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Abstract. We propose a new approach to the numerical solution of cell problems arising in the
homogenization of Hamilton-Jacobi (HJ) equations. It is based on a Newton-like method for solving
inconsistent systems of nonlinear equations, coming from the discretization of the corresponding cell
problems. We show that our method is able to solve efficiently cell problems in very general contexts,
e.g., for first and second order scalar convex and nonconvex Hamiltonians, weakly coupled systems,
dislocation dynamics and mean field games, also in the case of more competing populations. A
large collection of numerical tests in dimension one and two shows the performance of the proposed
method, both in terms of accuracy and computational time.
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1. Introduction. In many problems, such as homogenization and long time
behavior of first and second order Hamilton-Jacobi equations, weak KAM theory,
stationary mean field games and dislocation dynamics, an essential step for the qual-
itative analysis of the problem is the computation of the effective Hamiltonian. This
function plays the role of an eigenvalue and in general it is unknown except in some
very special cases. Hence the importance of designing efficient algorithms for its com-
putation, taking also into account that the evaluation at each single point of this
function requires the solution of a nonlinear partial differential equation. Moreover,
the problem characterizing the effective Hamiltonian is in many cases ill-posed. Con-
sider for example the cell problem for a first order Hamilton-Jacobi equation

(1.1) H(x,Du + p) = λ , x ∈ Tn,

where λ ∈ R, p ∈ Rn and Tn is the unit n-dimensional torus. It involves, for any
given p, two unknowns u and λ in a single equation, called respectively the corrector
and the ergodic constant. Moreover, despite the effective Hamiltonian H̄(p) := λ is
uniquely identified by (1.1), the corresponding viscosity solution u is in general not
unique, not even for addition of constants.

In the recent years, several numerical schemes for the approximation of the effec-
tive Hamiltonian have been proposed (see [3, 4, 15, 19, 20, 24, 25, 26, 27]), and they
are mainly based on two different approaches.

The first approach consists in the regularization of the cell problem (1.1) via
well-posed problems, such as the stationary problem

(1.2) δuδ + H(x,Duδ + p) = 0 , x ∈ Tn,

for δ > 0, or the evolutive one

(1.3) ut + H(x,Du + p) = 0 , x ∈ Tn, t ∈ (0,∞).

Indeed, it can be proved that both −δuδ and −u(x, t)/t converge to H̄(p), respectively
for δ → 0 and t → +∞ (see [23]). In [26], these regularized problems are discretized
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by finite-difference schemes, obtaining respectively the so called small-δ and large-t
methods. In the limit for δ → 0 or t→ +∞, and simultaneously for the discretization
step h → 0, one gets an approximation of H̄(p) (the convergence of this method
is proved in [3]). It is worth noting that the idea of approaching cell problems via
small-δ or large-t methods has been applied to several other contexts, for example in
mean field games theory [2], u-periodic homogenization problems [1] and dislocation
dynamics [7].

The second approach for computing the effective Hamiltonian is based on the
following inf-sup formula:

H̄(p) = inf
u∈C∞(Tn)

sup
x∈Tn

H(x,Du + p) .

In [19], this formula is discretized on a simplicial grid, by taking the infimum on
the subset of piecewise affine functions and the supreme on the barycenters of the
grid elements. The resulting discrete problem is then solved via standard minimax
methods. An alternative method is suggested in [13], where it is shown that the
solution of the Euler-Lagrange equation

div
(
ek H(x,Du+p)Hp(x,Du + p)

)
= 0, x ∈ Tn

approximates, for k → +∞, the infimum in the inf-sup formula (here Hp denotes the
derivative of H with respect to its second argument). A finite difference implementa-
tion of this method is presented in [15], for the special class of eikonal Hamiltonians.
Finally, another numerical method for cell problems with eikonal-like Hamiltonians is
proposed in [24, 25], where an approximation of the effective Hamiltonian H̄(p) for
any value p is obtained by solving a suitable effective equation.

In this paper we propose a new approach which allows to compute solutions of cell
problems directly, i.e., avoiding small-δ, large-t or inf-sup approximations. All these
problems involve a couple of unknowns (u, λ), possibly depending on some parameter,
where u is either a scalar or vector function and λ is a constant. After performing a
discretization of the cell problem (e.g., using finite-difference schemes), we collect all
the unknowns (U,Λ) of the discrete problem in a single vector X of length N and we
recast the M equations of the discrete system as functions of X, for some N,M ∈ N.
We get a nonlinear map F : RN → RM and the discrete problem is equivalent to find
X? ∈ RN such that

(1.4) F (X?) = 0 ∈ RM ,

where the system (1.4) can be inconsistent, e.g., underdetermined (M < N) as for the
cell problem (1.1), or overdetermined (M > N) as for stationary mean field games (see
Section 9). Note that this terminology is properly employed for linear systems, but
it is commonly adopted also for nonlinear systems. In each case, (1.4) can be solved
by a generalized Newton’s method involving the Moore-Penrose pseudoinverse of the
Jacobian of F (see [5]), and efficiently implemented via suitable QR factorizations.

This approach has been experimented by the authors in the context of stationary
mean field games on networks (see [6]) and, to our knowledge, this is the first time a
cell problem in homogenization of Hamilton-Jacobi equations is solved directly, by in-
terpreting the effective Hamiltonian as an unknown (as it is!). We realized that, once
a consistent discretization of the Hamiltonian is employed to correctly approximate
viscosity solutions, all the job is reduced to computing zeros of nonlinear maps. More-
over, despite the cell problem does not admit in general a unique viscosity solution,
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the ergodic constant defining the effective Hamiltonian is often unique. This “weak”
well-posedness of the problems, and also the fact that the effective Hamiltonian is
usually the main object of interest more than the viscosity solution itself, encouraged
the development of the proposed method.

The paper is organized as follows. In Section 2 we introduce our approach for
solving cell problems, and we present a Newton-like method for inconsistent nonlinear
systems, discussing some basic features and implementation issues. In the remaining
sections, we apply the new method to more and more complex cell problems, aris-
ing in very different contexts. More precisely, Section 3 is devoted to the eikonal
Hamiltonian, which is the benchmark for our algorithm, due to the availability of an
explicit formula for the effective Hamiltonian. Section 4 concerns more general convex
Hamiltonians, while Section 5 is devoted to a nonconvex case and Section 6 to second
order Hamiltonians. In Section 7 we solve some vector problems for weakly coupled
systems, whereas Section 8 is devoted to a nonlocal problem arising in dislocation
dynamics. Finally, in Section 9 we solve some stationary mean field games and in
Section 10 an extension to the vector case with more competing populations.

2. A Newton-like method for cell problems. In this section we introduce
a new numerical approach for solving cell problems arising in the homogenization of
Hamilton-Jacobi equations. Then we present a Newton-like method for inconsistent
nonlinear systems and we discuss some of its features, also from an implementation
point of view.

We assume that a generic continuous cell problem is defined on the torus Tn and
we denote by Tn

h a numerical grid on Tn. We also assume that the discretization
scheme for the continuous problem results in a system of nonlinear equations of the
form

(2.1) S(x, h, U) = Λ

where
• h > 0 is the discretization parameter (h is meant to tend to 0);
• x ∈ Tn

h is the point where the continuous problem is approximated;
• U is a real valued mesh function on Tn

h and Λ is a real number, meant to
approximate respectively the continuous solution u of the (possibly vector)
cell problem and the corresponding ergodic constant λ;
• S represents a generic numerical scheme;
• N and M are respectively the length of the vector (U,Λ) and the number of

equations in (2.1).

