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Abstract

A “metastable solution” to a differential equation typically refers to a family of solutions for which solu-

tions with initial data near the family converge to the family much faster than evolution along the family.

Metastable families have been observed both experimentally and numerically in various contexts; they are

believed to be particularly relevant for organizing the dynamics of fluid flows. In this work we propose a can-

didate metastable family for the Burgers equation with periodic boundary conditions. Our choice of family

is motivated by our numerical experiments. We furthermore explain the metastable behavior of the family

without reference to the Cole–Hopf transformation, but rather by linearizing the Burgers equation about

the family and analyzing the spectrum of the resulting operator. We hope this may make the analysis more

readily transferable to more realistic systems like the Navier–Stokes equations. Our analysis is motivated by

ideas from singular perturbation theory and Melnikov theory.

1 Introduction

In the study of differential equations one often is interested in understanding the long-term asymptotic behavior

of solutions; the long term behavior could include, for example, convergence to a periodic orbit or a steady-state.

One typical approach is to prove the existence of a particular solution and then to argue that nearby initial

data converge to that solution; in the case of a steady-state or periodic orbit, such arguments often involve

computations of the linear spectrum.

In this work we address a slightly different question, which arises when the asymptotic state only emerges after a

“long” time; in this case, it may be that the intermediate transient behavior of the system is physically relevant.

In other words, we are not interested in what the asymptotic state is, but how solutions with a wide class of

initial data approach it. To address this question we analyze what are known as “metastable” solutions. The

term metastable solution often refers to a family of profiles with the following properties: (1) a profile within

this family evolves within the family and tends asymptotically toward the long-time asymptotic state (which

is typically a boundary point of the metastable family); (2) solutions with “nearby” initial data remain near

the family for all forward times; and (3) the timescale on which solutions with nearby initial data approach the

family is much faster than the evolution within the family towards the asymptotic state. Property (3) is what

makes metastable solutions of physical interest.

Metastable solution families are of particular interest in fluid dynamics. For example, in the Navier–Stokes
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equation with periodic boundary conditions

Bt~u “ ν∆~u´ ~u ¨∇~u`∇p, ∇ ¨ ~u “ 0, ~u P R2, ν ! 1

~upx, y, tq “ ~upx` 2π, y, tq, and ~upx, y, tq “ ~upx, y ` 2π, tq, (1.1)

which describes two-dimensional viscous fluid flows, metastable vortex pairs known as “dipoles” were numerically

observed [11, 20]; the dipoles emerge quickly and persist for long times before eventually converging to the trivial

state. The metastable states described in [11, 20] are characterized in terms of their vorticity ω, defined as

ω :“ ∇ ˆ ~u. In [20] a second metastable family known as “bar” states—solutions with constant vorticity in

one spatial direction and periodic vorticity in the other—were observed; which of the two candidate metastable

families dominates the dynamics depends on the initial data.

A related context in which metastability has been observed and studied is Burgers equation. Although the

Burgers equation is unphysical, it is nevertheless relevant to fluid dynamics since it is, in some sense, the

one-dimensional simplified analog of the Navier–Stokes equation. Thus, one often uses the Burgers equation

as a test case for Navier–Stokes: one hopes that by first observing and analyzing some phenomenon in the

Burgers equation, that insight can be translated into an understanding of related phenomena in Navier–Stokes.

Metastable solutions in Burgers equation were observed numerically in the viscous Burgers equation on an

unbounded domain [8] in the so-called “scaling variables”

Bτw “ νB2
ξw `

1

2
Bξpξwq ´ wwξ w P R, ν ! 1. (1.2)

The scaling variables

ξ “
x

?
1` t

, τ “ lnpt` 1q, and upx, tq “
1

?
1` t

w

ˆ

x
?

1` t
, lnp1` tq

˙

have been defined so that a diffusion wave–a strictly positive triangular profile which approaches zero for |x| Ñ

8—is a steady state solution to (1.2) (otherwise, all solutions to Burgers equation in the unscaled variables

Btu “ νB2
xu´ uux approach the zero solution as tÑ `8). In [8] the authors observe that “diffusive N-waves”—

profiles with a negative triangular region immediately followed by a positive triangular region so that the profile

resembles a lopsided backwards “N”—quickly emerge before the solution converges to a diffusion wave.

Burgers equation is much more amenable to analysis than the Navier-Stokes equation and there has been a

fair amount of theoretical work to explain the observations of [8]. Already in [8], the authors used the Cole-

Hopf transformation to derive an analytical expression for the diffusive N-waves. In [1], the authors provide

a more dynamical systems motivated explanation of metastability. First they constructed a center-manifold

for (1.2) consisting of the diffusion waves, denoted AM pξq, which is parametrized by the solution mass. Each

of these diffusion waves represents the long-time asymptotic state of all integrable solutions with initial mass

M and they are also fixed points in the scaling variables. Through each of these fixed points there is a one-

dimensional manifold, parameterized by τ , consisting of exactly the diffusive N -waves. Then, using the Cole-Hopf

transformation, the authors show that solutions converge toward the manifold of N -waves on a time scale of order

τ “ Op| ln ν||q, that solutions remain near wN pξ, τq for all future times, and that the evolution along wN pξ, τq

towards AM pξq is on a time scale of the order τ “ Op1{νq. In particular, convergence to the family is faster than

the subsequent evolution along the family. We emphasize that their analysis makes strong use of the Cole-Hopf

transformation.

In [2] the authors proposed an explanation of the metastability of the bar-states of (1.1) as follows. They first

propose as candidates for the metastable family the exact solutions of the Navier-Stokes equations with vorticity

distribution

ωbpx, y, tq “ e´νt cospxq1,

1Alternatively, the bar state could be rwbpx, y, tq “ e´νt sinpxq, or the solution could instead be periodic in the y direction and

constant in the x direction.
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which is again parametrized by time. Solutions in this family converge to the long-time limit (which is the zero

solution in this case) on the viscous time scale t „ 1
ν . In order to understand the convergence of solutions with

nearby initial data to the metastable family, the authors linearize the vorticity formulation of (1.1)

Btω “ ν∆ω ´ ~u ¨∇ω, ~u “ p´By∆´1ω, Bx∆´1ωq. (1.3)

about ωbpx, y, tq. The linearization results in a nonlocal time-dependent linear operator

Lptq “ ν∆´ ae´νt sinxByp1`∆´1q.

Using hypercoercivity techniques motivated by the work of Villani [16] and Gallagher, Gallay, and Nier [7],

the authors show that solutions to a modified operator Laptq “ ν∆ ´ ae´νt sinxBy, which differs from Lptq
by removing the non-local, but relatively compact, term, decay with rate at least e´

?
νt. Additionally, they

provide numerical evidence that the real part of the least negative eigenvalue for the nonlocal operator Lptq is

proportional to
?
ν. These arguments, in combination with the fact that the rate of decay of solutions to (1.3)

to zero is given by the much slower viscous time scale provides a mathematical explanation for the metastable

behavior of the family of bar states.

What is notable is that the mechanism for metastability as well as the relevant time scales are different in each

case [1] versus [2]. Thus, the goal of this work is to re-visit the Burgers equation, albeit with periodic boundary

conditions so that the boundary conditions are more similar to those of (1.1), in order to devise a mathematical

explanation for metastability which is more easily transferable to Navier–Stokes. To that end, we intentionally

avoid the Cole–Hopf transformation and instead use spectral analysis from the linearization about the candidate

metastable family. We find that the spectrum, to leading order, does not depend on the viscosity ν, even though

our analysis depends on the presence of the viscosity term in the equation (and thus the calculations below do

not apply to the inviscid equation). This is in contrast to the results from [2] for the Navier–Stokes equation

in which the rate of approach toward the metastable solutions occurs at a ν dependent rate, albeit a much

faster rate than the ν dependent time of approach toward the final asymptotic state. More generally, the linear

operator that we analyze is not self-adjoint. Such operators arise frequently, for example, in weakly viscous fluid

dynamics and we hope that the methods develop in this work could be applied to wide class of non-self-adjoint

spectral problems.

From a technical perspective, the linearization about the metastable states leads to a singularly perturbed

eigenvalue problem, in which the perturbation parameter is the viscosity ν. Our strategy is to construct the

eigenfunction-eigenvalue pairs in each of two spatial scaling regimes (denoted the “slow” and “fast” scales) and

then to glue the eigenfunction pieces together in an appropriate “overlap” region (see Figure 4 for a schematic

representation). We show, in fact, that the eigenvalues are given, to leading order, by the slow-scale eigenvalues;

the rigorous “gluing” of the fast and slow solutions is done with the aid of a Melnikov-like computation which

gives the first order correction of the eigenvalues. The use of such Melnikov-like computations for piecing together

solutions has a long tradition, generally called Lin’s method [9], which has been applied to the construction of

eigenfunctions in, for example, [14]. The idea of piecing together slow and fast eigenfunctions in a singularly

perturbed eigenvalue problem follows, for example, from [6].

It is worth noting another context in which singularly perturbed eigenvalue problems have arisen in connection

with a slightly different type of metastability, including in variants of Burger’s equation. In [15, 18] metastability

refers to the very slow motion of internal layers in nearly steady states of reaction diffusion equations and diffu-

sively perturbed conservation laws. While different in details and physical context, the notion of metastability

in these papers is similar in spirit to our discussion in that it also describes the slow motion along a family

of solutions (in this cases, solutions in which the internal layer occurs at different positions) before the system

reaches its final state. The motion of those internal layers is explained by an exponentially small shift in the

zero eigenvalue of the operator describing the equation linearized about a stationary state. In contrast, in our
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problem, the zero eigenvalue is unchanged, regardless of which member of the family of metastable solutions

we linearize around, but the remaining eigenvalues (or at least the four additional eigenvalues that we compute

here) undergo exponentially small shifts.

Another recent study of metastability in the Navier–Stokes equation, which is similar to our work in context, but

very different in methods is the study of the inviscid limit of the Navier–Stokes equations in the neighborhood

of the Couette flow, by Bedrossian, Masmoudi and Vicol [4] (see also [3]). In this paper the authors prove

an enhanced stability of the Couette flow by using carefully chosen energy functionals. They prove that for

times less than OpRe1{3
q, the system approaches the Couette flow in a way governed by the inviscid limit (i.e.

the Euler equations) while for time scales longer than this viscosity effects dominate; here Re is the Reynold’s

number of the flow. Since our results show that our metastable family attracts nearby solutions at a rate which

is, to leading order, independent of the viscosity, we believe that they are analogous to the initial phase of the

evolution analyzed in [4] in which inviscid effects dominate. It would be interesting to see if the transition to

viscosity dominated evolution could be observed in this Burgers equation context as well.

2 Set-up and statement of main results

In this section we discuss our candidate family of metastable solutions, denoted W px, t; ν,∆x, cq, to the viscous

Burgers equation with periodic boundary conditions

Btu “νB
2
xu´ uux ν ! 1, x P R, t P R`

upx, 0q “u0pxq u0 P H
1
perpr0, 2πqq

upx` 2π, tq “upx, tq. (2.1)

We also present numerical and analytical justification for our choice. The analytical justification given in Sec-

tion 2.2 relies, again, heavily on the Cole-Hopf transformation. Thus, although it provides powerful evidence

for the behavior of solutions near W px, t; ν,∆x, cq, the result provides no insight into techniques one might use

to analyze Navier–Stokes. Thus we provide an alternative explanation which relies on information about the

spectrum of the linear operator obtained from linearizing (2.1) about the metastable family W px, t; ν,∆x, cq;

the statement and discussion of these results can be found in Sections 2.4 and 2.5. In what follows we make

the technical assumption that the primitive of pu0pxq ´ uq attains a unique global maximum on r0, 2πq, where

u “ 1
2π

ş2π

0
u0pxqdx. We remark that this assumption is generic since if the primitive of u0pxq does not attain a

global maximum on r0, 2πq then for all ε ą 0 there exists a function vpxq with }v}H1
per
ď ε such that the primitive

of u0pxq ` vpxq does attain a global maximum, where

}v}2H1
per
“

ż 2π

0

“

vpxq2 ` v1pxq2
‰

dx

is the usual periodic H1 norm.

2.1 Family of metastable solutions

It is well known, using the Cole-Hopf transformation, that

upx, tq “ ´2ν
ψxpx, tq

ψpx, tq
(2.2)

is a solution to Burgers on the real line if ψpx, tq satisfies the heat equation

ψt “νψxx ν ! 1, x P R, t P R`. (2.3)
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A family of periodic solutions to (2.3) can be constructed by placing heat sources on the real line spaced 2π

apart centered at x “ πp2n´ 1q

ψW px, t; νq :“
1

?
4πνt

ÿ

nPZ
exp

„

´px` π ´ 2nπq2

4νt



. (2.4)

Then every function in the family

W0px, t; νq :“ ´2ν
ψWx
ψW

“
1

t

ř

nPZpx` π ´ 2nπq exp
”

´px`π´2nπq2

4νt

ı

ř

nPZ exp
”

´px`π´2nπq2

4νt

ı (2.5)

is 2π-periodic and hence a solution to (2.1). We have denoted solutions (2.5) by W0 to indicate the fact that one

can find them in, for example, the classic text by G.B. Whitham [19, §4.6]. Using formula (2.5) one can check

that W0pnπ, t; νq “ 0 and that W0 is an odd function about nπ, for n P Z.

The family of solutions (2.5) is parametrized by t. We can extend the family to include two additional parameters

as follows. Firstly, we can replace x by x´∆x, effectively shifting the origin of the x-axis. Next, suppose upx, tq

is a solution to (2.1). Then ucpx, tq :“ c` upx´ ct, tq solves (2.1) as well since

Btuc “ Btu´ cBxu “ νB2
xuc ´ puc ´ cqBxuc ´ cBxu “ νB2

xuc ´ ucpucqx.

Thus we define an extension of (2.5) by W px, t; ν,∆x, cq :“ c`W0px´∆x´ ct, t; νq. We remark that if ψpx, tq

is periodic,
ż π

´π

´2νBxψpx, tqdx “ 0

and thus, since
ż π

´π

W px, t; ν,∆x, cqdx “ 2πc,

W px, t; ν,∆x, cq can not be obtained via the Cole-Hopf transformation of a periodic function unless c “ 0.

We will need the following estimates of W0 and its derivatives.

Proposition 2.1 Fix ν ą 0, 0 ă ε0 ! 1. Then there exists 0 ă Cpε0q ă 8 such that

sup
|x|ďπ

ˇ

ˇ

ˇ

ˇ

W0px, t; νq ´
1

t

”

x´ π tanh
´ πx

2νt

¯ı

ˇ

ˇ

ˇ

ˇ

ď
Cpε0q

t
e´1{νt

sup
|x|ďπ

ˇ

ˇ

ˇ

ˇ

BxW0px, t; νq ´
1

t

„

1´
π2

2νt
sech2

´ πx

2νt

¯


ˇ

ˇ

ˇ

ˇ

ď
Cpε0q

t2
e´1{νt

sup
|x|ďπ

ˇ

ˇ

ˇ

ˇ

BtW0px, t; νq ´
1

t2

„

´x` π tanh
´ πx

2νt

¯

`
π2x

2νt
sech2

´ πx

2νt

¯


ˇ

ˇ

ˇ

ˇ

ď
Cpε0q

t3
e´1{νt (2.6)

for all 0 ă νt ă ε0.

We remark that since W0px, t; νq is periodic, these L8 estimates can be converted into Lpper estimates for any

1 ď p ă 8.

Proof. Due to the fact that W0px, t; νq is an odd function centered about x “ 0, we prove the estimates for

x P r0, πs. Define

Spx, t; νq :“´ 1`
2
ř

nPZ n exp
”

´px`π´2nπq2

4νt

ı

ř

nPZ exp
”

´px`π´2nπq2

4νt

ı

so that

W0px, t; νq “
x

t
´
π

t
Spx, t; νq

BxW0px, t; νq “
1

t
´
π

t
Sxpx, t; νq

BtW0px, t; νq “ ´
x

t2
`
π

t2
Spx, t; νq ´

π

t
Stpx, t; νq.
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Thus it remains to estimate Spx, t; νq and its derivatives. We factor expr´px`πq2{4νts out of both the numerator

and denominator, define

expnpx; t, νq :“ exp
“

´πr´nx` n2π ´ nπs{νt
‰

“

$

’

&

’

%

exp
”

´πnrpn´1qπ´xs
νt

ı

: n ě 0

exp
”

πnrp´n`1qπ`xs
νt

ı

: n ď 0

,

/

.

