Induced Matchings in Graphs of Bounded Maximum Degree

Felix Joos*

Abstract

For a graph G, let $\nu_{s}(G)$ be the induced matching number of G. We prove that $\nu_{s}(G) \geq \frac{n(G)}{\left.\left(\Gamma \frac{\Delta}{2}\right]+1\right)\left(\left[\frac{\Delta}{2}\right]+1\right)}$ for every graph of sufficiently large maximum degree Δ and without isolated vertices. This bound is sharp. Moreover, there is polynomial-time algorithm which computes induced matchings of size as stated above.

Keywords: induced matching; strong matching; strong chromatic index
AMS subject classification: 05C70, 05C15

1 Introduction

For a graph G, a set M of edges is an induced matching of G if no two edges in M have a common endvertex and no edge of G joins two edges of M. The maximum number of edges that form an induced matching in G is the strong matching number $\nu_{s}(G)$ of G. We denote by $\Delta(G)$ the maximum degree of graph G and let $n(G)=|V(G)|$ and $m(G)=|E(G)|$.

In contrast to the well known matching number $\nu(G)$, which can be computed in polynomial time 4, it is NP-hard to determine the strong matching number even in bipartite subcubic graphs [2, 7, 9]. In fact, the strong matching number is even hard to approximate in restricted graphs classes as for example regular bipartite graphs 3.

To the best of my knowledge, the only known bound in terms of the order and the maximum degree for $\nu_{s}(G)$ is obtained by the following simple observation [11]. Let G be a graph without isolated vertices. There are at most $2 \Delta(G)^{2}-2 \Delta(G)+1$ many edges in distance at most 1 from e including e and $m(G) \geq \frac{1}{2} n(G)$. Thus a simple greedy algorithm implies

$$
\nu_{s}(G) \geq \frac{n(G)}{2\left(2 \Delta(G)^{2}-2 \Delta(G)+1\right)},
$$

which is far away from being sharp if $G \neq K_{2}$.
It seems that the different behavior of $\nu(G)$ and $\nu_{s}(G)$ transfers to the corresponding partitioning problems. The chromatic index χ^{\prime} seems much simpler than the strong chromatic index χ_{s}^{\prime}, defined as the minimum number of induced matchings one needs to partition the edge set. While for $\chi^{\prime}(G)$ Vizing's Theorem always gives $\chi^{\prime}(G) \in\{\Delta(G), \Delta(G)+1\}$ [10], no comparable result holds for the strong chromatic index.

[^0]A trivial greedy algorithm ensures $\chi_{s}^{\prime}(G) \leq 2 \Delta(G)^{2}-2 \Delta(G)+1$. Erdős and Nešetřil [5] conjectured $\chi_{s}^{\prime}(G) \leq \frac{5}{4} \Delta(G)^{2}$, which would be best possible for even Δ because equality holds for the graph obtained from the 5 -cycle by replacing every vertex by an independent set of order $\frac{\Delta}{2}$. The best general result in this direction is due to Molloy and Reed, who proved that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta(G)^{2}$ for sufficiently large maximum degree [8]. Thus Erdős and Nešetřil's conjecture is widely open and it is even unknown which technique is suitable to improve Molloy and Reed's result substantially.

In this paper I provide more insight concerning the behavior of induced matchings by improving the known lower bounds on $\nu_{s}(G)$ to a sharp lower bound provided that the maximum degree is sufficiently large.

Theorem 1. There is an integer Δ_{0} such that for every graph G of maximum degree Δ at least Δ_{0} and without isolated vertices,

$$
\nu_{s}(G) \geq \frac{n(G)}{\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}
$$

holds.

