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Abstract. In this paper, we model and solve the problem of designing in an optimal way
actuators for parabolic partial differential equations settled on a bounded open connected subset Ω
of Rn. We optimize not only the location but also the shape of actuators, by finding what is the
optimal distribution of actuators in Ω, over all possible such distributions of a given measure. Using
the moment method, we formulate a spectral optimal design problem, which consists of maximizing a
criterion corresponding to an average over random initial data of the largest L2-energy of controllers.
Since we choose the moment method to control the PDE, our study mainly covers one-dimensional
parabolic operators, but we also provide several examples in higher dimensions. We consider two
types of controllers: either internal controls, modeled by characteristic functions, or lumped controls,
that are tensorized functions in time and space. Under appropriate spectral assumptions, we prove
existence and uniqueness of an optimal actuator distribution, and we provide a simple computation
procedure. Numerical simulations illustrate our results.
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1. Introduction and modeling of the problem. In this article, we model
and solve the problem of finding the optimal shape and location of internal controllers
for parabolic equations with (mainly) Dirichlet boundary conditions and (mainly) in
the one-dimensional case Ω = (0, π). Such questions are frequently encountered in
engineering applications. We provide a possible mathematical model for investigating
such issues.

For mathematical reasons that will be clarified in what follows, we will focus in
the whole article on controls obtained by using the so-called moment method. As will
be underlined, it requires in general some spectral gap assumptions on the operators
involved that essentially reduce the applications of our results to one-dimensional
partial differential equations, but our results also cover several particular situations
in larger dimension.

To avoid technicalities and highlight the main ideas, we first present the results
in the simplified framework of the controlled one-dimensional heat equation with
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Dirichlet boundary conditions, without introducing (at this step) the more general
parabolic framework in which our results are actually valid.

Generalizations to a more general framework will be described in section 3. Unlike
the simplified case of the one-dimensional heat equation, it requires a discussion on
the Müntz–Szász theorem as well as specific spectral considerations.

Notice that the general control framework in which this problem could be ad-
dressed is much more intricate and will be evoked as a possible perspective at the end
of this article.

1.1. Reminders on the controllability of the one-dimensional heat equa-
tion. Consider the internally controlled one-dimensional heat equation

(1) ∂ty(t, x)− ∂xxy(t, x) = χω(x)u(t, x), (t, x) ∈ (0, T )× (0, π),

with Dirichlet boundary conditions

(2) y(t, 0) = y(t, π) = 0, t ∈ (0, T ),

where u ∈ L2((0, T ) × (0, π)) is a control function and ω is a measurable subset of
(0, π) standing for the support of the controller. Here, χω is the characteristic function
of ω, defined by χω(x) = 1 if x ∈ ω and χω(x) = 0 otherwise. For a given subset
ω, (1) is said to be exactly null controllable in time T whenever every initial datum
y(0, ·) ∈ L2(0, π) can be steered to 0 in time T by means of an appropriate control
function u ∈ L2((0, T )×(0, π)). It is well known that, for a given subset ω, the system
(1) is exactly null controllable if and only if there exists a positive constant C (only
depending on T and ω) such that

(3) C

∫ π

0

z(T, x)2 dx ≤
∫ T

0

∫
ω

z(t, x)2 dx dt

(observability inequality) for every solution of

∂tz(t, x)− ∂xxz(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

z(t, 0) = z(t, π) = 0, t ∈ (0, T ),
(4)

with z(0, ·) ∈ L2(0, π).
Exact null controllability by the moment method. The observability inequality (3)

has been shown to hold true for any subset ω of [0, π] of positive Lebesgue measure in
[31] by the moment method, which we will use as well in the present paper and that
we recall herein.

The eigenfunctions of the Dirichlet-Laplacian, given by φj(x) =
√

2
π sin(jx) for

every j ∈ N∗, associated with the eigenvalues λj = j2, make up an orthonormal
basis of L2(0, π). From the Müntz–Szász theorem, there exists a sequence (θTj )j∈N∗ of

L2(0, T ), biorthogonal to the sequence of functions t 7→ e−j
2t. The following lemma

provides an exact null controllability result for (1)–(2).

Lemma 1.1 (see [31]). Let T > 0 and let ω be a measurable subset of (0, π) of
positive measure. Then every initial datum

y(0, x) = y0(x) =
+∞∑
j=1

aj sin(jx),
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in L2(0, π), can be steered to zero in time T with the control u ∈ L2((0, T ) × (0, π))
defined by

u(t, x) = −
+∞∑
j=1

aje
−j2T∫

ω
sin2(jy) dy

θTj (T − t) sin(jx).

A proof of this lemma is given in a more general setting in section A.1.
We set Γω(y0) = χωu. The operator Γω : L2(0, π) → L2((0, T )× (0, π)) is linear

and continuous and is called the moment control operator. The norm of this operator,
given by ‖Γω‖ = sup{‖Γω(y0)‖L2((0,T )×(0,π)) | ‖y0‖L2(0,π) = 1}, provides an account
for the worst possible initial datum to be controlled to zero, in terms of the effort (L2

energy) required to steer this initial datum to zero. Minimizing ‖Γω‖ over a class of
admissible domains (that we will denote by UL in what follows) is then an interesting
problem, which will be discussed in the next section.

1.2. State of the art. When realizing exact null controllability in practice,
an important question is to know where to place and how to shape optimally the
actuators (modeled here by the subset ω), in order to minimize the efforts done to
steer any possible initial data to zero. In this paper, we want to optimize not only
the location but also the shape of actuators, without any specific restriction on the
regularity of ω.

The literature on optimal sensor or actuator location problems is abundant in
engineering applications (see, e.g., [5, 14, 17, 18, 32, 36, 37, 38] and references therein),
where the aim is often to optimize the number, the place, and the type of sensors or
actuators in order to improve the estimation of the state of the system. Fields of
applications are very numerous and concern, for example, active structural acoustics,
piezoelectric actuators, vibration control in mechanical structures, damage detection,
and chemical reactions, just to name a few. In most of these applications the method
consists of approximating appropriately the problem by selecting a finite number
of possible optimal candidates and of recasting the problem as a finite-dimensional
combinatorial optimization problem. In many of these contributions the sensors or
actuators have a prescribed shape (for instance, balls with a prescribed radius) and
then the problem consists of placing optimally a finite number of points (the centers of
the balls) and thus is finite-dimensional, since the class of optimal designs is replaced
with a compact finite-dimensional set. We stress that, in the present paper, the shape
of the control domain is an unknown of the optimization procedure.

From the mathematical point of view, the issue of studying a relaxed version of
optimal design problems for the shape and position of sensors or actuators has been
investigated in a series of articles. In [24], the authors study a homogenized version
of the optimal location of controllers for the heat equation problem (for fixed initial
data), noticing that such problems are often ill-posed. In [2], the authors consider a
similar problem and study the asymptotic behavior as the final time T goes to infinity
of the solutions of the relaxed problem; they prove that optimal designs converge to
an optimal relaxed design of the corresponding two-phase optimization problem for
the stationary heat equation. We also mention [23], where, for fixed initial data,
numerical investigations are used to provide evidence that the optimal location of
null controllers of the heat equation problem is an ill-posed problem.