/

-

, (2.7)

and rearrange to get

“
´ exp

“

´πx
2νt

‰

` exp
“

πx
2νt

‰

` exp
“

´πx
2νt

‰
ř

n‰0,1p2n´ 1q expnpx; t, νq

exp
“

´πx
2νt

‰

` exp
“

πx
2νt

‰

` exp
“

´πx
2νt

‰
ř

n‰0,1 expnpx; t, νq

“ tanh
´ πx

2νt

¯

`Rpx; ν, tq

where

Rpx; ν, tq :“
exp

“

´πx
2νt

‰
ř

n‰0,1

“

2n´ 1´ tanh
`

πx
2νt

˘‰

expnpx; t, νq

exp
“

´πx
2νt

‰
ř

nPZ expnpx; t, νq

Define r :“ exp
“

´π2{νt
‰

; we have that 0 ď r ă 1 for all 0 ď νt ď ε0. Then, using (2.7), we see that for all

x P r0, πs

expnpx; t, νq ď r|n| @n ‰ 0, 1, 2

and

exp

„

´πx

2νt



exp2px; t, νq “ exp

„

´πp4π ´ 3xq

2νt



ď exp

„

´π2

2νt



“ r1{2.

Using the fact that the denominator of R is greater than or equal to one since it is a sum of positive terms and

the leading term

exp

„

´πx

2νt



exp1px; ν, tq “ exp
” πx

2νt

ı

ě 1 @x P r0, πs,

we find

|Rpx; ν, tq| ď4r1{2 ` exp

„

´πx

2νt



ÿ

n‰0,1,2

2p|n| ` 1qr|n|

ď4r1{2 ` 4
rp2´ rq

p1´ rq2
.

Thus, there exists 0 ă Cpε0q ă 8 such that |Rpx; ν, tq| ď Cpε0qe
´π2

{2νt for all 0 ď νt ď ε0 and x P r0, πs. The

same transformations and estimates give

ˇ

ˇ

ˇ
Sxpx, t; νq ´

π

2νt
sech2

´ πx

2νt

¯
ˇ

ˇ

ˇ
ď
Cpε0q

t
e´1{νt and

ˇ

ˇ

ˇ
Stpx, t; νq `

πx

2νt2
sech2

´ πx

2νt

¯
ˇ

ˇ

ˇ
ď
Cpε0q

t2
e´1{νt

after potentially making Cpε0q larger.

2.2 Solutions via the Cole-Hopf transformation

Based on our numerical simulations (see Section 2.3), we anticipate that solutions to (2.1) rapidly approach a

profile in the family W px, t; ν,∆x, cq, and that the specific member in the family that the solution approaches

depends on the initial data u0pxq. In Section 2.1 we discussed the Cole-Hopf transformation but did not take the

initial data into account; we address the initial value problem now and show how the initial data can be used to

determine which specific profile W px, t; ν,∆x, cq the solution is expected to approach.
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A solution upx, tq given by the Cole-Hopf transformation (2.2) will satisfy the Burgers equation on the real line

with initial data u0pxq provided ψpx, tq satisfies the initial value problem

ψt “νψxx ν ! 1, x P R, t P R`

ψpx, 0q “ ψ0pxq “e
1
2ν F px;u0q, F px;u0q :“ ´

ż x

0

u0psqds. (2.8)

Solutions to (2.8) can be expressed as a convolution with the heat kernel Gt : RÑ R`

ψpx, tq “

ż 8

´8

ψ0pyqGtpx´ yqdy “
1

?
4πνt

ż 8

´8

e
1
2ν rF py;u0q´

1
2t px´yq

2sdy.

As was argued in [12], if one additionally assumes that
ş2π

0
u0psqds “ 0 then ψ0pxq is 2π-periodic, and hence so

are ψpx, tq and

uCH0 px, t; ν, u0q :“ ´2ν
ψxpx, tq

ψpx, tq
“

1

t

ş8

´8
px´ yq exp

”

1
2ν

´

´
px´yq2

2t ` F py;u0q

¯ı

dy

ş8

´8
exp

”

1
2ν

´

´
px´yq2

2t ` F py;u0q

¯ı

dy
.

Thus uCH0 px, t; ν, u0q is a solution to the periodic problem (2.1) with initial data uCH0 px, t; ν, u0q “ u0pxq. We

assume that F py;u0q has a single global maximum in the interval y P r´π, πq located at y “ y0

y0 “ argmax
yPr´π,πs

ˆ

´

ż y

0

u0psqds

˙

.

Then the solution uCH0 can be estimated as

uCH0 px, t; ν, u0q “
1

t

„

x´ y0 ´ π ´ π tanh

ˆ

πpx´ y0 ´ πq

2νt

˙

`O
ˆ

?
ν `

1

t

˙

, (2.9)

which can be seen by using, for example, Laplace’s method; since the goal of this work is to get away from

the Cole-Hopf transformation, we leave the details to the reader. Comparison of (2.9) with (2.6) indicates that

solutions to (2.1) will asymptotically approach W0px, t; ν,∆xq, and that ∆x is close to y0` π, where y0 depends

on the initial data. If c :“ 1
2π

ş2π

0
u0psqds ‰ 0 then

uCHpx, t; ν, u0, cq “ c` uCH0 px´ ct, t; ν, u0 ´ cq.

2.3 Numerical results

The discussion in Sections 2.1 and 2.2 indicates that W px, t; ν,∆x, cq should be our candidate metastable solution.

Numerical simulations indicate the same result. We numerically computed solutions to (2.1) in Python using

Gudonov’s scheme for conservative PDEs. Letting h “ dx and k “ dt, the CFL condition is

k “ min

"

λh

maxrupx, 0qs
, λh2

*

for λ ă 1. We used λ “ 0.5. The initial condition upx, 0q was given by

upx, 0q “ a0 `

m
ÿ

n“1

ran sinpjxq ` bn cospjxqs,

where m is the number of modes and the coefficients an were randomly generated. Due to the symmetry of the

modes for j ě 1, the mean of upx, 0q, denoted upx, 0q, is given by a0; furthermore, due to the periodic boundary

conditions the mean of any solution is preserved since

d

dt
u “

ż π

´π

utdx “

ż π

´π

rνuxx ´ uuxsdx “

„

νux ´
1

2
u2

 ˇ

ˇ

ˇ

ˇ

π

´π

“ 0.
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The time series for a solution with a0 “ 0 is shown in Figure 1. We find that upx, tq rapidly approaches a solution

W0px´∆x, t; νq, defined in (2.5); for all future times, the solution converges to zero in a manner resembling the

behavior of W0px ´∆x, t; νq. When a0 ‰ 0 we find that the solution is vertically centered around a0 moves to

the left for a0 ă 0 and to the right for a0 ą 0; consistent with the solution

W px, t; ν,∆x, a0q :“ a0 `W0px´∆x´ a0t, t; νq

defined immediately before Proposition 2.1. Although we show only one sample time series here, we ran multiple

experiments with different initial conditions; our results indicate that the evolution of a wide class of initial data

evolve in a qualitatively similar fashion to that shown in Figure 1.
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3 2 1 0 1 2 3
x

0.4

0.2

0.0

0.2

0.4

time = 5.64

(e) t “ 5.64

3 2 1 0 1 2 3
x

0.4

0.2

0.0

0.2

0.4

time = 9.67

(f) t “ 9.67

3 2 1 0 1 2 3
x

0.4

0.2

0.0

0.2

0.4

time = 24.17

(g) t “ 24.17

3 2 1 0 1 2 3
x

0.4

0.2

0.0

0.2

0.4

time = 56.40

(h) t “ 56.40

3 2 1 0 1 2 3
x

0.4

0.2

0.0

0.2

0.4

time = 120.85

(i) t “ 120.85

Figure 1: A numerically computed solution to (2.1) with ν “ 0.008 and random initial data. Solution computed

in Python using Gudonov’s method with h “ 2π{350, CFL constant λ “ 0.5, m “ 20 modes for the random

initial data, upx, tq “ a0 “ 0, and y0 :“ argmaxxPr´π,πq
şx
upy, 0qdy « ´2.53. We find that upx, tq rapidly

approaches a solution W0px, t; ν,∆xq and then converges to 0 in a manner consistent with the time evolution of

W0px´y0´π, t; νq. Our computations are consistent with the discussion in Sections 2.1 and 2.2, which indicates

that ∆x should be near y0 ` π “ 0.611. The scale for (a-d) is not the same as for all other figures. Numerical

experiments with different initial data evolved in a qualitatively similar fashion to that shown here.

2.4 Statement of the main results

Our main result concerns the spectrum of the linearization of the viscous Burgers equation about one of the

solutions W px, t0; ν, x0, cq at some time t “ t0 fixed. We show that the spectrum is such that solutions of (2.1)
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which, at t “ t0 fixed, are near a member of the metastable family W px, t0; ν, x0, cq can be expected to approach

the family at a much faster rate than the solutions W px, t; ν,∆x, cq themselves evolve in time. Although the

linearized evolution is non-autonomous, and thus a rigorous verification of the expected approach rate does not

follow directly from the spectral information we derive, we explain why we feel that such rates can nevertheless

be expected in Section 2.5 below and in more detail in the discussion Section 5.

The linearization about W px, t; ν,∆x, cq in the moving frame x´∆x´ ct ÞÑ x takes the form

vt “ νvxx ´ pW0px, t; νqvqx, (2.10)

and the resulting eigenvalue problem is

Lpν, tqϕ “λϕ, Lpν, tqϕ :“ νϕxx ´ pW0px, t; νqϕqx, (2.11)

where Lpν, tq is considered as an operator Lpν, tq : H2
perpr´π, πqq Ñ L2

perpr´π, πqq for every fixed ν and t. We

use the standard inner product on L2
perpr´π, πqq

xu, vy :“

ż π

´π

upxqvpxqdx

and norm }u}2L2
per
“ xu, uy. Motivated by the discussion of the solutions W px, t; ν,∆x, cq and uCHpx, t; ν, u0, cq

above we define the small parameter ε2 :“ 2νt. Then our main result is as follows.

Theorem 1 There exists ε0 ą 0 such that for all ν, t such that 0 ă ε ď ε0 with ε “
?

2νt, the spectrum

for (2.11) consists entirely of ordered eigenvalues with λ0 “ 0 and the remaining eigenvalues contained on the

negative real-axis. In particular,

λ1 “´ 1{t`O
´

ε1{2e´1{ε2
¯

, λ2 “´ 2{t`O
´

ε´2e´1{ε2
¯

,

λ3 “´ 3{t`O
´

ε´7{2e´1{ε2
¯

, λ4 “´ 4{t`O
´

ε´6e´1{ε2
¯

. (2.12)

and λn ď λ4 for all j ą 4.

Denoting the eigenfunction associated with λn by ϕnpx´∆x´ ct; t, νq we also show

Theorem 2 Fix γ0 ! 1 and let upx, t; νq be a solution to (2.1) with mean upx, t; νq “ c so that at some fixed

time t “ t0 upx, t0; νq “ W px, t0; ν, x0, cq ` v0px; t0, x0; νq with }v0}H2
per
“ γ ď γ0. Then there exists x˚ and t˚

such that the projection of v˚px; t˚, x˚; νq :“ upx, t0; νq ´W px, t˚; ν, x˚, cq onto the space spanned by the first

three eigenfunctions for (2.11) is zero:

xv˚px; t˚, x˚; νq, ψnpx´ x˚ ´ ct˚; t˚, νqy “ 0 for n “ 0, 1, 2,

where ψn are the unique functions satisfying L:ψn “ λnψn and L: is the adjoint of L.

See Figure 2. The inner product xv, wy is the standard periodic L2 inner product.

Remark 2.2 The discussion in Section 2.2 indicates that the condition upx, t0; νq “W px, t0; ν, x0, cq`v0px; t0, x0, c; νq

with }v0}H1
per
! 1 holds for most initial data provided that ν, 1{t ! 1.

Remark 2.3 Since (2.1) preserves the mean, by choosing c in W px, t0; ν, x0, cq so that upx, t; νq “ c, we ensure

that v0px; t0, x0; νq “ 0 for all time. In the proof of Theorem 2 we will show that this implies

xv˚px; t˚, x˚; νq, ψ0px´ x˚ ´ ct˚; t˚, νqy “ 0

independently of x˚ and t˚.

2.5 Justification of W as a family of metastable solutions

Finally, we discuss why the combination of Theorems 1 and 2 justifies our identification of the statesW px, t; ν,∆x, cq

as a metastable family. If we attempt to analyze the dynamics of solutions near the metastable family of solu-

tions with the aid of the linearized equation (2.10), then the resulting linear equation is non-autonomous and,

9



W (x⇤, t⇤)

Figure 2: upx, t; νq is a solution to (2.1) which at a fixed time t0 is known to be close to a solution W px, t0; ν, x0, cq.

We show that by adjusting the parameters pt0, x0q slightly we can also write upx, t0; νq “ W px, t˚; ν, x˚, cq `

v˚px; t˚, x˚; νq where the projection of v˚ onto the subspace spanned by the first three eigenfunctions for (2.11)

is zero.

in general, knowledge about the spectrum of a non-autonomous linearized operator is not sufficient to conclude

anything about the linearized evolution. However, there are examples of parabolic non-autonomous partial dif-

ferential equations with sufficiently well-behaved nonlinearities for which the “freezing” method allows one to

estimate the decay rate of solutions in terms of the spectrum of the equations linearized about a solution at a

fixed time [13, 17]. While we have not proven that the freezing method applies to Burgers equations, we feel

our results are a first step in rigorously verifying that the frozen time spectrum can serve as a mechanism for

understanding the metastable behavior of the family W px, t; ν,∆x, cq for time of order Op1q. See the discussion

in Section 5 for more details on why we feel the frozen spectrum provides insight into the evolution in this

case.

If we think of the spectral picture of the linearized equation (2.10)

Btv “ Lpν, t0qv “ νvxx ´ pW0px, t0; νqvqx ,

(where W0px, t0; νq is now evaluated at a fixed time t0), then at first glance it looks as if the solutions don’t

tend toward the family at all, since due to the zero eigenvalue of Lpν, t0q the linear evolution is not contractive.

However, the point of Theorem 2 is that by choosing the parameters x˚ and t˚ of W px, t˚; ν, x˚, cq appropriately,

the projection of a solution near W0px, t0; νq onto the subspace spanned by the corresponding eigenfunctions

ϕnpx ´ x˚ ´ ct˚; t˚, νq for n “ 0, 1, 2 is zero. Thus, we expect that the linear evolution will result in the

perturbation decaying towardW px, t˚; ν, x˚, cq with a rate governed by third non-zero eigenvalue, which according

to Theorem 1 satisfies

λ3 « ´
3

t0
.

See Figure 3. Thus, if we write t “ t0 ` τ with t0 " 1 fixed large enough that }v0} is small as discussed in

Remark 2.2 and τ{t0 ! 1), and then define ppτq so that the solution to (2.1) is upt0`τq “W px, t˚; ν, x˚, cq`ppτq,

then the size of the perturbation ppτq will decay like

}ppτq}L2 „ e´
3
t0
τ .

Since

1

pt0 ` τq3
“

1

pt0q3p1` τ{t0q3
“

e´3 lnp1` τ
t0
q

pt0q3
“

e´
3
t0
τ`Opτ2

{t20q

pt0q3
,

for τ{t0 small enough we have

}ppτq}L2 „
1

t3
.

Since the evolution along the family behaves like 1{t, as can be seen from equation (2.6)

W0px, t; νq “
1

t

”

x´ π tanh
´ πx

2νt

¯

`O
´

e´1{νt
¯ı

,
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solutions approach the family at a rate that is much faster than the evolution along the family justifying our

characterization of these states as metastable.

W (x⇤, t⇤)

span{'n(x⇤, t⇤)}n=0,1,2

Figure 3: A schematic representation for why Theorems 1 and 2 indicate that W px, t; ν,∆x, cq is a metastable

family for Burgers equation (2.1). In particular, choosing the initial condition to have projection zero onto the

span of tϕ0, ϕ1, ϕ2u, the evolution of the semi-flow generated by Lpν, t0q will contract toward this subspace with a

rate e´3τ{t0 . For a discussion of why we believe this reflects the decay of the actual linearized evolution, see the

discussion in Section 5.

3 Eigenvalue problem

In this section we prove Theorems 1 and 2. In order to aid understanding of our arguments we have summarized

our notation in Tables 3-5 in Appendix A. Without loss of generality we let c “ 0 and ∆x “ 0 (otherwise make

the substitution y “ x ´ ∆x ´ ct). If we consider the eigenvalue equation for the linear operator (2.11) with

λ “ 0 we have

B2
xϕ0 ´

1

ν
pW0px, t; νqϕ0qx “ 0.

