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ON ANOMALOUS LOCALIZED RESONANCE FOR THE

ELASTOSTATIC SYSTEM

HONGJIE LI AND HONGYU LIU

Abstract. We consider the anomalous localized resonance due to a plasmonic
structure for the elastostatic system in R2. The plasmonic structure takes a
general core-shell-matrix form with the metamaterial located in the shell. If
there is no core, we show that resonance occurs for a very broad class of sources.
If the core is nonempty and of an arbitrary shape, we show that there exists
a critical radius such that anomalous localized resonance (ALR) occurs. Our
argument is based on a variational technique by making use of the primal and
dual variational principles for the elastostatic system, along with the construction
of suitable test functions.
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1. Introduction

Recently, there is growing interest in studying the resonance phenomena for
materials with negative parameters and their connection to invisibility cloaking.
The mathematical principle lies in that the ellipticity of the governing PDE system
is lost in the limiting case as the loss parameter approaching zero, and hence
resonance occurs for a suitable forcing term at or near the resonant frequency.
Moreover, the resonance strongly depends on the location of the source. Hence, the
term “anomalous localized resonance” is used in the literature, and those negative
materials are referred to as “plasmonic materials”.

The anomalous localized resonance (ALR) has been extensively investigated for
optical parameter distributions; respectively, modelled by the Laplace equation [1–
3,7,10–12,15,18–26], the Helmholtz equation [4,5,9,13], and the Maxwell system [6].
In the literature, there are two approaches that have been proposed in analyzing the
resonance behaviors: one is based on the analysis of the spectral properties of the
Neumann-Poincaré operator via the layer potential theory [2] and the other one is
based on variational arguments via the use of primal and dual variational principles
for the corresponding PDE systems [15]. The spectral approach initiated in [2] by
Ammari et al. for the Laplace equation can yield a very accurate characterization
of the anomalous localized resonance as well as its connection to the invisibility
cloaking effects. The spectral approach has been extensively used in characterizing
the anomalous localized resonances (ALR) and the cloaking by ALR (CALR) for
the Laplace equation and the Helmholtz system [1,3,7,9,12]. However, the spectral
approach requires accurate spectral information of the Neumann-Poincaré operator
and is mainly restricted to spherical and elliptical geometries. The variational
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approach initiated in [15] by Kohn et al. for the Laplace equation can deal with
general geometries, but can only be used to show the ALR results. The variational
approach was followed in [18] to show the ALR results for the Laplace equation in
three dimensions.

In a very recent work by Ando et al. [8], the spectral theory of Neumann-Poincaré
operator was extended from the Laplace equation to the Lamé system governing the
elastostatics. Using the spectral approach, the authors also established the ALR
and CARL results in the spherical and elliptic geometries for the elastostatic sys-
tem. In this paper, we aim to establish the ALR results for the elastostatic system
via the variational approach. In what follows, we first present the mathematical
formulation of our study.

Let C(x) := (Cijkl(x))
N
i,j,k,l=1, x ∈ RN with N = 2, 3, be a four-rank tensor such

that

Cijkl(x) := λ(x)δijδkl + µ(x)(δikδjl + δilδjk), x ∈ R
N , (1.1)

where λ, µ ∈ C are complex-valued functions, and δ is the Kronecker delta. C(x)
describes an isotropic elasticity tensor distributed in the space, where λ and µ are
called the Lamé constants. For a regular elastic material, it is required that the
Lamé constants satisfy the strong convexity condition,

µ > 0 and Nλ + 2µ > 0. (1.2)

The existence of exotic elastic materials with negative stiffness was shown in [14]
and [17], which we shall generally refer to as the plasmonic materials in the current
article. We shall write Cλ,µ to specify the dependence of the elastic tensor on the
Lamé parameters λ and µ. Let Σ and Ω be bounded domains in RN with connected
Lipschitz boundaries such that Σ ⋐ Ω. Consider an elastic parameter distribution
Cλ̃,µ̃ given with

(
λ̃(x), µ̃(x)

)
=
(
A(x) + iδ

)
(λ, µ), x ∈ R

N , (1.3)

where δ ∈ R+ denotes a loss parameter; (λ, µ) are two constants satisfying the
strong convexity condition (1.2); and A(x) has a matrix-shell-core character in the
sense that

A(x) =





+1, x ∈ Σ,

c, x ∈ Ω\Σ,

+1, x ∈ R
N\Ω,

(1.4)

where c is constant that will be specified later. In principle, c will be negative-
valued so that (1.3) yields a plasmonic structure. Let uδ(x) ∈ CN , x ∈ RN ,
denote the displacement field in the space that is occupied by the elastic material
distribution Cλ̃,µ̃ as described above. In the quasi-static regime, uδ(x) verifies the
following Lamé system

{
Lλ̃,µ̃uδ(x) = f(x), x ∈ RN ,

uδ(x) = O
(
‖x‖−1

)
as ‖x‖ → +∞,

(1.5)
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where f is an RN -valued function that is compactly supported outside Ω, signifying
a force term. It is required that∫

RN

f(x) dV (x) = 0. (1.6)

In (1.5), the partial differential operator Lλ̃,µ̃ is defined as follows,

Lλ̃,µ̃uδ := ∇ ·Cλ̃,µ̃∇
suδ = µ̃∆uδ + (λ̃+ µ̃)∇∇ · uδ, (1.7)

where ∇s denotes the symmetric gradient given by

∇suδ :=
1

2
(∇uδ +∇uT

δ ),

and T signifies the matrix transpose.
Next, for u ∈ H1

loc(R
N) and v ∈ H1

loc(R
N), we introduce

Pλ,µ(u,v) :=

∫

RN

[
λ(∇ · u)(∇ · v)(x) + 2µ∇su : ∇sv(x)

]
dV (x), (1.8)

where and also in what follows, for two matrices A = (aij)
N
i,j=1 and B = (bij)

N
i,j=1,

A : B =
N∑

i,j=1

aijbij .