We remark that our aim is to efficiently solve the nonlinear system (2.1). Therefore, we
do not specify the type of grids or schemes employed in the discretization. In partic-
ular, we do not consider properties of the scheme itself, such as consistency, stability,
monotonicity and, more important, the ability to correctly select approximations of
viscosity solutions, assuming that they are included in the form of the operator S. We
just point out that, in our tests, we always perform finite difference discretizations
on uniform grids. Moreover, if not differently specified, we mainly employ the well
known Engquist-Osher numerical approximation [12, 22] for the first order terms in
the equations, due to its simple implementation. For instance, in dimension one, we
use the following upwind approximation of the gradient:

|Du+p|(x) ∼

√
min2

{
U(x + h)− U(x)

h
+ p, 0

}
+ max2

{
U(x)− U(x− h)

h
+ p, 0

}
.
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To compute a solution of (2.1), we collect the unknowns (U,Λ) in a single vector
X of length N and we recast the M equations as functions of X. Hence we get
the nonlinear map F : RN → RM defined by F (X) = S(x, h, U) − Λ, and (2.1) is
equivalent to the nonlinear system

(2.2) F (X) = 0.

The system (2.2) is said underdetermined if M < N and overdetermined if M > N .
As already remarked, this terminology applies to linear systems, nevertheless it is
commonly adopted, with a slight abuse, also in the nonlinear case.

Assuming that F is Fréchet differentiable, we consider the following generalized
Newton-like method [5]: given X0 ∈ RN , iterate up to convergence

(2.3) Xk+1 = Xk − JF (Xk)†F (Xk), k ≥ 0 ,

where JF (·) = ∂Fi

∂Xj
(·) is the Jacobian of F and JF (·)† denotes the Moore-Penrose

pseudoinverse of JF (·). As in the case of square systems, we can rewrite (2.3) in a
form suitable for computations, i.e., for k ≥ 0

JF (Xk)δ = −F (Xk)(2.4)

Xk+1 = Xk + δ ,(2.5)

where the solution of the system (2.4) is meant, for arbitrary M and N , in the fol-
lowing generalized sense.

Proposition 2.1. ([17]) The vector

(2.6) δ? = −JF (Xk)†F (Xk)

is the unique vector of smallest Euclidean norm which minimizes the Euclidean norm
of the residual JF (Xk)δ + F (Xk).

It is easy to see that the generalized solution (2.6) is given

• for square systems (M = N) by

δ? = −J−1
F (Xk)F (Xk) ,

provided that the Jacobian is invertible.

• for overdetermined systems (M > N) by the least-squares solution

(2.7) δ? = arg min
d∈RN

‖JF (Xk)d + F (Xk)‖22,

provided that the Jacobian has full column rank N .

• for underdetermined systems (M < N) by the min Euclidean norm least-
squares solution

(2.8) δ? = arg min
d∈RN

‖d‖22 subject to JF (Xk)d + F (Xk) = 0,

provided that the Jacobian has full row rank M .
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In each case, the generalized solution δ? can be efficiently obtained avoiding the
computation of the Moore-Penrose pseudoinverse. Indeed, it suffices to perform a QR
factorization of the Jacobian JF (Xk) in the overdetermined case (or its transpose in
the underdetermined case), i.e., a factorization of the form JF (Xk) = QR in which

Q =
[

Q1 Q2

]
is an M ×M orthogonal matrix with Q1 of size M ×N ,
Q2 of size M × (M −N);

R =
[

R1

0

]
is an M ×N matrix with R1 upper triangular of size N ×N

and the null matrix of size (M −N)×N .

More precisely:

• in the square case, factoring JF (Xk) = QR, we get JF (Xk)† = R−1QT and
therefore

δ? = −R−1QT F (Xk) ⇐⇒ Rδ? = −QT F (Xk) ,

where the last step is readily computed by back substitution;

• in the overdetermined case, factoring JF (Xk) = QR, we get by (2.7)

δ? = arg min
d∈RN

∥∥∥∥[
R1

0

]
d +

[
QT

1

QT
2

]
F (Xk)

∥∥∥∥2

2

= ‖QT
2 F (Xk)‖22 + arg min

d∈RN
‖R1d + QT

1 F (Xk)‖22

so that, minimizing the second term, we get

(2.9) R1δ
? = −QT

1 F (Xk) ,

which is computed again by back substitution.

• in the underdetermined case, factoring JF (Xk)T = QR (note that now M and
N are exchanged), we have JF (Xk) = RT QT = RT

1 QT
1 . Moreover, setting

d = Qz = Q1z1 + Q2z2 ,

we get

0 = JF (Xk)d + F (Xk) = RT
1 QT

1 (Q1z1 + Q2z2) + F (Xk)

= RT
1 z1 + RT

1 QT
1 Q2z2 + F (Xk) .

Since QT
1 Q2 = 0 by the orthogonality of Q, we obtain the constraint

(2.10) RT
1 z1 + F (Xk) = 0 .

It follows that we can minimize (see (2.8))

‖d‖22 = ‖QT d‖22 = ‖z1‖22 + ‖z2‖22 ,

just taking z2 = 0, and we conclude that

δ? = Q1z1 = −Q1R
−T
1 F (Xk) ,

where z1 is computed by (2.10) again via back substitution.
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From now on we will refer to the generalized solution (2.6) for arbitrary M and
N as to the least-squares solution.

Summarizing, we consider the following algorithm for the solution of (2.2):

Given an initial guess X and a tolerance ε > 0,
repeat

(1) Assemble F (X) and JF (X)
(2) Solve the linear system

JF (X)δ = −F (X) in the least-squares sense,
using the QR factorization of JF (X) (or of JF (X)T )

(3) Update X ← X + δ

until ‖δ‖22 < ε and/or ‖F (X)‖22 < ε

In the actual code implementation of the algorithm above, we employ several well
known variants and modifications of the classical Newton method, as discussed in the
following remarks.

• The convergence of Newton-like methods is in general local. Nevertheless in some
cases, as in (1.1), if H is convex and a proper discretization preserving this prop-
erty is performed, the map F in (2.2) is also convex and therefore the convergence
is global. Moreover, in every example we consider (except for multi-population mean
field games, see Section 10) the ergodic constant is unique.

• Sometimes Newton-like methods do not converge, due to oscillations around a min-
imum of the residual function ‖F (X)‖22. This situation can be successfully overcome
by introducing a damping parameter in the update step, i.e., by replacing X in the
step (3) of the algorithm with X + µδ for some 0 < µ ≤ 1. Usually a fixed value of µ
works fine, possibly affecting the number of iterations to obtain convergence.

A more efficient (but costly) selection of the damping parameter can be imple-
mented using line search methods, such as the inexact backtracking line search with
Armijo-Goldstein condition. Especially when dealing with nonconvex residual func-
tions, the Newton step can be trapped into a local minimum. In this case a re-
initialization of the damping parameter to a bigger value can resolve the situation,
acting as a thermalization in simulated annealing methods.