Integrating this equation twice we find

ϕ0px; t, νq :“ exp

„

1

ν

ż x

W0ps, t; νqds



“
C

rψW px, t; νqs
2 (3.1)

is an exact eigenfunction for (2.11) with λ “ 0, where the function ψW px, t; νq was defined in (2.4). To find the

rest of the spectrum we define the transformation

ϕpx; t, νq “ T px; t, νqrϕpx; t, νq where T px; t, νq :“ exp

„

1

2ν

ż x

W0ps, t; νqds



“
rC

ψW px, t; νq
(3.2)

Without loss of generality we choose rC “ 1. A straightforward computation shows that λ is an eigenvalue

for (2.11) with associated eigenvector ϕpx; t, νq if, and only if, λ is an eigenvalue for the self-adjoint problem

(3.3)

rLpν, tqrϕ “λrϕ, rLpν, tqrϕ :“ ν rϕxx ´
1

2

„

BxW0px, t; νq `
1

2ν
W 2

0 px, t; νq



rϕ (3.3)

with associated eigenfunction ϕ̃ given by (3.2), where we again consider rLpν, tq as an operator

rLpν, tq : H2
perpr´π, πqq Ñ L2

perpr´π, πqq

for every fixed ν and t. In particular, since the transformation ϕ ÞÑ rϕ is bounded with bounded inverse, the

spectra of L and rL are identical. Owing to Sturm-Liouville theory for periodic self-adjoint scalar eigenvalue

problems (c.f. [10, Thm 2.1, 2.14]), the eigenvalues for (3.3) are ordered λ0 ą λ1 ě λ2 ą λ3 ě λ4 ą . . ..

Furthermore, the eigenfunctions rϕ2n´1 and rϕ2n have exactly 2n zeros in x P r´π, πq; since the transformation

(3.2) is strictly positive, the eigenfunctions ϕ2n´1 and ϕ2n for (2.11) have exactly 2n zeros in x P r´π, πq as

well. From (3.1) we see that ϕ0px; t, νq ą 0 has no zeros in x P r´π, πq since W is continuous; hence, all

other eigenvalues λn are contained on the negative real axis. The following Proposition completes the proof of

Theorem 1.
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Proposition 3.1 Let ε :“
?

2νt. There exists 0 ă ε0 ! 1 such that for all ε ď ε0 the next four eigenvalues for

(3.3) after λ0 “ 0 are

λ1 “´ 1{t`O
´

ε1{2e´1{ε2
¯

, λ2 “´ 2{t`O
´

ε´2e´1{ε2
¯

,

λ3 “´ 3{t`O
´

ε´7{2e´1{ε2
¯

, λ4 “´ 4{t`O
´

ε´6e´1{ε2
¯

. (3.4)

Furthermore, defining Ispεq :“ rε3{2, 2π ´ ε3{2s, If pεq :“ r´ε3{2, ε3{2s, there exists 0 ă Cpε0q ă 8 such that the

following estimates of the first two associated eigenfunctions hold for all ε ď ε0

rϕ1 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ
epx´πq

2
{2ε2

rϕ1px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supx

ˇ

ˇ

ˇ

ε2

2π2 eπ
2
{2ε2sech

`

πx
ε2

˘

rϕ1px; t, νq ´
”

sech2
`

πx
ε2

˘

´

1` x2

2ε2 `
ε2

2π2

¯

´ ε2

2π2

ı
ˇ

ˇ

ˇ
ď Cpε0qε

5{2 : x P If pεq

,

/

.

/

-

(3.5a)

rϕ2 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ

ε
x´π epx´πq

2
{2ε2

rϕ2px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε : x P Ispεq

supx

ˇ

ˇ

ˇ

ε
2π eπ

2
{2ε2

rϕ2px; t, νq ´
“

sinh
`

πx
ε2

˘

` πx
ε2 sech

`

πx
ε2

˘‰

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.5b)

See Figure 4 for a representation of Ispεq and If pεq. These intervals Is,f arise naturally from the fact that rL is a

singularly perturbed operator and we will discuss them in more detail in Section 3.1. In Section 3.1 we provide

intuition for Proposition 3.1 through a formal matched asymptotic argument. We compute the eigenfunctions

ϕnpx; t, νq associated with each λn and show that ϕ1,2px; t, νq have two zeros in x P r´π, πq and ϕ3,4px; t, νq have

four zeros in x P r´π, πq. For the interested reader we make these arguments rigorous in Section 4.

Estimates (3.5) can then be transformed into estimates on the adjoint eigenfunctions for (2.11) via (3.2) as

follows. Let L: represent the adjoint of L and ψn its eigenvector associated with λn so that L:ψn “ λnψn. Using

the fact that ϕn “ T rϕn as described in equation (3.2), rL “ T ´1LT and that the operators rL, T , and T ´1 are all

self-adjoint we find that T L:T ´1
rϕn “ λn rϕn, or, in other words, ψn “ T ´1

rϕn. We remark that since T px; t, νq

is even, ψnpx; t, νq has the same parity as rϕnpx; t, νq. In particular, we will show that ψn and rϕn are even for

n “ 0, 1 and odd for n “ 2.

Using the same types of computations as were used to derive (2.6) we can derive analogous estimates on the

transformation function T px; t, νq “ pψW q´1px, t; νq, namely

T ´1 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ
epx´πq

2
{2ε2T ´1px; ν, tq ´ 1

ˇ

ˇ

ˇ
ď Cpε0qe

´1{
?
ε : x P Ispεq

supx

ˇ

ˇ

ˇ

1
2ex

2
{2ε2eπ

2
{2ε2sech

`

πx
ε2

˘

T ´1px; ν, tq ´ 1
ˇ

ˇ

ˇ
ď Cpε0qe

´1{ε2 : x P If pεq

,

/

.

/

-

.

Thus, the following Proposition is an immediate corollary to Proposition 3.1 and the fact that

rϕ0px; t, νq “
1

ψW px, t; νq
“ T px; ν, tq.

Proposition 3.2 Let ε :“
?

2νt. There exists 0 ă ε0 ! 1 and 0 ă Cpε0q ă 8 such that for all ε ď ε0 the first

three eigenfunctions for (2.11) are

ψ0px; t, νq “
1
?

2π
(3.6a)

ψ1 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ
εepx´πq

2
{ε2ψ1px; t, νq ` 1

ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supx

ˇ

ˇ

ˇ

ε3

4π2 eπ
2
{ε2ex

2
{2ε2ψ1px; t, νq ´ 1

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.6b)

ψ2 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ

ε3

x´π epx´πq
2
{ε2ψ2px; t, νq ` 1

ˇ

ˇ

ˇ
ď Cpε0qε : x P Ispεq

supx

ˇ

ˇ

ˇ

ε3

4π eπ
2
{ε2ex

2
{2ε2sech

`

πx
ε2

˘

ψ2px; t, νq ´
“

sinh
`

πx
ε2

˘

` πx
ε2 sech

`

πx
ε2

˘‰

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.6c)
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We remark that in going from Proposition 3.1 to Proposition 3.2 we have introduced a scaling constant which

make the Implicit Function Theorem argument in the proof below as simple as possible. We recall that the

eigenfunctions in Proposition 3.2 are given in the moving frame x´∆x´ct ÞÑ x; thus to get eigenfunctions for the

linearization about W px, t0; ν, x0, cq in a stationary frame we replace x in Proposition 3.2 with x´∆x´ct.

Using Proposition 3.2 we prove Theorem 2.

Proof. (of Theorem 2) We first consider the inner product with ψ0px; t, νq. Since (2.1) preserves the mean of

solutions and the mean of W px, t; ν,∆x, cq “ c it is true that the mean v0 “ 0 for all time. Next, using the fact

that v˚ is given by

v˚px; t˚, x˚; νq :“W px, t0; ν, x0, cq ` v0px; t0, x0; νq ´W px, t˚; ν, x˚q,

we find

xv˚px; t˚, x˚; νq, ψ0px´ x˚ ´ ct˚; t˚, νqy “
1
?

2π

ż π

´π

v˚px; t˚, x˚; νqdx

“
?

2πv0 “ 0.

It remains to consider the inner products with ψ1 and ψ2. Let Ω Ă H2
per, I1 Ă R, I2 Ă R such that 0 P Ω, x0 P I1,

and t0 P I2. We apply the Implicit Function Theorem to F : Ωˆ I1 ˆ I2 Ñ R2

Fpv0;x˚, t˚; ν, cq :“

¨

˚

˝

xv˚px; t˚, x˚; νq, ψ1px´ x˚ ´ ct˚; t˚, νqy

xv˚px; t˚, x˚; νq, ψ2px´ x˚ ´ ct˚; t˚, νqy

˛

‹

‚

“

¨

˚

˝

xW0px´ x0 ´ ct0, t0; νq ´W0px´ x˚ ´ ct˚, t˚; νq, ψ1px´ x˚ ´ ct˚; t˚, νqy

xW0px´ x0 ´ ct0, t0; νq ´W0px´ x˚ ´ ct˚, t˚; νq, ψ2px´ x˚ ´ ct˚; t˚, νqy

˛

‹

‚

`

¨

˚

˝

xv0px, t0;x0; νq, ψ1px´ x˚ ´ ct˚; t˚, νqy

xv0px, t0;x0; νq, ψ2px´ x˚ ´ ct˚; t˚, νqy

˛

‹

‚

and show that Fpv0;x˚, t˚; νq “ 0 near pv0;x˚, t˚q “ p0;x0, t0q for every ε :“
?

2νt0 small enough. We will show

that F is uniformly bounded in ε, so that the subspaces Ω, I1, and I2 can be chosen independent of ε.

Due to Cauchy-Schwartz

xv0px; t0, x0; νq, ψnpx´ x˚ ´ ct˚; t˚, νqy ď }v0}L2
per
}ψn} ď }v0}H1

per
.

Thus, Fpv0;x0, t0; ν, cq “ 0 for v0 ” 0. In order to show that the matrix

¨

˚

˚

˝

| |
dF
dx˚

dF
dt˚

| |

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

px˚,t˚;v0q“px0,t0;0q

is invertible we use the facts that

d

dx˚
xW0px´ x0 ´ ct0, t0; νq ´W0px´ x˚ ´ ct˚, t˚; νq, ψnpx´ x˚ ´ ct˚; t˚, νqy

ˇ

ˇ

px˚,t˚q“px0,t0q

“ xrBxW0s px´ x0 ´ ct0, t0; νq, ψnpx´ x0 ´ ct0; t0, νqy

d

dt˚
xW0px´ x0 ´ ct0, t0; νq ´W0px´ x˚ ´ ct˚, t˚; νq, ψnpx´ x˚ ´ ct˚; t˚, νqy

ˇ

ˇ

px˚,t˚q“px0,t0q

“ cxrBxW0s px´ x0 ´ ct0, t0; νq, ψnpx´ x0 ´ ct0; t0, νqy

´ xrBtW0s px´ x0 ´ ct0, t0; νq, ψnpx´ x0 ´ ct0; t0, νqy.
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Since BxW0px, t; νq and ψ1px; t, νq are even functions and BtW0px, t; νq and ψ2px; t, νq are odd functions centered

about x “ nπ, n P Z we have that

0 “ xrBtW s py, t0; νq, ψ1py; t0, νqy

“ xrBxW s py, t0; νq, ψ2py; t0, νqy

“ x1, ψ2py; t0, νqy

where y :“ x´ x0 ´ ct0. In fact,

0 “ x1, ψnpy; t0, νqy @j ‰ 0

since, integrating the eigenfunction equation (2.11) from y “ ´π to π and using periodicity we get

0 “ λn

ż π

´π

ψnpy; t0, νqdy,

where λn “ 0 only for n “ 0. Finally, using the asymptotic expansions for the derivatives of W0px, t; νq, equations

(2.6),

BxW0px, t; νq “
1

t

„

1´
π2

2νt
sech2

´ πx

2νt

¯

`O
ˆ

1

t
e´1{νt

˙

BtW0px, t; νq “
1

t2

„

´x` π tanh
´ πx

2νt

¯

`
π2x

2νt
sech2

´ πx

2νt

¯

`O
ˆ

1

t
e´1{νt

˙

(3.7)

we get that

xrBxW0s py, t0; νq, ψ1py; t0, νqy “ ´

?
π

t0

”

1`O
´

ε3{2
¯ı

and

xrBtW0s py, t0; νq, ψ2py; t0, νqy “

?
π

2t20
r1`O pεqs (3.8)

where ε “
?

2νt0. We claim that the same scaling holds for the inner products with v0 so that F is indeed

uniformly bounded for all small ε, which we show at the end of this proof.

Additionally, using the fact that v P H1
per and integrating by parts we have

d

dx˚
xv0px, t0;x0; νq, ψnpx´ x˚ ´ ct˚; t˚, νqy “ ´ xv0px, t0;x0; νq, Bxψnpx´ x˚ ´ ct˚; t˚, νqy

“xBxv0px, t0;x0; νq, ψnpx´ x˚ ´ ct˚; t˚, νqy

ď}Bxv0}L2
per
ď }v0}H1

per

and similarly for the t˚ derivative. Thus

¨

˚

˚

˝

| |
dF
dx˚

dF
dt˚

| |

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

px˚,t˚;v0q“px0,t0;0q

“

¨

˚

˝

xrBxW0s pyq, ψ1pyqy xc rBxW0s pyq ´ rBtW0s pyq, ψ1pyqy

xrBxW0s pyq, ψ2pyqy xc rBxW0s pyq ´ rBtW0s pyq, ψ2pyqy

˛

‹

‚

“

¨

˚

˝

´
?
π
t0

“

1`O
`

ε3{2
˘‰

´
c
?
π

t0

“

1`O
`

ε3{2
˘‰

0 ´
?
π

2t20
r1`O pεqs

˛

‹

‚

“: Apεq
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which is invertible since detpApεqq “ π
2t30
r1`O pεqs which, for all ε sufficiently small, is not equal to zero. We

observe, in particular, that detpApεqq “ Op1q, which implies that the difference }v˚ ´ v0} is small for all ε ! 1.

It remains to show that there exists a C ă 8 such that |xv0, ψ1py; t, νqy| ď C and |xv0, ψ2py; t, νqy| “ C. The

first estimate follows from the fact that
ˇ

ˇ

ˇ

ˇ

ż π

´π

vwdx

ˇ

ˇ

ˇ

ˇ

ď }v}L8

ˇ

ˇ

ˇ

ˇ

ż π

´π

wdx

ˇ

ˇ

ˇ

ˇ

and the expansion for ψ1 in Proposition 3.2. For the second estimate, we first decompose v0 “ v0
even ` v

0
odd into

its even an odd components. We note that this is possible since v0 is periodic; in fact

v0
evenpxq “

1

2
pv0pxq ` v0p2π ´ xqq and v0

oddpxq “
1

2
pv0pxq ´ v0p2π ´ xqq .

Then

xv0, ψ2py; t, νqy “ xv0
even, ψ2py; t, νqy ` xv0

odd, ψ2py; t, νqy “ xv0
odd, ψ2py; t, νqy.

Using the expansion for ψ2 given in Proposition 3.2, which in particular shows it is exponentially localized near

x “ π ` 2nπ, we find that there exists a C ă 8 such that

|xvodd, ψ2py; t, νqy| ď C

›

›

›

›

v0
oddpxq

x´ π

›

›

›

›

L8

ˇ

ˇ

ˇ

ˇ

ż 2π

0

px´ πq2

ε3
e´px´πq

2
{ε2dx

ˇ

ˇ

ˇ

ˇ

ď rC

›

›

›

›

v0
oddpxq

x´ π

›

›

›

›

L8

for some appropriate rC. Using the fact that

v0
oddpxq

x´ π
“

1

2

v0pxq ´ v0p2π ´ xq

x´ π
“

1

2

şx

2π´x
v10pyqdy

x´ π
ď C}v10}L8 ď C}v0}H2

per

we obtain the desired estimate.

Thus it remains to prove Proposition 3.1. We give a formal asymptotic analysis argument in Section 3.1, which

provides the intuition behind the relevant scaling. In Section 4 we prove the proposition rigorously.