The following construction shows that the bound in Theorem 1 is sharp. Let Δ be an integer at least 3 and let the graph H_{1} arise from the complete graph on $\left\lceil\frac{\Delta}{2}\right\rceil+1$ vertices by attaching at each vertex $\left\lfloor\frac{\Delta}{2}\right\rfloor$ pendant vertices. Let H_{2} arise from the complete graph on $\left\lfloor\frac{\Delta}{2}\right\rfloor+1$ vertices by attaching at each vertex $\left\lceil\frac{\Delta}{2}\right\rceil$ pendant vertices. It follows that $\nu_{s}\left(H_{i}\right)=1$ and $n\left(H_{i}\right)=\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)$; that is, the bound of Theorem 1 is sharp. Note that $H_{1}=H_{2}$ if Δ is even.

For the sake of simplicity I do not try to optimize the constant Δ_{0} intensively. We show Theorem 1 for $\Delta_{0}=1000$ but with some more effort one can lower the bound down to 200 .

In [6] the same bound as in Theorem 1 is already shown by a simple inductive argument for graphs of girth at least 6 . Hence one might ask whether the bound in Theorem 1 can be improved for graphs of large girth to $\frac{n(G)}{\Delta^{c}}$ for some $c<2$. However, this is not the case. By a result of Bollobás [1], for every $g \geq 3$ and $\Delta \geq 6$, there is a graph H^{\prime} of maximum degree $\left\lfloor\frac{\Delta}{2}\right\rfloor$, girth at least g, and independence number at most $\frac{4 \log \Delta}{\Delta} n\left(H^{\prime}\right)$. Let H arise from H^{\prime} by attaching to each vertex $\left\lceil\frac{\Delta}{2}\right\rceil$ many pendant vertices. Note that $\nu_{s}(H) \leq \frac{4 \log \Delta}{\Delta} n\left(H^{\prime}\right)$ and $n(H)=\left\lceil\frac{\Delta}{2}\right\rceil n\left(H^{\prime}\right)$. Thus $\nu_{s}(H) \leq \frac{8 \log \Delta}{\Delta^{2}} n(H)$ and the bound of Theorem 1 can only be improved by a $O(\log \Delta)$-factor.

Since the proof of Theorem 1 is constructive, it is easy to derive a polynomial-time algorithm, which computes an induced matching of size as guaranteed in Theorem 1 ,

We use standard notation and terminology. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. For a vertex v, let $d_{G}(v)$ be its degree, let $N_{G}(v)$ be the set of neighbors of v, and let $N_{G}[v]=N_{G}(v) \cup\{v\}$. If the corresponding graph is clear from the context, we only write $d(v), N(v)$ and $N[v]$, respectively. A set I of vertices of G is independent if there is no edge joining two vertices in I.

2 Proof of Theorem 1

We prove the theorem for $\Delta_{0}=1000$. Let G be a graph with maximum degree Δ at least Δ_{0} and without isolated vertices. For a contradiction, we assume that G is a counterexample such that
(1) $\nu_{s}(G)$ is minimum and
(2) subject to (1), the order of G is maximum.

Since $\nu_{s}(G) \geq \frac{n(G)}{2 \Delta^{2}}$, the graph G is well-defined.
The choice of G implies that if v is a vertex of G that is adjacent to a vertex of degree 1 , then $d(v)=\Delta$ because adding new vertices to G and joining them to v does not increase $\nu_{s}(G)$ but the order of G.

For some calculations it might help to know that $\frac{\Delta^{2}}{4}+\Delta+\frac{3}{4} \leq\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)$.
Claim 1. For every edge uv of G, we have $d(u)+d(v)>\frac{\Delta}{4}$.
Proof of Claim 11. For a contradiction, we assume that there is an edge $u v$ such that $d(u)+d(v) \leq \frac{\Delta}{4}$. Let $S=N[u] \cup N[v]$ and let I be the set of all isolated vertices of $G-S$. Let $G^{\prime}=G-S-I$. Since $\nu_{s}(G) \geq \nu_{s}\left(G^{\prime}\right)+1$, the choice of G implies $\nu_{s}\left(G^{\prime}\right) \geq \frac{n\left(G^{\prime}\right)}{\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}$.