• It may happen (usually if the initial guess is X = 0) that JF (X) is nearly sin-
gular or rank deficient, so that the least-squares solution cannot be computed. In
this case, in the spirit of the Levenberg-Marquardt method or more in general quasi-
Newton methods, we can add a regularization term on the principal diagonal of the
Jacobian, by replacing JF (X) with τI + JF (X), where τ > 0 is a tunable parameter
and I denotes the identity (not necessarily square) matrix. This correction does not
affect the solution, but it may slow down the convergence if τ is not chosen properly.
This depends on the fact that the method reduces to a simple gradient descent if the
term τI dominates JF (X).

In our implementation, we switch-on the correction (with a fixed τ) only at the
points X where JF (X) is nearly singular or rank deficient. In this way we can easily
handle, for instance, second order problems with very small diffusion coefficients.
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• Newton-like methods classically require the residual function to be Fréchet differ-
entiable. Nevertheless, this assumption can be weakened to include important cases,
such as cell problems in which the Hamiltonian is of the form H(x, p) = 1

q |p|
q − V (x)

with q ≥ 1. Note that the derivative in p is given by Hp(x, p) = |p|q−2p, so that
the Jacobian in the corresponding Newton step is not differentiable at the origin for
1 ≤ q < 2. In this situation, in the spirit of nonsmooth-Newton methods, we can
replace the usual gradient with any element of the sub-gradient. Typically we choose
Hp(x, p) = 0 for p = 0 and we employ a regularization of the corresponding Jacobian
as in the previous remark. This also allows one to deal with points where the numer-
ical Hamiltonian is not differentiable, as for the Engquist-Osher flux.

• It is interesting to observe that in the overdetermined case, the iterative method
(2.4)-(2.5) coincides with the Gauss-Newton method for the optimization problem
minX

1
2‖F (X)‖22. Indeed, defining F(X) = 1

2‖F (X)‖22, the classical Newton method
for the critical points of F is given by

HF (Xk)(Xk+1 −Xk) = −∇F(Xk) k ≥ 0 .

Computing the gradient ∇F and the Hessian HF of F we have

∇F(X) = JF (X)T F (X) ,

HF (X) = JF (X)T JF (X) +
m∑

i=1

∂2Fi

∂X2
(X)Fi(X) ,

where the second order term is given by(
∂2Fi

∂2X
(X)

)
k,`

=
∂2Fi

∂Xk∂X`
(X) .

Since the minimum of F(X) is zero, we expect that F (Xk) is small for Xk close enough
to a solution X?. Hence we approximate HF (Xk) ' JF (Xk)T JF (Xk), obtaining the
Gauss-Newton method, involving only first order terms:

JF (Xk)T JF (Xk)
(
Xk+1 −Xk

)
= −JF (Xk)T F (Xk) k ≥ 0 .

Applying again QR decomposition to JF (Xk) we finally get the iterative method
(2.4)-(2.5), with δ given by the least-squares solution (2.9). This is the approach we
followed for solving stationary mean field games on networks in [6].

Throughout the next sections we present several cell problems, that can be set
in our framework and solved by the proposed Newton-like method for inconsistent
systems. Each section contains numerical tests in dimension one and/or two, including
some experimental convergence analysis and also showing the performance of the
proposed method, both in terms of accuracy and computational time.

All tests were performed on a Lenovo Ultrabook X1 Carbon, using 1 CPU Intel
Quad-Core i5-4300U 1.90Ghz with 8 Gb Ram, running under the Linux Slackware
14.1 operating system. The algorithm is implemented in C and employs the library
SuiteSparseQR [11], which is designed to efficiently compute in parallel the QR fac-
torization and the least-squares solution to very large and sparse linear systems.
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3. The eikonal Hamiltonian. We start considering the simple case of the
eikonal equation in dimension one, namely the cell problem

1
2
|u′ + p|2 − V (x) = λ in T1 ,

where p ∈ R, λ ∈ R and V is a 1-periodic potential. This is a good benchmark for the
proposed method, since a formula for the effective Hamiltonian is available (see [23]):

H̄(p) =
{
−minV if |p| ≤ pc

λ if |p| > pc s.t. |p| =
∫ 1

0

√
2(V (s) + λ)ds

where pc =
∫ 1

0

√
2(V (s)−minV ))ds. Note that the effective Hamiltonian H̄ has a

plateau in the whole interval [−pc, pc]. With a slight abuse of notation, in what follows
we will refer to this interval as to the plateau.

Following [26], in our first test we choose V (x) = sin(2πx), for which minV = −1
and pc = 4/π. As initial guess we always choose (U,Λ) = (0, 0) and we set to ε = 10−6

the tolerance for the stopping criterion of the algorithm. Figure 1 shows the computed
λ as a function of the number of iterations to reach convergence.

(a) (b)

Fig. 1. Convergence of the method: λ vs number of iterations for p = 2 (a) and p = 0.5 (b).

In particular, Figure 1a corresponds to p = 2, which is outside the plateau of H̄,
whereas Figure 1b corresponds to p = 0.5 ∈ [−pc, pc]. In both cases the torus T1 is
discretized with 100 nodes and the computation occurs in real time. Note that the
convergence is very fast, much more in the first case. We observe that this depends
on the fact that the corresponding corrector (i.e., the viscosity solution u of the cell
problem) is smooth in the first case and only Lipschitz in the second, so that the
algorithm needs some further iteration to compute the kinks, as shown in Figure 2.

(a) (b)

Fig. 2. Viscosity solution of the cell problem for p = 2 (a) and p = 0.5 (b).
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In Figure 3 we plot the error in the approximation of λ under grid refinement, for
both p = 2 and p = 0.5.
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(a) (b)

Fig. 3. Convergence under grid refinement for p = 2 (a) and p = 0.5 (b).

The behavior of the error is quite surprising. For p outside the plateau of H̄ and h
sufficiently small, the error seems to be independent of the grid size, close to machine
precision. On the other hand, for p in the plateau, the error is at worst quadratic
in the space step (this is typical for first order Newton-like methods), but with some
oscillations, corresponding to particular choices of the grid, for which the error is close
to machine precision. This depends on whether or not the kink point of the solution
belongs to the grid.

In the next test we compute the effective Hamiltonian for p in the interval [−2, 2],
discretized with 101 uniformly distributed nodes. The mesh size for the torus T1 is
again 100 nodes. In Figure 4a we show the graph of H̄ and in Figure 4b the corre-
sponding number of iterations to reach convergence as a function of p.

(a) (b)

Fig. 4. Effective Hamiltonian for p ∈ [−2, 2] (a) and the corresponding iterations (b).

We remark again how the number of iterations increases in the plateau [−pc, pc]. The
total computational time for this simulation is just 1.18 seconds.

For the sake of completeness, we perfom a comparison between the proposed
method and the classical small-δ or large-t methods, employing the same solver and
the same discretization. More precisely, applying the damped Newton’s method to
the regularized problems (1.2) and (1.3) (the latter with an implicit discretization in
time with step ∆t), we formally obtain the Newton direction w solving respectively
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the following linearized systems

δw + Hp(x,Du(k) + p) ·Dw = −δu(k) −H(x,Du(k) + p)

and
1

∆t
w + Hp(x,Du(k) + p) ·Dw = − 1

∆t
(u(k) − un)−H(x,Du(k) + p) ,

using the update rule

u(k+1) = u(k) + µw for each k ≥ 0 ,

where 0 < µ ≤ 1 is the damping parameter as in the previous section. In the first case
we obtain the small-δ solution as uδ = lim

k→∞
u(k), whereas the second scheme gives the

solution at step n + 1 as un+1 = lim
k→∞

u(k) and the large-t solution as u = lim
n→∞

un.