3.1 Overview and formal asymptotics

In this section we give a formal asymptotic analysis argument to provide intuition for our proof of Proposition 3.1

and the form of the eigenfunctions (3.5). The rigorous proof makes up the majority of this work and is given in

Section 4. We focus on the n “ 1, 2 cases since all of the technical difficulties arise in these cases. Let x P r´π, πq;

then, using estimates (2.6), the definition ε2 :“ 2νt, and formally dropping the higher order Ope´1{νtq terms,

the eigenfunction problem (3.3) is

ε2Bxx rϕn ´

„

1´
π2

ε2
sech2

´πx

ε2

¯

`
1

ε2

´

x´ π tanh
´πx

ε2

¯¯2


rϕn “ 2tλn rϕn. (3.9)

Let pλn “ 2tλn; rescaling space as ζ :“ x{ε (which, for reasons which will become clear shortly, we call the “slow

scale”) regularizes the problem, so that (3.9) becomes

Bζζ pϕn ´

«

1´
π2

ε2
sech2

ˆ

πζ

ε

˙

`

ˆ

ζ ´
π

ε
tanh

ˆ

πζ

ε

˙˙2
ff

pϕn “ pλn pϕn. (3.10)

The functions tanhp¨q and sechp¨q have highly localized derivatives with

sech pyq “ Ope´yq and tanh p˘yq “ ˘1`Ope´yq for |y| „ 8.
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Thus, for |ζ| P r
?
ε, π{εs, the terms 1

ε sechpπζ{εq and 1
ε r˘1´ tanhpπζ{εqs are Op 1

εe´1{
?
εq. Then formally taking

the limit εÑ 0 of (3.10) results in the limiting eigenvalue problem

Bζζ pϕn ´ r1` pζ ` π{εq
2spϕn “pλn pϕn, for ζ ă 0 and

Bζζ pϕn ´ r1` pζ ´ π{εq
2spϕn “pλn pϕn, for ζ ą 0.

We re-center the problem by defining ξ :“ ζ ´ π{ε and the fact that rϕnpx´ 2πq “ rϕnpxq to get

Bξξ pϕn ´ r1` ξ
2spϕn “pλn pϕn (3.11)

for ξ P r´π{ε`
?
ε, π{ε´

?
εs (which corresponds with x P Ispεq in Proposition 3.1). Equation (3.11) has explicit

eigenvalues pλn “ ´2n with associated eigenfunctions

pϕnpξq “Hn´1pξqe
´ξ2{2

where Hnpξq are the physicist’s Hermite polynomials, the first few of which are

H0pyq “ 1, H1pyq “ 2y, H2pyq “ 2p2y2 ´ 1q, H3pyq “ 4yp2y2 ´ 3q.

The slow variables, however, do not capture the behavior of the eigenfunctions for |ξ| !
?
ε where the terms

1
ε sechpπξ{εq and 1

ε r˘1 ´ tanhpπξ{εqs are non-negligible. On the other hand, introducing the faster space scale

z :“ x{ε2 (which we henceforth refer to as the “fast scale”), equation (3.3) becomes

Bzz qϕn ´
“

ε2 ` π2 ´ 2π2sech2
pπzq ` ε4z2 ´ 2πε2z tanh pπzq

‰

qϕn “ ε2
pλn qϕn. (3.12)

Hence, for z P r´1{
?
ε, 1{

?
εs (which corresponds with x P If pεq in Proposition 3.1), the terms ε2z are Opε3{2q.

Again formally taking the limit εÑ 0 results in the limiting eigenvalue problem

Bzz qϕn ` π
2r2sech2

pπzq ´ 1sqϕn “0. (3.13)

Equation (3.13) has two linearly independent solutions

P pzq “sechpπzq and Qpzq “ sinhpπzq ` πzsechpπzq.

We set qϕ2pz; pλnq “ Qpzq, anticipating that the fast eigenfunction does not depend, to leading order, on the

eigenvalues pλn. As we will show below, however, the matching occurs on the terms which exponentially grow

like eπz; thus, since sechpπzq is exponentially decaying, for qϕ1 we need to include the Opε2q correction so that

qϕ1pz; pλnq “ P pzq ` ε2P1pz; pλnq where

P1pz; pλnq “
pλn
π2

coshpπzq `

ˆ

z2

2
` c

˙

sechpπzq

solves

B2
zP1pz; pλnq ` π

2r2sech2
pπzq ´ 1sP1pz; pλnq “

”

1` pλn ´ 2πz tanhpπzq
ı

P pz; pλnq.

P1pxq now includes the exponentially growing term coshpπzq. The fast variables are complementary to the slow

variables in the sense that now they do not capture the behavior of the eigenfunctions for |z| " 1{
?
ε where the

terms ε2z and ε4z2 are non-negligible.

Our decomposition of the interval r´ε3{2, 2π´ ε3{2s “ Ispεq Y If pεq now becomes clear. For x P Ispεq, we expect

the slow-variable eigenfunctions pϕ to give a good approximation to rϕ, whereas for x P If pεq we expect the

fast-variable eigenfunctions qϕ to give a good approximation. See Figure 4.

We formally construct eigenfunctions rϕnpxq for (3.9) by pasting a slow and a fast solution together; due to

symmetry considerations, we glue pϕnppx ´ πq{εq with qϕ1px{ε
2; pλnq for n odd and to qϕ2pz; pλnq for n even. The

formal asymptotic analysis procedure is as follows. We add the formal eigenfunctions for (3.10) and (3.12)
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with relative scaling Cn. We determine Cn by requiring pϕnppx ´ πq{εq “ Cn qϕnpx{ε
2q in the overlap region

|x| « ε3{2. We then subtract the overlap at the matching point x “ ε3{2; we define the overlap function

ϕ̆n :“ pϕnp
?
ε´ π{εq “ Cn qϕnp1{

?
εq. We consider x P r0, πs; the analysis for x P r´π, 0s is completely analogous

by symmetry. The resulting eigenfunctions are of the form

rϕ1px; t, νq “e´px´πq
2
{2ε2 ` C1

„

1`
x2

2ε2
` ε2c



sech
´πx

ε2

¯

´ C1
ε2

π2
cosh

´πx

ε2

¯

´ ϕ̆1

rϕ2px; t, νq “
x´ π

ε
e´px´πq

2
{2ε2 ` C2 sinh

´πx

ε2

¯

` C2
πx

ε2
sech

´πx

ε2

¯

´ ϕ̆2

We define the spatial variable

η :“
x

ε3{2
“

ζ
?
ε
“
?
εz

which captures the behavior of rϕn in the overlap region. Then, for 0 ă η “ Op1q, the matching conditions

Cn pϕnpx{εq “ qϕnpx{ε
2q are

e´π
2
{2ε2eηπ{

?
εe´εη

2
{2 “C1

ˆ

1`
εη2

2

˙

2

eπη{
?
ε ` e´πη{

?
ε
´ C1

ε2

2π2

´

eπη{
?
ε ` e´πη{

?
ε
¯

pπ ` ε
?
εηq

ε
e´π

2
{2ε2eηπ{

?
εe´εη

2
{2 “

1

2

´

eπη{
?
ε ´ e´πη{

?
ε
¯

` C2
πη
?
ε

2

eπη{
?
ε ` e´πη{

?
ε
.

which to leading order becomes

e´π
2
{2ε2eηπ{

?
ε “´ C1

ε2

2π2
eπη{

?
ε and

π

ε
e´π

2
{2ε2eηπ{

?
ε “ C2

1

2
eπη{

?
ε

and is satisfied by C1 “
´2π2

ε2 e´π
2
{2ε2 and C2 “

2π
ε e´π

2
{2ε2 with overlap

ϕ̆1 “ e´π
2
{2ε2eπx{ε

2

and ϕ̆2 “
π

ε
e´π

2
{2ε2eπx{ε

2

We emphasize that the matching for both eigenfunctions was done using the coefficients in front of the exponen-

tially growing terms eηπ{
?
ε and is why we needed to include the first order correction term in qϕ1pzq. Putting

everything together, and subtracting the overlap we get

rϕ1px; t, νq “e´px´πq
2
{2ε2 ´ e´π

2
{2ε2

"

2π2

ε2

„

1`
x2

2ε2
` ε2c



sech
´πx

ε2

¯

´ 2 cosh
´πx

ε2

¯

*

´ e´π
2
{2ε2eπx{ε

2

rϕ2px; t, νq “
1

ε

”

px´ πqe´px´πq
2
{2ε2 ` 2πe´π

2
{2ε2 sinh

´πx

ε2

¯

´ πe´π
2
{2ε2eπx{ε

2
ı

.

The analysis for x P r´π, 0s is completely analogous and the results can be extended to x P R by periodicity.

The asymptotic results agree with (3.5). A schematic of the resulting eigenfunctions rϕ1 through rϕ4 is shown in

Figure 4.

We make a few observations. First, to leading order, the eigenvalues λn “ pλn{2t “ ´n{t are given by the

slow eigenvalue problem (3.10). Secondly, the contribution to rϕnpxq from the fast eigenfunctions qϕnpx{ε
2q

is exponentially smaller than the contribution from the slow eigenfunctions pϕnpx{εq. However, as we have

already remarked, undoing transformation (3.2), which is exponentially localized in x P If pεq, the behavior of

eigenfunctions (3.6) for (2.11) in x P If pεq becomes relevant. Thus it is essential that we carefully construct the

eigenfunctions in both the slow and the fast variables.

In Sections 4.1-4.3 we make the above formal arguments rigorous by computing the eigenfunctions for (3.3).

In Sections 4.1 and 4.2 we rigorously compute the eigenfunction in each of the spatial regimes, Ispεq and If pεq

respectively, using the spatial scaling motivated by the arguments above. We then rigorously match these

solutions at the overlap point x “ ˘ε3{2 in Section 4.3.
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(a) rϕ1px; εq where pϕ1pξq « e´ξ
2{2 and

qϕ1pz; pλ1q « P pzq ` ε2P1pz;´2q

(b) rϕ2px; εq where pϕ2pξq « ξe´ξ
2{2 and

qϕ2pz; pλ2q « Qpzq

(c) rϕ3px; εq where pϕ3pξq « p2ξ
2
´ 1qe´ξ

2{2 and

qϕ1pz; pλ3q « P pzq ` ε2P1pz;´6q

(d) rϕ4px; εq where pϕ4pξq « ξp2ξ2 ´ 3qe´ξ
2{2 and

qϕ2pz; pλ4q « Qpzq

Figure 4: Eigenfunctions for (3.3) constructed by gluing a slow solution pϕn to a fast solution qϕn. Due to

symmetry considerations, we glue pϕn to qϕ1 for n odd and to qϕ2 for n even. Figures not drawn to scale; in fact,

the magnitude of qϕn is exponentially small relative to the magnitude of pϕn.

4 Rigorous analysis of the eigenvalue problem

In Section 3.1 we provided a formal matched asymptotic analysis argument which gives the intuition behind

Proposition 3.1, the key proposition for the proof of Theorems 1 and 2. We anticipate that many readers will

find the formal arguments sufficient. However, for the interested reader we provide in this section the rigorous

analysis which shows that the results in Proposition 3.1 are indeed valid. The proof of this result is technical

and relies on many notations. In order to aid understanding of our arguments we have summarized our notation

in Tables 3-5 in Appendix A.

4.1 Slow variables

In this section we compute the eigenfunctions for (3.3) for x P Ispεq. Motivated by the formal asymptotic analysis

in Section 3.1 we define the slow variable ξ :“ px´ πq{ε. We call the eigenfunctions in these coordinates pϕnpξq;

they are defined for ξ P r´π{ε` ε1{2, π{ε´ ε1{2s “: pIspεq and satisfy

Bξξ pϕn ´
”

xWξpξ; εq `xW 2pξ; εq
ı

pϕn “ pλn pϕn (4.1)

where pλn :“ 2tλn and for any t P R`

xW pξ; εq :“
t

ε
W0pεξ ` π, t; νq “

„

ξ ´
2π

ε

ř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq



,

xWξpξ; εq :“t rBxW0s pεξ ` π, t; νq “

«

1´
4π2

ε2

˜

ř

nPZ n
2
yexpnpξ; εq

ř

nPZ yexpnpξ; εq
´

ˆř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq

˙2
¸ff

,

and yexpnpξ; εq :“

#

expr´2nπpnπ ´ εξq{ε2s : n ě 0

expr2nπp´nπ ` εξq{ε2s : n ď 0

(4.2)

The form of yexpnpξ; εq follows from the same type of computations as for (2.7) in Proposition 2.1

exp

„

´pεξ ` 2π ´ 2nπq2

2ε2



“ exp

„

´pεξ ´ 2πpn´ 1qq2

2ε2



“ exp

„

´ξ2

2



exp

„

´2πp´εξpn´ 1q ` pn´ 1q2q

ε2



,
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factoring out the dominant mode expr´ξ2{2s from the numerator and denominator and shifting n. We remark

that even though xWξpξ; εq is determined by an appropriate transformation of BxW0px, t; νq, it is also true that

BξxW pξ; εq “ xWξpξ; εq; hence our notation.

Motivated by the formal analysis we re-write (4.1) as

Bξξ pϕn ´
”

1` ξ2 ` pN pξ; εq
ı

pϕn “ p´2n` pΛnqpϕn

with pΛn :“ pλn`2n and pN pξ; εq :“ xWξpξ; εq`xW
2pξ; εq´p1`ξ2q, which is equivalent to the first order system

Bξ pUn “ pAnpξqpUn ` pNnppUn, ξ; ε, pΛnq (4.3)

where pUn :“ ppϕn, pψnq
T with pψn :“ Bξ pϕn,

pAn :“

¨

˚

˝

0 1

1` ξ2 ´ 2n 0

˛

‹

‚

, and pNnppϕn, pψn, ξ; ε, pΛnq :“

¨

˚

˝

0
´

pN pξ; εq ` pΛn

¯

pϕn

˛

‹

‚

.

Lemma 4.1 Fix pε1 ą 0. There exists 0 ă pCppε1q ă 8 such that for all ε ď pε1 and ξ P pIspεq,

ˇ

ˇ

ˇ

pN pξ; εq
ˇ

ˇ

ˇ
ď

pCppε1q

ε2
expr´π2{ε2s expr´pπ ´ εξq2{ε2s exprξ2s (4.4a)

ď
pCppε1q

ε2
expr´2π{

?
εs. (4.4b)

Proof. Define r :“ expr´2πpπ´ ε|ξ|q{ε2s. Then, due to (4.2), 0 ăyexpnpξ; εq ď r|n| with r ď expr´2π{
?
εs ă 1;

furthermore, since yexp0pξ; εq “ 1 for all ξ and ε,
ř

nPZ yexpnpξ; εq ě 1. Thus there exists 0 ă pCppε1q ă 8 such

that for all ε ď pε1

ˇ

ˇ

ˇ

pN pξ; εq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

xWxpξ; εq `xW 2pξ; εq ´ p1` ξ2q

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

8π2

ε2

ˆř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq

˙2

´
4π2

ε2

ř

nPZ n
2
yexpnpξ; εq

ř

nPZ yexpnpξ; εq
´

4πξ

ε

ř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
4π

ε2

»

–2

˜

ÿ

nPZ
|n|r|n|

¸2

`
ÿ

nPZ
n2r|n| ` ε|ξ|

ÿ

nPZ
|n|r|n|

fi

fl

ď
4π

ε2

«

2

ˆ

2r

p1´ rq2

˙2

`
2rp1` rq

p1´ rq3
` ε|ξ|

2r

p1´ rq2

ff

ď
pCppε1qr

ε2
“

pCppε1q

ε2
expr´2π2{ε2s expr2πξ{εs

“
pCppε1q

ε2
expr´π2{ε2s expr´pπ ´ εξq2{ε2s exprξ2s

ď
pCppε1q

ε2
expr´2π{

?
εs,

using the fact that ε|ξ| ď π ´ ε3{2.

For n P t1, 2, 3, 4u the leading-order evolution equation Bξ pVn “ pAnpξqpVn has the two linearly independent

19



solutions pVn,jpξq, j P t1, 2u, where

pV1,1pξq :“

¨

˚

˝

e´ξ
2
{2

´ξe´ξ
2
{2

˛

‹

‚

pV1,2pξq :“
1

2

¨

˚

˝

?
πe´ξ

2
{2erfipξq

”

´
?
πξe´ξ

2

erfipξq ` 2
ı

eξ
2
{2

˛

‹

‚

pV2,1pξq :“

¨

˚

˝

ξe´ξ
2
{2

p1´ ξ2qe´ξ
2
{2

˛

‹

‚

pV2,2pξq :“

¨

˚

˝

”

1´
?
πξe´ξ

2

erfipξq
ı

eξ
2
{2

”

´ξ `
?
πpξ2 ´ 1qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

pV3,1pξq :“

¨

˚

˝

p2ξ2 ´ 1qe´ξ
2
{2

ξp5´ 2ξ2qe´ξ
2
{2

˛

‹

‚

pV3,2pξq :“
1

4

¨

˚

˝

”

2ξ `
?
πp1´ 2ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

”

4´ 2ξ2 `
?
πp2ξ2 ´ 5qξe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

pV4,1pξq :“

¨

˚

˝

ξp2ξ2 ´ 3qe´ξ
2
{2

p´2ξ4 ` 9ξ2 ´ 3qe´ξ
2
{2

˛

‹

‚

pV4,2pξq :“
1

6

¨

˚

˝

”

2´ 2ξ2 `
?
πξp2ξ2 ´ 3qe´ξ

2

erfipξq
ı

eξ
2
{2

”

2ξpξ2 ´ 4q `
?
πp´2ξ4 ` 9ξ2 ´ 3qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

,

as can be verified by explicit computation. We solve (4.3) for ξ P pIspεq :“ r´π{ε `
?
ε, π{ε ´

?
εs. We expect

pϕnpξq is close to the formal eigenfunction Hn´1pξqe
´ξ2{2; thus, owing to symmetry considerations, we assume

that pUnp0q P span
!

pVn,1p0q
)

. We then parametrize the corresponding solution to (4.3) at the matching point

x “ ˘ε3{2, which corresponds with ξ “ ¯pπ{ε´
?
εq “: ¯ξ0.