For the solution uδ to (1.5), we define

Eδ(Cλ̃,µ̃, f) :=
δ

2
Pλ,µ(uδ,uδ). (1.9)

Eδ defined above signifies the energy dissipated into heat of the elastostatic system
(1.5).

Definition 1.1. The configuration (Cλ̃,µ̃, f) in (1.5) is said to be resonant if

lim
δ→+0

Eδ(Cλ̃,µ̃, f) = +∞; (1.10)

and it is said to be weakly resonant if

lim sup
δ→+0

Eδ(Cλ̃,µ̃, f) = +∞. (1.11)

As mentioned earlier, the resonance for the Lamé system (1.5) has been inves-
tigated in [8] in two dimensions. The results that we shall establish in this paper
distinguish from those in [8] in the following aspects.

(1) The results in [8] were established by using the spectral approach, whereas
in this paper we shall make use of variational approach to establish our
resonance results.

(2) In [8], it is always assumed that the core is empty, namely Σ = ∅, whereas
in this paper, Σ could be an empty set, or a non-empty set of an arbitrary
shape. In [8], the exterior domain, namely Ω could be a disk or an ellipse,
whereas in this paper, we take Ω to be a disk. Nevertheless, we would like
to emphasize that our study can be extended to the case that Ω is an ellipse
by following similar arguments.



4 HONGJIE LI AND HONGYU LIU

(3) In [8], the force term f can be a function compactly supported in R2\Ω,
whereas in our study, we assume that f is distributed on a circular curve
enclosing Ω. Our method also allows for more general distributional sources
by using the principle of superpositions.

(4) If the core Σ is an empty set, then in both [8] and the present paper, the
resonance results are established. If the exterior domain Ω is an ellipse with
Σ = ∅, then ALR and CALR results were established in [8]. In our study,
by assuming that Ω is a disk and Σ is nonempty, we establish the ALR
result.

We shall mainly focus on the two-dimensional case, namely N = 2, and unless
otherwise specified, we shall take that

c := −
λ+ µ

λ + 3µ
(1.12)

in (1.4). Here, it is easily seen from (1.2) with N = 2 that c defined in (1.12) is
negatively valued. Hence, (1.3) yields a plasmonic structure. In Section 4, we shall
remark our study for the three-dimensional case.

The rest of the paper is organized as follows. In Section 2, we establish the primal
and dual variational principles for the elastostatic system. Section 3 is devoted to
the resonance and non-resonance results. We conclude our study in Section 4 by
discussing the extension to the three-dimensional case.

2. Variational principles for the elastostatic system

In this section, we establish the primal and variational principles for the elas-
tostatic system (1.5), which shall play a critical role in our subsequent resonance
study. Throughout the present section, we assume that the force term f = (fi)

N
i=1 ∈

H−1(RN)N in (1.5) with a compact support and a zero average in the sense that

〈fi, 1〉 = 0, i = 1, 2, . . . , N, (2.1)

where 1 : RN → R is the constant function, 1(x) = 1 for all x ∈ RN .

2.1. Preliminaries for the elastostatic system. We collect some preliminary
knowledges on the elastostatic system (1.5). Those are standard results, but we
cannot find a convenient reference. In what follows, we let BR with R ∈ R+ denote
a central ball of radius R in RN . Throughout, without loss of generality, we assume
that there exists R0 ∈ R+ such that supp(f) ⊂ BR0

. For a connected Lipschitz sur-
face Γ in RN\Ω, enclosing a bounded domain D, we define the conormal derivative
∂uδ/∂ν on the boundary Γ = ∂D by

∂uδ

∂ν
= λ̃(∇ · uδ)ν + µ̃(∇uδ +∇uT

δ )ν on Γ, (2.2)

where ν is the outward unit normal vector to the boundary Γ. Let uδ ∈ H1
loc(R

N)N

satisfy the Lamé system, namely, Lλ̃,µ̃uδ = f . For any test function v ∈ H1
loc(R

N)N ,
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we recall the following Green’s formula,
∫

∂D

v ·
∂uδ

∂ν
ds(x) =

∫

D

v · Lλ̃,µ̃uδ dV (x) +Pλ̃,µ̃(uδ,v), (2.3)

where P(uδ,v) is given by (1.8) with the integration domain replaced by D. Using
(2.3), the weak solution uδ ∈ H1

loc(R
N )N to (1.5) is given in the sense that

Pλ̃,µ̃(uδ,v) = 〈f ,v〉, (2.4)

where v ∈ H1
loc(R

N)N , compactly supported in BR for any R ≥ R0. In order to
have a functional analytic framework for the variational formulation, we introduce
the following function space

S :=
{
u ∈ H1

loc(R
N)N ; ∇u ∈ L2(RN)N×N and

∫

BR0

u = 0
}
. (2.5)

Consider the following sesquilinear form, B(·, ·) : S × S → C, defined by

B(u,v) := −i ·Pλ̃,µ̃(u,v). (2.6)

It is straightforward to verify that B is bounded and by using the Poincaré-
Wirtinger inequality, coercive. Hence, by the Lax-Milgram theorem, one can show
that there exists a unique solution uδ ∈ S to the Lamé system (1.5). Finally, by
using the fact that the Kelvin matrix of the fundamental solution Φ = (Φij)

N
i,j=1

to the PDO Lλ,µ is given by (cf. [16])

Φij =





α

2π
δij ln ‖x‖ −

β

2π

xixj
‖x‖2

when N = 2,

−
α

4π

δij
‖x‖

−
β

2π

xixj
‖x‖3

when N = 3,

(2.7)

where

α =
1

2

(
1

µ
+

1

2µ+ λ

)
and β =

1

2

(
1

µ
−

1

2µ+ λ

)
.

In (2.7), x = (xi)
N
i=1 ∈ R

N and δij is the Kronecker delta. Using the form of the
fundamental solution in (2.7), one can show by direct calculations that the solution
uδ ∈ S to Lλ̃,µ̃uδ = f possess the asymptotic behaviour, uδ(x) = O(‖x‖−1) as

‖x‖ → +∞.