It is easy to verify that, if we choose the initial guesses u(0) ≡ 0 and u(0) = un for
each n respectively, with u0 ≡ 0 and δ = 1

∆t , the two methods produce exactly the
same solution. Hence we restrict the comparison to the small-δ method only.

Figure 5 shows the ergodic constant λ for p = 0.5 as a function of the number
of iterations to reach convergence, computed on a grid of 1000 nodes by the direct
method (in red) and by the small-δ method (in blue) for δ = 10−1, 10−2, 10−3.
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1
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Fig. 5. Direct method vs small-δ method for p = 0.5.

The two method are comparable in terms of number of iterations, but we clearly
see that the small-δ method, for a fixed grid, depends on the additional parameter δ,
affecting the accuracy of the solution (see [3] for some error estimates). Moreover, it
is well known that in practice, to achieve a desired level of accuracy, the parameter δ
cannot be too small from the beginning of the Newton iterations, it should be carefully
reduced by hand and no general rule is available for its tuning.

We remark that the discretized Jacobian in the Newton step of our direct method,
excluding the additional column involving the unknown λ, looks very similar to that
of the small-δ method, especially when the regularization parameter τ (see previous
section) is activated to prevent singularities. But no parameter is present in the right
hand side of the linearized system, so that the solution only depends on the grid step.
This is the main novelty of the proposed method.

Now let us consider the same problem in dimension two, namely

1
2
|Du + p|2 − V (x1, x2) = λ in T2 ,
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where p ∈ R2, λ ∈ R and V is again a 1-periodic potential. We first choose

(3.1) V (x1, x2) = cos(2πx1) + cos(2πx2) ,

corresponding to the celebrated problem of two uncoupled penduli. In this case the
effective Hamiltonian is separable, i.e., it is just the sum of the two effective Hamil-
tonians associated to the one dimensional potential V (x) = cos(2πx):

(3.2) H̄(p) = H̄1d(p1) + H̄1d(p2) , p = (p1, p2) .

Nevertheless, we perform a full 2D computation of H̄(p) for p ∈ [−4, 4]2 discretized
with 51 × 51 uniformly distributed nodes. The mesh size for the torus T2 is 25 × 25
nodes. Figure 6 shows the effective Hamiltonian surface and its level sets. We removed

(a) (b)

Fig. 6. Effective Hamiltonian for p ∈ [−4, 4]2: (a) surface and (b) level sets.

the color filling the level set 2 to better appreciate the plateau {p ∈ R2 : H̄(p) = 2}.
For a single point p, the average number of iterations is about 16 and the average
computational time is 0.4 seconds, whereas the total time is 970.45 seconds.

We now perform, as before, a convergence analysis of the algorithm under grid
refinement at fixed p. We choose the three points pA = (0, 0), pB = (2, 0) and
pC = (2, 2). In the first case both components pA

1 and pA
2 of pA are in the plateau of

the corresponding one dimensional effective Hamiltonian. In the second case we have
the first component pB

1 outside and the second component pB
2 inside the plateau. In

the third case both components of pC are outside. The error is obtained using as
correct value for H̄, the formula (3.2) computed by the 1D code for h = 0.0002.
Figure 7 shows results similar to the one dimensional case. Indeed, we observe again
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(a) (b) (c)

Fig. 7. Convergence under grid refinement for p = (0, 0) (a), p = (2, 0) (b), p = (2, 2) (c).

an experimental convergence at least of order 2, and even higher outside the plateau.
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In Figure 8 we show the correctors corresponding to pA, pB and pC . It is interest-
ing to note that the smoothness of the viscosity solution in the directions x1 and x2

precisely depends on what component of p belongs or not to the plateau of H̄. These
results are qualitatively in agreement with those obtained in [27].

(a) (b) (c)

Fig. 8. Viscosity solution of the cell problem for p = (0, 0) (a), p = (2, 0) (b), p = (2, 2) (c).

We proceed with the second example by choosing

(3.3) V (x1, x2) = sin(2πx1) sin(2πx2) .

In this case formula (3.2) no longer holds. Figure 9 shows the effective Hamiltonian
surface and its level sets. The computed value inside the plateau is H̄(p) = 1.

(a) (b)

Fig. 9. Effective Hamiltonian for p ∈ [−4, 4]2: (a) surface and (b) level sets.

In Figure 10 we show a couple of correctors for different values of p.

(a) (b)

Fig. 10. Viscosity solution of the cell problem for p = (0, 0) (a), p = (2, 1.5) (b).

For a single point p, the average number of iterations is about 7 and the average
computational time is about 0.2 seconds, whereas the total time is 480.75 seconds.
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We finally consider the case

(3.4) V (x1, x2) = cos(2πx1) + cos(2πx2) + cos (2π(x1 − x2)) .

Figure 11 shows the effective Hamiltonian surface and its level sets. The computed

(a) (b)

Fig. 11. Effective Hamiltonian for p ∈ [−4, 4]2: (a) surface and (b) level sets.

value inside the plateau H̄(p) = 1.488983. For a single point p, the average number
of iterations is about 10 and the average computational time is about 0.24 seconds,
whereas the total time is 630.77 seconds. In Figure 12 we show a couple of correctors
for different values of p.

(a) (b)

Fig. 12. Viscosity solution of the cell problem for p = (0, 0) (a), p = (2, 2) (b).

We conclude this section summarizing the results in Table 1, where we report the
average time and the average number of iterations for a single point p, and the total
computational time for the whole simulation.

V (x1, x2) Av. CPU (secs) per p Av. Iterations per p Total CPU (secs)
(3.1) 0.4 16 970.45
(3.3) 0.2 7 480.75
(3.4) 0.24 10 630.77

Table 1
Performance for the 2D eikonal case.

We observe that the perfomance of the method mainly depends on the extension
of the plateau, since it requires more iterations (and CPU time) to compute the
corresponding corrector.
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4. First order convex Hamiltonians. We consider for q ≥ 1 the cell problem
on Tn (for n = 1, 2)

1
q
|Du + p|q − V (x) = λ ,

where, as discussed in Section 2, the singularity at the origin of the derivative of | · |q
for 1 ≤ q < 2 is handled by choosing, in a nonsmooth-Newton fashion, an element of
the sub-differential. Here, we simply choose 0 if Du + p = 0 at some point.

In the one dimensional case, we consider again the potential V (x) = sin(2πx)
and we compute the effective Hamiltonian for different values of q. For each q the
computation takes about 2.5 seconds and is performed choosing p ∈ [−4, 4] discretized
with 201 nodes. Figure 13a shows the graphs of H̄ and Figure 13b some correspond-
ing correctors. All the effective Hamiltonians are equal to 1 in their plateau, but

0
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0 0.2 0.4 0.6 0.8 1

(a) (b) (c)

Fig. 13. Effective Hamiltonians for p ∈ [−4, 4] and different q (a) and corresponding correctors
for p = 0 (b). Extension of the plateau of H̄: pc vs q (c).

we translated each graph of a fixed value in order to avoid overlapping and better
appreciate the plateau itself. We observe an interesting feature: the extension of the
plateau of H̄, or equivalently (in this case) the value pc = inf{p ≥ 0 : H̄(p) > 1},
is not monotone with respect to q. This is confirmed by the graph in Figure 13c,
showing pc as a function of q. Each value pc is obtained by a simple bisection in p
applied to H̄(p)− 1 for q ranging in [1, 50]. The maximum is achieved at q∗ = 2.865
with pc(q∗) = 1.29876458.