Concerning the problem of optimal shape and location of sensors for fixed initial
data (instead of controllers in [23]) we proved in [26] that it is always well-posed for
heat, wave, or Schrödinger equations (in the sense that no relaxation phenomenon
occurs); we showed that the complexity of the optimal set depends on the regularity
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of the initial data, and in particular we proved that, even for smooth initial data, the
optimal set may be of fractal type (and there is no relaxation). In [30], we modeled
and solved the problem of optimal shape and location of the observation domain
having a prescribed measure. This problem was motivated by the question of shaping
and placing sensors in some domain in such a way to optimize the quality of the
observation.

Here, we rather investigate the dual question of the best shape and location
of actuators. In [19], the authors investigate numerical approximations of exact or
trajectory controls for the heat equation, by developing a numerical version of the
so-called transmutation method.

1.3. Modeling of the optimal design problems: A randomization proce-
dure. In the present paper, our objective is to search the internal control domain over
all possible subsets of (0, π), without assuming any a priori regularity. We optimize
not only the placement but also the shape of the actuators.

Note that for any problem consisting of optimizing the quality of the control,
certainly the best strategy consists of controlling the solutions over the whole domain
(0, π). This is, however, obviously not reasonable and in practice the domain covered
by actuators is limited, due, for instance, to cost considerations. From the math-
ematical point of view, we model this basic limitation by considering as the set of
unknowns the set of all possible measurable subsets ω of (0, π) that are of Lebesgue
measure |ω| = Lπ, where L ∈ (0, 1) is some fixed real number. Any such subset ω
represents the actuators put in (0, π). Finally, for mathematical reasons, it is more
convenient to assimilate a measurable subdomain ω of (0, π) to its characteristic func-
tion χω, vanishing outside ω and equal to 1 else. Hence, let us introduce the class of
admissible control domains

(5) UL = {χω ∈ L∞(0, π, {0, 1}) | ω ⊂ Ω measurable, |ω| = Lπ}.

In view of modeling the optimal design of actuators, a first approach consists of
minimizing the functional χω 7→ ‖Γω‖ over the set UL. However, even for simple
choices of control domains ω, the quantity ‖Γω‖ is not explicitly computable and
therefore the cost functional is hard to handle. Besides, note that the moment control
operator norm ‖Γω‖ is deterministic and thus provides an account for the worst
possible case; in this sense, it is a pessimistic constant. One can argue that, in
practice, when running a large number of experiments, it is expected that the worst
possible case does not occur so often. For these reasons, we are next going to consider
an average criterion which, in some sense, does not take into account rare events.
Nevertheless, we stress that the issue of minimizing ‖Γω‖ with respect to the domain
ω not only has a mathematical interest but appears also naturally in some practical
situations, where it is imperative that the worst possible case be avoided, even if it is
a rare event. We refer to the concluding section 3.4 for some comments about such a
problem. The same kind of difficulty arises when modeling optimal design problems
for sensors, as discussed in [29, 30].

In this paper, we propose another approach based on the controllability result
stated in Lemma 1.1 and on a randomization argument reflecting what happens when a
large number of experiments is expected to be done. We are going to use a probabilistic
argument, by considering random initial data. We follow the approach developed in
[29, 30]. Let us fix an arbitrary initial datum y(0, ·) = y0(·) ∈ L2(0, π) of the controlled
system (1), with Fourier coefficients defined by
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(6) aj =

∫ π

0

y0(x) sin(jx) dx.

These coefficients are now randomized according to aνj = βνj aj for every j ∈ N∗, where
(βνj )j∈N∗ is a sequence of independent real random variables on a probability space
(X ,F ,P), having mean equal to 0 and variance equal to 1 and with a superexponential
decay1 (for instance, independent Bernoulli random variables; see [8, 9] for details and
properties of randomization). For every event ν ∈ X , the control steering the initial
datum

y0
ν(x) =

+∞∑
j=1

βνj aj sin(jx)

to zero by the moment method is, according to Lemma 1.1,

uν(t, x) = −
+∞∑
j=1

βνj aje
−j2T∫

ω
sin2(jy) dy

θTj (T − t) sin(jx).

Using the previous notation, one has Γω(y0
ν) = χωu

ν . We propose, then, to model
the problem of best actuator shape and location as the problem of minimizing the
averaged functional

K(χω) = sup
‖y0‖L2(0,π)=1

E
(
‖Γω(y0

ν)‖2L2((0,T )×(0,π))

)
over UL, where E is the expectation over the probability space (X ,F ,P). This is the
randomized counterpart to the deterministic quantity ‖Γω‖. One of the advantages
is that K(χω) can be explicitly computed, as follows.

Lemma 1.2. One has

K(χω) =

(
inf
j∈N∗

e2j2T∫ T
0
θTj (t)2 dt

∫
ω

sin2(jx) dx

)−1

for every measurable subset ω ⊂ (0, π).

Lemma 1.2 is proved in section A.2. Therefore, the problem of best shape and
location of actuators is finally written as

(7) sup
χω∈UL

inf
j∈N∗

e2j2T∫ T
0
θTj (t)2 dt

∫
ω

sin2(jx) dx.

The article is organized as follows. Section 3.1 is devoted to comments on the con-
trol of parabolic equations by the moment method, the use of biorthogonal sequences,
and modeling of the optimal design problem issues. In section 3.2, we solve the prob-
lem and provide a numerical illustration as well as a series of examples, mainly in
the one-dimensional case due to the restrictions imposed by the choice of the control
method. Finally, in section 3.3, we investigate a variant of the previously studied
optimal design problem, where the control acts on the system by means of tuning the
time-intensity.

1Recall that the sequence (βνj )j∈N∗ is said to have a superexponential decay whenever

∃(C, δ) ∈ (R∗+)2 | ∀α ∈ R, E(eα|β
ν
j |) ≤ Ceδα2

.
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2. Solving the problem (7).

2.1. Main results, comments, and illustration. We first provide an exis-
tence result.

Theorem 2.1. The shape optimization problem (7) has a unique2 solution χω∗ .

This theorem is proved in section 2.3.
In addition to this result, what is remarkable is that we have a simple and nu-

merically efficient procedure to compute the optimal control domain ω∗.
Algorithmic computation procedure. The optimal set ω∗ of Theorem 2.1 can ac-

tually be built from a finite-dimensional spectral approximation, by keeping only a
finite number of modes. Let us provide the details of the procedure. For every integer
N ∈ N∗, we define the functional JN by

JN (χω) = inf
1≤j≤N

e2j2T∫ T
0
θTj (t)2 dt

∫
ω

sin2(jx) dx

for every measurable subset ω of (0, π). The functional JN is a spectral truncation
to the N first terms. We consider the shape optimization problem

(8) sup
χω∈UL

JN (χω),

called the truncated problem, which is a spectral approximation of the problem (7).
We have then the following results, proved in sections 2.2 and 2.3.

Proposition 2.2. For every N ∈ N∗, the truncated problem (8) has a unique
solution χωN ∈ UL. Moreover, ωN has a finite number of connected components, and
there exists ηN > 0 such that ωN ⊂ [ηN , π − ηN ].

Proposition 3.4 further (see section 3.2) will provide an extension of this result
to higher dimensions. We will, however, provide two different proofs. Indeed, in the
one-dimensional case investigated here, we will show in the proof that the problem
(8) can be expressed in an equivalent way as a classical optimal control problem.
This point of view (already used in [27]) is interesting not only for the proof but also
in order to derive efficient numerical methods for the numerical computation of the
optimal domains.

Let us now give the main result that is at the base of the algorithmic procedure.