2.2. Primal and dual variational principles. We now establish the primal and
dual variational principles for the elastostatic system (1.5). For a fixed force term
f ∈ H−1(RN)N and for the solution uδ ∈ H1

loc(R
N)N : RN → CN , we set

uδ = vδ + i
1

δ
wδ, (2.8)

where vδ,wδ ∈ H1
loc(R

N)N : RN → RN satisfying vδ = O(‖x‖−1) and wδ =
O(‖x‖−1) as ‖x‖ → +∞. By straightforward calculations, one can show that the
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elastostatic system (1.5) for uδ is equivalent to the following coupled system for
the two real functions vδ and wδ:

ALλ,µvδ − Lλ,µwδ = f , (2.9)

ALλ,µwδ + δ2Lλ,µvδ = 0, (2.10)

where A is given in (1.4) and (1.12), and (λ, µ) are the two regular Lamé constants
in (1.3). Furthermore, by direct computations, one has that

Eδ(uδ) :=Eδ(Cλ̃,µ̃, f) =
δ

2
Pλ,µ(uδ,uδ)

=
δ

2
Pλ,µ(vδ,vδ) +

1

2δ
Pλ,µ(wδ,wδ),

(2.11)

where Eδ is given in (1.9) and P is given in (1.8).
Next, we introduce the following energy functional

Iδ(v,w) :=
δ

2
Pλ,µ(v,v) +

1

2δ
Pλ,µ(w,w) for (v,w) ∈ S × S, (2.12)

and consider the following optimization problem:

Minimize Iδ(v,w) over all pairs (v,w) ∈ S × S

subject to the PDE constraint ALλ,µv − Lλ,µw = f .
(2.13)

In the sequel, we shall refer to (2.13) as the primal variational problem for the
elastostatic system (1.5), or equivalently (2.9)-(2.10).

We have the following result about the primal problem (2.13).

Lemma 2.1. The primal variational problem (2.13) is equivalent to the elastic
problem (1.5) in the following sense.

(1) The infimum

inf
{
Iδ(v,w); ALλ,µv− Lλ,µw = f

}
(2.14)

is attainable at a pair (vδ,wδ) ∈ S × S.

(2) The minimizing pair (vδ,wδ) is unique, up to an additive constant, such
that the function uδ := vδ + iδ−1wδ is the unique solution to the elastic
problem (1.5).

(3) For the solution in (2), the energies coincide, namely,

Eδ(uδ) = Iδ(vδ,wδ). (2.15)

Proof. It is directly verified that Iδ(vδ,wδ) is a convex functional and the PDE con-
straint in (2.13) yields a nonempty set. Hence, the infimum of (2.14) is attainable;
that is, there exists a pair (vδ,wδ) such that

Iδ(vδ,wδ) ≤ Iδ(v,w) for all (v,w) satisfying ALλ,µv −Lλ,µw = f . (2.16)

Next we show that uδ := vδ + iδ−1wδ is the solution to the elastic problem (1.5).
As a minimizer of Iδ, the pair (vδ,wδ) must verify the Euler-Lagrange equation,

∂τ Iδ(vδ + τ ṽ,wδ + τw̃)
∣∣
τ=0

= 0, (2.17)
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for every pair (ṽ, w̃) satisfying

ALλ,µṽ −Lλ,µw̃ = 0. (2.18)

For the energy Iδ, this equation reads

δPλ,µ(vδ, ṽ) +
1

δ
Pλ,µ(wδ, w̃) = 0. (2.19)

With the help of Green’s formula and (2.18), the last equation yields

− δ

∫

RN

Lλ,µvδ · ṽdV (x)−
1

δ

∫

RN

wδ · Lλ,µw̃dV (x)

= −δ

∫

RN

Lλ,µvδ · ṽdV (x)−
1

δ

∫

RN

wδ · ALλ,µṽdV (x)

= −
1

δ

∫

RN

(δ2Lλ,µvδ + ALλ,µwδ) · ṽdV (x) = 0

(2.20)

which is the weak form of (2.10). As a solution of (2.9)-(2.10), the pair (vδ,wδ)
defines through uδ := vδ + iδ−1wδ a solution to the original problem (1.5).

The uniqueness is a consequence of the fact that the original problem (1.5)
possesses a unique solution. Finally, it is obvious that Eδ(uδ) = Iδ(vδ,wδ) from
(2.11).

The proof is complete. �

Remark 2.1. By Lemma 2.1, one can readily see that for the solution uδ to (1.5)
and the energy Eδ(uδ) in (2.11), one has that

Eδ(uδ) ≤ Iδ(v,w), (2.21)

for the energy functional Iδ defined in (2.12) and every pair (v,w) verifying the
constraint specified in (2.13). For the elastic configuration (Cλ̃,µ̃, f), we shall make

use of the primal variational principle via (2.21) to show the non-resonance result
by constructing suitable test functions v and w.

We proceed to introduce the dual variational problem by defining the following
energy functional

Jδ(v,ψ) :=

∫

RN

f ·ψ −
δ

2
Pλ,µ(v,v)−

δ

2
Pλ,µ(ψ,ψ) for (v,ψ) ∈ S × S. (2.22)

Consider the following optimization problem

Maximize Jδ(v,ψ) over all pairs (v,ψ) ∈ S × S

subject to the PDE constraint ALλ,µψ + δLλ,µv = 0.
(2.23)

In the sequel, we shall refer to (2.23) as the dual variational problem for the elas-
tostatic system (1.5), or equivalently (2.9)-(2.10).

We have the following result about the dual problem (2.23).

Lemma 2.2. The dual variational problem (2.23) is equivalent to the elastic prob-
lem (1.5) in the following sense.
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(1) The supremum

sup
{
Jδ(v,ψ);ALλ,µψ + δLλ,µv = 0

}
(2.24)

is attainable at a pair (vδ,ψδ) ∈ S × S.

(2) The maximizing pair (vδ,ψδ) is unique, up to an additive constant, such
that the function uδ := vδ+iψδ is the unique solution to the elastic problem
(1.5).

