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Abstract. This paper presents a new method for synthesizing stochastic control Lyapunov
functions for a class of nonlinear stochastic control systems. The technique relies on a transformation
of the classical nonlinear Hamilton—Jacobi—Bellman partial differential equation to a linear partial
differential equation for a class of problems with a particular constraint on the stochastic forcing. This
linear partial differential equation can then be relaxed to a linear differential inclusion, allowing for
relaxed solutions to be generated using sum of squares programming. The resulting relaxed solutions
are in fact viscosity super-/subsolutions, and by the maximum principle are pointwise upper and lower
bounds to the underlying value function, even for coarse polynomial approximations. Furthermore,
the pointwise upper bound is shown to be a stochastic control Lyapunov function, yielding a method
for generating nonlinear controllers with pointwise bounded distance from the optimal cost when
using the optimal controller. These approximate solutions may be computed with nonincreasing
error via a hierarchy of semidefinite optimization problems. Finally, this paper develops a priori
bounds on trajectory suboptimality when using these approximate value functions and demonstrates
that these methods, and bounds, can be applied to a more general class of nonlinear systems not
obeying the constraint on stochastic forcing. Simulated examples illustrate the methodology.
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1. Introduction. The study of system stability is a central theme of control
engineering. A primary tool for such studies is Lyapunov theory, wherein an energy-
like function is used to show that some measure of distance from a stability point
decays over time. The construction of Lyapunov functions that certify system stability
advanced considerably with the introduction of sum of squares (SOS) programming,
which has allowed for Lyapunov functions to be synthesized for both polynomial
systems [28] and more general vector fields [27].

To address the more challenging problem of stabilization, rather than the analysis
of an existing closed loop system, it is possible to generalize Lyapunov functions to
incorporate control inputs. The existence of a control Lyapunov function (CLF) (see
[20, 11, 33)]) is sufficient for the construction of a stabilizing controller. However, the
synthesis of a CLF for general systems remains an open question. Unfortunately, the
SOS-based methods cannot be naively extended to the generation of CLF solutions,
due to the bilinearity between the Lyapunov function and control input.

Due to the lack of a general CLF synthesis technique, an alternative is the use
of receding horizon control (RHC), which allows for the incorporation of optimality
criteria. Euler-Lagrange equations are used to construct a locally optimum trajectory
[30], and stabilization is guaranteed by constraining the terminal cost in the RHC
problem to be a CLF. Suboptimal CLF's have found extensive use, with applications
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in legged locomotion [19] and distributed control [26]. Adding stochasticity to the
governing dynamics compounds the difficulties of constructing Lyapunov functions [5,
10]. A complementary area in control engineering is the study of the Hamilton—Jacobi—
Bellman (HJB) equation that governs the optimal control of a system. Methods to
calculate the solution to the HJB equation via semidefinite programming have been
proposed previously by Lasserre et al. [22]. The method is quite general, applicable
to any system with polynomial nonlinearities.

In this work, we propose an alternative line of study based on the linear structure
of a particular form of the HIB equation. Since the late 1970s, Fleming [8], Holland
[12], and other researchers thereafter [4, 7] have made connections between stochastic
optimal control and reaction-diffusion equations through a logarithmic transforma-
tion. Recently, when studying stochastic control using the HJB equation, Kappen
[17] and Todorov [37] discovered that particular assumptions on the structure of
a dynamical system, given the name linearly solvable systems, allow a logarithmic
transformation of the optimal control equation to a linear partial differential equation
(PDE) form. The linearity of this class of problems has given rise to a growing body
of research, with an overview available in [6]. Kappen’s work focused on calculating
solutions via path integral techniques. Todorov began with the analysis of particular
Markov decision processes and showed the connection between the two paradigms.
This work was built upon by Theodorou [35] into the path integral framework in
use with dynamic motion primitives. These results have been developed in many
compelling directions [34, 6, 38, 32].

This paper combines these previously disparate fields of linearly solvable optimal
control and Lyapunov theory and provides a systematic way to construct stabilizing
controllers with guaranteed performance. The result is a hierarchy of SOS programs
that generates stochastic CLFs (SCLFs) for arbitrary linearly solvable systems. Such
an approach has many benefits. First and foremost, this approach generates stabiliz-
ing controllers for an important class of nonlinear stochastic systems even when the
optimal controller is not found. We prove that the approximate solutions generated
by the SOS programs are pointwise upper and lower bounds to the true solutions. In
fact, the upper bound solutions are SCLF's, which can be used to construct stabilizing
controllers, and they bound the performance of the system when they are used to
construct suboptimal controllers. Existing methods for the generation of SCLFs do
not have such performance guarantees. Additionally, we demonstrate that, although
the technique is based on linear solvability, it may be readily extended to more gen-
eral systems, including deterministic systems, while inheriting the same performance
guarantees.

A preliminary version of this work appeared in [13] and [15], where the use of sum
of squares programming for solving the HJB was first considered. This paper builds
on this recent body of research, studying the stabilization and optimality properties of
the resulting solutions. These previous works focused on path planning, rather than
stabilization, and did not include the stability analysis or suboptimality guarantees
presented in this paper. A short version of this work appeared as [24], which included
less detail and did not include the extension in section 5.

The rest of this paper is organized as follows. Section 2 reviews linearly solvable
HJB equations, SCLF's, and SOS programming. Section 3 introduces a relaxed formu-
lation of the HJB solutions which is efficiently computable using the SOS methodol-
ogy. Section 4 analyzes the properties of the relaxed solutions, such as approximation
errors relative to the exact solutions. This section shows that the relaxed solutions
are SCLFs, and that the resulting controller is stabilizing. The upper bound solu-
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tion is also shown to bound the performance when using the suboptimal controller.
Section 5 summarizes an extension of the method to approximate optimal control
problems which are not linearly solvable. Two examples are presented in section 6 to
illustrate the optimization technique and its performance. Section 7 summarizes the
findings of this work and discusses future research directions.

2. Background. This section briefly describes the paper’s notation and reviews
necessary background on the linear HJB equation, SCLFs, and SOS programming.