Theorem 2.3. There exists N0 ∈ N∗ such that ω∗ = ωN for every N ≥ N0.
Furthermore, we have N0 ≤ Ñ0, where Ñ0 is the first integer (which exists and is

finite) such that

∀j ≥ Ñ0, ‖θTj ‖2L2(0,T ) ≤
e2 (πL− sin(πL))

128
e2T (j2−1).

As a result, N0 is equal to 1 if T is large enough.

In other words, Theorem 2.3 says that the sequence (ωN )N∈N∗ of optimal sets,
whose existence is stated in Proposition 2.2, is stationary. The numerical procedure
consists of computing these sets, and once it has become stationary, then we have
found the optimal set ω∗, solution of the shape optimization problem (7).

2Here and in what follows, it is understood that the optimal set is unique within the class of all
measurable subsets of (0, π) quotiented by the set of all measurable subsets of Ω of zero measure.
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Optimal domain for the Heat equation (Dirichlet case) with N=2, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=3, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=4, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=5, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=6, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=8, T=0.05 and L=0.2

Fig. 1. Ω = (0, π), L = 0.2, T = 0.05. From left to right, and top to bottom: optimal solution
χωN for N = 1, . . . , 8.

A natural issue concerns the characterization of the minimal integer N0 such
that the sequence of optimal domains (ωN )N≥N0

remains constant. Even if a partial
answer is provided in Theorem 2.3, it is likely that the determination of N0 is in
general intricate.

As a numerical illustration of this computation procedure, we provide in Figure
1 several numerical simulations of the optimal control domain, solution of the trun-
cated problem (8) in the one-dimensional case, for the Dirichlet-Laplacian. We ob-
serve the expected stationarity property of the sequence of optimal domains ωN from
N = 5 on.

In the forthcoming section devoted to providing the proofs of the results above,
it will be required to consider a convexified version of the problem (7), which may fail
to have some solutions because of the hard constraint3 χω ∈ UL (which is a binary
constraint almost everywhere). This is usually referred to as relaxation (see, e.g.,
[7]). Since the set UL (defined by (5)) does not share nice compactness properties, we
consider the convex closure of UL for the weak star topology of L∞, which is

(9) UL =

{
a ∈ L∞(0, π; [0, 1]) |

∫
Ω

a(x) dx = Lπ

}
.

Such a relaxation was used as well in [24, 28, 29]. Replacing χω ∈ UL with a ∈ UL,
we consider the relaxed (or convexified) formulation of the problem (7) given by

(10) sup
a∈UL

J (a),

3Indeed, equality constraints in L∞ are in general not preserved by the natural topologies such
as the L∞ weak star topology.
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where the functional J is naturally extended to UL by

(11) J (a) = inf
j∈N∗

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

a(x) sin2(jx) dx

for every a ∈ UL. We consider as well a relaxed formulation of the truncated optimal
design problem (8) by

(12) sup
a∈UL

JN (a),

where the functional JN is naturally extended to UL by

(13) JN (a) = inf
1≤j≤N

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

a(x) sin2(jx) dx

for every a ∈ UL.
Being defined as the infimum of linear functions, continuous for the L∞ weak star

topology, the functional J is upper semicontinuous for the L∞ weak star topology.
The set UL being compact for this topology, we then have the following result.

Lemma 2.4. For every L ∈ (0, 1), the relaxed problem (10) (respectively, (12) for
any N ∈ N∗) has at least one solution a∗ ∈ UL (respectively, aN ∈ UL).

2.2. Proof of Proposition 2.2. Considering the functions a(·) of UL as con-
trols, and interpreting the problem (8) as an optimal control problem, leads us to
consider the control system

y′(x) = a(x),

y′j(x) =
e2j2T∫ T

0
θTj (t)2 dt

a(x) sin2(jx), j ∈ {1, . . . , N},

z′(x) = 0,

(14)

for almost every x ∈ [0, π], with initial conditions

(15) y(0) = 0, yj(0) = 0, j ∈ {1, . . . , N}.

The additional function z above stands for the cost functional JN (a) and will
be defined with the help of inequality constraints below since it is written as the
minimum of the quantities yj(π) over j ∈ {1, . . . , N}.

The relaxed problem (10) is then equivalent to the optimal control problem of de-
termining a control a ∈ UL steering the control system (14) from the initial conditions
(15) to the final condition

(16) y(π) = Lπ

and maximizing the quantity z(π) (or similarly z(0), since z in constant on [0, π])
with the additional final conditions

(17) z(π) ≤ yj(π) ∀ j ∈ {1, . . . , N}.

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1136 YANNICK PRIVAT, EMMANUEL TRÉLAT, AND ENRIQUE ZUAZUA

Indeed, this follows directly from the observation that the unique solution of

max{z | z ≤ yj(π), j ∈ {1, . . . , N}}

is z = min1≤j≤N yj(π).
Therefore, a∗ is a solution of the optimal control problem above. The existence

of an optimal control is standard. According to the Pontryagin maximum principle
(see [25]), if a is optimal, then there exist real numbers4 (py, p1, . . . , pN ) ∈ R− ×
RN+\(0, . . . , 0), such that

(18) a(x) =

{
1 if ϕN (x) > 0,

0 if ϕN (x) < 0,

for almost every x ∈ [0, π], where the so-called switching function ϕN is defined by

(19) ϕN (x) = py +
N∑
j=1

e2j2T∫ T
0
θTj (t)2 dt

pj sin2(jx).

Moreover, the control a(·) is nonsingular (see [34]) since ϕN is a finite trigonometric
sum and thus cannot be constant on any subset of positive measure. In particular,
this implies that the optimal control aN is the characteristic function of a measurable
subset ωN (L) of [0, π] of measure Lπ. Note that the minimum of ϕN on [0, π] is
reached at 0 and π; hence from (18) the optimal set ωN does not contain 0 and π.

To prove uniqueness, according to the previous discussion where it is stated that
every maximizer of J over UL is the characteristic function of some subset of [0, π],
assume that there exist two distinct minimizers χω1 and χω2 in UL. As a maximum
of linear functionals, the functional a 7→ J (a) is convex on UL, and it follows that for
every t ∈ (0, 1) the function tχω1

+ (1− t)χω2
is also a solution of the problem (12),

which is in contradiction with the fact that any solution of this problem is extremal.
Finally, the fact that ωN (L) has at most N connected components follows from

the facts that the elements of ∂ωN (L) are the solutions of ϕN (x) = 0 and that ϕN

can be written as

ϕN (x) = py +
1

2

N∑
j=1

e2j2T∫ T
0
θTj (t)2 dt

pj −
1

2

N∑
j=1

e2j2T∫ T
0
θTj (t)2 dt

pjT2j(cosx),

where T2j denotes the 2jth Chebychev polynomial of the first kind. The degree of
the polynomial ϕN (arccosX) (in the argument X) is at most 2N , whence the result.

2.3. Proofs of Theorems 2.1 and 2.3. The main idea of this proof is close
to the one of [30, Theorem 1]. According to Lemma 2.4, the relaxed optimal design
problem (10) has at least one solution a∗ ∈ UL. We will prove simultaneously Theo-
rems 2.1 and 2.3 by showing that a∗ coincides with the solution aN of the truncated
problem (8) for N large enough.