We now consider a two dimensional case, choosing different values of q and the
same 2D potentials of the previous section. More precisely, we take

(a) q = 1 and V (x1, x2) = cos(2πx1) + cos(2πx2) ,

(b) q = 3 and V (x1, x2) = sin(2πx1) sin(2πx2) ,

(c) q = 5 and V (x1, x2) = cos(2πx1) + cos(2πx2) + cos (2π(x1 − x2)) .

We choose as before p ∈ [−4, 4]2 discretized with 51×51 uniformly distributed nodes,
while the mesh size for the torus T2 is 25× 25 nodes. In Figure 14 we show the level
sets of the effective Hamiltonians. Note the differences with respect to the analogous
tests in the case q = 2, already shown in Figure 6, Figure 9 and Figure 11 respectively.

Finally, in Table 2 we report the results for the three tests, including again, for a
single point p, the average time and the average number of iterations, and the total
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computational time for the whole simulation. Note that the most expensive case
corresponds to q = 1, in which the non-smoothness of the problem plays a crucial
role.

(a) (b) (c)

Fig. 14. Level sets of the effective Hamiltonians for problems (a), (b), (c).

Problem Av. CPU (secs) per p Av. Iterations per p Total CPU (secs)
(a) 0.6 28 1633.12
(b) 0.2 9 522.37
(c) 0.4 18 1042.18

Table 2
Performance for the 2D q-power Hamiltonian case.

5. First order nonconvex Hamiltonians. We consider the case of a noncon-
vex Hamiltonian in dimension one, namely the cell problem on T1

1
2
(|u′ + p|2 − 1)2 − V (x) = λ .

In this setting, as for the one dimensional eikonal equation, a formula for the effective
Hamiltonian is still available (see [26] for details):

H̄(p) =


−minV if |p| ≤ pc

λ if |p| > pc s.t. |p| =
∫ 1

0

√
1 +

√
2(V (s) + λ)ds

where the plateau is given by pc =
∫ 1

0

√
1 +

√
2(V (s)−minV ))ds.

The crucial point of the nonconvex case is that viscosity solutions are allowed to
have kinks pointing both upward and downward, but it is known that the standard
Engquist-Osher numerical Hamiltonian is not able to select them correctly as in the
convex case. Nevertheless, we run the algorithm and we show in Figure 15a the
effective Hamiltonian computed in this situation for the potential V (x) = sin(2πx).
Our method still works, i.e., it converges to a solution (U,Λ) with zero residual, but
the result is completely wrong in the plateau (pc ∼ 1.4918), where solutions with
kinks are expected. On the other hand, outside the plateau, the viscosity solution
is smooth and the result is correct. To proceed, we employ the well known global
Lax-Friedrichs numerical Hamiltonian [22], which in dimension one reads as

H(Du + p)(x) ∼ H

„
U(x + h) + U(x− h)

2h
+ p

«
− σx

„
U(x + h) + U(x− h)− 2U(x)

2h

«
,
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where the artificial viscosity σx satisfies an appropriate stability condition. This scheme is
very easy to implement and can handle general Hamiltonians. The only drawback is a loss
of accuracy introduced by the global artificial viscosity term.

Figure 15b shows the computed effective Hamiltonian, which is qualitatively in agree-
ment with that computed in [26]. The effect of the artificial viscosity is evident in the plateau
of H̄ where a small bump appears.

(a) (b)

Fig. 15. Effective Hamiltonian for p ∈ [−2 : 2]: Engquist-Osher (a) and global Lax-Friedrichs (b).

Both simulations above were performed for p in the interval [−2, 2] discretized with 101 uni-
formly distributed nodes, while the mesh size for the torus T1 is again 100 nodes. The first
simulation took 3.15 seconds with an average number of iterations equal to 38, whereas the
second simulation took 8.97 seconds with an average number of iterations equal to 126.

6. Second order Hamiltonians. We consider the following cell problem for the
homogenization of fully nonlinear second order Hamilton-Jacobi equations:

(6.1) H(x, p, D2u + s) = λ, x ∈ Tn,

for p ∈ Rn, λ ∈ R and s ∈ Sn, where Sn is the space of symmetric n×n matrices. Assuming
that H is continuous and uniformly elliptic, then there exists a unique λ = H̄(p, s) and a
unique (up to a constant) u such that the cell problem admits a viscosity solution (see [18]
for details). A finite difference approximation of cell problem (6.1) is discussed in [8], where
a convergence result for the approximation of the effective Hamiltonian H̄(p, s) is given.

Here we consider for simplicity the case of a fully nonlinear second order Hamiltonian
in dimension one, namely the cell problem on T1

−α|u′′ + s|(u′′ + s) +
1

2
|p|2 − V (x) = λ ,

where p, s ∈ R and α > 0. We choose (p, s) ∈ [−4, 4]2, discretized with 51 × 51 uniformly
distributed nodes, while the mesh size for the torus T1 is 100 nodes. In Figure 16 we show

(a) (b) (c)

Fig. 16. Effective Hamiltonian surface for (p, s) ∈ [−2, 2]2: α = 1 (a), α = 1
2

(b), α = 1
10

(c).

the surfaces of the computed effective Hamiltonians for different values of α, while in Figure
17 we show the corresponding level sets and in Figure 18 the correctors for (p, s) = (0, 0).
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(a) (b) (c)

Fig. 17. Effective Hamiltonian level sets for (p, s) ∈ [−2, 2]2: α = 1 (a), α = 1
2

(b), α = 1
10

(c).

(a) (b) (c)

Fig. 18. Solutions of the cell problem for (p, s) = (0, 0): α = 1 (a), α = 1
2

(b), α = 1
10

.

Finally, in Table 3 we report the performance of the method depending on α.

α Av. CPU (secs) per (p, s) Av. Iterations per (p, s) Total CPU (secs)
1 0.009 7 25.29

0.5 0.009 8 25.26
0.1 0.011 10 30.78

Table 3
Performance for the 1D second order case.

7. Weakly coupled first order systems. In homogenization and long-time be-
havior of weakly coupled systems of Hamilton-Jacobi equations, the cell problem is given
by

(7.1) Hi(x, Dui + p) + C(x)u = λ, x ∈ Tn, i = 1 . . . , M

where uT = (u1, . . . , uM ) is a vector function, p ∈ Rn, λ ∈ R, the Hamiltonians Hi are
continuous and coercive and the M ×M coupling matrix C(x) = {cij(x)}i,j is continuous,
irreducible and satisfies

cij(x) ≤ 0 for j 6= i,

MX
j=1

cij(x) = 0, i = 1, . . . , M.