2.1. Notation. Table 1 summarizes the notation of different sets appearing in
this paper.

TABLE 1
Set notation.

Notation Definition

Zy All positive integers

R All real numbers

R4 All nonnegative real numbers

R"™ All n-dimensional real vectors

Rz] All real polynomial functions in z

R7X™ All n X m real matrices

R7Xm ] All M € R™*™ such that M; ; € R[z] V i,

K All continuous nondecreasing functions p : Ry — R4 such that p(0) = 0, p(r) >

0if r >0, and p(r) > p(r') if r >/
All functions f such that f is k-differentiable with respect to the first argument
and k’-differentiable with respect to the second argument

Ck,k’

A compact domain in R™ is denoted by €, where Q C R™, and its boundary
is denoted by 0€2. A domain 2 is a basic closed semialgebraic set if there exists
gi(x) € R[z] for i = 1,2,...,m such that Q@ = {z | gi(z) >0Vi=1,2,...,m}.

A point on a trajectory, z(t) € R™, at time ¢ is denoted z;, while the segment of
this trajectory over the interval [t, T] is denoted by x¢.r.

Given a polynomial p(x), p(x) is positive on domain Q if p(z) > 0 for all x € ,
p(x) is nonnegative on domain Q if p(z) > 0 for all x € Q, and p(x) is positive definite
on domain Q, where 0 € Q, if p(0) = 0 and p(z) > 0 for all x € Q\{0}.

If it exists, the infinity norm of a function is defined as || f||, = sup, |f(z)| for
z € Q. To improve readability, a function f(z1,...,x,) is abbreviated as f when the
arguments of the function are clear from the context.

2.2. Linear Hamilton—-Jacobi-Bellman (HJB) equation. Consider the fol-
lowing affine nonlinear dynamical system:

(1) diCt = (f(ﬁt) + G(xt)ut) dt + B(xt) dwt,

where x; € 2 is the state at time ¢ in a compact domain 2 C R", and u; € R™
is the control input; f(z) € R"[z], G(z) € R"*™[z], and B(z) € R"*![z] are real
polynomial functions of the state variables x; and w; € R! is a vector consisting
of Brownian motions with covariance Y., i.e., w; has independent increments with
wr — ws ~ N(0,5(t — s)), for N (p1,0?), a normal distribution. The domain € is
assumed to be a basic closed semialgebraic set defined as Q = {z | ¢g;(x) € R[z], g:(z) >

0Vi=1,2,...,m}. Without loss of generality, let 0 € Q and z = 0 be the equilibrium
point, whereby f(0) =0, G(0) =0, and B(0) = 0.
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The goal is to minimize the following functional:
T 1
(2) J(z,u) =E,, |o(xr) +/ q(zy) + §u;‘FRut dt
0

subject to (1), where ¢ € Rz], ¢ : 2 — R, represents a state-dependent terminal
cost, ¢ € R[z], ¢ : & — R, is state-dependent cost, and R € R™*™ is a positive
definite matrix. The final time, 7', unknown a priori, is the time at which the system
reaches the domain boundary or the origin. This problem is generally called the first
exit problem. The expectation E,, is taken over all realizations of the noise w;. For
stability of the resultant controller to the origin, ¢(-) and ¢(-) are also required to be
positive definite functions.

The solution to this minimization problem is known as the value function, V :
Q — R4, where beginning from an initial point z; at time ¢,

(3) V (z¢) = min J (ze.7, ) -

ut:T
Based on dynamic programming arguments [9, Chap. IIL.7], the associated HIB
equation is a nonlinear second order PDE:

@) 0=q+ (V) f % (V)T GR1GT (Vo) + %Tr ((VooV) BE.BT)

with boundary condition V' (z) = ¢(x). For the stabilization problem on a compact
domain, it is appropriate to set the boundary condition to be ¢(z) = 0 for z = 0,
indicating zero cost accrued for achieving the origin, and ¢(z) > 0 for x € 90\ {0}.
In practice, ¢(x) at the exterior boundary is usually chosen to be a large number that
depends on the given application, to impose a large penalty for exiting the predefined
domain. The optimal control effort, u*, is given by

(5) v =—-RIGTV,V.

In general, solving (4) is difficult due to its nonlinearity. But, with the assumption
that there exists a A > 0, a control penalty cost R in (2) satisfying the equation

(6) AG(z)R7'G(2)T = B(z)2B(z)T 2 S(xy) £ %4,
and using the logarithmic transformation
(7) V =-XAlogV,

it is possible [36, 37, 16], after substitution and simplification, to obtain the following
linear PDE from (4):

(8) 0= —%q\If + fI(V,T) + %TT‘ (Vi ¥)32y), z€Q,

U(x)=e" ">, xz€d

This transformation of the value function has been deemed the desirability func-
tion [37, Tab. 1]. For brevity, define the expression

£(W) 2 fT(V0) 4+ 2T (Ve W) 50)
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and the function ¥ (x) at the boundary as

o (2)

Y(x) e A, x €.

Condition (6) is trivially met for systems of the form dxy = f(x¢) dt+G(zt) (us dt
+dwy), a pervasive assumption in the adaptive control literature [23]. This constraint
restricts the design of the control penalty R such that control effort is highly penalized
in subspaces with little noise and lightly penalized in those with high noise. Additional
discussion is given in [37, Supplementary Information, sec. 2.2].

2.3. Stochastic control Lyapunov functions. Before the SCLF is intro-
duced, two forms of stability are defined, following the definitions in [18, Chap. 5].

DEFINITION 1. Given (1), the equilibrium point at x = 0 is stable in probability
fort >0 if for any s >0 and € > 0,

lim P {sup|XI’S(t)| > e} =0,
z—0 t>s
where X** is the trajectory of (1) from x at time s.

Intuitively, Definition 1 is similar to the notion of stability for deterministic sys-
tems. The following is a stronger stability definition that is similar to the notion of
asymptotic stability for deterministic systems.