First of all, as a consequence of [27, Lemma 6], we have
∫ π

0
a∗(x) sin2(jx) dx ≥

Lπ−sin(Lπ)
2 , and therefore,

(20)
e2j2T∫ T

0
θTj (t)2 dt

∫ π

0

a∗(x) sin2(jx) dx ≥ e2j2T (Lπ − sin(Lπ))

2
∫ T

0
θTj (t)2 dt

4Note that since the dynamics of (14) do not depend on the state, it follows that the adjoint
states of the Pontryagin maximum principle are constant.
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for every j ∈ N∗. Besides, we have the following result on the growth of the biorthog-
onal sequence (θTj )j∈N∗ , following from [22, Theorem 3.2].

Lemma 2.5. Let T > 0. There exists CT > 0 such that

CT

∫ T

0

θTj (t)2 dt ≤ e2πj

for every j ∈ N∗.
It follows from this result that

e2j2T∫ T
0
θTj (t)2 dt

≥ CT e2j2T−2πj

for every j ∈ N∗.
Combining these two facts, we infer that

(21) lim
j→+∞

e2j2T∫ T
0
θTj (t)2 dt

∫ π

0

a∗(x) sin2(jx) dx = +∞,

and moreover, there exists N0 ∈ N∗ such that

(22) inf
j>N0

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

a∗(x) sin2(jx) dx >
e2T∫ T

0
θT1 (t)2 dt

.

Since there holds in particular

JN0
(a∗) ≤ e2j2T∫ T

0
θTj (t)2 dt

∫
Ω

a∗(x) sin2(x) dx ≤ e2j2T∫ T
0
θTj (t)2 dt

,

we infer from (22) that

J (a∗) = min

(
JN0

(a∗), inf
j>N0

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

a∗(x) sin2(jx) dx

)
= JN0

(a∗).

Let us actually prove that J (a∗) = JN0(aN0), where aN0 ∈ UL denotes the unique
maximizer of JN0 , as stated in Lemma 2.4. Since aN0 maximizes JN0 over UL, one
has J (a∗) = JN0

(a∗) ≤ JN0
(aN0). Let us argue by contradiction and assume that

JN0
(a∗) < JN0

(aN0). For every t ∈ [0, 1], we set at = a∗ + t(aN0 − a∗). Since JN0
is

concave (as an infimum of linear functionals), we get

JN0(at) ≥ (1− t)JN0(a∗) + tJN0(aN0) > JN0(a∗) = J (a∗)

for every t ∈ (0, 1], which means that

inf
1≤j≤N0

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

at(x) sin2(jx) dx

> inf
1≤j≤N0

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

a∗(x) sin2(jx) dx ≥ J (a∗)

(23) R
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for every t ∈ (0, 1]. Besides, for every ε > 0 there exists t > 0 small enough such that

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

at(x) sin2(jx) dx ≥ (1− t) e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

a∗(x) sin2(jx) dx

≥ e2T∫ T
0
θT1 (t)2 dt

+ ε

for every j > N0. Therefore,

(24) inf
j>N0

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

at(x) sin2(jx) dx >
e2T∫ T

0
θT1 (t)2 dt

.

Since there holds in particular JN0
(at) ≤ e2T∫ T

0
θT1 (t)2 dt

, we infer from (23) and (24) that

J (at) = JN0
(at) > J (a∗), which contradicts the optimality of a∗.

Therefore JN0
(a∗) = J (a∗) = JN0

(aN0), whence the result.
Estimate of the integer N0. It remains to provide an estimate for N0. We claim

that any nonzero integer Ñ0 such that the inequality

inf
j>Ñ0

e2j2T∫ T
0
θTj (t)2 dt

∫
Ω

χωN (x) sin(jx)2 dx >
e2T∫ T

0
θT1 (t)2 dt

holds true satisfies N0 ≤ Ñ0 (in what follows, we denote by Ñ0 any integer such that
the sequence (ωN )N≥Ñ0

remains constant).
To prove this claim, let us consider the simple case where T ≥ 1. Notice that,

in the next explanations, the lower bound on the time T is not a restriction of our
approach and can be chosen as small as desired with a slight adaptation of the fol-
lowing arguments. It is possible to perform more precise computations since in this
case, we know at the same time several properties on the involved biorthogonal se-
quences (θTj )j∈N∗ as well as the useful spectral property: for all j ∈ N∗, one has∫ π

0
χωN (x) sin2(jx) dx ≥ Lπ−sin(Lπ)

2 according to [27, Lemma 6]. As a consequence,

following the proof of Theorem 2.1 and by using in particular (20), Ñ0 can be chosen
to be any integer such that

∀j ≥ Ñ0,
e2j2T

‖θTj ‖2L2(0,T )

(
πL− sin(πL)

2

)
≥ e2T

‖θT1 ‖2L2(0,T )

.

According to [22, Theorem 3.2], there holds ‖θT1 ‖2L2(0,T ) ≥
e2

64 , and we infer that Ñ0

can also be chosen such that

∀j ≥ Ñ0, ‖θTj ‖2L2(0,T ) ≤
e2 (πL− sin(πL))

128
e2T (j2−1).

It remains to provide an upper bound of the quantity θTj for any j ∈ N∗. To this aim,

we will use that for a given j ∈ N∗, the mapping v : [0, T ] 3 t 7→ (−1)j

2j e−j
2T θTj (t)

is the control of minimal L2(0, T )-norm for the boundary control problem of steering
the system

∂tϕ(t, x)− ∂xxϕ(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

ϕ(t, 0) = 0, ϕ(t, π) = v(t), t ∈ (0, T ),
(25)
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with initial datum ϕ(0, x) = sin(jx) to zero in time T , as highlighted in [22, Proposi-
tion 2.2]. Consider the particular control function wj vanishing on the time interval
[0, T − 1] and equal to the control constructed with the help of the Hilbert Unique-
ness Method (HUM) for the control problem of steering the system (25) with initial

datum ϕ(0, x) = e−j
2(T−1) sin(jx) to zero in time 1. The existence of wj is well

known and we refer, for instance, to [35, 39]. More generally, the controllability
property of (25) also implies the existence C > 0 that does not depend on j nor T

such that ‖wj‖L2(0,T ) ≤ Ce−(T−1)j2 for all j ∈ N∗ since the sequence of functions
(x 7→ sin(jx))j∈N∗ is uniformly bounded in L2(0, π). We thus infer that

‖θTj ‖L2(0,T ) ≤ 2Cjej
2

for every j ∈ N∗, and therefore, it suffices to choose Ñ0 such that

j ≥ Ñ0 ⇒ 2Cjej
2

≤ e2 (πL− sin(πL))

128
e2T (j2−1).

This estimate shows in particular that Ñ0 and thus N0 are equal to 1 if T is large
enough.

3. Generalization to parabolic distributed parameter systems and
lumped control. In this section, we generalize the results obtained previously for
the one-dimensional heat equation, to a large family of parabolic systems. In a second
step, we consider an alternative way of acting on the system, by means of lumped
controls.

3.1. Problem setting. Let n ∈ N∗ be an integer, and let Ω be a bounded open
connected subset of Rn. We consider the internally controlled parabolic distributed
parameter system

(26) ∂ty +A0y = χωu, t ∈ (0, T ),

where A0 : D(A0)→ L2(Ω,C) is a densely defined operator that generates a strongly
continuous semigroup on L2(Ω,C), u ∈ L2((0, T )×Ω,C) is the control function, and
ω ⊂ Ω is a measurable subset standing for the control domain.

We assume that there exists an orthonormal basis (φj)j∈N∗ of L2(Ω,C) consisting
of eigenfunctions of A0, associated with (complex) eigenvalues (λj)j∈N∗ such that
Re(λ1) ≤ · · · ≤ Re(λj) ≤ . . . .