(3) For the solution in (2), the energies coincide, namely,

Eδ(uδ) = Jδ(vδ,ψδ). (2.25)

Proof. We shall follow similar arguments to those for the proof of Lemma 2.1. The
existence and uniqueness can be proved similarly to that of the primal variational
problem.

Next we prove that uδ := vδ + iψδ is the solution of the original problem (1.5).
As a maximizer of Jδ, the pair (vδ,ψδ) must verify the Euler-lagrange equation,

∂τJδ(vδ + τ ṽ,ψδ + τψ̃)|τ=0 = 0 (2.26)

for every pair (ṽ, ψ̃) satisfying

ALλ,µψ̃ + δLλ,µṽ = 0. (2.27)

For the energy functional Jδ, this equation is equivalent to

∫

RN

f · ψ̃ − δPλ,µ(vδ, ṽ)− δPλ,µ(ψδ, ψ̃) = 0. (2.28)

Using Green’s formula and (2.27), together with straightforward calculations, one
has from (2.28) that

∫

RN

f · ψ̃ dV (x) + δ

∫

RN

vδ · Lλ,µṽ dV (x) + δ

∫

RN

ψδ · Lλ,µψ̃ dV (x)

=

∫

RN

f · ψ̃ dV (x)−

∫

RN

vδ · ALλ,µψ̃ dV (x) + δ

∫

RN

Lλ,µψδ · ψ̃ dV (x)

=

∫

RN

f · ψ̃ dV (x)−

∫

RN

ALλ,µvδ · ψ̃ dV (x) + δ

∫

RN

Lλ,µψδ · ψ̃ dV (x)

=

∫

RN

(f −ALλ,µvδ + δLλ,µψδ) · ψ̃ dV (x) = 0.

(2.29)

By (2.29), we conclude that the pair (vδ,wδ) := (vδ, δψδ) is a weak solution of
(2.9)-(2.10), and thus uδ := vδ + iψδ is a solution to the original problem (1.5).
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Finally, we verify that Eδ(uδ) = Jδ(vδ,ψδ). By using Green’s formula again, we
have

Eδ(uδ)− Jδ(vδ,ψδ)

=
δ

2
Pλ,µ(vδ,vδ) +

δ

2
Pλ,µ(ψδ,ψδ)−

∫

RN

f ·ψδ +
δ

2
Pλ,µ(vδ,vδ) +

δ

2
Pλ,µ(ψδ,ψδ)

=δPλ,µ(vδ,vδ) + δPλ,µ(ψδ,ψδ)−

∫

RN

f ·ψδ

=− δ

∫

RN

vδ · Lλ,µvδ − δ

∫

RN

ψδ · Lλ,µψδ −

∫

RN

f ·ψδ

=

∫

RN

vδ ·ALλ,µψδ − δ

∫

RN

Lλ,µψδ ·ψδ −

∫

RN

f ·ψδ

=

∫

RN

(ALλ,µvδ − δLλ,µψδ − f) ·ψδ dV (x) = 0.

(2.30)

The proof is complete. �

Remark 2.2. By Lemma 2.2, one can readily see that for the solution uδ to (1.5)
and the energy Eδ(uδ) in (2.11), one has that

Eδ(uδ) ≥ Jδ(v,ψ), (2.31)

for the energy functional Jδ defined in (2.22) and every pair (v,ψ) verifying the
constraint specified in (2.23). For the elastic configuration (Cλ̃,µ̃, f), we shall make

use of the dual variational principle via (2.31) to show the resonance result by
constructing suitable test functions v and ψ.

3. Anomalous localized resonance for the elastostatic system

In this section, we are in a position to present the ALR results for the Lamé
system (1.5) with the elastic configuration (Cλ̃,µ̃, f) in two dimensions. Henceforth,

we assume that the force term f(x) is of the following form

f = FH1⌊∂Bq, F : ∂Bq → R
2, F ∈ L2(∂Bq)

2, q ∈ R+, (3.1)

and ∫

∂Bq

F dH1 = 0. (3.2)

Moreover, we let the exterior domain Ω for the plasmonic structure (1.4) be taken
to be BR with a fixed R ∈ R+.

3.1. Perfect plasmone elastic waves. As discussed earlier in Remarks 2.1 and
2.2, in order to show the resonance and non-resonance results by using the vari-
ational principles, we shall construct suitable trial functions. Those functions are
referred to as perfect plasmone elastic waves, and are contained in the following
lemma. Starting from now on and throughout the rest of the paper, we make use
of the polar coordinates x = (r cos θ, r sin θ) ∈ R2.
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Lemma 3.1. Consider the PDE for a function ψ : R2 → R2

ALλ,µψ = 0,

ψ(x) = O(‖x‖−1) as ‖x‖ → ∞,
(3.3)

where

A(x) =

{
c, |x| ≤ R,

+1, |x| > R,
(3.4)

and c is given in (1.12). Then there exist non-trivial solutions ψ = ψ̂k, k = 1, 2, . . .,
which are given as follows:

ψ̂k(x) :=





R2k

[
r−k cos(kθ) + kα(r2 −R2) 1

rk+2 cos((k + 2)θ)

−r−k sin(kθ) + kα(r2 −R2) 1
rk+2 sin((k + 2)θ)

]
, r > R;

[
rk cos(kθ)

−rk sin(kθ)

]
, r < R;

(3.5)
where

α = α2/α1, (3.6)

and

α1 =
1

2

(
1

µ
+

1

2µ+ λ

)
, (3.7)

α2 =
1

2

(
1

µ
−

1

2µ+ λ

)
. (3.8)

Moreover, by straightforward calculations, one has that that the energy P (ψ̂k, ψ̂k)
is

Pλ,µ(ψ̂k, ψ̂k) = 8kπ
µ(λ+ 2µ)

λ + 3µ
R2k. (3.9)

Proof. The lemma can be verified by straightforward computations. �

Remark 3.1. For the subsequent use, we remark that if

A(x) =

{
+1, |x| ≤ R,

c, |x| > R,
(3.10)

then by straightforward calculations, one can verify that the perfect plasmone

elastic waves ψ̂k(x), k = 2, 3, . . . , are given by:

ψ̂k(x) :=





[
R2kr−k cos(kθ)

R2kr−k sin(kθ)

]
r > R;

[
rk cos(kθ)− kα(r2 − R2)rk−2 cos((k − 2)θ)

rk sin(kθ) + kα(r2 − R2)rk−2 sin((k − 2)θ)

]
r < R.