DEFINITION 2. Given (1), the equilibrium point at x = 0 is asymptotically stable
in probability if it is stable in probability and

lim P{ lim [X%(t)| = 0} =1,
x—0 t—o00

where X®% is the trajectory of (1) from x at time s.
These notions of stability can be realized through the construction of SCLFs.
DEFINITION 3. A stochastic control Lyapunov function for system (1) is a positive
definite function V € C*! on a domain O = Q x {t > 0} such that
V(0,t) =0, V(x,t)>u(lz]) V>0,
Fu(z,t) s.t. LV(x,t)) <0 V(x,t) € O\{(0,t)},

where p € IC, and
(9) LYV) =0,V + V VI (f + Gu) + %Tr((VmV)BEEBT).

THEOREM 4 (Theorem 5.3 of [18]). For system (1), assume that there exist an
SCLF and a u satisfying Definition 3. Then, the equilibrium point x = 0 is stable in
probability, and w is a stabilizing controller.

To achieve the stronger condition of asymptotic stability in probability, we have
the following result.

THEOREM 5 (see Theorem 5.5 and Corollary 5.1 of [18]). For system (1), suppose
that, in addition to the existence of an SCLF and a u satisfying Definition 3, u is
time-invariant, and

V(z,t) <p'(|z]) V>0,
L(V(z,t)) <0 V(x,t) € O\{(0,1)},
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where u' € K. Then, the equilibrium point x = 0 is asymptotically stable in probability,
and u is an asymptotically stabilizing controller.

2.4. Sum of squares programming. SOS programming is the primary tool
by which approximate solutions to the HJIB equation are generated in this paper. In
particular, we will show how the PDE that governs the HJIB may be relaxed to a set
of nonnegativity constraints. SOS methods will then allow for the construction of
an optimization problem where these nonnegativity constraints may be enforced. A
complete introduction to SOS programming is available in [28]. Here, we review the
basic definition of SOS that is used throughout the paper.

DEFINITION 6. A multivariate polynomial f(x) is an SOS polynomial if there exist
polynomials fo(x), ..., fm(x) such that

The set of SOS polynomials in x is denoted as S[z].

Accordingly, a sufficient condition for nonnegativity of a polynomial f(z) is that
f(z) € S[z]. Membership in the set S[z] may be tested as a convex problem [28].

THEOREM 7 (Theorem 3.3 of [28]).  The existence of an SOS decomposition
of a polynomial in n variables of degree 2d can be decided by solving a semidefinite
programming (SDP) feasibility problem. If the polynomial is dense (no sparsity), the
dimension of the matriz inequality in the SDP is equal to (";d) X (";d).

Hence, by adding SOS constraints to the set of all positive polynomials, testing
nonnegativity of a polynomial becomes a tractable SDP. The converse question, is
a nonnegative polynomial necessarily an SOS, is unfortunately false, indicating that
this test is conservative [28]. Nonetheless, SOS feasibility is sufficiently powerful for
our purposes. Theorem 7 guarantees a tractable procedure to determine whether a
particular polynomial, possibly parameterized, is an SOS polynomial. Our method
combines multiple polynomial constraints into an optimization formulation. To do so,
we need to define the following polynomial sets.

DEFINITION 8. The preordering of polynomials g;(x) € R[z] fori=1,2,...,m is
the set
10)  Plgn) = 3 sul(@)g1(@)” - gml@)™ | 5, € Sla)
ve{0,1}™

The following proposition is trivial, but it is useful to incorporate the domain 2
into our optimization formulation later.

PROPOSITION 9. Given f(x) € Rlz] and the domain

O ={z|gzx) eRz], gi(z) >0,i€e{1,2,...,m}},

if f(z) € P(g1,---,9m), then
nomial f'(x) such that f'(z)
Q.

f(x) is nonnegative on Q. If there exists another poly-
> f(x) for all x € Q, then f'(x) is also nonnegative on

Proof. Because g;(x) and s;(x) are nonnegative, all functions in P(-) are nonneg-
ative. The second statement is trivially true given the first statement. d
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Ezxample. To illustrate an application of Proposition 9, consider a polynomial
f(z) defined on the domain x € [—1,1]. The bounded domain can be equivalently
defined by polynomials with g1(x) = 1+ and go(x) = 1 —z. To certify that f(z) >0
on the specified domain, construct a function h(z) = s1(x)(1 4+ z) + s2(x)(1 — x) +
s3(z)(1 + x)(1 — z), where s; € S[z], and certify that f(x) — h(z) > 0. Notice that
h(z) € P(1 4+ x,1 —x), so h(z) > 0. If f(x) — h(x) > 0, then f(z) > h(z) > 0.
Proposition 9 is applied here. Finding the correct s;(x) is not trivial in general.
Nonetheless, as mentioned earlier, if we further impose that f(z) — h(x) € S[z], then
checking whether there exists s;(z) such that f(x) — h(z) € S[z] becomes an SDP as
given by Theorem 7.

To simplify notation in the remainder of this text, given a domain Q = {z |
gi(z) € R[z], g;(x) >0, i € {1,2,...,m}}, we set the notation P(Q) = P(g1,.-.,9m)-

Remark 10. Depending on the computational resources available, one may choose
a subset of P(€) to reduce the size of the resulting SDP. However, the chances of
finding a certificate are reduced as a consequence. This polynomial set is often used in
the discussions of Schmiidgen’s Positivstellensatz, which states that if f(z) is positive
on a compact domain 2, then f(z) € P() [22, 28].

3. SOS Relaxation of the HIJIB PDE. SOS programming has found many
uses in combinatorial optimization, control theory, and other applications. This sec-
tion now adds solving the linear HJB to this list. We would like to emphasize the
following standing assumption, necessary in moment- and SOS-based methods [22, 28].

ASSUMPTION 11. Assume that system (1) evolves on a compact domain Q C R™
and that § is a basic closed semialgebraic set such that Q = {x | gi(z) € Rlz], g:(x) >
0,i € {1,...,k}} for some k > 1. Then the boundary O is polynomial representable.
We use the notation 9Q = {x | h;(z) € Rlz], [[;2, hi(z) = 0} for some m > 1 to
describe the boundary.

The following definitions formalize several operators that are useful in what fol-
lows.

