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Induced Matchings in Graphs of Bounded Maximum Degree

Felix Joos
∗

Abstract

For a graph G, let νs(G) be the induced matching number of G. We prove that

νs(G) ≥ n(G)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

for every graph of sufficiently large maximum degree ∆ and

without isolated vertices. This bound is sharp. Moreover, there is polynomial-time

algorithm which computes induced matchings of size as stated above.
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1 Introduction

For a graph G, a set M of edges is an induced matching of G if no two edges in M have a

common endvertex and no edge of G joins two edges of M . The maximum number of edges

that form an induced matching in G is the strong matching number νs(G) of G. We denote

by ∆(G) the maximum degree of graph G and let n(G) = |V (G)| and m(G) = |E(G)|.

In contrast to the well known matching number ν(G), which can be computed in

polynomial time [4], it is NP-hard to determine the strong matching number even in

bipartite subcubic graphs [2, 7, 9]. In fact, the strong matching number is even hard to

approximate in restricted graphs classes as for example regular bipartite graphs [3].

To the best of my knowledge, the only known bound in terms of the order and the

maximum degree for νs(G) is obtained by the following simple observation [11]. Let G be

a graph without isolated vertices. There are at most 2∆(G)2 − 2∆(G) + 1 many edges in

distance at most 1 from e including e and m(G) ≥ 1
2n(G). Thus a simple greedy algorithm

implies

νs(G) ≥
n(G)

2(2∆(G)2 − 2∆(G) + 1)
,

which is far away from being sharp if G 6= K2.

It seems that the different behavior of ν(G) and νs(G) transfers to the corresponding

partitioning problems. The chromatic index χ′ seems much simpler than the strong chro-

matic index χ′
s, defined as the minimum number of induced matchings one needs to parti-

tion the edge set. While for χ′(G) Vizing’s Theorem always gives χ′(G) ∈ {∆(G),∆(G)+1}

[10], no comparable result holds for the strong chromatic index.
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A trivial greedy algorithm ensures χ′
s(G) ≤ 2∆(G)2−2∆(G)+1. Erdős and Nešetřil [5]

conjectured χ′
s(G) ≤ 5

4∆(G)2, which would be best possible for even ∆ because equality

holds for the graph obtained from the 5-cycle by replacing every vertex by an independent

set of order ∆
2 . The best general result in this direction is due to Molloy and Reed, who

proved that χ′
s(G) ≤ 1.998∆(G)2 for sufficiently large maximum degree [8]. Thus Erdős

and Nešetřil’s conjecture is widely open and it is even unknown which technique is suitable

to improve Molloy and Reed’s result substantially.

In this paper I provide more insight concerning the behavior of induced matchings by

improving the known lower bounds on νs(G) to a sharp lower bound provided that the

maximum degree is sufficiently large.

Theorem 1. There is an integer ∆0 such that for every graph G of maximum degree ∆

at least ∆0 and without isolated vertices,

νs(G) ≥
n(G)

(

⌈∆2 ⌉+ 1
) (

⌊∆2 ⌋+ 1
)

holds.

The following construction shows that the bound in Theorem 1 is sharp. Let ∆ be an

integer at least 3 and let the graph H1 arise from the complete graph on
⌈

∆
2

⌉

+1 vertices

by attaching at each vertex
⌊

∆
2

⌋

pendant vertices. Let H2 arise from the complete graph

on
⌊

∆
2

⌋

+ 1 vertices by attaching at each vertex
⌈

∆
2

⌉

pendant vertices. It follows that

νs(Hi) = 1 and n(Hi) =
(⌈

∆
2

⌉

+ 1
) (

⌊∆2 ⌋+ 1
)

; that is, the bound of Theorem 1 is sharp.

Note that H1 = H2 if ∆ is even.

For the sake of simplicity I do not try to optimize the constant ∆0 intensively. We

show Theorem 1 for ∆0 = 1000 but with some more effort one can lower the bound down

to 200.

In [6] the same bound as in Theorem 1 is already shown by a simple inductive argument

for graphs of girth at least 6. Hence one might ask whether the bound in Theorem 1 can

be improved for graphs of large girth to n(G)
∆c for some c < 2. However, this is not the

case. By a result of Bollobás [1], for every g ≥ 3 and ∆ ≥ 6, there is a graph H ′ of

maximum degree ⌊∆2 ⌋, girth at least g, and independence number at most 4 log∆
∆ n(H ′).