The one-dimensional heat equation investigated previously enters into this frame,
but now the setting is much more general.

The objective of this section is to give a precise sense to the question of optimizing
the control domain ω. As a first remark, let us note that, since the equation is parabolic
and thus has smoothing properties, we focus on the exact null controllability problem,
that is, the problem of steering the system from any initial condition (in an appropriate
functional space) to zero, within a time T > 0.

We use the moment method in order to derive a relevant model of optimal sensor
shape and location with results valuable for almost every initial data. This method
provides a way of constructing a control achieving exact null controllability for some
given initial data y0 ∈ L2(Ω). As explained below, this approach suffers, however,
from restrictions related to the Müntz–Szász theorem and then cannot be applied to
any parabolic system.
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We address this control problem in the framework developed in [11] (see also
the survey [31]), where the controllability problem is reduced to a moment problem
which is solved explicitly with the help of a biorthogonal sequence to the family of
exponential functions Λ = (e−λjt)j≥1.

Consider the control system (26) with the initial data

(27) y(0) = y0 =
∑
j∈N∗

ajφj ∈ L2(Ω).

The moment method provides a control steering the parabolic system (26) to zero, as
stated in the following result.

Lemma 3.1. We define formally the function u by

(28) u(t, x) = −
∑
j∈N∗

aje
−λjT∫

ω
|φj(y)|2 dy

θTj (T − t)φj(x)

for almost every t ∈ (0, T ) and every x ∈ Ω. If this series defines a function of
L2((0, T ) × Ω), then this control is a solution of the problem of steering the system
(26) from y0 to 0 in time T .

The proof of this lemma is done in Appendix A.1.

Remark 3.2. Recall that such a biorthogonal sequence exists if and only if the
family Λ is minimal, that is, every element t 7→ e−λjt lies outside of the closure in
L2(0, T ) of the vector space spanned by all other elements t 7→ e−λkt with k 6= j. If
this condition is fulfilled, then this biorthogonal sequence is uniquely determined if
and only if the family Λ is complete in L2(0, T ).

It is well known, by the Müntz–Szász theorem, that the family Λ is complete in
L2(0, T ) (but not independent) if and only if∑

j∈N∗

1

Re(λj) + λ
= +∞

for some real number λ such that Re(λj) + λ > 0 for every j ∈ N∗ (for instance,
λ = −Re(λ1) + 1 is suitable). On the contrary, if this series is convergent, then the
closure of the span of Λ is a proper subspace of L2(0, T ); moreover Λ is minimal and
thus a biorthogonal sequence exists.

Then, here, we are led to assume that the series is convergent, which is a quite
strong restriction on the parabolic system under consideration.

For every y0 ∈ L2(Ω), we set Γω(y0) = χωu, where u is the control defined by
(28), steering the system (26) from y0 to 0 in time T . This defines an operator
Γω : L2(Ω)→ L2((0, T )×Ω), called the moment control operator, which is linear and
continuous. Its norm is ‖Γω‖ = sup{‖Γω(y0)‖L2((0,T )×Ω) | ‖y0‖L2(Ω) = 1}.

As in the previous section, we randomize the Fourier coefficients of a given y0 ∈
D(A0), with y0 =

∑+∞
j=1 ajφj , by defining aνj = βνj aj for every j ∈ N∗, where (βνj )j∈N∗

is a sequence of independent real-valued random variables on a probability space
(X ,A,P) having mean equal to 0, variance equal to 1, and a superexponential decay
(for instance, independent Bernoulli random variables). Then we define

K(χω) = sup
‖y0‖L2(Ω)=1

E
(
‖Γω(y0

ν)‖2L2((0,T )×Ω)

)
,
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where y0
ν =

∑+∞
j=1 β

ν
j ajφj , and E is the expectation over the space X with respect to

the probability measure P.

Lemma 3.3. There holds

K(χω) =

(
inf
j∈N∗

γj(T )

∫
ω

|φj(x)|2 dx
)−1

,

where the coefficients γj(T ) are defined by

(29) γj(T ) =
e2Re(λj)T∫ T
0
θTj (t)2 dt

,

for every j ∈ N∗.

This lemma is proved in Appendix A.2. As discussed previously, we model the
best actuator shape and placement problem as the problem of minimizing K over the
set UL defined by

(30) UL = {χω ∈ L∞(Ω, {0, 1}) | ω ⊂ Ω measurable, |ω| = L|Ω|}.

According to Lemma 3.3, the problem of optimal actuator placement is equivalent to
the problem

(31) sup
χω∈UL

inf
j∈N∗

γj(T )

∫
ω

|φj(x)|2 dx,

where the coefficients γj(T ) are defined by (29). In what follows, we define

J (χω) = inf
j∈N∗

γj(T )

∫
ω

|φj(x)|2 dx

for every measurable subset ω ⊂ Ω.

3.2. Main result and examples. We consider the following assumptions.
(H1) (Strong conic independence property) If there exist a subset E of Ω of positive

Lebesgue measure, an integer N ∈ N∗, an N -tuple (αj)1≤j≤N ∈ (R+)N , and

C ≥ 0 such that
∑N
j=1 αj |φj(x)|2 = C almost everywhere on E, then there

must hold C = 0 and αj = 0 for every j ∈ {1, . . . , N}.
(H2) For every a ∈ L∞(Ω; [0, 1]) such that

∫
Ω
a(x) dx = L|Ω|, one has

lim inf
j→+∞

γj(T )

∫
Ω

a(x)|φj(x)|2 dx > γ1(T ).

(H3) The eigenfunctions φj are analytic in Ω.
These assumptions have been considered as well in [30] and are commented on in that
reference. For instance, they are satisfied for A0 = (−4)α with α > 1

2 and 4 is the
Dirichlet-Laplacian on a piecewise C1 domain Ω (see [30, section 2.4]).

The problem (31) is similar to the optimal design problem (7), except that now
the weights γj(T ) are defined by (29). It appears then important to estimate the
asymptotics of γj(T ) as j tends to +∞. But this has been done in [6, 11, 12, 22].
Those estimates will impose further restrictions on the problem under consideration.
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For every N ∈ N∗, we define the truncated criterion

JN (χω) = inf
1≤j≤N

γj(T )

∫
ω

|φj(x)|2 dx

for every measurable subset ω ⊂ Ω. We have the following result.

Proposition 3.4. Let N ∈ N∗. Under (H1), the problem

(32) sup
χω∈UL

JN (χω)

has a unique solution χωN in UL. Moreover, under the additional assumption (H3),
ωN is an open semianalytic5 set.

This proposition is proved in Appendix A.3. The main result is then the following
theorem, proved in Appendix A.4.

Theorem 3.5. Assume that there exist m1 > 0, m2 ∈ (0, 2T ), and a sequence
(θTj )j∈N∗ biorthogonal to the family Λ = (t 7→ e−λjt)j≥1, such that

(33) ‖θTj ‖2L2(0,T ) ≤ m1e
m2Re(λj)

for every j ∈ N∗. Then, under (H1) and (H2), the problem (31) has a unique solution
χω∗ ∈ UL. Moreover there exists N0 ∈ N∗ such that ω∗ = ωN for every N ≥ N0. In
particular, if (H3) is moreover satisfied, then ω∗ is an open semianalytic subset of Ω,
and thus, it has a finite number of connected components.