DEFINITION 12. Given a basic closed semialgebraic set Q = {z | g;(z) € R[z],
gi(x) > 0,i € {1,...,k}} and a set of SOS polynomials,
S = {su(2) | su(z) € S[a], v € {0,1}"},
define the operator D as

DS = S s(@)g(@)” - gi(0)™,

ve{0,1}*
where s, € S and D(Q2,S) € P(Q).

DEFINITION 13. Given a polynomial inequality p(xz) > 0 defined on 2, the bound-
ary of a compact set 9N = {z | h;(z) € Rlz], [T~ hi(xz) = 0}, and a set of polynomi-
als,

T = {ti(x) | t:(x) € Rlz], i € {1,...,m}},

define the operator B as

Blp(x), 00, T) = {ple) — ti(@)hi(x) | i € {L,....m}},

where t; € T and B returns a set of polynomials that is nonnegative on OS).
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3.1. Relaxation of the HIB equation. If the linear HIB (8) is not uniformly
parabolic [3], a classical solution may not exist. The notion of wiscosity solutions is
developed to generalize the classical solution. We refer readers to [3] for a general
discussion on viscosity solutions, and to [9] for a discussion on viscosity solutions
related to Markov diffusion processes.

DEFINITION 14 (Definition 2.2 of [3]). Given Q C RY and a PDE
(11) F(z,u, Vyu, Vyzu) =0,

where F' : RV x R x RV x §(N) — R, S(N) is the set of real symmetric N x N
matrices, and F satisfies

F(z,r,p,X) < F(z,s,p,Y) whenever r <s andY < X,
then a viscosity subsolution of (11) on Q is a function uw € USC(Q) such that
F(z,u,Vau,Vaau) <0 Yz eQ, (p,X) € Jé’Jru(x).
Similarly, a viscosity supersolution of (11) on Q is a function uw € LSC(Q) such that
F(z,u,Vau,Vaau) >0 Yz eQ, (p,X) € Jé’fu(x).

Finally, u is a viscosity solution of (11) on Q if it is both a viscosity subsolution and
a viscosity supersolution in €.

The notations USC(€2) and LSC(2) represent the sets of upper and lower semi-
continuous functions on domain {2, respectively, and Jé’Jru(x) and Jé’fu(x) represent
the second order “superjets” and “subjets” of u at z, respectively, a completely unre-
strictive domain in our setting. For further details, readers may refer to [3]. For the
remainder of this paper, we assume that unique nontrivial viscosity solutions to (4)
and (8) exist (see [9, Chap. V]) and denote them as V* and U*, respectively.

The equality constraints of (8) may be relaxed as follows:

(12a) %q\ll — L(W) < (2)0,

(12b) U(z) < (2)(z),  x €.

Such a relaxation provides a pointwise bound to the solution ¥*, and this relaxation
may be enforced via SOS programming. In particular, a solution to (12), denoted as
U, (U,), is a lower (upper) bound on the solution ¥* over the entire problem domain.

THEOREM 15. Given a smooth function U, (¥,,) that satisfies (12), then ¥; (¥,,)
is a viscosity subsolution (supersolution), and U; < U* (¥, > U*) for all x € Q.

Proof. By Definition 14, the solution V¥, is a viscosity subsolution where F' in
(11) is given by (12a). Note that ¥* is both a viscosity subsolution and a viscosity
supersolution, and ¥; < U* on the boundary 0€2. Hence, by the maximum principle
[3, Thm. 3.3], ¥; < U* for all z € Q. The proof is identical for ¥,,. a

Because the logarithmic transform (7) is monotonic, one can relate these bounds
on the desirability function to bounds on the value function as follows.

PROPOSITION 16. If the solution to (4) is V*, given solutions V,, = —Alog ¥; and
Vi = =Alog ¥, from (12), then Vo, > V* and V; < V*.
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Proof. Recall that V* = —Alog U*. Apply Theorem 15, V,, > V* and V; < V*.0O

The solutions to (12) do not satisfy (8) exactly, but they provide pointwise bounds
to the solution ¥*.

3.2. SOS program. Given that relaxation (12) results in a pointwise upper
and lower bound to the exact solution of (8), we construct the following optimization
problem that provides a suboptimal controller with bounded residual error:

(13) Jnin e
1
s.t. Xq\I/l — E(\I/l) <0, x €,

1
0< Xq\I/u —L(V,), z€Q,

U, —¥; <e, x € Q,
0<U, <y <, zedf,
9, <0, zt >0,
0,0y > 0, zt <0,
U (0) =1,

where 2¢ is the ith component of € 2. As mentioned in subsection 3.1, the first two
constraints result from the relaxations of the HJB equation, and the fourth constraint
arises from the relaxation of the boundary conditions. The third constraint ensures
that the difference between the upper bound and lower bound solution is bounded,
and the last three constraints ensure that the solution yields a stabilizing controller,
as will be made clear in section 4. Note that in the optimization problem, ¥, and
¥; are polynomials whereby the coefficients and the degree for both are optimization
variables. The term e is related to the error of the approximation.

As discussed in the review of SOS techniques, a general optimization problem in-
volving parameterized nonnegative polynomials is not necessarily tractable. In order
to solve (13) using a polynomial-time algorithm, we restrict the polynomial inequal-
ities such that they are SOS polynomials instead of nonnegative polynomials. We
therefore apply Proposition 9 to relax optimization problem (13) into

(14) min €
0,8, T

1
st. — Xq\I/l + L(¥Y;) — D(Q,S1) € S[z],

%qlllu CL(,) — D(Q,S,) € Slal,

e— (¥, —¥,) —D(Q,8;) € S[z],
B(U;,00,T1) € S[x],

By — ¥,,00,7Tz) € S[z],

BV, —,00,7T;) € S|z},

— 0,0, —D(QN {z* >0},8,) € S[x],
0¥, —D(OQN {—xi > 0},85) € S[z],
¥ (0) =1,
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where S = (S, ...,84,S5), Si C S[z] is defined as in Definition 12, T = (71, T2, T3),
and 7; C R[z] is defined as in Definition 13. With a slight abuse of notation, B(-) €
S[z] implies that each polynomial in B(-) is an SOS polynomial.