Let H arise from H ′ by attaching to each vertex ⌈∆2 ⌉ many pendant vertices. Note that

νs(H) ≤ 4 log∆
∆ n(H ′) and n(H) = ⌈∆2 ⌉n(H

′). Thus νs(H) ≤ 8 log∆
∆2 n(H) and the bound of

Theorem 1 can only be improved by a O(log∆)-factor.

Since the proof of Theorem 1 is constructive, it is easy to derive a polynomial-time

algorithm, which computes an induced matching of size as guaranteed in Theorem 1.

We use standard notation and terminology. For a graph G, let V (G) and E(G) denote

its vertex set and edge set, respectively. For a vertex v, let dG(v) be its degree, let NG(v)

be the set of neighbors of v, and let NG[v] = NG(v) ∪ {v}. If the corresponding graph is

clear from the context, we only write d(v), N(v) and N [v], respectively. A set I of vertices

of G is independent if there is no edge joining two vertices in I.
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2 Proof of Theorem 1

We prove the theorem for ∆0 = 1000. Let G be a graph with maximum degree ∆ at least

∆0 and without isolated vertices. For a contradiction, we assume that G is a counterex-

ample such that

(1) νs(G) is minimum and

(2) subject to (1), the order of G is maximum.

Since νs(G) ≥ n(G)
2∆2 , the graph G is well-defined.

The choice of G implies that if v is a vertex of G that is adjacent to a vertex of degree 1,

then d(v) = ∆ because adding new vertices to G and joining them to v does not increase

νs(G) but the order of G.

For some calculations it might help to know that ∆2

4 +∆+ 3
4 ≤

(

⌈∆2 ⌉+ 1
) (

⌊∆2 ⌋+ 1
)

.

Claim 1. For every edge uv of G, we have d(u) + d(v) > ∆
4 .

Proof of Claim 1. For a contradiction, we assume that there is an edge uv such that

d(u) + d(v) ≤ ∆
4 . Let S = N [u] ∪ N [v] and let I be the set of all isolated vertices

of G − S. Let G′ = G − S − I. Since νs(G) ≥ νs(G
′) + 1, the choice of G implies

νs(G
′) ≥ n(G′)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

.

By using the assumption d(u) + d(v) ≤ ∆
4 , we conclude |S| + |I| ≤

(

∆
4 − 2

)

∆ + 2 <
(

⌈∆2 ⌉+ 1
) (

⌊∆2 ⌋+ 1
)

. Therefore, uv together with a maximum induced matching of G′ is

an induced matching of G of size at least n(G)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

, which contradicts the choice of

G.

Claim 2. Every vertex v of G is adjacent to at most 3
4∆ many vertices of degree at most

9.

Proof of Claim 2. Choose v such that the number of neighbors of degree at most 9 is

maximal. Say v has α∆ many such neighbors. For a contradiction, we assume that

α > 3
4∆. Let u ∈ N(v) be of degree at most 9. As above, let S = N [u] ∪ N [v] and let I

be the set of all isolated vertices of G− S. Let G′ = G− S − I. By Claim 1, every vertex

in I that is adjacent to a vertex of degree at most 9, has degree at least 10. Thus there

are at most (1−α)∆+8 many vertices in S that are adjacent to vertices in I of degree at

most 9. Hence there are at most α(1 − α)∆2 + 8∆ many vertices in I of degree at most

9. Furthermore, at most 8α∆ edges join vertices in I and vertices in N(v) \ {u} such that

the vertices in N(v) \ {u} have degree at most 9. Since α(1−α) + 1
10 (1−α)2 < 0.22, this

implies

|I| ≤ α(1 − α)∆2 + 8∆+
1

10

(

(1− α)2∆2 + 8α∆
)

< 0.22∆2 + 9∆

≤
∆2

4
− 9.
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Since |S| ≤ ∆+ 9, we obtain

|I|+ |S| <

(⌈

∆

2

⌉

+ 1

)(⌊

∆

2

⌋

+ 1

)

.

Again, the edge uv together with a maximum induced matching of G′ is an induced

matching of G of size at least n(G)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

, which contradicts the choice of G.

Let f : V (G) → R be such that

f(v) =
∑

w∈N(v): d(w)6=∆

1

d(w)
.