Proposition 4.2 Define for every ε the norm }up¨q}ε “ supξPpIspεq |upξq|; also define

Λ̆1 :“
1

ξ0
eξ

2
0 pΛ1, Λ̆2 :“

1

ξ3
0

eξ
2
0 pΛ2, Λ̆3 :“

1

ξ5
0

eξ
2
0 pΛ3, and Λ̆4 :“

1

ξ7
0

eξ
2
0 pΛ4.

Then there exist constants pε0,pρ1,pρ2 ą 0 such that for all 0 ď ε ď pε0 the set of all solutions to (4.3) with

}up¨q}ε ď pρ1, pUnp0q “ pdn pVn,1p0q and |dn|, |Λ̆n| ď pρ2 are given by

pϕ1pξ; ε, Λ̆1q “ pd1

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆1|q

ı

e´ξ
2
{2

pψ1pξ; ε, Λ̆1q “ ´ pd1

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆1|q

ı

ξe´ξ
2
{2

pϕ2pξ; ε, Λ̆2q “ pd2

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆2|q

ı

ξe´ξ
2
{2

pψ2pξ; ε, Λ̆2q “ ´ pd2

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆2|q

ı

pξ2 ´ 1qe´ξ
2
{2,

pϕ3pξ; ε, Λ̆3q “ pd3

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆3|q

ı

p2ξ2 ´ 1qe´ξ
2
{2

pψ3pξ; ε, Λ̆3q “ ´ pd3

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆3|q

ı

ξp2ξ2 ´ 5qe´ξ
2
{2

pϕ4pξ; ε, Λ̆4q “ pd4

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆4|q

ı

ξp2ξ2 ´ 3qe´ξ
2
{2

pψ4pξ; ε, Λ̆4q “ ´ pd4

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆4|q

ı

p2ξ4 ´ 9ξ2 ` 3qe´ξ
2
{2 (4.5)

where the coefficients in front of Λ̆n at the matching point ξ “ ξ0 are

pϕ1 :

?
π

4

“

1`Opε2q
‰

Λ̆1
pψ1 : ´

?
π

4

“

1`Opε2q
‰

Λ̆1

pϕ2 :

?
π

8

“

1`Opε2q
‰

Λ̆2
pψ2 : ´

?
π

8

“

1`Opε2q
‰

Λ̆2

pϕ3 :

?
π

8

“

1`Opε2q
‰

Λ̆1
pψ3 : ´

?
π

8

“

1`Opε2q
‰

Λ̆1

pϕ4 :
3
?
π

16

“

1`Opε2q
‰

Λ̆2
pψ4 : ´

3
?
π

16

“

1`Opε2q
‰

Λ̆2. (4.6)
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Furthermore,

pϕ1p´ξ; ¨q “ pϕ1pξ; ¨q, pϕ2p´ξ; ¨q “ ´pϕ2pξ; ¨q, pϕ3p´ξ; ¨q “ pϕ3pξ; ¨q, pϕ4p´ξ; ¨q “ ´ pϕ4pξ; ¨q

pψ1p´ξ; ¨q “ ´ pψ1pξ; ¨q, pψ2p´ξ; ¨q “ pψ2pξ; ¨q, pψ3p´ξ; ¨q “ ´ pψ3pξ; ¨q, pψ4p´ξ; ¨q “ pψ4pξ; ¨q.

We remark that the definition of Λ̆n implies that the eigenvalues for (3.3) are exponentially close to the eigenvalues

for (3.11). This is consistent with our numerical simulations; we will show why this is a valid assumption in

Section 4.3. Note further that (4.5) shows that the eigenfunctions pϕn are close to the formal eigenfunctions

Hn´1pξqe
´ξ2{2 as expected from the formal calculations in Section 3.1.

Proof. All solutions to (4.3) with initial data pUnp0q “ pdn pVn,1p0q satisfy the fixed point equation

pUnpξq “pdn pVn,1pξq ` pVn,1pξq

ż ξ

0

xxWn,1pτq, pNnppUnpτq, τ ; ε, pΛnqydτ ` pVn,2pξq

ż ξ

0

xxWn,2pτq, pNnppUnpτq, τ ; ε, pΛnqydτ

(4.7)

where

xW1,1pξq :“
1

2

¨

˚

˝

”

´
?
πξe´ξ

2

erfipξq ` 2
ı

eξ
2
{2

´
?
πe´ξ

2
{2erfipξq

˛

‹

‚

xW1,2pξq :“

¨

˚

˝

ξe´ξ
2
{2

e´ξ
2
{2

˛

‹

‚

xW2,1pξq :“

¨

˚

˝

”

ξ `
?
πp1´ ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

”

1´
?
πξe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

xW2,2pξq :“

¨

˚

˝

p1´ ξ2qe´ξ
2
{2

´ξe´ξ
2
{2

˛

‹

‚

,

xW3,1pξq :“
1

4

¨

˚

˝

”

2ξ2 ´ 4`
?
πp5´ 2ξ2qξe´ξ

2

erfipξq
ı

eξ
2
{2

”

2ξ `
?
πp1´ 2ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

xW3,2pξq :“

¨

˚

˝

ξp5´ 2ξ2qe´ξ
2
{2

p1´ 2ξ2qe´ξ
2
{2

˛

‹

‚

xW4,1pξq :“
1

6

¨

˚

˝

r2ξpξ2 ´ 4q `
?
πp´2ξ4 ` 9ξ2 ´ 3qe´ξ

2

erfipξqseξ
2
{2

”

2ξ2 ´ 2`
?
πξp3´ 2ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

xW4,2pξq :“

¨

˚

˝

p2ξ4 ´ 9ξ2 ` 3qe´ξ
2
{2

ξp2ξ2 ´ 3qe´ξ
2
{2

˛

‹

‚

,

are two linearly independent solutions to the associated adjoint equation xW 1
n “ ´ pA˚npξqxWn, which have been

normalized so that xpVn,i,xWn,jyR2 “ δij . Equation (4.7) is linear and defined for ξ P R; thus solutions exist and are

bounded on any finite interval. However, they may not be uniformly bounded in ε since the interval of integration
pIspεq grows like 1{ε. Our first goal, therefore, is to show that the constant bounding the higher order terms in

(4.5) does not grow with pIspεq. Motivated by the formal analysis we use the ansatz pϕnpξq “ Hn´1pξqe
´ξ2{2

punpξq

and pψnpξq “
d
dξ

”

Hn´1pξqe
´ξ2{2

ı

pvnpξq to solve (4.7). We focus on n “ 1, 2, since all of the technical difficulties

arise in these cases; the n “ 3, 4 cases can be proven completely analogously. The resulting evolution equations
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for pun and pvn are

pu1pξ; ε, Λ̆1q “pd1 ´

?
π

2

ż ξ

0

e´τ
2

erfipτq
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

`

?
π

2
erfipξq

ż ξ

0

e´τ
2
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

“ : pF1,uppu1; ε, pd1, pΛ1q (4.8a)

pv1pξ; ε, Λ̆1q “pd1 ´

?
π

2

ż ξ

0

e´τ
2

erfipτq
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

´
1

2ξ

”

2eξ
2

´
?
πξerfipξq

ı

ż ξ

0

e´τ
2
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

“ : pF1,vppu1; ε, pd1, pΛ1q (4.8b)

pu2pξ; ε, Λ̆2q “pd2 `

ż ξ

0

τ
”

1´
?
πτe´τ

2

erfipτq
ı ´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

´
1

ξ

”

eξ
2

´
?
πξerfipξq

ı

ż ξ

0

τ2e´τ
2
´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

“ : pF2,uppu2; ε, pd2, pΛ2q (4.8c)

All terms in (4.8a)-(4.8c) are well defined for all ξ since for ξ small we have

ż ξ

0

e´τ
2

dτ “ξ ´
ξ3

3
`Opξ5q and

ż ξ

0

τ2e´τ
2

dτ “
ξ3

3
`Opξ5q.

For ψ2pξq we fix ξ1 ą 1 and make the ansatz

ψ2pξ; ε, Λ̆2q “

$

’

&

’

%

e´ξ
2
{2v̆2pξ; ε, Λ̆2q : |ξ| ď ξ1

e´ξ
2
{2
”

v̆2p|ξ1|; ε, Λ̆2q ` p1´ ξ
2qpv2pξ; ε, Λ̆2q

ı

: |ξ| ě ξ1

,

/

.

/

-

where v̆2 is defined for |ξ| ď ξ1 and pv2 is defined for |ξ| ě ξ1 and

v̆2pξ; ε, Λ̆2q “pd2p1´ ξ
2q ` p1´ ξ2q

ż ξ

0

τ
“

1´
?
πτe´τerfipτq

‰

´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

`

”

ξeξ
2

´
?
πpξ2 ´ 1qerfipξq

ı

ż ξ

0

τ2e´τ
2
´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

pv2pξ; ε, Λ̆2q “pd2
ξ2
1 ´ ξ

2

1´ ξ2
`

ż ξ

ξ1

τ
“

1´
?
πτe´τerfipτq

‰

´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

´
1

ξ2 ´ 1

”

ξeξ
2

´
?
πpξ2 ´ 1qerfipξq

ı

ż ξ

ξ1

τ2e´τ
2
´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

“ : pF2,vppu2; ε, pd2, pΛ2q. (4.8d)

Now v̆2pξq is clearly uniformly bounded with

v̆2pξ; ε, Λ̆2q “ pd2p1´ ξ
2q `Opε´2e´2π{

?
ε ln ε` |Λ̆2|q for |ξ| ď ξ1

and pF2,v is well-defined for all ξ ě ξ1. Define pDεpρq :“ tu P C0ppIspεqq : }u}ε ď ρu. Our goal is to show there

exists pρ1, pρ2, pε0 ! 1 small enough such that

pFn,jppu; ε, pdn, Λ̆nq : pDεppρ1q ˆ tε ď pε0u ˆ t|pdn|, |Λ̆n| ď pρ2u Ñ pDεppρ1q with j P tu, vu,

whence punpξ; ε, Λ̆nq and pvnpξ; ε, Λ̆nq will be uniformly bounded in pIspεq. Using (4.4a) to bound the nonlinearity

when multiplied by an exponentially small integrand „ e´τ
2

and (4.4b) to bound the nonlinearity when multiplied
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by an algebraic integrand „ e´τ
2

erfipτq, and Claim 4.3 below, there exists a 0 ă C2ppε1q ă 8 such that for all

pu1 P pDεpρq and ε ď pε2,

} pF1,uppu1; ε, pd1, ξ0e´ξ
2
0 Λ̆1q}ε ď|pd1| `

?
πρ

2

„

˜

pCppε1q

ε2
e´2π{

?
ε `

1

ε
e´π

2
{ε2e2π{

?
εΛ̆1

¸

ż ξ0

0

e´τ
2

erfipτqdτ

`
pCppε1q

ε2
e´π

2
{ε2erfipξ0q

ż ξ0

0

e´pπ´ετq
2
{ε2dτ ` ξ0e´ξ

2
0 Λ̆1erfipξ0q

ż ξ0

0

e´τ
2

dτ



ď|pd1| `

?
πρ pC2ppε1q

2

„

˜

pCppε1q

ε2
e´2π{

?
ε `

1

ε
e´π

2
{ε2e2π{

?
εΛ̆1

¸

ln ε`
pCppε1q

ε
e´2π{

?
ε ` Λ̆1



.

It is now straightforward to show that there exist constants pρ1, pρ2 ą 0 and 0 ă pε0 ď pε2 such that pFnppun; ε, pdn, e
´ξ20 Λ̆nq P

pDεppρ1q for all pun P pDεppρ1q, |pdn|, |Λ̆n| ď pρ1, and ε ď pε0. We remark that the coefficients in Λ̆1 is Op1q as a conse-

quence of our choice of scaling of pΛ1.

A completely analogous argument holds for pF1,v, pF2,u, and pF2,v, with the following modification

(i) For pF2,v we use the function space pDεpρq :“ tu P C0prξ1, ξ0sq : }u}ε ď ρu.

(ii) For pF2,u, in order to get the specific form of the Opε´2e´2π{
?
ε ln ε` |Λ̆2|q we need

argmax
ξPpIspεq

ˇ

ˇ

ˇ

ˇ

ˇ

ż ξ

0

τ
”

1´
?
πτe´τ

2

erfipτq
ı

dτ

ˇ

ˇ

ˇ

ˇ

ˇ

“ argmax
ξPpIspεq

ˇ

ˇ

ˇ

ˇ

ˇ

1

ξ
eξ

2
”

1´
?
πξe´ξ

2

erfipξq
ı

ż ξ

0

τ2e´τ
2

dτ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ˘ξ0.

In other words, we need to keep the minus signs and still show that the argmax occurs at the end of the

interval pIspεq. But this is true for all ε small enough by using the asymptotic expansions shown in Table 1

to get

lim
ξÑ8

ż ξ

0

τ
”

1´
?
πτe´τ

2

erfipτq
ı

“ lim
ξÑ8

„

1

2
ln

ˆ

1

ξ

˙

`O p1q


Ñ ´8

lim
ξÑ8

1

ξ

”

eξ
2

´
?
πξerfipξq

ı

ż ξ

0

τ2e´τ
2

dτ “ lim
ξÑ8

eξ
2 1

ξ3

„

´

?
π

8
`Op1{ξ2q



Ñ ´8,

and noting that the expressions are bounded on any bounded interval.

(iii) A similar issue as (ii) arises in pF2,v; a completely analogous argument gives the desired result.

Using the uniform bounds on pun we get estimates (4.5). Plugging these estimates back into (4.8), again using

Claim 4.3 and the asymptotic expansions shown in Table 1, we can explicitly integrate the terms multiplying Λ̆n

to leading order at ξ “ ξ0 since pdn is a constant. We obtain (4.6).

The symmetries then follow from the symmetry of the nonlinear term pN pξ; εq which is an even function in ξ

since W px; εq is odd and Wxpx; εq is even in x, as we noted in Section 2.1. Hence, for all even functions punpξq,
pFnppun; ¨q is even. Thus punpξq and pvnpξq are even and the symmetries for pϕn and pψn follow from the symmetries

of Hnpξqe
´ξ2{2.

It remains to prove the following claim.

Claim 4.3 Fix pε1 as in Lemma 4.1. Then there exists 0 ă pC2ppε1q ă 8 such that

ż ξ0

0

e´τ
2

erfipτqdτ ď pC2ppε1q ln ε and erfipξ0q

ż ξ0

0

e´τ
2

dτ ď pC2ppε1qεe
π2
{ε2e´2π{

?
ε

and, moreover, such that

erfipξ0q

ż ξ0

0

e´pπ´ετq
2
{ε2dτ ď pC2ppε1qεe

π2
{ε2e´2π{

?
ε.
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erfipξq eξ
2 1
ξ
?
π

”

1` 1
2ξ2 `O

´

1
ξ4

¯ı

şξ

0
e´τ

2

dτ
?
π

2 ´ e´ξ
2 1

2ξ

”

1´ 1
2ξ2 `O

´

1
ξ4

¯ı

şξ

0
τ2e´τ

2

dτ
?
π

4 ´ e´ξ
2 ξ

4

”

2` 1
ξ2 `O

´

1
ξ4

¯ı

şξ

0
τ4e´τ

2

dτ 3
?
π

8 ´ e´ξ
2 ξ3

4

”

2` 3
ξ2 `O

´

1
ξ4

¯ı

şξ

0
τ6e´τ

2

dτ 15
?
π

16 ´ e´ξ
2 ξ5

4

”

2` 5
ξ2 `O

´

1
ξ4

¯ı

?
π
şξ

0
e´τ

2

erfipτqdτ ´ ln
´

1
ξ

¯

´ 1
2ψ
p0q

`

1
2

˘

`O
´

1
ξ2

¯

şξ

0
τ r1´

?
πτe´τ

2

erfipτqsdτ 1
2 ln

´

1
ξ

¯

` 1
4ψ
p0q

`

´ 1
2

˘

`O
´

1
ξ2

¯

şξ

0
τ3r1´

?
πτe´τ

2

erfipτqsdτ ´
ξ2

4 `
3
4 ln

´

1
ξ

¯

` 3
8ψ
p0q

`

´ 3
2

˘

`O
´

1
ξ2

¯

şξ

0
τ5r1´

?
πτe´τ

2

erfipτqsdτ ´
ξ2pξ2`3q

8 ` 15
8 ln

´

1
ξ

¯

` 15
16ψ

p0q
`

´ 5
2

˘

`O
´

1
ξ2

¯

Table 1: The asymptotic behavior of all terms in (4.7) for ξ " 1 and n P

t1, 2, 3, 4u. The integrals and asymptotic expansions were computed using Mathemat-

ica. ψp0qpxq is the digamma function, where ψp0qp1{2q “ ´γ ´ lnp4q, ψp0qp´1{2q “

2 ´ γ ´ lnp4q, ψp0qp´3{2q “ 8
3
´ γ ´ lnp4q, ψp0qp´5{2q “ 45

15
´ γ ´ lnp4q, and

γ “ limnÑ8

`
řn
n“1

1
n
´ lnn

˘

is the Euler-Mascheroni constant.