If the polynomial degrees are fixed, optimization problem (14) is convex and
solvable using a semidefinite program via Theorem 7. The next section will discuss

the systematic approach we used to solve the optimization problem. Henceforth,
denote the solution to (14) as (¥, ¥;,S, T, ¢€).

Remark 17. By Definition 14, the viscosity solution is a continuous function. Con-
sequently, the solution ¥* is a continuous function defined on a bounded domain.
Hence, ¥,, and ¥; can be made arbitrarily close to ¥* by the Stone—Weierstrass the-
orem [31] in (13). However, this guarantee is lost when ¥,, and ¥, are restricted to
being SOS polynomials. The feasible set of the optimization problem (14) is therefore
not necessarily nonempty for a given polynomial degree. One would not expect feasi-
bility for all instances of (14), as this would imply that there exists a linear stabilizing
controller for any given system.

3.3. Controller synthesis. Let d be the maximum degree of ¥;, ¥,, and poly-
nomials in S and 7, and denote by (¥ w¢ S T4 ¢d) a solution to (14) when
the maximum polynomial degree is fixed at d. The hierarchy of SOS programs
with increasing polynomial degree produces a sequence of (possibly empty) solutions
(U, wd 84 T4 ¢d)yer, where I C Zi. This sequence will be shown in the next
section to improve, under the metric of the objective in (14).

In other words, if solutions exist for d and d’ such that d > d’, then €@ < .
Therefore, one could keep increasing the degree of polynomials in order to achieve
tighter bounds on ¥* and, invariably, V*. The use of such hierarchies has become
commonplace in polynomial optimization [21, 28]. If at a certain degree, ¢¢ = 0, the
solution U* is found.

Once a satisfactory error is achieved or computational resources run out, the
lower bound \Ilf can be used to compute a suboptimal controller where d is the max-
imum degree computed. Recall that u* = —R™'GTV,V* and V* = —Xlog U*. The
suboptimal controller u¢ for a given degree d and error €% is computed as ue’ =
—R1GTV, V2, where V¢ = —\log U{. Even when €? is larger than a desired value,
the solution W still satisfies conditions in Definition 3 to yield a stabilizing subop-
timal controller. The next section will analyze properties of the solutions and the
suboptimal controller.

4. Analysis. This section establishes several properties of the solutions to the
optimization problem (14) that are useful for feedback control. First we show that the
solutions in the SOS program hierarchy are uniformly bounded relative to the exact
solutions. We next prove that the relaxed solutions to the stochastic HIB equation
are SCLFs, and the approximated solution leads to a stabilizing controller. Finally,
we show that the costs of using the approximate solutions as controllers are bounded
above by the approximated value functions.

4.1. Properties of approximated desirability functions. First, the approx-
imation error of ¥; or ¥, obtained from (14) is computed relative to the true desir-
ability function ¥*.

PROPOSITION 18. Given a solution (¥4, ¥ S T4 e) to (14) for a given degree
d, the approzimation error of the desirability function is bounded as ||[¥9—U*||o, < €9,
where U is either U or W,
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Proof. By Theorem 15, ¥¢ is the lower bound of ¥*, and ¥ is the upper bound
of ¥*. So, € > ¥ — ¥ >0 and ¥¢ > ¥* > ¥4, Combining both inequalities, one
has U4 — 0* < e? and U* — ¥¢ < ¢4, Therefore, ||[U?— ¥*||,, < €, where U? is either
¥l or Wi, O

PROPOSITION 19. The hierarchy of SOS programs consisting of solutions to (14)

with increasing polynomial degree produces a sequence of solutions (¥, Wi 84 T4 )
such that €t < €? for all d.

Proof. Polynomials of degree d form a subset of polynomials of degree d+1. Thus,
at a higher polynomial degree d + 1, a previous solution at a lower polynomial degree
d is still a feasible solution when the coeflicients for monomials with total degree d+1
is set to 0. Consequently, the optimal value €?*! cannot be larger than €? for all d. O

Thus, as the polynomial degree of the optimization problem is increased, the
pointwise error € is nonincreasing. Therefore, one could keep increasing the degree of
polynomials in order to achieve tighter bounds on ¥* and, invariably, V*. However, ¢
is only nonincreasing as the polynomial degree is increased, and a convergence of the
bound € to zero is not guaranteed because we restrict the approximating space to SOS.
The possible lack of convergence to zero is the trade-off for an efficient algorithm.

Although the bound on the pointwise error is nonincreasing, the actual difference
between ¥ and ¥* may increase between iterations.

COROLLARY 20. Suppose ||[¥¢ — U*||o < € and || U1 — U*||o = v9FL. Then,
HAL < e,

Proof. By Proposition 19, e?t! < ¢4, Because y31 < ¢@t1 44+l < ¢d, 0

In other words, the approximation error of the desirability function for an SOS
program using d + 1 polynomial degree cannot increase such that it is larger than e?
in each step of the hierarchy of SOS programs, which is nonincreasing.

4.2. Properties of approximated value functions. Up to this point, the
analysis has focused on properties of the desirability solution. We now investigate
the implications of these results for the value function, which is related to the desir-
ability via the logarithmic transform (7). Henceforth, denote the solution to (4) as
V*(2¢) = ming ) B, [J(2¢)] = —Alog ¥* (), the solution to (14) for a fixed degree
das (¥,,¥,,S,T,¢), and the suboptimal value function computed from the solution
of (14) as V,, = —AlogV¥,;. Only ¥; and V,, are considered henceforth, because ¥,
but not ¥,,, gives an approximate value function that satisfies the properties of an
SCLF in Definition 3, a fact shown in the next section.