Claim 3. If a vertex v of G is not adjacent to a vertex of degree 1, then f(v) ≤ 2
5∆.

Proof of Claim 3. Let v be a vertex that is not adjacent to a vertex of degree 1. By

Claim 2, the vertex v has at most 3
4∆ neighbors of degree at most 9, which contribute to

f(v) at most 1
2 each; all remaining neighbors contribute at most 1

10 each. Thus f(v) ≤
1
2 ·

3
4∆+ 1

10 ·
1
4∆ = 2

5∆.

For the rest of the proof, let v ∈ V (G) be chosen such that f(v) is maximal.

Case 1. v is adjacent to a vertex of degree 1.

Recall that this implies d(v) = ∆. Let u ∈ N(v) be a vertex of degree 1. As before, we

want to combine uv with a maximum induced matching of G′ = G− (N [v] ∪ I) to obtain

a contradiction, where I are the isolated vertices of G−N [v].

If z ∈ I has degree d < ∆, then z contributes exactly d times exactly 1
d
to f(w) for

some w ∈ N(v); that is, the total contribution to
∑

w∈N(v) f(w) is 1. Since no vertex in I

is adjacent to u, there is no vertex z ∈ I such that d(z) = ∆. This implies that

|I| ≤
∑

w∈N(v)

f(w). (1)

Let N1 and N∆ be the set of vertices in N(v) of degree 1 and ∆, respectively. Let

Ns be the set of vertices in N(v) \ (N1 ∪N∆) of small degree, say such that their degree

is between 2 and ∆
8 . Let Nℓ = N(v) \ (N1 ∪ Ns ∪ N∆), and let n1 = |N1|, ns = |Ns|,

nℓ = |Nℓ|, and n∆ = |N∆|.

Since all vertices in Ns∪Nℓ do not have degree ∆ and by the choice of G, they are not

adjacent to a vertex of degree 1. If w ∈ N1, then f(w) = 0 and w contributes 1 to f(v). If

w ∈ Ns, then by Claim 1, we conclude f(w) ≤ 1, and the contribution of w to f(v) is at

most 1
2 . If w ∈ Nℓ, then by Claim 3 and the choice of v, we obtain f(w) ≤ min

{

2
5∆, f(v)

}

and the contribution of w to f(v) is at most 8
∆ . If w ∈ N∆, then f(w) ≤ f(v) and w

contributes nothing to f(v). These observations imply both

f(v) ≤
8

∆
nℓ +

1

2
ns + n1
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and, by using (1),

|I| ≤ f(v)n∆ +min

{

2

5
∆, f(v)

}

nℓ + ns.

In order to prove that |I| ≤ ⌈∆2 ⌉⌊
∆
2 ⌋, we show that

f ′n∆ +min

{

2

5
∆, f ′

}

nℓ + ns ≤

⌈

∆

2

⌉⌊

∆

2

⌋

, (2)

under the condition that n1, ns, nℓ, n∆ are non-negative integers and n1+ns+nℓ+n∆ = ∆

where

f ′ =
8

∆
nℓ +

1

2
ns + n1. (3)

Let i(n1, ns, nℓ, n∆) = f ′n∆ +min
{

2
5∆, f ′

}

nℓ + ns. Obviously, |I| ≤ i(n1, ns, nℓ, n∆).

Inequality (3) implies ns+n1 ≥ f ′ − 8. Thus nℓ +n∆ = ∆−n1 −ns ≤ ∆− f ′+8 and

hence, by (2), we obtain

i(n1, ns, nℓ, n∆) ≤ f ′(∆− f ′ + 8) +∆.

If f ′ ≤ 2
5∆ + 8, then this implies that i(n1, ns, nℓ, n∆) ≤ 6

25∆
2 + 24

5 ∆ ≤ ∆2

4 − 1, which

implies the desired result.

Thus we may assume that f ′ ≥ 2
5∆+ 8. Suppose nℓ ≥ 1 and hence n∆ ≤ ∆− 1. This

implies that

i(n1, ns, nℓ − 1, n∆ + 1)− i(n1, ns, nℓ, n∆) ≥ −
8

∆
n∆ −

2

5
∆ +

(

f ′ −
8

∆

)

· 1

≥ −
8

∆
(∆ − 1)−

2

5
∆ +

2

5
∆ + 8−

8

∆

= 0.

