma 4.1} pa

(]HI}

—_

rt of

rt of

Before Lemma 4.1} part of

(4.3)

Before Proposition

Proposition

After equation (3.11

Table 4: Notation used for the slow variable analysis in Section .
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Variable

Description

Defined in

x
Z = ==
52

Fast spatial variable
The fast interval I;(¢) in terms of z
Wo(x,t;v) written in terms of z and scaled by ¢
0:Wo(,t;v) written in terms of z and scaled by te?
The eigenfunction @, (z) in terms of z

2-component vector representation of the eigenfunction

Pn, used to make the eigenvalue problem first order

A 2 x 2 non-autonomous real matrix giving the leading
order terms in the eigenvalue problem for U,

A 2 x 1 real vector giving the higher order terms in the

eigenvalue problem for (\jn

Beginning of Section (4.2
Beginning of Section 4.2
Beginning of Section 4.2

Beginning of Section (4.2

Beginning of Section 4.2

Before Lemma |:_4

Before Lemma , part of

(4.10)
Before Lemma part of

([@.10)

N(z;¢) The part of /\vfn(ﬁn, 2 €, /A\n) that comes from the Before Lemma
difference between the formal fast-variable potential
with € = 0 (3.13)) and the potential in the fast-variable
eigenvalue problem lb
./\vfalg(z, €) The part of N'(z;€) that behaves algebraically Lemma
/\vfexp(z; €) The part of N'(z;¢) that behaves exponentially Lemma
Z0 The point at which the eigenfunctions in each of the Before Proposition
scaling regimes will be matched at in terms of z
P(z), Q(z) Two linearly independent solutions to the formal After equation (3.13
fast-variable equation with € = 0 (3.13])
Table 5: Notation used for the fast variable analysis in Section .
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