THEOREM 21. For all xz € Q, V,, is an upper bound of V* such that

(15) OSVu—V*S—A10g<1—min{1,f}),
n

_ vl

where n =e~ A

Proof. By Proposition 16, V,, > V* and hence V,, — V* > 0. To prove the other
inequality, by Proposition 18,

oo

*

v, v € €
— * = — e < —_ < — —_ = .
V,—V Alog T = Mlog o= Alog (1 77)

V" Nl

The last inequality holds because U* > ¢~ = by definition in (7). Since ¥; is
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the lower bound of U*, the right-hand side of the first equality is always a positive
number. Therefore, V,, is a pointwise upper bound of V*. a
COROLLARY 22. Let V& = —Alog ¥f and VIt = ~Xlog Uit If W — o+ < ¢
and VI — V* = 4L then v < —Xlog (1 — min {1, %})
Proof. This result is given by Corollary 20 and Theorem 21. O
At this point, we have shown that the lower bound of the desirability function

yields an upper bound of the suboptimal cost. More importantly, the upper bound of
the suboptimal cost is not increasing as the degree of polynomial increases.

4.3. Approximate HJB solutions are SCLFs. This section shows that the
approximate value function derived from the approximation, ¥y, is an SCLF.

THEOREM 23. V,, is an SCLF according to Definition 3.

Proof. The constraint ¥;(0) = 1 in (14) ensures that V,(0) = —Alog ¥;(0) = 0.
Notice that all terms in J(z, ) from (2) are positive definite, resulting in V* being a
positive definite function. In addition, by Proposition 16, V* > V*. Hence, V" is also
a positive definite function. The second and third to last constraints in (14) ensure
that ¥; is nonincreasing away from the origin. Hence, V,, is nondecreasing away from
the origin satisfying u(|z|) < Vi (x) < p/(|z|) for some p, ' € K.

Next, we show that there exists a u such that L(V,) < 0. Following (5), let

(16) ut = —R'GTV,V,,

the control law corresponding to V. Notice that, from the definition of V,,, V.V, =
—3-Vo ¥ and VoV, = Wilz(vz\l/l)(vr%)T — $-Var U1 So, u¢ = $-RIGTV, ;.
Then, from (9),

A A
L(V,) = —E(vx\m)T (f + Elc:zi”GTvmxpl)

1 A

A
=T (V) (V)T — =V, U, ) BE.B),
+alr ((\I/f (Vo) (Ve ) \I/lv z) )

where 0;V,, = 0 because V,, is not a function of time. Applying the assumption in (6)
and simplifying yields

A A
L(V,) = (V.U f — == (V,U)T%,V, ¥, — ETT((VM\IH) ).
!

A
U, 202

From the first constraint in (14),

1 1
Xq\Ill — (V) — 5Tr((vmxpl)zt) <0 =

A T A
_— < — — .
T, (Vo U) f < —q+ 2\IIZTT((VM\I/l)Et)
Substituting this inequality into L(V,,) and simplifying yields

(17) L(Vu) S —q Vm\Ijl)TEtvw\Ijl S 07

o
207
because ¢ > 0, A > 0, and ¥ is positive semidefinite by definition. Since V,, satisfies
Definition 3, V,, is an SCLF. a
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COROLLARY 24. The suboptimal controller u¢ = —R™1GTV,V, is stabilizing in
probability within the domain €.

Proof. This corollary is a direct consequence of the constructive proof of Theo-
rems 4 and 23. a

COROLLARY 25. If ¥, is a positive definite matriz, the suboptimal controller u¢ =
—R7'GTV,V, is asymptotically stabilizing in probability within the domain €.

Proof. This corollary is a direct consequence of the constructive proof of Theo-
rems 5 and 23. In (17), L(V,) < 0 for x € Q\{0} if ¥; is positive definite. Recall that
q is positive definite in the problem formulation. d

4.4. Bound on the total trajectory cost. We conclude this section by show-
ing that the expected total trajectory cost incurred by the system while operating
under the suboptimal controller of (16) can be bounded as follows.

THEOREM 26. Given the control law u¢ = —R~'GTV Vi,
(18) Ju<vu<V*—Alog<1—min{1,f}>,
n

where J, = By, [¢r(z7) —I—fOT q(z) + %u?Rut dt], the expected cost of the system when
using the control law, u°.

Proof. By Ito’s formula,
qu(ﬂft) = L(Vu)(ﬂft)dt + szu(ZIIt)B(ZIIt)dwt,

where L(V) is defined in (9). Then,

(19) Vu(zt) = Vi (20, 0) —I—/O L(Vu)(xs)ds—i—/o Vo Vu(zs)B(zs)dws.

Given that V, is derived from polynomial function ¥;, the integrals are well defined,
and we can take the expectation of (19) to get

BV (o] = Vateo,0) + B [ [ 20w

whereby the last term of (19) drops out because the noise is assumed to have zero
mean. The expectations of the other terms return the same terms because they are
deterministic. From (17),

A
- Tw(m%)thvz%

L(Vy) < —q
1 T 1T
=-0-3 (VaVu) GR™G* (Vi V)
1
=—q— g(ue)TR’U/E,

where the first equality is given by the logarithmic transformation and the second
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equality is given by the control law u¢ = —R~'GTV,V,,. Therefore,

T
/ L(Vu)(a:s)ds]
0

T
1
< Vu(mo) — E,, l/ q(zs) + §(u§)TRu§ds
0

By, [Vu(zr)] = Vu(zo) + Eo,

= Vu(wo) — J(wo, u) + Eu, [¢(z7)],
where the last equality is given by (2). Therefore,
Vu(x()) - J(Q:Oa ue) Z Ewt [Vu(xT) - d)(xT)]

By definition, V,(z7) > ¢(zr) for all xp € Q. Thus, E, [V, (zr) — é(xr)] > 0.
Consequently, V,,(xzg) — J(z0,uc) > 0, and Vi, (x9) > J(zg,u). Theorem 21 gives the
second inequality in the theorem. a

5. Linearly solvable approximations. The approach presented in this paper
would appear up to this point to be limited to systems that are linearly solvable, i.e.,
those that satisfy condition (6). However, the proposed methods may be extended to
a system which does not satisfy these conditions by approximating the system with
one that is linearly solvable. One example is to introduce stochastic forcing into an
otherwise deterministic system.