For a complete study of (7.1) we refer to [10]. It is possible to prove that also in this case
there exists a unique λ such that (7.1) admits a viscosity solution u, which is in general not
unique.
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For simplicity, we consider here the case of only two weakly coupled eikonal equations,
namely the following cell problem on Tn (n = 1, 2)8<:

1
2
|Du1 + p|2 − V1(x) + c1(x)(u1 − u2) = λ

1
2
|Du2 + p|2 − V2(x) + c2(x)(u2 − u1) = λ

for two 1-periodic potentials V1, V2 and two nonnegative 1-periodic functions c1, c2.
In dimension n = 1 we compute the effective Hamiltonian choosing p ∈ [−2, 2], dis-

cretized with 101 nodes, while the mesh size for the torus T1 is 100 nodes. Moreover, we
choose

V1(x) = sin(2πx) , V2(x) = cos(2πx) , c1(x) = 1− cos(4πx) , c2(x) = 1 + sin(4πx) .

The total computational time is 3.19 and the average number of iterations is 17. Note that
the dimension of the system (200× 201) is doubled with respect to the tests in the previous
sections, since here the unknowns are u1 and u2 (plus λ). In Figure 19a we show the graph
of H̄ and in Figure 19b the corresponding number of iterations to reach convergence as a
function of p.

(a) (b)

Fig. 19. Effective Hamiltonian for p ∈ [−2, 2] (a) and the corresponding iterations (b).

We readily observe some interesting features. First, the effective Hamiltonian is no longer
symmetric with respect to p (at least for small values of p) and the computed plateau is
{H̄(p) = 0.8417} = [−0.925, 0.788]. This asymmetry is also evident looking at the graph of
the number of iterations. On the other hand, we see that the number of iterations starts
increasing consistently when p enters the interval [−1.29, 1.36]. As already remarked, this
typically indicates that the corresponding corrector of the cell problem starts developing
kinks. Here it is quite surprising that this interval contains the plateau, differently from the
scalar case where the two intervals coincide. Hence we expect to find nonsmooth solutions
also outside the plateau. This is confirmed by Figure 20, where we show pairs (u1, u2) of
correctors for different values of p. These features deserve some theoretical investigation.

(a) (b) (c) (d) (e)

Fig. 20. Viscosity solution for p = −2 (a), p = −1 (b), p = 0 (c), p = 1 (d), p = 2 (e).

Now we consider the same problem in dimension n = 2. We compute the effective
Hamiltonian choosing p ∈ [−4, 4]2, discretized with 51 × 51 nodes, while the mesh size for
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the torus T2 is 25× 25 nodes. Moreover, we choose

V1(x1, x2) = sin(2πx1) sin(2πx2) , V2(x1, x2) = cos(2πx1) cos(2πx2) ,

c1(x1, x2) = 1− cos(4πx1) cos(4πx2) , c2(x1, x2) = 1 + sin(4πx1) sin(4πx2) .

For a single point p, the average number of iterations is 12 and the average computational
time is 1.39 seconds, while the total computational time is 3640.38. Note that this CPU time
is still reasonable, considering that the dimension of the system if four times the one in the
scalar cases.

Figure 21 shows the effective Hamiltonian surface and its level sets. The computed value
inside the plateau is H̄(p) = 1.

(a) (b)

Fig. 21. Effective Hamiltonian for p ∈ [−4, 4]2: (a) surface and (b) level sets.

Finally, in Figure 22 we show two pairs of correctors for p = (0, 0) and p = (2, 2), respectively
inside and outside the plateau.

(a) (b) (c) (d)

Fig. 22. Solutions of the cell problem for p = (0, 0) (a)-(b) and p = (2, 2) (c)-(d).

8. Dislocation dynamics. Dislocations are line defects in the lattice structure of
crystals, responsible for the plastic properties of the materials. Several approaches have been
proposed to study the effects of the interactions among these defects, including variational
and PDE models.

In [14], a study on the homogenization of an ensemble of dislocations is presented, in
order to describe the effective macroscopic behavior of a system undergoing plastic deforma-
tions. This leads to consider a suitable cell problem for a nonlocal Hamilton-Jacobi equation,
that we present here for simplicity in dimension one:
find λ ∈ R such that

(8.1) (c0(x) + L + Mp[u]) |Du + p| = λ, x ∈ T1

admits a bounded and 1-periodic viscosity solution u. The function c0 is a 1-periodic po-
tential representing an obstacle to the motion of dislocations, L ∈ R is a drift representing
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a constant external stress and Mp[u] is a nonlocal operator representing the interaction
between dislocations, given by

Mp[u](x) =

Z
R
J (z) {E (u(x + z)− u(x) + pz)− pz} dz ,

where J : R → R+ is a nonnegative kernel satisfying

J (−z) = J (z) ∀z ∈ R , J (z) ∼ 1

z2
for |z| � 1

and E : R → R is an odd modification of the integer part, such that

E(α) =


k if α = k ∈ Z ,
k + 1/2 if k < α < k + 1 , k ∈ Z .

In this setting the number p ∈ R represents the macroscopic density of dislocations. More-
over, the dislocation lines are assumed to lie on a single plane, of which we only look at a
cross section, so that they are described as particle points corresponding to the integer level
sets of u(x) + px.
The existence and uniqueness of λ and the existence of a solution u to the above cell problem
is proved in [14], using a suitable notion of viscosity solution for discontinuous HJ equations.
Moreover, some numerical approximations of (8.1) have been proposed in [16] and in [7],
both using the large-t method.

Here we present the solution to this cell problem within our framework. Following [7],
we assume that only rational dislocation densities are allowed, namely p = P/Q, with P ∈ Z,
Q ∈ N \ {0}. Moreover, we fix N ∈ N and choose the space step h = 1/N . This allows to
discretize the nonlocal term in (8.1) as

Mp[u](xi) = h

Q−1X
m=0

N−1X
j=0

“
JQ

m,jE(ui+j − ui + p(xj + m))− pζQ
m,j

”
,

for i = 0, ..., N − 1, with

JQ
m,j = JQ(xj + m) , ζQ

m,j = (xj + m)JQ(xj + m) , JQ(t) =

N0X
k=−N0

J (t + kQ) ,

where JQ is a finite sum approximation (up to a given integer N0 ∈ N) of a Q-periodic version
of the kernel J . Note that, for m = 0, ..., Q − 1 and j = 0, ..., N − 1, the 2NQ terms JQ

m,j

and ζQ
m,j can be pre-computed. Moreover, the integer part E is approximated by a piecewise

linear approximation Eτ , such that each integer jump is replaced, in a τ -neighborhood, by
a ramp with slope 1/τ . In this way the derivative E′, needed for the Newton linearization,
is replaced by E′

τ , which is in turn a τ -dependent piecewise constant approximation of the
Dirac measure δZ.

We recall that the singularity in the derivative of the term |Du + p| in (8.1) is handled
by replacing it with zero at the points where it vanishes, as for the q-power Hamiltonians in
Section 4.

Finally, we have to update the approximation of the gradient terms according to the
sign of the nonlocal velocity c[u] := (c0(x) + L + Mp[u]) in (8.1), in order to correctly select
the viscosity solutions. To be precise, if the Engquist-Osher approximation is employed, we
set

|Du|(xi) ∼

8>>>>>><>>>>>>:

s
min2


Ui+1 − Ui

h
, 0

ff
+ max2


Ui − Ui−1

h
, 0

ff
if c[U ](xi) ≥ 0 ,

s
max2


Ui+1 − Ui

h
, 0

ff
+ min2


Ui − Ui−1

h
, 0

ff
if c[U ](xi) < 0 .
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We discretize the torus T1 with 100 nodes, so that the space step is h = 0.01. Choosing
Q = 10, the allowed densities are given by p = P/Q = 0.1P for P ∈ Z. We take (p, L) ∈
[−4, 4]2 discretized with 81× 81 nodes and we choose c0(x) = 2 sin(2πx).