(3.11)
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Next we give the Fourier series expression of the force term f . Suppose that the
source f is real-valued and supported at distance q from origin, given in (3.1) and
(3.2), then it can be represented as follows

f =

∞∑

k=1

(βkf
q
1,k + γkf

q
2,k + ξkf

q
3,k + ηkf

q
4,k) (3.12)

where

f
q
1,k =

[
cos(kθ)
sin(kθ)

]
H1⌊∂Bq , (3.13)

f
q
2,k =

[
cos(kθ)
− sin(kθ)

]
H1⌊∂Bq, (3.14)

f
q
3,k =

[
− sin(kθ)
cos(kθ)

]
H1⌊∂Bq, (3.15)

f
q
4,k =

[
sin(kθ)
cos(kθ)

]
H1⌊∂Bq , (3.16)

and

βk =

∫

∂Bq

f · f q1,k ds, γk =

∫

∂Bq

f · f q2,k ds, (3.17)

ξk =

∫

∂Bq

f · f q3,k ds, ηk =

∫

∂Bq

f · f q4,k ds. (3.18)

In order to simplify the exposition, in our subsequent study, we shall always
assume that ξk = ηk ≡ 0. That is, we exclude the presence of the modes f3,k and
f4,k in the force term, and hence instead of the general form (3.12), we shall consider
a force term of the following form

f =
∞∑

k=1

(βkf
q
1,k + γkf

q
2,k). (3.19)

However, it is emphasized that all of the resonance and non-resonance results in the
present paper still hold with the presence of the modes f3,k and f4,k, by following
completely similar arguments with necessary modifications.

3.2. Resonance with no core. We first consider the case that there is no core,
namely Σ = ∅, in the plasmonic structure (1.3)–(1.4). In this case, we have that
the elastic configuration (Cλ̃,µ̃, f) is always resonant in the sense that

Theorem 3.1. Consider the elastic configuration (Cλ̃,µ̃, f), where Cλ̃,µ̃ is described

in (1.3)–(1.4) with c given in (1.12) and Ω = BR for a certain R ∈ R+. Let f be
given by (3.19), with γk 6= 0 for some k ∈ N, representing the force supported
at a distance q > R. Assume that there is no core; that is, Σ = ∅. Then the
configuration is resonant, i.e. Eδ(Cλ̃,µ̃, f) → +∞ as δ → +0.
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Proof. We shall make use the dual variational principle for its proof. Fix the radii
R, q and consider an arbitrary sequence δ = δj → +0 as j → +∞. Our aim is to
find a sequence (vδ,ψδ), satisfying the constraint ALλ,µψδ + δLλ,µvδ = 0 of (2.23)
and such that Jδ(vδ,ψδ) → +∞. We choose

vδ ≡ 0 (3.20)

ψδ :≡ τδψ̂k, (3.21)

where ψ̂k is given by (3.5)–(3.8) and τδ ∈ R is to be chosen below. Thus the
pair (vδ,ψδ) satisfies the PDE constraint in (2.23). With the help of (2.31), the
definition of Jδ, the orthogonality of Fourier series and γk 6= 0 for some k ∈ N, we
can obtain

Eδ(uδ) ≥ Jδ(vδ,ψδ) = Jδ(0,ψδ) =

∫
f ·ψδ −

δ

2
Pλ,µ(ψδ,ψδ)

=

∫

∂Bq

γkτδq
−kR2k(cos2(kθ) + sin2(kθ))−

δ

2
|τδ|

2Pλ,µ(ψ̂k, ψ̂k)

= 2πqγkτδq
−kR2k − (δ|τδ|

2)4kπ
µ(λ+ 2µ)

λ+ 3µ
R2k.

(3.22)

Choosing τδ → +∞ with δ|τδ|
2 → +0 as δ → +0, we obtain Eδ(uδ) → +∞ for

δ → +0.
The proof is complete. �

Remark 3.2. In Theorem 3.1, we assume γk 6= 0 for some k ∈ N; that is, there is at
least a mode f2,k presented in the force term f . If we assume that in the force term
(3.19), there is a coefficient βk 6= 0 for some k ≥ 2, then by following a completely
similar argument, together with the modification of the plasmone constant c in
(1.4) to be

c := −
λ+ 3µ

λ+ µ
, (3.23)

one can draw a similar conclusion to Theorem 3.1 about the resonance.

3.3. ALR with a core of an arbitrary shape. In this section, we consider a
non-radial geometry with a core, Σ ⊂ B1, of an arbitrary shape. We shall show that
anomalous localized resonance occurs; that is, the resonance of the configuration
depends on the location of the force term f .

Theorem 3.2. Consider the elastic configuration (Cλ̃,µ̃, f), where Cλ̃,µ̃ is described

in (1.3)–(1.4) with c given in (1.12) and, Ω = BR for a certain R > 1 and Σ ⊂ B1

with a connected Lipschitz boundary ∂Σ. Consider the elastostatic system (1.5),
with Cλ̃,µ̃ described above. Then for every radius R < q < R∗ := R3/2, there exists

a source f of the form (3.19) supported at a distance q from the origin, such that
the configuration (Cλ̃,µ̃, f) is resonant.