By using the assumption $d(u)+d(v) \leq \frac{\Delta}{4}$, we conclude $|S|+|I| \leq\left(\frac{\Delta}{4}-2\right) \Delta+2<$ $\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)$. Therefore, $u v$ together with a maximum induced matching of G^{\prime} is an induced matching of G of size at least $\frac{n(G)}{\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}$, which contradicts the choice of G.

Claim 2. Every vertex v of G is adjacent to at most $\frac{3}{4} \Delta$ many vertices of degree at most 9 .

Proof of Claim 园, Choose v such that the number of neighbors of degree at most 9 is maximal. Say v has $\alpha \Delta$ many such neighbors. For a contradiction, we assume that $\alpha>\frac{3}{4} \Delta$. Let $u \in N(v)$ be of degree at most 9 . As above, let $S=N[u] \cup N[v]$ and let I be the set of all isolated vertices of $G-S$. Let $G^{\prime}=G-S-I$. By Claim 1 , every vertex in I that is adjacent to a vertex of degree at most 9 , has degree at least 10. Thus there are at most $(1-\alpha) \Delta+8$ many vertices in S that are adjacent to vertices in I of degree at most 9 . Hence there are at most $\alpha(1-\alpha) \Delta^{2}+8 \Delta$ many vertices in I of degree at most 9. Furthermore, at most $8 \alpha \Delta$ edges join vertices in I and vertices in $N(v) \backslash\{u\}$ such that the vertices in $N(v) \backslash\{u\}$ have degree at most 9 . Since $\alpha(1-\alpha)+\frac{1}{10}(1-\alpha)^{2}<0.22$, this implies

$$
\begin{aligned}
|I| & \leq \alpha(1-\alpha) \Delta^{2}+8 \Delta+\frac{1}{10}\left((1-\alpha)^{2} \Delta^{2}+8 \alpha \Delta\right) \\
& <0.22 \Delta^{2}+9 \Delta \\
& \leq \frac{\Delta^{2}}{4}-9
\end{aligned}
$$

Since $|S| \leq \Delta+9$, we obtain

$$
|I|+|S|<\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right) .
$$

Again, the edge $u v$ together with a maximum induced matching of G^{\prime} is an induced matching of G of size at least $\frac{n(G)}{\left(\left[\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}$, which contradicts the choice of G.
Let $f: V(G) \rightarrow \mathbb{R}$ be such that

$$
f(v)=\sum_{w \in N(v): d(w) \neq \Delta} \frac{1}{d(w)} .
$$

Claim 3. If a vertex v of G is not adjacent to a vertex of degree 1 , then $f(v) \leq \frac{2}{5} \Delta$.
Proof of Claim 圆. Let v be a vertex that is not adjacent to a vertex of degree 1. By Claim 2, the vertex v has at most $\frac{3}{4} \Delta$ neighbors of degree at most 9 , which contribute to $f(v)$ at most $\frac{1}{2}$ each; all remaining neighbors contribute at most $\frac{1}{10}$ each. Thus $f(v) \leq$ $\frac{1}{2} \cdot \frac{3}{4} \Delta+\frac{1}{10} \cdot \frac{1}{4} \Delta=\frac{2}{5} \Delta$.

For the rest of the proof, let $v \in V(G)$ be chosen such that $f(v)$ is maximal.
Case 1. v is adjacent to a vertex of degree 1 .
Recall that this implies $d(v)=\Delta$. Let $u \in N(v)$ be a vertex of degree 1 . As before, we want to combine $u v$ with a maximum induced matching of $G^{\prime}=G-(N[v] \cup I)$ to obtain a contradiction, where I are the isolated vertices of $G-N[v]$.