Proof. The claim follows from the asymptotic expansions in Table 1, the facts that

ż ξ0

0

e´pπ´ετq
2
{ε2dτ ď

ż 8

´8

e´pπ´ετq
2
{ε2dτ “

ż 8

´8

e´τ
2

dτ “
?
π

due to symmetry, and the small argument approximation
ş

?
ε

0
e´τ

2

dτ “
?
ε r1`O pεqs .

4.2 Fast variables

In this section we compute the eigenfunctions for (3.3) for x P If pεq :“ r´ε3{2, ε3{2s. Motivated by the formal

asymptotic analysis in Section 3.1 we define the fast variable z :“ x{ε2. We call the eigenfunctions in these

coordinates qϕnpzq; they are defined for z P r´1{
?
ε, 1{

?
εs “: qIf pεq and satisfy

Bzz qϕn ´
”

|Wzpz; εq `|W 2pz; εq
ı

qϕn “ ε2
pλn qϕn (4.9)

where for any t P R`

|W pz; εq :“tW0pε
2z, t; νq,

|Wzpz; εq :“tε2 rBxW0s pε
2z, t; νq,

We remark that even though |Wzpz; εq is obtained through an appropriate transformation of BxW0px, t; νq, it is

also true that |Wzpz; εq “ Bz|W pz; εq; hence our notation.

Motivated by the formal analysis we re-write (4.9) as

Bzz qϕn ´
”

π2 ´ 2π2sech2
pπzq ` qN pz; εq

ı

qϕn “ ε2
pλn qϕn

with qN pz; εq :“ |Wxpz; εq `|W 2pz; εq ´ π2r1´ 2sech2
pπzqs, which is equivalent to the first order system

Bz qUn “ qAnpzqqUn ` qNnpqUn, z; ε, pΛnq (4.10)
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where qUn :“ pqϕn, qψnq
T with qψn :“ Bz qϕn, pλn “ ´2n` pΛn from Section 4.1,

qAn :“

¨

˚

˝

0 1

π2r1´ 2sech2
pπzqs 0

˛

‹

‚

, and qNnpqϕn, qψn, z; ε, pΛnq :“

¨

˚

˝

0
´

qN pz; εq ` ε2
pλn

¯

qϕn

˛

‹

‚

.

Lemma 4.4 Define qNalgpz; εq :“ ε2r1´ 2πz tanhpπzqs` ε4z2 and qNexppz; εq :“ qN pz; εq´ qNalgpz; εq. Then there

exists qε1 ą 0 and 0 ă qCpqε1q ă 8 such that for all ε ď qε1 and z P qIf pεq,
ˇ

ˇ

ˇ

qNexppz; εq
ˇ

ˇ

ˇ
ď qCpqε1qe

´1{ε2

Thus, for all ε ď qε1, qN pz; εq is exponentially close to qNalgpz; εq. In particular, there exists a constant 0 ă
qC1pqε1q ă 8 such that for all ε ď qε1 and z P qIf pεq

ˇ

ˇ

ˇ

qN pz; εq
ˇ

ˇ

ˇ
ď qC1pqε1qε

3{2

Proof. The result follows from the definitions of |W and |Wz in terms of W and estimates (2.6).

The leading order evolution equation Bz qV “ qApzqqV has the two linearly independent solutions qVnpzq, j P t1, 2u,

where

qV1pzq :“

¨

˚

˝

´sechpπzq

πsechpπzq tanhpπzq

˛

‹

‚

and qV2pzq :“
1

2π

¨

˚

˝

sinhpπzq ` πzsechpπzq

π
“

coshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzq
‰

˛

‹

‚

,

as can be verified by explicit computation. Observe that the leading order terms no longer depends on n. Due

to symmetry considerations we construct purely even or purely odd eigenfunctions; thus we assume that either
qUnp0q P span

!

qV1p0q
)

or span
!

qV2p0q
)

. We then parametrize the corresponding solution to (4.3) at the matching

point x “ ˘ε3{2, which corresponds with z “ ˘1{
?
ε “: ˘z0.

Proposition 4.5 Define for every ε the norm }up¨q}ε “ supzPqIf pεq |upzq|. Then for each for n P N there exist

constants ε0,qρ1,qρ2 ą 0 such that for all 0 ď ε ď ε0 the set of all solutions to (4.10) with pλn “ ´2n ` pΛn, and

which satisfy }up¨q}ε ď qρ1, with |dn|, |pΛn| ď qρ2 and qUnp0q “ qdn qV1p0q are given by

qϕ1pz; ε, pλnq “qdn

„

´sech2
pπzq

ˆ

1`
ε2z2

2
`
nε2

π2

˙

`
nε2

π2
`Onpε

5{2 ` ε2|pΛn|q



coshpπzq,

qψ1pz; ε, pλnq “qdnπ

„

sech2
pπzq

ˆ

1´
ε2z

π
cothpπzq `

ε2z2

2
`
nε2

π2

˙

`
nε2

π2
`Onpε

5{2 ` ε2|pΛn|q



sinhpπzq (4.11a)

and for qUnp0q “ qdn qV2p0q are given by

qϕ2pz; ε, pλnq “qdn
1

2π

”

1`Onpε` ε
3{2|pΛn|q

ı

rsinhpπzq ` πzsechpπzqs ,

qψ2pz; ε, pλnq “qdn
1

2

”

1`Onpε` ε
3{2|pΛn|q

ı

rcoshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzqs . (4.11b)

Furthermore, qϕ1p´zq “ qϕ1pzq, qψ1p´zq “ ´ qψ1pzq, qϕ2p´zq “ ´qϕ2pzq, and qψ2p´zq “ qψ2pzq.

We remark that for all 0 ă N ă 8, it is possible to choose ε0 and pρ2 small enough (where pρ2 was chosen in the

proof of Proposition 4.2) such that |pΛn| ď qρ2 whenever Λ̆n ď pρ2 for all n ď N . We also remark that, unlike in

the analogous proposition for the slow variables, Proposition 4.5, where we computed a different eigenfunction

associated with each eigenvalue pλn « ´2n, here we have only two functions qϕ1 and qϕ2, which now take pλn as a

parameter. This difference is in accord with the formal analysis which indicates that, at least to leading order,

we expect that the fast eigenfunctions to solve the eigenvalue-independent equation

qϕzz ` π
2r2sech2

pπzq ´ 1sqϕ “ 0.
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Proof. The argument is completely analogous to Proposition 4.2 so we abbreviate the proof. The symmetries

follow from the same argument as in Proposition 4.2. For the other claims we set up the fixed point equation on

the space of bounded functions
qDεpρq :“ tu P C0pqIf pεqq : }u}ε ď ρu.

using the Variation of Parameters formula, the normalized adjoint eigenfunctions

xW1pzq :“
1

2π

¨

˚

˝

´π
“

coshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzq
‰

sinhpπzq ` πzsechpπzq

˛

‹

‚

and xW2pzq :“

¨

˚

˝

πsechpπzq tanhpπzq

sechpπzq

˛

‹

‚

and the ansatz

qϕ1pz; ε, pλnq “ coshpπzqqu1pz; ε, pλnq, qϕ2pz; ε, pλnq “
1

2π
rsinhpπzq ` πzsechpπzqs qu2pz; ε, pλnq,

qψ1pz; ε, pλnq “π sinhpπzqqv1pz; ε, pλnq, qψ2pz; ε, pλnq “
1

2
rcoshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzqs qv2pz; ε, pλnq.

We emphasize that pu1 exponentially grows in z, rather than exponentially decaying as the linear eigenfunction

sechpπzq might suggest. This ansatz is motivated by the formal asymptotic analysis. Owing to Claim 4.6 below

the following expressions are well defined and bounded on any bounded interval

qu1pz; ε, pλnq “ ´ qd1sech2
pπzq

`
1

2π

„

´ sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s
´

qN pτ ; εq ` ε2
pλn

¯

qu1pτ ; ε, pλnqdτ

`
“

tanhpπzq ` πzsech2
pπzq

‰

ż z

0

´

qN pτ ; εq ` ε2
pλn

¯

qu1pτ ; ε, pλnqdτ



“ : qF1,upqu1; ε, qd1,´2n` pΛnq (4.12a)

qv1pz; ε, pλnq “qd1sech2
pπzq

`
1

2π

„

sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s
´

qN pτ ; εq ` ε2
pλn

¯

qu1pτ ; ε, pλnqdτ

`

„

cothpπzq ´ πzsech2
pπzq `

1

coshpπzq sinhpπzq


ż z

0

´

qN pτ ; εq ` ε2
pλn

¯

qu1pτ ; ε, pλnqdτ



“ : qF1,vpqu1; ε, qd1,´2n` pΛnq (4.12b)

qu2pz; ε, pλnq “qd2

`
1

2π

„

´
1

coshpπzq sinhpπzq ` πz

ż z

0

rsinhpπτq ` πτsechpπτqs
2
´

qN pτ ; εq ` ε2
pλn

¯

qu2pτ ; ε, pλnqdτ

`

ż z

0

sechpπτq rsinhpπτq ` πτsechpπτqs
´

qN pτ ; εq ` ε2
pλn

¯

qu2pτ ; ε, pλnqdτ



“ : qF2,upqu2; ε, qd2,´2n` pΛnq (4.12c)

qv2pz; ε, pλnq “qd2

`
1

2π

„

tanhpπzq

cosh2
pπzq ` 1´ πz tanhpπzq

ż z

0

rsinhpπτq ` πτsechpπzqs
2
´

qN pτ ; εq ` ε2
pλn

¯

qu2pτ ; ε, pλnqdτ

`

ż z

0

sechpπτq rsinhpπτq ` πτsechpπτqs
´

qN pτ ; εq ` ε2
pλn

¯

qu2pτ ; ε, pλnqdτ



“ : qF2,vpqu2; ε, qd2,´2n` pΛnq. (4.12d)
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Thus pqϕn, qψnq satisfies (4.10) if, and only if, qun and qvn satisfy (4.12). Using Lemma 4.4 and Claim 4.6 below we

find that for all qun P qDεpρq, z P qIf pεq there exists 0 ă qC2pqε1q ă 8 such that

} qF1,upqu1; ε, qd1,´2n` pΛnq}ε

ď |qd1| `
ρ

2π

´

qC1pqε1qε
3{2 ` ε2p´2n` pΛnq

¯

ˆ

›

›

›

›

sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ sdτ `
“

tanhpπzq ` πzsech2
pπzq

‰

ż z

0

dτ

›

›

›

›

ε

ď |qd1| `
ρ

2π

´

qC1pqε1qε` ε
3{2p´2n` pΛnq

¯

qC2pqε1qp
?
ε` 1q

It is now straightforward to show that there exists constants qρ1, qρ2 ą 0 and 0 ă qε0 ď qε1 such that qF1,upqun; ε, qdn, qΛnq P
qDεpqρ1q for all qun P qDεpqρ1q, |qdn|, |qΛn| ď qρ1, and ε ď qε0. A completely analogous argument holds for qF1,v, qF2,u,

and qF2,v. Using this uniform bound on qun in (4.12) and again Claim 4.6 we get the expansions2

qu1pz; ε,´2n` pΛnq “qdn

”

´sech2
pπzq `Onpε` ε

3{2|pΛn|q
ı

, qu2pz; ε,´2n` pΛnq “qdn
1

2π

”

1`Onpε` ε
3{2|pΛn|q

ı

,

qv1pz; ε,´2n` pΛnq “qdnπ
”

´sech2
pπzq `Onpε` ε

3{2|pΛn|q
ı

, qv2pz; ε,´2n` pΛnq “qdn
1

2

”

1`Onpε` ε
3{2|pΛn|q

ı

.

We observe that the leading order terms for qu1pzq and qv1pzq at the matching point z “ ˘z0 are the Opεq terms

since sech2
pπz0q “ Ope´2π{

?
εq. Thus we compute the next order terms by plugging the expansion for qu1pzq back

into (4.12a) and integrating explicitly using the form of qNalg and

ż z

0

rsinhpπτq coshpπτq ` πτ s sech2
pπτqdτ “ z tanhpπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s sech2
pπτq2πτ tanhpπτqdτ “ πz2 tanh2

pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s sech2
pπτqτ2dτ

“
1

3π3

ˆ

6πzLi2p´e´2πzq ` 3Li3p´e´2πzq ´ 2π3z3 ´ 6π2z2 lnp1` e´2πzq ` 3π3z3 tanhpπzq `
9ζp3q

4

˙

ż z

0

sech2
pπτqdτ “

1

π
tanhpπzq

ż z

0

sech2
pπτq2πτ tanhpπτqdτ “

1

π

`

tanhpπzq ´ πzsech2
pπzq

˘

ż z

0

sech2
pπτqτ2dτ “

1

π3

ˆ

Li2p´e´2πzq ´ π2z2 ´ 2πz lnp1` e´2πzq ` π2z2 tanhpπzq `
π2

12

˙

where ζpzq is the Riemann zeta function. We get (4.11).

It remains to prove the following claim.

Claim 4.6 All integrals in (4.12) are well defined and bounded on any bounded interval. Furthermore, there

exists qε2 ą 0 such that the maximum of each of the following integrals for |z| ď z0 occurs at z “ ˘z0 :“ ˘1{
?
ε

for all ε ď qε2

(i) max|z|ďz0
ˇ

ˇ

“

tanhpπzq ` πzsech2
pπzq

‰ şz

0
dτ

ˇ

ˇ “ z0 `Opz2
0e´2πz0q

(ii) max|z|ďz0

ˇ

ˇ

ˇ

”

cothpπzq ´ πzsech2
pπzq ` 1

coshpπzq sinhpπzq

ı

şz

0
dτ

ˇ

ˇ

ˇ
“ z0 `Opz2

0e´2πz0q

(iii) max|z|ďz0
ˇ

ˇ

şz

0
tanhpπτqdτ

ˇ

ˇ “ z0 ´
ln 2
π `Ope´2πz0q

and so that the following integrals are bounded uniformly in z0

(iv)
ˇ

ˇsech2
pπzq

şz

0
rsinhpπτq coshpπτq ` πτ sdτ

ˇ

ˇ

2The notation On refers to the fact that the constant may depend on n.

27



z Ñ 0 z Ñ8

Li2p´e´2πzq ´π2

12 ` 2πz lnp2q ´ π2z2 ` π3z3

3 `Opz4q e´2πzr´1`Ope´2πzqs

Li3p´e´2πzq ´
3ζp3q

4 ` π3z
6 ´ π2z2 lnp4q ` 2π3z3

3 `Opz4q e´2πzr´1`Ope´2πzqs

lnpe´2πz ` 1q lnp2q ´ πz ` π2z2

2 `Opz3q e´2πzr1`Ope´2πzqs

coshpπzq 1` π2z2

2 `Opz4q 1
2eπz

`

1`O
`

e´2πz
˘˘

sinhpπzq πz ` π3z3

6 `Opz5q 1
2eπz

`

1`O
`

e´2πz
˘˘

tanhpπzq πz ´ π3z3

3 `Opz5q 1`O
`

e´2πz
˘

sechpπzq 1´ π2z2

2 `Opz4q e´πz
`

2`O
`

e´2πz
˘˘

cschpπzq 1
πz ´

πz
6 `Opz3q e´πz

`

2`O
`

e´2πz
˘˘

cothpπzq 1
πz `

πz
3 `Opz3q 1`O

`

e´2πz
˘

Table 2: The asymptotic behavior of relevant functions for the integrals in (4.12).