Proof. We fix R < q < R∗ and a sequence δ = δj → +0 and consider a force
term f given by (3.19). Our aim is to find a sequence (vδ,ψδ), satisfying the PDE
constraint ALλ,µψδ + δLλ,µvδ = 0 in (2.23) and such that Jδ(vδ,ψδ) → +∞.
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We choose
ψδ :≡ τδψ̂kδ , (3.24)

where ψ̂k is given by (3.5)-(3.8). The number k = kδ ∈ N and τδ ∈ R will be
properly chosen below. For ψδ, it is apparent that ALλ,µψδ 6= 0 along the core
interface ∂Σ ⊂ B1. In order to satisfy the PDE constraint we define vδ to be the
solution of −δLλ,µvδ = ALλ,µψδ. Since −Lλ,µ is an elliptic PDO, by the standard
elliptic estimates one can arrive at the following estimate:

δPλ,µ(vδ,vδ) ≤ Cλ,µδ
−1‖ALλ,µψδ‖

2
H−1(R2)2 ≤ Cλ,µδ

−1τ 2δ kδ, (3.25)

where and also in what follows Cλ,µ denotes a generic positive constant. Indeed,
one has by direct calculations that

Pλ,µ(vδ,vδ) =

∫

R2

(λ|∇ · vδ|
2 + 2µ|∇svδ|

2) ≤ Cλ,µ‖vδ‖
2
H1(R2)2 . (3.26)

Since ALλ,µψδ = 0 outside B1, we choose ω ∈ H1
0 (B1)

2 with ‖ω‖H1
0
(B1)2 = 1 and

we then have∫

R2

(ALλ,µψδ) · ω =

∫

B1

(ALλ,µψδ) · ω

= A(λ+ µ)

∫

B1

(∇ ·ψδ)(∇ · ω) + Aµ

∫

B1

(
(∇ψ1

δ ) · (∇ω1) + (∇ψ2
δ ) · (∇ω2)

)

≤ A(λ+ µ)‖∇ ·ψδ‖L2(B1) + Aµ
(
‖∇ψ1

δ‖L2(B1)2 + ‖∇ψ2
δ‖L2(B1)2

)

≤ Cλ,µτδk
1/2
δ ,

(3.27)

where

ψδ =

[
ψ1
δ

ψ2
δ

]
and ω =

[
ω1

ω2

]
(3.28)

It remains to calculate the energy Jδ(vδ,ψδ). We choose kδ to be the smallest
integer such that

R−kδ < δ. (3.29)

We also note that one must have R−kδ+1 ≥ δ since kδ is the smallest integer fulfilling
(3.29). With the help of (2.31), we have

Eδ(uδ) ≥ Jδ(vδ,ψδ) =

∫
f ·ψδ −

δ

2
Pλ,µ(vδ,vδ)−

δ

2
Pλ,µ(ψδ,ψδ)

≥ c0γkδτδq
−kδR2kδ − Cλ,µδ

−1τ 2δ kδ − Cλ,µδτ
2
δ kδR

2kδ

≥ τδR
kδ

(
c0γkδ

(
R

q

)kδ

− Cλ,µ
1

(δRkδ)
τδkδ − Cλ,µτδkδ(δR

kδ)

)
.

(3.30)

The choice of Rkδ < δ with 1 < δRkδ ≤ R ensures that the last two contributions
are of comparable order. We then find, for some Cλ,µ > 0,

Eδ(uδ) ≥ τδR
kδ

(
c0γkδ

(
R

q

)kδ

− Cλ,µτδkδ

)
. (3.31)
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We choose τδ to be

τδ =
1

2Cλ,µkδ
c0γkδ

(
R

q

)kδ

, (3.32)

and then from (3.31) and (3.32) we readily have that

Eδ(uδ) ≥ τδR
kδ

(
1

2Cλ,µkδ
c0γkδ

(
R

q

)kδ
)

=
1

4Cλ,µkδ
(c0γkδ)

2

(
R3

q2

)kδ

. (3.33)

By the assumption, q > R∗ and if the sequence of the Fourier coefficients γk of the
force term f decays not very quickly (ensuring that the RHS term of (3.33) goes
to infinity as δ → +0), we easily see from (3.33) that Eδ(uδ) → +∞ as δ → +0.

This proof is complete. �

Remark 3.3. Similar to Remark 3.2, if one chooses the plasmone constant c in (1.4)
to be

c := −
λ+ 3µ

λ+ µ
,

then by following a completely similar argument to the proof of Theorem 3.2, one
can show that if the Fourier coefficients βk of the force term f decays not very
quickly, then the anomalous localized resonance occurs.

3.4. Non-resonance in the radial case. In Section 3.3, we show that for certain
source/force terms lying within the critical radius R∗, the resonance occurs. In this
section, we shall show that for a certain source term lying outside the critical radius,
then resonance does not occur. To that end, we would consider our study in the
radial geometry by assuming that the core Σ = B1.

Theorem 3.3. Consider the elastic configuration (Cλ̃,µ̃, f), where Cλ̃,µ̃ is described

in (1.3)–(1.4) with c given in (1.12) and, Ω = BR for a certain R > 1 and Σ = B1

. Consider the elastostatic system (1.5), with Cλ̃,µ̃ describe above. Let the source

f be given by (3.19) with {βk} ∈ l2(N,R), and

βk
γk−2

= −
q2(λ+ 3µ)

(k − 2)(λ+ µ)(q2 − R2)
k > 2; βk = 0, k = 1, 2. (3.34)

Then for any q > R∗ := R3/2, the configuration (Cλ̃,µ̃, f) is non-resonant.

Proof. We make use of the primal variational principle to show the non-resonance
result. We shall construct the test function (vδ,wδ), satisfying the constraint

ALλ,µvδ − Lλ,µwδ = f (3.35)

such that the energy along this sequence , Iδ(vδ,wδ) remains bounded. To that
end, our strategy is to decompose the source f into a low-frequency part and a
high-frequency part as that

f =f low + fhigh,

f low :=

k∗∑

k=3

(βkf
q
1,k + γkf

q
2,k), fhigh :=

∞∑

k=k∗+1

(βkf
q
1,k + γkf

q
2,k),

(3.36)
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where f q1,k and f
q
2,k are given by (3.13) and (3.14), respectively, and k∗ will be chosen

to depend on δ. Indeed, we shall choose k∗ = k∗(δ) to be the smallest integer such
that R−k∗ > δ, and this will be explicitly specified again in what follows. We then
construct (vδ,wδ) with vδ = vlow

δ + v
high
δ and wδ = w

high
δ as follows:

vlow
δ satisfies ALλ,µv

low
δ = f low, (3.37)

v
high
δ satisfies ALλ,µv

high
δ |∂Bq(0) = fhigh, (3.38)

w
high
δ satisfies −Lλ,µw

high
δ = −ALλ,µv

high
δ + fhigh. (3.39)

This construction yields (vδ,wδ), which satisfies the constraint (3.35) of the primal
problem (2.13). Furthermore, we shall show that with an appropriate choice of the
cutoff integer k∗ = k∗(δ) in (3.36), Iδ(vδ,wδ) remains bounded as δ → +0.