The same considerations as in section 2 on the algorithmic computation procedure
still hold in this general framework.

To finish, we provide hereafter some classes of examples for which the existence
of a biorthogonal sequence satisfying (33) is known.

• Assume that there exist δ > 0, β > 1, ε > 0, A ≥ 0, and B ≥ δ such that

(34) |λj − λk| ≥ δ|jβ − kβ | and ε(A+Bjβ) ≤ |λj | < A+Bjβ

for all (j, k) ∈ (N∗)2, where the elements of the sequence (λk)k∈N∗ are as-
sumed to lie in {λ ∈ C | | arg λ| ≤ θ} for some given θ ∈ (0, π/2). As argued
in Remark 3.2, under the condition (34) there exists a sequence (θTj )j∈N∗
biorthogonal to Λ, and it is proved in [12] that there exist two positive con-
stants Ã and B̃ such that

‖θTj ‖2L2(0,T ) ≤ B̃e
Ãj ,

and since

Re(λj) ≥ |λj | cos θ ≥ ε(A+Bjβ) cos θ

for every j ∈ N∗, we infer the existence of m1 and m2 such that the estimate
(33) holds. We also refer to [22, Theorem 3.2] for an elementary proof of (33)
for the eigenvalues the one-dimensional Dirichlet-Laplacian operator.

5A subset ω of a real analytic finite-dimensional manifold M is said to be semianalytic if it can be
written in terms of equalities and inequalities of analytic functions. We recall that such semianalytic
subsets are stratifiable in the sense of Whitney (see [13, 15]) and enjoy local finiteness properties,
such as local finite perimeter, local finite number of connected components, etc.
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For example, assume that A0 = (−4)α is a positive power of the one-
dimensional Dirichlet-Laplacian on Ω = (0, π); then (34) is satisfied if and
only if α > 1/2.
In [12] other examples are provided where (34) is satisfied, such as the damped
Euler–Bernoulli plate in dimension two.
• Assume that (λn)n∈N∗ is a sequence of positive real numbers and that there

exist K > 0, α > 0, and β > 1 such that

λn = K(n+ α)β + o(nβ−1),

as n tends to +∞. It is proved in [11, Formula (3.25)] that there exist two
constants Ã and B̃ such that

‖θTj ‖2L2(0,T ) ≤ Ãe
B̃λ

1/β
j

for every j ∈ N∗ and the estimate (33) then holds true. Note that the authors
of [11] use it to derive exact controllability results for a Sturm–Liouville one-
dimensional equation. We also mention the article [3], where the authors
extend the above approach and estimate to the framework of systems of
one-dimensional parabolic equations, in view of establishing exact boundary
controllability properties.
• Assume that A0 is the Dirichlet-Laplacian on the unit ball Ω = {x ∈ Rn |
‖x‖ < 1} with n arbitrary. Using a refined study of the sequences of eigen-
functions and eigenvalues, it is proved in [10, section 6, (6.27)] that (33) holds
true with a constant m2 not depending on T , and the authors use it to in-
vestigate boundary controllability issues for the heat equation in Ω. Then
Theorem 3.5 can be applied, provided that T is large enough (since it is
required that m2 ∈ (0, 2T )).

3.3. Optimal lumped controls. In this section, we investigate a variant of the
previously studied optimal design problem, based on another kind of controls referred
to in the literature as the lumped controls (see [31, Chapter 4] or [16, Chapter 1.4]).
This wording designates tensorized controls that are the product of separated variables
functions in time and space, the space profile of the control term being given. Then
one only acts on the system by means of tuning the time-intensity of the control.

Let Ω be an open connected subset of Rn and A0 : D(A0) → L2(Ω,C) be a
densely defined operator that generates a strongly continuous semigroup on L2(Ω,C).
We adopt the same framework as in section 3.1, assuming the existence of an or-
thonormal basis (φj)j∈N∗ of L2(Ω,C) consisting of eigenfunctions of A0, associated
with (complex) eigenvalues (λj)j∈N∗ such that Re(λ1) ≤ · · · ≤ Re(λj) ≤ . . . .

Consider the internally controlled parabolic system

(35) ∂ty(t, x) +A0y(t, x) + g(x)u(t) = 0, (t, x) ∈ (0, T )× Ω,

with Dirichlet boundary conditions, where g ∈ L2(Ω,C) is the control profile and
u ∈ L2(0, T ) is the control function. The controlled system (35) is a particular version
of (1).

In some sense, the function g plays the role of χω in (26), but here, the control
function u depends only on t. The function g is usually fixed and the control is u.
Here, we propose to optimize the control profile g.

Performing the same analysis as in section 1.1 and using the same notation, one
proves easily that every initial datum y0 =

∑+∞
j=1 ajφj ∈ L2(Ω) can be steered to zero
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in time T with the control u ∈ L2(0, T ) given by

u(t) = −
+∞∑
j=1

aje
−λjT∫

Ω
g(y)φj(y) dy

θTj (T − t),

provided that the Fourier coefficients
∫

Ω
g(y)φj(y) dy of g do not vanish.

As previously, we define the moment control operator Γ̃g : L2(Ω)→ L2((0, T )×Ω)

by Γ̃g(y
0) = f , with f(t, x) = g(x)u(t). Its norm is given by

‖Γ̃g‖ = sup
‖y0‖L2(Ω)=1

‖Γ̃g(y0)‖L2((0,T )×Ω) = ‖g‖L2(Ω) sup
‖y0‖L2(Ω)=1

‖u‖L2(0,T ).

Following the framework developed in sections 1.1 and 3.1 leads to defining a ran-
domized criterion by defining aνj = βνj aj for every j ∈ N∗. Then we define

K̃g(χω) = sup
‖y0‖L2(Ω)=1

E(‖Γ̃g(y0
ν)‖2L2((0,T )×Ω)),

where y0
ν denotes the function of L2(Ω) whose Fourier coefficients are the aνj defined

above.

Lemma 3.6. There holds

K̃g(χω) = sup
j∈N∗

e−2Re(λj)T
∫ T

0
θTj (t)2 dt∣∣∫

Ω
g(x)φj(x) dx

∣∣2
∫

Ω

|g(x)|2 dx.

The proof is similar to the proofs of Lemmas 1.1 and 3.1 and thus is skipped.
We model the “best design of lumped controller” as the problem of minimizing

K̃g(χω) over the set of all possible profiles g ∈ L2(Ω). The functional g 7→ K̃g(χω)
being homogeneous according to the previous lemma, the problem of optimal lumped
control placement is then equivalent to the problem

(36) sup
‖g‖L2(Ω)=1

inf
j∈N∗

γj(T )

∣∣∣∣∫
Ω

g(x)φj(x) dx

∣∣∣∣2 ,
with

γj(T ) =
e2Re(λj)T∫ T
0
θTj (t)2 dt

,

for every j ∈ N∗. Let us now solve this optimal design problem.

Theorem 3.7. We assume that

(37)
+∞∑
j=1

1

γj(T )
< +∞.

Then, the problem (36) has at least one solution, and we have

sup
‖g‖L2(Ω)=1

inf
j∈N∗

γj(T )

∣∣∣∣∫
Ω

g(x)φj(x) dx

∣∣∣∣2 =

+∞∑
j=1

1

γj(T )

−1

.
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Moreover, the set of solutions consists of all functions g in L2(Ω) that can be expanded
as

g =
+∞∑
j=1

gjφj with |gj |2 =

+∞∑
j=1

1

γj(T )

−1

1

γj(T )
.