Linpxq is the polylogarithm function and ζpzq is the Riemann zeta function. Expan-

sions computed using Mathematica.

(v)
ˇ

ˇ

ˇ

1
coshpπzq sinhpπzq`πz

şz

0

“

sinh2
pπτq ` πτ tanhpπτq

‰

dτ
ˇ

ˇ

ˇ

(vi)
ˇ

ˇ

ˇ

tanhpπzq
cosh2pπzq`1´πz tanhpπzq

şz

0

“

sinh2
pπτq ` πτ tanhpπzq

‰

dτ
ˇ

ˇ

ˇ

Proof. To show that the integrals are well defined we need to check that they are finite for all z bounded.

This is clear for (i), (iii) and (iv) since each of these expressions at z “ 0 equals zero. For (vi) we observe that

cosh2
pπzq ` 1´ πz tanhpπzq is never zero since cosh2

p0q ` 1´ 0 ¨ tanhp0q “ 2 ą 0 and at πz “ 2

d

dz

“

cosh2
pπzq ` 1´ πz tanhpπzq

‰

ˇ

ˇ

ˇ

ˇ

πz“2

“π
“

2 coshpπzq sinhpπzq ´ tanhpπzq ´ πzsech2
pπzq

‰

ˇ

ˇ

ˇ

ˇ

πz“2

“
π

4
rsinhp4πzq ´ 4πzs sech2

pπzq

ˇ

ˇ

ˇ

ˇ

πz“2

ą 0

since sinhpxq ´ x ě 0 for all x ě 0 (this can be seen since sinhp0q “ 0 and d
dx sinhpxq “ coshpxq ě 1). Thus it

remains to consider (ii) and (v), which may develop a singularity at z “ 0.

(ii) We explicitly evaluate the integral to obtain f2pzq :“
“

cothpπzq ´ πzsech2
pπzq ` sechpπzqcschpπzq

‰

z. Using

the asymptotic expansions in Table 2 we get

lim
zÑ0

f2pzq “ lim
zÑ0

„

2

π
`Opz2q



“
2

π

(v) We explicitly integrate to obtain

f5pzq “ :
1

coshpπzq sinhpπzq ` πz

ż z

0

“

sinh2
pπτq ` πτ tanhpπτq

‰

dτ

“
1

coshpπzq sinhpπzq ` πz

„

sinhp2πzq

4π
´
z

2
´

π

24
´

Li2p´e´2πzq

2π
`
πz2

2
` z lnpe´2πz ` 1q



where Li2pxq is the polylogarithm function. Using the expansions in Table 2 we find

lim
zÑ0

f5pzq “ lim
zÑ0

1

2πz `Opz3q

„

2π2z3

3
`Opz5q



“ lim
zÑ0

1

1`Opz2q

„

πz2

3
`Opz4q



“ 0.
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Away from z “ 0 we use the fact that each of the six expressions is even; thus, without loss of generality,

we assume z ě 0. For (i)-(iii) we first show that the maximum occurs at z “ z0 and then use the large

argument asymptotic expansion of the integral to evaluate the maximum. For (iv) - (vi) we explicitly compute

the expression in the limit z Ñ 8 and it is bounded; thus, since we’ve already shown that each expression is

bounded for z “ 0 and they are continuous, they are bounded for all z ą 0.

(i) We explicitly evaluate the integral to obtain f1pzq :“
“

tanhpπzq ` πzsech2
pπzq

‰

z. Then

lim
zÑ8

f1pzq

z
“ 1

so that f1pzq „ z as z Ñ8; thus, since z0 “ 1{
?
ε
εÑ0
ÝÝÝÑ 8, there exists qε2 such that

max
0ďzďz0

f1pzq “ f1pz0q “ z0

`

1`Opz0e´2πz0q
˘

for all ε ď qε2, where f1pz0q was determined using the asymptotic expansions in Table 2.

(ii) Follows exactly as (i).

(iii) The fact that the maximum occurs at z “ z0 is clear since tanhpπzq is monotone increasing. We integrate

explicitly and use the asymptotic expansion for lnp1` e´2πz0q for z0 " 1 shown in Table 2 to get the asymptotic

expansion.

(iv) We explicitly integrate to obtain

f4pzq :“sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ sdτ “ sech2πz

„

cosh2
pπzq ´ 1

2π
`
πz2

2



“
1

2π
`

1

2π

“

´1` π2z2
‰

sech2πz.

It is now clear that limzÑ8 f4pzq “ 0.

(v) Using the expansions in Table 2 and f5pzq defined above, we find

lim
zÑ8

f5pzq “ lim
zÑ8

4e´2πz

1`Opze´2πzq

„

e2πz

8π
`Op1q



“ lim
zÑ8

1

1`Opze´2πzq

„

1

2π
`Ope´2πzq



“
1

2π
.

(vi) Follows exactly as (v).

At the matching point z “ 1{
?
ε, we will need the following improved estimates on qϕ1 and qψ1, which can be

obtained by substituting (4.11) back into (4.12) one more time.

Proposition 4.7 Let ε0,qρ1,qρ2 ą 0 be as in Proposition 4.5. Then the set of all solutions to (4.10) with pλn “

´2n` pΛn, }upzq}ε ď qρ1, |dn|, |pΛn| ď qρ2 and qUnp0q “ qdn qV1p0q are given at the matching point z0 “ 1{
?
ε by

qϕ1pz0; ε, pλnq “qdn

„

nε2

π2
´
nε3

2π2
`Onpε

7{2 ` ε2|pΛn|q



coshpπz0q,

qψ1pz0; ε, pλnq “qdnπ

„

nε2

π2
´
nε3

2π2
`Onpε

7{2 ` ε2|pΛn|q



sinhpπz0q (4.13)

4.3 Gluing

Using the approximations to the eigenfunctions in the slow and fast variables, from Propositions 4.2 and 4.5

respectively, we show that there exists a unique global eigenfunction for (3.3)

λn rϕn :“ νBxx rϕn ´
1

2

„

BxW0px, t; νq `
1

2ν
W 2

0 px, t; νq



rϕn (4.14)

which can be constructed by gluing a fast eigenfunction to a slow eigenfunction at the overlap point x “ ε3{2.

Due to symmetry considerations, we glue pϕn to qϕ1 for n odd and to qϕ2 for n even. The matching conditions
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can be understood as follows. We need both that the functions pϕn and qϕn are the same at the matching point

as well as their slopes

dpϕnppx´ πq{ε, ¨q

dx
“

1

ε
pψnppx´ πq{ε; ¨q and

dqϕnpx{ε
2; ¨q

dx
“

1

ε2
qψnpx{ε

2; ¨q.

Since (4.14) is linear, any scalar multiple of pϕnpξ; εq and qϕnpx; εq is an eigenfunction in the appropriate scaling

regime; thus, instead of matching the slopes directly we impose the condition that the ratio of the fast eigenfunc-

tion and its derivatives is equal to the ratio of the slow eigenfunction and its derivative at the matching point:

fn,1pΛ̆n; εq :“ ε2

«

pψnppx´ πq{ε; ε, Λ̆nq

εpϕnppx´ πq{ε; ε, Λ̆1q
´

qψmodpn,2q`1px{ε
2; ε, pλnq

ε2
qϕmodpn,2q`1px{ε2; ε, pλ1q

ff

ˇ

ˇ

ˇ

ˇ

x“ε3{2
“ 0 (4.15a)

where

pλ1 :“ ´2` ξ0e´ξ
2
0 Λ̆1, pλ2 :“ ´4` ξ3

0e´ξ
2
0 Λ̆2, pλ3 :“ ´6` ξ5

0e´ξ
2
0 Λ̆3, and pλ4 :“ ´8` ξ7

0e´ξ
2
0 Λ̆4.

The factor ε2 in front regularizes the problem and can be thought of as taking the z, rather than x, derivatives.

We observe that (4.15a) has no explicit dependence on the magnitude of the eigenfunctions. Using the Implicit

Function Theorem we will show that there exists a unique fixed point to (4.15a) near ε “ Λ̆n “ 0. For this Λ̆n,

we ensure that the magnitude of the slow and fast eigenfunction at the same at the matching point by showing

that there exists a unique Cn such that

fn,2pCn, Λ̆npεq; εq :“
”

pϕnppx´ πq{ε; ε, Λ̆nq ´ Cn qϕmodpn,2q`1px{ε
2; ε, pλnq

ı

ˇ

ˇ

ˇ

ˇ

x“ε3{2
“ 0 (4.15b)

which we will again show is true using the Implicit Function Theorem. We start with condition (4.15a). Using

the expansions (4.5) and (4.11) at the matching point x “ ε3{2 (equivalently, ξ “ p´π ` ε3{2q{ε and z “ 1{
?
ε)

with coefficients in front of Λ̆n given by (4.6) we get

1

π
f1,1pΛ̆1; εq “

”

1´
?
π

4 Λ̆1 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆1|q

ı

“

1`Opε3{2q
‰

”

1`
?
π

4 Λ̆1 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆1|q

ı

´

”

1`Opε3{2 ` 1
εe´p´π`ε

3{2
q
2
{2ε2 |Λ̆1|q

ı ”

1`Ope´2π{
?
εq

ı

”

1`Opε3{2 ` 1
εe´p´π`ε3{2q2{2ε2 |Λ̆1|q

ı .

1

π
f2,1pΛ̆2; εq “

”

1´
?
π

8 Λ̆2 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆2|q

ı

“

1`Opε3{2q
‰

”

1`
?
π

8 Λ̆2 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆2|q

ı

“

1`Opε3{2q
‰

´

”

1`Opε` 1?
ε
e´p´π`ε

3{2
q
2
{2ε2 |pΛ2|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

”

1`Opε` 1?
ε
e´p´π`ε3{2q2{2ε2 |pΛ2|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

1

π
f3,1pΛ̆3; εq “

”

1´
?
π

8 Λ̆3 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆3|q

ı

“

1`Opε3{2q
‰

”

1`
?
π

8 Λ̆3 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆3|q

ı

“

1`Opε3{2q
‰

´

”

1`Opε3{2 ` 1
ε3 e´p´π`ε

3{2
q
2
{2ε2 |Λ̆3|q

ı ”

1`Ope´2π{
?
εq

ı

”

1`Opε3{2 ` 1
ε3 e´p´π`ε3{2q2{2ε2 |Λ̆3|q

ı
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1

π
f4,1pΛ̆4; εq “

”

1´ 3
?
π

16 Λ̆4 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆4|q

ı

“

1`Opε3{2q
‰

”

1` 3
?
π

16 Λ̆4 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆4|q

ı

“

1`Opε3{2q
‰

´

”

1`Opε` 1
ε2
?
ε
e´p´π`ε

3{2
q
2
{2ε2 |pΛ4|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

”

1`Opε` 1
ε2
?
ε
e´p´π`ε3{2q2{2ε2 |pΛ4|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

It is clear that fn,1p0; 0q “ 0 and
dfn,1

dΛ̆n

ˇ

ˇ

ˇ

ˇ

pΛ̆n;εq“p0;0q

‰ 0

so that the hypotheses of the Implicit Function Theorem are satisfied. Expanding the unique function Λ̆npεq in

orders of ε we find

Λ̆1 “ Opε3{2q, Λ̆2 “ Opεq, Λ̆3 “ Opε3{2q, and Λ̆4 “ Opεq.

Next we solve (4.15b) using the expansions for Λ̆npεq and obtain the expressions

e´π{
?
εf1,2pC1,Opε3{2q; εq :“

”

1`Opε3{2q

ı

e´π
2
{2ε2e´ε{2 ´

C1ε
2

π2

”

1´ ε{2`Opε3{2q

ı

„

1

2
`Ope´2π{

?
εq



e´π{
?
εf2,2pC2,Opεq; εq :“

π

ε
r1`Opεqs

”

´1`Opε3{2q

ı

e´π
2
{2ε2e´ε{2 ´

C2

2π
r1`Opεqs

„

1

2
`O

ˆ

1
?
ε

e´2π{
?
ε

˙

e´π{
?
εf3,2pC3,Opε3{2q; εq :“

π2

ε2

”

1`Opε3{2q

ı ”

2`Opε3{2q

ı

e´π
2
{2ε2e´ε{2 ´

3C3ε
2

π2
r1`Opεqs

„

1

2
`Ope´2π{

?
εq



e´π{
?
εf4,2pC4,Opεq; εq :“

π3

ε3
r1`Opεqs

”

´2`Opε3{2q

ı

e´π
2
{2ε2e´ε{2 ´

C4

2π
r1`Opεqs

„

1

2
`O

ˆ

1
?
ε

e´2π{
?
ε

˙

.

We define

2π2C̆1 :“ ε2eπ
2
{2ε2eε{2C1, ´4π2C̆2 :“ εeπ

2
{2ε2eε{2C2,

4π4

3
C̆3 :“ ε4eπ

2
{2ε2eε{2C3, and ´8π4C̆4 :“ ε3eπ

2
{2ε2eε{2C4

and

f̆1,2pC̆1; εq :“epπ´ε
3{2
q
2
{2ε2f1,2

ˆ

2π2

ε2
e´π

2
{2ε2e´ε{2C̆1,Opε3{2q; ε

˙

f̆2,2pC̆2; εq :“εepπ´ε
3{2
q
2
{2ε2f2,2

ˆ

´
4π2

ε
e´π

2
{2ε2e´ε{2C̆2,Opεq; ε

˙

f̆3,2pC̆3; εq :“ε2epπ´ε
3{2
q
2
{2ε2f3,2

ˆ

4π4

3ε4
e´π

2
{2ε2e´ε{2C̆3,Opε3{2q; ε

˙

f̆4,2pC̆4; εq :“ε3epπ´ε
3{2
q
2
{2ε2f4,2

ˆ

´
8π4

ε3
e´π

2
{2ε2e´ε{2C̆4,Opεq; ε

˙

.

Now it is clear that f̆n,2 p1; 0q “ 0 and

df̆n,2

dC̆n

ˇ

ˇ

ˇ

ˇ

pC̆n;εq“p1;0q

‰ 0

so that the hypotheses of the Implicit Function Theorem are again satisfied. Expanding the unique function

C̆npεq in orders of ε we find C̆npεq “ 1`Opεq, and, in particular, C̆1pεq “ 1` ε{2`Opε3{2q.

Putting everything together, and recalling the definitions ε :“
?

2νt, Ispεq :“ rε3{2, 2π ´ ε3{2s, If pεq :“
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r´ε3{2, ε3{2s, we get that

λ1 “
1

2t

´

´2`Opξ0e´ξ
2
0 Λ̆1q

¯

“ ´1{t`Opε1{2e´1{ε2q,

λ2 “
1

2t

´

´4`Opξ3
0e´ξ

2
0 Λ̆2q

¯

“ ´2{t`O
´

ε´2e´1{ε2
¯

,

λ3 “
1

2t

´

´6`Opξ5
0e´ξ

2
0 Λ̆3q

¯

“ ´3{t`O
´

ε´7{2e´1{ε2
¯

,

λ4 “
1

2t

´

´8`Opξ7
0e´ξ

2
0 Λ̆4q

¯

“ ´4{t`O
´

ε´4e´1{ε2
¯

(4.16)

are eigenvalues for (4.14) with associated eigenfunctions rϕnpx; t, νq which can be expanded in the intervals Ispεq

and If pεq as follows:

rϕ1 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ
epx´πq

2
{2ε2

rϕ1px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supx

ˇ

ˇ

ˇ

ε2

2π2 eπ
2
{2ε2sech

`

πx
ε2

˘

rϕ1px; t, νq ´
”

sech2
`

πx
ε2

˘

´

1` x2

2ε2 `
ε2

2π2

¯

´ ε2

2π2

ı
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P If pεq

,

/

.

/

-

(4.17a)

rϕ2 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ

ε
x´π epx´πq

2
{2ε2

rϕ2px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε : x P Ispεq

supx

ˇ

ˇ

ˇ

ε
2π eπ

2
{2ε2

rϕ2px; t, νq ´
“

sinh
`

πx
ε2

˘

` πx
ε2 sech

`

πx
ε2

˘‰

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(4.17b)

rϕ3 :

$

’

&

’

%

supy

ˇ

ˇ

ˇ

ε2

2px´πq2´ε2
epx´πq

2
{2ε2

rϕ3px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supy

ˇ

ˇ

ˇ

3ε4

4π4 eπ
2
{2ε2sech

`

πx
ε2

˘

rϕ3px; t, νq ´ sech2
`

πx
ε2

˘

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(4.17c)

rϕ4 :

$

’

&

’

%

supy

ˇ

ˇ

ˇ

ˇ

ε3

px´πqr2px´πq2´3ε2s
epx´πq

2
{2ε2

rϕ4px; t, νq ` 1

ˇ

ˇ

ˇ

ˇ

ď Cpε0qε : x P Ispεq

supy

ˇ

ˇ

ˇ

ε4

4π3 eπ
2
{2ε2csch

`

πx
ε2

˘

rϕ4px; t, νq ´ 1
ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

. (4.17d)

Equations (4.16) and (4.17) are expansions (3.4) and (3.5), respectively, in Proposition 3.1. Proposition 3.1 now

follows from following proposition and Sturm-Liouville theory for periodic boundary conditions (c.f. [10, Thms

2.1, 2.14]), which states that the eigenvalues are strictly ordered λ0 ą λ1 ě λ2 ą λ3 ě λ4 ą . . . and that an

eigenfunction with exactly 2n crossings of zero in x P r´π, πq is the eigenfunction associated either with λ2n´1

or with λ2n.