Next, we construct vlow
δ . First, we present the base function v̂k for our construc-

tion, which can be represented as follows:

v̂k(x) =





v̂
(c)
k (x), r ≤ 1,

v̂
(s)
k (x), 1 < r ≤ R,

v̂
(f)
k (x), R < r ≤ q,

v̂
(e)
k (x), r > q,

k = 3, 4, 5, . . . , (3.40)

with

v̂
(c)
k (x) :=

[
rk cos(kθ)− kα(r2 − 1)rk−2 cos((k − 2)θ)
rk sin(kθ) + kα(r2 − 1)rk−2 sin((k − 2)θ)

]
, r ≤ 1, (3.41)

v̂
(s)
k (x) :=

[
r−k cos(kθ)
r−k sin(kθ)

]
, 1 < r ≤ R, (3.42)

v̂
(f)
k (x) := R−2k

[
rk cos(kθ)− kα(r2 − R2)rk−2 cos((k − 2)θ)
rk sin(kθ) + kα(r2 − R2)rk−2 sin((k − 2)θ)

]
, R < r ≤ q,

(3.43)

v̂
(e)
k (x) :=

( q
R

)2k ([ r−k cos(kθ)
r−k sin(kθ)

]

+ c1k

[
(k − 2)α(r2 − q2)r−k cos(kθ) + r−(k−2) cos((k − 2)θ)
(k − 2)α(r2 − q2)r−k sin(kθ)− r−(k−2) sin((k − 2)θ)

])
, r > q, (3.44)

where

c1 =
α(R2 − q2)

q4

and α is given in (3.6). We note that v̂k have the following properties:

(1) v̂k is continuous on all R2;

(2) v̂k satisfies ALλ,µv̂k = 0 for x ∈ R2\∂Bq;
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(3) Along ∂Bq, v̂k has a jump in its normal flux:

[
∂v̂k

∂ν

]

∂Bq

=− c2kq
kR−2k

(
q2(λ+ 3µ)

) [ cos(kθ)
sin(kθ)

]

+ c2kq
kR−2k

(
(k − 2)(λ+ µ)(q2 − R2)

) [ cos((k − 2)θ)
− sin((k − 2)θ)

]
,

(3.45)

where [·] denote the jump of the normal flux and

c2 =
4µ(λ+ 2µ)

q3(λ+ 3µ)2
. (3.46)

By using the properties listed above, it is easy to verify that with an appropriate
constant multiple τkv̂k, one has

ALλ,µ(τkv̂k)|∂Bq
= βkf

q
1,k + γk−2f

q
2,k−2. (3.47)

Next we choose τk such that

τk ·
[
− c2kq

kR−2k
(
q2(λ+ 3µ)

) ]
= βk, (3.48)

and

τk ·
[
c2kq

kR−2k
(
(k − 2)(λ+ µ)(q2 −R2)

) ]
= γk−2. (3.49)

With the help of (3.34), one has by direct calculations that

τk :=
βk

−c2k (q2(λ+ 3µ))
q−kR2k. (3.50)

Now we set

vlow
δ :=

k∗∑

k=3

τkv̂k, (3.51)

with τk given in (3.50). By combining (3.47)–(3.50), along with straightforward
calculations, one can directly verify that vlow

δ defined in (3.51) satisfies (3.37).

After constructing vlow
δ , we next give the construction of vhigh

δ and w
high
δ , re-

spectively, in (3.38) and (3.39). Similar to the construction of vlow
δ via a certain

based function v̂k in (3.40). The construction of the function v
high
δ shall also be

constructed from certain base functions V̂k for k = 3, 4, 5, . . .. Those functions do
not fulfil −ALλ,µv = 0 on ∂B1 or ∂BR, but they are small along these curves. We

introduce V̂k as follows:

V̂k(x) =

{
V̂

(i)
k (x), r ≤ q,

V̂
(o)
k (x), r > q,

k = 3, 4, 5, . . . , (3.52)
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with

V̂
(i)
k (x) :=

c3
k

[
rk cos(kθ)− kα(r2 − q2)rk−2 cos((k − 2)θ)
rk sin(kθ) + kα(r2 − q2)rk−2 sin((k − 2)θ)

]

+ c4

[
rk−2 cos((k − 2)θ)
−rk−2 sin((k − 2)θ)

]
r ≤ q; (3.53)

V̂
(o)
k (x) := c4q

2(k−2)

[
r−(k−2) cos((k − 2)θ) + (k − 2)α(r2 − q2)r−k cos(kθ)
−r−(k−2) sin((k − 2)θ) + (k − 2)α(r2 − q2)r−k sin(kθ)

]

+
c3
k
q2k
[
r−k cos(kθ)
r−k sin(kθ)

]
r > q; (3.54)

where

c3 = −(λ+ 3µ) and c4 = (λ+ µ)(q2 − R2).

Recall that A(x) = 1 in a neighborhood of ‖x‖ = q. One can show by direct

calculations that the jump of the normal flux of V̂k in (3.52) on ∂Bq is given by
[
∂V̂k

∂ν

]

∂Bq(0)

=− c5q
k
(
q2(λ+ 3µ)

) [ cos(kθ)
sin(kθ)

]

+ c5q
k
(
(k − 2)(λ+ µ)(q2 −R2)

) [ cos((k − 2)θ)
− sin((k − 2)θ)

] (3.55)

where

c5 = −
4µ(λ+ 2µ)

q3(λ+ 3µ)
.