We perform a preliminary test in which the dislocations do not interact, namely we
completely remove the nonlocal term Mp[u] in (8.1) by setting J ≡ 0. In this situation,
independently of p, dislocation particles are not able to get out the wells of the potential
c0, unless the drift L is strong enough. In the present example the critical stress is just the
amplitude of the potential (L = 2) and we expect no effective motion, i.e., H̄(p, L) = 0 for
every (p, L) in the strip R × [−2, 2]. Moreover, for p = 0 we expect H̄(0, L) = 0 for all L
(i.e., no particles no motion!). This is confirmed by Figure 23, in which we show the surface
and the level sets of the computed effective Hamiltonian.

(a) (b)

Fig. 23. Effective Hamiltonian for (p, L) ∈ [−4, 4]2: (a) surface and (b) level sets.

We proceed with an intermediate test, studied in [16] as a regularization of equation
(8.1), corresponding in our setting to the choice E(α) = α (no jumps) with a kernel J satis-
fying

R
R J (z)dz = 1 and such that its Q-periodic version is just JQ(t) ≡ 1/Q. Accordingly,

the nonlocal operator Mp[u] reduces to a convolution of u with J − δ0. In this situation,
we expect the nonlocal interactions to produce an additional energy that can be sufficient
to move the particles, i.e., H̄ > 0 despite the external stress is less than critical (L < 2).
Moreover, this effect should be amplified as the particle density p increases (more particles
more interactions). This is what is observed in Figure 24, in which we show the surface and
the level sets of the computed effective Hamiltonian. Note that the boundary of the plateau

(a) (b)

Fig. 24. Effective Hamiltonian for (p, L) ∈ [−4, 4]2: (a) surface and (b) level sets.

of H̄ is not smooth and this reflects the fact that just adding a single particle in the wells of
the potential can severely affect the collective motion. Our result is in qualitative agreement
with that found in [16].
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Finally, let us consider the general case, studied in [7]. We choose the kernel J (z) =
min

˘
CJ , 1

z2

¯
, for a positive constant CJ such that

R
R J (z)dz = 1. Moreover, we choose

N0 = 100 for the approximation of the Q-periodic kernel JQ and τ = 5h for the approxima-
tion of the integer part E and its derivative. In Figure 25 we show the surface and the level
sets of the computed effective Hamiltonian.

(a) (b)

Fig. 25. Effective Hamiltonian for (p, L) ∈ [−4, 4]2: (a) surface and (b) level sets.

The expected behavior is similar to the one described in the previous test, but here the result
is quite surprising as in the analogous simulation obtained in [7]. We clearly see that level
sets close to zero are no longer monotone, some spikes appear at the integer densities p ∈ Z,
while smaller spikes appear at the half-integer densities p ∈ 1

2
Z. This could sound weird

from a physical point of view, since it is against the intuition that more particles reduce
the critical stress needed to activate motion. On the contrary this phenomenon reproduces
what is known in the literature as strain hardening, namely the fact that a too high den-
sity of dislocations translates in a mutual obstruction to the motion, and hence in a less
effective cooperation. Nevertheless, it is still unclear to us why this hardening occurs at so
specific ratios between P and Q. It may be related to the shape of the potential c0 and
it is still under investigation. Moreover, the feeling is that the same behavior can occur at
smaller scales with a kind of self-similar structure, depending on the choice of Q. This is
somehow supported by the simulation in Figure 26, where we show the effective Hamiltonian
for (p, L) ∈ [0, 4] × [0.6, 2], computed using a grid of size 401 × 28, with N0 = 1000 for
the Q-periodic kernel approximation and Q = 100, so that the allowed densities are given
by p = P/Q = 0.01P for P ∈ Z. We see that yet smaller spikes appear at intermediate
frequencies between Z and 1

2
Z.

Fig. 26. Effective Hamiltonian for (p, L) ∈ [0, 4]× [0.6, 2] in the case Q = 100.
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We conclude summarizing in Table 4 the performance of the proposed method for the three
main tests above, respectively identified by letters (A), (B) and (C).

Test Av. CPU (secs) per (p, L) Av. Iterations per (p, L) Total CPU (secs)
(A) 0.017 5 115.71
(B) 0.032 7 215.74
(C) 0.115 16 759.31

Table 4
Performance for the dislocation dynamics case.

Note the different performance between the local case (A) and the nonlocal cases, due to the
fact that the Jacobian matrix in the Newton linarization of the system is no longer sparse for
(B) and (C). An additional and substantial computational cost appears in (C), due to the
computation of the nonlocal terms, depending on the interaction kernel and the magnitude
of Q. Indeed, also the case Q = 100 described above and not reported in the table is a very
intensive task, it took 10612 seconds (about 3 hours) with an average CPU time per point
(p, L) of 1.02 seconds, about ten times the case Q = 10.

9. Stationary mean field games. We consider the following class of stationary
Mean Field Games:

(9.1)

8><>:
−ν∆u + H(x, Du) + λ = V [m] x ∈ Tn

ν∆m + div(m Hp(x, Du)) = 0 x ∈ TnR
Tn u(x)dx = 0,

R
Tn m(x)dx = 1, m ≥ 0 .

If ν > 0, H is smooth and convex, then there exists a unique triple (u, m, λ) which is a
classical solution of (9.1) (see [21]). A finite difference scheme for (9.1) is presented in
[2], where it is proved the well-posedness of the corresponding discrete system and some
convergence result. The discrete solution (U, M, Λ) is computed by a large-t approximation
for both equations in (9.1).

Here we present a direct resolution within our framework, in the simple case of the
eikonal Hamiltonian in dimension two, with a cost function f and a local potential V , namely8><>:

−ν∆u + |Du|2 + f(x) + λ = V (m) x ∈ T2

ν∆m + 2div(m Du) = 0 x ∈ T2R
T2 u(x)dx = 0,

R
T2 m(x)dx = 1, m ≥ 0 .

Differently from the previous sections, this problem is overdetermined. Indeed, introducing
on the torus T2 a uniform grid with N×N nodes, we end up with 2N2+2 nonlinear equations,
corresponding to the discretization of the two PDEs and the normalization conditions, given
by

h2
N−1X
i=0

Ui = 0 , h2
N−1X
i=0

Mi − 1 = 0 ,

where h = 1
N

is the space step. On the other hand, the number of unknowns is 2N2 + 1,
corresponding to the degrees of freedom of U and M plus the additional unknown Λ. Note
that we do not include the constraint M ≥ 0 in the discretization. Our experiments show
that the normalization condition for M seems enough to force numerically its nonnegativity.
This point is still under investigation.

For the sake of comparison, we present some of the tests reported in [2]. We choose
U ≡ 0, M ≡ 1 and Λ = 0 as initial guess and we set to ε = 10−6 the tolerance for the
stopping criterion of the algorithm. We first consider the case V (m(x)) = m2(x), f(x) =
sin(2πx1) + cos(4πx1) + sin(2πx2) and ν = 1. We choose N = 50 so that the size of the
system is 5002× 5001.