We first construct a comparison theorem between HJB solutions and systems that
share the same general dynamics but with differing noise covariance. This comparison
allows for the approximated value function of one system to bound the value function
for another, providing pointwise bounds, and indeed SCLFs, for those that do not
satisfy (6).

PROPOSITION 27. Suppose V¢ is the solution to the HJB equation (4) with noise
covariances ¥, and that V® is a supersolution to (4) with identical parameters except
the noise covariance X°, where Xy — X = 0. Then VP > V@ for all x € Q.

Proof. From [3, Def. 2.2], V is a viscosity supersolution to the HJB equation (4)
with noise covariance ¥ if it satisfies

(200 0<—q—(V.V)" f+ % (V. GRGT (V. V) — %Tr (Voo V) BEBT) .
Since ¥ — X, = 0, the following trace inequality holds:
Tr ((VaaV®) BSyBT) > Tr ((Vaa V) BE.BT) .
Therefore, we have the inequality
0<—q— (V)" f+ % (Vv GRIGT (v, V) — %TT ((VarV?) B, BT)
<—q— (V. F4 % (Vv GRT'GT (V,V?) - %Tr ((VeV?) BS,BT),
which implies that V? is in fact a viscosity supersolution to the system with noise

covariance X¢ (i.e., V? satisfies (20) for £¢). As V'’ is a supersolution to the system
with parameter £%, then V0 > Vo™, 0
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A particular class of such approximations arises from a deterministic HJB solu-
tion, which is not linearly solvable but is approximated by one that is linearly solvable.
Consider a deterministic system of the form

with cost function

T
(22) J(z,u) = ¢(xr) + /0 q(x) + %utRut dt,

where ¢, q, R, f, G, and the state and input domains are defined as in the stochastic
problem in subsection 2.2. Then, the HJB equation is given by

1
(23) 0=q+(VaV)' [ =5 (VaV) GRTIGT (V.V),
and the optimal control is given by u* = —R™'GTV,V. In general, (23) is not a
linear PDE.

COROLLARY 28. Let V* be the value function that solves (23), and V" be the
upper bound solution obtained from (14) where all parameters are the same as (23) and
3 is not zero. Then, V* is an upper bound for V* over the domain (i.e., V* < V™).

Proof. A simple application of Proposition 27, where ¥, takes the form of a zero

matrix, gives V* < V. 0
Interestingly, using the solution from (14) and the transformation V,, = —Alog ¥,
the suboptimal controller u¢ = —R~'GTV,V, is a stabilizing controller for the de-

terministic system (21) if a simple condition is satisfied. This fact is shown using the
Lyapunov theorem for deterministic systems introduced next [33].

DEFINITION 29. Given the system (21) and cost function (22), a control Lya-
punov function (CLF) is a proper positive definite function V € C!' on a compact
domain QU {0} such that

(24) V(0) =0, V(z) = p(lz]) Ve Q\{0},
Ju(z) s.t. (Vo)1 (f4+Gu) <0 Ve Q\{0},

where p € K.

THEOREM 30 (Theorem 2.5 of [33]). Given a system (21) and cost function (22),
if there exist a CLF'V and a u satisfying Definition 29, then the controlled system is
stable, and u is a stabilizing controller. Furthermore, if (V.V)T(f + Gu) < 0 for all
x € Q\{0}, the controlled system is asymptotically stable, and u is an asymptotically
stabilizing controller.

Verifying that the controller u¢ = —R™'GTV,V, is in fact stabilizing and that
V.. is a CLF may be approached as follows.

COROLLARY 31. Given the controller u¢ = —R'GTV,V,, if

Tr (Ve Vu) X)) >0 Ve Q\{0},
then u® is a stabilizing controller for (21). If

Tr(VaeVi) Se) >0 Va e Q\{0},

then u€ is an asymptotically stabilizing controller for (21).
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Proof. Recall that, from the proof of Theorem 23, all conditions in Definition 29
are satisfied by V,, except (24). To show that V,, satisfies (24), rearrange (4) to yield
the following:

(Vo V)T (f +Gus) = (Vo V)T f = (Vo V) TGRTIGT (V. V)
< —q-— %(vaU)TGR*GT(vau) — %TT((VMVU) ),

where ¥; = BY BT, Recall that ¢ and R are positive definite. If T (V4 Vi) X¢) > 0
for all z € Q\{0}, then (V. V,)T(f + Gu®) <0, implying that V* is a CLF and u€ is
a stabilizing controller by Theorem 30. Furthermore, if T ((V4;Vy) 3¢) > 0 for all
x € Q\{0}, u is an asymptotically stabilizing controller. O

In the deterministic case, Y; is free variable that can be chosen to be small
according to the equality (6). Hence, (6) is no longer a constraint or an assumption,
but it serves as a design principle for obtaining a CLF for system (21). Furthermore,
given a Y, the trace condition in Corollary 31 is easily enforced in (14) by adding one
extra constraint in the optimization problem. Thus, the optimization problem (14) can
also produce a CLF for the corresponding deterministic system, with analytical results
from section 4, including a priori trajectory suboptimality bounds (Theorem 26),
which are inherited as well.

6. Numeric examples. This section studies the computational characteristics
of this method using two examples—a scalar system and a two-dimensional system.
In the following problems, the optimization parser YALMIP [25] was used in conjunc-
tion with the semidefinite optimization package MOSEK [2]. In both examples, the
continuous system is integrated numerically using Euler integration with a step size
of 0.005s during simulations.

6.1. Scalar unstable system. Consider the following scalar unstable nonlinear
system:

(25) dr = (2° 4+ 52 + 2 + u) dt + dw

on the domain z € @ = {z | =1 <z < 1}. The noise model considered is Gaussian
white noise with zero mean and variance ¥, = 1. The goal is to stabilize the system at
the origin. We choose the boundary at two ends of the domain to be ¥(—1) = 20e~1°
and ¥(1) = 20e~10. At the origin, the boundary is set as ¥(0) = 1. We set ¢ = 22,
and R = 1. In the one-dimensional case, the origin, which is a boundary, divides the
domain into two partitions, x < 0 and x > 0. Because of the natural division of the
domain, the solutions for both domains can be represented by smooth polynomials
and solved independently. The simulation is terminated when the trajectories enter
the interval [—0.005, 0.005] centered on the origin.