This theorem is proved in Appendix A.5.

Remark 3.8. Consider the case where A0 = −∂xx is defined on H2(0, π)∩H1
0 (0, π)

(one-dimensional Dirichlet-Laplacian). Then φj(x) =
√

2
π sin(jx) and λj = j2 for

every j ∈ N∗.
Denote by g any solution of the problem (36). According to [22, Theorem 3.2],

there exists a positive constant CT such that

e2j2T∫ T
0
θTj (t)2 dt

≥ CT e2j2T−2πj

for every j ∈ N∗. According to Theorem 3.7, it follows that the Fourier coefficients gj
decrease exponentially with respect to j, and as a consequence, the optimal functions
g are analytic (see, e.g., [1, Chapter 11, section 63]).

Remark 3.9. It might seem natural and of physical interest to investigate what
happens if we restrict our search of the control profile g to a set of characteristic
functions of a measurable subset ω, with the measure of ω possibly fixed. Doing this,
we get a kind of instability: indeed, assuming that ω is the finite union of rational
intervals (in other words, intervals whose extremities are rational multiples of π), one
can easily check that

inf
j∈N∗

γj(T )

(∫ π

0

χω(x) sin(jx) dx

)2

= 0.

Therefore, this problem appears to be ill-posed in some sense and is probably not very
relevant with respect to practical issues.

3.4. Conclusion. To conclude, let us provide several further comments and
open problems.

Generalization to other methods of control and higher dimensions. As underlined
in the previous sections, the use of controllers obtained by the moment method reduces
mainly the perimeter of our study to one-dimensional operators.

In view of generalizing our approach to other control operators, let us use the
framework described in section 3.1, considering the controlled system

(38) ∂ty +A0y = χωu, t ∈ (0, T ),

where y(0, ·) = y0 ∈ L2(Ω) and u is a control steering this system from y0 to 0 in time
T , whenever it is possible. Let us assume that for every T > 0 and every Lebesgue
measurable subset ω of positive measure, the system (38) is null controllable in time
T . In this case, let us write Γω = χωu.

For instance, the HUM (see [20, 21]) is a well-known method used to design a
null control for (1)–(2), with the additional property that this control has a minimal
L2 norm over all possible null controls. The null controllability property in time T of
this system is equivalent to an observability property on the pair (ω, T ). Note that
in the case where A0 is the Dirichlet-Laplacian operator −4, it has been shown in
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[4] that the observability inequality holds true for every T > 0 and every Lebesgue
measurable subset ω of positive measure.

Following the approach described in section 3.1, we define

K(χω) = sup
‖y0‖L2(Ω)=1

E
(
‖Γω(y0

ν)‖2L2((0,T )×Ω)

)
,

where y0
ν =

∑+∞
j=1 β

ν
j ajφj , and E is the expectation over the space X with respect to

the probability measure P. Similar computations as those in Appendix A.2 enable us
to show that

K(χω) = sup
j∈N∗

∥∥Γω(φj)
∥∥2

L2((0,T )×Ω)
.

As discussed previously, we model the best actuator shape and placement problem
as the problem of minimizing K over the set UL. Analyzing this optimal design
problem does not seem easy since it requires us to know fine regularity properties of
each control function uj defined by Γω(φj) = χωuj .

Analysis of the full control operator. One of the main issues that remains to
be developed is whether one can attack the problem of the optimal design of the
controllers and actuators without the diagonalization procedure by randomization.
The issue is then much harder to handle, as it occurs at the level of the observability
problem. Note also that in that case, because of possible interactions of all modes, it
is unclear how complex the optimal sets are.

Actually, if one defines the Gramian operator GT as the infinite-dimensional
symmetric nonnegative matrix whose coefficient at row j and column k is given

by
∫ T

0
e(j2+k2)t dt

∫
ω

sin(jx) sin(kx) dx, the operator norm ‖Γω‖ is the inverse of the
smallest eigenvalue of GT . The randomization procedure consists in dropping the non-
diagonal terms in GT by considering the inverse of smallest eigenvalue of diag(GT ).

Concerning the particular case of controllers given by the HUM (see [20, 21]) to
design a null control for (1)–(2), minimizing the control efforts in a deterministic way
is actually equivalent to maximizing

CT (χω) = inf

{∫ T
0

∫
ω
|y(t, x)|2 dx dt

‖y(T, ·)‖2L2(0,π)

∣∣ y(0, ·) ∈ L2(0, π) \ {0}

}
,

which is the largest possible observability constant C in the inequality (3), over UL,
because of the duality between controllability and observability. An interesting prob-
lem then consists of maximizing the functional CT (χω) over the set UL. This problem
has been discussed in [29, 30], and for the same reasons as above it has appeared more
relevant to introduce the concept of randomized observability constant CT,rand(χω).
At this step, one may think of coming back, by duality, to the controllability prob-
lem. Unfortunately, the problem of maximizing CT,rand(χω) does not admit any nice
interpretation in terms of controlling, say, almost every initial data to 0 in time T .
This is due to the fact that the randomization procedure does not commute with the
duality operator realizing the duality between observability and controllability.

More precisely, the Gramian GT defined above does not commute with the ran-
domization procedure. To describe which kind of initial data can be steered to 0 in
a random way, it would be required to compute the image under GT of the random
laws used in the randomization procedure, and then show that these random laws
share appropriate probability properties, as in [9].
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Hence, here, we have found it more relevant to combine the randomization proce-
dure with the moment method, in which case the problem of the lack of commutation
arising in the HUM procedure disappears.

Use of other biorthogonal families. We have here used the moment problem ap-
proach but in a very special way, taking advantage of the fact that eigenvalues grow
sufficiently fast to ensure the existence of a family of time-biorthogonals that allow
us to build by separation of variables biorthogonal families for all possible supports
of the control ω.

Of course the issue can be formulated without that restrictive assumption taking
advantage of the existence of biorthogonal families in the (x, t) variables, in other

words, of families Λ = (θω,Tk )k∈N∗ such that∫ T

0

∫
ω

θω,Tk (t, x)e−λjtφj(x) dxdt = δjk.

But their dependence with respect to ω seems to be hard to analyze.

Appendix A. Proofs. In what follows and similarly to what has been done
in section 2, we will consider a convexified version of the problem (31) to overcome
the difficulty related to the noncompactness of the set UL defined by (30) for the L∞

weak star topology. We refer to this section for more comments on this procedure.
The convex closure of UL for the weak star topology of L∞ is

(39) UL =

{
a ∈ L∞(Ω; [0, 1]) |

∫
Ω

a(x) dx = L|Ω|
}
.

Replacing χω ∈ UL with a ∈ UL, we consider the convexified formulation of the
problem (31) given by

(40) sup
a∈UL

J (a),

where the functional J is naturally extended to UL by

(41) J (a) = inf
j∈N∗

γj(T )

∫
Ω

a(x)|φj(x)|2 dx,

for every a ∈ UL. We consider as well a relaxed formulation of the truncated optimal
design problem (32) by

(42) sup
a∈UL

JN (a),

where the functional JN is naturally extended to UL by

(43) JN (a) = inf
1≤j≤N

γj(T )

∫
Ω

a(x)|φj(x)|2 dx

for every a ∈ UL.
We have the following result.

Lemma A.1. For every L ∈ (0, 1), the relaxed problem (40) (respectively, (42) for
any N ∈ N∗) has at least one solution a∗ ∈ UL (respectively, aN ∈ UL).