If $z \in I$ has degree $d<\Delta$, then z contributes exactly d times exactly $\frac{1}{d}$ to $f(w)$ for some $w \in N(v)$; that is, the total contribution to $\sum_{w \in N(v)} f(w)$ is 1 . Since no vertex in I is adjacent to u, there is no vertex $z \in I$ such that $d(z)=\Delta$. This implies that

$$
\begin{equation*}
|I| \leq \sum_{w \in N(v)} f(w) . \tag{1}
\end{equation*}
$$

Let N_{1} and N_{Δ} be the set of vertices in $N(v)$ of degree 1 and Δ, respectively. Let N_{s} be the set of vertices in $N(v) \backslash\left(N_{1} \cup N_{\Delta}\right)$ of small degree, say such that their degree is between 2 and $\frac{\Delta}{8}$. Let $N_{\ell}=N(v) \backslash\left(N_{1} \cup N_{s} \cup N_{\Delta}\right)$, and let $n_{1}=\left|N_{1}\right|, n_{s}=\left|N_{s}\right|$, $n_{\ell}=\left|N_{\ell}\right|$, and $n_{\Delta}=\left|N_{\Delta}\right|$.

Since all vertices in $N_{s} \cup N_{\ell}$ do not have degree Δ and by the choice of G, they are not adjacent to a vertex of degree 1 . If $w \in N_{1}$, then $f(w)=0$ and w contributes 1 to $f(v)$. If $w \in N_{s}$, then by Claim 1 , we conclude $f(w) \leq 1$, and the contribution of w to $f(v)$ is at $\operatorname{most} \frac{1}{2}$. If $w \in N_{\ell}$, then by Claim 3 and the choice of v, we obtain $f(w) \leq \min \left\{\frac{2}{5} \Delta, f(v)\right\}$ and the contribution of w to $f(v)$ is at most $\frac{8}{\Delta}$. If $w \in N_{\Delta}$, then $f(w) \leq f(v)$ and w contributes nothing to $f(v)$. These observations imply both

$$
f(v) \leq \frac{8}{\Delta} n_{\ell}+\frac{1}{2} n_{s}+n_{1}
$$

and, by using (1),

$$
|I| \leq f(v) n_{\Delta}+\min \left\{\frac{2}{5} \Delta, f(v)\right\} n_{\ell}+n_{s} .
$$

In order to prove that $|I| \leq\left\lceil\frac{\Delta}{2}\right\rceil\left\lfloor\frac{\Delta}{2}\right\rfloor$, we show that

$$
\begin{equation*}
f^{\prime} n_{\Delta}+\min \left\{\frac{2}{5} \Delta, f^{\prime}\right\} n_{\ell}+n_{s} \leq\left\lceil\frac{\Delta}{2}\right\rceil\left\lfloor\frac{\Delta}{2}\right\rfloor, \tag{2}
\end{equation*}
$$

under the condition that $n_{1}, n_{s}, n_{\ell}, n_{\Delta}$ are non-negative integers and $n_{1}+n_{s}+n_{\ell}+n_{\Delta}=\Delta$ where

$$
\begin{equation*}
f^{\prime}=\frac{8}{\Delta} n_{\ell}+\frac{1}{2} n_{s}+n_{1} \tag{3}
\end{equation*}
$$

Let $i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right)=f^{\prime} n_{\Delta}+\min \left\{\frac{2}{5} \Delta, f^{\prime}\right\} n_{\ell}+n_{s}$. Obviously, $|I| \leq i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right)$.
Inequality (3) implies $n_{s}+n_{1} \geq f^{\prime}-8$. Thus $n_{\ell}+n_{\Delta}=\Delta-n_{1}-n_{s} \leq \Delta-f^{\prime}+8$ and hence, by (2), we obtain

$$
i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right) \leq f^{\prime}\left(\Delta-f^{\prime}+8\right)+\Delta
$$

If $f^{\prime} \leq \frac{2}{5} \Delta+8$, then this implies that $i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right) \leq \frac{6}{25} \Delta^{2}+\frac{24}{5} \Delta \leq \frac{\Delta^{2}}{4}-1$, which implies the desired result.