Therefore if we set

v
high
δ :=

∑

k>k∗

τkV̂k, τk =
βk

−c5 (q2(λ+ 3µ))
q−k, (3.56)

then by using (3.34) and (3.55), one can show by direct calculations that (3.38) is
satisfied:

ALλ,µv
high
δ |∂Bq

= fhigh. (3.57)

We emphasize that v
high
δ is not a solution to (3.57) on all of R2 due to that the

normal fluxes at ‖x‖ = 1 and ‖x‖ = R. In order to construct a solution to (3.57)

on R2, we introduce w
high
δ as follows:

−Lλ,µw
high
δ = −ALλ,µv

high
δ + fhigh

= −
∑

k>k∗

τk

[
A
∂vhigh

δ

∂ν

]

∂B1

−
∑

k>k∗

τk

[
A
∂vhigh

δ

∂ν

]

∂BR

(3.58)

Clearly, whigh
δ satisfies (3.39). With the test functions being ready, it remains to

calculate the energy Iδ(vδ,wδ), for the choice of vδ = vlow
δ + v

high
δ and wδ = w

high
δ .

In this step, we shall choose an appropriate cut-off frequency, k∗ = k∗(δ) to ensure
that Iδ(vδ,wδ) remains uniformly bounded as δ → +0.
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We first have by direct calculations that

δPλ,µ(v
low
δ ,vlow

δ ) ≤ Cλ,µδ
∑

k≤k∗

|βk|
2

(
R2

q

)2k

max

{
1,
( q

R2

)k}2

. (3.59)

For the case when q ≥ R2, we easily have from (3.59) that

δPλ,µ(v
low
δ ,vlow

δ ) ≤ Cλ,µδ
∑

k≤k∗

|βk|
2 ≤ Cλ,µδ, (3.60)

which is obvious bounded. The other case when R∗ < q < R2 is much more subtle.
It is noted that the estimate (3.59) can be simplified in the case when R∗ < q < R2

to be

δPλ,µ(v
low
δ ,vlow

δ ) ≤ Cλ,µδ
∑

k≤k∗

|βk|
2

(
R2

q

)2k∗

. (3.61)

In what follows, we shall show that with a special choice of k∗, the RHS of (3.61)

can be bounded. The energy of vhigh
δ is easy to control:

δPλ,µ(v
high
δ ,vhigh

δ ) ≤ Cλ,µδ
∑

k

|βk|
2 ≤ Cλ,µ. (3.62)

Next, we study the energy due to wδ, and with the help of (3.56), along with the
standard elliptic estimates, we have

1

δ
Pλ,µ(wδ,wδ) ≤ C

1

δ
‖ − ALλ,µv

high
δ + fhigh‖2H−1

≤ C
1

δ

∑

k>k∗

|τk|
2R2kk ≤ C

∑

k>k∗

|βk|
21

δ

(
R

q

)2k∗ (3.63)

Balancing the right hand sides of the bounds in (3.61) and (3.63), we choose k∗ so
that

δ

(
R2

q

)2k∗

∼
1

δ

(
R

q

)2k∗

; (3.64)

namely we choose k∗ = k∗(δ) to be the smallest integer with R−k∗ < δ such that

δ ≤ R−k∗+1 and
1

δ
≤ Rk∗ . (3.65)

Combining (3.65) with (3.61) and (3.63), we obtain

δPλ,µ(v
low
δ ,vlow

δ ) ≤ Cλ,µ

∑

k≤k∗

|βk|
2

(
R3

q2

)k∗(δ)

; (3.66)

and
1

δ
Pλ,µ(wδ,wδ) ≤ C

∑

k>k∗

|βk|
2

(
R3

q2

)k∗(δ)

. (3.67)

Hence, if q > R∗ = R3/2, Iδ(vδ,wδ) is bounded as δ → +0. Therefore, by (2.21),
the elastic configuration is non-resonant.

The proof is complete.
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�

4. Are there perfect plasmon waves in three dimensions?

As can be seen from our earlier study, the perfect plasmone elastic waves in
Lemma 3.1 play a critical role in establishing the resonance and non-resonance
results. Hence, if one intends to extend the resonance and non-resonance results to
the three-dimensional case, it would be natural to ask whether there exist perfect
plasmone elastic waves in R3. First of all, we consider the base solutions to the
equation, Lλ,µu = 0, in three dimensions and they are given as follows:

Mn(x) := curl{xrnYn(x̂)}; curlMn(x); ∇rnYn(x̂); (4.1)

Nn(x) := curl{xr−n−1Yn(x̂)}; curlNn(x); ∇r−n−1Yn(x̂); (4.2)

where x̂ := x/‖x‖ ∈ S
2 for x ∈ R

3\{0}; and Yn(x) is the spherical harmonics of
order n for n ∈ N ∪ {0}. By direct calculations, we have

Mn(x) =r
nGradYn(x̂)× x̂, (4.3)

Nn(x) =r
−n−1GradYn(x̂)× x̂. (4.4)

Set

B = GradYn(x̂)× x̂, (4.5)

and the first components of ∂Mn

∂ν
, ∂Nn

∂ν
are, respectively, given as follows:

(
∂Mn

∂ν

)

1

=
3∑

j=1

µνj

(
nrn−2x1Bj + rn

∂Bj

∂x1

)
+ µnrn−1B1, (4.6)

(
∂Nn

∂ν

)

1

=
3∑

j=1

µνj

(
(−n− 1)r−n−3x1Bj + r−n−1∂Bj

∂x1

)
+ µ(−n− 1)r−n−2B1,

(4.7)
where Bj is the jth-component of B. Hence, there does not exist a plasmone
constant c such that

c
∂Mn

∂ν
=
∂Nn

∂ν
. (4.8)

Therefore, it seems that there are no perfect plasmon waves in three dimensions.
We shall address this issue in our future investigation.
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