Hence, we may assume that nℓ = 0.

Furthermore, we may assume that n∆ ≥ 2; otherwise, by using f ′, ns ≤ ∆, we conclude

i(n1, ns, nℓ, n∆) ≤ 2∆. Suppose ns ≥ 1. Thus

i(n1 + 1, ns − 1, nℓ, n∆)− i(n1, ns, nℓ, n∆) ≥
1

2
· 2− 1 ≥ 0.

Therefore, we may assume that ns = 0. Thus n1 = ∆ − n∆ and (3) implies that f ′ = n1.

By using (2), we conclude

i(n1, ns, nℓ, n∆) = n∆(∆− n∆) ≤

⌈

∆

2

⌉⌊

∆

2

⌋

.
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Therefore, |N [v]| + |I| ≤
(

⌈∆2 ⌉+ 1
) (

⌊∆2 ⌋+ 1
)

and the edge uv together with a maxi-

mum induced matching of G′ yields νs(G) ≥ n(G)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

, which is a contradiction to

our choice of G.

Case 2. v is not adjacent to a vertex of degree 1.

Let u ∈ N(v) such that d(u) is minimal. Let S = N [u] ∪ N [v] and G′ = G − S − I

where I is the set of isolated vertices of G− S. By double counting the edges between S

and I, it is straightforward to see that I contains at most 2∆ vertices of degree ∆. Thus

similarly as in (1), we conclude that

|I| ≤
∑

w∈S\{u,v}

f(w) + 2∆. (4)

If d(u) ≥ 10, then f(v) ≤ ∆
10 . Thus |I| ≤

∆2

5 +2∆ and hence |S|+ |I| ≤ ∆2

4 . Therefore, uv

together with a maximum induced matching of G′ yields νs(G) > n(G)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

, which

is a contradiction to our choice of G.

Thus we may assume that d(u) ≤ 9 and hence trivially
∑

w∈N(u)\{v} f(w) ≤ 8∆ and

|S| ≤ ∆+9. Let Ns be the set of neighbors of v of degree at most ∆
8 , let Nℓ = N(v) \Ns,

and let α = |Ns|
∆ and hence Nℓ ≤ (1− α)∆.

The contribution of the vertices in Ns to f(v) is at most α∆
2 . Using Claim 1, we

conclude that f(w) ≤ 1 for w ∈ Ns. The contribution of the vertices in Nℓ to f(v) is at

most 8 and f(w) ≤ f(v) for w ∈ Nℓ by the choice of v. This implies that f(v) ≤ α∆
2 + 8.

Note that (1− α)α2 ≤ 1
8 . Moreover, by (4), we obtain

|I| ≤
∑

w∈N(v)\{u}

f(w) +
∑

w∈N(u)\{v}

f(w) + 2∆

≤
∑

w∈N(v)\{u}:w∈Nℓ

f(w) +
∑

w∈N(v)\{u}:w∈Ns

f(w) + 8∆ + 2∆

≤ (1− α)∆f(v) + α∆+ 10∆

≤ (1− α)∆

(

α∆

2
+ 8

)

+ 11∆

≤
∆2

4
− 2∆.

Thus |I| + |S| ≤ ∆2

4 . Therefore, uv together with a maximum induced matching of G′

yields νs(G) > n(G)

(⌈∆

2
⌉+1)(⌊∆

2
⌋+1)

, which is the final contradiction. ✷

3 Graphs with Small Maximum Degree

Let C2
5 be the graph obtained from the 5-cycle by replacing every vertex by an independent

set of order 2 and let K+
3,3 be the graph obtained from the 5-cycle by replacing the vertices

by independent sets of orders 1, 1, 1, 2, and 2, respectively. Note that the graph K+
3,3 can

also be obtained from a K3,3 by subdividing one edge once. The graphs C2
5 and K+

3,3 show

6



that Theorem 1 is not true for graphs of maximum degree 3 or 4. However, I conjecture

that these graphs are the only exceptions.

Conjecture 2. If connected graph G /∈ {C2
5 ,K

+
3,3} with maximum degree ∆ ≥ 3, then

νs(G) ≥
1

(

⌈∆2 ⌉+ 1
) (

⌊∆2 ⌋+ 1
)n(G).

Note that for ∆ = 3, a result in [6], and for ∆ ≥ 1000, Theorem 1 implies Conjecture 2.
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