Proposition 4.8 Fix ε0 ! 1 such that the eigenfunctions rϕnpx; t, νq are given as in (4.17) for all 0 ď ε ď ε0

with ε :“
?

2νt. Then rϕ1px; t, νq and rϕ2px; t, νq have exactly two zeros in the interval x P r´π, πq and the

eigenfunctions rϕ3px; t, νq and rϕ4px; t, νq have exactly four zeros in the interval x P rε3{2, 2π ´ ε3{2q for all

0 ď ε ď ε0.

Proof. The n “ 2, 4 cases are clear since sinhpπx{εq “ 0 at x “ 0 P If pεq,
x´π
ε has a single zero at x “ π P Ispεq,

and 2
`

x´π
ε

˘2
´ 3 has two zeros at x “ π ˘ ε

a

3{2 P Ispεq, and by making ε0 potentially smaller so that

´1`Opε0q ă 0. The result for n “ 1, 3 is then a direct consequence of Sturm-Liouville theory since λ0 ą λ1 ą λ2

and λ2 ą λ3 ą λ4.

5 Discussion

In this work we have proposed a candidate metastable family for Burgers equation with periodic boundary con-

ditions, which we denote W px, t; ν, x0, cq. The metastable family depends on space and time and is parametrized
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by three parameters: the spatial location x0, the “initial” time t0 (so that t “ t0 ` τ), and mean c0. Our choice

of metastable family was motivated by our numerical experiments, one example of which is shown in Figure 1.

We furthermore proposed an explanation for the metastable behavior of W px, t; ν, x0, cq based on the spectrum

of the operator L which results from linearizing the Burgers equation about W px, t˚; ν, x˚, c˚q. In particular,

we showed that a solution to the Burgers equation upx, t; νq which is close at some time t0 to a profile in the

metastable family (i.e. upx, t0; νq “ W px, t0; ν, x0, c0q ` v0px; t0, x0, c0; νq with }v0} small) can be written as a

perturbation from a (potentially different) profile W px, t˚; ν, x˚, c˚q such that projection of the perturbation of

upx, t0; νq from W px, t˚; ν, x˚, c˚q onto the span of the first three eigenfunctions associated with the linearization

of the Burgers equation about W px, t˚; ν, x˚, c˚q is zero. These results are summarized in Theorems 1 and 2.

From a technical perspective, we derived the first five eigenvalues for L using Sturm-Liouville theory and ideas

from singular perturbation theory. In particular, we show that there are two relevant space regimes which we call

the “slow” and “fast” space scales; we construct the eigenfunctions in each regime separately and then rigorously

glue the functions together using a Melnikov-like computation.

As noted in Section 2.5, we regard these results as a first step toward showing that once solutions of Burgers

equation are close to the family of Whitham solutions, they subsequently evolve toward it at a rate much faster

than the motion along the family itself. The problem is that the linearized evolution operator in (2.10)-(2.11) is

non-autonomous and as is well known, in general, information on the spectrum of a non-autonomous, linear vector

field does not immediately lead to bounds on its evolution. Furthermore, even leaving aside the time dependence,

the operator in (2.11) is highly non-self-adjoint which leads to further problems in deducing information about

the evolution just from spectral data. Such operators arise frequently in fluid mechanics and a number of different

approaches have been proposed to deal with these issues ([2, 4, 5, 7].)

In the present case we feel that the spectral information is of greater use than is generally true for two reasons

- first, the transformation described in Section 3, which shows that there is a bounded and invertible change of

variables which conjugates the linearized operator (2.11) to a self-adjoint operator, and second, the method of

“freezing coefficients” which shows that for linear, non-autonomous equations in which the time-change occurs

slowly, the spectral information does give good insight into the evolution of the solutions [17]. In this case, the

slow change in the vector-field is a consequence of the slow evolution along the family of Whitham solutions.

To provide a few more details of why we feel the solutions of Burgers should evolve in a fashion similar to that

predicted by the spectral estimates established here, consider the linearized equation, written in self-adjoint form,

i.e.

rut “ rLpν, tqru , (5.1)

where ru “ T ´1u with T defined in (3.2), and rL defined in (3.3).

We have computed the first four eigenvalues in the spectrum of rLpν, tq for all t sufficiently large, so fix t0 and

set rL0 “ rLpν, t0q and define apτq “ rLpν, t0 ` τq ´ rLpν, t0q.
Then

rut “ rLpν, tqru “ rL0ru` apτqru , (5.2)

We can write the solution of this equation with the aid of DuHamel’s formula as

rupτq “ eτ
rL0
ru`

ż τ

0

epτ´σq
rL0apσqrupσqdσ . (5.3)

The leading order term is easy to estimate since we know (thanks to Theorem 2) that ru is orthogonal to the

eigenfunctions rφ0, rφ1, and rφ2 (of rL0). In fact, thanks to fact that Burger’s equation (and also the linearized

equation (2.10)) preserve the mean value of the solution we can assume without loss of generality that rupτq is

orthogonal to rφ0 for all τ . Thus, let P be the orthogonal projection onto the span of rφ1, and rφ2 and let Q be its
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orthogonal complement. To analyze the integral term in (5.3), we break it up as

ż τ

0

epτ´σq
rL0apσqrupσqdσ “

ż τ

0

epτ´σq
rL0PapσqP rupσqdσ `

ż τ

0

epτ´σq
rL0QapσqQrupσqdσ (5.4)

`

ż τ

0

epτ´σq
rL0PapσqQrupσqdσ `

ż τ

0

epτ´σq
rL0QapσqP rupσqdσ . (5.5)

At this point, our current estimates are not sufficient to analyze all the terms in this expression in detail. However,

we believe that leading order contribution comes from the first term on the right-hand side of this expression.

For instance, the last two terms involve projections PapτqQ and QapτqP on complementary spectral subspaces

and hence are probably small, at least for τ small. Likewise, the second term involves the evolution of the part of

the solution that lies in the spectral subspace complementary to the span of rφ0, rφ1, and rφ2 and hence is expected

to decay like e´
3
t0
τ . Thus, we focus on the first integral expression. We can write out the spectral projection P

in terms of inner products with rφ1, and rφ2 and we find

ż τ

0

epτ´σq
rL0PapσqP rupσqdσ “

ˆ
ż τ

0

e´
1
t0
pτ´σq

prφ1, apσqrφ1qprφ1, rupσqqdσ

˙

rφ1 (5.6)

`

ˆ
ż τ

0

e´
2
t0
pτ´σq

prφ2, apσqrφ2qprφ2, rupσqqdσ

˙

rφ2

Note that in this expression we have used the fact that cross terms involving rφ1, and rφ2 will vanish by sym-

metry, and we have made the approximation that the eigenvalues λ1 and λ2 are exactly ´1{t0 and ´2{t0 for

simplicity.

Now consider the inner products prφj , apσqrφjq that occur in the integrands. From the perturbation theory for

linear operators, we know that if we perturb rL0 by apτq, the first order shift in the eigenvalue λj should be given

by exactly this inner product. On the other hand, we know from our calculation of the spectrum that that the

shift in the eigenvalue is given by

δλj “ ´
j

t0 ` τ
`
j

t0
„
jτ

t20
. (5.7)

Thus, we expect the integrals in (5.6) to behave like

C

t20

ż τ

0

e´
j
t0
pτ´σqσprφj , rupσqqdσ (5.8)

Since prφj , rup0qq “ 0 we expect that this inner product is bounded by Cσ}ru0}, at least for σ small, and hence the

integrals in (5.6) are expected to behave like

C}ru0}

t20

ż τ

0

e´
j
t0
pτ´σqσ2dσ „

C}ru0}

t20
τ3 , (5.9)

for τ small.

These estimates lead us to expect a bound on solutions of (5.3) of the form

}rupτq} ď Ce´
3
t0
τ
`
C}ru0}

t20
τ3 , (5.10)

which for τ small, but of order one, is much faster decay than the rate of motion along the family of Whitham

solutions. After some fixed time τ0, we stop the evolution with the “frozen” time operator rLpt0q and restart the

process of tracking solutions of (5.1) by approximating rLptq by rLpt0 ` τ0q. However, now, the initial condition

for the equation will be much closer to the manifold of Whitham solutions than the original initial condition for

(5.1). We also note the similarity of this approach to the renormalization method of [13] - see Fig. 2.2 of that

reference.
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Although our current estimates are not sufficient to rigorously establish the bounds in the previous paragraph,

which we leave as an open problem, we feel that ubiquity of the type of non-self-adjoint operators exemplified

by L in fluid mechanics, along with the paucity of rigorous estimates of their spectral behavior makes the

results presented in this paper of interest, even though they do not conclusively prove that solutions approach

the Whitham family with the expected rate. In addition, we feel that the methods derived in this paper for

studying the behavior of multiple eigenvalues of singularly perturbed spectral problems may be of independent

interest.

It also is worth reiterating that our results show that the spectrum for L is, to leading-order, independent of

the viscosity ν; this result is particularly interesting since our analysis is not valid for the inviscid equation.

Furthermore, our results are in contrast to [2], in which the authors proposed an analytical description of the

“bar” metastable family for the Navier–Stokes equation with periodic boundary conditions which were observed

numerically in [20], denoted ωb. In [2] the authors provided numerical evidence and analytical arguments which

indicate that the real part of the least negative eigenvalue for the operator obtained from linearizing the Navier–

Stokes equation about ωb is proportional to
?
ν; in other words, the metastable behavior of ωb does depend

on the viscosity. On the other hand, in [4], Bedrossian, Masmoudi and Vicol show that the solution behavior

for the Navier–Stokes equation in a neighborhood of the Couette flow depends on the time-regime: for small

enough time scales the solution behavior is governed by the inviscid limit of Navier–Stokes, whereas viscid effects

dominate after long enough times. Thus, our results raise the question about whether there is an even earlier

time regime for the Navier–Stokes with periodic boundary conditions than that studied in [2], and a potentially

different metastable family, in which convergence to a metastable family is independent of the viscosity.
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A Notation

Variable Description Defined in

ψW px, t; νq A solution to the periodic heat equation. It is also used

to define transformation (3.2)

Equation (2.4)

W0px, t; νq An exact solution to the periodic Burgers equation

(2.1) constructed from ψW px, t; νq via the Cole–Hopf

transformation.

Equation (2.5)

W px, t; ν,∆x, cq The family of metastable solutions, parametrized by

∆x, t, and c, given by

W px, t; ν,∆x, cq :“ c`W0px´∆x´ ct, t; νq

Section 2.1

Lpν, tq The time-dependent linear operator obtained from

linearizing (2.1) about the solution family W0px, t; νq

Equation (2.11)

rLpν, tq The time-dependent self-adjoint linear operator

associated with Lpν, tq after transforming the

eigenfunctions ϕn into rϕn via (3.2)

Equation (3.3)

T px; t, νq The transformation which maps eigenfunctions for
rLpν, tq into eigenfunctions for Lpnu, tq

Equation (3.2)

pλn, ϕnpx; t0, νqq Solutions to the frozen-time eigenvalue problem

λnϕ “ Lpν, t0qϕn
Equation (2.11)

pλn, rϕnpx; t0, νqq Solutions to the associated frozen-time self-adjoint

eigenvalue problem λn rϕn “ rLpν, t0qrϕn
Equation (3.3). Note: ϕn

and rϕn are related via

transformation (3.2)

x0, t0 Initial parameter values such that the frozen time

solution upx, t0; νq to (2.1) is near W px, t0; ν, x0, cq

Theorem 2, Section 2.4

x˚, t˚ Perturbed parameter values so that the frozen time

solution upx, t0; νq to (2.1) is near W px, t˚; ν, x˚, cq and

the projection of the perturbation onto the subspace

spanned by the eigenfunctions corresponding to the

first three eigenvalues is zero

Theorem 2, Section 2.4

ε :“
?

2νt Small parameter used in singular perturbation

arguments

Section 2.4 and again in

Proposition 3.1

Ispεq, If pεq The spatial intervals where the slow equation and fast

equation dominate, respectively

Proposition 3.1; see also

Figure 4

Table 3: General notation used throughout this work.
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Variable Description Defined in

ξ :“ x´π
ε Slow spatial variable Beginning of Section 4.1

pIspεq The slow interval Ispεq in terms of ξ Beginning of Section 4.1

xW pξ; εq W0px, t; νq written in terms of ξ and scaled by t
ε Beginning of Section 4.1

xWξpξ; εq BxW0px, t; νq written in terms of ξ and scaled by t Beginning of Section 4.1

pϕnpξq The eigenfunction rϕnpxq in terms of ξ Beginning of Section 4.1

pλn :“ 2tλn A transformation of the eigenvalue λn Beginning of Section 4.1

pΛn :“ pλn ` 2n Perturbation of the eigenvalue pλn from ´2n, the

eigenvalue anticipated by the formal analysis of the

slow variables in Section 3.1

Before Lemma 4.1

pUn 2-component vector representation of the eigenfunction

pϕn, used to make the eigenvalue problem first order

Before Lemma 4.1

pAnpξq A 2ˆ 2 non-autonomous real matrix giving the leading

order terms in the eigenvalue problem for pUn

Before Lemma 4.1, part of

(4.3)

pNnppUn, ξ; ε, pΛnq A 2ˆ 1 real vector giving the higher order terms in the

eigenvalue problem for pUn

Before Lemma 4.1, part of

(4.3)

pN pξ; εq The part of pNnppUn, ξ; ε, pΛnq that comes from the

difference between the formal slow-variable potential

with ε “ 0 (3.11) and the potential in the slow-variable

eigenvalue problem (4.1)

Before Lemma 4.1, part of

(4.3)

ξ0 The point at which the eigenfunctions in each of the

scaling regimes will be matched at in terms of ξ

Before Proposition 4.2

Λ̆n Exponential rescaling of the eigenvalue offset pΛn;

necessary for an Implicit Function Theorem argument

Proposition 4.2

Hn´1pξqe
´ξ2{2 Eigenfunction solutions to the formal slow-variable

potential with ε “ 0 (3.11) with pλn “ ´2n

After equation (3.11)

Table 4: Notation used for the slow variable analysis in Section 4.1.
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Variable Description Defined in

z :“ x
ε2 Fast spatial variable Beginning of Section 4.2

qIf pεq The fast interval If pεq in terms of z Beginning of Section 4.2

|W pz; εq W0px, t; νq written in terms of z and scaled by t Beginning of Section 4.2

|Wzpz; εq BxW0px, t; νq written in terms of z and scaled by tε2 Beginning of Section 4.2

qϕnpzq The eigenfunction rϕnpxq in terms of z Beginning of Section 4.2

qUn 2-component vector representation of the eigenfunction

qϕn, used to make the eigenvalue problem first order

Before Lemma 4.4

qAnpzq A 2ˆ 2 non-autonomous real matrix giving the leading

order terms in the eigenvalue problem for qUn

Before Lemma 4.4, part of

(4.10)

qNnpqUn, z; ε, pΛnq A 2ˆ 1 real vector giving the higher order terms in the

eigenvalue problem for qUn

Before Lemma 4.4, part of

(4.10)

qN pz; εq The part of qNnpqUn, z; ε, pΛnq that comes from the

difference between the formal fast-variable potential

with ε “ 0 (3.13) and the potential in the fast-variable

eigenvalue problem (4.9)

Before Lemma 4.4

qNalgpz; εq The part of qN pz; εq that behaves algebraically Lemma 4.4

qNexppz; εq The part of qN pz; εq that behaves exponentially Lemma 4.4

z0 The point at which the eigenfunctions in each of the

scaling regimes will be matched at in terms of z

Before Proposition 4.5

P pzq, Qpzq Two linearly independent solutions to the formal

fast-variable equation with ε “ 0 (3.13)

After equation (3.13)

Table 5: Notation used for the fast variable analysis in Section 4.2.
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