24

In Figure 27a we show the computed Λ as a function of the number of iterations to reach
convergence. The convergence is fast, just 5 iterations in 8.06 seconds.

(a) (b) (c)

Fig. 27. Λ vs number of iterations (a), level set of the solutions U (b) and M (c).

We get Λ = 0.9784, which is exactly the same value reported in [2], and the computed pair
of solutions (U, M), shown in Figure 27b and Figure 27c, is in qualitative agreement.

We proceed with a case which is close to the deterministic limit, namely we repeat the
previous test with ν = 0.01. We reach convergence in 21 iterations and 10.72 seconds. In
Figure 28a we show the computed Λ as a function of the number of iterations, observing
that the convergence is no longer monotone.

(a) (b) (c)

Fig. 28. Λ vs number of iterations (a), level set of the solutions U (b) and M (c).

We get Λ = 1.1878 which is again the same value reported in [2], as for the computed
solutions (U, M), shown in Figure 28b and Figure 28c.

We conclude with the case of a nonincreasing potential V (m(x)) = − log(m(x)) and we
choose ν = 0.1. The convergence is much slower than in the previous tests, as shown in
Figure 29a. In [2] it is not reported the computed value of Λ, whereas we get Λ = −2.4358
in 77 iterations and 42.33 seconds. On the other hand, the computed solutions (U, M) are
in qualitative agreement and they are shown in Figure 29b and Figure 29c.

(a) (b) (c)

Fig. 29. λ vs number of iterations (a), level set of the solutions u (b) and m (c).
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Finally, we summarize the results for reference in Table 5.

V (m) ν Λ Iterations Total CPU (secs)
m2 1 0.9784 5 8.06
m2 0.01 1.1878 21 10.72

−log(m) 0.1 -2.4358 77 42.33
Table 5

Performance for the 2D MFG.

10. Multi-population stationary mean field games. This is a generalization
of (9.1) to the case of P populations, each one described by a MFG-system, coupled via a
potential term (see [21]). We consider the setting recently studied in [9] for problems with
Neumann boundary conditions.

Here we present the simple case in dimension one and two of an eikonal Hamiltonian
with a linear local potential, namely the problem8>>>><>>>>:

−ν∆ui + |Dui|2 + λi = Vi(m) in Ω , i = 1, ..., P

ν∆mi + 2div(mi Dui) = 0 in Ω , i = 1, ..., P

∂nui = 0 , ∂nmi = 0 on ∂Ω , i = 1, ..., PR
Ω

ui(x)dx = 0 ,
R
Ω

mi(x)dx = 1 , mi ≥ 0 i = 1, ..., P ,

where Ω = [0, 1] or Ω = [0, 1]2, the corrector u(x) = (u1(x), ..., uP (x)) and the mass density
m(x) = (m1(x), ..., mP (x)) are vector functions and λ = (λ1, ..., λP ) ∈ RP is a P -tuple of
ergodic constants. Moreover, for i = 1, ..., P , the linear local potential Vi takes the form

Vi(m(x)) =

PX
j=1

θijmj(x) ,

for some given weights θij ∈ R, or in matrix notation

(10.1) V = (V1, ..., VP ) , Θ = (θij)i,j=1,...,P , V (m) = Θm .

Existence and uniqueness of a solution (u, m, λ) can be proved under some monotonicity
assumptions on V (see [9] for details).

Within our framework of inconsistent systems, the problem is again overdetermined.
Indeed, discretizing Ω with a uniform grid of Nn nodes (n = 1, 2), we end up with P (2Nn+2)
equations in the P (2Nn + 1) unknowns (U, M, Λ). Again, we do not include the constraint
M ≥ 0 in the discretization, as before the normalization condition for M seems enough to
force numerically its nonnegativity.

In the special case (10.1) uniqueness is guaranteed assuming that Θ is positive semi-
definite and the solution is explicitly given, for i = 1, ..., P , by ui ≡ 0, mi ≡ 1 and λi =PP

j=1 θij . By dropping this condition, the trivial solution is still found, but we expect to
observe other more interesting solutions.

We start with some experiments in dimension n = 1, in the case of P = 2 populations.
We choose the coupling matrix (not positive semi-definite)

Θ =

„
0 1
1 0

«
so that the potential for each population only depends on the other population. Moreover,
we discretize the interval Ω = [0, 1] with N = 100 uniformly distributed nodes, we set to
ν = 0.05 the diffusion coefficient and to ε = 10−6 the tolerance for the stopping criterion of
the algorithm. To avoid the trivial solution, we choose non constant initial guesses, such as
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piecewise constant pairs with zero mean for U and piecewise constant pairs with mass one
for M .

We did not find a general criterion to select some specific solution, but we experienced
that the algorithm is very sensitive to the grid size. Figure 30 shows four computed solutions.
In the top panels we show the densities M = (M1, M2), while in the bottom panels the
corresponding correctors U = (U1, U2). Moreover, in Table 6 we report the performance of
the method for each case, including the computed value of the ergodic pair Λ = (Λ1, Λ2).

(a) (b) (c) (d)

Fig. 30. Two-population MFG solutions (ν = 0.05): mass densities M = (M1, M2) (top panels)
and corresponding correctors U = (U1, U2) (bottom panels).

Test Λ = (Λ1,Λ2) Iterations Total CPU (secs)
(a) (0.03921, 0.03921) 19 0.14
(b) (0.14362, 0.14048) 48 0.33
(c) (0.29498, 0.29498) 28 0.19
(d) (0.49574, 0.48481) 31 0.21

Table 6
Performance for the 1D two-population MFG.

Segregation of the two populations is expected (see [9]) and clearly visible. This phe-
nomenon can be enhanced by reducing the diffusion coefficient, as shown in Figure 31, where
ν = 10−4, close to the deterministic limit.
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Fig. 31. Two-population MFG solutions (ν = 10−4): mass densities M = (M1, M2) (top
panels) and corresponding correctors U = (U1, U2) (bottom panels).
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We finally consider the more complex and suggestive two dimensional case. We discretize
the square Ω = [0, 1]2 with 25× 25 uniformly distributed nodes and we push the diffusion ν
up to 10−6, in order to observe segregation among the populations. Moreover, we choose the
interaction matrix as before, with all the entries equal to 1 except for the diagonal, which is
set to 0.

Here it is worth noting that we have almost no control on the outcome of the com-
putation. Despite we tried to initialize the mass densities and the correctors by means of
Gaussian distributions supported in small balls at given points, the result is unpredictable.
Figure 32 shows a rich collection of solutions, corresponding to P = 2 (top panels), P = 3
(middle panels) and P = 4 (bottom panels) populations. We clearly see how the populations
compete to share out all the domain.
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Fig. 32. Multi-population MFG mass densities.

Conclusions. We presented a new approach for the numerical solution of cell problems
involving Hamilton-Jacobi equations. The proposed Newton-like method for inconsistent
nonlinear systems is able to solve first and second order nonlinear cell problems arising in
very different contexts, e.g., for scalar convex and nonconvex Hamiltonians, weakly coupled
systems, dislocation dynamics and mean field games, also in the case of more competing
populations. A very large collection of numerical simulations shows the performance of the
algorithm, including some experimental convergence analysis and a comparison with classical
methods. We reported both numerical results and computational times, in order to allow
future reference.
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