The desirability functions that result from solving (14) for varying polynomial
degrees are shown in Figure 1. The true solution is computed by solving the HJB
directly in Mathematica [39]. The kink at the origin is expected because the HJB
PDE solution is not necessarily smooth at the boundary, and in this instance the
origin is a zero-cost boundary.

The approximation error € for both partitions is shown in Figure 2(a) for in-
creasing polynomial degree. As seen in the plots, the approximation improves as the
polynomial degree increases. Polynomial degrees below 14 are not feasible; hence this
data is omitted from the plots. The suboptimal solution converges faster for z > 0
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Fi1G. 1. The desirability function of system (25) for varying polynomial degree. The true solution
is the black curve.
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Fic. 2. Computational results of system (25). (a) Convergence of the objective function of (14)
as the degree of the polynomial increases. The approximation error for x < 0 is denoted by €;, and the
approzimation error for x > 0 is denoted by e. (b) Sample trajectories using a controller computed
from optimization problem (14) with different polynomial degrees starting from siz randomly chosen
initial points. (c) The comparison between Jy and Vi, for different polynomial degrees whereby Jy, is
the expected cost and Vi, is the value function computed from optimization problem (14). The initial
condition s fized at xg = —0.5.

than for z < 0 when the degree of the polynomial increases, because the true solution
for x > 0 has a simple quadratic-like shape that can be easily represented as a low
degree SOS function.

Figure 2(b) shows sample trajectories using the controller computed from opti-
mization problem (14) for different polynomial degrees. The controllers are stabilizing
for six randomly chosen initial points. Unsurprisingly, the suboptimal solutions with
low pointwise error result in the system converging more quickly towards the origin.

To compare J, and V,,, a Monte Carlo experiment is illustrated in Figure 2(c).
For each polynomial degree that is feasible, the controller obtained from W; in op-
timization problem (14) is implemented in 30 simulations of the system subject to
random samples of Gaussian white noise with ¥, = 1. The initial condition is fixed
at o = —0.5. In the figure, V* > J* as expected, and the difference between the two
decreases with increasing d.

6.2. Two-dimensional system. In the following example, we demonstrate the
power of this technique on a two-dimensional system. Consider a nonlinear two-
dimensional problem example with the following dynamics:

dr | x5—x3—x—|—a:y4 T Uy T dwq
(26) [dy}_(Z[yLyB—eryx‘* Tl yus di+ ydwy |-
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(a) ¥, Degree = 10.  (b) ¥, Degree = 20.  (c) V, Degree = 10.  (d) V, Degree = 20.

Fic. 3. Approzimated desirability functions and value functions for (26) when polynomial
degrees are 10 and 20. In (a) and (b), the blue sheets are the upper bound solutions V., and the red
sheets are the lower bound solutions ¥;. The corresponding value functions are shown in (c) and
(d), respectively.
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Fic. 4. Computational results of system (26). (a) Convergence of the variables in the objective
Sfunction of (14). (b) Sample trajectories using the controller from optimization problem (14) with
different polynomial degrees starting from siz randomly chosen initial points. (c) The comparison
between J,,, the expected cost, and Vi, the value function, for different polynomial degrees from
optimization problem (14). The initial condition is fized at zo = (0.7,0.7).

The goal is to reach the origin at the boundary of the domain Q = {(z,y) | -1 <z <
1,—1 <y < 1}. The control penalty is R = 5«2, and the state cost is q(z) = 22 +y>.
The boundary conditions for the sides at t =1, x = —1, y = 1, and y = —1 are set to
¢(x,y) = 5, while at the origin, the boundary has cost ¢(0,0) = 0. The noise model
considered is Gaussian white noise with zero mean and an identity covariance matrix.

The approximated desirability functions and their corresponding value functions
are shown in Figure 3, with half of the domain z € [0,1] shown in order to view the
gaps between the upper and lower bound solutions. Figure 4(a) shows the convergence
of the objective function of optimization problem (14) as the degree of the polynomial
increases. There is no data below degree 10 because the optimization problem is not
feasible in these cases. As shown in Figure 4(b), sample trajectories starting from six
different initial points show that the controllers computed from ¥; for various degrees
arrive at the origin. The trajectory is considered at the origin if it is within a distance
of 0.01 from the origin.

Similar to the scalar example, a Monte Carlo experiment is performed to compare
Jy and V,,. For each polynomial degree that is feasible, the controller obtained from ¥,
in optimization problem (14) is implemented in 30 simulations of the system, subject
to random samples of Gaussian white noise with X = Is45. The initial condition
is fixed at xp = (0.7,0.7). Figure 4(c) shows the comparison between J, and V,,
for different polynomial degrees whereby J,, is the expected cost and V,, is the value
function computed from ¥, in optimization problem (14). As expected, V¥ > J*.
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7. Conclusion. This paper has proposed a new method for approximating the
solution to a class of optimal control problems for stochastic nonlinear systems via
SOS programming. Analytical results provide guarantees on the suboptimality of
trajectories when using the approximate solutions for controller design. Consequently,
one can synthesize a suboptimal stabilizing controller for a large class of stochastic
nonlinear dynamical systems.

As is commonly seen when using SOS programming, the numerics of the semidef-
inite program may be cumbersome in practice. There are a number of avenues for
future work aimed at improving the practical performance. First, the monomials of the
polynomial approximation can be chosen strategically in order to decrease computa-
tion time while achieving high accuracy. A promising future direction is the synthesis
of the work presented here with that of [14], wherein the curse of dimensionality is
avoided via the strategic choice of basis functions. To improve the numerical condi-
tioning of these optimization techniques, a domain partitioning technique is studied
in [15], wherein the alternating direction method of multipliers is used to enable both
parallelization and a solution representation that varies in resolution over the do-
main. In addition, there exists a growing body of literature devoted to increasing the
numeric stability and scalability of SOS techniques [29, 1].
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