Thus we may assume that $f^{\prime} \geq \frac{2}{5} \Delta+8$. Suppose $n_{\ell} \geq 1$ and hence $n_{\Delta} \leq \Delta-1$. This implies that

$$
\begin{aligned}
i\left(n_{1}, n_{s}, n_{\ell}-1, n_{\Delta}+1\right)-i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right) & \geq-\frac{8}{\Delta} n_{\Delta}-\frac{2}{5} \Delta+\left(f^{\prime}-\frac{8}{\Delta}\right) \cdot 1 \\
& \geq-\frac{8}{\Delta}(\Delta-1)-\frac{2}{5} \Delta+\frac{2}{5} \Delta+8-\frac{8}{\Delta} \\
& =0
\end{aligned}
$$

Hence, we may assume that $n_{\ell}=0$.
Furthermore, we may assume that $n_{\Delta} \geq 2$; otherwise, by using $f^{\prime}, n_{s} \leq \Delta$, we conclude $i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right) \leq 2 \Delta$. Suppose $n_{s} \geq 1$. Thus

$$
i\left(n_{1}+1, n_{s}-1, n_{\ell}, n_{\Delta}\right)-i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right) \geq \frac{1}{2} \cdot 2-1 \geq 0
$$

Therefore, we may assume that $n_{s}=0$. Thus $n_{1}=\Delta-n_{\Delta}$ and (31) implies that $f^{\prime}=n_{1}$. By using (2), we conclude

$$
i\left(n_{1}, n_{s}, n_{\ell}, n_{\Delta}\right)=n_{\Delta}\left(\Delta-n_{\Delta}\right) \leq\left\lceil\frac{\Delta}{2}\right\rceil\left\lfloor\frac{\Delta}{2}\right\rfloor
$$

Therefore, $|N[v]|+|I| \leq\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)$ and the edge $u v$ together with a maximum induced matching of G^{\prime} yields $\nu_{s}(G) \geq \frac{n(G)}{\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}$, which is a contradiction to our choice of G.

Case 2. v is not adjacent to a vertex of degree 1.
Let $u \in N(v)$ such that $d(u)$ is minimal. Let $S=N[u] \cup N[v]$ and $G^{\prime}=G-S-I$ where I is the set of isolated vertices of $G-S$. By double counting the edges between S and I, it is straightforward to see that I contains at most 2Δ vertices of degree Δ. Thus similarly as in (11), we conclude that

$$
\begin{equation*}
|I| \leq \sum_{w \in S \backslash\{u, v\}} f(w)+2 \Delta . \tag{4}
\end{equation*}
$$

If $d(u) \geq 10$, then $f(v) \leq \frac{\Delta}{10}$. Thus $|I| \leq \frac{\Delta^{2}}{5}+2 \Delta$ and hence $|S|+|I| \leq \frac{\Delta^{2}}{4}$. Therefore, $u v$ together with a maximum induced matching of G^{\prime} yields $\nu_{s}(G)>\frac{n(G)}{\left.\left(\Gamma \frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}$, which is a contradiction to our choice of G.

Thus we may assume that $d(u) \leq 9$ and hence trivially $\sum_{w \in N(u) \backslash\{v\}} f(w) \leq 8 \Delta$ and $|S| \leq \Delta+9$. Let N_{s} be the set of neighbors of v of degree at most $\frac{\Delta}{8}$, let $N_{\ell}=N(v) \backslash N_{s}$, and let $\alpha=\frac{\left|N_{s}\right|}{\Delta}$ and hence $N_{\ell} \leq(1-\alpha) \Delta$.