We refer to section 2.1 for a proof of this result.
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A.1. Proofs of Lemmas 1.1 and 3.1. We prove Lemma 3.1, which is a
generalization of Lemma 1.1.

We seek a control function u = u(t, x) in L2((0, T )×Ω) achieving the null control-
lability for the system (26) with the initial condition y(0, x) = y0(x) =

∑+∞
j=1 ajφj(x),

that is, such that y(T, ·) = 0. Setting y(t, x) =
∑+∞
j=1 yj(t)φj(x), we get

yj(T ) = e−λjTaj +

∫ T

0

∫
ω

e−λj(T−t)u(t, x)φj(x) dx dt

for every j ∈ N∗. In order to realize the null controllability in time T , the control u
must be such that

(44)

∫ T

0

∫
ω

e−λj(T−t)u(t, x)φj(x) dx dt = −aje−λjT

for every j ∈ N∗. In order to solve these equations, assume that there exists a sequence
(θTj )j∈N∗ of functions biorthogonal to the family Λ, that is,∫ T

0

e−λjtθTk (t) dt = δjk,

for all (j, k) ∈ (N∗)2, where δjk = 1 whenever j = k, and δjk = 0 otherwise. Then the
function u defined by (28) is a formal solution of the moment problem (44).

A.2. Proof of Lemmas 1.2 and 3.3. We randomize the initial datum y0(x) =∑+∞
j=1 ajφj(x) according to yν0 (x) =

∑+∞
j=1 β

ν
j ajφj(x). Then, the corresponding control

u = Γω(yν0 ) coming from the moment method, steering yν0 to 0 in time T , is

uν(t, x) = −
+∞∑
j=1

βνj aje
−λjT θTj (T − t) φj(x)∫

ω
|φj(y)|2 dy

,

and hence

‖uν‖2L2((0,T )×Ω)

=
+∞∑
j,k=1

βνj β
ν
kaj āke

−(λj+λ̄k)T

∫ T

0

θTj (t)θTk (t) dt

∫
ω
φj(x)φk(x) dx∫

ω
|φj(x)|2 dx

∫
ω
|φk(x)|2 dx

,

and therefore,

E
(
‖uν‖2L2((0,T )×Ω)

)
=

+∞∑
j=1

|aj |2e−2Re(λj)T∫
ω
|φj(x)|2 dx

∫ T

0

θTj (t)2 dt.

The result follows.

A.3. Proof of Proposition 3.4. This proof is similar to the one of [30, Proposi-
tion 2]. We include it in the present paper for the sake of completeness and readability.

For every N ∈ N∗, we consider the relaxed truncated problem (43), where the
functional JN is defined by (42). Using the same arguments as in the proof of Lemma
A.1, it is clear that the problem (43) has at least one solution aN ∈ UL. Let us prove
that aN is the characteristic function of a set ωN such that χωN ∈ UL. Defining the
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simplex set SN = {α = (αj)1≤j≤N ∈ [0, 1]N |
∑N
j=1 αj = 1}, it follows from the Sion

minimax theorem (see [33]) that

sup
a∈UL

min
1≤j≤N

γj(T )

∫
Ω

a(x)|φj(x)|2 dx = max
a∈UL

min
α∈SN

∫
Ω

a(x)
N∑
j=1

αjγj(T )|φj(x)|2 dx

= min
α∈SN

max
a∈UL

∫
Ω

a(x)
N∑
j=1

αjγj(T )|φj(x)|2 dx

and that there exists αN ∈ SN such that (aN , αN ) is a saddle point of the functional

(a, α) ∈ UL × SN 7−→
N∑
j=1

αjγj(T )

∫
Ω

a(x)|φj(x)|2 dx.

Therefore, aN is solution of the optimal design problem

max
a∈UL

∫
Ω

a(x)
N∑
j=1

αNj γj(T )|φj(x)|2 dx.

We set ϕN (x) =
∑N
j=1 α

N
j γj(T )|φj(x)|2 for every x ∈ Ω. It follows from (H1) that

ϕN is never constant on any subset of Ω of positive measure. Therefore, there exists
λN such that aN (x) = 1 whenever ϕN (x) ≥ λN , and aN (x) = 0 otherwise. In other
words, aN = χωN ∈ UL with ωN = {x ∈ Ω | ϕN (x) > λN}.

The uniqueness of aN follows from the fact that, as proved above, any optimal
solution is a characteristic function. Indeed if there were two optimal sets, then any
convex combination would also be an optimal solution because JN is concave. This
raises a contradiction since any maximizer has to be a characteristic function.

Under the additional assumption (H3), the function ϕN is analytic in Ω and
therefore ωN is an open semianalytic set.

A.4. Proof of Theorem 3.5. This proof is an immediate adaptation of the one
of Theorem 2.1.

Indeed, notice that according to the assumption (H2), the estimate (21), consti-
tuting the starting point of the proof of Theorem 2.1, can be replaced by

lim inf
j→+∞

γj(T )

∫
Ω

a∗(x)|φj(x)|2 dx > γ1(T ),

where a∗ stands for a solution of the relaxed problem (40).
The rest of the proof is then unchanged.

A.5. Proof of Theorem 3.7. We expand g =
∑+∞
j=1 gjφj with gj =

∫
Ω
g(x)

φj(x) dx for every j ∈ N∗. Note that since ‖g‖L2(Ω) = 1, we have
∑+∞
j=1 |gj |2 = 1. We

define the convex set S by

S =

{
β = (βj)j∈N×N∗ ∈ `1(R+) |

∑
j∈N∗

βj = 1

}
.

Note that if (ηj)j∈N∗ is a sequence of positive real numbers, then

inf
j∈N∗

ηj = inf
β∈S

+∞∑
j=1

βjηj .
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Therefore, the optimal value for the problem (36) coincides with the optimal value of
a convexified problem, as follows. Writing α = (αj)j∈N∗ = (g2

j )j∈N∗ , there holds

sup
‖g‖L2(0,π)=1

inf
j∈N∗

γj(T )

∣∣∣∣∫
Ω

g(x)φj(x) dx

∣∣∣∣2 = sup∑+∞
j=1 |gj |2=1

inf
β∈S

+∞∑
j=1

γj(T )βj |gj |2

= sup
α∈S

inf
β∈S

F (α, β),

where the functional F is defined by F (α, β) =
∑+∞
j=1 γj(T )αjβj . In accordance with

(37), define the sequence λ∗ = (λ∗j )j∈N∗ by λ∗j = (
∑+∞
j=1

1
γj(T ) )−1 1

γj(T ) for every j ∈ N∗.
Clearly, λ∗ ∈ S and we have

sup
α∈S

inf
β∈S

F (α, β) ≤ sup
α∈S

F (α, λ∗) =

+∞∑
j=1

1

γj(T )

−1

.

Similarly,

sup
α∈S

inf
β∈S

F (α, β) ≥ inf
β∈S

F (λ∗, β) =

+∞∑
j=1

1

γj(T )

−1

.

It follows that

sup
‖g‖L2(0,π)=1

inf
j∈N∗

γj(T )

∣∣∣∣∫
Ω

g(x)φj(x) dx

∣∣∣∣2 =

+∞∑
j=1

1

γj(T )

−1

,

and the supremum is reached if and only if

|gj |2 =

+∞∑
j=1

1

γj(T )

−1

1

γj(T )

for every j ∈ N∗. The conclusion follows.
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