The contribution of the vertices in N_{s} to $f(v)$ is at most $\frac{\alpha \Delta}{2}$. Using Claim $\mathbb{1}$, we conclude that $f(w) \leq 1$ for $w \in N_{s}$. The contribution of the vertices in N_{ℓ} to $f(v)$ is at most 8 and $f(w) \leq f(v)$ for $w \in N_{\ell}$ by the choice of v. This implies that $f(v) \leq \frac{\alpha \Delta}{2}+8$. Note that $(1-\alpha) \frac{\alpha}{2} \leq \frac{1}{8}$. Moreover, by (4), we obtain

$$
\begin{aligned}
|I| & \leq \sum_{w \in N(v) \backslash\{u\}} f(w)+\sum_{w \in N(u) \backslash\{v\}} f(w)+2 \Delta \\
& \leq \sum_{w \in N(v) \backslash\{u\}: w \in N_{\ell}} f(w)+\sum_{w \in N(v) \backslash\{u\}: w \in N_{s}} f(w)+8 \Delta+2 \Delta \\
& \leq(1-\alpha) \Delta f(v)+\alpha \Delta+10 \Delta \\
& \leq(1-\alpha) \Delta\left(\frac{\alpha \Delta}{2}+8\right)+11 \Delta \\
& \leq \frac{\Delta^{2}}{4}-2 \Delta .
\end{aligned}
$$

Thus $|I|+|S| \leq \frac{\Delta^{2}}{4}$. Therefore, uv together with a maximum induced matching of G^{\prime} yields $\nu_{s}(G)>\frac{n(G)}{\left.\left(\Gamma \frac{\Delta}{2}\right]+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}$, which is the final contradiction.

3 Graphs with Small Maximum Degree

Let C_{5}^{2} be the graph obtained from the 5 -cycle by replacing every vertex by an independent set of order 2 and let $K_{3,3}^{+}$be the graph obtained from the 5 -cycle by replacing the vertices by independent sets of orders $1,1,1,2$, and 2 , respectively. Note that the graph $K_{3,3}^{+}$can also be obtained from a $K_{3,3}$ by subdividing one edge once. The graphs C_{5}^{2} and $K_{3,3}^{+}$show
that Theorem 1 is not true for graphs of maximum degree 3 or 4 . However, I conjecture that these graphs are the only exceptions.

Conjecture 2. If connected graph $G \notin\left\{C_{5}^{2}, K_{3,3}^{+}\right\}$with maximum degree $\Delta \geq 3$, then

$$
\nu_{s}(G) \geq \frac{1}{\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)} n(G) .
$$

Note that for $\Delta=3$, a result in [6], and for $\Delta \geq 1000$, Theorem 1 implies Conjecture 2,

References

[1] B. Bollobás, The independence ratio of regular graphs, Proc. Amer. Math. Soc. 83 (1981) 433-436.
[2] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97-102.
[3] K.K. Dabrowski, M. Demange, and V.V. Lozin, New results on maximum induced matchings in bipartite graphs and beyond, Theor. Comput. Sci. 478 (2013) 33-40.
[4] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.
[5] R.J. Faudree, R.H. Schelp, A. Gyárfás, and Zs. Tuza, The strong chromatic index of graphs, Ars Comb. 29B (1990) 205-211.
[6] F. Joos, D. Rautenbach, and T. Sasse, Induced Matchings in Subcubic Graphs, SIAM J. Discrete Math. 28 (2014) 468-473.
[7] V.V. Lozin, On maximum induced matchings in bipartite graphs, Inf. Process. Lett. 81 (2002) 7-11.
[8] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, J. Combin. Theory Ser. B 69 (1997) 103-109.
[9] L.J. Stockmeyer and V.V. Vazirani, NP-completeness of some generalizations of the maximum matching problem, Inf. Process. Lett. 15 (1982) 14-19.
[10] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30.
[11] M. Zito, Induced matchings in regular graphs and trees, Graph-theoretic concepts in computer science (Ascona, 1999), 89100, Lecture Notes in Comput. Sci., 1665, Springer, Berlin, 1999.

[^0]: *Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany, e-mail: felix.joos@uni-ulm.de

